WO2022163358A1 - Resin composition for three-dimensional photoshaping - Google Patents

Resin composition for three-dimensional photoshaping Download PDF

Info

Publication number
WO2022163358A1
WO2022163358A1 PCT/JP2022/000824 JP2022000824W WO2022163358A1 WO 2022163358 A1 WO2022163358 A1 WO 2022163358A1 JP 2022000824 W JP2022000824 W JP 2022000824W WO 2022163358 A1 WO2022163358 A1 WO 2022163358A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
pattern
dimensional
cured product
liquid film
Prior art date
Application number
PCT/JP2022/000824
Other languages
French (fr)
Japanese (ja)
Inventor
功治 渡部
達也 渡海
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to JP2022578217A priority Critical patent/JPWO2022163358A1/ja
Priority to US18/262,686 priority patent/US20240117097A1/en
Publication of WO2022163358A1 publication Critical patent/WO2022163358A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • B29C2071/0045Washing using non-reactive liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/757Moulds, cores, dies

Definitions

  • the present invention relates to a resin composition for three-dimensional stereolithography, and further to a method for producing a three-dimensional structure using the resin composition.
  • Three-dimensional printers particularly ink-jet type three-dimensional printers, often use a water-soluble UV curable material as a support material.
  • Such conventional water-soluble UV-curable materials often contain a large amount of water-soluble solvent in order to maintain water-solubility, resulting in problems such as low hardness and heat resistance.
  • problems such as low hardness and heat resistance.
  • the water solubility is impaired.
  • Patent Documents 1 and 2 disclose resin compositions containing reactive monomers and water-soluble polymers. However, since it is assumed to be used as a support material to be molded together with model materials, it contains a large amount of water-soluble organic solvent and the glass transition temperature of the cured product is low, so the hardness and heat resistance of the cured product are low. It was something.
  • An object of the present invention is to provide a resin composition that is water-soluble and yet capable of producing a three-dimensional stereolithographic article with high heat resistance.
  • the present inventors have investigated the contradictory characteristics of high heat resistance despite high water solubility, and found that a highly crosslinked polymer containing a reactive monomer, a water-soluble polymer, and a photopolymerization initiator can be obtained.
  • the present inventors have found that a resin composition for three-dimensional stereolithography that gives a cured product that is easily soluble in water can be obtained by increasing the main peak temperature of tan ⁇ of the cured product.
  • the present invention provides a three-dimensional stereolithography resin composition
  • a three-dimensional stereolithography resin composition comprising a reactive monomer, a water-soluble polymer and a photopolymerization initiator, wherein the cured product has a main peak temperature of tan ⁇ of 80° C. or higher and a thickness of 1 mm.
  • the resin composition for three-dimensional stereolithography has a remaining thickness of 0.7 mm or less after immersing the cured product in water at room temperature for 5 hours.
  • the reactive monomer is preferably a reactive monomer having a glass transition temperature of 80° C. or higher when converted into a homopolymer.
  • the Shore D hardness after curing is preferably 60 or more.
  • it preferably contains a divalent metal salt of a carboxylic acid having a polymerizable functional group.
  • the present invention also relates to a cured product of the resin composition for three-dimensional stereolithography.
  • the cured product is preferably a core for injection molding.
  • the present invention provides (i) forming a first liquid film made of the resin composition and curing the first liquid film to form a first pattern; (ii) It relates to a method for manufacturing a three-dimensional structure, including the step of forming a second liquid film made of the resin composition so as to be in contact with the first pattern, curing the second liquid film, and laminating the second pattern. .
  • the manufacturing method preferably further includes the step of washing the first pattern and the second pattern with a solvent having a Hansen solubility parameter of 25 MPa 0.5 or less.
  • the present invention relates to a method for preserving a cured product, comprising the step of allowing the cured product to stand at a relative humidity of 40 to 60%.
  • the resin composition for three-dimensional stereolithography of the present invention it is possible to obtain a three-dimensional stereolithographic object that has both the contradictory properties of water solubility and high heat resistance.
  • FIG. 2 is a schematic diagram for explaining the process of forming a modeled object by stereolithography using the resin composition for three-dimensional modeling according to one embodiment of the present invention.
  • the resin composition for three-dimensional stereolithography of the present invention contains a reactive monomer, a water-soluble polymer and a photopolymerization initiator, has a main peak temperature of tan ⁇ of the cured product of 80° C. or higher, and has a thickness of 1 mm. and a remaining thickness of 0.7 mm or less after being immersed in water at room temperature for 5 hours.
  • the reactive monomer is preferably a monomer whose homopolymer has a glass transition temperature of 80° C. or higher.
  • the glass transition temperature is preferably 85°C or higher, more preferably 100°C or higher. If it is less than 80°C, the heat resistance will be poor.
  • the glass transition temperature may be obtained by actually polymerizing a homopolymer and measuring the glass transition temperature, or by calculation using the atomic group contribution method.
  • a reactive monomer is a photocurable monomer that can be cured or polymerized by the action of radicals or ions generated by light irradiation.
  • a monomer having a polymerizable functional group is preferred.
  • the number of polymerizable functional groups in the photocurable monomer is preferably 1 to 8.
  • the polymerizable functional group include a group having a polymerizable carbon-carbon unsaturated bond such as a vinyl group and an allyl group, and an epoxy group.
  • radically polymerizable monomers such as (meth)acrylic monomers, cationic polymerizable monomers such as epoxy-based monomers, vinyl-based monomers, and diene-based monomers are included.
  • (meth)acrylic monomers and vinyl monomers are preferred from the viewpoint of reaction rate, and monofunctional (meth)acrylic monomers and monofunctional vinyl monomers are preferred so as not to increase the crosslink density.
  • (Meth)acrylic monomers include monomers having a (meth)acryloyl group. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, neopentyl (meth) acrylate, (meth) ) cyclohexyl acrylate, benzyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cetyl (meth) acrylate, ethyl carbitol (meth) acrylate, (Meth)acrylic esters such as hydroxyethyl methacrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, methoxyethyl (me
  • (meth)acrylic acid amide is preferable in terms of reaction rate.
  • (meth)acrylic acid amides (meth)acryloylmorpholine, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and dimethylaminopropylacrylamide are preferred.
  • acrylic acid and methacrylic acid are referred to as (meth)acrylic acid
  • acrylic acid ester (or acrylate) and methacrylic acid ester (or methacrylate) are referred to as (meth)acrylic acid ester (or (meth)acrylate).
  • vinyl-based monomers examples include vinyl ethers such as polyol poly(vinyl ether), aromatic vinyl monomers such as styrene, and vinylalkoxysilanes.
  • polyols constituting polyol poly(vinyl ether) examples include polyols (butanediol) exemplified for acrylic monomers.
  • diene-based monomers include isoprene and butadiene.
  • Epoxy-based monomers include compounds having two or more epoxy groups in the molecule.
  • Epoxy-based monomers include, for example, compounds containing an epoxycyclohexane ring or a 2,3-epoxypropyloxy group.
  • the content of the reactive monomer in the three-dimensional stereolithography resin composition of the present invention is not particularly limited, but is preferably 99.5 to 1% by mass, more preferably 90 to 60% by mass. If it is less than 1% by mass, the resin tends to have high viscosity, and if it exceeds 99.5% by mass, curing shrinkage tends to increase.
  • Photoinitiators are activated by the action of light to initiate polymerization of reactive monomers.
  • the photopolymerization initiator for example, in addition to radical polymerization initiators that generate radicals by the action of light, those that generate base (or anion) or acid (or cation) by the action of light (specifically, anion generator, cation generator).
  • the photoinitiator can be selected according to the type of photocurable monomer, for example, whether it is radically polymerizable or ionically polymerizable.
  • radical polymerization initiators include alkylphenone-based photopolymerization initiators and acylphosphine oxide-based photopolymerization initiators.
  • alkylphenone polymerization initiators examples include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl-propane.
  • acylphosphine oxide polymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
  • the amount of the photopolymerization initiator added is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the reactive monomer. If it is less than 0.01 part by weight, it tends to cause poor curing, and if it exceeds 10 parts by weight, it tends to cause poor storage stability and poor curing due to absorption.
  • the water-soluble polymer is a polymer that swells or dissolves in water, such as polyalkylene glycol, polyvinyl alcohol, modified polyvinyl alcohol (polyvinyl alcohol/polyacrylate block copolymer, grafted polyvinyl alcohol, etc.), polyester, hydroxymethyl cellulose, Hydroxyethylcellulose, hydroxypropylcellulose, polyvinylpyrrolidone, vinylpyrrolidone-vinylimidazole copolymer, water-soluble alkyd resin, salt of copolymer containing (meth)acrylic acid (sodium salt, amine salt, etc.), ethylenic side chain Examples include water-soluble polymers having double bonds.
  • the weight average molecular weight of the water-soluble polymer is not particularly limited, but is preferably from 500 to 1,000,000, more preferably from 500 to 100,000. If it exceeds 1,000,000, the water solubility of the cured product tends to be impaired, or the solubility in monomers tends to decrease significantly.
  • the weight ratio of the reactive monomer to the water-soluble polymer is preferably 99.5/0.5 to 1/99, more preferably 60/40 to 95/5. If the reactive monomer is more than 99.5, curing shrinkage tends to increase, and if it is less than 1, the resin tends to have high viscosity.
  • the content of the water-soluble polymer in the three-dimensional stereolithography resin composition of the present invention is not particularly limited, but is preferably 0.5 to 99% by mass, more preferably 5 to 40% by mass. If it is less than 0.5% by mass, curing shrinkage tends to increase, and if it exceeds 99% by mass, the viscosity of the resin tends to be high.
  • the resin composition preferably further contains a divalent metal salt of a carboxylic acid having a polymerizable functional group. Heat resistance is improved by containing the metal salt.
  • a (meth)acryl group etc. are mentioned as a polymerizable functional group.
  • Metal salts include magnesium salts, zinc salts, calcium salts and the like. Specific examples include magnesium (meth)acrylate, zinc (meth)acrylate and calcium (meth)acrylate.
  • the amount of the divalent metal salt of carboxylic acid having a polymerizable functional group to be added is preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, per 100 parts by weight of the total of the reactive monomer and the water-soluble polymer. If it is less than 1 part by weight, the heat resistance may be insufficient, and if it exceeds 10 parts by weight, the monomer solubility tends to deteriorate.
  • the resin composition may further contain other known curable resins.
  • the curable resin composition can contain known additives such as dyes, UV sensitizers, polymerization inhibitors, plasticizers, UV absorbers, pigments and surfactants.
  • the resin composition is preferably liquid at room temperature. Since the resin composition is liquid at room temperature, stereolithography can be easily performed using a 3D printer or the like.
  • the viscosity of the curable resin composition at 25° C. is preferably 5000 mPa ⁇ s or less, more preferably 2000 mPa ⁇ s or less.
  • the viscosity of the resin composition can be measured using a cone-plate E-type viscometer at a rotational speed of 20 rpm.
  • the main peak temperature of tan ⁇ of the cured product is 80° C. or higher, preferably 100° C. or higher, more preferably 120° C. or higher. If it is less than 80°C, the heat resistance becomes insufficient.
