WO2022145081A1 - Transport system, transport method, route information creation system, and route information creation method - Google Patents

Transport system, transport method, route information creation system, and route information creation method Download PDF

Info

Publication number
WO2022145081A1
WO2022145081A1 PCT/JP2021/028266 JP2021028266W WO2022145081A1 WO 2022145081 A1 WO2022145081 A1 WO 2022145081A1 JP 2021028266 W JP2021028266 W JP 2021028266W WO 2022145081 A1 WO2022145081 A1 WO 2022145081A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
speed
floor
route information
transport device
Prior art date
Application number
PCT/JP2021/028266
Other languages
French (fr)
Japanese (ja)
Inventor
泰行 石谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022572901A priority Critical patent/JPWO2022145081A1/ja
Publication of WO2022145081A1 publication Critical patent/WO2022145081A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • This disclosure relates to a transport system, a transport method, a route information creation system, and a route information creation method for transporting an object to be transported on the floor where the manufacturing equipment is installed.
  • a tray feeder that supplies parts housed in a tray is widely used as a parts supply device that supplies parts to a parts mounting device that mounts parts on a board.
  • a parts supply device that supplies parts to a parts mounting device that mounts parts on a board.
  • technology for automatically transporting and supplying members (objects to be transported) used in manufacturing equipment has been developed. (See, for example, Patent Document 1).
  • Patent Document 1 a cart on which a plurality of trays containing parts are placed and held is connected to an automatic guided vehicle, and the automatic guided vehicle moves the cart to the front of the manufacturing apparatus and holds the cart in the cart. It is disclosed that the tray is supplied to the manufacturing apparatus.
  • Patent Document 1 Although the object to be transported can be supplied to the manufacturing apparatus by an automatic guided vehicle, there are the following problems due to the condition of the floor. That is, the automated guided vehicle or cart bounces off the tray as it passes through points where the automated guided vehicle travels up and down, or when it gets over falling objects such as screws and debris or floor seams. Spilled out, leaving room for further improvement.
  • the transport system of the present disclosure is used on a floor on which one or more manufacturing devices that perform predetermined operations on a substrate are installed, and is based on a transport device for transporting an object to be transported and route information regarding a transport route. It is equipped with a control system that controls the transfer work by the device.
  • the route information includes speed information regarding the traveling speed of the conveying device, which is set based on the pre-measured acceleration caused by the condition of the floor when the conveying device is traveling.
  • the transport method of the present disclosure is a transport method for transporting an object to be transported by a transport device, which is used on a floor on which one or more manufacturing devices that perform predetermined operations on a substrate are installed, and is used when the transport device is running.
  • a transport device which is used on a floor on which one or more manufacturing devices that perform predetermined operations on a substrate are installed, and is used when the transport device is running.
  • To control the transport work by the transport device based on the route information about the transport route including the speed information about the traveling speed of the transport device, which is set based on the pre-measured acceleration caused by the condition of the floor. include.
  • the route information creation system of the present disclosure is installed on a transport device for transporting an object to be transported and a transport device or the object to be transported, which is used on a floor provided with one or more manufacturing devices that perform predetermined work on a substrate. Based on the acceleration information about the acceleration on the floor acquired by running the floor on the transport device with the accelerometer that measures the acceleration and the accelerometer installed, it is caused by the state of the floor when the transport device is running. Based on the information of the caution point extraction unit that extracts the caution point that may cause an abnormality and the caution point extraction unit extracted by the caution point extraction unit, the route including the speed information regarding the traveling speed of the transport device in the transport route. It is equipped with a route information creation unit for creating information.
  • the route information creation method of the present disclosure is a route for creating route information regarding a transport route of a transport device for transporting an object to be transported, which is used on a floor provided with one or more manufacturing devices that perform predetermined work on a substrate.
  • This is an information creation method.
  • acceleration information related to the acceleration on the floor is acquired and based on the acceleration information.
  • the transport device is running, the caution points where an abnormality may occur due to the condition of the floor are extracted, and based on the extracted information of the caution points, the speed information regarding the traveling speed of the transport device in the transport route is obtained.
  • the transported object can be transported in a normal state on the floor where the manufacturing equipment is installed.
  • FIG. 1 is a configuration explanatory view of a floor including the component mounting system according to the embodiment of the present disclosure.
  • FIG. 2 is a configuration explanatory view of a floor including a component mounting line included in the component mounting system according to the embodiment of the present disclosure.
  • FIG. 3 is a configuration explanatory view of a component mounting device and a transport device equipped with a component supply device and a storage device according to an embodiment of the present disclosure.
  • FIG. 4A is a configuration explanatory view of a tray magazine according to an embodiment of the present disclosure.
  • FIG. 4B is a partial cross-sectional view of a tray accommodating the parts of one embodiment of the present disclosure.
  • FIG. 4C is a partial cross-sectional view of a tray accommodating the parts of one embodiment of the present disclosure.
  • FIG. 4A is a configuration explanatory view of a tray magazine according to an embodiment of the present disclosure.
  • FIG. 4B is a partial cross-sectional view of a tray accommodating the parts of one embodiment of
  • FIG. 5A is a block diagram showing a configuration of a management computer included in the transport system according to the embodiment of the present disclosure.
  • FIG. 5B is a block diagram showing a configuration of a transport device included in the transport system according to the embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating the creation of route information according to the embodiment of the present disclosure.
  • FIG. 7 is a diagram showing an example of information to be transported used in the transport system according to the embodiment of the present disclosure.
  • FIG. 8A is a diagram showing an example of acceleration information used in the transport system according to the embodiment of the present disclosure.
  • FIG. 8B is a diagram showing an example of a deceleration section used in the transport system according to the embodiment of the present disclosure.
  • FIG. 8C is a diagram showing an example of a deceleration section used in the transport system according to the embodiment of the present disclosure.
  • FIG. 9 is a diagram showing an example of a transport path set on the floor on which the component mounting line according to the embodiment of the present disclosure is installed.
  • FIG. 10A is a diagram showing an example of route information used in the transport system according to the embodiment of the present disclosure.
  • FIG. 10B is a diagram showing an example of route information used in the transport system according to the embodiment of the present disclosure.
  • FIG. 11A is a diagram showing another example of route information used in the transport system of one embodiment of the present disclosure.
  • FIG. 11B is a diagram showing another example of route information used in the transport system of one embodiment of the present disclosure.
  • FIG. 12 is a flow chart of a transport method according to an embodiment of the present disclosure.
  • FIG. 13 is a flow chart of a route information creating method according to an embodiment of the present disclosure.
  • the corresponding elements are designated by the same reference numerals, and duplicate explanations are omitted.
  • the X-axis in the substrate transport direction (horizontal direction in FIG. 1) and the Y-axis orthogonal to the substrate transport direction (horizontal direction in FIG. 1) are biaxial directions orthogonal to each other in the horizontal plane. Is shown.
  • the Z axis (vertical direction in FIG. 2) is shown as a height direction orthogonal to the horizontal plane.
  • FIG. 1 is a configuration explanatory view of a floor F including the component mounting system 1 of the present embodiment.
  • FIG. 2 is a configuration explanatory view of a floor F including component mounting lines L1 to L3 included in the component mounting system 1 of the present embodiment.
  • the component mounting system 1 has a configuration in which three component mounting lines L1 to L3 installed on the floor F are connected by a wired or wireless communication network 2 and managed by a management computer 3. As will be described later, each component mounting line L1 to L3 is configured by connecting a plurality of manufacturing devices including a component mounting device, and has a function of producing a mounting board in which components are mounted on the board.
  • the component mounting lines L1 to L3 included in the component mounting system 1 do not have to be three, and may be one, two, or four or more.
  • a storage shelf 4 is installed in which parts supplied to the parts mounting device provided in the parts mounting lines L1 to L3 and members such as cream solder supplied to the printing device are stored.
  • the parts are stored in a predetermined storage shelf of the storage shelf 4 in a state of being placed on a tray or in a state of being held by a carrier tape and wound and stored on a reel.
  • the positions of the parts stored in the storage shelf 4 are associated with the stored part names, tray numbers, reel numbers, and the like, and are managed by the management computer 3.
  • FIGS. 1 and 2 a plurality of (8 units in this case) photographing devices S1 to S8 are installed on the ceiling Fa of the floor F.
  • the photographing devices S1 to S8 are each connected to the management computer 3 by the communication network 2.
  • the photographing devices S1 to S8 include a photographing unit having a camera, and the photographing unit photographs the worker W and the transport device Q working on the floor F, and transmits the photographing data to the management computer 3.
  • the number and installation position of the photographing devices S1 to S8 are set so that the worker W working on the floor F and the transport device Q can photograph by any of the photographing devices S1 to S8.
  • the worker W working on the floor F carries the information terminal 5.
  • the information terminal 5 is a smartphone, a tablet PC (personal computer), or the like, and is a terminal-side communication unit 6 that wirelessly communicates with a management-side communication unit 3a included in the management computer 3 to exchange information, and a display function and an input function. It is provided with a touch panel 7 having and.
  • the information terminal 5 displays and processes various information received from the management computer 3 and displays it on the touch panel 7. Further, the information terminal 5 transmits various information input from the touch panel 7 to the management computer 3.
  • a transport device Q (conveyor robot) that transports parts (tray and reel) and objects to be transported such as members and supplies them to the manufacturing apparatus is operating on the floor F.
  • FIG. 3 is a configuration explanatory diagram of the component mounting device M5 and the transport device Q to which the component supply device 21 and the storage device 22 of the present embodiment are mounted.
  • the transport device Q shown in FIGS. 1 and 3 includes a towed vehicle C on which the towed object is mounted and an automatic guided vehicle V for towing the towed vehicle C.
  • Different types of towed vehicle C are prepared according to the object to be transported.
  • the automatic guided vehicle V pulls the towed vehicle C and moves in the floor F according to the information transmitted from the management computer 3.
  • a distance measuring device L is installed at the head of the automatic guided vehicle V.
  • the distance measuring device L includes a sensor capable of measuring the distance to an object, such as a LiDAR (Light Detection And Ringing) or a stereo camera.
  • the accelerometer A provided with an acceleration sensor for measuring acceleration in the three-axis direction (XYZ-axis) or a gyro sensor for measuring acceleration in the six-axis direction is installed in the towed vehicle C.
  • the accelerometer A may be installed on the object to be transported mounted on the towed vehicle C.
  • the measurement result by the distance measuring device L and the accelerometer A is wirelessly transmitted to the management computer 3.
  • the measurement results of the distance measuring device L and the accelerometer A are temporarily stored in the storage device (logger) provided in the transport device Q in association with the measurement time, and the measurement results are transferred to the management computer 3 after the measurement. You may do so.
  • the transport device Q shown in FIGS. 1 and 3 is a trailer type in which the automatic transport vehicle V pulls the towed vehicle C, but the transport device Q is a combination of the automatic transport vehicle V and the towed vehicle C. It may be a configured track type.
  • the transport device Q for transporting the object to be transported used on the floor F in which the manufacturing device is installed includes a distance measuring device L equipped with a sensor capable of measuring the distance to the object and an acceleration for measuring the acceleration. A total of A is installed.
  • the component mounting lines L1 to L3 have the same configuration, and the component mounting lines L3 will be described below.
  • FIG. 2 is a schematic view of the inside of the floor F on which the component mounting line L3 is installed as viewed from the front side (lower side in FIG. 1).
  • the substrate supply device M1, the printing device M2, the printing inspection device M3, and the component mounting devices M4, M5 are connected from the upstream (left side of the paper surface) to the downstream (right side of the paper surface) in the substrate transport direction (X axis).
  • the mounting inspection device M6, the reflow device M7, the substrate recovery device M8, and other manufacturing devices are connected in series.
  • the board supply device M1 supplies a plurality of boards to be stored in the storage unit to the downstream device.
  • the printing apparatus M2 prints the cream solder on the substrate via the screen mask.
  • the print inspection device M3 inspects the printing state of the cream solder printed on the substrate.
  • the component mounting devices M4 and M5 mount components on the board.
  • the mounting inspection device M6 inspects the mounting state of the components mounted on the substrate.
  • the reflow device M7 heats the substrate and solder-bonds the electrode portion of the substrate and the terminal of the component.
  • the board recovery device M8 collects the reflowed board in the storage unit. As described above, one or more manufacturing devices that perform predetermined work on the substrate are installed on the floor F.
  • FIG. 3 is a schematic view of the component mounting device M5 as viewed from the rear side (upper side in FIG. 1).
  • the component supply units 11 are installed on both the front side and the rear side (front-rear direction of the Y-axis) of the component mounting device M5, respectively.
  • a dolly 13 to which a plurality of tape feeders 12 are mounted in parallel along the X axis is attached to the component supply unit 11 on the rear side.
  • the dolly 13 holds a reel 15 that stores the carrier tape 14 that stores the parts in a wound state.
  • the carrier tape 14 has a configuration in which components are stored in a plurality of pockets formed on the base tape and the pockets are sealed with a cover tape.
  • the carrier tape 14 pulled out from the reel 15 is attached to the tape feeder 12.
  • the tape feeder 12 peels off the cover tape while feeding the mounted carrier tape 14 at an internal pitch, and supplies the parts stored in the pocket to the component mounting device M5.
  • a new carrier tape 14 is attached to the tape feeder 12, or a new carrier tape 14 is joined to the rear end of the carrier tape 14 during parts supply.
  • the carrier tape 14 (object to be transported) containing the parts to be replenished is conveyed by the transfer device Q in a state of being stored in the reel 15.
  • the parts stored in the carrier tape 14 stored in the reel 15 and supplied to the parts mounting devices M4 and M5 by the tape feeder 12 are referred to as "tape parts".
  • a component supply device 21 that supplies components housed in a tray 17 held on the upper surface of the pallet 16 to the component mounting device M5 is attached to the component supply unit 11 on the rear side. Further, on the rear side of the parts supply device 21, a storage device 22 for supplying the pallet 16 to the parts supply device 21 is attached.
  • the storage device 22 stores a plurality of pallets 16 that hold the tray 17 in which the parts to be supplied to the component mounting device M5 are stored.
  • the pallet 16 stored in the storage device 22 is replenished and collected in the storage device 22 in a state of being stored (stored) in the tray magazine 20 having a plurality of pallet accommodating portions 19 (see FIG. 4A).
  • a magazine replacement window 23 for replacing the tray magazine 20 is arranged on the rear side of the storage device 22.
  • the tray magazine 20 (hereinafter referred to as “recovery magazine”) accommodating the pallet 16 that supplies the parts to the parts mounting device M5 and holds the empty tray 17 is taken out from the magazine replacement window 23. Then, the tray magazine 20 (hereinafter, referred to as “replenishment magazine”) accommodating the pallet 16 accommodating the tray 17 accommodating the parts is replenished to the storage device 22 from the magazine replacement window 23.
  • the replenishment magazine is an object to be transported by the transport device Q.
  • the tray magazine 20 is replaced by the operator W or by the transport device Q provided with the automatic replenishment device 56 (see FIG. 5B).
  • the parts stored in the tray 17 held by the pallet 16 and supplied to the parts mounting devices M4 and M5 by the parts supply device 21 are referred to as "tray parts".
  • a docking unit 24 is arranged on the rear side of the storage device 22.
  • the transport device Q having an automatic replenishment device 56 that automatically replenishes the pallet 16 transported in a state of being housed in the replenishment magazine to the storage device 22 is coupled to the docking unit 24 and is connected to the docking unit 24 via the magazine replacement window 23.
  • the collection magazine is collected, and the replenishment magazine is replenished to the storage device 22. In this way, the pallet 16 is conveyed to the storage device 22 by the transfer device Q in a state of being stored in the tray magazine 20.
  • the storage device 22 stores the tray magazine 20 for storing the pallet 16.
  • the storage device 22 has a pallet storage unit 19 that stores the pallet 16 that holds the tray 17, and supplies the pallet 16 to the parts supply device 21.
  • FIG. 4A is a configuration explanatory diagram of the tray magazine 20 of the present embodiment.
  • 4B and 4C are partial cross-sectional views of the tray 17 accommodating the parts of the present embodiment.
  • a plurality of accommodating portions 18 for accommodating tray parts are formed on the upper surface of the tray 17.
  • the tray 17 is prepared in a plurality of types in which the accommodating portion 18 is formed according to the size and shape of the accommodating parts.
  • the tray 17A for accommodating the large component P1 shown in FIG. 4B is formed with a large and deep accommodating portion 18A.
  • the tray 17B for accommodating the small component P2 shown in FIG. 4C is formed with a small and shallow accommodating portion 18B.
  • FIG. 5A is a block diagram showing a configuration of a management computer 3 included in the transport system of the present embodiment.
  • FIG. 5B is a block diagram showing a configuration of a transport device Q included in the transport system of the present embodiment.
  • the management computer 3 includes a management processing unit 30, a management storage unit 36, an input unit 43, a display unit 44, a communication unit 45, and a management side communication unit 3a.
  • the management processing unit 30 is a data processing device such as a CPU (Central Processing Unit), and includes an information acquisition unit 31, a caution point extraction unit 32, a route information creation unit 33, a transfer control unit 34, and an image analysis unit 35. ..
  • the management storage unit 36 is a storage device, and stores floor information 37, delivered object information 38, map information 39, acceleration information 40, caution point information 41, route information 42, and the like.
  • the input unit 43 is an input device such as a keyboard, a touch panel, or a mouse, and is used when inputting operation commands and data.
  • the display unit 44 is a display device such as a liquid crystal panel, and displays various data stored in the management storage unit 36, as well as various information such as an operation screen or an input screen for operation by the input unit 43.
  • the communication unit 45 is a communication interface, and transmits / receives data to / from the manufacturing devices constituting the component mounting lines L1 to L3 via the communication network 2.
  • the management side communication unit 3a wirelessly transmits and receives various information to and from the terminal side communication unit 6 of the information terminal 5 and the transport side communication unit 57 of the transport device Q.
  • the management computer 3 does not have to be configured by one computer, but may be configured by a plurality of devices. For example, all or part of the storage unit and the processing unit may be provided in the cloud via the server.
  • the transport device Q includes a transport control device 50, a traveling device 55, an automatic replenishment device 56, a transport side communication unit 57, a distance measuring device L, and an accelerometer A.
  • the transport control device 50 includes a travel processing unit 51, a replenishment processing unit 52, and a transport storage unit 53.
  • the transport storage unit 53 is a storage device and stores transport route information 54 and the like.
  • the transport-side communication unit 57 wirelessly transmits and receives various information to and from the management-side communication unit 3a of the management computer 3.
  • the transport side communication unit 57 receives the route information 42 described later from the management computer 3 and stores it in the transport storage unit 53 as the transport route information 54. Further, the transport side communication unit 57 transmits the measurement data of the distance measuring device L and the accelerometer A to the management computer 3.
  • the traveling device 55 includes a motor for driving the wheels of the automatic guided vehicle V, a mechanism for changing the direction of the wheels, and the like.
  • the travel processing unit 51 controls the travel device 55 in accordance with the transfer route information 54 stored in the transfer storage unit 53 or the instruction from the management computer 3, and designates the transfer device Q as the designated transfer route in the floor F. Run at the speed (maximum speed).
  • the automatic replenishment device 56 includes a mechanism for raising and lowering the tray magazine 20 and a mechanism for replenishing and collecting the tray magazine 20 in the storage device 22.
  • the replenishment processing unit 52 controls the automatic replenishment device 56 according to the instruction from the management computer 3 to replenish the transported tray magazine 20 to the storage device 22.
  • FIG. 6 is a diagram illustrating the creation of route information according to the present embodiment.
  • the floor information 37 is provided in the positions (coordinates) of the manufacturing devices of the component mounting lines L1 to L3 arranged on the floor F, the information (coordinates) of the transport route set on the floor F, and the transport route. It contains information such as the maximum speed of the section.
  • the information acquisition unit 31 causes the transport device Q equipped with the distance measuring device L and the accelerometer A to travel on the patrol route J (see FIG. 6) that orbits the transport path set in the floor F. Then, the information acquisition unit 31 acquires the measurement data of the distance to the surrounding object measured by the distance measuring device L while the transport device Q is traveling, and stores it in the management storage unit 36 as the map information 39.
  • the information acquisition unit 31 acquires the measurement data of the acceleration measured by the accelerometer A while the transport device Q is traveling, and stores it in the management storage unit 36 as the acceleration information 40.
  • the information acquisition unit 31 orbits the patrol route J while changing the traveling speed of the transport device Q, and acquires map information 39 and acceleration information 40.
  • the work of acquiring the map information 39 and the acceleration information 40 by running the transport device Q is executed at the start of the manufacturing work, after cleaning the floor F, or after changing the layout.
  • the transported object information 38 includes information for the transport device Q to transport the transported object such as parts or cream solder used in the manufacturing apparatus installed on the floor F.
  • the transported object information 38 includes information for the transport device Q to transport the transported object such as parts or cream solder used in the manufacturing apparatus installed on the floor F.
  • FIG. 7 is a diagram showing an example of the information to be transported 38 used in the transport system of the present embodiment.
  • the delivered object information 38 includes a container 61, a class 62, a maximum speed 63, and the like for each part name 60.
  • the container 61 shows a holding form of parts when mounted on the transport device Q.
  • the “tray” indicates that the tray component is housed in the tray 17
  • the “tape” indicates that the tape component is stored in the carrier tape 14 and stored in the reel. There is.
