WO2022123726A1 - Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring - Google Patents

Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring Download PDF

Info

Publication number
WO2022123726A1
WO2022123726A1 PCT/JP2020/046050 JP2020046050W WO2022123726A1 WO 2022123726 A1 WO2022123726 A1 WO 2022123726A1 JP 2020046050 W JP2020046050 W JP 2020046050W WO 2022123726 A1 WO2022123726 A1 WO 2022123726A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
layer
wiring
orbit torque
torque wiring
Prior art date
Application number
PCT/JP2020/046050
Other languages
French (fr)
Japanese (ja)
Inventor
智生 佐々木
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2020/046050 priority Critical patent/WO2022123726A1/en
Priority to JP2021158757A priority patent/JP2022092571A/en
Priority to US17/545,467 priority patent/US20220190234A1/en
Priority to CN202111499478.XA priority patent/CN114628575A/en
Publication of WO2022123726A1 publication Critical patent/WO2022123726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetization rotating element, a magnetoresistive element, a magnetic memory, and a method for manufacturing wiring.
  • Giant magnetoresistive (GMR) elements consisting of a multilayer film of a ferromagnetic layer and a non-magnetic layer, and tunnel magnetoresistive (TMR) elements using an insulating layer (tunnel barrier layer, barrier layer) as the non-magnetic layer are magnetic resistance.
  • TMR tunnel magnetoresistive
  • insulating layer tunnel barrier layer, barrier layer
  • Magnetoresistive elements can be applied to magnetic sensors, high frequency components, magnetic heads and non-volatile random access memory (MRAM).
  • MRAM is a storage element in which a magnetoresistive element is integrated.
  • the MRAM reads and writes data by utilizing the characteristic that the resistance of the magnetoresistive sensor changes when the direction of mutual magnetization of the two ferromagnetic layers sandwiching the non-magnetic layer in the magnetoresistive sensor changes.
  • the direction of magnetization of the ferromagnetic layer is controlled by using, for example, a magnetic field generated by an electric current. Further, for example, the direction of magnetization of the ferromagnetic layer is controlled by utilizing the spin transfer torque (STT) generated by passing a current in the stacking direction of the magnetoresistive effect element.
  • STT spin transfer torque
  • SOT spin-orbit torque
  • SOT is induced by the spin current generated by spin-orbit interaction or the Rashba effect at the interface of dissimilar materials.
  • the current for inducing SOT in the magnetoresistive element flows in the direction intersecting the stacking direction of the magnetoresistive element. That is, it is not necessary to pass a current in the stacking direction of the magnetoresistive element, and it is expected that the life of the magnetoresistive element will be extended.
  • the magnetic memory has a plurality of integrated magnetoresistive elements. As the amount of current applied to each magnetoresistive effect element increases, the power consumption of the magnetic memory increases. It is required to reduce the amount of current applied to each magnetoresistive effect element and suppress the power consumption of the magnetic memory.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a magnetization rotating element, a magnetoresistive element, a magnetic memory, and wiring that operate with a small current.
  • the present invention provides the following means for solving the above problems.
  • the magnetizing rotating element according to the first aspect includes a spin-orbit torque wiring and a first ferromagnetic layer laminated on the spin-orbit torque wiring, and the spin-orbit torque wiring is a compound having a pyrochlor structure. including.
  • the compound may be an oxide.
  • the oxide is represented by the composition formula of R 2 Ir 2 O 7 in the stoichiometric composition, and R in the composition formula is Pr, Nd, Sm, Eu, It may be one or more elements selected from the group consisting of Gd, Tb, Dy and Ho.
  • R in the composition formula contains a first element, and the first element may be at least one of Pr and Nd.
  • R in the composition formula contains a first element and a second element, and the first element is at least one of Pr and Nd, and the second element.
  • the element may be one or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho.
  • the composition ratio of the second element may be smaller than the composition ratio of the first element.
  • the oxide may be oxygen-deficient.
  • the spin-orbit torque wiring may have an electrical resistivity of 1 m ⁇ ⁇ cm or more.
  • the spin-orbit torque wiring may have an electrical resistivity of 10 m ⁇ ⁇ cm or less.
  • the magnetizing rotating element according to the above aspect may have a first intermediate layer between the first ferromagnetic layer and the spin-orbit torque wiring, and the first intermediate layer is an atom from yttrium. Contains heavy metals with high numbers.
  • the magnetizing rotating element according to the above aspect may have a second intermediate layer between the first ferromagnetic layer and the spin orbit torque wiring, and the second intermediate layer may be Cu, Al. , Si and one or more elements selected from the group consisting of Al.
  • the magnetizing rotating element according to the above embodiment may have one or more first intermediate layers and two or more intermediate layers between the first ferromagnetic layer and the spin orbit torque wiring.
  • the first intermediate layer contains a heavy metal having an atomic number larger than that of yttrium
  • the second intermediate layer contains one or more elements selected from the group consisting of Cu, Al, Si and Al.
  • the magnetic resistance effect element according to the second aspect is the magnetized rotating element according to the above aspect, a non-magnetic layer in contact with the first ferromagnetic layer of the magnetized rotating element, and the first ferromagnetic layer. A second ferromagnetic layer with a non-magnetic layer sandwiched between them is provided.
  • the magnetic memory according to the third aspect includes a plurality of magnetoresistive elements according to the above aspect.
  • the method for manufacturing wiring according to the fourth aspect includes a first film forming step of forming an oxide layer containing a pyrochlore structure by DC sputtering of a metal at the same time as or after RF sputtering of an oxide.
  • the oxide is one selected from the group consisting of R 2 O 3 (R is Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho.
  • R is Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho.
  • the metal may be Ir.
  • the first film forming step may be performed in an oxygen atmosphere.
  • the method for manufacturing a wiring according to the above aspect may include a second film forming step of forming a heavy metal layer containing a heavy metal having a larger atomic number than yttrium after the film forming step.
  • the gas pressure in the film forming step is higher than the gas pressure in the first film forming step.
  • the method for manufacturing a wiring according to the above aspect is selected from a second film forming step of forming a heavy metal layer containing a heavy metal having a larger atomic number than yttrium and a group consisting of Cu, Al, Si and Al1.
  • a third film forming step for forming a layer containing an element of a kind or more may be further provided after the first forming step, and the second forming step and the third forming step are alternately performed. To do.
  • the method for manufacturing a magnetization rotating element, a magnetoresistive effect element, a magnetic memory, and wiring according to the present invention can reduce the amount of current required for operation.
  • the x direction is, for example, a direction from the first conductive layer 31 to the second conductive layer 32.
  • the z direction is a direction orthogonal to the x direction and the y direction.
  • the z direction is an example of the stacking direction in which each layer is laminated.
  • the + z direction may be expressed as “up” and the ⁇ z direction may be expressed as “down”.
  • the top and bottom do not always match the direction in which gravity is applied.
  • connection means that, for example, the dimension in the x direction is larger than the smallest dimension among the dimensions in the x direction, the y direction, and the z direction. The same applies when extending in other directions.
  • connection is not limited to the case of being physically connected. For example, not only when two layers are physically in contact with each other, but also when two layers are connected by sandwiching another layer between them is included in "connection".
  • FIG. 1 is a configuration diagram of a magnetic memory 200 according to the first embodiment.
  • the magnetic memory 200 includes a plurality of magnetoresistive elements 100, a plurality of write wiring WLs, a plurality of common wiring CLs, a plurality of read wiring RLs, a plurality of first switching elements Sw1, and a plurality of second switching elements. It includes Sw2 and a plurality of third switching elements Sw3.
  • the magnetic memory 200 is, for example, a magnetic array in which the magnetoresistive effect elements 100 are arranged in an array.
  • Each write wiring WL electrically connects the power supply and one or more magnetoresistive elements 100.
  • the common wiring CL is wiring used both when writing data and when reading data, respectively.
  • Each of the common wiring CLs electrically connects the reference potential and one or more magnetoresistive elements 100.
  • the reference potential is, for example, ground.
  • the common wiring CL may be provided in each of the plurality of magnetoresistive elements 100, or may be provided across the plurality of magnetoresistive elements 100.
  • the readout wiring RL electrically connects the power supply and one or more magnetoresistive elements 100, respectively.
  • the power supply is connected to the magnetic memory 200 at the time of use.
  • Each magnetoresistive element 100 is connected to the first switching element Sw1, the second switching element Sw2, and the third switching element Sw3, respectively.
  • the first switching element Sw1 is connected between the magnetoresistive effect element 100 and the write wiring WL.
  • the second switching element Sw2 is connected between the magnetoresistive effect element 100 and the common wiring CL.
  • the third switching element Sw3 is connected to the read wiring RL extending over the plurality of magnetoresistive element 100.
  • a write current flows between the write wiring WL connected to the predetermined magnetoresistive effect element 100 and the common wiring CL.
  • the write current flows, data is written to the predetermined magnetoresistive element 100.
  • the second switching element Sw2 and the third switching element Sw3 are turned on, a read current flows between the common wiring CL connected to the predetermined magnetoresistive element 100 and the read wiring RL.
  • the read current flows, data is read from the predetermined magnetoresistive element 100.
  • the first switching element Sw1, the second switching element Sw2, and the third switching element Sw3 are elements that control the flow of current.
  • the first switching element Sw1, the second switching element Sw2, and the third switching element Sw3 are, for example, a transistor, an element such as an Ovonic Threshold Switch (OTS) that utilizes a phase change of a crystal layer, and a metal insulator transition.
  • OTS Ovonic Threshold Switch
  • An element such as a (MIT) switch that utilizes a change in band structure, an element that utilizes a breakdown voltage such as a Zener diode and an avalanche diode, and an element whose conductivity changes as the atomic position changes.
  • the magnetoresistive element 100 connected to the same wiring shares the third switching element Sw3.
  • the third switching element Sw3 may be provided in each magnetoresistive element 100. Further, a third switching element Sw3 may be provided in each magnetoresistive element 100, and the first switching element Sw1 or the second switching element Sw2 may be shared by the magnetoresistive element 100 connected to the same wiring.
  • FIG. 2 is a cross-sectional view of a characteristic portion of the magnetic memory 200 according to the first embodiment.
  • FIG. 2 is a cross section of the magnetoresistive effect element 100 cut along the xz plane passing through the center of the width in the y direction of the spin-orbit torque wiring 20 described later.
  • the first switching element Sw1 and the second switching element Sw2 shown in FIG. 2 are transistor Trs.
  • the third switching element Sw3 is electrically connected to the read wiring RL and is, for example, at a different position in the y direction in FIG.
  • the transistor Tr is, for example, a field effect transistor, and has a gate electrode G, a gate insulating film GI, a source S formed on the substrate Sub, and a drain D.
  • the source S and the drain D are defined by the current flow direction, and they are in the same region. The positional relationship between the source S and the drain D may be inverted.
  • the substrate Sub is, for example, a semiconductor substrate.
  • the transistor Tr and the magnetoresistive sensor 100 are electrically connected via the via wiring V, the first conductive layer 31 and the second conductive layer 32. Further, the transistor Tr and the write wiring WL or the common wiring CL are connected by the via wiring V.
  • the via wiring V extends in the z direction, for example.
  • the read wiring RL is connected to the laminated body 10 via the electrode E.
  • the via wiring V, the electrode E, the first conductive layer 31 and the second conductive layer 32 include a material having conductivity.
  • the periphery of the magnetoresistive effect element 100 and the transistor Tr is covered with an insulating layer In.
  • the insulating layer In is an insulating layer that insulates between the wirings of the multilayer wiring and between the elements.
  • the insulating layer In may be, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbide (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O). 3 ), zirconium oxide (ZrO x ), magnesium oxide (MgO), aluminum nitride (AlN) and the like.
  • FIG. 3 is a cross-sectional view of the magnetoresistive effect element 100.
  • FIG. 3 is a cross section of the magnetoresistive effect element 100 cut in the xz plane passing through the center of the width of the spin-orbit torque wiring 20 in the y direction.
  • FIG. 4 is a plan view of the magnetoresistive effect element 100 as viewed from the z direction.
  • the magnetoresistive element 100 includes, for example, a laminate 10, a spin-orbit torque wiring 20, a first conductive layer 31, and a second conductive layer 32.
  • the laminated body 10 is laminated on the spin-orbit torque wiring 20. Another layer may be provided between the laminate 10 and the spin-orbit torque wiring 20.
  • the first conductive layer 31 and the second conductive layer 32 are connected to the spin-orbit torque wiring 20.
  • Another layer may be provided between each of the first conductive layer 31 and the second conductive layer 32 and the spin-orbit torque wiring 20.
  • the first conductive layer 31 and the second conductive layer 32 are located at positions sandwiching the laminated body 10 when viewed from the z direction.
  • the resistance value of the laminated body 10 in the z direction changes when spin is injected into the laminated body 10 from the spin track torque wiring 20.
  • the magnetoresistive effect element 100 is a magnetic element using spin orbit torque (SOT), and may be referred to as a spin orbit torque type magnetoresistive element, a spin injection type magnetoresistive element, or a spin current magnetic resistance effect element. ..
  • the laminated body 10 is sandwiched between the spin-orbit torque wiring 20 and the electrode E (see FIG. 2) in the z direction.
  • the laminated body 10 is a columnar body.
  • the plan view shape of the laminated body 10 from the z direction is, for example, a circle, an ellipse, or a quadrangle.
  • the side surface of the laminated body 10 is inclined with respect to the z direction, for example.