  • tan ⁇ is the Tg measured using a dynamic viscoelasticity measurement device (DMA). Measurement can be performed while the cured product is heated from a low temperature side to a high temperature side (for example, from -100°C to +200°C). If there are multiple peaks, the peak temperature of the larger peak (main peak) is used.
  • DMA dynamic viscoelasticity measurement device
  • the deformation start temperature of the cured product is preferably 30° C. or higher, more preferably 50° C. or higher, and even more preferably 80° C. or higher. If it is less than 30°C, the heat resistance becomes insufficient.
  • the deformation start temperature is the temperature at 1% strain measured using a dynamic viscoelasticity measurement device (DMA). Measurement can be performed while the cured product is heated from a low temperature side to a high temperature side (for example, from -100°C to +200°C).
  • DMA dynamic viscoelasticity measurement device
  • the remaining thickness after immersing a cured product having a thickness of 1 mm in water at room temperature for 5 hours is 0.7 mm or less, preferably 0.5 mm or less. 0 mm or less (that is, complete dissolution) is more preferable. If it exceeds 0.7 mm, the water solubility will be insufficient.
  • the Shore D hardness of the cured product is 60 or more, preferably 70 or more, more preferably 80 or more. If it is less than 60, the strength tends to be insufficient.
  • the Shore D hardness is measured using a type D durometer in accordance with JIS K7215:1986.
  • the elastic modulus Er of the cured product at 80° C. is preferably 0.01 GPa or more, more preferably 0.1 GPa or more, and even more preferably 1 GPa or more. If it is less than 0.01 GPa, the strength is insufficient.
  • the elastic modulus Er at 25° C. is preferably 0.1 GPa or more, more preferably 1 GPa or more. If the elastic modulus Er of the cured product at 25°C is less than 0.1 GPa, the strength is insufficient.
  • the elastic modulus Er can be measured by a viscoelasticity measuring device.
  • the resin composition for three-dimensional stereolithography of the present invention can form a two-dimensional or three-dimensional model (or pattern) by various modeling methods, and is particularly suitable for stereolithography. Since the resin composition for three-dimensional stereolithography is liquid at room temperature, it may be used for, for example, vat-type stereolithography or inkjet-type stereolithography.
  • the method for manufacturing a three-dimensional structure of the present invention includes: (i) a step of forming a first liquid film made of the three-dimensional stereolithography resin composition of the present invention and curing the first liquid film to form a first pattern; (ii) Forming a second liquid film made of the three-dimensional stereolithography resin composition of the present invention so as to be in contact with the first pattern, and curing the second liquid film to laminate the second pattern. characterized by
  • FIG. 1 shows an example of forming a three-dimensional structure using a stereolithography apparatus (patterning apparatus) having a resin tank (bat).
  • the hanging type modeling is shown, but the method is not particularly limited as long as the method is capable of three-dimensional stereolithography using a resin composition.
  • the method of light irradiation (exposure) is not particularly limited, and point exposure or surface exposure may be used.
  • the stereolithography apparatus 1 includes a platform 2 having a pattern forming surface 2a, a resin tank 3 containing a curable resin composition 5, and a projector 4 as a surface exposure type light source.
  • step (i) Step of forming a first liquid film and curing it to form a first pattern
  • step (i) as shown in FIG.
  • the pattern formation surface 2a of the platform 2 is immersed in the composition 5 in a state facing the projector 4 (bottom surface of the resin bath 3).
  • the height of the pattern formation surface 2a (or the platform 2) is adjusted so that the liquid film 7a (liquid film a) is formed between the pattern formation surface 2a and the projector 4 (or the bottom surface of the resin tank 3). to adjust.
  • the liquid film 7a is irradiated with light L from the projector 4 (surface exposure), thereby photocuring the liquid film 7a and forming a first pattern 8a (pattern a).
  • the resin tank 3 serves as a supply unit for the curable resin composition 5 .
  • At least a portion of the resin tank (bottom surface in FIG. 1) between the liquid film and the projector 4 is preferably transparent to the exposure wavelength so that the liquid film is irradiated with light from the light source.
  • the shape, material, size, etc. of the platform 2 are not particularly limited.
  • the liquid film a is photo-cured by irradiating the liquid film a with light from a light source.
  • Light irradiation can be performed by a known method.
  • the exposure method is not particularly limited, and may be point exposure or surface exposure.
  • a known light source used for photocuring can be used as the light source.
  • a plotter method, a galvano laser (or galvano scanner) method, an SLA (stereolithography) method, and the like can be used.
  • a projector is preferable as the light source in terms of simplicity.
  • Examples of projectors include an LCD (transmissive liquid crystal) system, an LCoS (reflective liquid crystal) system, and a DLP (registered trademark, Digital Light Processing) system.
  • the exposure wavelength can be appropriately selected according to the constituent components of the curable resin composition (in particular, the type of initiator).
  • step (ii) Forming a second liquid film so as to be in contact with the first pattern, and curing the second liquid film to laminate the second pattern. and a light source to form a liquid film (liquid film b). That is, the liquid film b is formed on the pattern a formed on the pattern forming surface.
  • the supply of the curable resin composition is the same as in step (i).
  • the first pattern forming surface 2a may be lifted together with the platform 2 .
  • the liquid film 7b liquid film b
  • the formed liquid film b is exposed from a light source to photo-cure the liquid film b, and another pattern (pattern b obtained by photo-curing of the liquid film b) is laminated on the first pattern a.
  • pattern b obtained by photo-curing of the liquid film b
  • a three-dimensional fabrication pattern can be formed.
  • the liquid film 7b (liquid film b) formed between the first pattern 8a (pattern a) and the bottom surface of the resin tank 3 is exposed from the projector 4.
  • the liquid film 7b is photo-cured. This photocuring converts the liquid film 7b into a second pattern 8b (pattern b).
  • the second pattern 8b can be laminated on the first pattern 8a.
  • the description of step (i) can be referred to.
  • Step (ii) can be repeated multiple times. By repeating this, a plurality of patterns b are laminated in the thickness direction, and a more three-dimensional modeling pattern is obtained. The number of repetitions can be appropriately determined according to the shape and size of a desired three-dimensional structure (three-dimensional structure pattern).
  • the platform 2 with the first pattern 8a (pattern a) and the second pattern 8b (pattern b) laminated on the pattern forming surface 2a is raised.
  • a liquid film 7b (liquid film b) is formed between the second pattern 8b and the bottom surface of the resin tank 3 .
  • the projector 4 exposes the liquid film 7b to photo-harden the liquid film 7b.
  • another pattern 8b (pattern b) is formed on the first pattern 8b.
  • a plurality of patterns 8b (two-dimensional patterns b) can be stacked.
  • the method for manufacturing a three-dimensional structure of the present invention further includes a step of washing the first pattern and the second pattern with a solvent. Since an uncured curable resin composition adheres to the obtained three-dimensional modeled pattern, this is performed to remove the composition.
  • the solvent preferably has a Hansen solubility parameter of 25 MPa 0.5 or less. Specific solvents include 3-methoxy-3-methyl-1-butanol.
  • the obtained three-dimensional structure pattern may be subjected to post-curing, if necessary.
  • Post-curing can be performed by irradiating the pattern with light.
  • the conditions for light irradiation can be appropriately adjusted according to the type of resin composition and the degree of curing of the obtained pattern.
  • Post-curing may be performed on a part of the pattern or may be performed on the entire pattern.
  • the three-dimensional stereolithographic article obtained from the cured product of the resin composition for three-dimensional stereolithography of the present invention and the three-dimensional article obtained by the method for producing the three-dimensional article of the present invention can be used in various applications. can be used. Since it is excellent in water solubility and heat resistance, it can be suitably used as a model material. Examples include sacrificial molds, injection molds, and casting molds.
  • the sacrificial mold includes a core for injection molding, a sacrificial mold for thermosetting resin, and the like.
  • a sacrificial mold for thermosetting resin is formed from a cured product of a resin composition for three-dimensional stereolithography and used as a curable resin.
  • the sacrificial mold of curable resin is to be dissolved and removed after the curable resin is cured and molded.
  • Curable resins include urethane resins, epoxy resins, silicone resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, acrylic resins, and alkyd resins.
  • the curable resin may be photocurable or thermosetting.
  • the method for preserving a cured product of the present invention is characterized by including the step of allowing the cured product to stand at a relative humidity of 40 to 60%. If it is less than 40%, the moisture in the cured product may escape and cracks may occur in the cured product, and if it is higher than 60%, the material properties may change due to moisture absorption.
  • the storage temperature is not particularly limited, 15 to 40°C is preferable.
  • Examples 1-9 and Comparative Examples 1-3 A reactive monomer, a water-soluble polymer, and a photopolymerization initiator were mixed according to the respective components and blending amounts shown in Table 1.
  • a uniform liquid resin composition was prepared by heating in an oven at 80° C. with stirring to dissolve the solid components. The following evaluation was performed using the obtained resin composition. Table 1 shows the evaluation results.
  • DVA-2000 manufactured by IT Keisoku Co., Ltd.
  • the temperature at which tan ⁇ reached the top peak was determined as the Tg of the cured product of the resin composition.
  • the peak temperature of the larger peak Tg of the matrix polymer
  • the temperature at which the film was elongated by 1% was taken as the deformation start temperature.
  • ⁇ Water solubility> Using the method described in ⁇ tan ⁇ peak temperature, elastic modulus Er, and deformation start temperature>, a glass plate having a thickness of about 1 mm and having a cured product formed on one side thereof was produced. The film thickness was measured after immersion in 100 g of water at room temperature for 5 hours. It was evaluated according to the following evaluation criteria. ⁇ : Film thickness is 0.7 mm or less ⁇ : Film thickness is over 0.7 mm
  • the resin compositions of Examples 1 to 9 had a high tan ⁇ main peak temperature, a high elastic modulus at 80° C., and excellent water solubility.
  • the main peak temperature of tan ⁇ was low, and the elastic modulus at 80° C. could not be measured.
  • the resin compositions of Comparative Examples 2 and 3 had a low main peak temperature of tan ⁇ and a high elastic modulus at 80° C., but were gelled and did not have water solubility.
  • ⁇ Washability> The resin composition prepared in Example 2 was evaluated for washability as follows. 1 g of the composition before curing was immersed in 100 ml each of ethanol or 3-methoxy-3-methyl-1-butanol (Solfit FG, manufactured by Kuraray Co., Ltd.) at room temperature for 10 minutes, and then the composition was dissolved. It was visually evaluated whether or not there was any. In addition, a strip-shaped cured product prepared using the method described in ⁇ Shore D hardness> was immersed in 100 ml each of ethanol or 3-methoxy-3-methyl-1-butanol at room temperature for 10 minutes, and then cured. The stickiness and appearance of the product were evaluated by touch and visual observation, respectively.
  • stereolithography device 2 platform 2a: pattern forming surface 3: resin tank 4: projector 5: curable resin composition 6: release agent layer 7a: liquid film a 7b: liquid film b 8a: First pattern a 8b: second pattern b L: light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)

Abstract

Provided is a resin composition which is water-soluble and nevertheless can produce highly heat-resistant, three-dimensional photoshaped object. This resin composition for three-dimensional photoshaping comprises a reactive monomer, a water-soluble polymer, and a photopolymerization initiator, and gives a cured object having a tanδ main-peak temperature of 80°C or higher and gives a 1-mm-thick cured object which, after having been immersed in room-temperature water for five hours, has a residual thickness of 0.7 mm or less.

