WO2022158047A1 - Determination assistance system, radiotherapy system, and determination assistance method for determination assistance system - Google Patents

Determination assistance system, radiotherapy system, and determination assistance method for determination assistance system Download PDF

Info

Publication number
WO2022158047A1
WO2022158047A1 PCT/JP2021/035051 JP2021035051W WO2022158047A1 WO 2022158047 A1 WO2022158047 A1 WO 2022158047A1 JP 2021035051 W JP2021035051 W JP 2021035051W WO 2022158047 A1 WO2022158047 A1 WO 2022158047A1
Authority
WO
WIPO (PCT)
Prior art keywords
judgment
treatment
index
dose
decision
Prior art date
Application number
PCT/JP2021/035051
Other languages
French (fr)
Japanese (ja)
Inventor
徹 梅川
祐介 藤井
貴啓 山田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022158047A1 publication Critical patent/WO2022158047A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a decision support system, a radiotherapy system, and a decision support method in a decision support system.
  • the present invention preferably relates to a radiotherapy system having a function for supporting adaptive treatment decision-making in response to changes in the patient's body structure during treatment.
  • the purpose of radiation therapy is to irradiate and treat the target within the patient's body with concentrated radiation. Improving the concentration of dose to the target reduces the dose to the organs around the target and reduces side effects.
  • a treatment plan is implemented in which the radiation irradiation method, such as which direction and how much to irradiate, is determined by simulation, and then irradiation is performed over multiple days. Since the days pass between treatment planning and irradiation, structures within the patient's body can change. Due to this structural change, the dose to the target and peripheral organs may vary from day to day even if the same irradiation method is used.
  • the radiation dose to the target and surrounding organs is evaluated in anticipation of this change, and the irradiation method is determined. It is generally planned to irradiate an area larger than the target itself, so that the target receives the desired dose regardless of variation.
  • adaptive therapy If it is possible to measure this change in the patient immediately before irradiation and adjust the irradiation method according to the change, it is believed that a dose that is more focused on the target can be achieved. This is called adaptive therapy.
  • This adaptive treatment is called online adaptive treatment, in which the irradiation method is adjusted while the patient is lying on the treatment bed based on the image taken on the day of irradiation. High-precision treatment becomes possible.
  • Patent Document 1 describes "Automated workflow for adaptive radiation therapy comprising a procedure for obtaining a set of instructions containing information representative of a planned treatment and stepwise generation of a model of a patient using the set of instructions; and a series of automated steps of first and second treatment plan generation for a patient model and a procedure for selecting the appropriate treatment plan for the current treatment session.”
  • the present invention has been made in view of the above problems, and a judgment support system, a radiotherapy system, and a An object of the present invention is to provide a judgment support method in a judgment support system.
  • a decision support system receives input of decision support data consisting of a set of a decision index and a decision reference value to be evaluated during treatment. Accept, accept selection input of decision support data to be used for each target of radiation therapy, and calculate a decision index value for an image of a predetermined area captured by an imaging device that captures a predetermined area including the target on the day of treatment. Then, the value of the judgment index and the judgment reference value are compared and displayed.
  • FIG. 1 is a diagram showing a schematic configuration of a radiotherapy system according to Example 1;
  • FIG. 4 is a diagram showing an example of structural change determination support data in the radiotherapy system according to the first embodiment.
  • FIG. FIG. 8 is a diagram showing another example of structural change determination support data in the radiotherapy system according to the first embodiment;
  • FIG. 4 is a flow chart showing the operation of the radiotherapy system according to Example 1.
  • FIG. 4 is a flow chart showing the positioning operation of the radiotherapy system according to Example 1.
  • FIG. 4 is a flow chart showing contour creation necessity determination operation of the radiotherapy system according to the first embodiment.
  • 4 is a flow chart showing contour creation/verification operations of the radiotherapy system according to the first embodiment.
  • 4 is a flow chart showing a treatment plan selection operation of the radiotherapy system according to Example 1.
  • FIG. 4 is a flow chart showing treatment plan evaluation operation of the radiotherapy system according to Example 1.
  • FIG. 4 is a flow chart showing radiation irradiation operation of the radiotherapy system according to Example 1.
  • FIG. FIG. 10 is a diagram showing an example of determination support data displayed in contour creation necessity determination operation of the radiotherapy system according to the first embodiment;
  • FIG. 5 is a diagram showing an example of judgment support data displayed in the contour creation/verification operation of the radiotherapy system according to the first embodiment;
  • FIG. 5 is a diagram showing an example of judgment support data displayed in the treatment plan selection operation of the radiotherapy system according to Example 1;
  • FIG. 5 is a diagram showing an example of judgment support data displayed in the treatment plan evaluation operation of the radiotherapy system according to Example 1;
  • 4 is a flow chart showing the operation of the radiotherapy system according to Example 1.
  • FIG. 4 is a diagram showing a display example of a monitor in the radiotherapy system according to Example 1.
  • FIG. 1 is a diagram showing a schematic configuration of a radiotherapy system according to Example 1;
  • FIG. 4 is a flow chart showing the operation of the radiotherapy system according to Example 1.
  • Embodiment 1 will be described with reference to FIGS. 1 to 18.
  • FIG. 1 is a diagrammatic representation of Embodiment 1
  • FIG. 1 is a diagram showing a schematic configuration of a radiotherapy system in Example 1.
  • FIG. 1 is a diagram showing a schematic configuration of a radiotherapy system in Example 1.
  • the radiotherapy system of this embodiment includes a bed 2 for supporting an object (patient) 1, an imaging device 3 for imaging the object 1 during treatment, and a therapeutic radiation irradiation device 4 for irradiating the object with therapeutic radiation. and
  • a subject 1 In normal radiotherapy, a subject 1 is fixed on a bed 2, an imaging device 3 photographs the internal structure of the body, the bed 2 is moved with reference to the image, and the subject 1 is moved to a planned position. . Thereafter, therapeutic radiation is emitted from the therapeutic radiation irradiation device 4 to irradiate the target 5 in the subject with the radiation.
  • the operator 11 creates a treatment plan for irradiating radiation including the position of the subject 1 using the treatment planning apparatus 10 before starting treatment.
  • An operator 11 who operates the treatment planning apparatus 10 may be a doctor who performs radiotherapy, a radiological technologist, or the like.
  • the treatment planning device 10 uses the image of the subject captured by the imaging device 3 or another imaging device in the hospital to grasp the internal structure of the body, and then evaluates the dose distribution to the target 5 and surrounding organs by simulation.
  • a treatment plan including the irradiation method of therapeutic radiation is created while performing the treatment.
  • the subject 1 is placed at the planned position, and the therapeutic radiation irradiation device 4 irradiates the target 5 with the planned dose, and the surrounding organs are also irradiated. In contrast, it is possible to keep the radiation dose as planned.
  • the image captured by the imaging device 3 is sent to the patient structural change recognition device 14 via the network.
  • the patient structure change recognizing device 14 compares the image of the subject that has just been photographed with the image of the subject at the time of treatment planning or at the time when the plan is revised on the subsequent treatment day, and recognizes the structure change of the subject. and generate the contour of each organ after the change.
  • a non-rigid registration technique, a segmentation technique, or a combination of these techniques may be used to recognize this structural change and generate the contours of each organ. good.
  • the structural change information and the generated contour information of each organ are displayed on the monitor 12 and visually confirmed by the operator 11 . If the confirmed information is correct, the approval operation is performed, and if incorrect, the correction is performed manually. This approval work requires the operator 11 to have specialized knowledge such as how much structural change can be allowed.
  • the approved structural change information, contour information of each organ, and captured image information are sent to the treatment planning apparatus 10 . Alternatively, in the case of software on the same computer, information is transmitted via a storage medium.
  • the treatment planning apparatus 10 uses the newly obtained image, contour information, etc. to determine the dose distribution when irradiation is performed according to the irradiation method determined in the plan.
  • a dose evaluation index for each organ is calculated for the obtained dose distribution using the contour information.
  • dose indices indices called maximum/minimum dose, dose flatness, and DVH (Dose Volume Histogram) are often used.
  • the operator 11 determines whether or not irradiation correction is necessary based on these indices.
  • the criterion for judgment is whether or not the therapeutic effect assumed in the treatment plan can be obtained, but a vast amount of knowledge and experience is required to predict the therapeutic effect from the dose evaluation index.
  • the process proceeds to irradiation as it is, and irradiation is performed by the therapeutic radiation irradiation device 4 .
  • the irradiation method is re-optimized so as to satisfy the dose target for each organ set at the time of treatment planning.
  • irradiation methods such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy) in X-ray therapy
  • IMRT Intensity Modulated Radiation Therapy
  • VMAT Volumetric Modulated Arc Therapy
  • the operator 11 After completing the necessary modification of the irradiation method, the operator 11 performs an approval operation.
  • the approved treatment plan information is sent to the treatment plan verification device 15.
  • the treatment plan verification device 15 verifies whether the dose distribution calculated by the treatment plan device 10 is appropriate. In normal treatment, this verification work is performed by an irradiation test involving the irradiation of actual therapeutic radiation. However, in the online adaptive therapy, the irradiation test cannot be performed because it must be performed with the subject 1 in the treatment room 6 . Instead, a method called independent verification may be used in which the dose distribution is compared with another calculation method. In the case of an independent validation, the dose distribution determined by another method is compared with the reoptimized distribution.
  • the approved replanned irradiation method data is created. From these overall operations, the operator 11 makes a comprehensive judgment as to whether to use the original planning data or the re-planning data, and determines which data to irradiate. to irradiation.
  • the treatment planning device 10, the patient structural change recognition device 14, and the treatment plan verification device 15 are configured by devices capable of various types of information processing, such as information processing devices such as computers.
  • An information processing apparatus has an arithmetic element, a storage medium, and a communication interface, and further has an input section such as a mouse and a keyboard, and a display section such as a display, if necessary.
  • Arithmetic elements are, for example, CPUs (Central Processing Units), FPGAs (Field-Programmable Gate Arrays), and the like.
  • the storage medium includes, for example, a magnetic storage medium such as a HDD (Hard Disk Drive), a semiconductor storage medium such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an SSD (Solid State Drive).
  • a combination of an optical disk such as a DVD (Digital Versatile Disk) and an optical disk drive is also used as a storage medium.
  • known storage media such as magnetic tape media are also used as storage media.
  • Programs such as firmware are stored in the storage medium.
  • a program such as firmware is read from the storage medium and executed to control the entire treatment planning apparatus 10 or the like.
  • the storage medium stores data required for each process of the treatment planning apparatus 10 and the like.
  • the treatment planning apparatus 10 and the like of the present embodiment may each be configured by a so-called cloud in which information processing apparatuses are configured to be able to communicate via a communication network.
  • a judgment support data input device 20 is provided to assist the operator 11 in making judgments at key points.
  • the decision support data input device 20 has a function of importing decision support data from outside the treatment facility into the treatment facility. Allows the use of decision support data created at other facilities with experienced staff within the treatment facility.
  • the decision support data is a set of decision support information classified by treatment site and treatment policy, as will be described in detail later with reference to FIGS. , Contour judgment index necessary for success/failure judgment after contour generation, dose evaluation index information for each part necessary for replanning, reference value and priority of each index, dose evaluation index information necessary for dose evaluation, criteria for each index Includes value/priority.
  • Structural change judgment indicators at the time of contour creation are volume change rate, contour deformation rate, etc. for each part (target).
  • the dose evaluation indices necessary for replanning determination are the dose in the low-dose area, the dose in the high-dose area, the average dose, the DVH index, and the like.
  • the DVH index is specified, for example, by a value such as the lowest dose irradiated to 95% or more of the volume, or a volume irradiated to 20% or more of the prescribed dose.
  • Indices used when evaluating a treatment plan include, for example, the degree of coincidence of the distribution at the time of re-planning, changes in the degree of achievement of prescription for target DVH, changes in the degree of achievement of prescription for DVH in peripheral organs, and the like.
  • an index called the ⁇ index can be used as the degree of agreement between the distributions. Divide the two dose distributions into small pieces, and measure the ratio of the small pieces that have a prescribed dose difference within a prescribed amount of movement. evaluate.
  • the judgment support data consists of a judgment index and a judgment reference value. In addition, it is also possible to prioritize the necessity or the index for each judgment index.
  • Judgment support data includes hospitals and doctors, patient attributes (adult, child, obese, thin, male, female, etc.), tumor sites (liver, pancreas, lung, etc.). It may be further subdivided according to the position of the tumor in the organ, such as by dividing it into sections), and is created and stored for each treatment policy, and the operator 11 who performs treatment can select a suitable one from among them.
  • the judgment reference value is shown as XX% or XX mm, but it is not limited to this if the optimal display method can be selected for each doctor or hospital to be entered and the judgment standard is indicated.
  • the shape change rate of the target, the shape change rate of the surrounding organs, the depth change rate from the body surface to the target, etc. are used as the judgment indicators for the structural change judgment support data.
  • the shape change rate of the target and the shape change rate of the surrounding organs are essential items.
  • the rate of change referred to here is the rate of change in the shape of the target from when the image was taken when the treatment plan was created to when the image was taken when the treatment was performed (for example, when the image was taken in S15 of FIG. 7, which will be described later).
  • the rate of shape change of the target for example, the rate of change in volume of the target, or the degree of volume matching of the target indicated by the Jaccard coefficient or the Dice coefficient is used. If there is a large change in the shape of the target, there is a high possibility that the dose and distribution of radiation to the target will deviate from the initial plan. Therefore, in order to carry out irradiation according to the initial plan, it is desirable that the shape change rate of the target is equal to or less than the criterion value.
  • a contour change rate such as a contour length change rate may be used.
  • the shape change rate of the surrounding organs for example, the volume change rate of the surrounding organs and the volume matching degree of the surrounding organs indicated by the Jaccard coefficient or the Dice coefficient are used. If there is a large change in the shape of the surrounding organs, there is a possibility that the surrounding organs will be exposed to more radiation than originally planned. Therefore, in order to carry out irradiation according to the initial plan, it is desirable that the rate of change in shape of peripheral organs is equal to or less than the criterion value.
  • a contour change rate such as a contour length change rate may be used.
  • the water equivalent thickness change rate is used.
  • the irradiated radiation is a particle beam
  • the position in the depth direction where the maximum dose is emitted differs depending on the magnitude of the energy of the irradiated beam. Therefore, if the distance to the target in the depth direction or the equivalent water thickness changes, deviations will occur between the planned dose and distribution in the depth direction. Therefore, in order to carry out irradiation according to the initial plan, it is desirable that the rate of change in depth from the body surface to the target be equal to or less than the criterion value.
  • Judgment of what index is used and to what extent is permissible for irradiation according to the initial plan, such as the shape change rate of the target, the shape change rate of surrounding organs, and the depth change rate from the body surface to the target. is highly dependent on the experience of the physician.
  • the judgment index by obtaining and displaying the judgment index in advance, the judgment can be made more appropriate and faster, and highly accurate treatment can be performed in a short period of time.
  • Fig. 4 shows an example of replanning decision support data.
  • the judgment index of the replanning judgment support data for example, the dose in the low dose region of the target 5, the dose in the high dose region of the surrounding organs, the change in the distance between the surrounding organs and the end of the range, the prescription for DVH of the target 5 changes in the degree of achievement of DVH in peripheral organs, changes in the degree of achievement in prescription for DVH in peripheral organs, and the like are used.
  • the specified prescription dose is delivered uniformly over the target before replanning is made.
  • it is difficult to make it completely uniform due to restrictions such as the position of the dangerous organ and the irradiation angle.
  • the dose in the low-dose area within the target 5 is a dose equal to or higher than the prescribed dose reference value. Therefore, in this embodiment, for example, 90% or more of the prescribed dose is set.
  • the dose in the high-dose region of the peripheral organs is equal to or less than the reference value of the restricted dose. Therefore, in this embodiment, for example, the reference value is set at 110% or less of the restricted dose.
  • the distance between the surrounding organs and the end of the range is kept at a predetermined distance or more in order to suppress the dose to the surrounding organs. make a treatment plan. Determine whether this distance has changed from the time of planning and is too close.
  • the average dose is used as the degree of prescription achievement for DVH in peripheral organs.
  • a constraint value for the average dose is specified before the treatment plan is created, such that the average dose prescribed for peripheral organs such as the pancreas is 10 Gy or less, and the treatment plan is created so as to satisfy this index. Since it is desirable that the dose to surrounding organs be low, it is desirable that the change in the degree of achievement at the time of re-planning is below the reference value.