  • the laminated body 10 has, for example, a first ferromagnetic layer 1, a second ferromagnetic layer 2, and a non-magnetic layer 3.
  • the first ferromagnetic layer 1 is in contact with, for example, the spin-orbit torque wiring 20 and is laminated on the spin-orbit torque wiring 20.
  • Spin is injected into the first ferromagnetic layer 1 from the spin-orbit torque wiring 20.
  • the magnetization of the first ferromagnetic layer 1 receives spin-orbit torque (SOT) due to the injected spin, and the orientation direction changes.
  • SOT spin-orbit torque
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 sandwich the non-magnetic layer 3 in the z direction.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 each have magnetization.
  • the magnetization of the second ferromagnetic layer 2 is less likely to change in the orientation direction than the magnetization of the first ferromagnetic layer 1 when a predetermined external force is applied.
  • the first ferromagnetic layer 1 is sometimes referred to as a magnetization free layer
  • the second ferromagnetic layer 2 is sometimes referred to as a magnetization fixed layer or a magnetization reference layer.
  • the magnetization fixing layer is on the side away from the substrate Sub, and is called a top pin structure.
  • the resistance value of the laminated body 10 changes according to the difference in the relative angles of magnetization between the first ferromagnetic layer 1 and the second ferromagnetic layer 2 sandwiching the non-magnetic layer 3.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 include a ferromagnet.
  • the ferromagnet is, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe and Ni, an alloy containing one or more of these metals, and at least one of these metals and B, C, and N. It is an alloy containing the element of.
  • the ferromagnetic material is, for example, Co—Fe, Co—Fe—B, Ni—Fe, Co—Ho alloy, Sm—Fe alloy, Fe—Pt alloy, Co—Pt alloy, CoCrPt alloy.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may contain a Whistler alloy.
  • Whisler alloys include intermetallic compounds with a chemical composition of XYZ or X2YZ .
  • X is a transition metal element or noble metal element of Group Co, Fe, Ni, or Cu on the periodic table
  • Y is a transition metal of Group Mn, V, Cr, or Ti, or an elemental species of X
  • Z is Group III. It is a typical element of Group V.
  • the Whisler alloy is, for example, Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , Co 2 FeGe 1-c Ga c and the like. Whisler alloys have a high spin polarizability.
  • the non-magnetic layer 3 contains a non-magnetic material.
  • the non-magnetic layer 3 is an insulator (when it is a tunnel barrier layer), for example, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4 and the like can be used as the material thereof.
  • a material or the like in which a part of Al, Si, and Mg is replaced with Zn, Be, or the like can also be used.
  • MgO and MgAl2O4 are materials that can realize a coherent tunnel, so that spin can be efficiently injected.
  • the non-magnetic layer 3 is a metal, Cu, Au, Ag or the like can be used as the material.
  • the non-magnetic layer 3 is a semiconductor, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 and the like can be used as the material.
  • the laminated body 10 may have a layer other than the first ferromagnetic layer 1, the second ferromagnetic layer 2, and the non-magnetic layer 3.
  • a base layer may be provided between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1.
  • the base layer enhances the crystallinity of each layer constituting the laminated body 10.
  • the cap layer may be provided on the uppermost surface of the laminated body 10.
  • the laminated body 10 may be provided with a ferromagnetic layer via a spacer layer on the surface of the second ferromagnetic layer 2 opposite to the non-magnetic layer 3.
  • the second ferromagnetic layer 2, the spacer layer, and the ferromagnetic layer have a synthetic antiferromagnetic structure (SAF structure).
  • the synthetic antiferromagnetic structure consists of two magnetic layers sandwiching the non-magnetic layer.
  • the antiferromagnetic coupling between the second ferromagnetic layer 2 and the ferromagnetic layer increases the coercive force of the second ferromagnetic layer 2 as compared with the case without the ferromagnetic layer.
  • the ferromagnetic layer is, for example, IrMn, PtMn or the like.
  • the spacer layer contains, for example, at least one selected from the group consisting of Ru, Ir, Rh.
  • the spin-orbit torque wiring 20 has a length in the x direction longer than the y direction when viewed from the z direction, and extends in the x direction.
  • the write current flows in the x direction of the spin-orbit torque wiring 20.
  • At least a part of the spin-orbit torque wiring 20 sandwiches the first ferromagnetic layer 1 together with the non-magnetic layer 3 in the z direction.
  • the spin-orbit torque wiring 20 generates a spin current by the spin Hall effect when the current I flows, and injects spin into the first ferromagnetic layer 1.
  • the spin-orbit torque wiring 20 gives, for example, a spin-orbit torque (SOT) sufficient to reverse the magnetization of the first ferromagnetic layer 1 to the magnetization of the first ferromagnetic layer 1.
  • SOT spin-orbit torque
  • the spin Hall effect is a phenomenon in which a spin current is induced in a direction orthogonal to the direction in which a current flows, based on the spin-orbit interaction when a current is passed.
  • the spin Hall effect is common to the normal Hall effect in that the moving (moving) charge (electron) can bend the moving (moving) direction.
  • the first spin oriented in the ⁇ y direction is bent in the + z direction
  • the second spin oriented in the + y direction is bent in the ⁇ z direction.
  • the number of electrons in the first spin and the number of electrons in the second spin generated by the spin Hall effect are equal. That is, the number of electrons in the first spin in the + z direction is equal to the number of electrons in the second spin in the ⁇ z direction.
  • the first spin and the second spin flow in the direction of eliminating the uneven distribution of spins. In the movement of the first spin and the second spin in the z direction, the charge flows cancel each other out, so that the amount of current becomes zero. Spin currents without current are especially called pure spin currents.
  • the electron flow of the first spin is J ⁇
  • the electron flow of the second spin is J ⁇
  • the spin current JS occurs in the z direction.
  • the first spin is injected into the first ferromagnetic layer 1 from the spin-orbit torque wiring 20.
  • the spin-orbit torque wiring 20 contains a compound having a pyrochlore structure.
  • the spin-orbit torque wiring 20 may be made of a compound having a pyrochlore structure.
  • the compound having a pyrochlore structure is, for example, an oxide, an oxynitride, a fluoride, or a hydroxide.
  • the compound having a pyrochlore structure is, for example, an oxide. Oxides are easy to handle. In addition, oxides with a pyrochlore structure have higher electrical resistivity than metals. When a high voltage can be applied between the first conductive layer 31 and the second conductive layer 32, the efficiency of injecting spins from the spin-orbit torque wiring 20 into the first ferromagnetic layer 1 is increased.
  • the oxide represented by the composition formula of R 2 Ir 2 O 7 is an example of an oxide having a pyrochlore structure.
  • R in the composition formula is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho.
  • the above composition formula is described as a stoichiometric composition, deviation from the stoichiometric composition is allowed within a range in which the crystal structure can be maintained.
  • oxides with a pyrochlore structure may be oxygen deficient.
  • the conductivity of the spin-orbit torque wiring 20 can be adjusted according to the degree of oxygen deficiency.
  • FIG. 5 is a diagram showing a crystal structure of a pyrochlore structure.
  • FIG. 5 is a crystal structure of Nd 2 Ir 2 O 7 . In FIG. 5, oxygen is omitted.
  • the pyrochlore structure is a structure in which two cations (Nd ion and Ir ion) are arranged along the plane orientation ⁇ 110>.
  • the pyrochlore structure has a structure in which R atoms form a regular tetrahedron, and the regular tetrahedrons are three-dimensionally connected while sharing vertices.
  • a regular tetrahedron with a pyrochlore structure magnetic frustration occurs when the magnetic interaction between the closest atoms is antiferromagnetic. Magnetic frustration disrupts the magnetic balance within a substance and increases spin fluctuations.
  • the pyrochlore structure does not have a long-range correlation between magnetic ions at room temperature, and has paramagnetism or magnetic properties similar to paramagnetism.
  • the spin-orbit torque wiring 20 having a compound having a pyrochlore structure can generate a large spin current. It is considered that the magnetic frustration disturbs the symmetry in the spin-orbit torque wiring 20, so that a strong spin-orbit interaction occurs between the conduction electron and the localized electron.
  • R in the composition formula may contain at least one element of Pr and Nd. These elements are referred to as first elements.
  • the pyrochlore structure containing the first element has a lower electrical resistivity than the case where R in the composition formula is another element. Therefore, the operating voltage of the magnetoresistive effect element 100 can be lowered.
  • the pyrochlore structure containing the first element has a resistance value that behaves like a metal with respect to temperature.
  • the metallic behavior of the resistance value is that the higher the temperature, the larger the resistance value.
  • the amount of spin injected from the spin-orbit torque wiring 20 into the first ferromagnetic layer 1 decreases as the temperature rises.
  • the magnetization of the first ferromagnetic layer 1 is more likely to be reversed as the temperature is higher.
  • the magnetoresistive sensor 100 as a whole The temperature dependence of is small.
  • R in the composition formula may contain a first element and one or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho.
  • One or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho are referred to as a second element.
  • the pyrochlore structure containing the second element has a resistance value that behaves like a semiconductor with respect to temperature.
  • the semiconductor behavior of the resistance value is that the resistance value decreases as the temperature rises.
  • the compound having a pyrochlor structure has both the first element and the second element, the metallic behavior and the semiconductor-like behavior of the resistance value cancel each other out, and the influence of the temperature on the spin-orbit torque wiring 20 is reduced. ..
  • the composition ratio of the second element contained in the pyrochlore structure is smaller than, for example, the composition ratio of the first element.
  • the resistance value of the spin-orbit torque wiring 20 exhibits metallic behavior with respect to temperature.
  • the spin-orbit torque wiring 20 can avoid exhibiting an extreme metallic behavior in resistance value.
  • the magnetoresistive element 100 as a whole the spin-orbit torque wiring 20 exhibits metallic behavior, so that the temperature dependence becomes small.
  • the electrical resistivity of the spin-orbit torque wiring 20 is, for example, 1 m ⁇ ⁇ cm or more.
  • the electrical resistivity of the spin-orbit torque wiring 20 is, for example, 10 m ⁇ ⁇ cm or less.
  • a high voltage can be applied to the spin-orbit torque wiring 20.
  • spin can be efficiently supplied from the spin-orbit torque wiring 20 to the first ferromagnetic layer 1.
  • the spin-orbit torque wiring 20 has a certain level of conductivity or more, a current path flowing along the spin-orbit torque wiring 20 can be secured, and a spin flow associated with the spin Hall effect can be efficiently generated.
  • the thickness of the spin-orbit torque wiring 20 is, for example, 4 nm or more.
  • the thickness of the spin-orbit torque wiring 20 may be, for example, 20 nm or less.
  • the spin-orbit torque wiring 20 is made of metal, by reducing the thickness of the spin-orbit torque wiring 20, a current having a current density equal to or higher than the inverting current density can flow along the spin-orbit torque wiring 20. However, it is difficult to form a thinner film more uniformly.
  • the inverting current density is the current density required to reverse the magnetization of the magnetoresistive effect element 100, and the magnetoresistive sensor 100 operates by reversing the magnetization.
  • the current density of the current flowing along the spin track torque wiring 20 can be made higher than the inverting current density even if the spin track torque wiring 20 is thick.
  • the spin-orbit torque wiring 20 is thick, the spin-orbit torque wiring 20 can be easily formed uniformly, and the variation among the plurality of magnetoresistive elements 100 can be reduced.
  • the spin-orbit torque wiring 20 may also contain a magnetic metal or a topological insulator.
  • a topological insulator is a substance in which the inside of the substance is an insulator or a high resistance substance, but a metallic state in which spin polarization occurs on the surface thereof.
  • Each of the first conductive layer 31 and the second conductive layer 32 is an example of the conductive layer.
  • Each of the first conductive layer 31 and the second conductive layer 32 is made of a material having excellent conductivity.
  • the first conductive layer 31 and the second conductive layer 32 are, for example, Al, Cu, W, and Cr.
  • the magnetoresistive sensor 100 is formed by a laminating step of each layer and a processing step of processing a part of each layer into a predetermined shape.
  • a sputtering method, a chemical vapor deposition (CVD) method, an electron beam vapor deposition method (EB vapor deposition method), an atomic laser deposit method, or the like can be used for the lamination of each layer.
  • CVD chemical vapor deposition
  • EB vapor deposition method electron beam vapor deposition method
  • atomic laser deposit method or the like.
  • the processing of each layer can be performed by using photolithography or the like.
  • impurities are doped at a predetermined position on the substrate Sub to form the source S and the drain D.
  • a gate insulating film GI and a gate electrode G are formed between the source S and the drain D.
  • the source S, drain D, gate insulating film GI, and gate electrode G serve as a transistor Tr.
  • the insulating layer In is formed so as to cover the transistor Tr. Further, by forming an opening in the insulating layer In and filling the opening with a conductor, the via wiring V, the first conductive layer 31 and the second conductive layer 32 are formed.
  • the write wiring WL and the common wiring CL are formed by laminating the insulating layer In to a predetermined thickness, forming a groove in the insulating layer In, and filling the groove with a conductor.
  • an oxide layer is laminated on one surface of the insulating layer In, the first conductive layer 31 and the second conductive layer 32.
  • the step of forming an oxide layer is referred to as a first film forming step.
  • the oxide layer contains an oxide having a pyrochlore structure.
  • the metal is DC sputtered at the same time as or after the RF sputtering of the oxide.
  • the first film forming step is performed, for example, in an oxygen atmosphere. By adjusting the oxygen partial pressure, the composition ratio of oxygen in the oxide of the pyrochlore structure can be adjusted.