  • Class 62 is a classification of sensitivity (resistance) in which an abnormality occurs in the state of the object to be transported due to vibration received during transportation by the transfer device Q.
  • the class 62 is classified into four categories from “0" to "3", and the smaller the number, the stronger the vibration, and the larger the number, the weaker the vibration.
  • the component names 60 which are tape components
  • the class 62 is "0" because the components do not shift due to vibration.
  • the large part P1 shown in FIG. 4B which has high resistance to vibration
  • the small component P2 shown in FIG. 4C which has low resistance to vibration
  • the part whose class 62 is "1” will be referred to as "class 1 parts” and the like.
  • the maximum speed 63 indicates the maximum speed allowed during transportation of the part.
  • the maximum speed 63 is the magnitude of the acceleration that the parts being transported may receive, and is divided into a plurality of parts.
  • the first speed 63a with an acceleration in the Z-axis direction of "-0.8G or more”
  • the second speed 63b with an acceleration in the Z-axis direction of "-0.8G to -1.2G”
  • the Z-axis It is divided into three categories with the third speed 63c whose acceleration in the direction is "-1.2 G or less”.
  • G is the gravitational acceleration
  • -1.0G indicates that the acceleration in the Z-axis direction that is commensurate with the gravity of the earth is applied to the part.
  • a negative acceleration is applied in the Z-axis direction
  • the state of the parts in the accommodating portion 18 of the tray 17 becomes unstable. If the tray 17 moves at high speed in the horizontal direction during this period, an abnormality may occur in the housing state of the parts, such as the parts popping out from the housing unit 18 or the parts being inverted in the housing unit 18.
  • first threshold value the acceleration in the Z-axis direction of "-0.8 G”
  • second threshold value the acceleration in the Z-axis direction of "-0.8 G”
  • first threshold value the acceleration in the Z-axis direction of "-0.8 G”
  • second threshold value the acceleration in the Z-axis direction of "-1.2 G”
  • the first speed 63a is set to "1.0 m / s" for all parts.
  • the second speed 63b and the third speed 63c are set to the same "1.0 m / s" as the first speed 63a.
  • the second speed 63b is set to "1.0 m / s" which is the same as the first speed 63a, but the third speed 63c is set to "0.8 m / s". .. Further, in the class 2 parts, the second speed 63b is set to "0.8 m / s" and the third speed 63c is set to "0.5 m / s". Further, in the class 3 parts, the second speed 63b is set to "0.5 m / s" and the third speed 63c is set to "0.3 m / s". That is, when there is a possibility of receiving a negative acceleration when transporting a component having low resistance to vibration, the maximum speed 63 is set to be lowered (slowed).
  • the number of classifications of the class 62, the number of divisions of the maximum speed 63, and the threshold value set in the information 38 to be transported shown in FIG. 7 are examples, and even if there are three divisions, the number is five or more. May be good.
  • the threshold value of the acceleration in the Z-axis direction is also freely set based on the experimental results and the like according to the size and weight of the parts and the shape of the accommodating portion 18 of the tray 17. For example, a predetermined threshold value may be set corresponding to the object to be transported. Further, the acceleration serving as a threshold may be determined in consideration of not only the component in the Z-axis direction but also the component in the horizontal direction (X-axis direction and Y-axis direction).
  • the first threshold value and the second threshold value are the states in which the parts in the tray 17 are housed (the object to be transported) when the tray magazine 20 or the pallet 16 (the object to be transported) is transported by the transport device Q. It is set based on the acceleration at which an abnormality occurs in the state).
  • the attention point extraction unit 32 has a seam, a swell of the floor, or a swell of the floor while the transport device Q is traveling on the floor F based on the transported object information 38 and the acceleration information 40 stored in the management storage unit 36.
  • a caution point H that may give vibration to the transported object due to a falling object or the like is extracted.
  • FIG. 8A is a diagram showing an example of acceleration information 40 used in the transfer system of the present embodiment.
  • FIG. 8A shows an example of the acceleration information 40 between the point B1 and the point B5 measured by the accelerometer A while the transport device Q is traveling on the patrol path J of the floor F.
  • the caution point extraction unit 32 extracts points where the acceleration exceeds the first threshold value and the second threshold value from the acceleration information 40.
  • the attention point extraction unit 32 has two points, a caution point H1 that exceeds the first threshold value (-0.8G) and a caution point H2 that exceeds the second threshold value (-1.2G).
  • the caution point H is extracted.
  • the caution point extraction unit 32 of the transport device Q is based on the acceleration information 40 regarding the acceleration on the floor F acquired by traveling the floor F on the transport device Q with the accelerometer A installed.
  • the caution point H where an abnormality may occur due to the state of the floor F during traveling is extracted.
  • the extracted information of the caution point H is stored in the management storage unit 36 as the caution point information 41.
  • the route information creation unit 33 sets a detour section and a deceleration section in the transport route based on the transport route information, the map information 39, and the caution point information 41 included in the floor information 37.
  • the route information creation unit 33 updates the floor information 37 based on the information of the set detour section and the deceleration section.
  • the route information creation unit 33 sets a transport route (detour section) that bypasses the obstacle.
  • a transport route detour section
  • FIGS. 8B and 8C are diagrams showing an example of a deceleration section used in the transport system of the present embodiment.
  • the route information creation unit 33 may set a transport route (detour section) that bypasses the caution point H.
  • FIG. 8B and 8C show the class 2 parts set between the points B1 and B5 based on the caution points H1 and H2 extracted between the points B1 and B5 of the transport route shown in FIG. 8A.
  • An example of a deceleration section corresponding to transportation is shown.
  • the transport route is divided into a plurality of sections E, and the section E including the caution point H is set as the deceleration section.
  • the section E is divided by a predetermined distance (for example, every 1 m) or at a point where the transport path branches or turns.
  • the route information creating unit 33 divides the area between the points B1 and the point B5 into four sections E1 to E4 at equal intervals. That is, the section between points B1 and B5 is the section E1 between points B1 and B2, the section E2 between points B2 and B3, the section E3 between points B3 and B4, and the section between points B4 and B4. It is divided into the section E4 between B5.
  • the route information creation unit 33 sets the section E2 including the caution point H1 exceeding the first threshold value in the deceleration section E2 having a maximum speed of 0.8 m / s (second speed 63b).
  • the route information creation unit 33 sets the section E3 including the caution point H2 exceeding the second threshold value in the deceleration section E3 having a maximum speed of 0.5 m / s (third speed 63c).
  • the route information creation unit 33 sets the maximum speed between the section E1 and the section E4 not including the caution point H to 1.0 m / s (first speed 63a). In the case of class 3 parts, the route information creation unit 33 sets the maximum speed of the deceleration section E2 to 0.5 m / s (second speed 63b), and sets the maximum speed of the deceleration section E3 to 0.3 m / s. Set to (third speed 63b). Further, in the case of class 1 parts, the route information creation unit 33 does not set the section E2 including the caution point H1 as the deceleration section (maximum speed is 1.0 m / s), and sets the maximum speed of the deceleration section E3 to 0.
  • the section E of the transport path including the caution point H whose acceleration exceeds a predetermined threshold value when the transport device Q travels at the first speed 63a is a plurality of sections in which the transport path is divided. At least one of E1 to E4 (section E2 or section E3).
  • the deceleration section E is set by extending the rear margin distance Kb (for example, 0.5 m) backward from the caution point H and the forward margin distance Kf (for example, 0.5 m) forward.
  • the rear margin distance Kb and the front margin distance Kf are set according to the performance of the transport device Q, the state of the floor F, and the like.
  • the route information creation unit 33 extends the rear margin distance Kb backward and the front margin distance Kf forward from the caution point H1 to set the deceleration section E12. Further, the route information creating unit 33 sets the deceleration section E14 by extending the rear margin distance Kb to the rear and the front margin distance Kf to the front from the caution point H2.
  • the route information creation unit 33 sets the maximum speed of the deceleration section E12 to 0.8 m / s (second speed 63b) and the maximum speed of the deceleration section E14 to 0.5 m / s (third speed 63b). Set. Then, the route information creating unit 33 sets a section other than the deceleration section E12 and the deceleration section E14 as a section having a maximum speed of 1.0 m / s (first speed 63a).
  • the maximum speed is 1.0 m / s (the first) in the section E11 from the point B1 to the deceleration section E12, the section E13 between the deceleration section E12 and the deceleration section E14, and the section E15 from the deceleration section E14 to the point B5. It is set as a section of 1 speed 63a).
  • the section E of the transport path including the caution point H whose acceleration exceeds the predetermined threshold value when the transport device Q travels at the first speed 63a is moved back and forth from the caution points H1 and H2.
  • FIG. 9 is a diagram showing an example of a transport path set on the floor F on which the component mounting lines L1 to L3 of the present embodiment are installed.
  • the route information creating unit 33 sets the deceleration section according to the third embodiment, which is a combination of the first embodiment and the second embodiment described above. That is, the points B11 to B20 where the transport path is branched or turned, and the points B10 where the transport device Q on which the transported object stored in the storage shelf 4 is placed starts toward the manufacturing device are added. It is the same as the first embodiment in that it is divided into a plurality of sections E21 to E34 in advance.
  • the caution point extraction unit 32 extracts the caution points HY1 to HY3 in the section E24, the section E32, and the section E31, respectively.
  • the route information creation unit 33 sets the deceleration section EY1 by extending the caution point HY1 of the section E24 back and forth as in the second embodiment. Further, the route information creating unit 33 sets the sections other than the deceleration section EY1 in the section E24 to the section E24a and the section E24b. Similarly, the deceleration section EY2, the section E32a, and the section E32b are set in the section E32. Further, a deceleration section EY3, a section E31a, and a section E31b are set in the section E31.
  • the maximum speed of the deceleration section EY1 and the deceleration section EY3 is set to the second speed 63b, and the maximum speed of the deceleration section EY2 is set to the third speed 63c.
  • the maximum speed in the other sections is set to the first speed 63a.
  • the route information creating unit 33 transports the transported object on the floor F based on the floor information 37 and the transported object information 38 in which the deceleration sections EY1 to EY3 are set.
  • the route information 42 used for is created.
  • the created route information 42 is stored in the management storage unit 36.
  • the route information 42 is created according to the type of the object to be transported or the destination.
  • 10A and 10B are diagrams showing an example of the route information 42 used in the transport system of the present embodiment.
  • 10A and 10B show class 2 tray parts from the starting point T0 in front of the storage shelf 4 shown in FIG. 9 to the transport destination T1 on the rear side of the component mounting device M5 of the component mounting line L1.
  • the route information 42 is shown.
  • FIG. 10A shows route information 42 for transporting class 2 tray parts from the start point T0 to the transport destination T1 on the floor F where there is no caution point H in the transport path and the deceleration section is not set.
  • the route information creating unit 33 creates the route information 42 that travels from the start point T0 to the transport destination T1 at the maximum speed of 1.0 m / s (first speed 63a) in the sections E21 to E26. Further, the route information creating unit 33 travels from the transport destination T1 to the sections E26 to E31 at a maximum speed of 1.0 m / s (first speed 63a) as a return route after unloading the transported object, and starts at the starting point T0. Create route information 42 to return to.
  • FIG. 10B shows the route information 42 for transporting the class 2 tray parts from the start point T0 to the transport destination T1 in the transport path of the floor F in which the deceleration sections EY1 to EY3 shown in FIG. 9 are set.
  • a deceleration section EY1 having a maximum speed of the second speed 63b is set between the start point T0 and the transport destination T1. Therefore, as shown in FIG. 10B, the route information creating unit 33 has a maximum speed of 0.8 m / s (second speed 63b) in the deceleration section EY1 set between the start point T0 and the transport destination T1.
  • Route information 42 is created.
  • the deceleration section EY3 is set on the return route from the transport destination T1 to the start point T0.
  • the route information creating unit 33 creates the route information 42 that does not change the maximum speed in the deceleration section EY3 on the return route from the transport destination T1 to the start point T0 from 1.0 m / s (first speed 63a).
  • FIGS. 11A and 11B are diagrams showing other examples of the route information 42 used in the transport system of the present embodiment.
  • class 2 tray parts are transported from the start point T0 on the floor F created by the route information creation unit 33 to the transport destination T2 on the rear side of the component mounting device M5 of the component mounting line L2.
  • the route information 42 to be performed is shown.
  • FIG. 11A shows the case of the floor F in which the deceleration section is not set.
  • FIG. 11B shows the case of the floor F in which the deceleration sections EY1 to EY3 shown in FIG. 9 are set.
  • a deceleration section EY1 having a maximum speed of the second speed 63b and a deceleration section EY2 having a maximum speed of the third speed 63b are set between the start point T0 and the transport destination T2. Therefore, as shown in FIG. 11B, the route information creating unit 33 sets the maximum speed of the deceleration section EY1 to 0.8 m / s (second speed 63b) as the route information 42 from the start point T0 to the transport destination T2.
  • the route information 42 in which the maximum speed of the deceleration section EY2 is 0.5 m / s (third speed 63c) is created.
  • the route information creating unit 33 includes the route including the speed information regarding the traveling speed (maximum speed) of the transport device Q in the transport route based on the information of the caution points HY1 to HY3 extracted by the caution point extraction unit 32.
  • Information 42 is created.
  • the traveling speed includes a first speed 63a and a second speed 63b (third speed 63c) slower than the first speed 63a.
  • the route information creation unit 33 creates the route information 42 corresponding to the class 62 of the transported object. That is, the route information creating unit 33 changes the second speed 63b (third speed 63c) corresponding to the class 62 of the transported object.
  • the route information creating unit 33 sets the second speed 63b in the deceleration section EY1 of the transport route including the caution point HY1 in which the acceleration exceeds a predetermined threshold (first threshold) when the transport device Q travels at the first speed 63a.
  • the route information 42 set as the traveling speed (maximum speed) is created. That is, the second speed 63b is a speed at which the acceleration does not exceed a predetermined threshold value (first threshold value) when the transport device Q travels in the deceleration section EY1.
  • the route information creating unit 33 is the third in the deceleration section EY2 of the transport route including the caution point HY2 in which the acceleration exceeds a predetermined threshold (second threshold) when the transport device Q travels at the first speed 63a.
  • the route information 42 in which the speed 63c is set as the traveling speed (maximum speed) is created. That is, the third speed 63c is a speed at which the acceleration does not exceed a predetermined threshold value (second threshold value) when the transport device Q travels in the deceleration section EY2.
  • the transport control unit 34 controls the transport operation by the transport device Q based on the route information 42 stored in the management storage unit 36. That is, the management computer 3 including the transport control unit 34 travels the transport device Q set based on the pre-measured acceleration (acceleration information 40) caused by the state of the floor F when the transport device Q travels.
  • a control system for controlling the transport operation by the transport device Q is configured based on the route information 42 related to the transport route including the speed information regarding the speed (maximum speed).
  • control system transfer control unit 34
  • transfer control unit 34 controls the transfer work by the transfer device Q.
  • the first embodiment will be described with reference to FIGS. 5A, 5B, and 9.
  • the transport control unit 34 sets the type and destination of the transported object mounted on the transport device Q with respect to the transport device Q stopped at the start point T0 in front of the storage shelf 4.
  • the route information 42 corresponding to the above is transmitted to the transport device Q.
  • the transport device Q stores the received route information 42 in the transport storage unit 53 as transport route information 54.
  • the travel processing unit 51 controls the travel device 55 based on the stored transport route information 54 to transport the object to be transported. As a result, the object to be transported can be transported in a normal state on the floor F where the manufacturing apparatus is installed.
  • the transport control unit 34 transfers the route information 42 shown in FIG. 10B. Is transmitted to the transport device Q.
  • the transport control unit 34 provides the route information 42 corresponding to the component having the largest class 62 and being vulnerable to vibration to the transport device Q. Send to.
  • the transport control unit 34 transmits the route information 42 corresponding to the class 2 tray parts to the transport device Q.
  • the transport control unit 34 does not transmit the route information 42 to the transport device Q, but instead selects the route information 42 corresponding to the type of the object to be transported mounted on the transport device Q and the transport destination. Based on the above, travel instructions are sequentially transmitted according to the position of the transport device Q. For example, when controlling the transport work by the transport device Q based on the route information 42 shown in FIG. 10B, the maximum speed is 1.0 m from the point B13 to the section E24a with respect to the transport device Q traveling in the section E23. Instruct to run at / s (first speed 63a).
  • the transport device Q is instructed to travel at a maximum speed of 0.8 m / s (second speed 63b) in the deceleration section EY1.
  • the acceleration received by the transported object during transportation can be reduced, and the transported object can be transported in a normal state.
  • the image analysis unit 35 analyzes the image of the transport device Q traveling in the floor F captured by the photographing devices S1 to S8, and detects the state of the transport device Q during travel. For example, when the image analysis unit 35 extracts the caution point H instead of the caution point extraction unit 32 extracting the caution point H based on the acceleration information 40 measured by the accelerometer A installed in the transport device Q, the image. The analysis unit 35 detects the amount of change in the traveling device Q in the Z-axis direction.
  • the image analysis unit 35 stores the point where the detected change amount in the Z-axis direction exceeds a predetermined threshold value as the caution point H in the caution point information 41.
  • the route information creation unit 33 creates the route information 42 based on the attention point H extracted by the image analysis unit 35.
  • the floor is traveling when the transfer device Q is traveling. Traveling of the transport device Q in the transport route based on the caution point extraction unit 32 that extracts the caution point H that may cause an abnormality due to the state of F and the information of the caution point H (caution point information 41).
  • the management computer 3 including the route information creating unit 33 for creating the route information 42 including the speed information regarding the speed (maximum speed) constitutes a route information creating system.
  • a management computer 3 including a transport device Q for transporting an object to be transported on the floor F and a transport control unit 34 for controlling the transport work by the transport device Q based on the route information 42 regarding the transport route? , Configure the transport system.
  • the object to be transported can be transported in a normal state on the floor F where the manufacturing apparatus is installed.
  • FIG. 12 is a flow chart of the transport method of the present embodiment.
  • the route information 42 is created by the route information creation system (transport device Q and management computer 3) (ST1: route information creation process). That is, the route information regarding the transport route including the speed information regarding the travel speed (maximum speed) of the transport device Q, which is set based on the pre-measured acceleration generated due to the state of the floor F during the travel of the transport device Q. 42 is created.
  • the route information creation step (ST1) a plurality of route information 42 are created according to the type of the object to be transported and the destination.
  • control system controls the transfer work by the transfer device Q based on the created route information 42 (ST2: transfer work process).
  • the transfer work is controlled based on the route information 42 corresponding to the type of the object to be conveyed and the transfer destination by the transfer device Q.
  • the transport operation is controlled so that the maximum speed is the second speed 63b corresponding to the class 62 of the transported object ( See FIG. 9).
  • the transfer work step (ST2) is repeatedly executed until the transfer of all the objects to be transported is completed (No in ST3).
  • the transport work process (ST2) is executed in parallel for the plurality of transport devices Q.
  • FIG. 13 is a flow chart of the route information creating method of the present embodiment.
  • the information acquisition unit 31 installs a sensor (distance measuring device L) capable of measuring the distance to an object and an accelerometer A for measuring acceleration on the transport device Q or the transport device Q in a state of being installed on the transport device Q.
  • a sensor distance measuring device L
  • an accelerometer A for measuring acceleration on the transport device Q or the transport device Q in a state of being installed on the transport device Q.
  • the caution point extraction unit 32 extracts caution points HY1 to HY3, which may cause an abnormality due to the state of the floor F when the transport device Q is traveling, based on the acceleration information 40 (ST12: caution points). Extraction process).
  • the route information creation unit 33 sets the deceleration sections EY1 to EY3 in the transport route based on the extracted information of the caution points HY1 to HY3 (caution point information 41) (ST13: deceleration section setting step). Further, the route information creation unit 33 sets a detour section that bypasses obstacles on the transport route from the map information 39.
  • the route information creation unit 33 creates the route information 42 corresponding to the type (class 62) of the object to be transported and the transport destination (ST14: route information creation process).
  • the route information creating step (ST14) is repeatedly executed until the route information 42 is created in all combinations by changing the combination of the type of the object to be transported and the transport destination (No in ST15).
  • the traveling speed (maximum) of the transport device Q in the transport route corresponds to the type of the object to be transported and the transport destination.
  • the route information 42 including the speed information regarding the speed) is created.
  • all combinations are created in advance and stored in the management storage unit 36, and when the type of the object to be transported and the transfer destination are determined in the transfer work process (ST2), the combination is used.
  • the corresponding route information 42 may be created.
  • the transport device Q that transports the object to be transported such as the tray magazine 20 on the floor F in which the manufacturing device that performs the work on the substrate is arranged as the transport system has been described as an example.
  • the manufacturing apparatus may be a manufacturing apparatus that performs production work on a wafer (work) in a semiconductor manufacturing line that manufactures semiconductor products
  • the conveyed object may be a wafer carrier accommodating a wafer.
  • the manufacturing equipment is a manufacturing equipment that performs production work in an assembly production line that assembles electrical equipment or a food processing line that produces processed food products
  • the object to be transported is a mounting substrate or housing, or a food material or container. May be.
  • the transport system, the transport method, the route information creation system, and the route information creation method of the present disclosure have an effect that the transported object can be transported in a normal state on the floor where the manufacturing apparatus is installed, and the parts can be transported. It is useful in the field of mounting on a board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Factory Administration (AREA)