Description

三次元光造形用樹脂組成物Three-dimensional stereolithography resin composition
本発明は、三次元光造形用樹脂組成物、さらには該樹脂組成物を用いた三次元造形物の製造方法に関する。 TECHNICAL FIELD The present invention relates to a resin composition for three-dimensional stereolithography, and further to a method for producing a three-dimensional structure using the resin composition.
三次元プリンタ、特にインクジェットタイプの三次元プリンタでは、サポート材として水溶解性UV硬化材料を使用することが多い。このような従来の水溶解性のUV硬化性材料では、水溶解性を維持するために水溶性溶剤を大量に入れることが多く、それに伴い硬度や耐熱性が低いという課題があった。一方、硬度や耐熱性を向上させようとすると、水溶解性が損なわれるという課題があった。 Three-dimensional printers, particularly ink-jet type three-dimensional printers, often use a water-soluble UV curable material as a support material. Such conventional water-soluble UV-curable materials often contain a large amount of water-soluble solvent in order to maintain water-solubility, resulting in problems such as low hardness and heat resistance. On the other hand, when trying to improve the hardness and heat resistance, there is a problem that the water solubility is impaired.
特許文献1や2には、反応性モノマーと水溶性ポリマーを含む樹脂組成物が開示されている。しかしながら、モデル材とともに造形されるサポート材として使用することを想定しているため、多量に水溶性有機溶媒を含むとともに、硬化物のガラス転移温度が低いため、硬化物の硬度や耐熱性は低いものであった。 Patent Documents 1 and 2 disclose resin compositions containing reactive monomers and water-soluble polymers. However, since it is assumed to be used as a support material to be molded together with model materials, it contains a large amount of water-soluble organic solvent and the glass transition temperature of the cured product is low, so the hardness and heat resistance of the cured product are low. It was something.
特開2020-12052号公報Japanese Patent Application Laid-Open No. 2020-12052 国際公開第2016/121587号WO2016/121587
本発明は、水溶解性でありながら、高耐熱性の三次元光造形物を作製することができる樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a resin composition that is water-soluble and yet capable of producing a three-dimensional stereolithographic article with high heat resistance.
本発明者らは、水溶解性が高いにもかかわらず、高耐熱性という相反する特性の両立について検討したところ、反応性モノマー、水溶性ポリマーおよび光重合開始剤を含み、高度に架橋させることなく、硬化物のtanδの主ピーク温度を高くすれば、水に溶解しやすい硬化物を与える三次元光造形用樹脂組成物が得られることを見出し、本発明を完成した。 The present inventors have investigated the contradictory characteristics of high heat resistance despite high water solubility, and found that a highly crosslinked polymer containing a reactive monomer, a water-soluble polymer, and a photopolymerization initiator can be obtained. The present inventors have found that a resin composition for three-dimensional stereolithography that gives a cured product that is easily soluble in water can be obtained by increasing the main peak temperature of tan δ of the cured product.
すなわち、本発明は、反応性モノマー、水溶性ポリマーおよび光重合開始剤を含む三次元光造形用樹脂組成物であって、硬化物のtanδの主ピーク温度が80℃以上であり、厚さ1mmの硬化物を、室温の水に5時間浸漬した後の残存厚みが0.7mm以下である、三次元光造形用樹脂組成物に関する。 That is, the present invention provides a three-dimensional stereolithography resin composition comprising a reactive monomer, a water-soluble polymer and a photopolymerization initiator, wherein the cured product has a main peak temperature of tan δ of 80° C. or higher and a thickness of 1 mm. The resin composition for three-dimensional stereolithography has a remaining thickness of 0.7 mm or less after immersing the cured product in water at room temperature for 5 hours.
反応性モノマーが、ホモポリマーとしたときのガラス転移温度が80℃以上となる反応性モノマーであることが好ましい。 The reactive monomer is preferably a reactive monomer having a glass transition temperature of 80° C. or higher when converted into a homopolymer.
硬化後のショアD硬度が60以上であることが好ましい。 The Shore D hardness after curing is preferably 60 or more.
さらに、重合性官能基を有するカルボン酸の2価金属塩を含有することが好ましい。 Furthermore, it preferably contains a divalent metal salt of a carboxylic acid having a polymerizable functional group.
また、本発明は、前記三次元光造形用樹脂組成物の硬化物に関する。 The present invention also relates to a cured product of the resin composition for three-dimensional stereolithography.
前記硬化物は、射出成形用中子であることが好ましい。 The cured product is preferably a core for injection molding.
さらに、本発明は、
(i)前記樹脂組成物からなる第1液膜を形成し、第1液膜を硬化させて第1パターンを形成する工程、
(ii)第1パターンに接するように、前記樹脂組成物からなる第2液膜を形成し、第2液膜を硬化させて第2パターンを積層する工程
を含む三次元造形物の製造方法に関する。
Furthermore, the present invention provides
(i) forming a first liquid film made of the resin composition and curing the first liquid film to form a first pattern;
(ii) It relates to a method for manufacturing a three-dimensional structure, including the step of forming a second liquid film made of the resin composition so as to be in contact with the first pattern, curing the second liquid film, and laminating the second pattern. .
前記製造方法は、さらに、第1パターンおよび第2パターンを、ハンセン溶解度パラメータが25MPa0.5以下である溶剤で洗浄する工程を含むことが好ましい。 The manufacturing method preferably further includes the step of washing the first pattern and the second pattern with a solvent having a Hansen solubility parameter of 25 MPa 0.5 or less.
さらに、本発明は、前記硬化物を相対湿度40~60%で静置する工程を含む、硬化物の保存方法に関する。 Furthermore, the present invention relates to a method for preserving a cured product, comprising the step of allowing the cured product to stand at a relative humidity of 40 to 60%.
本発明の三次元光造形用樹脂組成物によれば、水溶解性と高耐熱性という相反する特性を両立する三次元光造形物を得ることができる。 According to the resin composition for three-dimensional stereolithography of the present invention, it is possible to obtain a three-dimensional stereolithographic object that has both the contradictory properties of water solubility and high heat resistance.
本発明の一実施形態に係る三次元造形用樹脂組成物を用いて、光造形により造形物を形成する工程を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the process of forming a modeled object by stereolithography using the resin composition for three-dimensional modeling according to one embodiment of the present invention.
本発明の三次元光造形用樹脂組成物は、反応性モノマー、水溶性ポリマーおよび光重合開始剤を含み、硬化物のtanδの主ピーク温度が80℃以上であり、厚さ1mmの硬化物を、室温の水に5時間浸漬した後の残存厚みが0.7mm以下であることを特徴とする。 The resin composition for three-dimensional stereolithography of the present invention contains a reactive monomer, a water-soluble polymer and a photopolymerization initiator, has a main peak temperature of tan δ of the cured product of 80° C. or higher, and has a thickness of 1 mm. and a remaining thickness of 0.7 mm or less after being immersed in water at room temperature for 5 hours.
反応性モノマーは、反応性モノマーのホモポリマーのガラス転移温度が80℃以上となるモノマーが好ましい。ガラス転移温度は85℃以上が好ましく、100℃以上がより好ましい。80℃未満では、耐熱性に劣ることになる。ここで、ガラス転移温度は、実際にホモポリマーを重合してガラス転移温度を測定しても良く、原子団寄与法により計算で求めることもできる。 The reactive monomer is preferably a monomer whose homopolymer has a glass transition temperature of 80° C. or higher. The glass transition temperature is preferably 85°C or higher, more preferably 100°C or higher. If it is less than 80°C, the heat resistance will be poor. Here, the glass transition temperature may be obtained by actually polymerizing a homopolymer and measuring the glass transition temperature, or by calculation using the atomic group contribution method.
反応性モノマーは、光照射により発生したラジカルやイオンなどの作用により硬化または重合可能な光硬化性モノマーである。光硬化性モノマーとしては、重合性の官能基を有するモノマーが好ましい。光硬化性モノマーにおける重合性官能基の個数は、1~8個が好ましい。重合性官能基としては、ビニル基、アリル基などの重合性炭素-炭素不飽和結合を有する基、エポキシ基などが挙げられる。 A reactive monomer is a photocurable monomer that can be cured or polymerized by the action of radicals or ions generated by light irradiation. As the photocurable monomer, a monomer having a polymerizable functional group is preferred. The number of polymerizable functional groups in the photocurable monomer is preferably 1 to 8. Examples of the polymerizable functional group include a group having a polymerizable carbon-carbon unsaturated bond such as a vinyl group and an allyl group, and an epoxy group.
より具体的には、例えば、(メタ)アクリル系モノマーなどのラジカル重合性モノマー、エポキシ系モノマー、ビニル系モノマー、ジエン系モノマーなどのカチオン重合性モノマーなどが挙げられる。なかでも、反応速度の点で、(メタ)アクリル系モノマー、ビニル系モノマーが好ましく、架橋密度が高くならないように、単官能(メタ)アクリル系モノマー、単官能ビニル系モノマーが好ましい。 More specifically, for example, radically polymerizable monomers such as (meth)acrylic monomers, cationic polymerizable monomers such as epoxy-based monomers, vinyl-based monomers, and diene-based monomers are included. Among them, (meth)acrylic monomers and vinyl monomers are preferred from the viewpoint of reaction rate, and monofunctional (meth)acrylic monomers and monofunctional vinyl monomers are preferred so as not to increase the crosslink density.