  • the RF sputtering oxide is, for example, R 2 O 3 (R is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho).
  • the metal sputtered by DC is, for example, Ir.
  • the ferromagnetic layer, the non-magnetic layer, the ferromagnetic layer, and the hard mask layer are laminated in order on the oxide layer.
  • the hard mask layer is processed into a predetermined shape.
  • the predetermined shape is, for example, the outer shape of the spin-orbit torque wiring 20.
  • the oxide layer, the ferromagnetic layer, the non-magnetic layer, and the ferromagnetic layer are processed into a predetermined shape at once via the hard mask layer.
  • the oxide layer is processed into a predetermined shape to form a spin-orbit torque wiring 20.
  • the hard mask layer has the outer shape of the laminated body 10.
  • the unnecessary portion in the x direction of the laminate formed on the spin-orbit torque wiring 20 is removed via the hard mask layer.
  • the laminated body 10 is processed into a predetermined shape to become the laminated body 10.
  • the hard mask layer serves as an electrode E.
  • the periphery of the laminated body 10 and the spin-orbit torque wiring 20 is filled with the insulating layer In to obtain the magnetoresistive element 100.
  • the magnetoresistive effect element 100 according to the first embodiment can efficiently generate a spin current in the spin-orbit torque wiring 20, and efficiently spins from the spin-orbit torque wiring 20 to the first ferromagnetic layer 1. Can be injected into. Therefore, the magnetoresistive element 100 according to the first embodiment can reduce the amount of write current required to reverse the magnetization of the first ferromagnetic layer 1. When the amount of write current of each element is small, the power consumption of the entire magnetic memory 200 can be reduced.
  • the spin-orbit torque wiring 20 has a pyrochlore structure.
  • the magnetic frustration that occurs in the pyrochlor structure disturbs the symmetry in the spin-orbit torque wiring 20 and efficiently creates a spin current in the spin-orbit torque wiring 20.
  • the generated spin current is efficiently injected into the first ferromagnetic layer 1 according to the potential difference between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1.
  • magnetoresistive sensor 100 Although an example of the magnetoresistive sensor 100 according to the first embodiment has been shown above, it is possible to add, omit, replace, and otherwise change the configuration within a range that does not deviate from the gist of the present invention.
  • FIG. 6 is a cross-sectional view of the magnetoresistive effect element 101 according to the first modification.
  • FIG. 6 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction.
  • the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the magnetoresistive element 101 according to the first modification has a first intermediate layer 40 between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1.
  • the first intermediate layer 40 is, for example, on the spin-orbit torque wiring 20.
  • the first intermediate layer 40 contains a heavy metal of a non-magnetic layer. Heavy metals are metals having an atomic number (specific gravity) of yttrium (Y) or higher.
  • the non-magnetic heavy metal is, for example, a non-magnetic metal having a d-electron or an f-electron in the outermost shell and having an atomic number of 39 or more and a large atomic number.
  • the first intermediate layer 40 includes, for example, any one or more of Au, Bi, Hf, Ir, Mo, Pd, Pt, Rh, Ru, Ta, and W.
  • the main element of the first intermediate layer 40 is preferably, for example, any of these elements.
  • the first intermediate layer 40 does not have to be a completely continuous layer, and may be, for example, a continuous film having a plurality of openings or a layer containing a plurality of components scattered in an island shape.
  • the thickness of the first intermediate layer 40 is, for example, less than or equal to the spin diffusion length of the substance constituting the layer.
  • the thickness of the first intermediate layer 40 is, for example, five times or less the bond radius of the elements constituting the first intermediate layer 40.
  • the bond radius is a value that is half the distance between the re-adjacent atoms of the crystal of the element constituting the first intermediate layer 40. Since the thickness of the first intermediate layer 40 is thin, it is possible to suppress the spin generated in the spin-orbit torque wiring 20 from diffusing before reaching the first ferromagnetic layer 1.
  • the first intermediate layer 40 is formed in the second film forming step.
  • the second film forming step is performed after the first film forming step.
  • the second film forming step is a step of forming a heavy metal layer containing a heavy metal having an atomic number larger than that of yttrium on the oxide layer formed in the first film forming step.
  • the gas pressure in the chamber in the second film forming step is, for example, higher than the gas pressure in the chamber in the first film forming step. That is, the degree of vacuum in the second film forming step is made worse than that in the first film forming step.
  • the first intermediate layer 40 becomes a continuous film having a plurality of openings or a layer containing a plurality of components scattered in an island shape.
  • the spin-orbit torque wiring 20 and the first ferromagnetic layer 1 are partially in direct contact with each other, and the first intermediate layer is formed before the spin generated by the spin-orbit torque wiring 20 reaches the first ferromagnetic layer 1. It is possible to further suppress the diffusion at 40.
  • the write current flows along the wiring in which the first intermediate layer 40 and the spin-orbit torque wiring 20 are combined.
  • the write current flowing through the wiring is divided into the first intermediate layer 40 and the spin-orbit torque wiring 20.
  • the non-magnetic heavy metal constituting the first intermediate layer 40 has a stronger spin-orbit interaction than other metals. Therefore, the write current flowing in the first intermediate layer 40 also produces a spin current.
  • the first intermediate layer 40 when the first intermediate layer 40 is provided, an interface of different substances is formed between the first intermediate layer 40 and the spin-orbit torque wiring 20. At the interface between different substances, the Rashba effect occurs and the amount of spin injected into the first ferromagnetic layer 1 increases.
  • FIG. 7 is a cross-sectional view of the magnetoresistive effect element 102 according to the second modification.
  • FIG. 7 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction.
  • the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the magnetoresistive element 102 according to the first modification has a second intermediate layer 50 between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1.
  • the second intermediate layer 50 is, for example, on the spin-orbit torque wiring 20.
  • the second intermediate layer 50 contains one or more elements selected from the group consisting of Cu, Al, Si and Al.
  • the second intermediate layer 50 is made of one or more elements selected from the group consisting of, for example, Cu, Al, Si and Al. These elements are excellent in conductivity. Therefore, the resistance of the entire wiring of the second intermediate layer 50 and the spin-orbit torque wiring 20 can be further reduced. In addition, these elements have a long spin diffusion length. Therefore, the second intermediate layer 50 is difficult to diffuse the spin.
  • the spin generated in the spin-orbit torque wiring 20 is efficiently supplied to the first ferromagnetic layer 1 even through the second intermediate layer 50.
  • the second intermediate layer 50 does not have to be a completely continuous layer, and may be, for example, a continuous film having a plurality of openings or a layer containing a plurality of components scattered in an island shape.
  • the thickness of the second intermediate layer 50 is, for example, equal to or less than the spin diffusion length of the substance constituting the layer.
  • the second intermediate layer 50 is formed in the third film forming step.
  • the third film forming step is performed after the first film forming step.
  • the third film forming step is a step of forming a layer containing one or more elements selected from the group consisting of Cu, Al, Si and Al on the oxide layer formed in the first forming step. Is.
  • the write current flows along the wiring in which the second intermediate layer 50 and the spin-orbit torque wiring 20 are combined.
  • the write current flowing through the wiring is divided into the second intermediate layer 50 and the spin-orbit torque wiring 20.
  • the second intermediate layer 50 when the second intermediate layer 50 is provided, an interface of different substances is formed between the second intermediate layer 50 and the spin-orbit torque wiring 20. At the interface between different substances, the Rashba effect occurs and the amount of spin injected into the first ferromagnetic layer 1 increases.
  • FIG. 8 is a cross-sectional view of the magnetoresistive effect element 103 according to the third modification.
  • FIG. 8 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction.
  • the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the magnetoresistive element 103 has a first intermediate layer 40 and a second intermediate layer 50 between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1.
  • the first intermediate layer 40 and the second intermediate layer 50 each have one or more layers.
  • the first intermediate layer 40 and the second intermediate layer 50 are laminated alternately, for example.
  • the stacking order of the first intermediate layer 40 and the second intermediate layer 50 does not matter.
  • the first intermediate layer 40 is the same as the first modification.
  • the second intermediate layer 50 is the same as that of the second modification.
  • the number of layers of the first intermediate layer 40 and the second intermediate layer 50 does not matter.
  • the first intermediate layer 40 and the second intermediate layer 50 are formed by repeating the second film forming step and the third film forming step after the first film forming step. These layers are formed on the oxide layer formed in the first film forming step.
  • the magnetoresistive effect element 103 can reduce the resistance of the wiring as a whole. Further, since there are a plurality of different types of interfaces between the first ferromagnetic layer 1 and the spin-orbit torque wiring 20, the amount of spin injected into the first ferromagnetic layer 1 can be increased due to the Rashba effect.
  • FIG. 9 is a cross-sectional view of the magnetoresistive effect element 104 according to the fourth modification.
  • FIG. 9 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction.
  • the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the laminate 10 shown in FIG. 9 has a bottom pin structure in which the magnetization fixing layer (second ferromagnetic layer 2) is near the substrate Sub.
  • the magnetization fixing layer is on the substrate Sub side, the magnetization stability of the magnetization fixing layer is enhanced, and the MR ratio of the magnetoresistive element 104 is increased.
  • the spin-orbit torque wiring 20 is, for example, on the laminated body 10.
  • the first conductive layer 31 and the second conductive layer 32 are on the spin-orbit torque wiring 20.
  • the magnetoresistive sensor 104 according to the fourth modification is different only in the positional relationship of each configuration, and the same effect as the magnetoresistive element 100 according to the first embodiment can be obtained.
  • FIG. 10 is a cross-sectional view of the magnetization rotating element 105 according to the second embodiment.
  • the magnetization rotating element 105 is replaced with the magnetoresistive effect element 100 according to the first embodiment.
  • the magnetizing rotating element 105 incidents light on the first ferromagnetic layer 1 and evaluates the light reflected by the first ferromagnetic layer 1.
  • the magnetization rotating element 105 can be used, for example, as an optical element for, for example, an image display device that utilizes a difference in the deflection state of light.
  • the magnetization rotating element 105 can be used alone as an anisotropic magnetic sensor, an optical element utilizing the magnetic Faraday effect, and the like.
  • the spin-orbit torque wiring 20 of the magnetizing rotating element 105 has a compound having a pyrochlore structure.
  • the magnetoresistive element 100 according to the first embodiment is used. A similar effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

This magnetization rotation element comprises spin-orbit torque wiring and a first ferromagnetic layer layered on the spin-orbit torque wiring, wherein the spin-orbit torque wiring includes a compound having a pyrochlore structure.

Description

磁化回転素子、磁気抵抗効果素子、磁気メモリ及び配線の製造方法Manufacturing method of magnetized rotating element, magnetoresistive element, magnetic memory and wiring
 本発明は、磁化回転素子、磁気抵抗効果素子及び磁気メモリ及び配線の製造方法に関する。 The present invention relates to a magnetization rotating element, a magnetoresistive element, a magnetic memory, and a method for manufacturing wiring.
 強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子、及び、非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子は、磁気抵抗効果素子として知られている。磁気抵抗効果素子は、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)への応用が可能である。 Giant magnetoresistive (GMR) elements consisting of a multilayer film of a ferromagnetic layer and a non-magnetic layer, and tunnel magnetoresistive (TMR) elements using an insulating layer (tunnel barrier layer, barrier layer) as the non-magnetic layer are magnetic resistance. Known as an effect element. Magnetoresistive elements can be applied to magnetic sensors, high frequency components, magnetic heads and non-volatile random access memory (MRAM).
 MRAMは、磁気抵抗効果素子が集積された記憶素子である。MRAMは、磁気抵抗効果素子における非磁性層を挟む二つの強磁性層の互いの磁化の向きが変化すると、磁気抵抗効果素子の抵抗が変化するという特性を利用してデータを読み書きする。強磁性層の磁化の向きは、例えば、電流が生み出す磁場を利用して制御する。また例えば、強磁性層の磁化の向きは、磁気抵抗効果素子の積層方向に電流を流すことで生ずるスピントランスファートルク(STT)を利用して制御する。 MRAM is a storage element in which a magnetoresistive element is integrated. The MRAM reads and writes data by utilizing the characteristic that the resistance of the magnetoresistive sensor changes when the direction of mutual magnetization of the two ferromagnetic layers sandwiching the non-magnetic layer in the magnetoresistive sensor changes. The direction of magnetization of the ferromagnetic layer is controlled by using, for example, a magnetic field generated by an electric current. Further, for example, the direction of magnetization of the ferromagnetic layer is controlled by utilizing the spin transfer torque (STT) generated by passing a current in the stacking direction of the magnetoresistive effect element.
 STTを利用して強磁性層の磁化の向きを書き換える場合、磁気抵抗効果素子の積層方向に電流を流す。書き込み電流は、磁気抵抗効果素子の特性劣化の原因となる。 When rewriting the direction of magnetization of the ferromagnetic layer using STT, a current is passed in the stacking direction of the magnetoresistive element. The write current causes deterioration of the characteristics of the magnetoresistive element.