Abstract

This route information creation system: causes a transport device (Q), on which an accelerometer (A) that measures acceleration is mounted, to travel on a floor (F); extracts a caution site, at which there is a possibility that an abnormality will occur due to the state of the floor (F) during travel of the transport device (Q); and creates route information on the basis of information about the extracted caution site, the route information including speed information pertaining to the travel speed of the transport device (Q) on a travel route.

Description

搬送システム、搬送方法、経路情報作成システムならびに経路情報作成方法Transport system, transport method, route information creation system and route information creation method
 本開示は、製造装置が設置されたフロアにおいて被搬送物を搬送する搬送システム、搬送方法、経路情報作成システムならびに経路情報作成方法に関する。 This disclosure relates to a transport system, a transport method, a route information creation system, and a route information creation method for transporting an object to be transported on the floor where the manufacturing equipment is installed.
 基板に部品を装着する部品装着装置に対して部品を供給する部品供給装置として、トレイに収容された部品を供給するトレイフィーダが広く用いられている。また、部品装着装置などの製造装置が設置されたフロアの省人化および無人化の取り組みとして、製造装置で使用される部材(被搬送物)を自動で搬送および供給する技術が開発されている(例えば、特許文献1参照)。 A tray feeder that supplies parts housed in a tray is widely used as a parts supply device that supplies parts to a parts mounting device that mounts parts on a board. In addition, as an effort to save labor and unmanned floors on which manufacturing equipment such as parts mounting equipment is installed, technology for automatically transporting and supplying members (objects to be transported) used in manufacturing equipment has been developed. (See, for example, Patent Document 1).
 特許文献1には、部品を収容した複数のトレイを載置して保持するカートと無人搬送車とを連結し、無人搬送車でカートを製造装置の前まで移動させて、カートに保持されたトレイを製造装置に供給することが開示されている。 In Patent Document 1, a cart on which a plurality of trays containing parts are placed and held is connected to an automatic guided vehicle, and the automatic guided vehicle moves the cart to the front of the manufacturing apparatus and holds the cart in the cart. It is disclosed that the tray is supplied to the manufacturing apparatus.
特開2019-91770号公報Japanese Unexamined Patent Publication No. 2019-19770
 しかしながら、特許文献1を含む従来技術では、無人搬送車によって被搬送物を製造装置に供給することができるものの、フロアの状態に起因して、次のような問題点があった。すなわち、無人搬送車が走行する搬送経路が上下に波打つ地点を通過する、または、ネジおよびゴミなどの落下物またはフロアの継ぎ目を乗り越える際に、無人搬搬送車またはカートが跳ねて、トレイから部品がこぼれ落ちることがあり、さらなる改善の余地があった。 However, in the prior art including Patent Document 1, although the object to be transported can be supplied to the manufacturing apparatus by an automatic guided vehicle, there are the following problems due to the condition of the floor. That is, the automated guided vehicle or cart bounces off the tray as it passes through points where the automated guided vehicle travels up and down, or when it gets over falling objects such as screws and debris or floor seams. Spilled out, leaving room for further improvement.
 本開示は、製造装置が設置されたフロアにおいて、被搬送物を正常な状態で搬送することができる搬送システム、搬送方法、経路情報作成システムならびに経路情報作成方法を提供することを目的とする。 It is an object of the present disclosure to provide a transport system, a transport method, a route information creation system, and a route information creation method capable of transporting an object to be transported in a normal state on a floor on which a manufacturing apparatus is installed.
 本開示の搬送システムは、基板に対して所定の作業を行う1以上の製造装置が設置されたフロアにおいて用いられる、被搬送物を搬送する搬送装置と、搬送経路に関する経路情報に基づいて、搬送装置による搬送作業を制御する制御システムと、を備える。経路情報は、搬送装置の走行時にフロアの状態に起因して生じる予め計測された加速度に基づいて設定された、搬送装置の走行速度に関する速度情報を含む。 The transport system of the present disclosure is used on a floor on which one or more manufacturing devices that perform predetermined operations on a substrate are installed, and is based on a transport device for transporting an object to be transported and route information regarding a transport route. It is equipped with a control system that controls the transfer work by the device. The route information includes speed information regarding the traveling speed of the conveying device, which is set based on the pre-measured acceleration caused by the condition of the floor when the conveying device is traveling.
 本開示の搬送方法は、基板に対して所定の作業を行う1以上の製造装置が設置されたフロアにおいて用いられる、被搬送物を搬送装置により搬送する搬送方法であって、搬送装置の走行時にフロアの状態に起因して生じる予め計測された加速度に基づいて設定された、搬送装置の走行速度に関する速度情報を含む搬送経路に関する経路情報に基づいて、搬送装置による搬送作業を制御する、ことを含む。 The transport method of the present disclosure is a transport method for transporting an object to be transported by a transport device, which is used on a floor on which one or more manufacturing devices that perform predetermined operations on a substrate are installed, and is used when the transport device is running. To control the transport work by the transport device based on the route information about the transport route including the speed information about the traveling speed of the transport device, which is set based on the pre-measured acceleration caused by the condition of the floor. include.
 本開示の経路情報作成システムは、基板に対して所定の作業を行う1以上の製造装置が設けられたフロアにおいて用いられる、被搬送物を搬送する搬送装置と、搬送装置または被搬送物に設置され、加速度を計測する加速度計と、加速度計を設置した状態で、搬送装置にフロアを走行させることで取得されたフロアにおける加速度に関する加速度情報に基づいて、搬送装置の走行時にフロアの状態に起因して異常が生じる可能性がある注意地点を抽出する注意地点抽出部と、注意地点抽出部によって抽出された注意地点の情報に基づいて、搬送経路における搬送装置の走行速度に関する速度情報を含む経路情報を作成する経路情報作成部と、を備える。 The route information creation system of the present disclosure is installed on a transport device for transporting an object to be transported and a transport device or the object to be transported, which is used on a floor provided with one or more manufacturing devices that perform predetermined work on a substrate. Based on the acceleration information about the acceleration on the floor acquired by running the floor on the transport device with the accelerometer that measures the acceleration and the accelerometer installed, it is caused by the state of the floor when the transport device is running. Based on the information of the caution point extraction unit that extracts the caution point that may cause an abnormality and the caution point extraction unit extracted by the caution point extraction unit, the route including the speed information regarding the traveling speed of the transport device in the transport route. It is equipped with a route information creation unit for creating information.
 本開示の経路情報作成方法は、基板に対して所定の作業を行う1以上の製造装置が設けられたフロアにおいて用いられる、被搬送物を搬送する搬送装置の搬送経路に関する経路情報を作成する経路情報作成方法であって、加速度を計測する加速度計を搬送装置または被搬送物に設置した状態で、搬送装置にフロアを走行させることで、フロアにおける加速度に関する加速度情報を取得し、加速度情報に基づいて、搬送装置の走行時にフロアの状態に起因して異常が生じる可能性がある注意地点を抽出し、抽出された注意地点の情報に基づいて、搬送経路における搬送装置の走行速度に関する速度情報を含む経路情報を作成する、ことを含む。 The route information creation method of the present disclosure is a route for creating route information regarding a transport route of a transport device for transporting an object to be transported, which is used on a floor provided with one or more manufacturing devices that perform predetermined work on a substrate. This is an information creation method. By running the floor on the transport device with an accelerometer that measures acceleration installed on the transport device or the object to be transported, acceleration information related to the acceleration on the floor is acquired and based on the acceleration information. Then, when the transport device is running, the caution points where an abnormality may occur due to the condition of the floor are extracted, and based on the extracted information of the caution points, the speed information regarding the traveling speed of the transport device in the transport route is obtained. Includes creating route information.
 本開示によれば、製造装置が設置されたフロアにおいて、被搬送物を正常な状態で搬送することができる。 According to the present disclosure, the transported object can be transported in a normal state on the floor where the manufacturing equipment is installed.
図1は、本開示の一実施の形態の部品装着システムを含むフロアの構成説明図である。FIG. 1 is a configuration explanatory view of a floor including the component mounting system according to the embodiment of the present disclosure. 図2は、本開示の一実施の形態の部品装着システムが備える部品装着ラインを含むフロアの構成説明図である。FIG. 2 is a configuration explanatory view of a floor including a component mounting line included in the component mounting system according to the embodiment of the present disclosure. 図3は、本開示の一実施の形態の部品供給装置と保管装置が装着された部品装着装置と搬送装置の構成説明図である。FIG. 3 is a configuration explanatory view of a component mounting device and a transport device equipped with a component supply device and a storage device according to an embodiment of the present disclosure. 図4Aは、本開示の一実施の形態のトレイマガジンの構成説明図である。FIG. 4A is a configuration explanatory view of a tray magazine according to an embodiment of the present disclosure. 図4Bは、本開示の一実施の形態の部品を収容するトレイの部分断面図である。FIG. 4B is a partial cross-sectional view of a tray accommodating the parts of one embodiment of the present disclosure. 図4Cは、本開示の一実施の形態の部品を収容するトレイの部分断面図である。FIG. 4C is a partial cross-sectional view of a tray accommodating the parts of one embodiment of the present disclosure. 図5Aは、本開示の一実施の形態の搬送システムが備える管理コンピュータの構成を示すブロック図である。FIG. 5A is a block diagram showing a configuration of a management computer included in the transport system according to the embodiment of the present disclosure. 図5Bは、本開示の一実施の形態の搬送システムが備える搬送装置の構成を示すブロック図である。FIG. 5B is a block diagram showing a configuration of a transport device included in the transport system according to the embodiment of the present disclosure. 図6は、本開示の一実施の形態の経路情報作成を説明する図である。FIG. 6 is a diagram illustrating the creation of route information according to the embodiment of the present disclosure. 図7は、本開示の一実施の形態の搬送システムで使用される被搬送物情報の例を示す図である。FIG. 7 is a diagram showing an example of information to be transported used in the transport system according to the embodiment of the present disclosure. 図8Aは、本開示の一実施の形態の搬送システムで使用される加速度情報の例を示す図である。FIG. 8A is a diagram showing an example of acceleration information used in the transport system according to the embodiment of the present disclosure. 図8Bは、本開示の一実施の形態の搬送システムで使用される減速区間の例を示す図である。FIG. 8B is a diagram showing an example of a deceleration section used in the transport system according to the embodiment of the present disclosure. 図8Cは、本開示の一実施の形態の搬送システムで使用される減速区間の例を示す図である。FIG. 8C is a diagram showing an example of a deceleration section used in the transport system according to the embodiment of the present disclosure. 図9は、本開示の一実施の形態の部品装着ラインが設置されたフロアに設定された搬送経路の例を示す図である。FIG. 9 is a diagram showing an example of a transport path set on the floor on which the component mounting line according to the embodiment of the present disclosure is installed. 図10Aは、本開示の一実施の形態の搬送システムで使用される経路情報の例を示す図である。FIG. 10A is a diagram showing an example of route information used in the transport system according to the embodiment of the present disclosure. 図10Bは、本開示の一実施の形態の搬送システムで使用される経路情報の例を示す図である。FIG. 10B is a diagram showing an example of route information used in the transport system according to the embodiment of the present disclosure. 図11Aは、本開示の一実施の形態の搬送システムで使用される経路情報の他の例を示す図である。FIG. 11A is a diagram showing another example of route information used in the transport system of one embodiment of the present disclosure. 図11Bは、本開示の一実施の形態の搬送システムで使用される経路情報の他の例を示す図である。FIG. 11B is a diagram showing another example of route information used in the transport system of one embodiment of the present disclosure. 図12は、本開示の一実施の形態の搬送方法のフロー図である。FIG. 12 is a flow chart of a transport method according to an embodiment of the present disclosure. 図13は、本開示の一実施の形態の経路情報作成方法のフロー図である。FIG. 13 is a flow chart of a route information creating method according to an embodiment of the present disclosure.
 以下に図面を用いて、本開示の一実施の形態を詳細に説明する。以下で述べる構成および形状等は、説明のための例示であって、部品装着システム、管理コンピュータ、部品装着ライン、部品装着装置、部品供給装置、保管装置または搬送装置の仕様に応じ、適宜変更が可能である。 An embodiment of the present disclosure will be described in detail below with reference to the drawings. The configurations and shapes described below are examples for explanation, and may be changed as appropriate according to the specifications of the component mounting system, management computer, component mounting line, component mounting device, component supply device, storage device, or transfer device. It is possible.
 以下では、全ての図面において、対応する要素には同一符号を付し、重複する説明を省略する。図1、および後述する一部では、水平面内で互いに直交する2軸方向として、基板搬送方向のX軸(図1における左右方向)、基板搬送方向に直交するY軸(図1における左右方向)が示される。また、図2、および後述する一部では、水平面と直交する高さ方向としてZ軸(図2における上下方向)が示される。 In the following, in all drawings, the corresponding elements are designated by the same reference numerals, and duplicate explanations are omitted. In FIG. 1 and a part described later, the X-axis in the substrate transport direction (horizontal direction in FIG. 1) and the Y-axis orthogonal to the substrate transport direction (horizontal direction in FIG. 1) are biaxial directions orthogonal to each other in the horizontal plane. Is shown. Further, in FIG. 2 and a part described later, the Z axis (vertical direction in FIG. 2) is shown as a height direction orthogonal to the horizontal plane.
 まず図1を参照して、部品装着システム1の構成を説明する。図1は、本実施の形態の部品装着システム1を含むフロアFの構成説明図である。図2は、本実施の形態の部品装着システム1が備える部品装着ラインL1~L3を含むフロアFの構成説明図である。 First, the configuration of the component mounting system 1 will be described with reference to FIG. FIG. 1 is a configuration explanatory view of a floor F including the component mounting system 1 of the present embodiment. FIG. 2 is a configuration explanatory view of a floor F including component mounting lines L1 to L3 included in the component mounting system 1 of the present embodiment.
 部品装着システム1は、フロアFに設置された3本の部品装着ラインL1~L3が、有線または無線の通信ネットワーク2によって接続され、管理コンピュータ3によって管理される構成となっている。各部品装着ラインL1~L3は、後述するように、部品装着装置を含む複数の製造装置を連結して構成され、基板に部品を装着した実装基板を生産する機能を有している。なお、部品装着システム1が備える部品装着ラインL1~L3は、3本である必要はなく、1本、2本または4本以上でも良い。 The component mounting system 1 has a configuration in which three component mounting lines L1 to L3 installed on the floor F are connected by a wired or wireless communication network 2 and managed by a management computer 3. As will be described later, each component mounting line L1 to L3 is configured by connecting a plurality of manufacturing devices including a component mounting device, and has a function of producing a mounting board in which components are mounted on the board. The component mounting lines L1 to L3 included in the component mounting system 1 do not have to be three, and may be one, two, or four or more.
 フロアFには、部品装着ラインL1~L3が備える部品装着装置に補給される部品および印刷装置に補給されるクリームはんだなどの部材が収納される収納棚4が設置されている。部品は、トレイの上に載置された状態またはキャリアテープに保持されてリールに巻回収納された状態などで、収納棚4の所定の保管棚に保管されている。収納棚4に収納されている部品の位置は、保管される部品名、トレイ番号またはリール番号などに紐付けられて、管理コンピュータ3によって管理されている。 On the floor F, a storage shelf 4 is installed in which parts supplied to the parts mounting device provided in the parts mounting lines L1 to L3 and members such as cream solder supplied to the printing device are stored. The parts are stored in a predetermined storage shelf of the storage shelf 4 in a state of being placed on a tray or in a state of being held by a carrier tape and wound and stored on a reel. The positions of the parts stored in the storage shelf 4 are associated with the stored part names, tray numbers, reel numbers, and the like, and are managed by the management computer 3.
 図1および図2において、フロアFの天井Faには、複数(ここでは8台)の撮影装置S1~S8が設置されている。撮影装置S1~S8は、それぞれ通信ネットワーク2によって管理コンピュータ3と接続されている。撮影装置S1~S8は、カメラを有する撮影部を備えており、撮影部によってフロアFで作業する作業者Wおよび搬送装置Qを撮影し、撮影データを管理コンピュータ3に送信する。撮影装置S1~S8は、いずれかの撮影装置S1~S8によって、フロアFで作業する作業者Wおよび搬送装置Qが撮影できるように、台数および設置位置が設定される。 In FIGS. 1 and 2, a plurality of (8 units in this case) photographing devices S1 to S8 are installed on the ceiling Fa of the floor F. The photographing devices S1 to S8 are each connected to the management computer 3 by the communication network 2. The photographing devices S1 to S8 include a photographing unit having a camera, and the photographing unit photographs the worker W and the transport device Q working on the floor F, and transmits the photographing data to the management computer 3. The number and installation position of the photographing devices S1 to S8 are set so that the worker W working on the floor F and the transport device Q can photograph by any of the photographing devices S1 to S8.
 図1において、フロアFで作業する作業者Wは、情報端末5を携帯している。情報端末5は、スマートフォンまたはタブレットPC(パーソナルコンピュータ)などであり、管理コンピュータ3が備える管理側通信部3aと無線で通信して情報の授受を行う端末側通信部6、および表示機能と入力機能とを有するタッチパネル7を備えている。情報端末5は、管理コンピュータ3から受信した各種情報を表示処理してタッチパネル7に表示する。また、情報端末5は、タッチパネル7から入力された各種情報などを管理コンピュータ3に送信する。 In FIG. 1, the worker W working on the floor F carries the information terminal 5. The information terminal 5 is a smartphone, a tablet PC (personal computer), or the like, and is a terminal-side communication unit 6 that wirelessly communicates with a management-side communication unit 3a included in the management computer 3 to exchange information, and a display function and an input function. It is provided with a touch panel 7 having and. The information terminal 5 displays and processes various information received from the management computer 3 and displays it on the touch panel 7. Further, the information terminal 5 transmits various information input from the touch panel 7 to the management computer 3.
 図1において、フロアFには、部品(トレイおよびリール)ならびに部材などの被搬送物を搬送し、製造装置に補給する搬送装置Q(搬送ロボット)が稼働している。 In FIG. 1, a transport device Q (conveyor robot) that transports parts (tray and reel) and objects to be transported such as members and supplies them to the manufacturing apparatus is operating on the floor F.
 図3は、本実施の形態の部品供給装置21と保管装置22が装着された部品装着装置M5と搬送装置Qの構成説明図である。図1および図3に示す搬送装置Qは、被搬送物を搭載する被牽引車Cと、被牽引車Cを牽引する自動搬送車Vとを備えて構成されている。 FIG. 3 is a configuration explanatory diagram of the component mounting device M5 and the transport device Q to which the component supply device 21 and the storage device 22 of the present embodiment are mounted. The transport device Q shown in FIGS. 1 and 3 includes a towed vehicle C on which the towed object is mounted and an automatic guided vehicle V for towing the towed vehicle C.
 被牽引車Cは、搬送する被搬送物に対応して異なる種類が用意されている。自動搬送車Vは、管理コンピュータ3から送信される情報に従って、被牽引車Cを牽引してフロアF内を移動する。 Different types of towed vehicle C are prepared according to the object to be transported. The automatic guided vehicle V pulls the towed vehicle C and moves in the floor F according to the information transmitted from the management computer 3.
 自動搬送車Vの先頭部には、距離計測装置Lが設置されている。距離計測装置Lは、LiDAR(Light Detection And Ranging)またはステレオカメラなど、物体までの距離を測定可能なセンサを備えている。また、被牽引車Cには、3軸方向(XYZ軸)の加速度を計測する加速度センサまたは6軸方向の加速度を計測するジャイロセンサなどを備える加速度計Aが設置されている。なお、加速度計Aは、被牽引車Cに搭載される被搬送物に設置するようにしてもよい。 A distance measuring device L is installed at the head of the automatic guided vehicle V. The distance measuring device L includes a sensor capable of measuring the distance to an object, such as a LiDAR (Light Detection And Ringing) or a stereo camera. Further, the accelerometer A provided with an acceleration sensor for measuring acceleration in the three-axis direction (XYZ-axis) or a gyro sensor for measuring acceleration in the six-axis direction is installed in the towed vehicle C. The accelerometer A may be installed on the object to be transported mounted on the towed vehicle C.
 距離計測装置Lと加速度計Aとによる計測結果は、無線により管理コンピュータ3に送信される。なお、距離計測装置Lと加速度計Aとによる計測結果を、計測時間と関連付けて、搬送装置Qが備える記憶装置(ロガー)に一時的に記憶し、計測後に管理コンピュータ3に計測結果を転送するようにしてもよい。 The measurement result by the distance measuring device L and the accelerometer A is wirelessly transmitted to the management computer 3. The measurement results of the distance measuring device L and the accelerometer A are temporarily stored in the storage device (logger) provided in the transport device Q in association with the measurement time, and the measurement results are transferred to the management computer 3 after the measurement. You may do so.
 なお、図1および図3に示す搬送装置Qは、自動搬送車Vが被牽引車Cを牽引するトレーラタイプであったが、搬送装置Qは、自動搬送車Vと被牽引車Cとが一体構成されたトラックタイプであってもよい。このように、製造装置が設置されたフロアFにおいて用いられる被搬送物を搬送する搬送装置Qには、物体までの距離を測定可能なセンサを備えた距離計測装置Lと、加速度を計測する加速度計Aとが設置されている。 The transport device Q shown in FIGS. 1 and 3 is a trailer type in which the automatic transport vehicle V pulls the towed vehicle C, but the transport device Q is a combination of the automatic transport vehicle V and the towed vehicle C. It may be a configured track type. As described above, the transport device Q for transporting the object to be transported used on the floor F in which the manufacturing device is installed includes a distance measuring device L equipped with a sensor capable of measuring the distance to the object and an acceleration for measuring the acceleration. A total of A is installed.
 次に、図2を参照して、部品装着ラインL1~L3の詳細な構成を説明する。部品装着ラインL1~L3は、同様の構成をしており、以下、部品装着ラインL3について説明する。 Next, with reference to FIG. 2, the detailed configuration of the component mounting lines L1 to L3 will be described. The component mounting lines L1 to L3 have the same configuration, and the component mounting lines L3 will be described below.