  • Fig. 5 shows an example of decision support data for treatment plan evaluation.
  • the degree of agreement of the distribution at the time of re-planning As a judgment index of the judgment support data for treatment plan evaluation, the degree of agreement of the distribution at the time of re-planning, the dose of the target low-dose area, the dose of the high-dose area of the surrounding organs, the change in the degree of achievement of the prescription for the target DVH, A change in the degree of achievement of prescriptions for DVH in peripheral organs, and the like are used.
  • a gamma analysis pass rate or the like is used as the degree of matching of the distribution at the time of replanning.
  • a general treatment planning apparatus 10 introduces data from the outside to create a treatment plan.
  • this embodiment is characterized by introducing external judgment support data. More specifically, in calculating structural changes, it is known to incorporate an image of the subject that was just taken and an image of the subject at the time of treatment planning or at a later treatment date when the plan was modified. However, it is characterized by the introduction of a judgment index and a reference value to determine how much structural change can be tolerated. It is also known in re-planning to take as data the value of DVH to be achieved and to modify or recreate the treatment plan.
  • replanning which is a treatment plan after recurrence
  • it is characterized by introducing a judgment index and a reference value to determine whether the desired dose has been achieved to some extent.
  • evaluation of the treatment plan it is characterized by introducing a judgment index and a reference value to determine whether the desired dose has been achieved to some extent.
  • the decision support data taken into the facility is stored in the decision support database 21.
  • the operator 11 accesses this decision support database 21 at the start of treatment and selects a set of decision support data that is appropriate for the subject to be treated.
  • the selected decision support data sets are sent to the patient structural change recognizer 14, the treatment planer 10, and the treatment plan verifier 15, respectively.
  • Each device displays the type, priority, and reference value of the judgment index, calculates those values on the day of treatment, and displays them on the monitor 12. As shown in FIG. 18, on the display screen 40 of the monitor 12, a judgment index 41, a judgment reference value 42, and a calculated judgment 43 are displayed. is doing.
  • the operator 11 makes a judgment and performs an approval operation. Items to be referred to in judgment and their priority and standard values are displayed. can be referred to, making judgment easier.
  • the patient structure change recognition device 14, the treatment planning device 10, and the treatment plan verification device 15 are implemented in separate hardware and cooperated over a network. may be implemented as
  • FIG. 6 the operation of the radiotherapy system of this embodiment will be described with reference to the flow charts of FIGS. 6 to 12.
  • FIG. 6 is a flowchart showing the operation of the radiotherapy system according to Example 1, more specifically, a flowchart showing the flow of online adaptive radiotherapy by the radiotherapy system of this example.
  • the operator 11 selects decision support data suitable for the patient to be treated from the decision support database 21.
  • the structural change decision support data, the replanning decision support data, and the treatment plan evaluation decision support data all at once from the characteristics of the hospital and patient that created the decision support data, and the site of the cancer. good.
  • the operator may individually select the structural change decision support data, the replanning decision support data, and the treatment plan evaluation decision support data.
  • the decision support database 21 transmits the decision support data selected by the operator 11 to the patient structural change recognition device 14 , the treatment planning device 10 and the treatment plan verification device 15 .
  • the selection and/or transmission of the judgment support data may be performed at any time before displaying the judgment support data. That is, the selection/transmission of the structural change decision support data may be performed prior to S25 shown in FIG. 8, and the selection/transmission of the replanning decision support data may be performed prior to S47 shown in FIG. The selection/transmission of the decision support data for plan evaluation may be performed before S67 shown in FIG.
  • the patient 1 is fixed to the bed 2, the bed 2 is moved, and the patient 1 is moved to the treatment position.
  • S2 it is determined whether or not it is necessary to create the contour of each organ from the image captured on the treatment day of the patient 1 .
  • the contours of each organ are created and the created contours are verified from the images taken on the day of treatment.
  • the contour created at S4 is used to re-plan the treatment plan.
  • the treatment plan re-planned at S5 is evaluated and the treatment plan created at the time of planning and the re-planned treatment plan are selected. If this selection selects the replanned treatment plan, S7 may be performed, and if the treatment plan created at the time of planning is selected, S7 may be skipped and S8 may be performed.
  • the treatment plan evaluated and selected at S6 is evaluated.
  • FIG. 7 is a flowchart showing the positioning operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S1 in FIG. The operation shown in the flowchart of FIG. 7 is performed by a positioning device (not shown) provided in the therapeutic radiation irradiation apparatus 4 .
  • the patient 1 is fixed on the bed 2.
  • the bed 2 is moved using a laser that indicates the isocenter position so that the irradiation center (isocenter) of radiation and the affected area are roughly aligned. It is also possible to fix the patient 1 to the bed 2 after photographing the state of the body of the patient 1 on the day of treatment with the imaging device 3 . Also, after fixing the patient 1, before moving the patient 1 to the isocenter, the photographing device 3 may be used to photograph the internal state of the patient 1 on the day of treatment, and then the patient may be moved to the isocenter position.
  • the imaging parameters are set according to the position of the affected part of the patient 1, body type, and the like.
  • the imaging parameters may be set automatically from the information of the patient 1, or may be set manually.
  • the imaging may be performed by moving the imaging device 3 to the isocenter, or may be performed by another imaging device attached to the therapeutic radiation irradiation device 4 or the like.
  • FIG. 8 is a flowchart showing contour creation necessity determination operation of the radiotherapy system according to the first embodiment, and is a flowchart showing details of S2 in FIG. The operation shown in the flowchart of FIG. 8 is performed by the patient structural change recognition device 14 .
  • the water equivalent thickness (WET) is calculated from the image taken on the day of treatment.
  • the water-equivalent thickness obtained from the image at the time of treatment planning is compared with the water-equivalent thickness from the image taken on the day of treatment, and the change ⁇ WET of the water-equivalent thickness is calculated.
  • WET is calculated as an example here, other determination indexes may be used.
  • the determination index to be calculated may be obtained by acquiring the structural change determination support data, identifying the determination index included in the acquired structural change determination support data, and calculating the identified determination index.
  • the results calculated in S21 and structural change determination support data are displayed.
  • a judgment index, a judgment reference value, and a judgment index value are displayed.
  • the judgment index and the judgment reference value are the values obtained from the judgment support data, and the judgment index value is the value calculated on the day.
  • the priority of each index may also be displayed so that the operator 11 can easily judge.
  • a result of comparing the judgment reference value and the judgment index value may be displayed. Further, only the judgment index and the comparison result may be displayed without displaying the judgment reference value and the judgment index value.
  • FIG. 9 is a flowchart showing the contour creation/verification operation of the radiotherapy system according to Embodiment 1, and is a flowchart showing details of S4 in FIG. The operation shown in the flowchart of FIG. 9 is performed by the patient structural change recognition device 14 .
  • the patient structural change recognizing device 14 is set with the subject image that has just been photographed and the subject image at the time of treatment planning or at the time when the plan is revised on the subsequent treatment date.
  • the patient structure change recognizing device 14 compares the image of the subject that has just been photographed with the image of the subject at the time of treatment planning or at the time when the plan is revised on the subsequent treatment day, and recognizes the structure change of the subject. and generate the contour of each organ after the change.
  • a non-rigid image registration (deformable image registration: DIR) technique may be used for recognition of this structural change and contour generation of each organ (OAR (Organ at Risk), target, peripheral organ), A segmentation technique may be used, or a combination of these techniques may be used.
  • the volumes of the target and surrounding organs used for comparison are also obtained from the structural change determination support data.
  • the determination index to be calculated may be obtained by acquiring the structural change determination support data, identifying the determination index included in the acquired structural change determination support data, and calculating the identified determination index.
  • the created contour data is set in the contour verification device (program) to verify whether the contour has been created.
  • the structural change information and the generated contour information of each organ are displayed on the monitor 12 and visually confirmed by the operator 11. If the confirmed information is correct, the approval operation is performed, and if incorrect, the correction is performed manually.
  • the approved structural change information, contour information of each organ, and captured image information are sent to the treatment planning apparatus 10 .
  • information is transmitted via a storage medium.
  • S41 to S43 and S45 to S49 may be executed by different devices.
  • FIG. 10 is a flowchart showing the treatment plan selection operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S6 in FIG. The operation shown in the flowchart of FIG. 10 is executed by the treatment plan verification device 15 .
  • the image taken on the day and the treatment plan created at the time of planning are used to calculate the dose when irradiation is performed according to the treatment plan created at the time of planning.
  • the dose distribution of the treatment plan created from the images at the time of planning is obtained by transforming it according to the images taken on the day.
  • a new treatment plan is created and the dose is calculated when radiation is irradiated using an irradiation method different from that at the time of planning, such as the irradiation angle and irradiation energy.
  • the execution order of S61 and S63 is not fixed, and S63 may be executed first. In the dose calculations of S61 and S63, the DVH value to be achieved that was specified at the time of planning is used, or a new DVH to be achieved is specified.
  • the dose evaluation index for each organ is calculated using the contour information for the doses obtained in S61 and S63.
  • dose indices indices called maximum/minimum dose, dose flatness, and DVH (Dose Volume Histogram) are often used. Items included in the judgment support data selected in S0 may be acquired and the acquired items may be calculated.
  • the operator 11 determines whether or not irradiation correction is necessary based on these indices. At this time, whether or not the therapeutic effect assumed in the treatment plan can be obtained is the criterion for judgment, but a vast amount of knowledge and experience is required to predict the therapeutic effect from the dose evaluation index. As a result of the determination, if re-planning is unnecessary, the process proceeds to irradiation as it is, and irradiation is performed by the therapeutic radiation irradiation device 4 . On the other hand, when re-planning is necessary, the irradiation method is re-optimized so as to satisfy the dose target for each organ set at the time of treatment planning.
  • irradiation methods such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy) in X-ray therapy
  • IMRT Intensity Modulated Radiation Therapy
  • VMAT Volumetric Modulated Arc Therapy
  • X-ray therapy X-ray therapy
  • scanning irradiation in particle beam therapy there is a function that automatically determines the irradiation method so as to meet the dose target as much as possible. It's ready. At this time, it would be good if all the dose targets were met, but if they were not met, what priority should be given to meeting the dose targets and how to modify the dose distribution would require advanced judgment similar to that at the time of treatment planning. is required, and extensive experience is required to make judgments in the need for prompt online adaptive treatment.
  • the operator 11 performs approval operation.
  • FIG. 11 is a flowchart showing the treatment plan evaluation operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S7 in FIG. The operation shown in the flowchart of FIG. 11 is executed by the treatment plan verification device 15 .
  • the treatment plan verification device 15 verifies whether the dose distribution calculated by the treatment planning device 10 is appropriate. In normal treatment, this verification work is performed by an irradiation test involving the irradiation of actual therapeutic radiation. However, in the online adaptive therapy, the irradiation test cannot be performed because it must be performed with the subject 1 in the treatment room 6 . Instead, a method called independent verification may be used in which the dose distribution is compared with another calculation method. In the case of an independent validation, the dose distribution determined by another method is compared with the reoptimized distribution. If there is agreement in this comparison, there is no problem, but if there is a disagreement, it is necessary to judge on the spot whether it is within the treatable range. What causes the difference and whether it is within the permissible range depends on the case, so judgment based on abundant experience is required. If it is determined that it is within the allowable range, the operator 11 performs approval work.
  • S71 the dose is calculated independently from the daily dose calculated in S61 of FIG. 10, based on the image of patient 1 at the time of treatment and the contour of each organ.
  • S73 it is verified whether or not the therapeutic radiation irradiation apparatus 4 operates to irradiate radiation according to the treatment plan approved in S69 of FIG. It should be noted that S71 and S73 may operate independently or may be reversed in order.
  • FIG. 12 is a flowchart showing the radiation irradiation operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S8 and S9 in FIG. The operation shown in the flowchart of FIG. 12 is performed by the therapeutic radiation irradiation apparatus 4 for S8 and by the treatment plan verification apparatus 15 for S9.
  • the therapeutic radiation irradiation device 4 irradiates the patient 1 with radiation according to the treatment plan approved in S69 of FIG.
  • the therapeutic radiation irradiation apparatus 4 generates a log of the position and dose of the irradiated radiation and the operation of the apparatus. The generated log is sent to the treatment plan verification device 15 .
  • the treatment plan verification device 15 compares the treatment plan with the log, and evaluates the actually irradiated position and dose (actual dose evaluation). Then, in S93, the treatment plan verification device 15 verifies whether the operation of the device was accurate.
  • FIG. 17 is a flowchart showing the operation of the radiotherapy system according to Example 1, and is a flowchart extracting and showing the main part of the operation of this example.
  • the operator 11 inputs judgment support data using the judgment support data input device 20 in advance before treatment.
  • the judgment support data input device 20 saves the judgment support data in the judgment support database 21 .
  • the operator 11 selects decision support data suitable for the patient to be treated.
  • the decision support database 21 transmits the decision support data to the patient structural change recognition device 14, the treatment planning device 10, and the treatment plan verification device 15.
  • FIG. These S104 and 105 correspond to S0 in FIG.
  • the patient structure change recognition device 14, the treatment planning device 10, and the treatment plan verification device 15 display the type, reference value, and degree of achievement of the judgment index based on the judgment support data.
  • the operator 11 confirms the index and performs an approval operation.
  • the therapeutic radiation irradiation device irradiates the therapeutic beam.
  • judgment support data input device 20 takes in the judgment support data from outside the treatment facility, but the judgment support data created inside the treatment facility may be input. Also, the judgment support data may be corrected/updated by AI or the like based on the results.
  • the judgment support data input device 20 is connected to the cloud server 30, and the judgment support data input device 20 acquires data as appropriate.
  • the data in the decision support database is always up-to-date, and newly developed treatment methods can be rapidly introduced.
  • the judgment support data includes the requirements of suitable devices, the judgment support data input device 20 judges the suitability, and only the judgment support data suitable for the facility is stored in the judgment support database 21. , it is possible to prevent irradiation using unsuitable data, and it is possible to quickly introduce treatment data.
  • Indices for judging suitability for a facility include the type and performance of the imaging device, the radiation irradiation accuracy of the therapeutic radiation irradiation device, the corresponding irradiation technique, and the like.
  • the introduced data may be edited to reflect the characteristics of the facility. Specifically, if the accuracy of patient positioning is improved by using a characteristic method or the patient's movement is restricted by a characteristic method, the reference value of the judgment index should be changed. Highly accurate treatment can be supported.
  • FIG. 20 is a system flow diagram of the second embodiment. S102 and S103 are changed to S201 and S202 in the flowchart of the first embodiment (FIG. 17).
  • the judgment support data input device 20 acquires the judgment support data from the cloud server 30 .
  • S ⁇ b>202 only data whose device information included in the decision support data acquired by the decision support data input device 20 matches the facility is stored in the decision support database 21 .
  • the above data are classified according to the site to be treated and the treatment method, and the suitability is determined and stored individually.
  • the radiotherapy system of this embodiment can also obtain the same effect as the radiotherapy system of the first embodiment.
  • the present invention is not limited to the above examples, and includes various modifications.
  • the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, or to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • each of the above configurations, functions, processing units, processing means, etc. may be implemented in hardware, for example, by designing a part or all of them using an integrated circuit.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that implement each function can be stored in a memory, a hard disk, a recording device such as an SSD, or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention assists in determination and operation during treatment even in a hospital with staff having less experience of adaptive radiotherapy. A determination assistance system 10, 14, 15 accepts an input of determination assistance data comprising a pair of a determination index to be evaluated during radiation therapy and a determination reference value, accepts an input of selection of determination assistance data to be used for each target of the radiation therapy, calculates a determination index value for an image of a predetermined region including the target captured by an imaging device for imaging the predetermined region on the day of treatment, and compares and displays the determination index value and the determination reference value.