 近年、書き込み時に磁気抵抗効果素子の積層方向に電流を流さなくてもよい方法に注目が集まっている(例えば、特許文献1)。その一つの方法が、スピン軌道トルク(SOT)を利用した書込み方法である。SOTは、スピン軌道相互作用によって生じたスピン流又は異種材料の界面におけるラシュバ効果により誘起される。磁気抵抗効果素子内にSOTを誘起するための電流は、磁気抵抗効果素子の積層方向と交差する方向に流れる。すなわち、磁気抵抗効果素子の積層方向に電流を流す必要がなく、磁気抵抗効果素子の長寿命化が期待されている。 In recent years, attention has been focused on a method in which a current does not have to flow in the stacking direction of the magnetoresistive element during writing (for example, Patent Document 1). One of the methods is a writing method using spin-orbit torque (SOT). SOT is induced by the spin current generated by spin-orbit interaction or the Rashba effect at the interface of dissimilar materials. The current for inducing SOT in the magnetoresistive element flows in the direction intersecting the stacking direction of the magnetoresistive element. That is, it is not necessary to pass a current in the stacking direction of the magnetoresistive element, and it is expected that the life of the magnetoresistive element will be extended.
特開2017-216286号公報Japanese Unexamined Patent Publication No. 2017-216286
 磁気メモリは、集積された複数の磁気抵抗効果素子を有する。それぞれの磁気抵抗効果素子に印加する電流量が大きくなると、磁気メモリの消費電力が増加する。それぞれの磁気抵抗効果素子に印加する電流量を小さくし、磁気メモリの消費電力を抑制することが求められている。 The magnetic memory has a plurality of integrated magnetoresistive elements. As the amount of current applied to each magnetoresistive effect element increases, the power consumption of the magnetic memory increases. It is required to reduce the amount of current applied to each magnetoresistive effect element and suppress the power consumption of the magnetic memory.
 本発明は上記事情に鑑みてなされたものであり、少ない電流で動作する磁化回転素子、磁気抵抗効果素子、磁気メモリ及び配線の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a magnetization rotating element, a magnetoresistive element, a magnetic memory, and wiring that operate with a small current.
 本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means for solving the above problems.
(1)第1の態様にかかる磁化回転素子は、スピン軌道トルク配線と、前記スピン軌道トルク配線に積層された第1強磁性層と、を備え、前記スピン軌道トルク配線は、パイロクロア構造の化合物を含む。 (1) The magnetizing rotating element according to the first aspect includes a spin-orbit torque wiring and a first ferromagnetic layer laminated on the spin-orbit torque wiring, and the spin-orbit torque wiring is a compound having a pyrochlor structure. including.
(2)上記態様にかかる磁化回転素子において、前記化合物は、酸化物であってもよい。 (2) In the magnetization rotating device according to the above aspect, the compound may be an oxide.
(3)上記態様にかかる磁化回転素子において、前記酸化物は、化学量論組成でRIrの組成式で表され、前記組成式におけるRは、Pr、Nd、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素であってもよい。 (3) In the magnetizing rotating element according to the above aspect, the oxide is represented by the composition formula of R 2 Ir 2 O 7 in the stoichiometric composition, and R in the composition formula is Pr, Nd, Sm, Eu, It may be one or more elements selected from the group consisting of Gd, Tb, Dy and Ho.
(4)上記態様にかかる磁化回転素子において、前記組成式におけるRは、第1元素を含み、前記第1元素は、PrとNdとのうち少なくとも一方であってもよい。 (4) In the magnetization rotating element according to the above aspect, R in the composition formula contains a first element, and the first element may be at least one of Pr and Nd.
(5)上記態様にかかる磁化回転素子において、前記組成式におけるRは、第1元素と第2元素とを含み、前記第1元素は、PrとNdとのうち少なくとも一方であり、前記第2元素は、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素であってもよい。 (5) In the magnetizing rotating element according to the above aspect, R in the composition formula contains a first element and a second element, and the first element is at least one of Pr and Nd, and the second element. The element may be one or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho.
(6)上記態様にかかる磁化回転素子において、前記第2元素の組成比は、前記第1元素の組成比より少なくてもよい。 (6) In the magnetization rotating element according to the above aspect, the composition ratio of the second element may be smaller than the composition ratio of the first element.
(7)上記態様にかかる磁化回転素子において、前記酸化物は、酸素欠損していてもよい。 (7) In the magnetization rotating element according to the above aspect, the oxide may be oxygen-deficient.
(8)上記態様にかかる磁化回転素子において、前記スピン軌道トルク配線は、電気抵抗率が1mΩ・cm以上であってもよい。 (8) In the magnetized rotating element according to the above aspect, the spin-orbit torque wiring may have an electrical resistivity of 1 mΩ · cm or more.
(9)上記態様にかかる磁化回転素子において、前記スピン軌道トルク配線は、電気抵抗率が10mΩ・cm以下であってもよい。 (9) In the magnetized rotating element according to the above aspect, the spin-orbit torque wiring may have an electrical resistivity of 10 mΩ · cm or less.
(10)上記態様にかかる磁化回転素子は、前記第1強磁性層と前記スピン軌道トルク配線との間に、第1中間層を有してもよく、前記第1中間層は、イットリウムより原子番号の大きな重金属を含む。 (10) The magnetizing rotating element according to the above aspect may have a first intermediate layer between the first ferromagnetic layer and the spin-orbit torque wiring, and the first intermediate layer is an atom from yttrium. Contains heavy metals with high numbers.
(11)上記態様にかかる磁化回転素子は、前記第1強磁性層と前記スピン軌道トルク配線との間に、第2中間層を有してもよく、前記第2中間層は、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む。 (11) The magnetizing rotating element according to the above aspect may have a second intermediate layer between the first ferromagnetic layer and the spin orbit torque wiring, and the second intermediate layer may be Cu, Al. , Si and one or more elements selected from the group consisting of Al.
(12)上記態様にかかる磁化回転素子は、前記第1強磁性層と前記スピン軌道トルク配線との間に、第1中間層と第2中間層とをそれぞれ1層以上有してもよく、前記第1中間層は、イットリウムより原子番号の大きな重金属を含み、前記第2中間層は、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む。 (12) The magnetizing rotating element according to the above embodiment may have one or more first intermediate layers and two or more intermediate layers between the first ferromagnetic layer and the spin orbit torque wiring. The first intermediate layer contains a heavy metal having an atomic number larger than that of yttrium, and the second intermediate layer contains one or more elements selected from the group consisting of Cu, Al, Si and Al.
(13)第2の態様にかかる磁気抵抗効果素子は、上記態様にかかる磁化回転素子と、前記磁化回転素子の前記第1強磁性層に接する非磁性層と、前記第1強磁性層と共に前記非磁性層を間に挟む第2強磁性層と、を備える。 (13) The magnetic resistance effect element according to the second aspect is the magnetized rotating element according to the above aspect, a non-magnetic layer in contact with the first ferromagnetic layer of the magnetized rotating element, and the first ferromagnetic layer. A second ferromagnetic layer with a non-magnetic layer sandwiched between them is provided.
(14)第3の態様にかかる磁気メモリは、上記態様にかかる磁気抵抗効果素子を複数備える。 (14) The magnetic memory according to the third aspect includes a plurality of magnetoresistive elements according to the above aspect.
(15)第4の態様にかかる配線の製造方法は、酸化物をRFスパッタリングすると同時に又は後に、金属をDCスパッタリングし、パイロクロア構造を含む酸化物層を成膜する第1成膜工程を有する。 (15) The method for manufacturing wiring according to the fourth aspect includes a first film forming step of forming an oxide layer containing a pyrochlore structure by DC sputtering of a metal at the same time as or after RF sputtering of an oxide.
(16)上記態様にかかる配線の製造方法において、前記酸化物は、R(Rは、Pr、Nd、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素)であり、前記金属は、Irであってもよい。 (16) In the method for producing wiring according to the above aspect, the oxide is one selected from the group consisting of R 2 O 3 (R is Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho. The above elements), and the metal may be Ir.
(17)上記態様にかかる配線の製造方法において、前記第1成膜工程を酸素雰囲気中で行ってもよい。 (17) In the method for manufacturing wiring according to the above aspect, the first film forming step may be performed in an oxygen atmosphere.
(18)上記態様にかかる配線の製造方法は、前記成膜工程の後に、イットリウムより原子番号の大きな重金属を含む重金属層を成膜する第2成膜工程を有してもよく、前記第2成膜工程におけるガス圧は、前記第1成膜工程におけるガス圧より高い。 (18) The method for manufacturing a wiring according to the above aspect may include a second film forming step of forming a heavy metal layer containing a heavy metal having a larger atomic number than yttrium after the film forming step. The gas pressure in the film forming step is higher than the gas pressure in the first film forming step.
(19)上記態様にかかる配線の製造方法は、イットリウムより原子番号の大きな重金属を含む重金属層を成膜する第2成膜工程と、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む層を成膜する第3成膜工程とを、前記第1成膜工程の後にさらに有してもよく、前記第2成膜工程と前記第3成膜工程とを交互に行う。 (19) The method for manufacturing a wiring according to the above aspect is selected from a second film forming step of forming a heavy metal layer containing a heavy metal having a larger atomic number than yttrium and a group consisting of Cu, Al, Si and Al1. A third film forming step for forming a layer containing an element of a kind or more may be further provided after the first forming step, and the second forming step and the third forming step are alternately performed. To do.
 本発明にかかる磁化回転素子、磁気抵抗効果素子、磁気メモリ及び配線の製造方法は、動作に必要な電流量を低減できる。 The method for manufacturing a magnetization rotating element, a magnetoresistive effect element, a magnetic memory, and wiring according to the present invention can reduce the amount of current required for operation.
第1実施形態にかかる磁気メモリの回路図である。It is a circuit diagram of the magnetic memory which concerns on 1st Embodiment. 第1実施形態にかかる磁気メモリの特徴部分の断面図である。It is sectional drawing of the characteristic part of the magnetic memory which concerns on 1st Embodiment. 第1実施形態にかかる磁気抵抗効果素子の断面図である。It is sectional drawing of the magnetic resistance effect element which concerns on 1st Embodiment. 第1実施形態にかかる磁気抵抗効果素子の平面図である。It is a top view of the magnetoresistive effect element which concerns on 1st Embodiment. パイロクロア構造の結晶構造を示す図である。It is a figure which shows the crystal structure of a pyrochlore structure. 第1変形例にかかる磁気抵抗効果素子の断面図である。It is sectional drawing of the magnetic resistance effect element which concerns on the 1st modification. 第2変形例にかかる磁気抵抗効果素子の断面図である。It is sectional drawing of the magnetic resistance effect element which concerns on the 2nd modification. 第3変形例にかかる磁気抵抗効果素子の断面図である。It is sectional drawing of the magnetic resistance effect element which concerns on 3rd modification. 第4変形例にかかる磁気抵抗効果素子の断面図である。It is sectional drawing of the magnetic resistance effect element which concerns on 4th modification. 第2実施形態に係る磁化回転素子の断面図である。It is sectional drawing of the magnetization rotating element which concerns on 2nd Embodiment.
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, this embodiment will be described in detail with reference to the figures as appropriate. In the drawings used in the following description, the featured portions may be enlarged for convenience in order to make the features easy to understand, and the dimensional ratio of each component may be different from the actual one. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effects of the present invention are exhibited.
 まず方向について定義する。後述する基板Sub(図2参照)の一面の一方向をx方向、x方向と直交する方向をy方向とする。x方向は、例えば、第1導電層31から第2導電層32へ向かう方向である。z方向は、x方向及びy方向と直交する方向である。z方向は、各層が積層される積層方向の一例である。以下、+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。 First, define the direction. One direction of one surface of the substrate Sub (see FIG. 2) described later is defined as the x direction, and the direction orthogonal to the x direction is defined as the y direction. The x direction is, for example, a direction from the first conductive layer 31 to the second conductive layer 32. The z direction is a direction orthogonal to the x direction and the y direction. The z direction is an example of the stacking direction in which each layer is laminated. Hereinafter, the + z direction may be expressed as “up” and the −z direction may be expressed as “down”. The top and bottom do not always match the direction in which gravity is applied.
 本明細書で「x方向に延びる」とは、例えば、x方向、y方向、及びz方向の各寸法のうち最小の寸法よりもx方向の寸法が大きいことを意味する。他の方向に延びる場合も同様である。また本明細書で「接続」とは、物理的に接続される場合に限定されない。例えば、二つの層が物理的に接している場合に限られず、二つの層の間が他の層を間に挟んで接続している場合も「接続」に含まれる。 As used herein, "extending in the x direction" means that, for example, the dimension in the x direction is larger than the smallest dimension among the dimensions in the x direction, the y direction, and the z direction. The same applies when extending in other directions. Further, the term "connection" as used herein is not limited to the case of being physically connected. For example, not only when two layers are physically in contact with each other, but also when two layers are connected by sandwiching another layer between them is included in "connection".
「第1実施形態」
 図1は、第1実施形態にかかる磁気メモリ200の構成図である。磁気メモリ200は、複数の磁気抵抗効果素子100と、複数の書き込み配線WLと、複数の共通配線CLと、複数の読出し配線RLと、複数の第1スイッチング素子Sw1と、複数の第2スイッチング素子Sw2と、複数の第3スイッチング素子Sw3と、を備える。磁気メモリ200は、例えば、磁気抵抗効果素子100がアレイ状に配列された磁気アレイである。
"First embodiment"
FIG. 1 is a configuration diagram of a magnetic memory 200 according to the first embodiment. The magnetic memory 200 includes a plurality of magnetoresistive elements 100, a plurality of write wiring WLs, a plurality of common wiring CLs, a plurality of read wiring RLs, a plurality of first switching elements Sw1, and a plurality of second switching elements. It includes Sw2 and a plurality of third switching elements Sw3. The magnetic memory 200 is, for example, a magnetic array in which the magnetoresistive effect elements 100 are arranged in an array.