 図2は、部品装着ラインL3が設置されたフロアF内をフロント側(図1における下方側)から見た概略図である。部品装着ラインL3には、基板搬送方向(X軸)の上流(紙面左側)から下流(紙面右側)に向けて、基板供給装置M1、印刷装置M2、印刷検査装置M3、部品装着装置M4,M5、装着検査装置M6、リフロー装置M7、基板回収装置M8などの製造装置が直列に連結されている。 FIG. 2 is a schematic view of the inside of the floor F on which the component mounting line L3 is installed as viewed from the front side (lower side in FIG. 1). In the component mounting line L3, the substrate supply device M1, the printing device M2, the printing inspection device M3, and the component mounting devices M4, M5 are connected from the upstream (left side of the paper surface) to the downstream (right side of the paper surface) in the substrate transport direction (X axis). , The mounting inspection device M6, the reflow device M7, the substrate recovery device M8, and other manufacturing devices are connected in series.
 基板供給装置M1は、収納部に収納する複数の基板を下流の装置に供給する。印刷装置M2は、スクリーンマスクを介して基板にクリームはんだを印刷する。印刷検査装置M3は、基板に印刷されたクリームはんだの印刷状態を検査する。部品装着装置M4,M5は、基板に部品を装着する。装着検査装置M6は、基板に装着された部品の装着状態を検査する。リフロー装置M7は、基板を加熱して、基板の電極部と部品の端子とをはんだ接合させる。基板回収装置M8は、リフロー後の基板を収納部に回収する。このように、フロアFには、基板に対して所定の作業を行う1以上の製造装置が設置されている。 The board supply device M1 supplies a plurality of boards to be stored in the storage unit to the downstream device. The printing apparatus M2 prints the cream solder on the substrate via the screen mask. The print inspection device M3 inspects the printing state of the cream solder printed on the substrate. The component mounting devices M4 and M5 mount components on the board. The mounting inspection device M6 inspects the mounting state of the components mounted on the substrate. The reflow device M7 heats the substrate and solder-bonds the electrode portion of the substrate and the terminal of the component. The board recovery device M8 collects the reflowed board in the storage unit. As described above, one or more manufacturing devices that perform predetermined work on the substrate are installed on the floor F.
 次に、図3を参照して、部品装着装置M5の詳細について説明する。図3は、部品装着装置M5をリア側(図1における上方側)から見た概略図である。部品装着装置M5のフロント側とリア側の両側(Y軸の前後方向)には、それぞれ部品供給部11が設置されている。リア側の部品供給部11には、複数のテープフィーダ12がX軸に沿って並列に装着された台車13が取り付けられている。 Next, the details of the component mounting device M5 will be described with reference to FIG. FIG. 3 is a schematic view of the component mounting device M5 as viewed from the rear side (upper side in FIG. 1). The component supply units 11 are installed on both the front side and the rear side (front-rear direction of the Y-axis) of the component mounting device M5, respectively. A dolly 13 to which a plurality of tape feeders 12 are mounted in parallel along the X axis is attached to the component supply unit 11 on the rear side.
 台車13には、部品を格納したキャリアテープ14を巻回状態で収納するリール15が保持されている。キャリアテープ14は、ベーステープに形成された複数のポケットにそれぞれ部品を格納し、カバーテープでポケットを封止した構成をしている。 The dolly 13 holds a reel 15 that stores the carrier tape 14 that stores the parts in a wound state. The carrier tape 14 has a configuration in which components are stored in a plurality of pockets formed on the base tape and the pockets are sealed with a cover tape.
 リール15から引き出されたキャリアテープ14は、テープフィーダ12に装着される。テープフィーダ12は、装着されたキャリアテープ14を内部でピッチ送りしながら、カバーテープを剥離して、ポケットに格納された部品を部品装着装置M5に供給する。部品補給の際には、テープフィーダ12に新たなキャリアテープ14が装着される、または、部品供給中のキャリアテープ14の後端に新たなキャリアテープ14が継合される。 The carrier tape 14 pulled out from the reel 15 is attached to the tape feeder 12. The tape feeder 12 peels off the cover tape while feeding the mounted carrier tape 14 at an internal pitch, and supplies the parts stored in the pocket to the component mounting device M5. When supplying parts, a new carrier tape 14 is attached to the tape feeder 12, or a new carrier tape 14 is joined to the rear end of the carrier tape 14 during parts supply.
 補給される部品を格納したキャリアテープ14(被搬送物)は、リール15に収納された状態で、搬送装置Qによって搬送される。以下、リール15に収納されたキャリアテープ14に格納され、テープフィーダ12によって部品装着装置M4,M5に供給される部品を「テープ部品」と称する。 The carrier tape 14 (object to be transported) containing the parts to be replenished is conveyed by the transfer device Q in a state of being stored in the reel 15. Hereinafter, the parts stored in the carrier tape 14 stored in the reel 15 and supplied to the parts mounting devices M4 and M5 by the tape feeder 12 are referred to as "tape parts".
 図3において、リア側の部品供給部11には、パレット16の上面に保持されたトレイ17に収容された部品を部品装着装置M5に供給する部品供給装置21が取り付けられている。また、部品供給装置21のリア側には、部品供給装置21へとパレット16を供給する保管装置22が取り付けられている。保管装置22には、部品装着装置M5に供給する部品が収容されたトレイ17を保持する複数のパレット16が保管されている。 In FIG. 3, a component supply device 21 that supplies components housed in a tray 17 held on the upper surface of the pallet 16 to the component mounting device M5 is attached to the component supply unit 11 on the rear side. Further, on the rear side of the parts supply device 21, a storage device 22 for supplying the pallet 16 to the parts supply device 21 is attached. The storage device 22 stores a plurality of pallets 16 that hold the tray 17 in which the parts to be supplied to the component mounting device M5 are stored.
 保管装置22に保管されるパレット16は、複数のパレット収容部19(図4A参照)を有するトレイマガジン20に収納(保管)された状態で、保管装置22に補給され、また回収される。保管装置22のリア側には、トレイマガジン20を交換するためのマガジン交換用窓23が配置されている。 The pallet 16 stored in the storage device 22 is replenished and collected in the storage device 22 in a state of being stored (stored) in the tray magazine 20 having a plurality of pallet accommodating portions 19 (see FIG. 4A). A magazine replacement window 23 for replacing the tray magazine 20 is arranged on the rear side of the storage device 22.
 部品装着装置M5に部品を供給して空となったトレイ17を保持するパレット16を収容するトレイマガジン20(以下、「回収マガジン」と称する)は、マガジン交換用窓23から取り出される。そして、部品を収容するトレイ17を保持するパレット16を収容するトレイマガジン20(以下、「補給マガジン」と称する)は、マガジン交換用窓23から保管装置22に補給される。補給マガジンは、搬送装置Qによって搬送される被搬送物である。 The tray magazine 20 (hereinafter referred to as “recovery magazine”) accommodating the pallet 16 that supplies the parts to the parts mounting device M5 and holds the empty tray 17 is taken out from the magazine replacement window 23. Then, the tray magazine 20 (hereinafter, referred to as “replenishment magazine”) accommodating the pallet 16 accommodating the tray 17 accommodating the parts is replenished to the storage device 22 from the magazine replacement window 23. The replenishment magazine is an object to be transported by the transport device Q.
 トレイマガジン20の交換は、作業者Wにより、または、自動補給装置56(図5B参照)を備えた搬送装置Qにより行われる。以下、パレット16に保持されたトレイ17に格納され、部品供給装置21によって部品装着装置M4,M5に供給される部品を「トレイ部品」と称する。 The tray magazine 20 is replaced by the operator W or by the transport device Q provided with the automatic replenishment device 56 (see FIG. 5B). Hereinafter, the parts stored in the tray 17 held by the pallet 16 and supplied to the parts mounting devices M4 and M5 by the parts supply device 21 are referred to as "tray parts".
 図3において、保管装置22のリア側には、ドッキング部24が配置されている。補給マガジンに収容された状態で搬送されるパレット16を保管装置22に自動で補給する自動補給装置56を有する搬送装置Qは、ドッキング部24に結合された状態で、マガジン交換用窓23を介して回収マガジンを回収し、補給マガジンを保管装置22に補給する。このように、パレット16は、トレイマガジン20に保管された状態で搬送装置Qにより保管装置22まで搬送される。 In FIG. 3, a docking unit 24 is arranged on the rear side of the storage device 22. The transport device Q having an automatic replenishment device 56 that automatically replenishes the pallet 16 transported in a state of being housed in the replenishment magazine to the storage device 22 is coupled to the docking unit 24 and is connected to the docking unit 24 via the magazine replacement window 23. The collection magazine is collected, and the replenishment magazine is replenished to the storage device 22. In this way, the pallet 16 is conveyed to the storage device 22 by the transfer device Q in a state of being stored in the tray magazine 20.
 保管装置22は、パレット16を保管するトレイマガジン20を収納する。そして、保管装置22は、トレイ17を保持するパレット16を収納するパレット収納部19を有し、部品供給装置21へとパレット16を供給する。 The storage device 22 stores the tray magazine 20 for storing the pallet 16. The storage device 22 has a pallet storage unit 19 that stores the pallet 16 that holds the tray 17, and supplies the pallet 16 to the parts supply device 21.
 図4Aは、本実施の形態のトレイマガジン20の構成説明図である。図4Bおよび図4Cは、本実施の形態の部品を収容するトレイ17の部分断面図である。図4Aにおいて、トレイ17の上面には、トレイ部品を収容する複数の収容部18が形成されている。トレイ17は、収容する部品のサイズおよび形状に対応して収容部18が形成された複数の種類が用意されている。例えば、図4Bに示す、大型の部品P1を収容するトレイ17Aには、大きくて深い収容部18Aが形成されている。また、図4Cに示す、小型の部品P2を収容するトレイ17Bには、小さくて浅い収容部18Bが形成されている。 FIG. 4A is a configuration explanatory diagram of the tray magazine 20 of the present embodiment. 4B and 4C are partial cross-sectional views of the tray 17 accommodating the parts of the present embodiment. In FIG. 4A, a plurality of accommodating portions 18 for accommodating tray parts are formed on the upper surface of the tray 17. The tray 17 is prepared in a plurality of types in which the accommodating portion 18 is formed according to the size and shape of the accommodating parts. For example, the tray 17A for accommodating the large component P1 shown in FIG. 4B is formed with a large and deep accommodating portion 18A. Further, the tray 17B for accommodating the small component P2 shown in FIG. 4C is formed with a small and shallow accommodating portion 18B.
 次に、図5Aおよび図5Bを参照して、部品装着システム1(搬送システム)が備える管理コンピュータ3(制御システム)と搬送装置Qの制御系の構成のうち、フロアFにおいて被搬送物を搬送する機能について説明する。図5Aは、本実施の形態の搬送システムが備える管理コンピュータ3の構成を示すブロック図である。図5Bは、本実施の形態の搬送システムが備える搬送装置Qの構成を示すブロック図である。 Next, with reference to FIGS. 5A and 5B, among the configurations of the control system of the management computer 3 (control system) and the transport device Q included in the component mounting system 1 (transport system), the transported object is transported on the floor F. The function to be used is explained. FIG. 5A is a block diagram showing a configuration of a management computer 3 included in the transport system of the present embodiment. FIG. 5B is a block diagram showing a configuration of a transport device Q included in the transport system of the present embodiment.
 図5Aにおいて、管理コンピュータ3は、管理処理部30、管理記憶部36、入力部43、表示部44、通信部45および管理側通信部3aを備えている。管理処理部30は、CPU(Central Processing Unit)などのデータ処理装置であり、情報取得部31、注意地点抽出部32、経路情報作成部33、搬送制御部34および画像解析部35を備えている。管理記憶部36は記憶装置であり、フロア情報37、被搬送物情報38、地図情報39、加速度情報40、注意地点情報41および経路情報42などが記憶されている。 In FIG. 5A, the management computer 3 includes a management processing unit 30, a management storage unit 36, an input unit 43, a display unit 44, a communication unit 45, and a management side communication unit 3a. The management processing unit 30 is a data processing device such as a CPU (Central Processing Unit), and includes an information acquisition unit 31, a caution point extraction unit 32, a route information creation unit 33, a transfer control unit 34, and an image analysis unit 35. .. The management storage unit 36 is a storage device, and stores floor information 37, delivered object information 38, map information 39, acceleration information 40, caution point information 41, route information 42, and the like.
 入力部43は、キーボード、タッチパネルまたはマウスなどの入力装置であり、操作コマンドおよびデータ入力時などに用いられる。表示部44は、液晶パネルなどの表示装置であり、管理記憶部36が記憶する各種データを表示する他、入力部43による操作のための操作画面または入力画面などの各種情報を表示する。通信部45は、通信インターフェースであり、通信ネットワーク2を介して部品装着ラインL1~L3を構成する製造装置との間でデータの送受信を行う。 The input unit 43 is an input device such as a keyboard, a touch panel, or a mouse, and is used when inputting operation commands and data. The display unit 44 is a display device such as a liquid crystal panel, and displays various data stored in the management storage unit 36, as well as various information such as an operation screen or an input screen for operation by the input unit 43. The communication unit 45 is a communication interface, and transmits / receives data to / from the manufacturing devices constituting the component mounting lines L1 to L3 via the communication network 2.
 管理側通信部3aは、情報端末5の端末側通信部6および搬送装置Qの搬送側通信部57と、無線で各種情報を送受信する。なお、管理コンピュータ3は、ひとつのコンピュータで構成する必要はなく、複数のデバイスで構成してもよい。例えば、記憶部および処理部の全てもしくは一部をサーバを介してクラウドに備えてもよい。 The management side communication unit 3a wirelessly transmits and receives various information to and from the terminal side communication unit 6 of the information terminal 5 and the transport side communication unit 57 of the transport device Q. The management computer 3 does not have to be configured by one computer, but may be configured by a plurality of devices. For example, all or part of the storage unit and the processing unit may be provided in the cloud via the server.
 図5Bにおいて、搬送装置Qは、搬送制御装置50、走行装置55、自動補給装置56、搬送側通信部57、距離計測装置Lおよび加速度計Aを備えている。搬送制御装置50は、走行処理部51、補給処理部52および搬送記憶部53を備えている。 In FIG. 5B, the transport device Q includes a transport control device 50, a traveling device 55, an automatic replenishment device 56, a transport side communication unit 57, a distance measuring device L, and an accelerometer A. The transport control device 50 includes a travel processing unit 51, a replenishment processing unit 52, and a transport storage unit 53.
 搬送記憶部53は、記憶装置であり、搬送経路情報54などが記憶されている。搬送側通信部57は、管理コンピュータ3の管理側通信部3aと無線で各種情報を送受信する。搬送側通信部57は、管理コンピュータ3から後述する経路情報42を受信して、搬送経路情報54として搬送記憶部53に記憶させる。また、搬送側通信部57は、距離計測装置Lおよび加速度計Aの計測データを管理コンピュータ3に送信する。 The transport storage unit 53 is a storage device and stores transport route information 54 and the like. The transport-side communication unit 57 wirelessly transmits and receives various information to and from the management-side communication unit 3a of the management computer 3. The transport side communication unit 57 receives the route information 42 described later from the management computer 3 and stores it in the transport storage unit 53 as the transport route information 54. Further, the transport side communication unit 57 transmits the measurement data of the distance measuring device L and the accelerometer A to the management computer 3.
 走行装置55は、自動搬送車Vの車輪を駆動するモータおよび車輪の方向を変更する機構などを備えている。走行処理部51は、搬送記憶部53に記憶された搬送経路情報54または管理コンピュータ3からの指示に従い、走行装置55を制御して、搬送装置QをフロアF内の指定された搬送経路を指定された速度(最大速度)で走行させる。 The traveling device 55 includes a motor for driving the wheels of the automatic guided vehicle V, a mechanism for changing the direction of the wheels, and the like. The travel processing unit 51 controls the travel device 55 in accordance with the transfer route information 54 stored in the transfer storage unit 53 or the instruction from the management computer 3, and designates the transfer device Q as the designated transfer route in the floor F. Run at the speed (maximum speed).
 自動補給装置56は、トレイマガジン20を昇降させる機構ならびにトレイマガジン20を保管装置22に補給および回収する機構などを備えている。補給処理部52は、管理コンピュータ3からの指示に従い、自動補給装置56を制御して、搬送したトレイマガジン20を保管装置22に補給させる。 The automatic replenishment device 56 includes a mechanism for raising and lowering the tray magazine 20 and a mechanism for replenishing and collecting the tray magazine 20 in the storage device 22. The replenishment processing unit 52 controls the automatic replenishment device 56 according to the instruction from the management computer 3 to replenish the transported tray magazine 20 to the storage device 22.
 図6は、本実施の形態の経路情報作成を説明する図である。図5Aにおいて、フロア情報37には、フロアFに配置された部品装着ラインL1~L3の製造装置の位置(座標)、フロアFに設定されている搬送経路の情報(座標)および搬送経路に設けられた区間の最高速度などの情報が含まれている。情報取得部31は、距離計測装置Lと加速度計Aとを装着した搬送装置Qに、フロアF内に設定された搬送経路を周回する巡回経路J(図6参照)を走行させる。そして、情報取得部31は、搬送装置Qが走行中に距離計測装置Lにより計測した周辺の物体までの距離の計測データを取得して、地図情報39として管理記憶部36に記憶させる。 FIG. 6 is a diagram illustrating the creation of route information according to the present embodiment. In FIG. 5A, the floor information 37 is provided in the positions (coordinates) of the manufacturing devices of the component mounting lines L1 to L3 arranged on the floor F, the information (coordinates) of the transport route set on the floor F, and the transport route. It contains information such as the maximum speed of the section. The information acquisition unit 31 causes the transport device Q equipped with the distance measuring device L and the accelerometer A to travel on the patrol route J (see FIG. 6) that orbits the transport path set in the floor F. Then, the information acquisition unit 31 acquires the measurement data of the distance to the surrounding object measured by the distance measuring device L while the transport device Q is traveling, and stores it in the management storage unit 36 as the map information 39.
 また、情報取得部31は、搬送装置Qが走行中に加速度計Aにより計測した加速度の計測データを取得して、加速度情報40として管理記憶部36に記憶させる。情報取得部31は、搬送装置Qの走行速度を変えながら、巡回経路Jを周回させ、地図情報39と加速度情報40とを取得する。なお、搬送装置Qを走行させての地図情報39と加速度情報40との取得作業は、製造作業の開始時、フロアFの清掃後またはレイアウト変更後などに実行される。 Further, the information acquisition unit 31 acquires the measurement data of the acceleration measured by the accelerometer A while the transport device Q is traveling, and stores it in the management storage unit 36 as the acceleration information 40. The information acquisition unit 31 orbits the patrol route J while changing the traveling speed of the transport device Q, and acquires map information 39 and acceleration information 40. The work of acquiring the map information 39 and the acceleration information 40 by running the transport device Q is executed at the start of the manufacturing work, after cleaning the floor F, or after changing the layout.
 図5Aにおいて、被搬送物情報38には、フロアFに設置されている製造装置において用いられる部品またはクリームはんだなどの被搬送物を、搬送装置Qが搬送するための情報が含まれている。ここで、図7を参照して、部品を被搬送物とする被搬送物情報38の一例について説明する。図7は、本実施の形態の搬送システムで使用される被搬送物情報38の例を示す図である。 In FIG. 5A, the transported object information 38 includes information for the transport device Q to transport the transported object such as parts or cream solder used in the manufacturing apparatus installed on the floor F. Here, with reference to FIG. 7, an example of the object to be transported information 38 in which the part is the object to be transported will be described. FIG. 7 is a diagram showing an example of the information to be transported 38 used in the transport system of the present embodiment.
 被搬送物情報38には、部品名60毎に、容器61、クラス62および最高速度63などが含まれている。容器61は、搬送装置Qに搭載される際の部品の保持形態を示している。図7において、「トレイ」は、トレイ17に収容されたトレイ部品であることを示しており、「テープ」は、キャリアテープ14に格納されてリールに収納されたテープ部品であることを示している。 The delivered object information 38 includes a container 61, a class 62, a maximum speed 63, and the like for each part name 60. The container 61 shows a holding form of parts when mounted on the transport device Q. In FIG. 7, the “tray” indicates that the tray component is housed in the tray 17, and the “tape” indicates that the tape component is stored in the carrier tape 14 and stored in the reel. There is.
 クラス62は、搬送装置Qによる搬送時に受ける振動により被搬送物の状態に異常が生じる感度(耐性)の区分けである。この例では、クラス62は、「0」から「3」の4つに区分されており、数字が小さいほど振動に強く、数字が大きくなると振動に弱いことを示している。例えば、テープ部品である部品名60が「D006」と「D007」とは、振動に起因する部品のずれは発生しないため、クラス62が「0」となっている。 Class 62 is a classification of sensitivity (resistance) in which an abnormality occurs in the state of the object to be transported due to vibration received during transportation by the transfer device Q. In this example, the class 62 is classified into four categories from "0" to "3", and the smaller the number, the stronger the vibration, and the larger the number, the weaker the vibration. For example, when the component names 60, which are tape components, are "D006" and "D007", the class 62 is "0" because the components do not shift due to vibration.
 また、トレイ部品であっても、例えば、図4Bに示す大型で振動に対する耐性が高い部品P1は、クラス62は「1」に区分される。また、図4Cに示す小型で振動に対する耐性が低い部品P2は、搬送中に受ける大きな振動でトレイ17Bから飛び出す可能性があり、クラス62は「2」または「3」に区分される。以下、クラス62が「1」の部品を「クラス1の部品」などと称する。 Further, even if it is a tray part, for example, the large part P1 shown in FIG. 4B, which has high resistance to vibration, is classified into "1" in class 62. Further, the small component P2 shown in FIG. 4C, which has low resistance to vibration, may jump out of the tray 17B due to a large vibration received during transportation, and the class 62 is classified into “2” or “3”. Hereinafter, the parts whose class 62 is "1" will be referred to as "class 1 parts" and the like.
 図7において、最高速度63は、その部品を搬送中に許される最高速度を示している。最高速度63は、搬送中の部品が受ける可能性がある加速度の大きさで、複数に区分されている。この例では、Z軸方向の加速度が「-0.8G以上」の第1速度63aと、Z軸方向の加速度が「-0.8Gから-1.2G」の第2速度63bと、Z軸方向の加速度が「-1.2G以下」の第3速度63cとの3つの区分に分かれている。 In FIG. 7, the maximum speed 63 indicates the maximum speed allowed during transportation of the part. The maximum speed 63 is the magnitude of the acceleration that the parts being transported may receive, and is divided into a plurality of parts. In this example, the first speed 63a with an acceleration in the Z-axis direction of "-0.8G or more", the second speed 63b with an acceleration in the Z-axis direction of "-0.8G to -1.2G", and the Z-axis. It is divided into three categories with the third speed 63c whose acceleration in the direction is "-1.2 G or less".
 Gは重力加速度であり、-1.0Gは地球の重力と釣り合うだけのZ軸方向の加速度が部品に加わっていることを示す。Z軸方向にマイナスの加速度が加わると、トレイ17の収容部18内における部品の状態が不安定となる。この間にトレイ17が水平方向に高速で移動すると、収容部18から部品が飛び出す、または収容部18内で部品が反転するなど、部品の収容状態に異常が発生することがある。 G is the gravitational acceleration, and -1.0G indicates that the acceleration in the Z-axis direction that is commensurate with the gravity of the earth is applied to the part. When a negative acceleration is applied in the Z-axis direction, the state of the parts in the accommodating portion 18 of the tray 17 becomes unstable. If the tray 17 moves at high speed in the horizontal direction during this period, an abnormality may occur in the housing state of the parts, such as the parts popping out from the housing unit 18 or the parts being inverted in the housing unit 18.