(メタ)アクリル系モノマーとしては、(メタ)アクリロイル基を有するモノマーが挙げられる。たとえば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸セチル、(メタ)アクリル酸エチルカルビトール、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシブチルなどの(メタ)アクリル酸エステル、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトン(メタ)アクリルアミドなどの(メタ)アクリル酸アミド、スチレン、イタコン酸メチル、イタコン酸エチル、酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン、N-ビニルカプロラクタム、3-ビニル-5-メチル-2-オキサゾリジノン等の単官能モノマー;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、メチレンビスアクリルアミド、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの多官能モノマーなどが挙げられる。なかでも、反応速度の点で、(メタ)アクリル酸アミドが好ましい。また、(メタ)アクリル酸アミドの中でも、(メタ)アクリロイルモルホリン、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、ジメチルアミノプロピルアクリルアミドが好ましい。なお、本明細書において、アクリル酸およびメタクリル酸を(メタ)アクリル酸と称し、アクリル酸エステル(またはアクリレート)およびメタクリル酸エステル(またはメタクリレート)を、(メタ)アクリル酸エステル(または(メタ)アクリレート)と称することがある。 (Meth)acrylic monomers include monomers having a (meth)acryloyl group. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, neopentyl (meth) acrylate, (meth) ) cyclohexyl acrylate, benzyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cetyl (meth) acrylate, ethyl carbitol (meth) acrylate, ( (Meth)acrylic esters such as hydroxyethyl methacrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, methoxyethyl (meth)acrylate, methoxybutyl (meth)acrylate, N-methyl (Meth)acrylamide, N-ethyl (meth)acrylamide, N-propyl (meth)acrylamide, N-isopropyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, Nt-butyl (meth)acrylamide, N- Octyl (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, (meth)acryloylmorpholine, (meth)acrylamide such as diacetone (meth)acrylamide, styrene, itaconic acid Monofunctional monomers such as methyl, ethyl itaconate, vinyl acetate, vinyl propionate, N-vinylpyrrolidone, N-vinylcaprolactam, 3-vinyl-5-methyl-2-oxazolidinone; 1,4-butanediol di(meth) Acrylates, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, tripropylene Examples include polyfunctional monomers such as glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, methylenebisacrylamide, trimethylolpropane tri(meth)acrylate, and pentaerythritol tri(meth)acrylate. Among them, (meth)acrylic acid amide is preferable in terms of reaction rate. Among (meth)acrylic acid amides, (meth)acryloylmorpholine, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and dimethylaminopropylacrylamide are preferred. In this specification, acrylic acid and methacrylic acid are referred to as (meth)acrylic acid, and acrylic acid ester (or acrylate) and methacrylic acid ester (or methacrylate) are referred to as (meth)acrylic acid ester (or (meth)acrylate). ).
ビニル系モノマーとしては、ポリオールポリ(ビニルエーテル)などのビニルエーテル、スチレンなどの芳香族ビニルモノマー、ビニルアルコキシシランなどが例示できる。ポリオールポリ(ビニルエーテル)を構成するポリオールとしては、アクリル系モノマーについて例示したポリオール(ブタンジオール)が例示される。ジエン系モノマーとしては、例えば、イソプレン、ブタジエンなどが挙げられる。 Examples of vinyl-based monomers include vinyl ethers such as polyol poly(vinyl ether), aromatic vinyl monomers such as styrene, and vinylalkoxysilanes. Examples of polyols constituting polyol poly(vinyl ether) include polyols (butanediol) exemplified for acrylic monomers. Examples of diene-based monomers include isoprene and butadiene.
エポキシ系モノマーとしては、分子内に2個以上のエポキシ基を有する化合物を挙げることができる。エポキシ系モノマーは、例えば、エポキシシクロヘキサン環または2,3-エポキシプロピロキシ基を含む化合物が挙げられる。 Epoxy-based monomers include compounds having two or more epoxy groups in the molecule. Epoxy-based monomers include, for example, compounds containing an epoxycyclohexane ring or a 2,3-epoxypropyloxy group.
本発明の三次元光造形用樹脂組成物中の反応性モノマーの含有量は、特に限定されないが、99.5~1質量%が好ましく、90~60質量%がより好ましい。1質量%未満では、樹脂が高粘度になる傾向があり、99.5質量%を超えると、硬化収縮が大きくなる傾向がある。 The content of the reactive monomer in the three-dimensional stereolithography resin composition of the present invention is not particularly limited, but is preferably 99.5 to 1% by mass, more preferably 90 to 60% by mass. If it is less than 1% by mass, the resin tends to have high viscosity, and if it exceeds 99.5% by mass, curing shrinkage tends to increase.
光重合開始剤は、光の作用により活性化して、反応性モノマーの重合を開始させる。光重合開始剤としては、例えば、光の作用によりラジカルを発生するラジカル重合開始剤のほか、光の作用により塩基(またはアニオン)や酸(またはカチオン)を生成するもの(具体的には、アニオン発生剤、カチオン発生剤)が挙げられる。光重合開始剤は、光硬化性モノマーのタイプ、例えば、ラジカル重合性であるか、イオン重合性であるかなどに応じて選択することができる。ラジカル重合開始剤(ラジカル光重合開始剤)としては、例えば、アルキルフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤などが挙げられる。 Photoinitiators are activated by the action of light to initiate polymerization of reactive monomers. As the photopolymerization initiator, for example, in addition to radical polymerization initiators that generate radicals by the action of light, those that generate base (or anion) or acid (or cation) by the action of light (specifically, anion generator, cation generator). The photoinitiator can be selected according to the type of photocurable monomer, for example, whether it is radically polymerizable or ionically polymerizable. Examples of radical polymerization initiators (radical photopolymerization initiators) include alkylphenone-based photopolymerization initiators and acylphosphine oxide-based photopolymerization initiators.
アルキルフェノン系重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンなどが挙げられる。 Examples of alkylphenone polymerization initiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-{4-[4-(2 -hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2- benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl) phenyl]-1-butanone and the like.
アシルホスフィンオキサイド系重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドなどが挙げられる。 Examples of acylphosphine oxide polymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
光重合開始剤の添加量は、反応性モノマー100重量部に対して0.01~10重量部が好ましく、0.1~5重量部がより好ましい。0.01重量部未満では、硬化不良となる傾向となり、10重量部を超えると、貯蔵安定性の不良や吸収による硬化不良となる傾向がある。 The amount of the photopolymerization initiator added is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the reactive monomer. If it is less than 0.01 part by weight, it tends to cause poor curing, and if it exceeds 10 parts by weight, it tends to cause poor storage stability and poor curing due to absorption.
水溶性ポリマーとは、水に膨潤または溶解するポリマーであり、たとえばポリアルキレングリコール、ポリビニルアルコール、変性ポリビニルアルコール(ポリビニルアルコール・ポリアクリレートブロック共重合体、グラフト化ポリビニルアルコールなど)、ポリエステル、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン、ビニルピロリドン-ビニルイミダゾール共重合体、水溶性アルキド樹脂、(メタ)アクリル酸を含む共重合体の塩(ナトリウム塩、アミン塩など)、側鎖にエチレン性二重結合を有する水溶性ポリマーなどが、挙げられる。 The water-soluble polymer is a polymer that swells or dissolves in water, such as polyalkylene glycol, polyvinyl alcohol, modified polyvinyl alcohol (polyvinyl alcohol/polyacrylate block copolymer, grafted polyvinyl alcohol, etc.), polyester, hydroxymethyl cellulose, Hydroxyethylcellulose, hydroxypropylcellulose, polyvinylpyrrolidone, vinylpyrrolidone-vinylimidazole copolymer, water-soluble alkyd resin, salt of copolymer containing (meth)acrylic acid (sodium salt, amine salt, etc.), ethylenic side chain Examples include water-soluble polymers having double bonds.
水溶性ポリマーの重量平均分子量は、特に限定されないが、500~1,000,000が好ましく、500~100,000がより好ましい。1,000,000を超えると、硬化物の水溶性を損なう、もしくはモノマーに対する溶解性が著しく低下する傾向がある。 The weight average molecular weight of the water-soluble polymer is not particularly limited, but is preferably from 500 to 1,000,000, more preferably from 500 to 100,000. If it exceeds 1,000,000, the water solubility of the cured product tends to be impaired, or the solubility in monomers tends to decrease significantly.
反応性モノマーと水溶性ポリマーの配合比は、重量比で99.5/0.5~1/99が好ましく、60/40~95/5がより好ましい。反応性モノマーが99.5よりも多いと、硬化収縮が大きくなる傾向があり、1よりも少ないと、樹脂が高粘度になる傾向がある。 The weight ratio of the reactive monomer to the water-soluble polymer is preferably 99.5/0.5 to 1/99, more preferably 60/40 to 95/5. If the reactive monomer is more than 99.5, curing shrinkage tends to increase, and if it is less than 1, the resin tends to have high viscosity.
本発明の三次元光造形用樹脂組成物中の水溶性ポリマーの含有量は、特に限定されないが、0.5~99質量%が好ましく、5~40質量%がより好ましい。0.5質量%未満では、硬化収縮が大きくなる傾向となり、99質量%を超えると、樹脂が高粘度となる傾向がある。 The content of the water-soluble polymer in the three-dimensional stereolithography resin composition of the present invention is not particularly limited, but is preferably 0.5 to 99% by mass, more preferably 5 to 40% by mass. If it is less than 0.5% by mass, curing shrinkage tends to increase, and if it exceeds 99% by mass, the viscosity of the resin tends to be high.
樹脂組成物は、さらに、重合性官能基を有するカルボン酸の2価金属塩を含有することが好ましい。該金属塩を含有することで、耐熱性が向上する。重合性官能基としては、(メタ)アクリル基などが挙げられる。金属塩としては、マグネシウム塩、亜鉛塩、カルシウム塩などが挙げられる。具体的には、(メタ)アクリル酸マグネシウム塩、(メタ)アクリル酸亜鉛塩、(メタ)アクリル酸カルシウム塩などが挙げられる。 The resin composition preferably further contains a divalent metal salt of a carboxylic acid having a polymerizable functional group. Heat resistance is improved by containing the metal salt. A (meth)acryl group etc. are mentioned as a polymerizable functional group. Metal salts include magnesium salts, zinc salts, calcium salts and the like. Specific examples include magnesium (meth)acrylate, zinc (meth)acrylate and calcium (meth)acrylate.
重合性官能基を有するカルボン酸の2価金属塩の添加量は、反応性モノマーと水溶性ポリマーの合計100重量部に対して1~10重量部が好ましく、2~5重量部がより好ましい。1重量部未満では、耐熱性が不足する可能性があり、10重量部を超えると、モノマー溶解性が悪化する傾向がある。 The amount of the divalent metal salt of carboxylic acid having a polymerizable functional group to be added is preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight, per 100 parts by weight of the total of the reactive monomer and the water-soluble polymer. If it is less than 1 part by weight, the heat resistance may be insufficient, and if it exceeds 10 parts by weight, the monomer solubility tends to deteriorate.
樹脂組成物は、さらに、その他の公知の硬化性樹脂などを含んでもよい。また、硬化性樹脂組成物は、染料、紫外線増感剤、重合禁止剤、可塑剤、紫外線吸収剤、顔料、界面活性剤などの公知の添加剤を含むことができる。 The resin composition may further contain other known curable resins. In addition, the curable resin composition can contain known additives such as dyes, UV sensitizers, polymerization inhibitors, plasticizers, UV absorbers, pigments and surfactants.