 書き込み配線WLはそれぞれ、電源と1つ以上の磁気抵抗効果素子100とを電気的に接続する。共通配線CLはそれぞれ、データの書き込み時及び読み出し時の両方で用いられる配線である。共通配線CLはそれぞれ、基準電位と1つ以上の磁気抵抗効果素子100とを電気的に接続する。基準電位は、例えば、グラウンドである。共通配線CLは、複数の磁気抵抗効果素子100のそれぞれに設けられてもよいし、複数の磁気抵抗効果素子100に亘って設けられてもよい。読出し配線RLはそれぞれ、電源と1つ以上の磁気抵抗効果素子100とを電気的に接続する。電源は、使用時に磁気メモリ200に接続される。 Each write wiring WL electrically connects the power supply and one or more magnetoresistive elements 100. The common wiring CL is wiring used both when writing data and when reading data, respectively. Each of the common wiring CLs electrically connects the reference potential and one or more magnetoresistive elements 100. The reference potential is, for example, ground. The common wiring CL may be provided in each of the plurality of magnetoresistive elements 100, or may be provided across the plurality of magnetoresistive elements 100. The readout wiring RL electrically connects the power supply and one or more magnetoresistive elements 100, respectively. The power supply is connected to the magnetic memory 200 at the time of use.
 それぞれの磁気抵抗効果素子100はそれぞれ、第1スイッチング素子Sw1、第2スイッチング素子Sw2、第3スイッチング素子Sw3に接続されている。第1スイッチング素子Sw1は、磁気抵抗効果素子100と書き込み配線WLとの間に接続されている。第2スイッチング素子Sw2は、磁気抵抗効果素子100と共通配線CLとの間に接続されている。第3スイッチング素子Sw3は、複数の磁気抵抗効果素子100に亘る読出し配線RLに接続されている。 Each magnetoresistive element 100 is connected to the first switching element Sw1, the second switching element Sw2, and the third switching element Sw3, respectively. The first switching element Sw1 is connected between the magnetoresistive effect element 100 and the write wiring WL. The second switching element Sw2 is connected between the magnetoresistive effect element 100 and the common wiring CL. The third switching element Sw3 is connected to the read wiring RL extending over the plurality of magnetoresistive element 100.
 第1スイッチング素子Sw1及び第2スイッチング素子Sw2をONにすると、所定の磁気抵抗効果素子100に接続された書き込み配線WLと共通配線CLとの間に書き込み電流が流れる。書き込み電流が流れることで、所定の磁気抵抗効果素子100にデータが書き込まれる。第2スイッチング素子Sw2及び第3スイッチング素子Sw3をONにすると、所定の磁気抵抗効果素子100に接続された共通配線CLと読出し配線RLとの間に読み出し電流が流れる。読出し電流が流れることで、所定の磁気抵抗効果素子100からデータが読み出される。 When the first switching element Sw1 and the second switching element Sw2 are turned on, a write current flows between the write wiring WL connected to the predetermined magnetoresistive effect element 100 and the common wiring CL. When the write current flows, data is written to the predetermined magnetoresistive element 100. When the second switching element Sw2 and the third switching element Sw3 are turned on, a read current flows between the common wiring CL connected to the predetermined magnetoresistive element 100 and the read wiring RL. When the read current flows, data is read from the predetermined magnetoresistive element 100.
 第1スイッチング素子Sw1、第2スイッチング素子Sw2及び第3スイッチング素子Sw3は、電流の流れを制御する素子である。第1スイッチング素子Sw1、第2スイッチング素子Sw2及び第3スイッチング素子Sw3は、例えば、トランジスタ、オボニック閾値スイッチ(OTS:Ovonic Threshold Switch)のように結晶層の相変化を利用した素子、金属絶縁体転移(MIT)スイッチのようにバンド構造の変化を利用した素子、ツェナーダイオード及びアバランシェダイオードのように降伏電圧を利用した素子、原子位置の変化に伴い伝導性が変化する素子である。 The first switching element Sw1, the second switching element Sw2, and the third switching element Sw3 are elements that control the flow of current. The first switching element Sw1, the second switching element Sw2, and the third switching element Sw3 are, for example, a transistor, an element such as an Ovonic Threshold Switch (OTS) that utilizes a phase change of a crystal layer, and a metal insulator transition. An element such as a (MIT) switch that utilizes a change in band structure, an element that utilizes a breakdown voltage such as a Zener diode and an avalanche diode, and an element whose conductivity changes as the atomic position changes.
 図1に示す磁気メモリ200は、同じ配線に接続された磁気抵抗効果素子100が第3スイッチング素子Sw3を共用している。第3スイッチング素子Sw3は、それぞれの磁気抵抗効果素子100に設けてもよい。またそれぞれの磁気抵抗効果素子100に第3スイッチング素子Sw3を設け、第1スイッチング素子Sw1又は第2スイッチング素子Sw2を同じ配線に接続された磁気抵抗効果素子100で共用してもよい。 In the magnetic memory 200 shown in FIG. 1, the magnetoresistive element 100 connected to the same wiring shares the third switching element Sw3. The third switching element Sw3 may be provided in each magnetoresistive element 100. Further, a third switching element Sw3 may be provided in each magnetoresistive element 100, and the first switching element Sw1 or the second switching element Sw2 may be shared by the magnetoresistive element 100 connected to the same wiring.
 図2は、第1実施形態に係る磁気メモリ200の特徴部分の断面図である。図2は、磁気抵抗効果素子100を後述するスピン軌道トルク配線20のy方向の幅の中心を通るxz平面で切断した断面である。 FIG. 2 is a cross-sectional view of a characteristic portion of the magnetic memory 200 according to the first embodiment. FIG. 2 is a cross section of the magnetoresistive effect element 100 cut along the xz plane passing through the center of the width in the y direction of the spin-orbit torque wiring 20 described later.
 図2に示す第1スイッチング素子Sw1及び第2スイッチング素子Sw2は、トランジスタTrである。第3スイッチング素子Sw3は、読出し配線RLと電気的に接続され、例えば、図2のy方向の異なる位置にある。トランジスタTrは、例えば電界効果型のトランジスタであり、ゲート電極Gとゲート絶縁膜GIと基板Subに形成されたソースS及びドレインDとを有する。ソースSとドレインDは、電流の流れ方向によって既定されるものであり、これらは同一の領域である。ソースSとドレインDの位置関係は、反転していてもよい。基板Subは、例えば、半導体基板である。 The first switching element Sw1 and the second switching element Sw2 shown in FIG. 2 are transistor Trs. The third switching element Sw3 is electrically connected to the read wiring RL and is, for example, at a different position in the y direction in FIG. The transistor Tr is, for example, a field effect transistor, and has a gate electrode G, a gate insulating film GI, a source S formed on the substrate Sub, and a drain D. The source S and the drain D are defined by the current flow direction, and they are in the same region. The positional relationship between the source S and the drain D may be inverted. The substrate Sub is, for example, a semiconductor substrate.
 トランジスタTrと磁気抵抗効果素子100とは、ビア配線V、第1導電層31及び第2導電層32を介して、電気的に接続されている。またトランジスタTrと書き込み配線WL又は共通配線CLとは、ビア配線Vで接続されている。ビア配線Vは、例えば、z方向に延びる。読出し配線RLは、電極Eを介して積層体10に接続されている。ビア配線V、電極E、第1導電層31及び第2導電層32は、導電性を有する材料を含む。 The transistor Tr and the magnetoresistive sensor 100 are electrically connected via the via wiring V, the first conductive layer 31 and the second conductive layer 32. Further, the transistor Tr and the write wiring WL or the common wiring CL are connected by the via wiring V. The via wiring V extends in the z direction, for example. The read wiring RL is connected to the laminated body 10 via the electrode E. The via wiring V, the electrode E, the first conductive layer 31 and the second conductive layer 32 include a material having conductivity.
 磁気抵抗効果素子100及びトランジスタTrの周囲は、絶縁層Inで覆われている。絶縁層Inは、多層配線の配線間や素子間を絶縁する絶縁層である。絶縁層Inは、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)等である。 The periphery of the magnetoresistive effect element 100 and the transistor Tr is covered with an insulating layer In. The insulating layer In is an insulating layer that insulates between the wirings of the multilayer wiring and between the elements. The insulating layer In may be, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbide (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O). 3 ), zirconium oxide (ZrO x ), magnesium oxide (MgO), aluminum nitride (AlN) and the like.
 図3は、磁気抵抗効果素子100の断面図である。図3は、スピン軌道トルク配線20のy方向の幅の中心を通るxz平面で磁気抵抗効果素子100を切断した断面である。図4は、磁気抵抗効果素子100をz方向から見た平面図である。 FIG. 3 is a cross-sectional view of the magnetoresistive effect element 100. FIG. 3 is a cross section of the magnetoresistive effect element 100 cut in the xz plane passing through the center of the width of the spin-orbit torque wiring 20 in the y direction. FIG. 4 is a plan view of the magnetoresistive effect element 100 as viewed from the z direction.
 磁気抵抗効果素子100は、例えば、積層体10とスピン軌道トルク配線20と第1導電層31と第2導電層32とを備える。積層体10は、スピン軌道トルク配線20に積層されている。積層体10とスピン軌道トルク配線20との間には、他の層を有してもよい。第1導電層31及び第2導電層32は、スピン軌道トルク配線20に接続されている。第1導電層31、第2導電層32のそれぞれとスピン軌道トルク配線20との間に、他の層を有していてもよい。第1導電層31と第2導電層32とは、z方向から見て、積層体10を挟む位置にある。 The magnetoresistive element 100 includes, for example, a laminate 10, a spin-orbit torque wiring 20, a first conductive layer 31, and a second conductive layer 32. The laminated body 10 is laminated on the spin-orbit torque wiring 20. Another layer may be provided between the laminate 10 and the spin-orbit torque wiring 20. The first conductive layer 31 and the second conductive layer 32 are connected to the spin-orbit torque wiring 20. Another layer may be provided between each of the first conductive layer 31 and the second conductive layer 32 and the spin-orbit torque wiring 20. The first conductive layer 31 and the second conductive layer 32 are located at positions sandwiching the laminated body 10 when viewed from the z direction.
 積層体10のz方向の抵抗値は、スピン軌道トルク配線20から積層体10にスピンが注入されることで変化する。磁気抵抗効果素子100は、スピン軌道トルク(SOT)を利用した磁性素子であり、スピン軌道トルク型磁気抵抗効果素子、スピン注入型磁気抵抗効果素子、スピン流磁気抵抗効果素子と言われる場合がある。 The resistance value of the laminated body 10 in the z direction changes when spin is injected into the laminated body 10 from the spin track torque wiring 20. The magnetoresistive effect element 100 is a magnetic element using spin orbit torque (SOT), and may be referred to as a spin orbit torque type magnetoresistive element, a spin injection type magnetoresistive element, or a spin current magnetic resistance effect element. ..
 積層体10は、z方向に、スピン軌道トルク配線20と電極E(図2参照)とに挟まれる。積層体10は、柱状体である。積層体10のz方向からの平面視形状は、例えば、円形、楕円形、四角形である。積層体10の側面は、例えば、z方向に対して傾斜する。 The laminated body 10 is sandwiched between the spin-orbit torque wiring 20 and the electrode E (see FIG. 2) in the z direction. The laminated body 10 is a columnar body. The plan view shape of the laminated body 10 from the z direction is, for example, a circle, an ellipse, or a quadrangle. The side surface of the laminated body 10 is inclined with respect to the z direction, for example.
 積層体10は、例えば、第1強磁性層1と第2強磁性層2と非磁性層3とを有する。第1強磁性層1は、例えば、スピン軌道トルク配線20と接し、スピン軌道トルク配線20上に積層されている。第1強磁性層1にはスピン軌道トルク配線20からスピンが注入される。第1強磁性層1の磁化は、注入されたスピンによりスピン軌道トルク(SOT)を受け、配向方向が変化する。第1強磁性層1と第2強磁性層2は、z方向に非磁性層3を挟む。 The laminated body 10 has, for example, a first ferromagnetic layer 1, a second ferromagnetic layer 2, and a non-magnetic layer 3. The first ferromagnetic layer 1 is in contact with, for example, the spin-orbit torque wiring 20 and is laminated on the spin-orbit torque wiring 20. Spin is injected into the first ferromagnetic layer 1 from the spin-orbit torque wiring 20. The magnetization of the first ferromagnetic layer 1 receives spin-orbit torque (SOT) due to the injected spin, and the orientation direction changes. The first ferromagnetic layer 1 and the second ferromagnetic layer 2 sandwich the non-magnetic layer 3 in the z direction.
 第1強磁性層1及び第2強磁性層2は、それぞれ磁化を有する。第2強磁性層2の磁化は、所定の外力が印加された際に第1強磁性層1の磁化よりも配向方向が変化しにくい。第1強磁性層1は磁化自由層と言われ、第2強磁性層2は磁化固定層、磁化参照層と言われることがある。図3に示す積層体10は、磁化固定層が基板Subから離れた側にあり、トップピン構造と呼ばれる。積層体10は、非磁性層3を挟む第1強磁性層1と第2強磁性層2との磁化の相対角の違いに応じて抵抗値が変化する。 The first ferromagnetic layer 1 and the second ferromagnetic layer 2 each have magnetization. The magnetization of the second ferromagnetic layer 2 is less likely to change in the orientation direction than the magnetization of the first ferromagnetic layer 1 when a predetermined external force is applied. The first ferromagnetic layer 1 is sometimes referred to as a magnetization free layer, and the second ferromagnetic layer 2 is sometimes referred to as a magnetization fixed layer or a magnetization reference layer. In the laminated body 10 shown in FIG. 3, the magnetization fixing layer is on the side away from the substrate Sub, and is called a top pin structure. The resistance value of the laminated body 10 changes according to the difference in the relative angles of magnetization between the first ferromagnetic layer 1 and the second ferromagnetic layer 2 sandwiching the non-magnetic layer 3.