 図7の例では、Z軸方向の加速度には「-0.8G」と「-1.2G」との2つの閾値が設定されている。以下、Z軸方向の加速度が「-0.8G」を「第1閾値」と称し、「-1.2G」を「第2閾値」と称する。 In the example of FIG. 7, two threshold values of "-0.8G" and "-1.2G" are set for the acceleration in the Z-axis direction. Hereinafter, the acceleration in the Z-axis direction of "-0.8 G" is referred to as "first threshold value", and "-1.2 G" is referred to as "second threshold value".
 第1速度63aは、いずれの部品も「1.0m/s」に設定されている。クラス0の部品では、第2速度63bと第3速度63cとは、第1速度63aと同じ「1.0m/s」に設定されている。 The first speed 63a is set to "1.0 m / s" for all parts. In the class 0 component, the second speed 63b and the third speed 63c are set to the same "1.0 m / s" as the first speed 63a.
 一方、クラス1の部品では、第2速度63bは第1速度63aと同じ「1.0m/s」に設定されているが、第3速度63cは「0.8m/s」に設定されている。また、クラス2の部品では、第2速度63bは「0.8m/s」に設定され、第3速度63cは「0.5m/s」に設定されている。また、クラス3の部品では、第2速度63bは「0.5m/s」に設定され、第3速度63cは「0.3m/s」に設定されている。すなわち、振動に対する耐性が低い部品を搬送する際にマイナスの加速度を受ける可能性がある場合は、最高速度63を低くする(遅くする)ように設定されている。 On the other hand, in the class 1 component, the second speed 63b is set to "1.0 m / s" which is the same as the first speed 63a, but the third speed 63c is set to "0.8 m / s". .. Further, in the class 2 parts, the second speed 63b is set to "0.8 m / s" and the third speed 63c is set to "0.5 m / s". Further, in the class 3 parts, the second speed 63b is set to "0.5 m / s" and the third speed 63c is set to "0.3 m / s". That is, when there is a possibility of receiving a negative acceleration when transporting a component having low resistance to vibration, the maximum speed 63 is set to be lowered (slowed).
 なお、図7に示す被搬送物情報38において設定されるクラス62の区分数、最高速度63の区分数および閾値の値は一例であり、区分は3つであっても5つ以上であってもよい。また、Z軸方向の加速度の閾値も、部品のサイズおよび重さ、ならびに、トレイ17の収容部18の形状に応じて、実験結果などに基づいて自由に設定される。例えば、所定の閾値は、被搬送物に対応して設定されてもよい。また、閾値となる加速度も、Z軸方向の成分だけでなく、水平方向(X軸方向およびY軸方向)の成分も考慮して決定されてもよい。このように、第1閾値および第2閾値(所定の閾値)は、搬送装置Qによるトレイマガジン20またはパレット16(被搬送物)の搬送時に、トレイ17内の部品の収容状態(被搬送物の状態)に異常が生じる加速度に基づいて設定されている。 The number of classifications of the class 62, the number of divisions of the maximum speed 63, and the threshold value set in the information 38 to be transported shown in FIG. 7 are examples, and even if there are three divisions, the number is five or more. May be good. Further, the threshold value of the acceleration in the Z-axis direction is also freely set based on the experimental results and the like according to the size and weight of the parts and the shape of the accommodating portion 18 of the tray 17. For example, a predetermined threshold value may be set corresponding to the object to be transported. Further, the acceleration serving as a threshold may be determined in consideration of not only the component in the Z-axis direction but also the component in the horizontal direction (X-axis direction and Y-axis direction). As described above, the first threshold value and the second threshold value (predetermined threshold value) are the states in which the parts in the tray 17 are housed (the object to be transported) when the tray magazine 20 or the pallet 16 (the object to be transported) is transported by the transport device Q. It is set based on the acceleration at which an abnormality occurs in the state).
 図5Aにおいて、注意地点抽出部32は、管理記憶部36に記憶されている被搬送物情報38および加速度情報40に基づいて、フロアFを搬送装置Qが走行中に、継ぎ目、床のうねりまたは落下物などに起因して被搬送物に振動を与える可能性がある注意地点Hを抽出する。 In FIG. 5A, the attention point extraction unit 32 has a seam, a swell of the floor, or a swell of the floor while the transport device Q is traveling on the floor F based on the transported object information 38 and the acceleration information 40 stored in the management storage unit 36. A caution point H that may give vibration to the transported object due to a falling object or the like is extracted.
 図8Aは、本実施の形態の搬送システムで使用される加速度情報40の例を示す図である。図8Aに、搬送装置QがフロアFの巡回経路Jを走行中に加速度計Aが計測した、地点B1から地点B5の間の加速度情報40の例を示している。 FIG. 8A is a diagram showing an example of acceleration information 40 used in the transfer system of the present embodiment. FIG. 8A shows an example of the acceleration information 40 between the point B1 and the point B5 measured by the accelerometer A while the transport device Q is traveling on the patrol path J of the floor F.
 注意地点抽出部32は、加速度情報40から、加速度が第1閾値および第2閾値を超えた地点を抽出する。図8Aの例では、注意地点抽出部32によって、第1閾値(-0.8G)を超えた注意地点H1と、第2閾値(-1.2G)を超えた注意地点H2との2箇所の注意地点Hが抽出される。 The caution point extraction unit 32 extracts points where the acceleration exceeds the first threshold value and the second threshold value from the acceleration information 40. In the example of FIG. 8A, the attention point extraction unit 32 has two points, a caution point H1 that exceeds the first threshold value (-0.8G) and a caution point H2 that exceeds the second threshold value (-1.2G). The caution point H is extracted.
 このように、注意地点抽出部32は、加速度計Aを設置した状態で、搬送装置QにフロアFを走行させることで取得されたフロアFにおける加速度に関する加速度情報40に基づいて、搬送装置Qの走行時にフロアFの状態に起因して異常が生じる可能性がある注意地点Hを抽出する。抽出された注意地点Hの情報は、注意地点情報41として管理記憶部36に記憶される。 As described above, the caution point extraction unit 32 of the transport device Q is based on the acceleration information 40 regarding the acceleration on the floor F acquired by traveling the floor F on the transport device Q with the accelerometer A installed. The caution point H where an abnormality may occur due to the state of the floor F during traveling is extracted. The extracted information of the caution point H is stored in the management storage unit 36 as the caution point information 41.
 図5Aにおいて、経路情報作成部33は、フロア情報37に含まれる搬送経路の情報、地図情報39および注意地点情報41に基づいて、搬送経路に迂回区間と減速区間とを設定する。経路情報作成部33は、設定した迂回区間と減速区間との情報に基づいて、フロア情報37を更新する。 In FIG. 5A, the route information creation unit 33 sets a detour section and a deceleration section in the transport route based on the transport route information, the map information 39, and the caution point information 41 included in the floor information 37. The route information creation unit 33 updates the floor information 37 based on the information of the set detour section and the deceleration section.
 経路情報作成部33は、地図情報39から、搬送経路中に搬送装置Qの走行の障害となる物体が認められる場合は、その障害を迂回する搬送経路(迂回区間)を設定する。経路情報作成部33による注意地点Hを含む減速区間の設定方法には、複数の実施形態がある。 If an object that hinders the traveling of the transport device Q is found in the transport route from the map information 39, the route information creation unit 33 sets a transport route (detour section) that bypasses the obstacle. There are a plurality of embodiments in the method of setting the deceleration section including the caution point H by the route information creating unit 33.
 次に、図8Bおよび図8Cを参照しながら、いくつかの実施形態を説明する。図8Bおよび図8Cは、本実施の形態の搬送システムで使用される減速区間の例を示す図である。なお、経路情報作成部33は、注意地点Hを迂回する搬送経路(迂回区間)を設定するようにしてもよい。 Next, some embodiments will be described with reference to FIGS. 8B and 8C. 8B and 8C are diagrams showing an example of a deceleration section used in the transport system of the present embodiment. The route information creation unit 33 may set a transport route (detour section) that bypasses the caution point H.
 図8Bおよび図8Cは、図8Aに示す搬送経路の地点B1から地点B5の間において抽出された注意地点H1,H2に基づいて、地点B1から地点B5の間に設定されたクラス2の部品の搬送に対応した減速区間の例を示している。 8B and 8C show the class 2 parts set between the points B1 and B5 based on the caution points H1 and H2 extracted between the points B1 and B5 of the transport route shown in FIG. 8A. An example of a deceleration section corresponding to transportation is shown.
 まず、図8Bを参照して、経路情報作成部33による第1実施形態による減速区間の設定方法について説明する。第1実施形態では、搬送経路を複数の区間Eに区分けし、注意地点Hが含まれる区間Eを減速区間として設定する。区間Eは、所定の距離毎(例えば1m毎)、または、搬送経路が分岐し、もしくは曲がる箇所で区分けされる。 First, with reference to FIG. 8B, a method of setting a deceleration section according to the first embodiment by the route information creating unit 33 will be described. In the first embodiment, the transport route is divided into a plurality of sections E, and the section E including the caution point H is set as the deceleration section. The section E is divided by a predetermined distance (for example, every 1 m) or at a point where the transport path branches or turns.
 図8Bでは、経路情報作成部33は、地点B1から地点B5の間を等間隔に4つの区間E1~E4に区分けしている。すなわち、地点B1から地点B5の間が、地点B1から地点B2の間の区間E1、地点B2から地点B3の間の区間E2、地点B3から地点B4の間の区間E3、および、地点B4から地点B5の間の区間E4に区分けされている。経路情報作成部33は、第1閾値を超えた注意地点H1を含む区間E2を、最高速度が0.8m/s(第2速度63b)の減速区間E2に設定する。同様に、経路情報作成部33は、第2閾値を超えた注意地点H2を含む区間E3を、最高速度が0.5m/s(第3速度63c)の減速区間E3に設定する。 In FIG. 8B, the route information creating unit 33 divides the area between the points B1 and the point B5 into four sections E1 to E4 at equal intervals. That is, the section between points B1 and B5 is the section E1 between points B1 and B2, the section E2 between points B2 and B3, the section E3 between points B3 and B4, and the section between points B4 and B4. It is divided into the section E4 between B5. The route information creation unit 33 sets the section E2 including the caution point H1 exceeding the first threshold value in the deceleration section E2 having a maximum speed of 0.8 m / s (second speed 63b). Similarly, the route information creation unit 33 sets the section E3 including the caution point H2 exceeding the second threshold value in the deceleration section E3 having a maximum speed of 0.5 m / s (third speed 63c).
 また、経路情報作成部33は、注意地点Hを含まない区間E1と区間E4との最高速度を1.0m/s(第1速度63a)に設定する。なお、クラス3の部品の場合、経路情報作成部33は、減速区間E2の最高速度を0.5m/s(第2速度63b)に設定し、減速区間E3の最高速度を0.3m/s(第3速度63b)に設定する。また、クラス1の部品の場合、経路情報作成部33は、注意地点H1を含む区間E2を減速区間には設定せず(最高速度は1.0m/s)、減速区間E3の最高速度を0.8m/s(第3速度63b)に設定する。このように、第1実施形態では、搬送装置Qが第1速度63aで走行した際に加速度が所定の閾値を超える注意地点Hを含む搬送経路の区間Eは、搬送経路を区分けした複数の区間E1~E4のうちの少なくとも1つ(区間E2または区間E3)である。 Further, the route information creation unit 33 sets the maximum speed between the section E1 and the section E4 not including the caution point H to 1.0 m / s (first speed 63a). In the case of class 3 parts, the route information creation unit 33 sets the maximum speed of the deceleration section E2 to 0.5 m / s (second speed 63b), and sets the maximum speed of the deceleration section E3 to 0.3 m / s. Set to (third speed 63b). Further, in the case of class 1 parts, the route information creation unit 33 does not set the section E2 including the caution point H1 as the deceleration section (maximum speed is 1.0 m / s), and sets the maximum speed of the deceleration section E3 to 0. Set to 8.8 m / s (third speed 63b). As described above, in the first embodiment, the section E of the transport path including the caution point H whose acceleration exceeds a predetermined threshold value when the transport device Q travels at the first speed 63a is a plurality of sections in which the transport path is divided. At least one of E1 to E4 (section E2 or section E3).
 次に、図8Cを参照して、経路情報作成部33による第2実施形態による減速区間の設定方法について説明する。第2の実施形態では、搬送経路において、注意地点Hから後方に後方余裕距離Kb(例えば0.5m)、前方に前方余裕距離Kf(例えば0.5m)だけ伸ばして減速区間Eを設定する。後方余裕距離Kbと前方余裕距離Kfとは、搬送装置Qの性能、フロアFの状態などによって設定される。 Next, with reference to FIG. 8C, a method of setting the deceleration section according to the second embodiment by the route information creating unit 33 will be described. In the second embodiment, in the transport path, the deceleration section E is set by extending the rear margin distance Kb (for example, 0.5 m) backward from the caution point H and the forward margin distance Kf (for example, 0.5 m) forward. The rear margin distance Kb and the front margin distance Kf are set according to the performance of the transport device Q, the state of the floor F, and the like.
 図8Cでは、経路情報作成部33は、注意地点H1から後方に後方余裕距離Kb、前方に前方余裕距離Kfを伸ばして減速区間E12を設定する。また、経路情報作成部33は、注意地点H2から後方に後方余裕距離Kb、前方に前方余裕距離Kfを伸ばして減速区間E14を設定する。 In FIG. 8C, the route information creation unit 33 extends the rear margin distance Kb backward and the front margin distance Kf forward from the caution point H1 to set the deceleration section E12. Further, the route information creating unit 33 sets the deceleration section E14 by extending the rear margin distance Kb to the rear and the front margin distance Kf to the front from the caution point H2.
 また、経路情報作成部33は、減速区間E12の最高速度を0.8m/s(第2速度63b)に設定し、減速区間E14の最高速度を0.5m/s(第3速度63b)に設定する。そして、経路情報作成部33は、減速区間E12および減速区間E14以外の区間を、最高速度が1.0m/s(第1速度63a)の区間として設定する。すなわち、地点B1から減速区間E12までの区間E11、減速区間E12と減速区間E14の間の区間E13、および、減速区間E14から地点B5までの区間E15を、最高速度が1.0m/s(第1速度63a)の区間として設定する。このように、第2実施形態では、搬送装置Qが第1速度63aで走行した際に加速度が所定の閾値を超える注意地点Hを含む搬送経路の区間Eは、注意地点H1,H2から前後に所定の距離(後方余裕距離Kb、前方余裕距離Kf)を延ばした区間E12,E14である。 Further, the route information creation unit 33 sets the maximum speed of the deceleration section E12 to 0.8 m / s (second speed 63b) and the maximum speed of the deceleration section E14 to 0.5 m / s (third speed 63b). Set. Then, the route information creating unit 33 sets a section other than the deceleration section E12 and the deceleration section E14 as a section having a maximum speed of 1.0 m / s (first speed 63a). That is, the maximum speed is 1.0 m / s (the first) in the section E11 from the point B1 to the deceleration section E12, the section E13 between the deceleration section E12 and the deceleration section E14, and the section E15 from the deceleration section E14 to the point B5. It is set as a section of 1 speed 63a). As described above, in the second embodiment, the section E of the transport path including the caution point H whose acceleration exceeds the predetermined threshold value when the transport device Q travels at the first speed 63a is moved back and forth from the caution points H1 and H2. It is a section E12, E14 which extends a predetermined distance (rear margin distance Kb, front margin distance Kf).
 次に、図9を参照して、経路情報作成部33によってフロアF内の搬送経路に設定された減速区間の例について説明する。図9は、本実施の形態の部品装着ラインL1~L3が設置されたフロアFに設定された搬送経路の例を示す図である。この例では、経路情報作成部33は、上述の第1実施形態と第2実施形態とを合わせた第3実施形態によって、減速区間を設定している。すなわち、搬送経路を分岐または曲がり角の地点B11~B20と、収納棚4に保管されていた被搬送物を載置された搬送装置Qが製造装置に向けてスタートする地点B10とを加えた地点の間で、複数の区間E21~E34に予め区分けするところは、第1実施形態と同様である。 Next, with reference to FIG. 9, an example of a deceleration section set as a transport route in the floor F by the route information creation unit 33 will be described. FIG. 9 is a diagram showing an example of a transport path set on the floor F on which the component mounting lines L1 to L3 of the present embodiment are installed. In this example, the route information creating unit 33 sets the deceleration section according to the third embodiment, which is a combination of the first embodiment and the second embodiment described above. That is, the points B11 to B20 where the transport path is branched or turned, and the points B10 where the transport device Q on which the transported object stored in the storage shelf 4 is placed starts toward the manufacturing device are added. It is the same as the first embodiment in that it is divided into a plurality of sections E21 to E34 in advance.
 図9の例では、注意地点抽出部32によって、区間E24、区間E32および区間E31において、注意地点HY1~HY3がそれぞれ抽出されている。 In the example of FIG. 9, the caution point extraction unit 32 extracts the caution points HY1 to HY3 in the section E24, the section E32, and the section E31, respectively.
 経路情報作成部33は、第2実施形態と同様に、区間E24の注意地点HY1を前後に延ばして減速区間EY1を設定している。また、経路情報作成部33は、区間E24における減速区間EY1以外の区間を区間E24aと区間E24bとに設定している。同様に、区間E32には、減速区間EY2、区間E32aおよび区間E32bが設定されている。また、区間E31には、減速区間EY3、区間E31aおよび区間E31bが設定されている。減速区間EY1と減速区間EY3との最高速度は第2速度63bに設定されており、減速区間EY2の最高速度は第3速度63cに設定されている。その他の区間の最高速度は、第1速度63aに設定されている。 The route information creation unit 33 sets the deceleration section EY1 by extending the caution point HY1 of the section E24 back and forth as in the second embodiment. Further, the route information creating unit 33 sets the sections other than the deceleration section EY1 in the section E24 to the section E24a and the section E24b. Similarly, the deceleration section EY2, the section E32a, and the section E32b are set in the section E32. Further, a deceleration section EY3, a section E31a, and a section E31b are set in the section E31. The maximum speed of the deceleration section EY1 and the deceleration section EY3 is set to the second speed 63b, and the maximum speed of the deceleration section EY2 is set to the third speed 63c. The maximum speed in the other sections is set to the first speed 63a.
 図5Aおよび図5Bにおいて、経路情報作成部33は、減速区間EY1~EY3が設定されたフロア情報37および被搬送物情報38に基づいて、フロアFにおいて搬送装置Qが被搬送物を搬送する際に使用される経路情報42を作成する。作成された経路情報42は、管理記憶部36に記憶される。経路情報42は、被搬送物の種類または搬送先に対応して作成される。 In FIGS. 5A and 5B, when the route information creating unit 33 transports the transported object on the floor F based on the floor information 37 and the transported object information 38 in which the deceleration sections EY1 to EY3 are set. The route information 42 used for is created. The created route information 42 is stored in the management storage unit 36. The route information 42 is created according to the type of the object to be transported or the destination.
 次に、図9、図10Aおよび図10Bを参照して、経路情報作成部33によって作成された経路情報42の例について説明する。図10Aおよび図10Bは、本実施の形態の搬送システムで使用される経路情報42の例を示す図である。図10Aおよび図10Bは、図9に示す収納棚4の前のスタート地点T0から、部品装着ラインL1の部品装着装置M5のリア側の搬送先T1に、クラス2のトレイ部品を搬送する際の経路情報42を示す。 Next, an example of the route information 42 created by the route information creating unit 33 will be described with reference to FIGS. 9, 10A and 10B. 10A and 10B are diagrams showing an example of the route information 42 used in the transport system of the present embodiment. 10A and 10B show class 2 tray parts from the starting point T0 in front of the storage shelf 4 shown in FIG. 9 to the transport destination T1 on the rear side of the component mounting device M5 of the component mounting line L1. The route information 42 is shown.
 図10Aは、搬送経路に注意地点Hが無くて、減速区間が設定されていないフロアFにおけるスタート地点T0から搬送先T1にクラス2のトレイ部品を搬送する経路情報42を示す。この場合、経路情報作成部33は、スタート地点T0から区間E21~E26を最高速度が1.0m/s(第1速度63a)で搬送先T1まで走行する経路情報42を作成する。また、経路情報作成部33は、被搬送物を降ろした後の帰路として、搬送先T1から区間E26~E31を最高速度が1.0m/s(第1速度63a)で走行してスタート地点T0に戻る経路情報42を作成する。 FIG. 10A shows route information 42 for transporting class 2 tray parts from the start point T0 to the transport destination T1 on the floor F where there is no caution point H in the transport path and the deceleration section is not set. In this case, the route information creating unit 33 creates the route information 42 that travels from the start point T0 to the transport destination T1 at the maximum speed of 1.0 m / s (first speed 63a) in the sections E21 to E26. Further, the route information creating unit 33 travels from the transport destination T1 to the sections E26 to E31 at a maximum speed of 1.0 m / s (first speed 63a) as a return route after unloading the transported object, and starts at the starting point T0. Create route information 42 to return to.
 図10Bは、図9に示す減速区間EY1~EY3が設定されているフロアFの搬送経路において、スタート地点T0から搬送先T1にクラス2のトレイ部品を搬送する経路情報42を示す。図9では、スタート地点T0から搬送先T1までの間には、最高速度が第2速度63bの減速区間EY1が設定されている。そこで、経路情報作成部33は、図10Bに示すように、スタート地点T0から搬送先T1までの間に設定されている減速区間EY1の最高速度が0.8m/s(第2速度63b)となる経路情報42を作成する。 FIG. 10B shows the route information 42 for transporting the class 2 tray parts from the start point T0 to the transport destination T1 in the transport path of the floor F in which the deceleration sections EY1 to EY3 shown in FIG. 9 are set. In FIG. 9, a deceleration section EY1 having a maximum speed of the second speed 63b is set between the start point T0 and the transport destination T1. Therefore, as shown in FIG. 10B, the route information creating unit 33 has a maximum speed of 0.8 m / s (second speed 63b) in the deceleration section EY1 set between the start point T0 and the transport destination T1. Route information 42 is created.
 図9では、搬送先T1からスタート地点T0に戻る帰路に減速区間EY3が設定されている。しかし、帰路では被搬送物を搬送していないため、被搬送物の収容状態に対する配慮は不要である。そこで、経路情報作成部33は、搬送先T1からスタート地点T0に戻る帰路にある減速区間EY3での最高速度を1.0m/s(第1速度63a)から変えない経路情報42を作成する。 In FIG. 9, the deceleration section EY3 is set on the return route from the transport destination T1 to the start point T0. However, since the transported object is not transported on the return route, it is not necessary to consider the accommodation state of the transported object. Therefore, the route information creating unit 33 creates the route information 42 that does not change the maximum speed in the deceleration section EY3 on the return route from the transport destination T1 to the start point T0 from 1.0 m / s (first speed 63a).
 図11Aおよび図11Bは、本実施の形態の搬送システムで使用される経路情報42の他の例を示す図である。図11Aおよび図11Bは、経路情報作成部33によって作成された、フロアFにおけるスタート地点T0から、部品装着ラインL2の部品装着装置M5のリア側の搬送先T2に、クラス2のトレイ部品を搬送する経路情報42を示す。図11Aは、減速区間が設定されていないフロアFの場合である。図11Bは、図9に示す減速区間EY1~EY3が設定されているフロアFの場合である。 11A and 11B are diagrams showing other examples of the route information 42 used in the transport system of the present embodiment. In FIGS. 11A and 11B, class 2 tray parts are transported from the start point T0 on the floor F created by the route information creation unit 33 to the transport destination T2 on the rear side of the component mounting device M5 of the component mounting line L2. The route information 42 to be performed is shown. FIG. 11A shows the case of the floor F in which the deceleration section is not set. FIG. 11B shows the case of the floor F in which the deceleration sections EY1 to EY3 shown in FIG. 9 are set.