樹脂組成物は、室温で液状であることが好ましい。樹脂組成物が室温で液状であることで、3Dプリンタなどを用いて容易に光造形することができる。25℃における硬化性樹脂組成物の粘度は5000mPa・s以下が好ましく、2000mPa・s以下がより好ましい。なお、樹脂組成物の粘度は、コーンプレート型のE型粘度計を用いて、20rpmの回転速度で測定することができる。 The resin composition is preferably liquid at room temperature. Since the resin composition is liquid at room temperature, stereolithography can be easily performed using a 3D printer or the like. The viscosity of the curable resin composition at 25° C. is preferably 5000 mPa·s or less, more preferably 2000 mPa·s or less. The viscosity of the resin composition can be measured using a cone-plate E-type viscometer at a rotational speed of 20 rpm.
本発明の三次元光造形用の樹脂組成物について、硬化物のtanδの主ピーク温度は80℃以上であるが、100℃以上が好ましく、120℃以上がより好ましい。80℃未満では、耐熱性が不十分となる。tanδは、動的粘弾性測定装置(DMA)を用いて測定されるTgである。硬化物を低温側から高温側(例えば、-100℃から+200℃)まで昇温しながら測定することができる。ピークが複数存在する場合には、大きい方のピーク(主ピーク)のピーク温度とする。 Regarding the resin composition for three-dimensional stereolithography of the present invention, the main peak temperature of tan δ of the cured product is 80° C. or higher, preferably 100° C. or higher, more preferably 120° C. or higher. If it is less than 80°C, the heat resistance becomes insufficient. tan δ is the Tg measured using a dynamic viscoelasticity measurement device (DMA). Measurement can be performed while the cured product is heated from a low temperature side to a high temperature side (for example, from -100°C to +200°C). If there are multiple peaks, the peak temperature of the larger peak (main peak) is used.
本発明の三次元光造形用の樹脂組成物について、硬化物の変形開始温度は、30℃以上が好ましく、50℃以上がより好ましく、80℃以上がさらにより好ましい。30℃未満では、耐熱性が不十分となる。変形開始温度は、動的粘弾性測定装置(DMA)を用いて測定した1%歪み時の温度である。硬化物を低温側から高温側(例えば、-100℃から+200℃)まで昇温しながら測定することができる。 Regarding the resin composition for three-dimensional stereolithography of the present invention, the deformation start temperature of the cured product is preferably 30° C. or higher, more preferably 50° C. or higher, and even more preferably 80° C. or higher. If it is less than 30°C, the heat resistance becomes insufficient. The deformation start temperature is the temperature at 1% strain measured using a dynamic viscoelasticity measurement device (DMA). Measurement can be performed while the cured product is heated from a low temperature side to a high temperature side (for example, from -100°C to +200°C).
本発明の三次元光造形用の樹脂組成物について、厚さ1mmの硬化物を、室温の水に5時間浸漬した後の残存厚みは0.7mm以下であるが、0.5mm以下が好ましく、0mm以下(すなわち完全溶解)がより好ましい。0.7mmを超えると、水溶解性が不十分となる。 Regarding the resin composition for three-dimensional stereolithography of the present invention, the remaining thickness after immersing a cured product having a thickness of 1 mm in water at room temperature for 5 hours is 0.7 mm or less, preferably 0.5 mm or less. 0 mm or less (that is, complete dissolution) is more preferable. If it exceeds 0.7 mm, the water solubility will be insufficient.
本発明の三次元光造形用の樹脂組成物について、硬化物のショアD硬度は60以上であるが、70以上が好ましく、80以上がより好ましい。60未満では、強度が不十分となる傾向がある。ここで、ショアD硬度は、タイプDデュロメータを用い、JIS K7215:1986に準拠して測定する。 Regarding the resin composition for three-dimensional stereolithography of the present invention, the Shore D hardness of the cured product is 60 or more, preferably 70 or more, more preferably 80 or more. If it is less than 60, the strength tends to be insufficient. Here, the Shore D hardness is measured using a type D durometer in accordance with JIS K7215:1986.
本発明の三次元光造形用の樹脂組成物について、硬化物の80℃における弾性率Erは、0.01GPa以上が好ましく、0.1GPa以上がより好ましく、1GPa以上がさらに好ましい。0.01GPa未満では、強度が不十分である。また、25℃における弾性率Erは、0.1GPa以上が好ましく、1GPa以上がより好ましい。硬化物の25℃における弾性率Erが0.1GPa未満では、強度が不十分である。ここで、弾性率Erは粘弾性測定装置により測定することができる。 Regarding the resin composition for three-dimensional stereolithography of the present invention, the elastic modulus Er of the cured product at 80° C. is preferably 0.01 GPa or more, more preferably 0.1 GPa or more, and even more preferably 1 GPa or more. If it is less than 0.01 GPa, the strength is insufficient. Moreover, the elastic modulus Er at 25° C. is preferably 0.1 GPa or more, more preferably 1 GPa or more. If the elastic modulus Er of the cured product at 25°C is less than 0.1 GPa, the strength is insufficient. Here, the elastic modulus Er can be measured by a viscoelasticity measuring device.
本発明の三次元光造形用の樹脂組成物は、様々な造形方法により、二次元や三次元などの造形物(またはパターン)を形成することができ、特に、光造形に適している。三次元光造形用の樹脂組成物は、室温で液状であるため、例えば、バット方式の光造形に用いてもよく、インクジェット式の光造形に用いてもよい。 The resin composition for three-dimensional stereolithography of the present invention can form a two-dimensional or three-dimensional model (or pattern) by various modeling methods, and is particularly suitable for stereolithography. Since the resin composition for three-dimensional stereolithography is liquid at room temperature, it may be used for, for example, vat-type stereolithography or inkjet-type stereolithography.
また、本発明の三次元造形物の製造方法は、
(i)本発明の三次元光造形用樹脂組成物からなる第1液膜を形成し、第1液膜を硬化させて第1パターンを形成する工程、
(ii)第1パターンに接するように、本発明の三次元光造形用樹脂組成物からなる第2液膜を形成し、第2液膜を硬化させて第2パターンを積層する工程
を含むことを特徴とする。
Further, the method for manufacturing a three-dimensional structure of the present invention includes:
(i) a step of forming a first liquid film made of the three-dimensional stereolithography resin composition of the present invention and curing the first liquid film to form a first pattern;
(ii) Forming a second liquid film made of the three-dimensional stereolithography resin composition of the present invention so as to be in contact with the first pattern, and curing the second liquid film to laminate the second pattern. characterized by
以下に、図1を参照しながら、バット式の光造形の手順について説明する。図1は、樹脂槽(バット)を備える光造形装置(パターニング装置)を用いて三次元造形物を形成する場合の一例である。図示例では、吊り下げ方式の造形について示したが、樹脂組成物を用いて三次元光造形することができる方法であれば特に制限されない。また、光照射(露光)の方式についても特に制限されず、点露光でも、面露光でもよい。 The procedure of bat-type stereolithography will be described below with reference to FIG. FIG. 1 shows an example of forming a three-dimensional structure using a stereolithography apparatus (patterning apparatus) having a resin tank (bat). In the illustrated example, the hanging type modeling is shown, but the method is not particularly limited as long as the method is capable of three-dimensional stereolithography using a resin composition. Also, the method of light irradiation (exposure) is not particularly limited, and point exposure or surface exposure may be used.
光造形装置1は、パターン形成面2aを備えるプラットフォーム2と、硬化性樹脂組成物5を収容した樹脂槽3と、面露光方式の光源としてのプロジェクタ4とを備える。 The stereolithography apparatus 1 includes a platform 2 having a pattern forming surface 2a, a resin tank 3 containing a curable resin composition 5, and a projector 4 as a surface exposure type light source.
(i)第1液膜を形成し、硬化させて第1パターンを形成する工程
工程(i)では、図1の(a)に示すように、まず、樹脂槽3に収容された硬化性樹脂組成物5に、プラットフォーム2のパターン形成面2aを、プロジェクタ4(樹脂槽3の底面)に向けた状態で浸漬させる。このときに、パターン形成面2aとプロジェクタ4(または樹脂槽3の底面)との間に液膜7a(液膜a)が形成されるように、パターン形成面2a(またはプラットフォーム2)の高さを調整する。次いで、図1の(b)に示すように、プロジェクタ4から液膜7aに向けて、光Lを照射(面露光)することで、液膜7aを光硬化させて第1パターン8a(パターンa)を形成する。
(i) Step of forming a first liquid film and curing it to form a first pattern In step (i), as shown in FIG. The pattern formation surface 2a of the platform 2 is immersed in the composition 5 in a state facing the projector 4 (bottom surface of the resin bath 3). At this time, the height of the pattern formation surface 2a (or the platform 2) is adjusted so that the liquid film 7a (liquid film a) is formed between the pattern formation surface 2a and the projector 4 (or the bottom surface of the resin tank 3). to adjust. Next, as shown in FIG. 1B, the liquid film 7a is irradiated with light L from the projector 4 (surface exposure), thereby photocuring the liquid film 7a and forming a first pattern 8a (pattern a). ).
光造形装置1では、樹脂槽3が、硬化性樹脂組成物5の供給ユニットとしての役割を有する。液膜に光源から光が照射されるように、樹脂槽の少なくとも、液膜とプロジェクタ4との間に存在する部分(図1では底面)は露光波長に対して透明であることが望ましい。プラットフォーム2の形状、材質、およびサイズなどは特に制限されない。 In the stereolithography apparatus 1 , the resin tank 3 serves as a supply unit for the curable resin composition 5 . At least a portion of the resin tank (bottom surface in FIG. 1) between the liquid film and the projector 4 is preferably transparent to the exposure wavelength so that the liquid film is irradiated with light from the light source. The shape, material, size, etc. of the platform 2 are not particularly limited.