Description

判断支援システム、放射線治療システム及び判断支援システムにおける判断支援方法Decision support system, radiotherapy system, and decision support method in decision support system
 本発明は、判断支援システム、放射線治療システム及び判断支援システムにおける判断支援方法に関する。 The present invention relates to a decision support system, a radiotherapy system, and a decision support method in a decision support system.
 本発明は、好ましくは、治療中の患者の体内構造変化に対応するアダプティブ治療の判断支援機能を備えた放射線治療システムに関する。 The present invention preferably relates to a radiotherapy system having a function for supporting adaptive treatment decision-making in response to changes in the patient's body structure during treatment.
 放射線治療の目的は、患者体内の標的に集中した放射線を照射して治療することである。標的への線量集中性が向上すると標的周辺の臓器に対する線量が低減され副作用が低減できる。 The purpose of radiation therapy is to irradiate and treat the target within the patient's body with concentrated radiation. Improving the concentration of dose to the target reduces the dose to the organs around the target and reduces side effects.
 放射線治療ではどの方向からどれだけの量を照射するかといった放射線照射方法をシミュレーションで決定する治療計画を実施し、その後、複数の日数に渡り照射を行う。治療計画時と照射の間には日にちが経つため、患者体内の構造は変化しうる。この構造変化に伴い、同じ照射方法で照射しても標的、及び、周辺臓器への線量は日々変化しうる。治療計画ではこの変化をあらかじめ見込んで標的・周辺臓器の線量を評価し、照射方法を決定している。一般的に変化が生じても標的に所望の線量が照射されるように、標的そのものよりも広い領域に対して照射するように計画する。 In radiation therapy, a treatment plan is implemented in which the radiation irradiation method, such as which direction and how much to irradiate, is determined by simulation, and then irradiation is performed over multiple days. Since the days pass between treatment planning and irradiation, structures within the patient's body can change. Due to this structural change, the dose to the target and peripheral organs may vary from day to day even if the same irradiation method is used. In the treatment plan, the radiation dose to the target and surrounding organs is evaluated in anticipation of this change, and the irradiation method is determined. It is generally planned to irradiate an area larger than the target itself, so that the target receives the desired dose regardless of variation.
 この患者の変化を照射直前に計測し、変化に適応して照射方法を調整出来れば、より標的に集中した線量が実現できると考えられる。これをアダプティブ治療と呼ぶ。このアダプティブ治療を、照射当日に撮影した画像に対し、患者を治療ベッドに寝かせたまま照射方法を調整し、照射することをオンラインアダプティブ治療と呼ぶが、これが実現すれば日々の構造変化に適応した高精度な治療が可能となる。 If it is possible to measure this change in the patient immediately before irradiation and adjust the irradiation method according to the change, it is believed that a dose that is more focused on the target can be achieved. This is called adaptive therapy. This adaptive treatment is called online adaptive treatment, in which the irradiation method is adjusted while the patient is lying on the treatment bed based on the image taken on the day of irradiation. High-precision treatment becomes possible.
 このオンラインアダプティブ治療を実行するためには、患者が治療ベッドに寝て待っている時間内に、構造変化の把握・計画の修正・検証を実行する必要があり、それぞれを高速に実行可能なソフトウェアと、その時々で必要となる判断を迅速にこなす熟練した操作者が必要となる。このオンラインアダプティブ治療が様々な病院で受け入れられるようになるためには、この治療中の迅速な判断や操作を支援する仕組みが必要である。 In order to execute this online adaptive treatment, it is necessary to grasp the structural change, modify the plan, and verify it while the patient is lying on the treatment bed. Software that can execute each at high speed This requires a skilled operator who can quickly make the decisions that are required at any given time. In order for this online adaptive treatment to be accepted by various hospitals, a mechanism that supports quick decisions and operations during this treatment is necessary.
 治療中の判断・操作を支援する方法は、例えば特許文献1に記載されている。特許文献1には「アダプティブ放射線治療についての自動ワークフローであって、計画された治療を表す情報を含む指示のセットを取得する手順と、指示のセットを用いて段階的に患者のモデルの生成、及び、患者モデルに対する第1及び第2の治療計画生成という一連の自動化されたステップと、現在の治療セッションに適した治療計画を選択する手順を含む」と記載されている。 A method for supporting judgment and operation during treatment is described, for example, in Patent Document 1. Patent Document 1 describes "Automated workflow for adaptive radiation therapy comprising a procedure for obtaining a set of instructions containing information representative of a planned treatment and stepwise generation of a model of a patient using the set of instructions; and a series of automated steps of first and second treatment plan generation for a patient model and a procedure for selecting the appropriate treatment plan for the current treatment session."
米国特許出願公開第2020/0121951号明細書U.S. Patent Application Publication No. 2020/0121951
 特許文献1に記載の自動ワークフローを用いることで、予め作成された指示に基づき治療中は自動的に操作が行われて、迅速な治療が可能となる。しかし、自動操作が行われても、自動的に設定されたパラメータにより作成または選択された結果が、治療に適したものなのか判断し、次の操作に移るかどうかは決定するには、専門家の知見が必要となる。このような判断は、専門的な知見を必要とし、経験豊富なスタッフを持たない病院では困難である。 By using the automatic workflow described in Patent Document 1, operations are automatically performed during treatment based on instructions created in advance, enabling prompt treatment. However, even if an automatic operation is performed, it is necessary for specialists to judge whether the result created or selected by automatically set parameters is suitable for treatment and to decide whether to proceed to the next operation. House knowledge is required. Such judgments require specialized knowledge and are difficult for hospitals that do not have experienced staff.
 本発明は上記の課題に鑑みてなされたもので、放射線治療のアダプティブ治療について経験の少ないスタッフの病院においても、治療中の判断・操作を支援することが可能な判断支援システム、放射線治療システム及び判断支援システムにおける判断支援方法を提供することにある。 The present invention has been made in view of the above problems, and a judgment support system, a radiotherapy system, and a An object of the present invention is to provide a judgment support method in a judgment support system.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、 判断支援システムは、治療中に評価する判断指標と判断基準値の組からなる判断支援データの入力を受け入れ、放射線照射治療の標的ごとに使用する判断支援データの選択入力を受け入れ、治療日に標的を含む所定領域を撮影する撮像装置により撮影された所定領域の画像に対して判断指標の値を計算し、判断指標の値と判断基準値とを比較して表示する。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present invention includes a plurality of means for solving the above problems. To give one example, a decision support system receives input of decision support data consisting of a set of a decision index and a decision reference value to be evaluated during treatment. Accept, accept selection input of decision support data to be used for each target of radiation therapy, and calculate a decision index value for an image of a predetermined area captured by an imaging device that captures a predetermined area including the target on the day of treatment. Then, the value of the judgment index and the judgment reference value are compared and displayed.
 本発明によれば、放射線治療のアダプティブ治療について経験の少ないスタッフの病院においても、治療中の判断・操作を支援することが可能となる。 According to the present invention, it is possible to support judgment and operation during treatment even in hospitals with staff who have little experience in adaptive radiation therapy.
実施例1に係る放射線治療システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a radiotherapy system according to Example 1; FIG. 実施例1に係る放射線治療システムにおける構造変化の判断支援データの一例を示す図である。4 is a diagram showing an example of structural change determination support data in the radiotherapy system according to the first embodiment. FIG. 実施例1に係る放射線治療システムにおける構造変化の判断支援データの他の例を示す図である。FIG. 8 is a diagram showing another example of structural change determination support data in the radiotherapy system according to the first embodiment; 実施例1に係る放射線治療システムにおける再計画の判断支援データの一例を示す図である。FIG. 4 is a diagram showing an example of replanning determination support data in the radiotherapy system according to the first embodiment; 実施例1に係る放射線治療システムにおける治療計画評価の判断支援データの一例を示す図である。4 is a diagram showing an example of judgment support data for treatment plan evaluation in the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの動作を示すフローチャートである。4 is a flow chart showing the operation of the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの位置決め動作を示すフローチャートである。4 is a flow chart showing the positioning operation of the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの輪郭作成要否判断動作を示すフローチャートである。4 is a flow chart showing contour creation necessity determination operation of the radiotherapy system according to the first embodiment. 実施例1に係る放射線治療システムの輪郭作成・検証動作を示すフローチャートである。4 is a flow chart showing contour creation/verification operations of the radiotherapy system according to the first embodiment. 実施例1に係る放射線治療システムの治療計画選択動作を示すフローチャートである。4 is a flow chart showing a treatment plan selection operation of the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの治療計画評価動作を示すフローチャートである。4 is a flow chart showing treatment plan evaluation operation of the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの放射線照射動作を示すフローチャートである。4 is a flow chart showing radiation irradiation operation of the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの輪郭作成要否判断動作において表示される判断支援データの一例を示す図である。FIG. 10 is a diagram showing an example of determination support data displayed in contour creation necessity determination operation of the radiotherapy system according to the first embodiment; 実施例1に係る放射線治療システムの輪郭作成・検証動作において表示される判断支援データの一例を示す図である。FIG. 5 is a diagram showing an example of judgment support data displayed in the contour creation/verification operation of the radiotherapy system according to the first embodiment; 実施例1に係る放射線治療システムの治療計画選択動作において表示される判断支援データの一例を示す図である。FIG. 5 is a diagram showing an example of judgment support data displayed in the treatment plan selection operation of the radiotherapy system according to Example 1; 実施例1に係る放射線治療システムの治療計画評価動作において表示される判断支援データの一例を示す図である。FIG. 5 is a diagram showing an example of judgment support data displayed in the treatment plan evaluation operation of the radiotherapy system according to Example 1; 実施例1に係る放射線治療システムの動作を示すフローチャートである。4 is a flow chart showing the operation of the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムにおけるモニタの表示例を示す図である。4 is a diagram showing a display example of a monitor in the radiotherapy system according to Example 1. FIG. 実施例1に係る放射線治療システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a radiotherapy system according to Example 1; FIG. 実施例1に係る放射線治療システムの動作を示すフローチャートである。4 is a flow chart showing the operation of the radiotherapy system according to Example 1. FIG.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がな         されている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and omissions and simplifications are made as appropriate for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 なお、実施形態を説明する図において、同一の機能を有する箇所には同一の符号を付し、その繰り返しの説明は省略する。 In addition, in the diagrams for explaining the embodiments, portions having the same functions are denoted by the same reference numerals, and repeated description thereof will be omitted.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate the understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are multiple components with the same or similar functions, they may be described with the same reference numerals and different subscripts. However, if there is no need to distinguish between these multiple constituent elements, the subscripts may be omitted in the description.
 実施例1を図1~図18を参照して説明する。 Embodiment 1 will be described with reference to FIGS. 1 to 18. FIG.
 図1は実施例1における放射線治療システムの概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a radiotherapy system in Example 1. FIG.
 本実施例の放射線治療システムは、被検体(患者)1を支持するベッド2と、被検体1を治療時に撮影する撮影装置3と、被検体に治療用の放射線を照射する治療放射線照射装置4とを備える。 The radiotherapy system of this embodiment includes a bed 2 for supporting an object (patient) 1, an imaging device 3 for imaging the object 1 during treatment, and a therapeutic radiation irradiation device 4 for irradiating the object with therapeutic radiation. and
 通常の放射線治療では、被検体1はベッド2に固定され、撮影装置3により体内の構造を撮影し、その画像を参照してベッド2を移動させ、被検体1を計画された位置に移動させる。その後、治療放射線照射装置4から治療放射線を照射し、被検体中の標的5に対し放射線を照射する。 In normal radiotherapy, a subject 1 is fixed on a bed 2, an imaging device 3 photographs the internal structure of the body, the bed 2 is moved with reference to the image, and the subject 1 is moved to a planned position. . Thereafter, therapeutic radiation is emitted from the therapeutic radiation irradiation device 4 to irradiate the target 5 in the subject with the radiation.
 ここで、被検体1の位置を含む放射線を照射する治療計画は、治療開始前に治療計画装置10にてオペレータ11が作成する。治療計画装置10を操作するオペレータ11は、放射線治療を行う医者であってもよいし、放射線技師等であってもよい。治療計画装置10では、撮影装置3、又は病院の別の撮影装置により撮影された被検体の画像を用い、体内の構造を把握したうえで、標的5及び周辺の臓器に対する線量分布をシミュレーションで評価しつつ治療放射線の照射方法を含む治療計画を作成する。作成された治療計画を用いて、計画された位置に被検体1を設置し、治療放射線照射装置4により放射線を照射することで、計画通りの線量が標的5に照射され、また、周辺臓器に対しては計画通りの線量に抑えることができる。 Here, the operator 11 creates a treatment plan for irradiating radiation including the position of the subject 1 using the treatment planning apparatus 10 before starting treatment. An operator 11 who operates the treatment planning apparatus 10 may be a doctor who performs radiotherapy, a radiological technologist, or the like. The treatment planning device 10 uses the image of the subject captured by the imaging device 3 or another imaging device in the hospital to grasp the internal structure of the body, and then evaluates the dose distribution to the target 5 and surrounding organs by simulation. A treatment plan including the irradiation method of therapeutic radiation is created while performing the treatment. Using the prepared treatment plan, the subject 1 is placed at the planned position, and the therapeutic radiation irradiation device 4 irradiates the target 5 with the planned dose, and the surrounding organs are also irradiated. In contrast, it is possible to keep the radiation dose as planned.
 この一連のフローにおいて、治療計画から複数日に渡る治療日の最終日までの間で患者体内の構造変化が生じる。最初に作成した治療計画を初日から最終日まで使用する従来の治療の治療計画においては、この構造変化を予め想定し、構造変化が起きたとしても標的に所望の線量が照射されるように、標的そのものよりも広い領域に対して照射するように計画する。これにより、最初に作成された治療計画通りに治療最終日まで照射しても標的に所望の線量を付与することが可能となる。 In this series of flows, structural changes occur in the patient's body from the treatment plan to the final day of treatment over multiple days. In the treatment planning of conventional treatment, in which the initially created treatment plan is used from the first day to the last day, this structural change is assumed in advance, and even if the structural change occurs, the desired dose is irradiated to the target. Plan to irradiate an area larger than the target itself. This makes it possible to apply a desired dose to the target even if irradiation is continued until the last day of treatment according to the initially created treatment plan.