 図9では、スタート地点T0から搬送先T2までの間には、最高速度が第2速度63bの減速区間EY1と、最高速度が第3速度63bの減速区間EY2とが設定されている。そこで、経路情報作成部33は、図11Bに示すように、スタート地点T0から搬送先T2までの経路情報42として、減速区間EY1の最高速度が0.8m/s(第2速度63b)となり、減速区間EY2の最高速度が0.5m/s(第3速度63c)となる経路情報42を作成する。 In FIG. 9, a deceleration section EY1 having a maximum speed of the second speed 63b and a deceleration section EY2 having a maximum speed of the third speed 63b are set between the start point T0 and the transport destination T2. Therefore, as shown in FIG. 11B, the route information creating unit 33 sets the maximum speed of the deceleration section EY1 to 0.8 m / s (second speed 63b) as the route information 42 from the start point T0 to the transport destination T2. The route information 42 in which the maximum speed of the deceleration section EY2 is 0.5 m / s (third speed 63c) is created.
 このように、経路情報作成部33は、注意地点抽出部32によって抽出された注意地点HY1~HY3の情報に基づいて、搬送経路における搬送装置Qの走行速度(最高速度)に関する速度情報を含む経路情報42を作成する。走行速度は、第1速度63aと、第1速度63aよりも遅い第2速度63b(第3速度63c)とを含んでいる。 As described above, the route information creating unit 33 includes the route including the speed information regarding the traveling speed (maximum speed) of the transport device Q in the transport route based on the information of the caution points HY1 to HY3 extracted by the caution point extraction unit 32. Information 42 is created. The traveling speed includes a first speed 63a and a second speed 63b (third speed 63c) slower than the first speed 63a.
 また、経路情報作成部33は、被搬送物のクラス62に対応した経路情報42を作成する。すなわち、経路情報作成部33は、被搬送物のクラス62に対応して、第2速度63b(第3速度63c)を変更する。 Further, the route information creation unit 33 creates the route information 42 corresponding to the class 62 of the transported object. That is, the route information creating unit 33 changes the second speed 63b (third speed 63c) corresponding to the class 62 of the transported object.
 経路情報作成部33は、搬送装置Qが第1速度63aで走行した際に加速度が所定の閾値(第1閾値)を超える注意地点HY1を含む搬送経路の減速区間EY1において、第2速度63bを走行速度(最高速度)として設定した経路情報42を作成する。すなわち、第2速度63bは、減速区間EY1において搬送装置Qが走行した際に加速度が所定の閾値(第1閾値)を超えない速度である。同様に、経路情報作成部33は、搬送装置Qが第1速度63aで走行した際に加速度が所定の閾値(第2閾値)を超える注意地点HY2を含む搬送経路の減速区間EY2において、第3速度63cを走行速度(最高速度)として設定した経路情報42を作成する。すなわち、第3速度63cは、減速区間EY2において搬送装置Qが走行した際に加速度が所定の閾値(第2閾値)を超えない速度である。 The route information creating unit 33 sets the second speed 63b in the deceleration section EY1 of the transport route including the caution point HY1 in which the acceleration exceeds a predetermined threshold (first threshold) when the transport device Q travels at the first speed 63a. The route information 42 set as the traveling speed (maximum speed) is created. That is, the second speed 63b is a speed at which the acceleration does not exceed a predetermined threshold value (first threshold value) when the transport device Q travels in the deceleration section EY1. Similarly, the route information creating unit 33 is the third in the deceleration section EY2 of the transport route including the caution point HY2 in which the acceleration exceeds a predetermined threshold (second threshold) when the transport device Q travels at the first speed 63a. The route information 42 in which the speed 63c is set as the traveling speed (maximum speed) is created. That is, the third speed 63c is a speed at which the acceleration does not exceed a predetermined threshold value (second threshold value) when the transport device Q travels in the deceleration section EY2.
 図5Aおよび図5Bにおいて、搬送制御部34は、管理記憶部36に記憶されている経路情報42に基づいて、搬送装置Qによる搬送作業を制御する。すなわち、搬送制御部34を備える管理コンピュータ3は、搬送装置Qの走行時にフロアFの状態に起因して生じる、予め計測された加速度(加速度情報40)に基づいて設定された搬送装置Qの走行速度(最高速度)に関する速度情報を含む搬送経路に関する経路情報42に基づいて、搬送装置Qによる搬送作業を制御する制御システムを構成する。 In FIGS. 5A and 5B, the transport control unit 34 controls the transport operation by the transport device Q based on the route information 42 stored in the management storage unit 36. That is, the management computer 3 including the transport control unit 34 travels the transport device Q set based on the pre-measured acceleration (acceleration information 40) caused by the state of the floor F when the transport device Q travels. A control system for controlling the transport operation by the transport device Q is configured based on the route information 42 related to the transport route including the speed information regarding the speed (maximum speed).
 制御システム(搬送制御部34)が搬送装置Qによる搬送作業を制御する方法には、複数の実施形態がある。まず、図5A、図5Bおよび図9を参照しながら、第1実施形態について説明する。 There are a plurality of embodiments in the method in which the control system (transfer control unit 34) controls the transfer work by the transfer device Q. First, the first embodiment will be described with reference to FIGS. 5A, 5B, and 9.
 第1実施形態では、搬送制御部34は、収納棚4の前のスタート地点T0に停止している搬送装置Qに対して、その搬送装置Qに搭載された被搬送物の種類と搬送先とに対応する経路情報42を搬送装置Qに送信する。搬送装置Qは、受信した経路情報42を搬送記憶部53に搬送経路情報54として記憶する。走行処理部51は、記憶された搬送経路情報54に基づいて走行装置55を制御して、被搬送物を搬送する。これにより、製造装置が設置されたフロアFにおいて、被搬送物を正常な状態で搬送することができる。 In the first embodiment, the transport control unit 34 sets the type and destination of the transported object mounted on the transport device Q with respect to the transport device Q stopped at the start point T0 in front of the storage shelf 4. The route information 42 corresponding to the above is transmitted to the transport device Q. The transport device Q stores the received route information 42 in the transport storage unit 53 as transport route information 54. The travel processing unit 51 controls the travel device 55 based on the stored transport route information 54 to transport the object to be transported. As a result, the object to be transported can be transported in a normal state on the floor F where the manufacturing apparatus is installed.
 例えば、部品名60が「D002」のクラス2のトレイ部品を部品装着ラインL1の部品装着装置M5のリア側の搬送先T1に搬送する場合、搬送制御部34は、図10Bに示す経路情報42を搬送装置Qに送信する。なお、被搬送物がトレイマガジン20に収納された複数の種類のトレイ部品である場合、搬送制御部34は、クラス62が一番大きくて振動に弱い部品に対応する経路情報42を搬送装置Qに送信する。例えば、トレイマガジン20にクラス1のトレイ部品とクラス2のトレイ部品とを収納している場合、搬送制御部34は、クラス2のトレイ部品に対応する経路情報42を搬送装置Qに送信する。 For example, when a class 2 tray component having the component name 60 of "D002" is transported to the transport destination T1 on the rear side of the component mounting device M5 of the component mounting line L1, the transport control unit 34 transfers the route information 42 shown in FIG. 10B. Is transmitted to the transport device Q. When the object to be transported is a plurality of types of tray parts housed in the tray magazine 20, the transport control unit 34 provides the route information 42 corresponding to the component having the largest class 62 and being vulnerable to vibration to the transport device Q. Send to. For example, when the tray magazine 20 stores the class 1 tray parts and the class 2 tray parts, the transport control unit 34 transmits the route information 42 corresponding to the class 2 tray parts to the transport device Q.
 次に図5A、図5Bおよび図9を参照しながら、第2実施形態について説明する。第2実施形態では、搬送制御部34は、経路情報42を搬送装置Qに送信する代わりに、搬送装置Qに搭載された被搬送物の種類と搬送先とに対応して選択した経路情報42に基づいて、搬送装置Qの位置に応じて走行指示を逐次送信する。例えば、図10Bに示す経路情報42に基づいて、搬送装置Qによる搬送作業を制御する場合、区間E23を走行している搬送装置Qに対して、地点B13から区間E24aを最高速度が1.0m/s(第1速度63a)で走行するように指示する。さらに、搬送装置Qに対して、減速区間EY1では最高速度を0.8m/s(第2速度63b)で走行するように指示する。これにより、搬送中の被搬送物が受ける加速度を小さくすることができ、被搬送物を正常な状態で搬送できる。 Next, the second embodiment will be described with reference to FIGS. 5A, 5B, and 9. In the second embodiment, the transport control unit 34 does not transmit the route information 42 to the transport device Q, but instead selects the route information 42 corresponding to the type of the object to be transported mounted on the transport device Q and the transport destination. Based on the above, travel instructions are sequentially transmitted according to the position of the transport device Q. For example, when controlling the transport work by the transport device Q based on the route information 42 shown in FIG. 10B, the maximum speed is 1.0 m from the point B13 to the section E24a with respect to the transport device Q traveling in the section E23. Instruct to run at / s (first speed 63a). Further, the transport device Q is instructed to travel at a maximum speed of 0.8 m / s (second speed 63b) in the deceleration section EY1. As a result, the acceleration received by the transported object during transportation can be reduced, and the transported object can be transported in a normal state.
 図5Aおよび図5Bにおいて、画像解析部35は、撮影装置S1~S8が撮像したフロアF内を走行する搬送装置Qの映像を解析して、走行中の搬送装置Qの状態を検出する。例えば、搬送装置Qに設置された加速度計Aが計測した加速度情報40に基づいて注意地点抽出部32が注意地点Hを抽出する代わりに、画像解析部35が注意地点Hを抽出する場合、画像解析部35は、走行中の搬送装置QのZ軸方向の変化量を検出する。 In FIGS. 5A and 5B, the image analysis unit 35 analyzes the image of the transport device Q traveling in the floor F captured by the photographing devices S1 to S8, and detects the state of the transport device Q during travel. For example, when the image analysis unit 35 extracts the caution point H instead of the caution point extraction unit 32 extracting the caution point H based on the acceleration information 40 measured by the accelerometer A installed in the transport device Q, the image. The analysis unit 35 detects the amount of change in the traveling device Q in the Z-axis direction.
 そして、画像解析部35は、検出したZ軸方向の変化量が所定の閾値を超えた地点を、注意地点Hとして注意地点情報41に記憶させる。経路情報作成部33は、画像解析部35が抽出した注意地点Hに基づいて、経路情報42を作成する。これにより、搬送装置Qが加速度計Aを備えていない場合であっても、製造装置が設置されたフロアFにおいて、被搬送物を正常な状態で搬送することができる。 Then, the image analysis unit 35 stores the point where the detected change amount in the Z-axis direction exceeds a predetermined threshold value as the caution point H in the caution point information 41. The route information creation unit 33 creates the route information 42 based on the attention point H extracted by the image analysis unit 35. As a result, even when the transport device Q is not provided with the accelerometer A, the transported object can be transported in a normal state on the floor F where the manufacturing device is installed.
 上記説明したように、加速度を計測する加速度計Aが設置された搬送装置Qと、搬送装置QにフロアFを走行させることで取得された加速度情報40に基づいて、搬送装置Qの走行時にフロアFの状態に起因して異常が生じる可能性がある注意地点Hを抽出する注意地点抽出部32と、注意地点Hの情報(注意地点情報41)に基づいて、搬送経路における搬送装置Qの走行速度(最高速度)に関する速度情報を含む経路情報42を作成する経路情報作成部33を備える管理コンピュータ3とは、経路情報作成システムを構成する。 As described above, based on the transfer device Q in which the accelerometer A for measuring the acceleration is installed and the acceleration information 40 acquired by traveling the floor F on the transfer device Q, the floor is traveling when the transfer device Q is traveling. Traveling of the transport device Q in the transport route based on the caution point extraction unit 32 that extracts the caution point H that may cause an abnormality due to the state of F and the information of the caution point H (caution point information 41). The management computer 3 including the route information creating unit 33 for creating the route information 42 including the speed information regarding the speed (maximum speed) constitutes a route information creating system.
 また、フロアFにおいて被搬送物を搬送する搬送装置Qと、搬送経路に関する経路情報42に基づいて、搬送装置Qによる搬送作業を制御する搬送制御部34を備える管理コンピュータ3(制御システム)とは、搬送システムを構成する。これによって、製造装置が設置されたフロアFにおいて、被搬送物を正常な状態で搬送することができる。 Further, what is a management computer 3 (control system) including a transport device Q for transporting an object to be transported on the floor F and a transport control unit 34 for controlling the transport work by the transport device Q based on the route information 42 regarding the transport route? , Configure the transport system. As a result, the object to be transported can be transported in a normal state on the floor F where the manufacturing apparatus is installed.
 次に、図12のフローに沿って、基板に対して所定の作業を行う1以上の製造装置が設置されたフロアFにおいて用いられる、被搬送物を搬送装置Qにより搬送する搬送方法について説明する。図12は、本実施の形態の搬送方法のフロー図である。 Next, a transport method for transporting the object to be transported by the transport device Q, which is used on the floor F in which one or more manufacturing devices that perform predetermined operations on the substrate are installed along the flow of FIG. 12, will be described. .. FIG. 12 is a flow chart of the transport method of the present embodiment.
 まず、経路情報作成システム(搬送装置Qおよび管理コンピュータ3)によって、経路情報42が作成される(ST1:経路情報作成工程)。すなわち、搬送装置Qの走行時にフロアFの状態に起因して生じる、予め計測された加速度に基づいて設定された、搬送装置Qの走行速度(最高速度)に関する速度情報を含む搬送経路に関する経路情報42が作成される。経路情報作成工程(ST1)では、被搬送物の種類と搬送先とに対応して、複数の経路情報42が作成される。 First, the route information 42 is created by the route information creation system (transport device Q and management computer 3) (ST1: route information creation process). That is, the route information regarding the transport route including the speed information regarding the travel speed (maximum speed) of the transport device Q, which is set based on the pre-measured acceleration generated due to the state of the floor F during the travel of the transport device Q. 42 is created. In the route information creation step (ST1), a plurality of route information 42 are created according to the type of the object to be transported and the destination.
 次いで、制御システム(搬送制御部34)は、作成された経路情報42に基づいて、搬送装置Qによる搬送作業を制御する(ST2:搬送作業工程)。搬送作業工程(ST2)では、搬送装置Qが搬送する被搬送物の種類と搬送先とに対応する経路情報42に基づいて、搬送作業が制御される。 Next, the control system (transfer control unit 34) controls the transfer work by the transfer device Q based on the created route information 42 (ST2: transfer work process). In the transfer work step (ST2), the transfer work is controlled based on the route information 42 corresponding to the type of the object to be conveyed and the transfer destination by the transfer device Q.
 例えば、被搬送物を搬送中の搬送装置Qが減速区間EY1を通過する際は、最高速度が被搬送物のクラス62に対応する第2速度63bとなるように、搬送作業が制御される(図9参照)。フロアFでは、全ての被搬送物の搬送が終わるまで(ST3においてNo)、搬送作業工程(ST2)が繰り返し実行される。なお、フロアFに複数の搬送装置Qが稼働している場合は、複数の搬送装置Qに対して搬送作業工程(ST2)が並行して実行される。 For example, when the transport device Q, which is transporting the transported object, passes through the deceleration section EY1, the transport operation is controlled so that the maximum speed is the second speed 63b corresponding to the class 62 of the transported object ( See FIG. 9). On the floor F, the transfer work step (ST2) is repeatedly executed until the transfer of all the objects to be transported is completed (No in ST3). When a plurality of transport devices Q are operating on the floor F, the transport work process (ST2) is executed in parallel for the plurality of transport devices Q.
 次に、図13のフローに沿って、図9を参照しながら、基板に対して所定の作業を行う1以上の製造装置が設けられたフロアFにおいて用いられる、被搬送物を搬送する搬送装置Qの搬送経路に関する経路情報42を作成する経路情報作成方法(経路情報作成工程:図12のST1)について説明する。図13は、本実施の形態の経路情報作成方法のフロー図である。 Next, along the flow of FIG. 13, referring to FIG. 9, a transport device for transporting an object to be transported, which is used on the floor F provided with one or more manufacturing devices that perform predetermined operations on the substrate. A route information creation method (route information creation step: ST1 in FIG. 12) for creating route information 42 related to the transport route of Q will be described. FIG. 13 is a flow chart of the route information creating method of the present embodiment.
 まず、情報取得部31は、物体までの距離を測定可能なセンサ(距離計測装置L)と加速度を計測する加速度計Aとを搬送装置Qまたは被搬送物に設置した状態で、搬送装置QにフロアFを走行させることで、フロアFに関する地図情報39と加速度に関する加速度情報40とを取得する(ST11:情報取得工程)。 First, the information acquisition unit 31 installs a sensor (distance measuring device L) capable of measuring the distance to an object and an accelerometer A for measuring acceleration on the transport device Q or the transport device Q in a state of being installed on the transport device Q. By traveling the floor F, the map information 39 regarding the floor F and the acceleration information 40 regarding the acceleration are acquired (ST11: information acquisition process).
 次いで、注意地点抽出部32は、加速度情報40に基づいて、搬送装置Qの走行時にフロアFの状態に起因して異常が生じる可能性がある注意地点HY1~HY3を抽出する(ST12:注意地点抽出工程)。 Next, the caution point extraction unit 32 extracts caution points HY1 to HY3, which may cause an abnormality due to the state of the floor F when the transport device Q is traveling, based on the acceleration information 40 (ST12: caution points). Extraction process).
 次いで、経路情報作成部33は、抽出された注意地点HY1~HY3の情報(注意地点情報41)に基づいて、搬送経路に減速区間EY1~EY3を設定する(ST13:減速区間設定工程)。また、経路情報作成部33は、地図情報39から、搬送経路上の障害物を迂回する迂回区間を設定する。 Next, the route information creation unit 33 sets the deceleration sections EY1 to EY3 in the transport route based on the extracted information of the caution points HY1 to HY3 (caution point information 41) (ST13: deceleration section setting step). Further, the route information creation unit 33 sets a detour section that bypasses obstacles on the transport route from the map information 39.
 次いで、経路情報作成部33は、被搬送物の種類(クラス62)と搬送先とに対応する経路情報42を作成する(ST14:経路情報作成工程)。経路情報作成工程(ST14)は、被搬送物の種類と搬送先との組み合わせを変えて、全ての組み合わせで経路情報42が作成されるまで(ST15においてNo)、繰り返し実行される。 Next, the route information creation unit 33 creates the route information 42 corresponding to the type (class 62) of the object to be transported and the transport destination (ST14: route information creation process). The route information creating step (ST14) is repeatedly executed until the route information 42 is created in all combinations by changing the combination of the type of the object to be transported and the transport destination (No in ST15).
 すなわち、経路情報作成工程(ST14)において、抽出された注意地点HY1~HY3の情報に基づいて、被搬送物の種類と搬送先とに対応して、搬送経路における搬送装置Qの走行速度(最大速度)に関する速度情報を含む経路情報42が作成される。なお、経路情報42は、予め全ての組み合わせを作成して管理記憶部36に記憶させる他、搬送作業工程(ST2)において被搬送物の種類と搬送先とが決定された時点で、その組み合わせに対応する経路情報42を作成するようにしてもよい。 That is, based on the information of the attention points HY1 to HY3 extracted in the route information creation step (ST14), the traveling speed (maximum) of the transport device Q in the transport route corresponds to the type of the object to be transported and the transport destination. The route information 42 including the speed information regarding the speed) is created. For the route information 42, all combinations are created in advance and stored in the management storage unit 36, and when the type of the object to be transported and the transfer destination are determined in the transfer work process (ST2), the combination is used. The corresponding route information 42 may be created.
 なお、上記の実施例では、搬送システムとして基板に対して作業を行う製造装置が配置されたフロアFにおいて、トレイマガジン20などの被搬送物を搬送する搬送装置Qを例に説明したが、これに限定されない。例えば、製造装置は、半導体製品を製造する半導体製造ラインにおいてウェハ(ワーク)に対して生産作業を行う製造装置であり、被搬送物はウェハを収容したウェハキャリアであってもよい。また、製造装置は、電気機器を組立てる組立て生産ラインまたは食品加工製品を生産する食品加工ラインにおいて、生産作業を行う製造装置であり、被搬送物は実装基板もしくは筐体、または、食品材料もしくは容器であってもよい。 In the above embodiment, the transport device Q that transports the object to be transported such as the tray magazine 20 on the floor F in which the manufacturing device that performs the work on the substrate is arranged as the transport system has been described as an example. Not limited to. For example, the manufacturing apparatus may be a manufacturing apparatus that performs production work on a wafer (work) in a semiconductor manufacturing line that manufactures semiconductor products, and the conveyed object may be a wafer carrier accommodating a wafer. In addition, the manufacturing equipment is a manufacturing equipment that performs production work in an assembly production line that assembles electrical equipment or a food processing line that produces processed food products, and the object to be transported is a mounting substrate or housing, or a food material or container. May be.
 本開示の搬送システム、搬送方法、経路情報作成システムならびに経路情報作成方法は、製造装置が設置されたフロアにおいて、被搬送物を正常な状態で搬送することができるという効果を有し、部品を基板に実装する分野において有用である。 The transport system, the transport method, the route information creation system, and the route information creation method of the present disclosure have an effect that the transported object can be transported in a normal state on the floor where the manufacturing apparatus is installed, and the parts can be transported. It is useful in the field of mounting on a board.
 3 管理コンピュータ(制御システム)
 15 リール(被搬送物)
 16 パレット(被搬送物)
 17、17A、17B トレイ
 19 パレット収納部
 20 トレイマガジン(被搬送物)
 A 加速度計
 E1~E4、E11~E15、E21~E23、E25~E30、E33、E34、E24a、E24b、E31a、E31b、E32a、E32b、EY1~EY3 区間
 F フロア
 H1、H2、HY1~HY3 注意地点
 L 距離計測装置
 M1 基板供給装置(製造装置)
 M2 印刷装置(製造装置)
 M3 印刷検査装置(製造装置)
 M4、M5 部品装着装置(製造装置)
 M6 装着検査装置(製造装置)
 M7 リフロー装置(製造装置)
 M8 基板回収装置(製造装置)
 P1、P2 部品
 Q 搬送装置
3 Management computer (control system)
15 reels (to be transported)
16 Pallet (to be transported)
17, 17A, 17B Tray 19 Pallet storage 20 Tray magazine (to be transported)
A Accelerometer E1 to E4, E11 to E15, E21 to E23, E25 to E30, E33, E34, E24a, E24b, E31a, E31b, E32a, E32b, EY1 to EY3 section F floor H1, H2, HY1 to HY3 Attention points L Distance measuring device M1 Board supply device (manufacturing device)
M2 printing equipment (manufacturing equipment)
M3 print inspection equipment (manufacturing equipment)
M4, M5 parts mounting equipment (manufacturing equipment)
M6 mounting inspection equipment (manufacturing equipment)
M7 reflow equipment (manufacturing equipment)
M8 board recovery device (manufacturing device)
P1, P2 parts Q transport equipment