 第1強磁性層1及び第2強磁性層2は、強磁性体を含む。強磁性体は、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等である。強磁性体は、例えば、Co-Fe、Co-Fe-B、Ni-Fe、Co-Ho合金、Sm-Fe合金、Fe-Pt合金、Co-Pt合金、CoCrPt合金である。 The first ferromagnetic layer 1 and the second ferromagnetic layer 2 include a ferromagnet. The ferromagnet is, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe and Ni, an alloy containing one or more of these metals, and at least one of these metals and B, C, and N. It is an alloy containing the element of. The ferromagnetic material is, for example, Co—Fe, Co—Fe—B, Ni—Fe, Co—Ho alloy, Sm—Fe alloy, Fe—Pt alloy, Co—Pt alloy, CoCrPt alloy.
 第1強磁性層1及び第2強磁性層2は、ホイスラー合金を含んでもよい。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含む。Xは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。ホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等である。ホイスラー合金は高いスピン分極率を有する。 The first ferromagnetic layer 1 and the second ferromagnetic layer 2 may contain a Whistler alloy. Whisler alloys include intermetallic compounds with a chemical composition of XYZ or X2YZ . X is a transition metal element or noble metal element of Group Co, Fe, Ni, or Cu on the periodic table, Y is a transition metal of Group Mn, V, Cr, or Ti, or an elemental species of X, and Z is Group III. It is a typical element of Group V. The Whisler alloy is, for example, Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , Co 2 FeGe 1-c Ga c and the like. Whisler alloys have a high spin polarizability.
 非磁性層3は、非磁性体を含む。非磁性層3が絶縁体の場合(トンネルバリア層である場合)、その材料としては、例えば、Al、SiO、MgO、及び、MgAl等を用いることができる。また、これらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。非磁性層3が金属の場合、その材料としては、Cu、Au、Ag等を用いることができる。さらに、非磁性層3が半導体の場合、その材料としては、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等を用いることができる。 The non-magnetic layer 3 contains a non-magnetic material. When the non-magnetic layer 3 is an insulator (when it is a tunnel barrier layer), for example, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4 and the like can be used as the material thereof. In addition to these, a material or the like in which a part of Al, Si, and Mg is replaced with Zn, Be, or the like can also be used. Among these, MgO and MgAl2O4 are materials that can realize a coherent tunnel, so that spin can be efficiently injected. When the non-magnetic layer 3 is a metal, Cu, Au, Ag or the like can be used as the material. Further, when the non-magnetic layer 3 is a semiconductor, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu (In, Ga) Se 2 and the like can be used as the material.
 積層体10は、第1強磁性層1、第2強磁性層2及び非磁性層3以外の層を有してもよい。例えば、スピン軌道トルク配線20と第1強磁性層1との間に下地層を有してもよい。下地層は、積層体10を構成する各層の結晶性を高める。また例えば、積層体10の最上面にキャップ層を有してもよい。 The laminated body 10 may have a layer other than the first ferromagnetic layer 1, the second ferromagnetic layer 2, and the non-magnetic layer 3. For example, a base layer may be provided between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1. The base layer enhances the crystallinity of each layer constituting the laminated body 10. Further, for example, the cap layer may be provided on the uppermost surface of the laminated body 10.
 また積層体10は、第2強磁性層2の非磁性層3と反対側の面に、スペーサ層を介して強磁性層を設けてもよい。第2強磁性層2、スペーサ層、強磁性層は、シンセティック反強磁性構造(SAF構造)となる。シンセティック反強磁性構造は、非磁性層を挟む二つの磁性層からなる。第2強磁性層2と強磁性層とが反強磁性カップリングすることで、強磁性層を有さない場合より第2強磁性層2の保磁力が大きくなる。強磁性層は、例えば、IrMn,PtMn等である。スペーサ層は、例えば、Ru、Ir、Rhからなる群から選択される少なくとも一つを含む。 Further, the laminated body 10 may be provided with a ferromagnetic layer via a spacer layer on the surface of the second ferromagnetic layer 2 opposite to the non-magnetic layer 3. The second ferromagnetic layer 2, the spacer layer, and the ferromagnetic layer have a synthetic antiferromagnetic structure (SAF structure). The synthetic antiferromagnetic structure consists of two magnetic layers sandwiching the non-magnetic layer. The antiferromagnetic coupling between the second ferromagnetic layer 2 and the ferromagnetic layer increases the coercive force of the second ferromagnetic layer 2 as compared with the case without the ferromagnetic layer. The ferromagnetic layer is, for example, IrMn, PtMn or the like. The spacer layer contains, for example, at least one selected from the group consisting of Ru, Ir, Rh.
 スピン軌道トルク配線20は、例えば、z方向から見てx方向の長さがy方向より長く、x方向に延びる。書き込み電流は、スピン軌道トルク配線20のx方向に流れる。スピン軌道トルク配線20の少なくとも一部は、z方向において、非磁性層3と共に第1強磁性層1を挟む。 For example, the spin-orbit torque wiring 20 has a length in the x direction longer than the y direction when viewed from the z direction, and extends in the x direction. The write current flows in the x direction of the spin-orbit torque wiring 20. At least a part of the spin-orbit torque wiring 20 sandwiches the first ferromagnetic layer 1 together with the non-magnetic layer 3 in the z direction.
 スピン軌道トルク配線20は、電流Iが流れる際のスピンホール効果によってスピン流を発生させ、第1強磁性層1にスピンを注入する。スピン軌道トルク配線20は、例えば、第1強磁性層1の磁化を反転できるだけのスピン軌道トルク(SOT)を第1強磁性層1の磁化に与える。スピンホール効果は、電流を流した場合にスピン軌道相互作用に基づき、電流の流れる方向と直交する方向にスピン流が誘起される現象である。スピンホール効果は、運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で、通常のホール効果と共通する。通常のホール効果は、磁場中で運動する荷電粒子の運動方向がローレンツ力によって曲げられる。これに対し、スピンホール効果は磁場が存在しなくても、電子が移動するだけ(電流が流れるだけ)でスピンの移動方向が曲げられる。 The spin-orbit torque wiring 20 generates a spin current by the spin Hall effect when the current I flows, and injects spin into the first ferromagnetic layer 1. The spin-orbit torque wiring 20 gives, for example, a spin-orbit torque (SOT) sufficient to reverse the magnetization of the first ferromagnetic layer 1 to the magnetization of the first ferromagnetic layer 1. The spin Hall effect is a phenomenon in which a spin current is induced in a direction orthogonal to the direction in which a current flows, based on the spin-orbit interaction when a current is passed. The spin Hall effect is common to the normal Hall effect in that the moving (moving) charge (electron) can bend the moving (moving) direction. In the normal Hall effect, the direction of motion of charged particles moving in a magnetic field is bent by Lorentz force. On the other hand, in the spin Hall effect, even in the absence of a magnetic field, the direction of spin movement is bent only by the movement of electrons (only the flow of current).
 例えば、スピン軌道トルク配線20に電流が流れると、一方向に配向した第1スピンと、第1スピンと反対方向に配向した第2スピンとが、それぞれ電流Iの流れる方向と直交する方向にスピンホール効果によって曲げられる。例えば、-y方向に配向した第1スピンが+z方向に曲げられ、+y方向に配向した第2スピンが-z方向に曲げられる。 For example, when a current flows through the spin-orbit torque wiring 20, the first spin oriented in one direction and the second spin oriented in the direction opposite to the first spin spin in directions orthogonal to the direction in which the current I flows. It is bent by the Hall effect. For example, the first spin oriented in the −y direction is bent in the + z direction, and the second spin oriented in the + y direction is bent in the −z direction.
 非磁性体(強磁性体ではない材料)は、スピンホール効果により生じる第1スピンの電子数と第2スピンの電子数とが等しい。すなわち、+z方向に向かう第1スピンの電子数と-z方向に向かう第2スピンの電子数とは等しい。第1スピンと第2スピンは、スピンの偏在を解消する方向に流れる。第1スピン及び第2スピンのz方向への移動において、電荷の流れは互いに相殺されるため、電流量はゼロとなる。電流を伴わないスピン流は特に純スピン流と呼ばれる。 In a non-magnetic material (material that is not a ferromagnet), the number of electrons in the first spin and the number of electrons in the second spin generated by the spin Hall effect are equal. That is, the number of electrons in the first spin in the + z direction is equal to the number of electrons in the second spin in the −z direction. The first spin and the second spin flow in the direction of eliminating the uneven distribution of spins. In the movement of the first spin and the second spin in the z direction, the charge flows cancel each other out, so that the amount of current becomes zero. Spin currents without current are especially called pure spin currents.
 第1スピンの電子の流れをJ、第2スピンの電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。スピン流Jは、z方向に生じる。第1スピンは、スピン軌道トルク配線20から第1強磁性層1に注入される。 When the electron flow of the first spin is J , the electron flow of the second spin is J , and the spin flow is J S , it is defined as J S = J -J . The spin current JS occurs in the z direction. The first spin is injected into the first ferromagnetic layer 1 from the spin-orbit torque wiring 20.
 スピン軌道トルク配線20は、パイロクロア構造の化合物を含む。スピン軌道トルク配線20は、パイロクロア構造の化合物からなってもよい。 The spin-orbit torque wiring 20 contains a compound having a pyrochlore structure. The spin-orbit torque wiring 20 may be made of a compound having a pyrochlore structure.
 パイロクロア構造の化合物は、例えば、酸化物、酸窒化物、フッ化物、水酸化物のいずれかである。パイロクロア構造の化合物は、例えば、酸化物である。酸化物は、取り扱いが容易である。またパイロクロア構造の酸化物は、金属と比較して電気抵抗率が高い。第1導電層31と第2導電層32との間に高電圧を印加できると、スピン軌道トルク配線20から第1強磁性層1へのスピンの注入効率が高まる。 The compound having a pyrochlore structure is, for example, an oxide, an oxynitride, a fluoride, or a hydroxide. The compound having a pyrochlore structure is, for example, an oxide. Oxides are easy to handle. In addition, oxides with a pyrochlore structure have higher electrical resistivity than metals. When a high voltage can be applied between the first conductive layer 31 and the second conductive layer 32, the efficiency of injecting spins from the spin-orbit torque wiring 20 into the first ferromagnetic layer 1 is increased.
 RIrの組成式で表される酸化物は、パイロクロア構造の酸化物の一例である。組成式におけるRは、Pr、Nd、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素である。上記組成式は、化学量論組成で記載しているが、結晶構造を維持できる範囲内で化学量論組成からのずれは許容される。例えば、パイロクロア構造の酸化物は、酸素欠損していてもよい。酸素欠損の程度によりスピン軌道トルク配線20の導電性を調整できる。 The oxide represented by the composition formula of R 2 Ir 2 O 7 is an example of an oxide having a pyrochlore structure. R in the composition formula is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho. Although the above composition formula is described as a stoichiometric composition, deviation from the stoichiometric composition is allowed within a range in which the crystal structure can be maintained. For example, oxides with a pyrochlore structure may be oxygen deficient. The conductivity of the spin-orbit torque wiring 20 can be adjusted according to the degree of oxygen deficiency.
 図5は、パイロクロア構造の結晶構造を示す図である。図5は、NdIrの結晶構造である。図5では、酸素を省略している。パイロクロア構造は、面方位<110>に沿って、2つの陽イオン(NdイオンとIrイオン)が並んだ構造である。パイロクロア構造は、R原子が正四面体をなし、正四面体が頂点を共有しながら三次元的に繋がった構造を有する。 FIG. 5 is a diagram showing a crystal structure of a pyrochlore structure. FIG. 5 is a crystal structure of Nd 2 Ir 2 O 7 . In FIG. 5, oxygen is omitted. The pyrochlore structure is a structure in which two cations (Nd ion and Ir ion) are arranged along the plane orientation <110>. The pyrochlore structure has a structure in which R atoms form a regular tetrahedron, and the regular tetrahedrons are three-dimensionally connected while sharing vertices.
 パイロクロア構造の正四面体では、最近接原子間の磁気的相互作用が反強磁性的な場合に、磁気的なフラストレーションが生じる。磁気的なフラストレーションは、物質内の磁気的バランスを崩し、スピン揺らぎを増大させる。パイロクロア構造は、室温では、磁気イオン間の長距離相関を有さず、常磁性又は常磁性に類する磁気特性を有する。 In a regular tetrahedron with a pyrochlore structure, magnetic frustration occurs when the magnetic interaction between the closest atoms is antiferromagnetic. Magnetic frustration disrupts the magnetic balance within a substance and increases spin fluctuations. The pyrochlore structure does not have a long-range correlation between magnetic ions at room temperature, and has paramagnetism or magnetic properties similar to paramagnetism.