 一方で、治療日において、患者体内の構造を把握し直し、それに伴って治療計画を修正または新たに作成するアダプティブ治療を実施すれば、構造変化を見込んだ広い範囲への照射が不要となり、周辺臓器への線量をさらに低減可能である。 On the other hand, on the day of treatment, if the patient's body structure is reassessed and the treatment plan is modified or newly created, adaptive treatment can be performed, eliminating the need for irradiation over a wide area in anticipation of structural changes The dose to organs can be further reduced.
 アダプティブ治療を実現するためには、治療日に迅速に計画を修正する必要があるため、治療室6に隣接し、治療装置を制御するための治療制御室13において、治療計画修正の作業が行われる。続いて、治療制御室13に行われる作業の概略を説明する。なお、治療計画の修正または再作成を、以後、再計画と呼ぶことがある。 In order to realize adaptive treatment, it is necessary to quickly modify the treatment plan on the day of treatment. will be Next, an outline of operations performed in the treatment control room 13 will be described. Note that the modification or re-creation of a treatment plan may hereinafter be referred to as re-planning.
 まず、撮影装置3で撮影された画像がネットワークを介して患者構造変化認識装置14に送られる。患者構造変化認識装置14では、撮影されたばかりの被検体画像と、治療計画時、又は、その後の治療日で計画を修正した時点での被検体画像とを比較し、被検体の構造変化を認識し、変化後の各臓器の輪郭を生成する。この構造変化の認識、及び、各臓器の輪郭生成には、非剛体レジストレーションの手法を用いても良いし、セグメンテーションの手法を用いても良いし、またそれらの複合的な手法を用いても良い。 First, the image captured by the imaging device 3 is sent to the patient structural change recognition device 14 via the network. The patient structure change recognizing device 14 compares the image of the subject that has just been photographed with the image of the subject at the time of treatment planning or at the time when the plan is revised on the subsequent treatment day, and recognizes the structure change of the subject. and generate the contour of each organ after the change. A non-rigid registration technique, a segmentation technique, or a combination of these techniques may be used to recognize this structural change and generate the contours of each organ. good.
 構造変化情報、及び、生成された各臓器の輪郭情報は、モニタ12に表示され、オペレータ11が目視により確認する。確認した情報が正しければ承認操作を行い、誤っていれば、手動で修正を行う。この承認作業は、どの程度の構造変化を許容できるかなど、オペレータ11には専門的な知識が必要とされる。承認された構造変化情報や各臓器の輪郭情報と撮影された画像情報は治療計画装置10に送信される。又は、同一のコンピュータ上のソフトウェアである場合には、記憶媒体経由で情報が伝達される。 The structural change information and the generated contour information of each organ are displayed on the monitor 12 and visually confirmed by the operator 11 . If the confirmed information is correct, the approval operation is performed, and if incorrect, the correction is performed manually. This approval work requires the operator 11 to have specialized knowledge such as how much structural change can be allowed. The approved structural change information, contour information of each organ, and captured image information are sent to the treatment planning apparatus 10 . Alternatively, in the case of software on the same computer, information is transmitted via a storage medium.
 治療計画装置10では、新たに得られた画像、輪郭情報等を用いて、計画で定められた照射方法により照射を実施した場合の線量分布を求める。得られた線量分布に対し、上記輪郭情報を用いて各臓器の線量評価指標を計算する。線量の指標としては、最大・最小線量、線量平坦度、DVH(Dose Volume Histogram)と呼ばれる指標が良く用いられる。これらの指標から照射の修正の要否をオペレータ11が判断する。 The treatment planning apparatus 10 uses the newly obtained image, contour information, etc. to determine the dose distribution when irradiation is performed according to the irradiation method determined in the plan. A dose evaluation index for each organ is calculated for the obtained dose distribution using the contour information. As dose indices, indices called maximum/minimum dose, dose flatness, and DVH (Dose Volume Histogram) are often used. The operator 11 determines whether or not irradiation correction is necessary based on these indices.
 この時、治療計画で想定された治療効果が得られるかどうかが判断の基準となるが、線量評価指標から治療効果を予測するには膨大な知識・経験が必要である。判断の結果、再計画が不要であれば、そのまま照射に移行し、治療放射線照射装置4にて照射を行う。一方、再計画が必要な場合、治療計画時に設定した各臓器への線量目標を満たすように照射方法を最適化し直す。 At this time, the criterion for judgment is whether or not the therapeutic effect assumed in the treatment plan can be obtained, but a vast amount of knowledge and experience is required to predict the therapeutic effect from the dose evaluation index. As a result of the determination, if re-planning is unnecessary, the process proceeds to irradiation as it is, and irradiation is performed by the therapeutic radiation irradiation device 4 . On the other hand, when re-planning is necessary, the irradiation method is re-optimized so as to satisfy the dose target for each organ set at the time of treatment planning.
 X線治療のIMRT(Intensity Modulated Radiation Therapy)やVMAT(Volumetric Modulated Arc Therapy)、粒子線治療のスキャニング照射等の照射法では、線量目標をできる限り満たすように照射方法を自動的に決定する機能が備わっている。この時全ての線量目標が満たされれば良いが、満たされない場合、どのような優先順位で線量目標を満たすのか、どのように線量分布を修正するのかには、治療計画時と同様の高度な判断が必要となり、アダプティブ治療、特にオンラインアダプティブ治療の迅速性が求められる中での判断には豊富な経験が必要である。必要な照射方法の修正が完了するとオペレータ11は承認操作を行う。 In irradiation methods such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy) in X-ray therapy, and scanning irradiation in particle beam therapy, there is a function that automatically determines the irradiation method so as to meet the dose target as much as possible. It's ready. At this time, it would be good if all the dose targets were met, but if they were not met, what priority should be given to meeting the dose targets and how to modify the dose distribution would require advanced judgment similar to that at the time of treatment planning. is required, and a wealth of experience is required to make decisions in the need for rapid adaptive treatment, especially online adaptive treatment. After completing the necessary modification of the irradiation method, the operator 11 performs an approval operation.
 承認された治療計画情報は、治療計画検証装置15に送信される。治療計画検証装置15では、治療計画装置10で計算された線量分布が妥当かどうかを検証する。通常の治療においては、この検証作業は実際の治療放射線の照射を伴う照射試験により実施される。しかしながら、オンラインアダプティブ治療では、治療室6内に被検体1がいる状態で実施する必要があるため、照射試験は実施できない。替わりに別の計算手法で求めた線量分布と比較する、独立検証と呼ばれる方法が用いられる場合がある。独立検証の場合には、別手法によって求められた線量分布と最適化し直した分布を比較する。 The approved treatment plan information is sent to the treatment plan verification device 15. The treatment plan verification device 15 verifies whether the dose distribution calculated by the treatment plan device 10 is appropriate. In normal treatment, this verification work is performed by an irradiation test involving the irradiation of actual therapeutic radiation. However, in the online adaptive therapy, the irradiation test cannot be performed because it must be performed with the subject 1 in the treatment room 6 . Instead, a method called independent verification may be used in which the dose distribution is compared with another calculation method. In the case of an independent validation, the dose distribution determined by another method is compared with the reoptimized distribution.
 この比較において一致する場合には問題ないが、不一致が起きた場合、それが治療可能な範囲内なのかをその場で判断する必要がある。その違いが何によって生じ、それが許容範囲内なのかは場合場合によって異なるため、豊富な経験による判断が必要となる。許容範囲内と判断した場合にはオペレータ11は承認作業を行う。 If there is a match in this comparison, there is no problem, but if there is a mismatch, it is necessary to judge on the spot whether it is within the treatable range. What causes the difference and whether it is within the permissible range depends on the case, so judgment based on abundant experience is required. If it is determined that it is within the allowable range, the operator 11 performs approval work.
 上記の流れによって、承認された再計画ずみの照射方法データが作成される。これら全体の操作から最終的に、元の計画データを用いるか、再計画データを用いるかを総合的に判断して、どちらのデータで照射するかオペレータ11が判断して、承認操作し最終的に照射に移行する。 Through the above flow, the approved replanned irradiation method data is created. From these overall operations, the operator 11 makes a comprehensive judgment as to whether to use the original planning data or the re-planning data, and determines which data to irradiate. to irradiation.
 本実施例において、治療計画装置10、患者構造変化認識装置14、及び治療計画検証装置15は、各種情報処理が可能な装置、一例としてコンピュータ等の情報処理装置から構成される。情報処理装置は、演算素子、記憶媒体及び通信インターフェースを有し、さらに、必要に応じてマウス、キーボード等の入力部、ディスプレイ等の表示部を有する。 In this embodiment, the treatment planning device 10, the patient structural change recognition device 14, and the treatment plan verification device 15 are configured by devices capable of various types of information processing, such as information processing devices such as computers. An information processing apparatus has an arithmetic element, a storage medium, and a communication interface, and further has an input section such as a mouse and a keyboard, and a display section such as a display, if necessary.
 演算素子は、例えばCPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)等である。記憶媒体は、例えばHDD(Hard Disk Drive)などの磁気記憶媒体、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)などの半導体記憶媒体等を有する。また、DVD(Digital Versatile Disk)等の光ディスク及び光ディスクドライブの組み合わせも記憶媒体として用いられる。その他、磁気テープメディアなどの公知の記憶媒体も記憶媒体として用いられる。 Arithmetic elements are, for example, CPUs (Central Processing Units), FPGAs (Field-Programmable Gate Arrays), and the like. The storage medium includes, for example, a magnetic storage medium such as a HDD (Hard Disk Drive), a semiconductor storage medium such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an SSD (Solid State Drive). A combination of an optical disk such as a DVD (Digital Versatile Disk) and an optical disk drive is also used as a storage medium. In addition, known storage media such as magnetic tape media are also used as storage media.
 記憶媒体には、ファームウェアなどのプログラムが格納されている。治療計画装置10等の動作開始時(例えば電源投入時)にファームウェア等のプログラムをこの記憶媒体から読み出して実行し、治療計画装置10等の全体制御を行う。また、記憶媒体には、プログラム以外にも、治療計画装置10等の各処理に必要なデータ等が格納されている。 Programs such as firmware are stored in the storage medium. When the operation of the treatment planning apparatus 10 or the like is started (for example, when power is turned on), a program such as firmware is read from the storage medium and executed to control the entire treatment planning apparatus 10 or the like. In addition to the program, the storage medium stores data required for each process of the treatment planning apparatus 10 and the like.
 なお、本実施例の治療計画装置10等は、それぞれ、情報処理装置が通信ネットワークを介して通信可能に構成された、いわゆるクラウドにより構成されてもよい。 It should be noted that the treatment planning apparatus 10 and the like of the present embodiment may each be configured by a so-called cloud in which information processing apparatuses are configured to be able to communicate via a communication network.
 本実施例では、オペレータ11が要所要所で行う判断を支援するために、判断支援データ入力装置20を備える。 In this embodiment, a judgment support data input device 20 is provided to assist the operator 11 in making judgments at key points.
 判断支援データ入力装置20は、治療施設外から治療施設内へ判断支援データを取り込む機能を持つ。他の経験豊富なスタッフを擁する施設で作成された判断支援データを治療施設内で使用することを可能とする。 The decision support data input device 20 has a function of importing decision support data from outside the treatment facility into the treatment facility. Allows the use of decision support data created at other facilities with experienced staff within the treatment facility.
 判断支援データは、図2~図5を参照して後に詳述するように、治療部位毎、治療方針毎に分類された判断支援情報のセットであり、治療法に必要な治療装置の機能情報、輪郭生成後の成否判断に必要な輪郭判断指標、再計画時に必要な各部位の線量評価指標情報・各指標の基準値・優先度、線量評価時に必要な線量評価指標情報・各指標の基準値・優先度を含む。 The decision support data is a set of decision support information classified by treatment site and treatment policy, as will be described in detail later with reference to FIGS. , Contour judgment index necessary for success/failure judgment after contour generation, dose evaluation index information for each part necessary for replanning, reference value and priority of each index, dose evaluation index information necessary for dose evaluation, criteria for each index Includes value/priority.
 輪郭作成時の構造変化判断指標は、各部位(標的)ごとの体積変化率、輪郭変形率等である。再計画の判断に必要な線量評価指標は、低線量領域、高線量領域の線量、平均線量、DVH指標等である。DVH指標は、例えば、95%以上の体積に照射された最低線量や、処方線量の20%以上が照射される体積といった値で指定される。治療計画の評価時に使用される指標は、例えば再計画時の分布の一致度、標的のDVHに対する処方の達成度の変化、周辺臓器のDVHに対する処方の達成度の変化等が用いられる。分布の一致度としては、例えばγインデックスと呼ばれる指標を用いることができ、二つの線量分布を小片にわけ、定められた移動量内に定められた差異の線量を持つ小片がどれくらいの割合かで評価する。 Structural change judgment indicators at the time of contour creation are volume change rate, contour deformation rate, etc. for each part (target). The dose evaluation indices necessary for replanning determination are the dose in the low-dose area, the dose in the high-dose area, the average dose, the DVH index, and the like. The DVH index is specified, for example, by a value such as the lowest dose irradiated to 95% or more of the volume, or a volume irradiated to 20% or more of the prescribed dose. Indices used when evaluating a treatment plan include, for example, the degree of coincidence of the distribution at the time of re-planning, changes in the degree of achievement of prescription for target DVH, changes in the degree of achievement of prescription for DVH in peripheral organs, and the like. For example, an index called the γ index can be used as the degree of agreement between the distributions. Divide the two dose distributions into small pieces, and measure the ratio of the small pieces that have a prescribed dose difference within a prescribed amount of movement. evaluate.
 判断支援データについて図2~図5を参照してより詳細に説明する。 The decision support data will be described in more detail with reference to FIGS. 2 to 5.
 判断支援データは、判断指標、判断基準値から構成される。また、判断指標毎に、必要性または指標の優先度をつけてもいい。 The judgment support data consists of a judgment index and a judgment reference value. In addition, it is also possible to prioritize the necessity or the index for each judgment index.
 判断支援データは、病院や医師、患者の属性(大人、子供、肥満、やせ型、男性、女性など)、腫瘍の部位(肝臓、すい臓、肺など。さらには、肺を右上葉、右中葉等に分けるなど臓器中の腫瘍の位置ごとにさらに細分化してもよい)、治療方針ごとに作成され、格納されており、治療を行うオペレータ11は中から好適なものを選択できる。 Judgment support data includes hospitals and doctors, patient attributes (adult, child, obese, thin, male, female, etc.), tumor sites (liver, pancreas, lung, etc.). It may be further subdivided according to the position of the tumor in the organ, such as by dividing it into sections), and is created and stored for each treatment policy, and the operator 11 who performs treatment can select a suitable one from among them.
 判断基準値は、○○%や○○mmと示されているが、入力する医師や病院ごとに最適な表示方法を選ぶことができ、判断の基準を示していれば、これに限定されない。 The judgment reference value is shown as XX% or XX mm, but it is not limited to this if the optimal display method can be selected for each doctor or hospital to be entered and the judgment standard is indicated.
 構造変化の判断支援データの一例を図2及び図3に示す。  An example of structural change decision support data is shown in Figures 2 and 3.