液膜aを形成した後、光源から液膜aに向かって光照射することにより、液膜aを光硬化させる。光照射は、公知の方法で行うことができる。露光方式は、特に制限されず、点露光でも面露光でもよい。光源としては、光硬化に使用される公知の光源が使用できる。点露光方式の場合には、例えば、プロッター式、ガルバノレーザ(またはガルバノスキャナ)方式、SLA(ステレオリソグラフィー)方式などが挙げられる。面露光方式の場合には、光源としては、簡便性の点でプロジェクタが好ましい。プロジェクタとしては、LCD(透過型液晶)方式、LCoS(反射型液晶)方式、およびDLP(登録商標、Digital Light Processing)方式などが挙げられる。露光波長は、硬化性樹脂組成物の構成成分(特に、開始剤の種類)に応じて適宜選択できる。 After forming the liquid film a, the liquid film a is photo-cured by irradiating the liquid film a with light from a light source. Light irradiation can be performed by a known method. The exposure method is not particularly limited, and may be point exposure or surface exposure. A known light source used for photocuring can be used as the light source. In the case of the point exposure method, for example, a plotter method, a galvano laser (or galvano scanner) method, an SLA (stereolithography) method, and the like can be used. In the case of the surface exposure method, a projector is preferable as the light source in terms of simplicity. Examples of projectors include an LCD (transmissive liquid crystal) system, an LCoS (reflective liquid crystal) system, and a DLP (registered trademark, Digital Light Processing) system. The exposure wavelength can be appropriately selected according to the constituent components of the curable resin composition (in particular, the type of initiator).
(ii)第1パターンに接するように、第2液膜を形成し、第2液膜を硬化させて第2パターンを積層する工程
工程(ii)では、工程(i)で得られたパターンaと、光源との間に、硬化性樹脂組成物を供給して、液膜(液膜b)を形成する。つまり、パターン形成面に形成されたパターンa上に液膜bを形成する。硬化性樹脂組成物の供給は、工程(i)と同様である。
(ii) Forming a second liquid film so as to be in contact with the first pattern, and curing the second liquid film to laminate the second pattern. and a light source to form a liquid film (liquid film b). That is, the liquid film b is formed on the pattern a formed on the pattern forming surface. The supply of the curable resin composition is the same as in step (i).
例えば、図1の(c)に示すように、第1パターン8a(二次元パターンa)を形成した後、第1パターン形成面2aをプラットフォーム2ごと上昇させてもよい。そして、第1パターン8aと樹脂槽3の底面との間に硬化性樹脂組成物5を供給することにより、液膜7b(液膜b)を形成することができる。 For example, as shown in (c) of FIG. 1, after forming the first pattern 8a (two-dimensional pattern a), the first pattern forming surface 2a may be lifted together with the platform 2 . By supplying the curable resin composition 5 between the first pattern 8a and the bottom surface of the resin tank 3, the liquid film 7b (liquid film b) can be formed.
形成した液膜bに対して、光源から露光して、液膜bを光硬化させ、第1パターンaに別のパターン(液膜bの光硬化により得られるパターンb)を積層する。このようにパターンが厚み方向に積層されることで、三次元造形パターンを形成することができる。 The formed liquid film b is exposed from a light source to photo-cure the liquid film b, and another pattern (pattern b obtained by photo-curing of the liquid film b) is laminated on the first pattern a. By stacking patterns in the thickness direction in this manner, a three-dimensional fabrication pattern can be formed.
例えば、図1の(d)に示すように、第1パターン8a(パターンa)と樹脂槽3の底面との間に形成された液膜7b(液膜b)に、プロジェクタ4から露光して、液膜7bを光硬化させる。この光硬化により、液膜7bが第2パターン8b(パターンb)に変換される。このようにして、第1パターン8aに第2パターン8bを積層することができる。光源や露光波長などは、工程(i)についての記載を参照できる。 For example, as shown in FIG. 1D, the liquid film 7b (liquid film b) formed between the first pattern 8a (pattern a) and the bottom surface of the resin tank 3 is exposed from the projector 4. , the liquid film 7b is photo-cured. This photocuring converts the liquid film 7b into a second pattern 8b (pattern b). In this manner, the second pattern 8b can be laminated on the first pattern 8a. For the light source, exposure wavelength, etc., the description of step (i) can be referred to.
工程(ii)は複数回繰り返すことができる。繰り返すことにより、複数のパターンbが厚み方向に積層されることになり、さらに立体的な造形パターンが得られる。繰り返し回数は、所望する三次元造形物(三次元造形パターン)の形状やサイズなどに応じて適宜決定できる。 Step (ii) can be repeated multiple times. By repeating this, a plurality of patterns b are laminated in the thickness direction, and a more three-dimensional modeling pattern is obtained. The number of repetitions can be appropriately determined according to the shape and size of a desired three-dimensional structure (three-dimensional structure pattern).
例えば、図1の(e)に示すように、パターン形成面2a上に第1パターン8a(パターンa)および第2パターン8b(パターンb)が積層された状態のプラットフォーム2を上昇させる。このとき、第2パターン8bと樹脂槽3の底面との間に液膜7b(液膜b)が形成される。そして、図1の(f)に示すように、プロジェクタ4から液膜7bに対して露光し、液膜7bを光硬化させる。これにより、第1パターン8b上に別のパターン8b(パターンb)が形成される。そして、(e)と(f)とを交互に繰り返すことで、複数のパターン8b(二次元パターンb)を積層させることができる。 For example, as shown in (e) of FIG. 1, the platform 2 with the first pattern 8a (pattern a) and the second pattern 8b (pattern b) laminated on the pattern forming surface 2a is raised. At this time, a liquid film 7b (liquid film b) is formed between the second pattern 8b and the bottom surface of the resin tank 3 . Then, as shown in FIG. 1(f), the projector 4 exposes the liquid film 7b to photo-harden the liquid film 7b. As a result, another pattern 8b (pattern b) is formed on the first pattern 8b. By alternately repeating (e) and (f), a plurality of patterns 8b (two-dimensional patterns b) can be stacked.
本発明の三次元造形物の製造方法は、さらに、第1パターンおよび第2パターンを、溶剤で洗浄する工程を含むことが好ましい。得られた三次元造形パターンには、未硬化の硬化性樹脂組成物が付着しているため、該組成物を取り除くために行われる。溶剤は、ハンセン溶解度パラメータが25MPa0.5以下のものが好ましい。具体的な溶剤としては、3-メトキシ-3-メチル-1-ブタノールなどが挙げられる。 It is preferable that the method for manufacturing a three-dimensional structure of the present invention further includes a step of washing the first pattern and the second pattern with a solvent. Since an uncured curable resin composition adheres to the obtained three-dimensional modeled pattern, this is performed to remove the composition. The solvent preferably has a Hansen solubility parameter of 25 MPa 0.5 or less. Specific solvents include 3-methoxy-3-methyl-1-butanol.
得られた三次元造形パターンには、必要に応じて、後硬化を施してもよい。後硬化は、パターンに光照射することで行うことができる。光照射の条件は、樹脂組成物の種類や得られたパターンの硬化の程度などに応じて適宜調節できる。後硬化は、パターンの一部に対して行ってもよく、全体に対して行ってもよい。 The obtained three-dimensional structure pattern may be subjected to post-curing, if necessary. Post-curing can be performed by irradiating the pattern with light. The conditions for light irradiation can be appropriately adjusted according to the type of resin composition and the degree of curing of the obtained pattern. Post-curing may be performed on a part of the pattern or may be performed on the entire pattern.
本発明の三次元光造形用樹脂組成物の硬化物から得られた三次元光造形物、および、本発明の三次元造形物の製造方法により得られた三次元造形物は、様々な用途に使用することができる。水溶解性と耐熱性に優れていることから、モデル材として好適に使用することができる。たとえば、犠牲型、射出成型用金型、鋳造用金型などが挙げられる。犠牲型としては、射出成形用中子、熱硬化性樹脂用犠牲型などが挙げられる。 The three-dimensional stereolithographic article obtained from the cured product of the resin composition for three-dimensional stereolithography of the present invention and the three-dimensional article obtained by the method for producing the three-dimensional article of the present invention can be used in various applications. can be used. Since it is excellent in water solubility and heat resistance, it can be suitably used as a model material. Examples include sacrificial molds, injection molds, and casting molds. The sacrificial mold includes a core for injection molding, a sacrificial mold for thermosetting resin, and the like.
熱硬化性樹脂用犠牲型は、三次元光造形用樹脂組成物の硬化物から形成され、硬化性樹脂に使用する。硬化性樹脂の犠牲型とは、硬化性樹脂を硬化させて成形した後に、溶解して除去するものである。硬化性樹脂としては、ウレタン樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、アクリル樹脂、アルキド樹脂などが挙げられる。硬化性樹脂は、光硬化性でも、熱硬化性でも使用できる。 A sacrificial mold for thermosetting resin is formed from a cured product of a resin composition for three-dimensional stereolithography and used as a curable resin. The sacrificial mold of curable resin is to be dissolved and removed after the curable resin is cured and molded. Curable resins include urethane resins, epoxy resins, silicone resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, acrylic resins, and alkyd resins. The curable resin may be photocurable or thermosetting.
また、本発明の硬化物の保存方法は、前記硬化物を相対湿度40~60%で静置する工程を含むことを特徴とする。40%未満だと硬化物中の水分が抜けることにより硬化物に亀裂が入る可能性があり、60%より高いと吸湿による材料物性の変化が起こる可能性がある。保管温度は特に限定されないが、15~40℃が好ましい。 Further, the method for preserving a cured product of the present invention is characterized by including the step of allowing the cured product to stand at a relative humidity of 40 to 60%. If it is less than 40%, the moisture in the cured product may escape and cracks may occur in the cured product, and if it is higher than 60%, the material properties may change due to moisture absorption. Although the storage temperature is not particularly limited, 15 to 40°C is preferable.
以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。以下、「部」又は「%」は特記ない限り、それぞれ「重量部」又は「重量%」を意味する。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples. Hereinafter, "parts" or "%" mean "parts by weight" or "% by weight", respectively, unless otherwise specified.
以下に、実施例及び比較例で使用した各種薬品について、まとめて説明する。
<<単官能アクリレート>>
アクリロイルモルホリン(ACMO):ホモポリマーのTg144℃、KJケミカルズ株式会社製
3-ビニル-5-メチル-2-オキサゾリジノン(VMOX):ホモポリマーのTg173℃、BASF社製
ジメチルアクリルアミド(DMAA):ホモポリマーのTg119℃、KJケミカルズ株式会社製
Various chemicals used in Examples and Comparative Examples are collectively described below.
<<Monofunctional acrylate>>
Acryloylmorpholine (ACMO): homopolymer Tg 144 ° C., KJ Chemicals Co., Ltd. 3-vinyl-5-methyl-2-oxazolidinone (VMOX): homopolymer Tg 173 ° C., BASF Corporation dimethyl acrylamide (DMAA): homopolymer Tg 119°C, manufactured by KJ Chemicals Co., Ltd.
<<二官能アクリレート>>
PEG200ジアクリレート(ライトアクリレート4EG-A):硬化物のTg50℃、共栄化学株式会社製
PEG400ジアクリレート(ライトアクリレート9EG-A):硬化物のTg-9℃、共栄化学株式会社製
<<水溶性ポリマー>>
PEG600:Tm15~25℃、重量平均分子量560~640、富士フイルム和光純薬株式会社製
PEG#4000:重量平均分子量3100、日油株式会社製
ポリビニルピロリドン(PVP K-15):Tg120℃、重量平均分子量6000~15000、アシュランドジャパン社製
ポリエステル(プラスコートZ-221―100(F)):重量平均分子量14000、互応化学工業株式会社製