 パイロクロア構造の化合物を有するスピン軌道トルク配線20は、大きなスピン流を生み出すことができる。磁気的なフラストレーションがスピン軌道トルク配線20内の対称性を乱すことで、伝導電子と局在電子との間に強いスピン軌道相互作用が生じるためと考えられる。 The spin-orbit torque wiring 20 having a compound having a pyrochlore structure can generate a large spin current. It is considered that the magnetic frustration disturbs the symmetry in the spin-orbit torque wiring 20, so that a strong spin-orbit interaction occurs between the conduction electron and the localized electron.
 組成式におけるRは、PrとNdとのうち少なくとも一方の元素を含んでもよい。これらの元素を第1元素と称する。第1元素を含むパイロクロア構造は、組成式におけるRが他の元素の場合より電気抵抗率が低い。そのため、磁気抵抗効果素子100の動作電圧を下げることができる。 R in the composition formula may contain at least one element of Pr and Nd. These elements are referred to as first elements. The pyrochlore structure containing the first element has a lower electrical resistivity than the case where R in the composition formula is another element. Therefore, the operating voltage of the magnetoresistive effect element 100 can be lowered.
 また第1元素を含むパイロクロア構造は、抵抗値が温度に対して金属的な挙動を示す。抵抗値の金属的な挙動は、温度が高いほど抵抗値が大きくなるというものである。この場合、スピン軌道トルク配線20は、温度が高いほど電流が流れにくくなる。換言すると、スピン軌道トルク配線20から第1強磁性層1に注入されるスピン量は、温度が高いほど少なくなる。ところで、第1強磁性層1の磁化は、温度が高いほど反転しやすくなる。磁化反転しやすい高温において第1強磁性層1に注入されるスピン量が少なく、磁化反転しにくい低温において第1強磁性層1に注入されるスピン量が多いと、磁気抵抗効果素子100全体としての温度依存性が小さくなる。 In addition, the pyrochlore structure containing the first element has a resistance value that behaves like a metal with respect to temperature. The metallic behavior of the resistance value is that the higher the temperature, the larger the resistance value. In this case, the higher the temperature of the spin-orbit torque wiring 20, the more difficult it is for the current to flow. In other words, the amount of spin injected from the spin-orbit torque wiring 20 into the first ferromagnetic layer 1 decreases as the temperature rises. By the way, the magnetization of the first ferromagnetic layer 1 is more likely to be reversed as the temperature is higher. If the amount of spin injected into the first ferromagnetic layer 1 is small at a high temperature at which magnetization reversal is likely to occur, and the amount of spin injected into the first ferromagnetic layer 1 at a low temperature at which magnetization reversal is difficult is large, the magnetoresistive sensor 100 as a whole The temperature dependence of is small.
 また組成式におけるRは、第1元素と、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素とを、含んでもよい。Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素を第2元素と称する。 Further, R in the composition formula may contain a first element and one or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho. One or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho are referred to as a second element.
 第2元素を含むパイロクロア構造は、抵抗値が温度に対して半導体的な挙動を示す。抵抗値の半導体な挙動は、温度が上がるほど抵抗値が小さくなるというものである。 The pyrochlore structure containing the second element has a resistance value that behaves like a semiconductor with respect to temperature. The semiconductor behavior of the resistance value is that the resistance value decreases as the temperature rises.
 パイロクロア構造の化合物が第1元素と第2元素との両方を有すると、抵抗値の金属的な挙動と半導体的な挙動とが互いに相殺し、スピン軌道トルク配線20が温度により受ける影響が小さくなる。 When the compound having a pyrochlor structure has both the first element and the second element, the metallic behavior and the semiconductor-like behavior of the resistance value cancel each other out, and the influence of the temperature on the spin-orbit torque wiring 20 is reduced. ..
 またパイロクロア構造に含まれる第2元素の組成比は、例えば、第1元素の組成比より小さい。この場合、スピン軌道トルク配線20の抵抗値は温度に対して金属的な挙動を示す。スピン軌道トルク配線20は、第2元素を含むことで抵抗値が極端な金属的挙動を示すことを避けることができる。また磁気抵抗効果素子100全体としては、スピン軌道トルク配線20が金属的挙動を示すことで、温度依存性が小さくなる。 Further, the composition ratio of the second element contained in the pyrochlore structure is smaller than, for example, the composition ratio of the first element. In this case, the resistance value of the spin-orbit torque wiring 20 exhibits metallic behavior with respect to temperature. By including the second element, the spin-orbit torque wiring 20 can avoid exhibiting an extreme metallic behavior in resistance value. Further, as the magnetoresistive element 100 as a whole, the spin-orbit torque wiring 20 exhibits metallic behavior, so that the temperature dependence becomes small.
 スピン軌道トルク配線20の電気抵抗率は、例えば、1mΩ・cm以上である。またスピン軌道トルク配線20の電気抵抗率は、例えば、10mΩ・cm以下である。スピン軌道トルク配線20の電気抵抗率が高いと、スピン軌道トルク配線20に高電圧を印加できる。スピン軌道トルク配線20の電位が高くなると、スピン軌道トルク配線20から第1強磁性層1に効率的にスピンを供給できる。またスピン軌道トルク配線20が一定以上の導電性を有することで、スピン軌道トルク配線20に沿って流れる電流経路を確保でき、スピンホール効果に伴うスピン流を効率的に生み出すことができる。 The electrical resistivity of the spin-orbit torque wiring 20 is, for example, 1 mΩ · cm or more. The electrical resistivity of the spin-orbit torque wiring 20 is, for example, 10 mΩ · cm or less. When the electrical resistivity of the spin-orbit torque wiring 20 is high, a high voltage can be applied to the spin-orbit torque wiring 20. When the potential of the spin-orbit torque wiring 20 becomes high, spin can be efficiently supplied from the spin-orbit torque wiring 20 to the first ferromagnetic layer 1. Further, since the spin-orbit torque wiring 20 has a certain level of conductivity or more, a current path flowing along the spin-orbit torque wiring 20 can be secured, and a spin flow associated with the spin Hall effect can be efficiently generated.
 スピン軌道トルク配線20の厚みは、例えば、4nm以上である。スピン軌道トルク配線20の厚みは、例えば、20nm以下でもよい。 The thickness of the spin-orbit torque wiring 20 is, for example, 4 nm or more. The thickness of the spin-orbit torque wiring 20 may be, for example, 20 nm or less.
 スピン軌道トルク配線20が金属の場合、スピン軌道トルク配線20の膜厚を薄くすることで、反転電流密度以上の電流密度の電流をスピン軌道トルク配線20に沿って流すことができる。しかしながら、薄膜ほど均質に形成することは難しい。反転電流密度は、磁気抵抗効果素子100の磁化を反転するのに要する電流密度であり、磁気抵抗効果素子100は磁化が反転することで動作する。 When the spin-orbit torque wiring 20 is made of metal, by reducing the thickness of the spin-orbit torque wiring 20, a current having a current density equal to or higher than the inverting current density can flow along the spin-orbit torque wiring 20. However, it is difficult to form a thinner film more uniformly. The inverting current density is the current density required to reverse the magnetization of the magnetoresistive effect element 100, and the magnetoresistive sensor 100 operates by reversing the magnetization.
 これに対し、スピン軌道トルク配線20の電気抵抗率が高い場合、スピン軌道トルク配線20の厚みが厚くても、スピン軌道トルク配線20に沿って流れる電流の電流密度を反転電流密度以上にできる。スピン軌道トルク配線20の厚みが厚いと、スピン軌道トルク配線20を均質に形成しやすく、複数の磁気抵抗効果素子100の間のバラツキも小さくできる。 On the other hand, when the electrical resistivity of the spin track torque wiring 20 is high, the current density of the current flowing along the spin track torque wiring 20 can be made higher than the inverting current density even if the spin track torque wiring 20 is thick. When the spin-orbit torque wiring 20 is thick, the spin-orbit torque wiring 20 can be easily formed uniformly, and the variation among the plurality of magnetoresistive elements 100 can be reduced.
 スピン軌道トルク配線20は、この他に、磁性金属を含んでもよく、トポロジカル絶縁体を含んでもよい。トポロジカル絶縁体は、物質内部が絶縁体又は高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。 The spin-orbit torque wiring 20 may also contain a magnetic metal or a topological insulator. A topological insulator is a substance in which the inside of the substance is an insulator or a high resistance substance, but a metallic state in which spin polarization occurs on the surface thereof.
 第1導電層31及び第2導電層32のそれぞれは、導電層の一例である。第1導電層31及び第2導電層32のそれぞれは、導電性に優れた材料からなる。第1導電層31及び第2導電層32は、例えば、Al、Cu、W、Crである。 Each of the first conductive layer 31 and the second conductive layer 32 is an example of the conductive layer. Each of the first conductive layer 31 and the second conductive layer 32 is made of a material having excellent conductivity. The first conductive layer 31 and the second conductive layer 32 are, for example, Al, Cu, W, and Cr.
 次いで、磁気抵抗効果素子100の製造方法について説明する。磁気抵抗効果素子100は、各層の積層工程と、各層の一部を所定の形状に加工する加工工程により形成される。各層の積層は、スパッタリング法、化学気相成長(CVD)法、電子ビーム蒸着法(EB蒸着法)、原子レーザデポジッション法等を用いることができる。各層の加工は、フォトリソグラフィー等を用いて行うことができる。 Next, a method for manufacturing the magnetoresistive sensor 100 will be described. The magnetoresistive sensor 100 is formed by a laminating step of each layer and a processing step of processing a part of each layer into a predetermined shape. For the lamination of each layer, a sputtering method, a chemical vapor deposition (CVD) method, an electron beam vapor deposition method (EB vapor deposition method), an atomic laser deposit method, or the like can be used. The processing of each layer can be performed by using photolithography or the like.
 まず基板Subの所定の位置に、不純物をドープしソースS、ドレインDを形成する。次いで、ソースSとドレインDとの間に、ゲート絶縁膜GI、ゲート電極Gを形成する。ソースS、ドレインD、ゲート絶縁膜GI及びゲート電極GがトランジスタTrとなる。 First, impurities are doped at a predetermined position on the substrate Sub to form the source S and the drain D. Next, a gate insulating film GI and a gate electrode G are formed between the source S and the drain D. The source S, drain D, gate insulating film GI, and gate electrode G serve as a transistor Tr.
 次いで、トランジスタTrを覆うように絶縁層Inを形成する。また絶縁層Inに開口部を形成し、開口部内に導電体を充填することでビア配線V、第1導電層31及び第2導電層32が形成される。書き込み配線WL、共通配線CLは、絶縁層Inを所定の厚みまで積層した後、絶縁層Inに溝を形成し、溝に導電体を充填することで形成される。 Next, the insulating layer In is formed so as to cover the transistor Tr. Further, by forming an opening in the insulating layer In and filling the opening with a conductor, the via wiring V, the first conductive layer 31 and the second conductive layer 32 are formed. The write wiring WL and the common wiring CL are formed by laminating the insulating layer In to a predetermined thickness, forming a groove in the insulating layer In, and filling the groove with a conductor.
 次いで、絶縁層In、第1導電層31及び第2導電層32の一面に、酸化物層を積層する。酸化物層を成膜する工程を第1成膜工程と称する。酸化物層は、パイロクロア構造の酸化物を含む。第1成膜工程では、酸化物をRFスパッタリングすると同時に又は後に、金属をDCスパッタリングする。第1成膜工程は、例えば、酸素雰囲気中で行う。酸素分圧を調整することで、パイロクロア構造の酸化物における酸素の組成比を調整できる。 Next, an oxide layer is laminated on one surface of the insulating layer In, the first conductive layer 31 and the second conductive layer 32. The step of forming an oxide layer is referred to as a first film forming step. The oxide layer contains an oxide having a pyrochlore structure. In the first film forming step, the metal is DC sputtered at the same time as or after the RF sputtering of the oxide. The first film forming step is performed, for example, in an oxygen atmosphere. By adjusting the oxygen partial pressure, the composition ratio of oxygen in the oxide of the pyrochlore structure can be adjusted.
 RFスパッタリングされる酸化物は、例えば、R(Rは、Pr、Nd、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素)である。DCスパッタされる金属は、例えば、Irである。ターゲットの酸化物及び金属が被成膜面上でマイグレーションすることで、パイロクロア構造の酸化物を含む酸化物層が得られる。 The RF sputtering oxide is, for example, R 2 O 3 (R is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho). The metal sputtered by DC is, for example, Ir. By migrating the target oxide and metal on the film-deposited surface, an oxide layer containing an oxide having a pyrochlore structure can be obtained.
 次いで、酸化物層に、強磁性層、非磁性層、強磁性層、ハードマスク層を順に積層する。次いで、ハードマスク層を所定の形状に加工する。所定の形状は、例えば、スピン軌道トルク配線20の外形である。次いで、ハードマスク層を介して、酸化物層、強磁性層、非磁性層、強磁性層を一度に所定の形状に加工する。酸化物層は所定の形状に加工されることで、スピン軌道トルク配線20となる。 Next, the ferromagnetic layer, the non-magnetic layer, the ferromagnetic layer, and the hard mask layer are laminated in order on the oxide layer. Next, the hard mask layer is processed into a predetermined shape. The predetermined shape is, for example, the outer shape of the spin-orbit torque wiring 20. Next, the oxide layer, the ferromagnetic layer, the non-magnetic layer, and the ferromagnetic layer are processed into a predetermined shape at once via the hard mask layer. The oxide layer is processed into a predetermined shape to form a spin-orbit torque wiring 20.