Claims (16)

  1.  基板に対して所定の作業を行う1以上の製造装置が設置されたフロアにおいて用いられる、被搬送物を搬送する搬送装置と、
     搬送経路に関する経路情報に基づいて、前記搬送装置による搬送作業を制御する制御システムと、を備え、
     前記経路情報は、前記搬送装置の走行時に前記フロアの状態に起因して生じる予め計測された加速度に基づいて設定された、前記搬送装置の走行速度に関する速度情報を含む、搬送システム。
    A transport device for transporting an object to be transported, which is used on a floor on which one or more manufacturing devices that perform a predetermined operation on a substrate are installed.
    A control system for controlling the transport operation by the transport device based on the route information regarding the transport route is provided.
    The route information includes speed information regarding a traveling speed of the conveying device, which is set based on a pre-measured acceleration caused by a state of the floor when the conveying device is traveling.
  2.  前記走行速度は、第1速度と、前記第1速度よりも遅い第2速度とを含み、
     前記経路情報は、前記搬送装置が前記第1速度で走行した際に前記加速度が所定の閾値を超える注意地点を含む前記搬送経路の区間において、前記第2速度が前記走行速度として設定されている、請求項1に記載の搬送システム。
    The traveling speed includes a first speed and a second speed slower than the first speed.
    In the route information, the second speed is set as the traveling speed in the section of the transport route including the caution point where the acceleration exceeds a predetermined threshold when the transport device travels at the first speed. , The transport system according to claim 1.
  3.  前記第2速度は、前記区間において前記搬送装置が走行した際に、前記加速度が前記所定の閾値を超えない速度である、請求項2に記載の搬送システム。 The transfer system according to claim 2, wherein the second speed is a speed at which the acceleration does not exceed the predetermined threshold value when the transfer device travels in the section.
  4.  前記所定の閾値は、前記搬送装置による前記被搬送物の搬送時に、前記被搬送物の状態に異常が生じる加速度に基づいて設定されている、請求項2または3に記載の搬送システム。 The transport system according to claim 2 or 3, wherein the predetermined threshold value is set based on an acceleration at which an abnormality occurs in the state of the transported object when the transported object is transported by the transport device.
  5.  前記被搬送物は、部品が収容されたトレイを保持するパレットを収納するパレット収納部を有するトレイマガジンであり、
     前記所定の閾値は、前記搬送装置による前記トレイマガジンの搬送時に前記トレイ内の前記部品の収容状態に異常が生じる加速度に基づいて設定されている、請求項4に記載の搬送システム。
    The object to be transported is a tray magazine having a pallet storage unit for storing a pallet for holding a tray in which parts are stored.
    The transfer system according to claim 4, wherein the predetermined threshold value is set based on an acceleration at which an abnormality occurs in the accommodation state of the parts in the tray when the tray magazine is conveyed by the transfer device.
  6.  前記区間は、前記搬送経路を区分けした複数の区間のうちの少なくとも1つである、請求項2から5のいずれか1項に記載の搬送システム。 The transport system according to any one of claims 2 to 5, wherein the section is at least one of a plurality of sections that divide the transport route.
  7.  前記区間は、前記注意地点から前後に所定の距離を延ばした区間である、請求項2から5のいずれか1項に記載の搬送システム。 The transport system according to any one of claims 2 to 5, wherein the section is a section in which a predetermined distance is extended back and forth from the caution point.
  8.  前記経路情報は、加速度を計測する加速度計を前記搬送装置または前記被搬送物に設置した状態で、前記搬送装置に前記フロアを走行させて取得した加速度情報に基づいて作成される、請求項1から7のいずれか1項に記載の搬送システム。 The path information is created based on the acceleration information acquired by traveling the floor on the transport device with the accelerometer for measuring the acceleration installed on the transport device or the object to be transported. 7. The transport system according to any one of 7.
  9.  前記経路情報は、物体までの距離を測定可能なセンサを前記搬送装置に設置した状態で、前記搬送装置に前記フロアを走行させて取得した前記フロアに関する地図情報に基づいて作成される、請求項1から8のいずれか1項に記載の搬送システム。 The route information is created based on the map information about the floor acquired by traveling the floor on the transport device with a sensor capable of measuring the distance to an object installed in the transport device. The transport system according to any one of 1 to 8.
  10.  前記経路情報は、前記被搬送物に対応して作成される、請求項1から9のいずれか1項に記載の搬送システム。 The transport system according to any one of claims 1 to 9, wherein the route information is created corresponding to the transported object.
  11.  基板に対して所定の作業を行う1以上の製造装置が設置されたフロアにおいて用いられる、被搬送物を搬送装置により搬送する搬送方法であって、
     前記搬送装置の走行時に前記フロアの状態に起因して生じる予め計測された加速度に基づいて設定された、前記搬送装置の走行速度に関する速度情報を含む搬送経路に関する経路情報に基づいて、前記搬送装置による搬送作業を制御する、ことを含む、搬送方法。
    A transport method for transporting an object to be transported by a transport device, which is used on a floor on which one or more manufacturing devices that perform a predetermined operation on a substrate are installed.
    The transport device is set based on the route information related to the transport path including the speed information regarding the travel speed of the transport device, which is set based on the pre-measured acceleration caused by the state of the floor when the transport device is running. Transport methods, including controlling transport operations by.
  12.  前記経路情報は、前記搬送装置が第1速度で走行した際に前記加速度が所定の閾値を超える注意地点を含む前記搬送経路の区間において、前記走行速度として前記第1速度より遅い第2速度が設定されている、請求項11に記載の搬送方法。 The route information includes a second speed slower than the first speed as the traveling speed in the section of the transport route including a caution point where the acceleration exceeds a predetermined threshold when the transport device travels at the first speed. The transport method according to claim 11, which is set.
  13.  前記第2速度は、前記区間において前記搬送装置が走行した際に前記加速度が前記所定の閾値を超えない速度である、請求項12に記載の搬送方法。 The transport method according to claim 12, wherein the second speed is a speed at which the acceleration does not exceed the predetermined threshold value when the transport device travels in the section.
  14.  前記被搬送物に対応して、前記第2速度を変更する、請求項12または13に記載の搬送方法。 The transport method according to claim 12 or 13, wherein the second speed is changed in response to the transported object.
  15.  基板に対して所定の作業を行う1以上の製造装置が設けられたフロアにおいて用いられる、被搬送物を搬送する搬送装置と、
     前記搬送装置または前記被搬送物に設置され、加速度を計測する加速度計と、
     前記加速度計を設置した状態で、前記搬送装置に前記フロアを走行させることで取得された前記フロアにおける前記加速度に関する加速度情報に基づいて、前記搬送装置の走行時に前記フロアの状態に起因して異常が生じる可能性がある注意地点を抽出する注意地点抽出部と、
     前記注意地点抽出部によって抽出された注意地点の情報に基づいて、搬送経路における前記搬送装置の走行速度に関する速度情報を含む経路情報を作成する経路情報作成部と、を備える、経路情報作成システム。
    A transport device for transporting an object to be transported, which is used on a floor provided with one or more manufacturing devices that perform a predetermined operation on a substrate.
    An accelerometer installed on the transport device or the object to be transported and measuring acceleration,
    Based on the acceleration information related to the acceleration on the floor acquired by running the floor on the transport device with the accelerometer installed, an abnormality is caused by the state of the floor when the transport device is running. Attention point extraction unit that extracts attention points that may cause
    A route information creation system including a route information creation unit that creates route information including speed information regarding a traveling speed of the transport device in a transport route based on the information of the caution points extracted by the caution point extraction unit.
  16.  基板に対して所定の作業を行う1以上の製造装置が設けられたフロアにおいて用いられる、被搬送物を搬送する搬送装置の搬送経路に関する経路情報を作成する経路情報作成方法であって、
     加速度を計測する加速度計を前記搬送装置または前記被搬送物に設置した状態で、前記搬送装置に前記フロアを走行させることで、前記フロアにおける前記加速度に関する加速度情報を取得し、
     前記加速度情報に基づいて、前記搬送装置の走行時に前記フロアの状態に起因して異常が生じる可能性がある注意地点を抽出し、
     前記抽出された注意地点の情報に基づいて、前記搬送経路における前記搬送装置の走行速度に関する速度情報を含む前記経路情報を作成する、ことを含む、経路情報作成方法。
    A route information creation method for creating route information regarding a transport route of a transport device for transporting an object to be transported, which is used on a floor provided with one or more manufacturing devices that perform a predetermined operation on a substrate.
    By running the floor on the transport device with the accelerometer for measuring the acceleration installed on the transport device or the object to be transported, acceleration information regarding the acceleration on the floor is acquired.
    Based on the acceleration information, a caution point where an abnormality may occur due to the condition of the floor when the transport device is running is extracted.
    A method for creating route information, which comprises creating the route information including speed information regarding the traveling speed of the transport device in the transport route based on the information of the extracted caution points.
PCT/JP2021/028266 2020-12-28 2021-07-30 Transport system, transport method, route information creation system, and route information creation method WO2022145081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572901A JPWO2022145081A1 (en) 2020-12-28 2021-07-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218604 2020-12-28
JP2020-218604 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145081A1 true WO2022145081A1 (en) 2022-07-07