 構造変化の判断支援データの判断指標としては、例えば、標的の形状変化率、周辺臓器の形状変化率、体表から標的までの深さ変化率などが用いられる。このうち、標的の形状変化率と周辺臓器の形状変化率とは、必須の項目である。ここでいう変化率とは、標的の形状変化率は治療計画作成時に撮像したときから、治療時に撮像したとき(たとえば後述する図7のS15での撮影)への変化率である。 For example, the shape change rate of the target, the shape change rate of the surrounding organs, the depth change rate from the body surface to the target, etc. are used as the judgment indicators for the structural change judgment support data. Of these, the shape change rate of the target and the shape change rate of the surrounding organs are essential items. The rate of change referred to here is the rate of change in the shape of the target from when the image was taken when the treatment plan was created to when the image was taken when the treatment was performed (for example, when the image was taken in S15 of FIG. 7, which will be described later).
 標的の形状変化率としては、例えば、標的の体積の変化率や、Jaccard係数またはDice係数などで示される標的の体積一致度が用いられる。標的形状の変化が大きい場合、標的に対する放射線の照射量や分布が当初の計画とずれてしまう可能性が高くなる。そのため、当初の計画のまま照射を行うには、標的の形状変化率が判断基準値以下であることが望ましい。また、体積の変化率の他に、輪郭線の長さの変化率等の輪郭の変化率を使用してもよい。 As the rate of shape change of the target, for example, the rate of change in volume of the target, or the degree of volume matching of the target indicated by the Jaccard coefficient or the Dice coefficient is used. If there is a large change in the shape of the target, there is a high possibility that the dose and distribution of radiation to the target will deviate from the initial plan. Therefore, in order to carry out irradiation according to the initial plan, it is desirable that the shape change rate of the target is equal to or less than the criterion value. In addition to the volume change rate, a contour change rate such as a contour length change rate may be used.
 周辺臓器の形状変化率としては、例えば、周辺臓器の体積の変化率や、Jaccard係数またはDice係数などで示される周辺臓器の体積一致度が用いられる。周辺臓器の形状の変化が大きい場合、周辺臓器に対して当初の計画以上の放射線が照射されてしあう可能性がでてくる。そのため、当初の計画のまま照射を行うには、周辺臓器の形状変化率が判断基準値以下であることが望ましい。また、体積の変化率の他に、輪郭線の長さの変化率等の輪郭の変化率を使用してもよい。 As the shape change rate of the surrounding organs, for example, the volume change rate of the surrounding organs and the volume matching degree of the surrounding organs indicated by the Jaccard coefficient or the Dice coefficient are used. If there is a large change in the shape of the surrounding organs, there is a possibility that the surrounding organs will be exposed to more radiation than originally planned. Therefore, in order to carry out irradiation according to the initial plan, it is desirable that the rate of change in shape of peripheral organs is equal to or less than the criterion value. In addition to the volume change rate, a contour change rate such as a contour length change rate may be used.
 体表から標的までの深さ変化率としては、例えば、水等価厚の変化率が用いられる。照射する放射線が粒子線の場合、照射するビームのエネルギーの大きさによって、最大線量を放出する深さ方向の位置が異なってくる。そのため、標的までの深さ方向の距離や水等価厚が変化すれば、計画した線量や分布と深さ方向でずれが生じてしまう。そのため、当初の計画のまま照射を行うには、体表から標的までの深さの変化率が判断基準値以下であることが望ましい。 As the depth change rate from the body surface to the target, for example, the water equivalent thickness change rate is used. When the irradiated radiation is a particle beam, the position in the depth direction where the maximum dose is emitted differs depending on the magnitude of the energy of the irradiated beam. Therefore, if the distance to the target in the depth direction or the equivalent water thickness changes, deviations will occur between the planned dose and distribution in the depth direction. Therefore, in order to carry out irradiation according to the initial plan, it is desirable that the rate of change in depth from the body surface to the target be equal to or less than the criterion value.
 標的の形状変化率、周辺臓器の形状変化率、体表から標的までの深さ変化率など、当初の計画通りに放射線を照射するには、どの指標を用いてどの範囲まで許容できるのかの判断は、医師の経験によるところが大きい。本実施例では、この判断指標をあらかじめ取得して、表示することにより、判断を適正化、迅速化でき、高精度・短時間の治療を可能とする。 Judgment of what index is used and to what extent is permissible for irradiation according to the initial plan, such as the shape change rate of the target, the shape change rate of surrounding organs, and the depth change rate from the body surface to the target. is highly dependent on the experience of the physician. In the present embodiment, by obtaining and displaying the judgment index in advance, the judgment can be made more appropriate and faster, and highly accurate treatment can be performed in a short period of time.
 再計画の判断支援データの一例を図4に示す。 Fig. 4 shows an example of replanning decision support data.
 再計画の判断支援データの判断指標としては、例えば、標的5の低線量領域の線量、周辺臓器の高線量領域の線量、周辺臓器と飛程終端との距離の変化、標的5のDVHに対する処方の達成度の変化、周辺臓器のDVHに対する処方の達成度の変化、等が用いられる。 As the judgment index of the replanning judgment support data, for example, the dose in the low dose region of the target 5, the dose in the high dose region of the surrounding organs, the change in the distance between the surrounding organs and the end of the range, the prescription for DVH of the target 5 changes in the degree of achievement of DVH in peripheral organs, changes in the degree of achievement in prescription for DVH in peripheral organs, and the like are used.
 標的5に対しては、再計画の作成前に指定された処方線量が標的全体にわたって一様に照射されることが理想である。しかし、危険臓器の位置や照射角度等の制限から完全に一様にすることは難しい。しかし、標的5内の低線量領域の線量は、処方線量の基準値以上の線量であることが望ましい。そこで、本実施例では、たとえば、処方線量の90%以上と定めている。 For target 5, ideally the specified prescription dose is delivered uniformly over the target before replanning is made. However, it is difficult to make it completely uniform due to restrictions such as the position of the dangerous organ and the irradiation angle. However, it is desirable that the dose in the low-dose area within the target 5 is a dose equal to or higher than the prescribed dose reference value. Therefore, in this embodiment, for example, 90% or more of the prescribed dose is set.
 標的5に線量を集中させ、正常な周辺臓器への照射される線量は抑える必要がある。そのため、周辺臓器の高線量領域の線量は、制約線量の基準値以下であることが望ましい。そこで、本実施例では、たとえば、基準値は制約線量の110%以下と定めている。 It is necessary to concentrate the dose on target 5 and suppress the dose irradiated to normal peripheral organs. Therefore, it is desirable that the dose in the high-dose region of the peripheral organs is equal to or less than the reference value of the restricted dose. Therefore, in this embodiment, for example, the reference value is set at 110% or less of the restricted dose.
 また、周辺臓器と飛程終端との距離の変化は、放射線として粒子線を用いる場合、周辺臓器への線量を抑制するため、周辺臓器と飛程終端との距離が所定の距離以上保たれるように治療計画を立てる。この距離が計画時から変化し、近づきすぎていないか判定する。 In addition, when a particle beam is used as radiation, the distance between the surrounding organs and the end of the range is kept at a predetermined distance or more in order to suppress the dose to the surrounding organs. make a treatment plan. Determine whether this distance has changed from the time of planning and is too close.
 標的5のDVHに対する処方の達成度として、たとえば、D○○という指標が用いられる。これは標的5の体積○○%をカバーする最低線量のことで、D95=60Gyならば、標的5の体積の95%に60Gy以上の線量が処方されることを示している。 For example, an index of D○○ is used as the degree of achievement of prescription for target 5 DVH. This is the minimum dose that covers XX% of the volume of the target 5, and if D95=60Gy, it indicates that a dose of 60Gy or more is prescribed for 95% of the volume of the target 5.
 このD95=60Gyは、治療計画の作成前に指定され、この指標を満たすように治療計画が作成される。すなわち、標的に十分な量の線量が照射される必要があるため、再計画時の達成度の変化は、基準値以上の値であることが望ましい。すなわち、計画時がD95=60Gyであり、基準値が5%以下ならば、標的5の体積の95%処方されている線量の変化が5%以内、すなわちD95=57~63Gyならば基準クリアとなる。 This D95 = 60Gy is specified before the treatment plan is created, and the treatment plan is created so as to satisfy this index. In other words, since it is necessary to irradiate the target with a sufficient amount of dose, the change in the degree of achievement at the time of replanning should desirably be a value equal to or greater than the reference value. That is, if D95 = 60 Gy at the time of planning and the standard value is 5% or less, 95% of the volume of the target 5 If the change in dose prescribed is within 5%, that is, if D95 = 57 to 63 Gy, the standard is cleared. Become.
 周辺臓器のDVHに対する処方の達成度として、たとえば、平均線量が用いられる。周辺臓器、例えばすい臓、に処方される平均の線量が10Gy以下のように、治療計画の作成前に平均線量の制約値が指定され、この指標を満たすように治療計画が作成される。周辺臓器への線量は低いことが望ましいため、再計画時の達成度の変化は、基準値以下であることが望ましい。 For example, the average dose is used as the degree of prescription achievement for DVH in peripheral organs. A constraint value for the average dose is specified before the treatment plan is created, such that the average dose prescribed for peripheral organs such as the pancreas is 10 Gy or less, and the treatment plan is created so as to satisfy this index. Since it is desirable that the dose to surrounding organs be low, it is desirable that the change in the degree of achievement at the time of re-planning is below the reference value.
 治療計画評価の判断支援データの一例を図5に示す。 Fig. 5 shows an example of decision support data for treatment plan evaluation.
 治療計画評価の判断支援データの判断指標としては、再計画時の分布の一致度、標的の低線量領域の線量、周辺臓器の高線量領域の線量、標的のDVHに対する処方の達成度の変化、周辺臓器のDVHに対する処方の達成度の変化、等が用いられる。再計画時の分布の一致度としては、ガンマ解析のパス率などが用いられる。 As a judgment index of the judgment support data for treatment plan evaluation, the degree of agreement of the distribution at the time of re-planning, the dose of the target low-dose area, the dose of the high-dose area of the surrounding organs, the change in the degree of achievement of the prescription for the target DVH, A change in the degree of achievement of prescriptions for DVH in peripheral organs, and the like are used. A gamma analysis pass rate or the like is used as the degree of matching of the distribution at the time of replanning.
 なお、一般の治療計画装置10において外部からデータを導入して治療計画を作成することは既知である。本実施例では、これに加えて、外部から判断支援データを導入することに特徴がある。より具体的には、構造変化の計算において、撮影されたばかりの被検体画像と、治療計画時、又は、その後の治療日で計画を修正した時点での被検体画像とを取り込むことは既知であるが、どの程度の構造変化を許容できるか、判断指標と基準値を導入することが特徴である。また、再計画において、達成すべきDVHの値をデータとして取り込み、治療計画を修正または再作成することは既知である。一方、再作後の治療計画である再計画に対して、所望の線量をその程度達成しているか、その判断指標と基準値を導入することが特徴である。また、治療計画評価の判断においても、所望の線量をその程度達成しているか、その判断指標と基準値を導入することが特徴である。 It is known that a general treatment planning apparatus 10 introduces data from the outside to create a treatment plan. In addition to this, this embodiment is characterized by introducing external judgment support data. More specifically, in calculating structural changes, it is known to incorporate an image of the subject that was just taken and an image of the subject at the time of treatment planning or at a later treatment date when the plan was modified. However, it is characterized by the introduction of a judgment index and a reference value to determine how much structural change can be tolerated. It is also known in re-planning to take as data the value of DVH to be achieved and to modify or recreate the treatment plan. On the other hand, for replanning, which is a treatment plan after recurrence, it is characterized by introducing a judgment index and a reference value to determine whether the desired dose has been achieved to some extent. Also, in the evaluation of the treatment plan, it is characterized by introducing a judgment index and a reference value to determine whether the desired dose has been achieved to some extent.
 施設内に取り込まれた判断支援データは、判断支援データベース21に保存される。オペレータ11は治療開始時にこの判断支援データベース21にアクセスし、治療する被検体に適合する判断支援データのセットを選択する。選択された判断支援データのセットは、患者構造変化認識装置14、治療計画装置10、治療計画検証装置15にそれぞれ送信される。 The decision support data taken into the facility is stored in the decision support database 21. The operator 11 accesses this decision support database 21 at the start of treatment and selects a set of decision support data that is appropriate for the subject to be treated. The selected decision support data sets are sent to the patient structural change recognizer 14, the treatment planer 10, and the treatment plan verifier 15, respectively.
 各々の装置は、判断指標の種類・優先度・基準値を表示し、治療日におけるそれらの値を計算し、モニタ12に表示する。図18に示すように、モニタ12の表示画面40では、判断指標41、判断基準値42、計算された判断43が表示され、判断基準値42と判断指標値43の比較から達成度44を表示している。 Each device displays the type, priority, and reference value of the judgment index, calculates those values on the day of treatment, and displays them on the monitor 12. As shown in FIG. 18, on the display screen 40 of the monitor 12, a judgment index 41, a judgment reference value 42, and a calculated judgment 43 are displayed. is doing.
 それを見て、オペレータ11は判断し、承認操作を行う。判断において、参照すべき項目とそれらの優先度や基準値が表示されているため、治療日の値が基準値を満たしているか、また満たしていない場合、優先度の高いものから満たされているかを参照することが可能となり、判断が容易となる。 Looking at it, the operator 11 makes a judgment and performs an approval operation. Items to be referred to in judgment and their priority and standard values are displayed. can be referred to, making judgment easier.
 以上のシステムは、患者構造変化認識装置14、治療計画装置10、治療計画検証装置15が各々別のハードウェアに実装され、ネットワークで連携しているシステムについて説明したが、共通のコンピュータ上にソフトウェアとして実装されていてもよい。 In the system described above, the patient structure change recognition device 14, the treatment planning device 10, and the treatment plan verification device 15 are implemented in separate hardware and cooperated over a network. may be implemented as
 次に、図6~図12のフローチャートを参照して、本実施例の放射線治療システムの動作について説明する。 Next, the operation of the radiotherapy system of this embodiment will be described with reference to the flow charts of FIGS. 6 to 12. FIG.
 図6は、実施例1に係る放射線治療システムの動作を示すフローチャートであり、より詳細には、本実施例の放射線治療システムによるオンラインアダプティブ放射線治療の流れを示すフローチャートである。 FIG. 6 is a flowchart showing the operation of the radiotherapy system according to Example 1, more specifically, a flowchart showing the flow of online adaptive radiotherapy by the radiotherapy system of this example.
 まず、S0では、オペレータ11が、判断支援データベース21から治療する患者に適した判断支援データを選択する。ここで、判断支援データを作成した病院や患者の特性、がんの部位などから、構造変化の判断支援データ、再計画の判断支援データ、治療計画評価の判断支援データを一括で選択してもよい。また、構造変化の判断支援データ、再計画の判断支援データ、治療計画評価の判断支援データ、それぞれを個別にオペレータが選択してもよい。 First, in S0, the operator 11 selects decision support data suitable for the patient to be treated from the decision support database 21. Here, it is also possible to select the structural change decision support data, the replanning decision support data, and the treatment plan evaluation decision support data all at once from the characteristics of the hospital and patient that created the decision support data, and the site of the cancer. good. Further, the operator may individually select the structural change decision support data, the replanning decision support data, and the treatment plan evaluation decision support data.
 次いで、判断支援データベース21は、オペレータ11により選択された判断支援データを患者構造変化認識装置14、治療計画装置10、治療計画検証装置15に送信する。 Next, the decision support database 21 transmits the decision support data selected by the operator 11 to the patient structural change recognition device 14 , the treatment planning device 10 and the treatment plan verification device 15 .