<<bifunctional acrylate>>
PEG200 diacrylate (light acrylate 4EG-A): Tg 50 ° C. of cured product, Kyoei Chemical Co., Ltd. PEG400 diacrylate (light acrylate 9EG-A): Tg -9 ° C. of cured product, Kyoei Chemical Co., Ltd. << water soluble Polymer>>
PEG600: Tm 15 to 25 ° C., weight average molecular weight 560 to 640, PEG#4000 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.: weight average molecular weight 3100, NOF Corporation Polyvinylpyrrolidone (PVP K-15): Tg 120 ° C., weight average Molecular weight 6000 to 15000, polyester manufactured by Ashland Japan (Plascoat Z-221-100 (F)): weight average molecular weight 14000, manufactured by Goo Chemical Industry Co., Ltd.
<<重合性官能基を有するカルボン酸の2価金属塩>>
アクリル酸マグネシウム塩:MA90、浅田化学工業株式会社製
アクリル酸亜鉛塩:ZDA-90、浅田化学工業株式会社製
<<Divalent metal salt of carboxylic acid having a polymerizable functional group>>
Magnesium acrylate: MA90, manufactured by Asada Chemical Industry Co., Ltd. Zinc acrylate salt: ZDA-90, manufactured by Asada Chemical Industry Co., Ltd.
<<光重合開始剤>>
2,4,6-トリメチルベンゾイル-ジフェニル‐ホスフィンオキサイド(Omnirad TPO-H):IGM resin社製
ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(Omnirad 819):IGM resin社製
<<Photoinitiator>>
2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Omnirad TPO-H): manufactured by IGM resin Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Omnirad 819): manufactured by IGM resin
実施例1~9及び比較例1~3
表1に示す各成分と配合量で、反応性モノマー、水溶性ポリマー、および、光重合開始剤を混合した。攪拌しながら80℃のオーブンで加熱して、固形成分を溶解させることにより均一な液状の樹脂組成物を調製した。得られた樹脂組成物を用いて以下の評価を行った。評価結果を表1に示す。
Examples 1-9 and Comparative Examples 1-3
A reactive monomer, a water-soluble polymer, and a photopolymerization initiator were mixed according to the respective components and blending amounts shown in Table 1. A uniform liquid resin composition was prepared by heating in an oven at 80° C. with stirring to dissolve the solid components. The following evaluation was performed using the obtained resin composition. Table 1 shows the evaluation results.
<tanδピーク温度、弾性率Erおよび変形開始温度>
実施例および比較例で作製した樹脂組成物約1gをガラス板に挟み、UV照射装置(株式会社アイテックシステム製)を用い、7mW/cmで60秒ごとに照射して、厚みが約1mmの片面に硬化物を形成したガラス板を作製した。得られたサンプルについて、DVA-2000(アイティー計測制御株式会社製)を用いて、周波数1Hz、5℃/minの昇温速度で、-100℃から+200℃まで昇温した。そして、25℃および80℃での弾性率Erを求めるとともに、tanδがトップピークとなる温度を樹脂組成物の硬化物のTgとして求めた。なお、tanδが極大となるピークが複数ある場合には、より大きいピークのピーク温度(マトリックスとなるポリマーのTg)をとった。また、1%伸びた時の温度を、変形開始温度とした。
<tan δ peak temperature, elastic modulus Er and deformation start temperature>
About 1 g of the resin composition prepared in Examples and Comparative Examples was sandwiched between glass plates and irradiated with a UV irradiation device (manufactured by ITEC SYSTEM Co., Ltd.) at 7 mW/cm 2 every 60 seconds to obtain a thickness of about 1 mm. A glass plate having a cured product formed on one side was produced. The obtained sample was heated from −100° C. to +200° C. using DVA-2000 (manufactured by IT Keisoku Co., Ltd.) at a frequency of 1 Hz and a heating rate of 5° C./min. Then, the elastic modulus Er at 25° C. and 80° C. was determined, and the temperature at which tan δ reached the top peak was determined as the Tg of the cured product of the resin composition. When there are a plurality of peaks with maximum tan δ, the peak temperature of the larger peak (Tg of the matrix polymer) was taken. Also, the temperature at which the film was elongated by 1% was taken as the deformation start temperature.
<水溶解性>
<tanδピーク温度、弾性率Erおよび変形開始温度>に記載の方法を用いて、厚みが約1mmの片面に硬化物を形成したガラス板を作製した。室温の水100g中に5時間浸漬した後に膜厚を測定した。以下の評価基準で評価した。
〇:膜厚が0.7mm以下
×:膜厚が0.7mm超
<Water solubility>
Using the method described in <tan δ peak temperature, elastic modulus Er, and deformation start temperature>, a glass plate having a thickness of about 1 mm and having a cured product formed on one side thereof was produced. The film thickness was measured after immersion in 100 g of water at room temperature for 5 hours. It was evaluated according to the following evaluation criteria.
○: Film thickness is 0.7 mm or less ×: Film thickness is over 0.7 mm
<ショアD硬度>
LCD方式の3Dプリンタ(Phrozen社製、Phrozen Shuffle XL)を用いて、1層当たりの照射時間5秒およびz軸(高さ方向)のピッチ50μmの条件で、短冊状のサンプル(縦35mm×横20mm×厚み(高さ)6mm)を作製した。タイプDデュロメータを用い、JIS K7215:1986に準拠して、ショアD硬度を測定した。
<Shore D hardness>
Using an LCD 3D printer (Phrozen Shuffle XL, manufactured by Phrozen), a strip-shaped sample (35 mm long x horizontal 20 mm x thickness (height) 6 mm). Using a type D durometer, the Shore D hardness was measured according to JIS K7215:1986.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1に示すように、実施例1~9の樹脂組成物では、tanδ主ピーク温度が高く、80℃での弾性率が高くなり、水溶解性にも優れていた。一方、比較例1の樹脂組成物では、tanδの主ピーク温度が低く、80℃での弾性率は測定もできなかった。比較例2や3の樹脂組成物では、tanδの主ピーク温度が低く、80℃での弾性率は高くなったが、ゲル化しており、水溶解性を有していなかった。 As shown in Table 1, the resin compositions of Examples 1 to 9 had a high tan δ main peak temperature, a high elastic modulus at 80° C., and excellent water solubility. On the other hand, in the resin composition of Comparative Example 1, the main peak temperature of tan δ was low, and the elastic modulus at 80° C. could not be measured. The resin compositions of Comparative Examples 2 and 3 had a low main peak temperature of tan δ and a high elastic modulus at 80° C., but were gelled and did not have water solubility.
<洗浄性>
実施例2で作製した樹脂組成物について、以下のように、洗浄性を評価した。硬化前の組成物1gを、エタノールもしくは3-メトキシ-3-メチル-1-ブタノール(ソルフィットFG、株式会社クラレ製)それぞれ100mlに、室温にて10分間浸漬した後に、組成物が溶解しているかどうかを目視にて評価した。また、<ショアD硬度>に記載の方法を用いて作製した短冊状の硬化物を、エタノールもしくは3-メトキシ-3-メチル-1-ブタノールそれぞれ100mlに、室温にて10分間浸漬した後に、硬化物のべたつき具合および外観を、それぞれ触感および目視にて評価した。
<Washability>
The resin composition prepared in Example 2 was evaluated for washability as follows. 1 g of the composition before curing was immersed in 100 ml each of ethanol or 3-methoxy-3-methyl-1-butanol (Solfit FG, manufactured by Kuraray Co., Ltd.) at room temperature for 10 minutes, and then the composition was dissolved. It was visually evaluated whether or not there was any. In addition, a strip-shaped cured product prepared using the method described in <Shore D hardness> was immersed in 100 ml each of ethanol or 3-methoxy-3-methyl-1-butanol at room temperature for 10 minutes, and then cured. The stickiness and appearance of the product were evaluated by touch and visual observation, respectively.
その結果、従来使用されていたハンセン溶解度パラメータが27MPa0.5であるエタノールでは、硬化前の組成物は完全に溶解するものの、硬化物はべたつき、白濁した。一方、ハンセン溶解度パラメータが20.2MPa0.5である3-メトキシ-3-メチル-1-ブタノールでは、硬化前の組成物は完全に溶解するものの、硬化物はややべたつく程度であって、透明のままであった。よって、ハンセン溶解度パラメータが20.2MPa0.5であるソルフィットFGは洗浄溶媒として優れていることがわかった。 As a result, in the conventionally used ethanol having a Hansen solubility parameter of 27 MPa 0.5 , the composition was completely dissolved before curing, but the cured product was sticky and cloudy. On the other hand, with 3-methoxy-3-methyl-1-butanol, which has a Hansen solubility parameter of 20.2 MPa 0.5 , the composition before curing completely dissolves, but the cured product is slightly sticky and transparent. remained. Therefore, it was found that Solfit FG, which has a Hansen solubility parameter of 20.2 MPa 0.5 , is excellent as a washing solvent.
<保存性>
実施例2で作製した樹脂組成物を、LCD方式の3Dプリンタ(Phrozen社製、Phrozen Shuffle XL)を用いて、1層当たりの照射時間10秒およびz軸(高さ方向)のピッチ50μmの条件で、短冊状のサンプル(縦35mm×横20mm×厚み(高さ)6mm)を作製した。表裏10分ずつ後硬化を行った。得られた造形物を、表2に示す温度および湿度で、表2に示す期間保管した。保管前後の重量と、前述した方法でショアD硬度を測定した。保管後の外観は、以下の基準で評価した。なお、温度85℃、湿度85%での保管後のショアD硬度は、サンプルの形状を保持できなかったので、測定しなかった。
〇:割れの発生無
△:一部割れが発生
X:形態を保持できず
<Storability>
The resin composition prepared in Example 2 was subjected to irradiation time of 10 seconds per layer and z-axis (height direction) pitch of 50 μm using an LCD 3D printer (Phrozen Shuffle XL, manufactured by Phrozen). A strip-shaped sample (length 35 mm×width 20 mm×thickness (height) 6 mm) was produced. The front and back were post-cured for 10 minutes each. The obtained shaped article was stored at the temperature and humidity shown in Table 2 for the period shown in Table 2. The weight before and after storage and the Shore D hardness were measured by the method described above. The appearance after storage was evaluated according to the following criteria. The Shore D hardness after storage at a temperature of 85° C. and a humidity of 85% was not measured because the shape of the sample could not be maintained.
〇: No cracks △: Some cracks occurred X: The shape could not be maintained
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
温度23℃、相対湿度が27%では、割れが生じた。一方、相対湿度が41%では、割れが生じることなく、適切に保存することができた。また、温度85℃、相対湿度が85%では、形状を保持することもできず、ショアD硬度も測定しなかった。 Cracking occurred at a temperature of 23° C. and a relative humidity of 27%. On the other hand, at a relative humidity of 41%, it could be properly preserved without cracking. Moreover, at a temperature of 85° C. and a relative humidity of 85%, the shape could not be retained and the Shore D hardness was not measured.
1:光造形装置
2:プラットフォーム
2a:パターン形成面
3:樹脂槽
4:プロジェクタ
5:硬化性樹脂組成物
6:離型剤層
7a:液膜a
7b:液膜b
8a:第1パターンa
8b:第2パターンb
L:光
 