Family

ID=82259232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028266 WO2022145081A1 (en) 2020-12-28 2021-07-30 Transport system, transport method, route information creation system, and route information creation method

Country Status (2)

Country Link
JP (1) JPWO2022145081A1 (en)
WO (1) WO2022145081A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112214A (en) * 1990-09-03 1992-04-14 Toyota Motor Corp Traveling controller for unmanned carrier
JPH0519848A (en) * 1991-07-17 1993-01-29 Toshiba Corp Unmanned carriage
JP2007072572A (en) * 2005-09-05 2007-03-22 Daifuku Co Ltd Article conveyance facility
JP2015196600A (en) * 2014-03-31 2015-11-09 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Object management system and transport robot
WO2018173595A1 (en) * 2017-03-22 2018-09-27 日本電産株式会社 Movement device
JP2019091770A (en) * 2017-11-13 2019-06-13 Juki株式会社 Component transfer device
JP2020038631A (en) * 2018-08-30 2020-03-12 キヤノン株式会社 Information processing apparatus, information processing method, program, and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112214A (en) * 1990-09-03 1992-04-14 Toyota Motor Corp Traveling controller for unmanned carrier
JPH0519848A (en) * 1991-07-17 1993-01-29 Toshiba Corp Unmanned carriage
JP2007072572A (en) * 2005-09-05 2007-03-22 Daifuku Co Ltd Article conveyance facility
JP2015196600A (en) * 2014-03-31 2015-11-09 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Object management system and transport robot
WO2018173595A1 (en) * 2017-03-22 2018-09-27 日本電産株式会社 Movement device
JP2019091770A (en) * 2017-11-13 2019-06-13 Juki株式会社 Component transfer device
JP2020038631A (en) * 2018-08-30 2020-03-12 キヤノン株式会社 Information processing apparatus, information processing method, program, and system

Also Published As

Publication number Publication date
JPWO2022145081A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
KR101429043B1 (en) Substrate transfer apparatus, substrate transfer method, and surface mounting apparatus
JP7267366B2 (en) Mounting-related equipment and mounting system
US20190313554A1 (en) Component-mounting system and management device
JP4572262B2 (en) Method and apparatus for determining position of support in backup device
JPWO2020039495A1 (en) Component mounting system
CN112042285B (en) Automatic replacement system, management device, and automatic replacement method
JP2022089887A (en) Material supply support device and material supply support method
JP2019061312A (en) Material replenishment support device and material replenishment support method
JPWO2019053888A1 (en) Parts supply system
CN113632022A (en) Operation instruction device in manufacturing plant and operation instruction method in manufacturing plant
JP2024036630A (en) Component mounting line and component supply method
WO2022145081A1 (en) Transport system, transport method, route information creation system, and route information creation method
JP6212263B2 (en) Component mounting apparatus, component mounting method and program thereof
JP5808160B2 (en) Electronic component mounting equipment
US11912412B2 (en) Substrate working system and method for conveying component in substrate working system
JP4676302B2 (en) Surface mounter and control method of surface mounter
JP7163393B2 (en) MOBILE WORK MANAGEMENT DEVICE, MOUNTING SYSTEM, MOBILE WORK DEVICE AND MOBILE WORK MANAGEMENT METHOD
JP4689934B2 (en) Board work system
JP2020086645A (en) Production managing apparatus and production managing method
JP7281623B2 (en) Floor layout creation device, floor layout display system, and floor layout creation method
JP2022103768A (en) Component mounting system, component mounting device, and determination method
WO2022009336A1 (en) Component supply method and component supply device
JP7149452B2 (en) Component mounting system and management method
WO2019058416A1 (en) Component mounting system
JP2012084718A (en) Electronic component mounting method and electronic component mounting machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914942

Country of ref document: EP

Kind code of ref document: A1