 なお、このS0は、図6に示す全体ワークフローの開始時に実行しているが、判断支援データの選択及び/または送信は、判断支援データを表示する前であればいつでもよい。すなわち、構造変化の判断支援データの選択・送信は、図8に示すS25より前であればよく、再計画の判断支援データの選択・送信は図9に示すS47より前であればよく、治療計画評価の判断支援データの選択・送信は図10に示すS67より前であればよい。 Although this S0 is executed at the start of the overall workflow shown in FIG. 6, the selection and/or transmission of the judgment support data may be performed at any time before displaying the judgment support data. That is, the selection/transmission of the structural change decision support data may be performed prior to S25 shown in FIG. 8, and the selection/transmission of the replanning decision support data may be performed prior to S47 shown in FIG. The selection/transmission of the decision support data for plan evaluation may be performed before S67 shown in FIG.
 次に、S1では、患者1がベッド2に固定され、ベッド2を移動させ、患者1を治療位置まで動かす。S2では、患者1の治療日に撮像した画像から、各臓器の輪郭の作成の要否判断が行われる。 Next, in S1, the patient 1 is fixed to the bed 2, the bed 2 is moved, and the patient 1 is moved to the treatment position. In S2, it is determined whether or not it is necessary to create the contour of each organ from the image captured on the treatment day of the patient 1 .
 S3では、臓器の輪郭の作成が必要な場合(S3がYes)、S4に進む。臓器の輪郭の作成が不要な場合(S3がNo)、S8に進む。 In S3, if the outline of the organ needs to be created (Yes in S3), proceed to S4. If it is not necessary to create the outline of the organ (No in S3), the process proceeds to S8.
 S4では、治療日に撮像した画像から、各臓器の輪郭の作成と作成した輪郭の検証が行われる。S5では、S4で作成された輪郭を用いて、治療計画の再計画が行われる。S6では、S5で再計画された治療計画の評価と、計画時に作成された治療計画と再計画された治療計画との選択が行われる。この選択で再計画された治療計画が選択されるとS7が実行され、計画時に作成された治療計画が選択されるとS7を飛ばしてS8を実行してよい。S7では、S6で評価・選択された治療計画の評価が行われる。 In S4, the contours of each organ are created and the created contours are verified from the images taken on the day of treatment. At S5, the contour created at S4 is used to re-plan the treatment plan. At S6, the treatment plan re-planned at S5 is evaluated and the treatment plan created at the time of planning and the re-planned treatment plan are selected. If this selection selects the replanned treatment plan, S7 may be performed, and if the treatment plan created at the time of planning is selected, S7 may be skipped and S8 may be performed. At S7, the treatment plan evaluated and selected at S6 is evaluated.
 S8では、S7の評価結果が問題なく承認されると、承認された治療計画にしたがって、治療放射線照射装置4から放射線が患者1に照射される。このとき、放射された放射線はログとして記憶される。S9では、S8で出力されたログの評価が行われ、アダプティブワークフローで制御された一連の治療室6での放射は完了する。 In S8, if the evaluation results of S7 are approved without any problems, radiation is emitted from the therapeutic radiation irradiation device 4 to the patient 1 according to the approved treatment plan. At this time, the emitted radiation is stored as a log. At S9, the logs output at S8 are evaluated and the series of adaptive workflow controlled treatment room 6 irradiations is completed.
 図7は、実施例1に係る放射線治療システムの位置決め動作を示すフローチャートであり、図6のS1の詳細を示すフローチャートである。図7のフローチャートに示す動作は、治療放射線照射装置4に備えられた図略の位置決め装置により行われる。 FIG. 7 is a flowchart showing the positioning operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S1 in FIG. The operation shown in the flowchart of FIG. 7 is performed by a positioning device (not shown) provided in the therapeutic radiation irradiation apparatus 4 .
 まず、S11では、患者1をベッド2に固定する。患者1を固定したら、放射線の照射中心(アイソセンタ)と患部とが大まかに合うように、アイソセンタ位置を示すレーザを使い、ベッド2を移動させる。なお、撮影装置3で患者1の治療日当日の体内の状態を撮影してから患者1をベッド2に固定してもよい。また、患者1の固定後、アイソセンタに患者1を移動させる前に、撮影装置3で患者1の治療日当日の体内の状態を撮影し、その後、患者をアイソセンタ位置に移動させてもよい。 First, in S11, the patient 1 is fixed on the bed 2. After the patient 1 is fixed, the bed 2 is moved using a laser that indicates the isocenter position so that the irradiation center (isocenter) of radiation and the affected area are roughly aligned. It is also possible to fix the patient 1 to the bed 2 after photographing the state of the body of the patient 1 on the day of treatment with the imaging device 3 . Also, after fixing the patient 1, before moving the patient 1 to the isocenter, the photographing device 3 may be used to photograph the internal state of the patient 1 on the day of treatment, and then the patient may be moved to the isocenter position.
 次に、S13では、アイソセンタ位置に移動した患者1の体内を撮影するため、患者1の患部位置や体型などに合った撮影のパラメータを設定する。撮影パラメータは、患者1の情報から自動で設定されてもいいし、手動で設定されてもいい。なお、撮影は、撮影装置3をアイソセンタまで移動させて撮影をしてもいいし、治療放射線照射装置4に取り付けられるなどした別の撮影装置によって撮影されてもよい。また、S11とS13の実行順序に決まりはなく、S13を先に実行してもよい。 Next, in S13, in order to image the inside of the body of the patient 1 moved to the isocenter position, the imaging parameters are set according to the position of the affected part of the patient 1, body type, and the like. The imaging parameters may be set automatically from the information of the patient 1, or may be set manually. The imaging may be performed by moving the imaging device 3 to the isocenter, or may be performed by another imaging device attached to the therapeutic radiation irradiation device 4 or the like. Moreover, there is no fixed order of execution of S11 and S13, and S13 may be executed first.
 次に、S15では、オペレータ11が撮影を指示し、撮影装置3が患者1体内を撮影する。S17では、治療計画時に撮影した画像と、S15で撮影したと画像から、患者1の患部とアイソセンタとを一致させるための移動量を計算する。S19では、オペレータ11が移動を承認すると、患者1を載せたベッド2が移動し、患者1の患部とアイソセンタとが精度よく合わさる。 Next, in S15, the operator 11 instructs imaging, and the imaging device 3 images the inside of the patient 1. In S17, the amount of movement for matching the affected area of the patient 1 with the isocenter is calculated from the image captured during treatment planning and the image captured in S15. In S19, when the operator 11 approves the movement, the bed 2 on which the patient 1 is placed is moved so that the affected part of the patient 1 and the isocenter are precisely aligned.
 図8は、実施例1に係る放射線治療システムの輪郭作成要否判断動作を示すフローチャートであり、図6のS2の詳細を示すフローチャートである。図8のフローチャートに示す動作は、患者構造変化認識装置14が実行する。 FIG. 8 is a flowchart showing contour creation necessity determination operation of the radiotherapy system according to the first embodiment, and is a flowchart showing details of S2 in FIG. The operation shown in the flowchart of FIG. 8 is performed by the patient structural change recognition device 14 .
 まず、S21では、治療日当日に撮影した画像から水等価厚(water equivalent Thickness:WET)を計算する。治療計画時の画像から求められる水等価厚と、治療日当日に撮影した画像から水等価厚とを比較し、水等価厚の変化ΔWETを計算する。なお、ここでは、WETを計算することを例に説明したが、他の判断指標でもよい。計算する判断指標は、構造変化の判断支援データを取得し、取得した構造変化の判断支援データに含まれる判断指標を特定し、特定した判断指標を計算するようにしてもよい。 First, in S21, the water equivalent thickness (WET) is calculated from the image taken on the day of treatment. The water-equivalent thickness obtained from the image at the time of treatment planning is compared with the water-equivalent thickness from the image taken on the day of treatment, and the change ΔWET of the water-equivalent thickness is calculated. Note that although WET is calculated as an example here, other determination indexes may be used. The determination index to be calculated may be obtained by acquiring the structural change determination support data, identifying the determination index included in the acquired structural change determination support data, and calculating the identified determination index.
 S25では、S21で計算した結果と構造変化の判断支援データとを表示する。S25では、図13に示すように、判断指標、判断基準値、判断指標値が表示される。判断指標と判断基準値は、判断支援データから取得した値であり、判断指標値は当日計算した値である。オペレータ11が判断しやすいように、各指標の優先度も合わせて表示してもよい。判断基準値と判断指標値とを比較した結果を表示してもよい。また、判断基準値と判断指標値とを表示せずに、判断指標と比較結果のみを表示してもよい。 In S25, the results calculated in S21 and structural change determination support data are displayed. In S25, as shown in FIG. 13, a judgment index, a judgment reference value, and a judgment index value are displayed. The judgment index and the judgment reference value are the values obtained from the judgment support data, and the judgment index value is the value calculated on the day. The priority of each index may also be displayed so that the operator 11 can easily judge. A result of comparing the judgment reference value and the judgment index value may be displayed. Further, only the judgment index and the comparison result may be displayed without displaying the judgment reference value and the judgment index value.
 そして、S27では、オペレータ11は、判断支援データを参照しながら、輪郭作成の要否を選択し、入力する。 Then, in S27, the operator 11 selects and inputs whether contour creation is necessary while referring to the determination support data.
 図9は、実施例1に係る放射線治療システムの輪郭作成・検証動作を示すフローチャートであり、図6のS4の詳細を示すフローチャートである。図9のフローチャートに示す動作は、患者構造変化認識装置14が実行する。 FIG. 9 is a flowchart showing the contour creation/verification operation of the radiotherapy system according to Embodiment 1, and is a flowchart showing details of S4 in FIG. The operation shown in the flowchart of FIG. 9 is performed by the patient structural change recognition device 14 .
 まず、S41及びS43では、撮影されたばかりの被検体画像と、治療計画時、又は、その後の治療日で計画を修正した時点での被検体画像を患者構造変化認識装置14に設定する。患者構造変化認識装置14では、撮影されたばかりの被検体画像と、治療計画時、又は、その後の治療日で計画を修正した時点での被検体画像とを比較し、被検体の構造変化を認識し、変化後の各臓器の輪郭を生成する。 First, in S41 and S43, the patient structural change recognizing device 14 is set with the subject image that has just been photographed and the subject image at the time of treatment planning or at the time when the plan is revised on the subsequent treatment date. The patient structure change recognizing device 14 compares the image of the subject that has just been photographed with the image of the subject at the time of treatment planning or at the time when the plan is revised on the subsequent treatment day, and recognizes the structure change of the subject. and generate the contour of each organ after the change.
 この構造変化の認識、及び、各臓器(OAR(Organ at Risk)、標的、周辺臓器)の輪郭生成には、非剛体画像レジストレーション(deformable image registration:DIR)の手法を用いても良いし、セグメンテーションの手法を用いても良いし、またそれらの複合的な手法を用いても良い。ここで、構造変化の判断支援データで比較に用いる標的や周辺臓器の体積も求める。なお、ここでは、標的や周辺臓器の体積を計算することを例に説明したが、他の判断指標でもよい。計算する判断指標は、構造変化の判断支援データを取得し、取得した構造変化の判断支援データに含まれる判断指標を特定し、特定した判断指標を計算するようにしてもよい。 A non-rigid image registration (deformable image registration: DIR) technique may be used for recognition of this structural change and contour generation of each organ (OAR (Organ at Risk), target, peripheral organ), A segmentation technique may be used, or a combination of these techniques may be used. Here, the volumes of the target and surrounding organs used for comparison are also obtained from the structural change determination support data. Although the calculation of the volume of the target and surrounding organs has been described here as an example, other determination indices may be used. The determination index to be calculated may be obtained by acquiring the structural change determination support data, identifying the determination index included in the acquired structural change determination support data, and calculating the identified determination index.
 次に、S45では、作成した輪郭のデータを輪郭検証装置(プログラム)にセットし、輪郭が作成されているか検証する。 Next, in S45, the created contour data is set in the contour verification device (program) to verify whether the contour has been created.
 S47及びS49では、図14に示すように、構造変化情報、及び、生成された各臓器の輪郭情報は、モニタ12に表示され、オペレータ11が目視により確認する。確認した情報が正しければ承認操作を行い、誤っていれば、手動で修正を行う。承認された構造変化情報や各臓器の輪郭情報と撮影された画像情報は治療計画装置10に送信される。又は、同一のコンピュータ上のソフトウェアである場合には、記憶媒体経由で情報が伝達される。 In S47 and S49, as shown in FIG. 14, the structural change information and the generated contour information of each organ are displayed on the monitor 12 and visually confirmed by the operator 11. If the confirmed information is correct, the approval operation is performed, and if incorrect, the correction is performed manually. The approved structural change information, contour information of each organ, and captured image information are sent to the treatment planning apparatus 10 . Alternatively, in the case of software on the same computer, information is transmitted via a storage medium.
 なお、図9に示すフローチャートにおいて、S41~S43とS45~S49を異なる装置で実行してもよい。 In addition, in the flowchart shown in FIG. 9, S41 to S43 and S45 to S49 may be executed by different devices.
 図10は、実施例1に係る放射線治療システムの治療計画選択動作を示すフローチャートであり、図6のS6の詳細を示すフローチャートである。図10のフローチャートに示す動作は、治療計画検証装置15が実行する。 FIG. 10 is a flowchart showing the treatment plan selection operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S6 in FIG. The operation shown in the flowchart of FIG. 10 is executed by the treatment plan verification device 15 .
 まず、S61では、当日に撮影した画像と計画時に作成した治療計画とを用いて、計画時に作成した治療計画で放射線を照射した場合の線量を計算する。たとえば、計画時の画像で作成された治療計画の線量分布を、当日に撮影した画像に合わせて変形させることにより求める。次に、S63では、照射角度や照射エネルギーなど、計画時とは異なる照射方法で放射線を照射した場合の新たな治療計画を作成、線量を計算する。なお、S61とS63の実行順序に決まりはなく、S63を先に実行してもよい。S61とS63の線量計算では、計画時に指定された達成すべきDVHの値を用いる、または、新たに達成すべきDVHを指定して計算がされる。 First, in S61, the image taken on the day and the treatment plan created at the time of planning are used to calculate the dose when irradiation is performed according to the treatment plan created at the time of planning. For example, the dose distribution of the treatment plan created from the images at the time of planning is obtained by transforming it according to the images taken on the day. Next, in S63, a new treatment plan is created and the dose is calculated when radiation is irradiated using an irradiation method different from that at the time of planning, such as the irradiation angle and irradiation energy. The execution order of S61 and S63 is not fixed, and S63 may be executed first. In the dose calculations of S61 and S63, the DVH value to be achieved that was specified at the time of planning is used, or a new DVH to be achieved is specified.
 さらに、S65では、S61とS63で得られた線量に対してそれぞれ、輪郭情報を用いて各臓器の線量評価指標を計算する。線量の指標としては、最大・最小線量、線量平坦度、DVH(Dose Volume Histogram)と呼ばれる指標が良く用いられる。S0で選択した判断支援データに含まれる項目を取得し、取得した項目を計算してもよい。 Furthermore, in S65, the dose evaluation index for each organ is calculated using the contour information for the doses obtained in S61 and S63. As dose indices, indices called maximum/minimum dose, dose flatness, and DVH (Dose Volume Histogram) are often used. Items included in the judgment support data selected in S0 may be acquired and the acquired items may be calculated.
 S67では、図15に示すように、判断支援データに含まれる評価指標と評価基準値、S65で算出した評価指標値と、を表示する。 In S67, as shown in FIG. 15, the evaluation index and evaluation reference value included in the judgment support data, and the evaluation index value calculated in S65 are displayed.