1: stereolithography device 2: platform 2a: pattern forming surface 3: resin tank 4: projector 5: curable resin composition 6: release agent layer 7a: liquid film a
7b: liquid film b
8a: First pattern a
8b: second pattern b
L: light

Claims (9)

  1. 反応性モノマー、水溶性ポリマーおよび光重合開始剤を含む三次元光造形用樹脂組成物であって、
    硬化物のtanδの主ピーク温度が80℃以上であり、
    厚さ1mmの硬化物を、室温の水に5時間浸漬した後の残存厚みが0.7mm以下である、三次元光造形用樹脂組成物。
    A three-dimensional stereolithography resin composition comprising a reactive monomer, a water-soluble polymer and a photopolymerization initiator,
    The main peak temperature of tan δ of the cured product is 80 ° C. or higher,
    A three-dimensional stereolithography resin composition having a residual thickness of 0.7 mm or less after a cured product having a thickness of 1 mm is immersed in water at room temperature for 5 hours.
  2. 反応性モノマーが、ホモポリマーとしたときのガラス転移温度が80℃以上となる反応性モノマーである、請求項1に記載の三次元光造形用樹脂組成物。 2. The resin composition for three-dimensional stereolithography according to claim 1, wherein the reactive monomer has a glass transition temperature of 80[deg.] C. or higher when converted into a homopolymer.
  3. 硬化後のショアD硬度が60以上である、請求項1または2に記載の三次元光造形用樹脂組成物。 3. The resin composition for three-dimensional stereolithography according to claim 1, which has a Shore D hardness of 60 or more after curing.
  4. さらに、重合性官能基を有するカルボン酸の2価金属塩を含有する請求項1~3のいずれか1項に記載の三次元光造形用樹脂組成物。 The resin composition for three-dimensional stereolithography according to any one of claims 1 to 3, further comprising a divalent metal salt of a carboxylic acid having a polymerizable functional group.
  5. 請求項1~4のいずれか1項に記載の三次元光造形用樹脂組成物の硬化物。 A cured product of the resin composition for three-dimensional stereolithography according to any one of claims 1 to 4.
  6. 射出成形用中子である、請求項5に記載の硬化物。 The cured product according to claim 5, which is a core for injection molding.
  7. (i)請求項1~4のいずれか1項に記載の樹脂組成物からなる第1液膜を形成し、第1液膜を硬化させて第1パターンを形成する工程、
    (ii)第1パターンに接するように、請求項1~4のいずれか1項に記載の樹脂組成物からなる第2液膜を形成し、第2液膜を硬化させて第2パターンを積層する工程
    を含む三次元造形物の製造方法。
    (i) forming a first liquid film made of the resin composition according to any one of claims 1 to 4, and curing the first liquid film to form a first pattern;
    (ii) forming a second liquid film made of the resin composition according to any one of claims 1 to 4 so as to be in contact with the first pattern, and curing the second liquid film to laminate the second pattern; A method for manufacturing a three-dimensional structure, including the step of
  8. さらに、第1パターンおよび第2パターンを、ハンセン溶解度パラメータが25MPa0.5以下である溶剤で洗浄する工程
    を含む請求項7に記載の三次元造形物の製造方法。
    The method for manufacturing a three-dimensional structure according to claim 7, further comprising the step of washing the first pattern and the second pattern with a solvent having a Hansen solubility parameter of 25 MPa 0.5 or less.
  9. 請求項5または6に記載の硬化物を相対湿度40~60%で静置する工程を含む、硬化物の保存方法。
     
    A method for storing a cured product, comprising the step of allowing the cured product according to claim 5 or 6 to stand at a relative humidity of 40 to 60%.
PCT/JP2022/000824 2021-01-29 2022-01-13 Resin composition for three-dimensional photoshaping WO2022163358A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022578217A JPWO2022163358A1 (en) 2021-01-29 2022-01-13
US18/262,686 US20240117097A1 (en) 2021-01-29 2022-01-13 Resin composition for three-dimensional photoshaping

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013877 2021-01-29
JP2021013877 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163358A1 true WO2022163358A1 (en) 2022-08-04

Family

ID=82653296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000824 WO2022163358A1 (en) 2021-01-29 2022-01-13 Resin composition for three-dimensional photoshaping

Country Status (4)

Country Link
US (1) US20240117097A1 (en)
JP (1) JPWO2022163358A1 (en)
TW (1) TW202239772A (en)
WO (1) WO2022163358A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123834A (en) * 1990-09-14 1992-04-23 Nissan Motor Co Ltd Production of sand core for casting
JP2012111226A (en) * 2010-11-01 2012-06-14 Keyence Corp Model material for forming optically shaped article, support material for supporting shape during optical shaping of optically shaped article, and method for manufacturing optically shaped article in inkjet optically shaping method
JP2018058974A (en) * 2016-10-04 2018-04-12 共栄社化学株式会社 Active ray-curable resin composition
WO2018168867A1 (en) * 2017-03-15 2018-09-20 Kjケミカルズ株式会社 Oxazoline-based dispersants for carbon materials, and carbon composite materials in which same are used
WO2020017615A1 (en) * 2018-07-18 2020-01-23 Kjケミカルズ株式会社 Active energy ray curable resin composition for three-dimensional molding support materials, and ink
JP2020012052A (en) * 2018-07-18 2020-01-23 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional molding support material
JP2020526413A (en) * 2017-07-14 2020-08-31 アディファブ アーペーエス Laminated sacrificial mold used in injection molding process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123834A (en) * 1990-09-14 1992-04-23 Nissan Motor Co Ltd Production of sand core for casting
JP2012111226A (en) * 2010-11-01 2012-06-14 Keyence Corp Model material for forming optically shaped article, support material for supporting shape during optical shaping of optically shaped article, and method for manufacturing optically shaped article in inkjet optically shaping method
JP2018058974A (en) * 2016-10-04 2018-04-12 共栄社化学株式会社 Active ray-curable resin composition
WO2018168867A1 (en) * 2017-03-15 2018-09-20 Kjケミカルズ株式会社 Oxazoline-based dispersants for carbon materials, and carbon composite materials in which same are used
JP2020526413A (en) * 2017-07-14 2020-08-31 アディファブ アーペーエス Laminated sacrificial mold used in injection molding process
WO2020017615A1 (en) * 2018-07-18 2020-01-23 Kjケミカルズ株式会社 Active energy ray curable resin composition for three-dimensional molding support materials, and ink
JP2020012052A (en) * 2018-07-18 2020-01-23 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional molding support material

Also Published As

Publication number Publication date
JPWO2022163358A1 (en) 2022-08-04
US20240117097A1 (en) 2024-04-11
TW202239772A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
EP3418313B1 (en) Composition optical three-dimensional molding
JP6194891B2 (en) Polymerizable composition for stereolithography
WO2017033427A1 (en) Patterning material, patterning method and patterning device
TWI691529B (en) Hybrid formulation composition for 3d additive manufacturing and processing method of the same
WO2022163358A1 (en) Resin composition for three-dimensional photoshaping
JP7213660B2 (en) Curable resin composition and cured product
JP6800440B2 (en) Photocurable resin composition and cured resin
JP2022099528A (en) Active energy ray-curable resin composition
JP2022157043A (en) Resin composition for three-dimensional optical molding
JP7015682B2 (en) Resin composition for stereolithography
JP7279919B2 (en) Composition for optical stereolithography, three-dimensional object, and method for producing the same
JP7279942B2 (en) Composition for optical stereolithography, three-dimensional object, and method for producing the same
RU2699556C1 (en) Curable polymer composition and method of making a hardened product therefrom
JP6893079B2 (en) UV curable resin composition for casting
JP6047618B2 (en) Composition for optical three-dimensional modeling and method for producing three-dimensional model using the same
JP2022119652A (en) Photocurable resin composition and resin mold for preparing template
JP2022070123A (en) Photocurable resin composition and method for producing optically shaped article using the same
JP2006282689A (en) Photo-curing resin composition and three-dimensional shaped product using the same
WO2020196753A1 (en) Photocurable composition for three-dimensional molding, three-dimensional molded product, and method for producing three-dimensional molded product
JP7224557B1 (en) Three-dimensional stereolithography resin composition
JP7199611B2 (en) Photocurable resin composition and three-dimensional stereolithography
WO2023026905A1 (en) Resin composition for three-dimensional photoshaping
JP2022178572A (en) Three-dimensional optical molding resin composition
JP6997564B2 (en) Injection type composition
JP2022064678A (en) Manufactured article of curable resin, polymer solution for reinforcing manufactured article, and methods for reinforcing and producing manufactured article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578217

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18262686

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745583

Country of ref document: EP

Kind code of ref document: A1