 S69では、これらの指標から照射の修正の要否をオペレータ11が判断する。この時、治療計画で想定された治療効果が得られるかどうかが判断の基準となるが、線量評価指標から治療効果を予測するには膨大な知識・経験が必要である。判断の結果、再計画が不要であれば、そのまま照射に移行し、治療放射線照射装置4にて照射を行う。一方、再計画が必要な場合、治療計画時に設定した各臓器への線量目標を満たすように照射方法を最適化し直す。 In S69, the operator 11 determines whether or not irradiation correction is necessary based on these indices. At this time, whether or not the therapeutic effect assumed in the treatment plan can be obtained is the criterion for judgment, but a vast amount of knowledge and experience is required to predict the therapeutic effect from the dose evaluation index. As a result of the determination, if re-planning is unnecessary, the process proceeds to irradiation as it is, and irradiation is performed by the therapeutic radiation irradiation device 4 . On the other hand, when re-planning is necessary, the irradiation method is re-optimized so as to satisfy the dose target for each organ set at the time of treatment planning.
 X線治療のIMRT(Intensity Modulated Radiation Therapy)やVMAT(Volumetric Modulated Arc Therapy)、粒子線治療のスキャニング照射等の照射法では、線量目標をできる限り満たすように照射方法を自動的に決定する機能が備わっている。この時全ての線量目標が満たされれば良いが、満たされない場合、どのような優先順位で線量目標を満たすのか、どのように線量分布を修正するのかには、治療計画時と同様の高度な判断が必要となり、オンラインアダプティブ治療の迅速性が求められる中での判断には豊富な経験が必要である。必要な照射方法の修正が完了するとオペレータ11は承認操作を行う。 In irradiation methods such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy) in X-ray therapy, and scanning irradiation in particle beam therapy, there is a function that automatically determines the irradiation method so as to meet the dose target as much as possible. It's ready. At this time, it would be good if all the dose targets were met, but if they were not met, what priority should be given to meeting the dose targets and how to modify the dose distribution would require advanced judgment similar to that at the time of treatment planning. is required, and extensive experience is required to make judgments in the need for prompt online adaptive treatment. When the necessary modification of the irradiation method is completed, the operator 11 performs approval operation.
 すなわち、治療計画時の治療計画で照射を行うか、新たに作成された(再計画された)治療計画で照射を行うか選択する。治療計画時の治療計画が選択された場合は、図6のS9に進む。再計画の資料計画が選択された場合は、図6のS7にすすみ、承認された治療計画情報は、治療計画検証装置15に送信される。 In other words, select whether to perform irradiation according to the treatment plan at the time of treatment planning or to perform irradiation according to the newly created (re-planned) treatment plan. When the treatment plan at the time of treatment planning is selected, the process proceeds to S9 in FIG. If the data plan for replanning is selected, the process proceeds to S7 in FIG. 6, and the approved treatment plan information is sent to the treatment plan verification device 15.
 図11は、実施例1に係る放射線治療システムの治療計画評価動作を示すフローチャートであり、図6のS7の詳細を示すフローチャートである。図11のフローチャートに示す動作は、治療計画検証装置15が実行する。 FIG. 11 is a flowchart showing the treatment plan evaluation operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S7 in FIG. The operation shown in the flowchart of FIG. 11 is executed by the treatment plan verification device 15 .
 治療計画検証装置15では、治療計画装置10で計算された線量分布が妥当かどうかを検証する。通常の治療においては、この検証作業は実際の治療放射線の照射を伴う照射試験により実施される。しかしながら、オンラインアダプティブ治療では、治療室6内に被検体1がいる状態で実施する必要があるため、照射試験は実施できない。替わりに別の計算手法で求めた線量分布と比較する、独立検証と呼ばれる方法が用いられる場合がある。独立検証の場合には、別手法によって求められた線量分布と最適化し直した分布を比較する。この比較において一致する場合には問題ないが、不一致が起きた場合、それが治療可能な範囲内なのかをその場で判断する必要がある。その違いが何によって生じ、それが許容範囲内なのかは場合場合によって異なるため、豊富な経験による判断が必要となる。許容範囲内と判断した場合にはオペレータ11は承認作業を行う。 The treatment plan verification device 15 verifies whether the dose distribution calculated by the treatment planning device 10 is appropriate. In normal treatment, this verification work is performed by an irradiation test involving the irradiation of actual therapeutic radiation. However, in the online adaptive therapy, the irradiation test cannot be performed because it must be performed with the subject 1 in the treatment room 6 . Instead, a method called independent verification may be used in which the dose distribution is compared with another calculation method. In the case of an independent validation, the dose distribution determined by another method is compared with the reoptimized distribution. If there is agreement in this comparison, there is no problem, but if there is a disagreement, it is necessary to judge on the spot whether it is within the treatable range. What causes the difference and whether it is within the permissible range depends on the case, so judgment based on abundant experience is required. If it is determined that it is within the allowable range, the operator 11 performs approval work.
 まず、S71では、図10のS61で計算した当日線量とは異なるアルゴリズムで独立して、治療時の患者1の画像や各臓器の輪郭に基づいて、線量を計算する。次に、S73では、治療放射線照射装置4が、図10のS69で承認された治療計画の通りに放射線を照射するように動作するか検証を行う。なお、S71とS73とは、独立に動作してもいいし、順番が逆でもよい。 First, in S71, the dose is calculated independently from the daily dose calculated in S61 of FIG. 10, based on the image of patient 1 at the time of treatment and the contour of each organ. Next, in S73, it is verified whether or not the therapeutic radiation irradiation apparatus 4 operates to irradiate radiation according to the treatment plan approved in S69 of FIG. It should be noted that S71 and S73 may operate independently or may be reversed in order.
 S75では、図16に示すように、S71で計算した結果と治療計画評価の判断支援データとが表示される。なお、図10に既に示しているように、この時点で判断指標は既に算出されている。そして、S77では、オペレータ11に承認された治療計画が治療放射線照射装置4に送信される。 In S75, as shown in FIG. 16, the result calculated in S71 and the judgment support data for treatment plan evaluation are displayed. Note that, as already shown in FIG. 10, the judgment index has already been calculated at this point. Then, in S<b>77 , the treatment plan approved by the operator 11 is transmitted to the therapeutic radiation irradiation device 4 .
 図12は、実施例1に係る放射線治療システムの放射線照射動作を示すフローチャートであり、図6のS8、S9の詳細を示すフローチャートである。図12のフローチャートに示す動作は、S8については治療放射線照射装置4が、S9については治療計画検証装置15が実行する。 FIG. 12 is a flowchart showing the radiation irradiation operation of the radiotherapy system according to Example 1, and is a flowchart showing details of S8 and S9 in FIG. The operation shown in the flowchart of FIG. 12 is performed by the therapeutic radiation irradiation apparatus 4 for S8 and by the treatment plan verification apparatus 15 for S9.
 まず、S81では、オペレータ11が照射を指示すると、治療放射線照射装置4が患者1に図10のS69で承認された治療計画の通りに放射線を照射する。S83では、治療放射線照射装置4は、照射した放射線の位置や線量、装置の動作をログとして生成する。生成されたログは、治療計画検証装置15へと送信される。 First, in S81, when the operator 11 instructs irradiation, the therapeutic radiation irradiation device 4 irradiates the patient 1 with radiation according to the treatment plan approved in S69 of FIG. In S83, the therapeutic radiation irradiation apparatus 4 generates a log of the position and dose of the irradiated radiation and the operation of the apparatus. The generated log is sent to the treatment plan verification device 15 .
 S91では、治療計画検証装置15が治療計画とログとを比較し、実際に照射された放射線の位置や線量(実績線量評価)を評価する。そして、S93では、治療計画検証装置15が装置の動作が精確であったかを検証する。 In S91, the treatment plan verification device 15 compares the treatment plan with the log, and evaluates the actually irradiated position and dose (actual dose evaluation). Then, in S93, the treatment plan verification device 15 verifies whether the operation of the device was accurate.
 図17は、実施例1に係る放射線治療システムの動作を示すフローチャートであり、本実施例の動作の要部を取り出して示すフローチャートである。 FIG. 17 is a flowchart showing the operation of the radiotherapy system according to Example 1, and is a flowchart extracting and showing the main part of the operation of this example.
 まず、S102において、予め治療前にオペレータ11が判断支援データ入力装置20を用いて判断支援データを入力する。次のS103において、判断支援データ入力装置20は、判断支援データを判断支援データベース21に保存する。 First, in S102, the operator 11 inputs judgment support data using the judgment support data input device 20 in advance before treatment. In the next S<b>103 , the judgment support data input device 20 saves the judgment support data in the judgment support database 21 .
 次のS104において、オペレータ11が治療する患者に適した判断支援データを選択する。次のS105において、判断支援データベース21が判断支援データを患者構造変化認識装置14、治療計画装置10、治療計画検証装置15に送信する。これらS104、105は図6のS0に対応する。 In the next S104, the operator 11 selects decision support data suitable for the patient to be treated. In the next step S105, the decision support database 21 transmits the decision support data to the patient structural change recognition device 14, the treatment planning device 10, and the treatment plan verification device 15. FIG. These S104 and 105 correspond to S0 in FIG.
 次のS106において、患者構造変化認識装置14、治療計画装置10、治療計画検証装置15が判断支援データに基づき判断指標の種類・基準値・達成度を表示する。次のステップ107において、オペレータ11が指標を確認し、承認操作を行う。以上の全てのステップで承認操作が行われると、治療放射線照射装置が治療ビームの照射を行う。これらS106、S107は、図8のS25~S27、図9のS47~S49、及び図10のS67~S69に対応する。 In the next S106, the patient structure change recognition device 14, the treatment planning device 10, and the treatment plan verification device 15 display the type, reference value, and degree of achievement of the judgment index based on the judgment support data. In the next step 107, the operator 11 confirms the index and performs an approval operation. When the approval operation is performed in all of the above steps, the therapeutic radiation irradiation device irradiates the therapeutic beam. These S106 and S107 correspond to S25 to S27 in FIG. 8, S47 to S49 in FIG. 9, and S67 to S69 in FIG.
 従って、本実施例の放射線治療システムによれば、治療中の判断に必要な適切な評価指標とその成否の基準値、優先度が与えられ、それらの達成度を確認しながら判断が可能となるため、経験の浅い操作者が短時間で適切に判断し、アダプティブ治療が可能となる。 Therefore, according to the radiotherapy system of the present embodiment, appropriate evaluation indices, reference values for success or failure, and priorities necessary for judgment during treatment are given, and judgment can be made while confirming the degree of achievement thereof. Therefore, an inexperienced operator can make an appropriate judgment in a short time and perform adaptive treatment.
 言い換えれば、本実施例によれば、予め経験の豊富なスタッフを擁する病院において作成された判断指標や基準値を、経験の浅いスタッフを擁る病院にて治療に取り入れることが可能となり、治療中の判断を必要とする新規の治療法を迅速に取り入れることが可能となる。また、治療中の判断が適正化・迅速化されることにより、高精度・短時間の治療が可能となる。 In other words, according to the present embodiment, it is possible to incorporate judgment indices and reference values created in advance at a hospital with experienced staff into treatment at a hospital with inexperienced staff. It is possible to rapidly incorporate new treatment methods that require judgment of In addition, by optimizing and speeding up the judgment during treatment, high-precision treatment in a short period of time becomes possible.
 なお、本実施例では、判断支援データ入力装置20により判断支援データを治療施設外より取り入れる例を示したが、治療施設内で作成した判断支援データを入力しても良い。また、判断支援データは実績に基づき、AI等で修正・更新されても良い。 In this embodiment, an example is shown in which the judgment support data input device 20 takes in the judgment support data from outside the treatment facility, but the judgment support data created inside the treatment facility may be input. Also, the judgment support data may be corrected/updated by AI or the like based on the results.
 実施例2の放射線治療システムを図19、図20を参照して説明する。 The radiotherapy system of Example 2 will be described with reference to FIGS. 19 and 20. FIG.
 実施例1に記載の放射線治療システムに対して、実施例2の放射線治療システムでは、判断支援データ入力装置20がクラウドサーバ30に接続されており、適宜判断支援データ入力装置20がデータを取得することで、常に判断支援データベース上のデータが最新となり、また新たに開発された治療法を迅速に導入可能となる。 In contrast to the radiotherapy system of Embodiment 1, in the radiotherapy system of Embodiment 2, the judgment support data input device 20 is connected to the cloud server 30, and the judgment support data input device 20 acquires data as appropriate. As a result, the data in the decision support database is always up-to-date, and newly developed treatment methods can be rapidly introduced.
 ここで、判断支援データには、適合する装置の要件を含んでおり、判断支援データ入力装置20が適合性を判断し、当該施設に適合する判断支援データのみ判断支援データベース21に保存することで、適さないデータを活用した照射を防ぐことが可能となり、迅速に治療データを導入可能となる。施設への適合性の判断指標は、撮影装置の種類・性能、治療放射線照射装置の放射線照射精度、対応する照射技法等である。また、導入されたデータに対し、その施設の特徴を反映した編集を受け入れても良い。具体的には患者位置決めを特徴的な方法で高精度化したり、患者の動きを特徴的な方法で制限したりして高精度化している場合などには、判断指標の基準値を変更して高精度な治療を支援することができる。 Here, the judgment support data includes the requirements of suitable devices, the judgment support data input device 20 judges the suitability, and only the judgment support data suitable for the facility is stored in the judgment support database 21. , it is possible to prevent irradiation using unsuitable data, and it is possible to quickly introduce treatment data. Indices for judging suitability for a facility include the type and performance of the imaging device, the radiation irradiation accuracy of the therapeutic radiation irradiation device, the corresponding irradiation technique, and the like. Also, the introduced data may be edited to reflect the characteristics of the facility. Specifically, if the accuracy of patient positioning is improved by using a characteristic method or the patient's movement is restricted by a characteristic method, the reference value of the judgment index should be changed. Highly accurate treatment can be supported.
 図20は、実施例2のシステムのフロー図である。実施例1のフロー図(図17)に対して、S102及びS103がS201、S202に変更となっている。 FIG. 20 is a system flow diagram of the second embodiment. S102 and S103 are changed to S201 and S202 in the flowchart of the first embodiment (FIG. 17).
 まず、S201にて、判断支援データ入力装置20がクラウドサーバ30から判断支援データを取得する。次に、S202にて、判断支援データ入力装置20が取得した判断支援データに含まれる装置情報が当該施設に適合するデータのみ判断支援データベース21に保存する。上記データは治療対象部位や治療方法毎に分類されており、個別に適合性が判断され保存される。 First, in S<b>201 , the judgment support data input device 20 acquires the judgment support data from the cloud server 30 . Next, in S<b>202 , only data whose device information included in the decision support data acquired by the decision support data input device 20 matches the facility is stored in the decision support database 21 . The above data are classified according to the site to be treated and the treatment method, and the suitability is determined and stored individually.
 従って、本実施例の放射線治療システムによっても、実施例1の放射線治療システムと同様の効果を得ることができる。 Therefore, the radiotherapy system of this embodiment can also obtain the same effect as the radiotherapy system of the first embodiment.
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 It should be noted that the present invention is not limited to the above examples, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, or to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above configurations, functions, processing units, processing means, etc., may be implemented in hardware, for example, by designing a part or all of them using an integrated circuit. Moreover, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function can be stored in a memory, a hard disk, a recording device such as an SSD, or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.
 1:被検体 2:ベッド 3:撮影装置 4:治療放射線照射装置 5:標的 6:治療室 10:治療計画装置 11:オペレータ 12:モニタ 13:治療制御室 14:患者構造変化認識装置 15:治療計画検証装置 20:判断支援データ入力装置 21:判断支援データベース 30:クラウドサーバ 40:表示画面 41:判断指標 42:判断基準値 43:判断指標値 44:達成度
 
 
  
1: Subject 2: Bed 3: Imaging Device 4: Therapeutic Radiation Irradiation Device 5: Target 6: Treatment Room 10: Treatment Planning Device 11: Operator 12: Monitor 13: Treatment Control Room 14: Patient Structural Change Recognition Device 15: Treatment Plan verification device 20: Judgment support data input device 21: Judgment support database 30: Cloud server 40: Display screen 41: Judgment index 42: Judgment reference value 43: Judgment index value 44: Achievement

Claims (16)

  1.  放射線照射治療中に評価する判断指標と判断基準値の組からなる判断支援データの入力を受け入れ、前記放射線照射治療の標的ごとに使用する前記判断支援データの選択入力を受け入れ、治療日に前記標的を含む所定領域を撮影する撮像装置により撮影された前記所定領域の画像に対して前記判断指標の値を計算し、前記判断指標の値と前記判断基準値とを比較して表示する
    ことを特徴とする判断支援システム。
    Receiving input of decision support data consisting of a set of a decision index and a decision reference value to be evaluated during radiation therapy, receiving selection input of the decision support data to be used for each target of the radiation therapy, and receiving the target on the day of treatment The value of the determination index is calculated for an image of the predetermined area captured by an imaging device that captures the predetermined area including decision support system.
  2.  前記判断支援データを保持する判断支援データベースを有することを特徴とする請求項1に記載の判断支援システム。 The decision support system according to claim 1, comprising a decision support database that holds the decision support data.
  3.  前記判断指標の値は、前記判断支援データに基づいて計算することを特徴とする請求項1に記載の判断支援システム。 The decision support system according to claim 1, wherein the value of the decision index is calculated based on the decision support data.
  4.  前記判断指標の値の計算は、前記撮像装置により撮影された前記所定領域の画像に基づいてこの画像内に存在する臓器の輪郭作成要否の判断動作中に行うことを特徴とする請求項1に記載の判断支援システム。 2. The determination index value is calculated based on the image of the predetermined area captured by the imaging device, during the operation of determining whether contour creation of the organ existing in the image is necessary. Judgment support system according to.
  5.  前記判断指標の値の計算は、前記撮像装置により撮影された前記所定領域の画像に基づいてこの画像内に存在する臓器の輪郭作成動作中に行うことを特徴とする請求項1に記載の判断支援システム。 2. The determination according to claim 1, wherein the calculation of the value of the determination index is performed during contour creation of an organ existing in the image of the predetermined area captured by the imaging device. support system.
  6.  前記判断指標は、前記標的の形状変化率、前記臓器の形状変化率、体表から前記標的までの深さ変化率の少なくとも一つを含むことを特徴とする請求項4または5に記載の判断支援システム。 6. The determination according to claim 4, wherein the determination index includes at least one of a shape change rate of the target, a shape change rate of the organ, and a depth change rate from the body surface to the target. support system.
  7.  前記判断指標の値の計算は、前記放射線照射治療の治療再計画の評価時に行うことを特徴とする請求項1に記載の判断支援システム。  The decision support system according to claim 1, wherein the calculation of the value of the decision index is performed at the time of treatment replanning evaluation of the radiation therapy.
  8.  前記判断指標は、前記標的の低線量領域の線量、臓器の高線量領域の線量、前記臓器と飛程終端との距離の変化、前記標的の線量体積ヒストグラム(Dose Volume Histogram)に対する処方の達成度の変化、前記臓器の前記線量体積ヒストグラムに対する処方の達成度の変化の少なくとも一つを含むことを特徴とする請求項7に記載の判断支援システム。 The judgment index is the dose in the target low-dose area, the dose in the high-dose area of the organ, the change in the distance between the organ and the end of the range, and the degree of achievement of the prescription for the dose volume histogram of the target. 8. The decision support system of claim 7, comprising at least one of: a change in the dose-volume histogram of the organ;
  9.  前記判断指標の値の計算は、前記放射線照射治療の治療計画評価時に行うことを特徴とする請求項1に記載の判断支援システム。  The decision support system according to claim 1, characterized in that the calculation of the value of the decision index is performed when evaluating the treatment plan of the radiation therapy.
  10.  前記判断指標は、前記放射線照射治療の再計画時の分布の一致度、前記標的の低線量領域の線量、臓器の高線量領域の線量、前記標的の線量体積ヒストグラムに対する処方の達成度の変化、前記臓器の前記線量体積ヒストグラムに対する処方の達成度の変化の少なくとも一つを含むことを特徴とする請求項9に記載の判断支援システム。 The decision index is the degree of agreement of the distribution at the time of re-planning the radiation therapy, the dose of the target low-dose region, the dose of the high-dose region of the organ, the change in the degree of achievement of the prescription with respect to the dose volume histogram of the target, 10. The decision support system of claim 9, comprising at least one of a change in prescription attainment relative to the dose-volume histogram of the organ.
  11.  前記判断指標には優先度及び必要性の少なくとも一つが付与されていることを特徴とする請求項1に記載の判断支援システム。 The decision support system according to claim 1, wherein at least one of priority and necessity is assigned to the decision index.
  12.  前記判断支援データに対応する治療装置情報の入力を受け入れ、前記判断支援データが前記治療装置情報と治療を実施する施設の放射線照射装置とが適合するかを判定することを特徴とする請求項1に記載の判断支援システム。 2. An input of treatment apparatus information corresponding to said decision support data is accepted, and said decision support data determines whether said treatment apparatus information matches a radiation irradiation apparatus of a facility where treatment is performed. Judgment support system according to.
  13.  治療を実施する施設の特徴を反映した前記判断指標の編集入力を受け入れることを特徴とする請求項1に記載の判断支援システム。  The decision support system according to claim 1, which accepts editing input of the decision index that reflects the characteristics of the facility where the treatment is performed.
  14.  前記判断指標の選択入力を受け入れ、前記選択入力された前記判断指標に基づいて前記判断支援データベースから前記判断支援データの入力を受け入れることを特徴とする請求項2に記載の判断支援システム。 3. The decision support system according to claim 2, wherein a selection input of the decision index is accepted, and an input of the decision support data is accepted from the decision support database based on the selected decision index.
  15.  標的を含む所定領域を撮像する撮像装置と、
     前記標的に対して放射線を照射するための放射線照射装置と、
     この放射線照射装置を制御する照射制御装置と、
    を備え、 
     前記照射制御装置は、治療中に評価する判断指標と判断基準値の組からなる判断支援データの入力を受け入れ、前記標的ごとに使用する前記判断支援データの選択入力を受け入れ、治療日に前記撮像装置により撮影された前記所定領域の画像に対して前記判断指標の値を計算し、前記判断指標の値と前記判断基準値とを比較して表示する
    ことを特徴とする放射線治療システム。
    an imaging device for imaging a predetermined area including a target;
    a radiation irradiation device for irradiating the target with radiation;
    an irradiation control device for controlling the radiation irradiation device;
    with
    The irradiation control device accepts input of judgment support data consisting of a set of a judgment index and a judgment reference value to be evaluated during treatment, receives selection input of the judgment support data to be used for each of the targets, and receives the imaging on the treatment day. A radiotherapy system, wherein the value of the judgment index is calculated for the image of the predetermined region captured by the apparatus, and the value of the judgment index and the judgment reference value are compared and displayed.
  16.  判断支援システムにおける判断支援方法であって、
     放射線照射治療中に評価する判断指標と判断基準値の組からなる判断支援データの入力を受け入れ、放射線治療の標的ごとに使用する前記判断支援データの選択入力を受け入れ、治療日に前記標的を含む所定領域を撮影する撮像装置により撮影された前記所定領域の画像に対して前記判断指標の値を計算し、前記判断指標の値と前記判断基準値とを比較して表示する
    ことを特徴とする判断支援システムにおける判断支援方法。
     
     
    A judgment support method in a judgment support system,
    Receiving input of decision support data consisting of a set of a decision index and a decision reference value to be evaluated during radiation therapy, accepting input of selection of said decision support data to be used for each target of radiation therapy, including said target on a treatment day. The value of the judgment index is calculated for an image of the predetermined area captured by an imaging device that photographs the predetermined area, and the value of the judgment index and the judgment reference value are compared and displayed. A decision support method in a decision support system.

PCT/JP2021/035051 2021-01-20 2021-09-24 Determination assistance system, radiotherapy system, and determination assistance method for determination assistance system WO2022158047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021007421A JP2022111774A (en) 2021-01-20 2021-01-20 Determination supporting system, radiotherapy system, and determination supporting method for determination supporting system
JP2021-007421 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158047A1 true WO2022158047A1 (en) 2022-07-28

Family

ID=82548668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035051 WO2022158047A1 (en) 2021-01-20 2021-09-24 Determination assistance system, radiotherapy system, and determination assistance method for determination assistance system

Country Status (2)

Country Link
JP (1) JP2022111774A (en)
WO (1) WO2022158047A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509644A (en) * 2003-10-07 2007-04-19 ノモス・コーポレーシヨン Planning system, method and apparatus for conformal radiation therapy
US9764162B1 (en) * 2013-10-28 2017-09-19 Elekta, Inc. Automated, data-driven treatment management system for adaptive radiotherapy workflows
WO2017170178A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
JP2020099569A (en) * 2018-12-25 2020-07-02 株式会社日立製作所 Particle beam treatment system and dose distribution evaluation system, as well as method for operating particle beam treatment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509644A (en) * 2003-10-07 2007-04-19 ノモス・コーポレーシヨン Planning system, method and apparatus for conformal radiation therapy
US9764162B1 (en) * 2013-10-28 2017-09-19 Elekta, Inc. Automated, data-driven treatment management system for adaptive radiotherapy workflows
WO2017170178A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
JP2020099569A (en) * 2018-12-25 2020-07-02 株式会社日立製作所 Particle beam treatment system and dose distribution evaluation system, as well as method for operating particle beam treatment system

Also Published As

Publication number Publication date
JP2022111774A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
JP6602299B2 (en) Efficient treatment planning trade-off analysis
CN107278303B (en) Therapy planning system and method for generating optimal treatment plan
WO2022142770A1 (en) Automatic radiation treatment planning system and method, and computer program product
US10850119B2 (en) Interactive computer-aided editor for compensators used in radiotherapy treatment planning
JP6557227B2 (en) Treatment plan automation
CN103933672B (en) Radiation therapy planning device and therapy planning method
JP5909167B2 (en) Radiation therapy planning device
US10076673B2 (en) Interactive dose gradient based optimization technique to control IMRT delivery complexity
CN110415785A (en) The method and system of artificial intelligence guidance radiotherapy planning
JP7076380B2 (en) Robust Broadbeam Optimization for Proton Treatment
JP6989518B2 (en) Methods, computer programs, and systems for optimizing radiation therapy planning
JP2000317000A (en) Control unit of radiation irradiation device for radiation therapy
CN105451817A (en) Method and system for automatic estimation of utility of adaptive radiation therapy re-planning
JP2018515274A (en) How to select beam geometry
Han et al. Clinical implementation of automated treatment planning for whole‐brain radiotherapy
JP2008099807A (en) Radiotherapy planning apparatus and radiotherapy planning method
WO2022158047A1 (en) Determination assistance system, radiotherapy system, and determination assistance method for determination assistance system
JP2018075150A (en) Radiation therapy planning apparatus and radiation therapy system
CN116832348A (en) Control method, system and device for radiotherapy information data
Lu et al. Reduced-order parameter optimization for simplifying prostate IMRT planning
JP2006043235A (en) Radiotherapy planning apparatus and radiotherapy planning method
JP6842318B2 (en) Radiation therapy planning device
JP3720273B2 (en) Radiotherapy planning support method and apparatus, and radiotherapy apparatus using the same
CN112149669B (en) Radiotherapy plan generation system, radiotherapy plan generation device and storage medium
JP2023548950A (en) Method and computer program for predicting dose maps for radiation therapy planning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921151

Country of ref document: EP

Kind code of ref document: A1