 次いで、ハードマスク層のx方向の不要部分を除去する。ハードマスク層は、積層体10の外形となる。次いで、ハードマスク層を介して、スピン軌道トルク配線20上に形成された積層体のx方向の不要部分を除去する。積層体10は、所定の形状に加工され、積層体10となる。ハードマスク層は、電極Eとなる。次いで、積層体10、スピン軌道トルク配線20の周囲を絶縁層Inで埋め、磁気抵抗効果素子100が得られる。 Next, the unnecessary part of the hard mask layer in the x direction is removed. The hard mask layer has the outer shape of the laminated body 10. Next, the unnecessary portion in the x direction of the laminate formed on the spin-orbit torque wiring 20 is removed via the hard mask layer. The laminated body 10 is processed into a predetermined shape to become the laminated body 10. The hard mask layer serves as an electrode E. Next, the periphery of the laminated body 10 and the spin-orbit torque wiring 20 is filled with the insulating layer In to obtain the magnetoresistive element 100.
 第1実施形態に係る磁気抵抗効果素子100は、スピン軌道トルク配線20内に効率的にスピン流を生み出すことができ、且つ、スピン軌道トルク配線20から第1強磁性層1にスピンを効率的に注入できる。そのため、第1実施形態に係る磁気抵抗効果素子100は、第1強磁性層1の磁化を反転させるために必要な書き込み電流量を小さくできる。一つ一つの素子の書き込み電流量が小さいと、磁気メモリ200全体の消費電力を低減できる。 The magnetoresistive effect element 100 according to the first embodiment can efficiently generate a spin current in the spin-orbit torque wiring 20, and efficiently spins from the spin-orbit torque wiring 20 to the first ferromagnetic layer 1. Can be injected into. Therefore, the magnetoresistive element 100 according to the first embodiment can reduce the amount of write current required to reverse the magnetization of the first ferromagnetic layer 1. When the amount of write current of each element is small, the power consumption of the entire magnetic memory 200 can be reduced.
 これは、スピン軌道トルク配線20がパイロクロア構造を有するためである。パイロクロア構造内に生じる磁気的なフラストレーションが、スピン軌道トルク配線20内の対称性を乱し、スピン軌道トルク配線20内にスピン流を効率的に生み出す。生じたスピン流は、スピン軌道トルク配線20と第1強磁性層1との電位差に応じて、効率的に第1強磁性層1に注入される。 This is because the spin-orbit torque wiring 20 has a pyrochlore structure. The magnetic frustration that occurs in the pyrochlor structure disturbs the symmetry in the spin-orbit torque wiring 20 and efficiently creates a spin current in the spin-orbit torque wiring 20. The generated spin current is efficiently injected into the first ferromagnetic layer 1 according to the potential difference between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1.
 以上、第1実施形態に係る磁気抵抗効果素子100の一例を示したが、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 Although an example of the magnetoresistive sensor 100 according to the first embodiment has been shown above, it is possible to add, omit, replace, and otherwise change the configuration within a range that does not deviate from the gist of the present invention.
(第1変形例)
 図6は、第1変形例に係る磁気抵抗効果素子101の断面図である。図6は、スピン軌道トルク配線20のy方向の中心を通るxz断面である。図6において、図3と同じ構成には同様の符号を付し、説明を省く。
(First modification)
FIG. 6 is a cross-sectional view of the magnetoresistive effect element 101 according to the first modification. FIG. 6 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction. In FIG. 6, the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
 第1変形例に係る磁気抵抗効果素子101は、スピン軌道トルク配線20と第1強磁性層1との間に、第1中間層40を有する。第1中間層40は、例えば、スピン軌道トルク配線20上にある。 The magnetoresistive element 101 according to the first modification has a first intermediate layer 40 between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1. The first intermediate layer 40 is, for example, on the spin-orbit torque wiring 20.
 第1中間層40は、非磁性層の重金属を含む。重金属は、イットリウム(Y)以上の原子番号(比重)を有する金属である。非磁性の重金属は、例えば、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属である。第1中間層40は、例えば、Au、Bi、Hf、Ir、Mo、Pd、Pt、Rh、Ru、Ta、Wのいずれか一つ以上を含む。第1中間層40の主元素は、例えば、これらの元素のうちのいずれかであることが好ましい。 The first intermediate layer 40 contains a heavy metal of a non-magnetic layer. Heavy metals are metals having an atomic number (specific gravity) of yttrium (Y) or higher. The non-magnetic heavy metal is, for example, a non-magnetic metal having a d-electron or an f-electron in the outermost shell and having an atomic number of 39 or more and a large atomic number. The first intermediate layer 40 includes, for example, any one or more of Au, Bi, Hf, Ir, Mo, Pd, Pt, Rh, Ru, Ta, and W. The main element of the first intermediate layer 40 is preferably, for example, any of these elements.
 第1中間層40は、完全な連続する層となっていなくてもよく、例えば複数の開口を有する連続膜又は島状に点在する複数の構成要素を含む層でもよい。 The first intermediate layer 40 does not have to be a completely continuous layer, and may be, for example, a continuous film having a plurality of openings or a layer containing a plurality of components scattered in an island shape.
 第1中間層40の厚みは、例えば、層を構成する物質のスピン拡散長以下である。また第1中間層40の厚みは、例えば、第1中間層40を構成する元素の結合半径の5倍以下である。結合半径は、第1中間層40を構成する元素の結晶の再隣接原子間距離の半分の値である。第1中間層40の厚みが薄いことで、スピン軌道トルク配線20で生じたスピンが第1強磁性層1に至る前に拡散することを抑制できる。 The thickness of the first intermediate layer 40 is, for example, less than or equal to the spin diffusion length of the substance constituting the layer. The thickness of the first intermediate layer 40 is, for example, five times or less the bond radius of the elements constituting the first intermediate layer 40. The bond radius is a value that is half the distance between the re-adjacent atoms of the crystal of the element constituting the first intermediate layer 40. Since the thickness of the first intermediate layer 40 is thin, it is possible to suppress the spin generated in the spin-orbit torque wiring 20 from diffusing before reaching the first ferromagnetic layer 1.
 第1中間層40は、第2成膜工程で成膜される。第2成膜工程は、第1成膜工程の後に行われる。第2成膜工程は、第1成膜工程で成膜された酸化物層上に、イットリウムより原子番号の大きな重金属を含む重金属層を成膜する工程である。 The first intermediate layer 40 is formed in the second film forming step. The second film forming step is performed after the first film forming step. The second film forming step is a step of forming a heavy metal layer containing a heavy metal having an atomic number larger than that of yttrium on the oxide layer formed in the first film forming step.
 第2成膜工程におけるチャンバー内のガス圧は、例えば、第1成膜工程におけるチャンバー内のガス圧より高くする。すなわち、第2成膜工程における真空度を第1成膜工程より悪くする。 The gas pressure in the chamber in the second film forming step is, for example, higher than the gas pressure in the chamber in the first film forming step. That is, the degree of vacuum in the second film forming step is made worse than that in the first film forming step.
 第2成膜工程における真空度が低いと、非磁性の重金属が粒成長する。非磁性の重金属が粒成長すると、第1中間層40が複数の開口を有する連続膜又は島状に点在する複数の構成要素を含む層となる。この場合、スピン軌道トルク配線20と第1強磁性層1とは一部で直接接することになり、スピン軌道トルク配線20で生じたスピンが第1強磁性層1に至る前に第1中間層40で拡散することをより抑制できる。 If the degree of vacuum in the second film formation step is low, non-magnetic heavy metals will grow. When the non-magnetic heavy metal grows in grains, the first intermediate layer 40 becomes a continuous film having a plurality of openings or a layer containing a plurality of components scattered in an island shape. In this case, the spin-orbit torque wiring 20 and the first ferromagnetic layer 1 are partially in direct contact with each other, and the first intermediate layer is formed before the spin generated by the spin-orbit torque wiring 20 reaches the first ferromagnetic layer 1. It is possible to further suppress the diffusion at 40.
 書き込み電流は、第1中間層40とスピン軌道トルク配線20とを合わせた配線に沿って流れる。配線を流れる書き込み電流は、第1中間層40とスピン軌道トルク配線20とに分流する。電流の一部が分流することで、電流が流れにくいスピン軌道トルク配線20における発熱を抑制できる。また配線全体としての抵抗を下げることができる。 The write current flows along the wiring in which the first intermediate layer 40 and the spin-orbit torque wiring 20 are combined. The write current flowing through the wiring is divided into the first intermediate layer 40 and the spin-orbit torque wiring 20. By dividing a part of the current, it is possible to suppress heat generation in the spin-orbit torque wiring 20 in which the current is difficult to flow. Moreover, the resistance of the wiring as a whole can be reduced.
 また第1中間層40を構成する非磁性の重金属は、その他の金属よりスピン軌道相互作用が強く生じる。そのため、第1中間層40内を流れる書き込み電流もスピン流を生み出す。 Further, the non-magnetic heavy metal constituting the first intermediate layer 40 has a stronger spin-orbit interaction than other metals. Therefore, the write current flowing in the first intermediate layer 40 also produces a spin current.
 また第1中間層40を設けると、第1中間層40とスピン軌道トルク配線20との間に、異種物質の界面ができる。異種物質の界面では、ラシュバ効果が生じ、第1強磁性層1に注入されるスピン量が増える。 Further, when the first intermediate layer 40 is provided, an interface of different substances is formed between the first intermediate layer 40 and the spin-orbit torque wiring 20. At the interface between different substances, the Rashba effect occurs and the amount of spin injected into the first ferromagnetic layer 1 increases.
(第2変形例)
 図7は、第2変形例に係る磁気抵抗効果素子102の断面図である。図7は、スピン軌道トルク配線20のy方向の中心を通るxz断面である。図7において、図3と同じ構成には同様の符号を付し、説明を省く。
(Second modification)
FIG. 7 is a cross-sectional view of the magnetoresistive effect element 102 according to the second modification. FIG. 7 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction. In FIG. 7, the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
 第1変形例に係る磁気抵抗効果素子102は、スピン軌道トルク配線20と第1強磁性層1との間に、第2中間層50を有する。第2中間層50は、例えば、スピン軌道トルク配線20上にある。 The magnetoresistive element 102 according to the first modification has a second intermediate layer 50 between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1. The second intermediate layer 50 is, for example, on the spin-orbit torque wiring 20.
 第2中間層50は、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む。第2中間層50は、例えば、Cu、Al、Si及びAlからなる群から選択される1種以上の元素からなる。これらの元素は、導電性に優れる。したがって、第2中間層50とスピン軌道トルク配線20とを合わせた配線全体としての抵抗をより下げることができる。またこれらの元素は、スピン拡散長が長い。したがって、第2中間層50は、スピンを拡散しにくい。スピン軌道トルク配線20で生じたスピンは、第2中間層50を介しても、第1強磁性層1に効率的に供給される。 The second intermediate layer 50 contains one or more elements selected from the group consisting of Cu, Al, Si and Al. The second intermediate layer 50 is made of one or more elements selected from the group consisting of, for example, Cu, Al, Si and Al. These elements are excellent in conductivity. Therefore, the resistance of the entire wiring of the second intermediate layer 50 and the spin-orbit torque wiring 20 can be further reduced. In addition, these elements have a long spin diffusion length. Therefore, the second intermediate layer 50 is difficult to diffuse the spin. The spin generated in the spin-orbit torque wiring 20 is efficiently supplied to the first ferromagnetic layer 1 even through the second intermediate layer 50.
 第2中間層50は、完全な連続する層となっていなくてもよく、例えば複数の開口を有する連続膜又は島状に点在する複数の構成要素を含む層でもよい。第2中間層50の厚みは、例えば、層を構成する物質のスピン拡散長以下である。 The second intermediate layer 50 does not have to be a completely continuous layer, and may be, for example, a continuous film having a plurality of openings or a layer containing a plurality of components scattered in an island shape. The thickness of the second intermediate layer 50 is, for example, equal to or less than the spin diffusion length of the substance constituting the layer.
 第2中間層50は、第3成膜工程で成膜される。第3成膜工程は、第1成膜工程の後に行われる。第3成膜工程は、第1成膜工程で成膜された酸化物層上に、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む層を成膜する工程である。 The second intermediate layer 50 is formed in the third film forming step. The third film forming step is performed after the first film forming step. The third film forming step is a step of forming a layer containing one or more elements selected from the group consisting of Cu, Al, Si and Al on the oxide layer formed in the first forming step. Is.
 書き込み電流は、第2中間層50とスピン軌道トルク配線20とを合わせた配線に沿って流れる。配線を流れる書き込み電流は、第2中間層50とスピン軌道トルク配線20とに分流する。電流の一部を分流することで、電流が流れにくいスピン軌道トルク配線20における発熱を抑制できる。また配線全体としての抵抗を下げることができる。 The write current flows along the wiring in which the second intermediate layer 50 and the spin-orbit torque wiring 20 are combined. The write current flowing through the wiring is divided into the second intermediate layer 50 and the spin-orbit torque wiring 20. By dividing a part of the current, it is possible to suppress heat generation in the spin-orbit torque wiring 20 in which the current is difficult to flow. Moreover, the resistance of the wiring as a whole can be reduced.
 また第2中間層50を設けると、第2中間層50とスピン軌道トルク配線20との間に、異種物質の界面ができる。異種物質の界面では、ラシュバ効果が生じ、第1強磁性層1に注入されるスピン量が増える。 Further, when the second intermediate layer 50 is provided, an interface of different substances is formed between the second intermediate layer 50 and the spin-orbit torque wiring 20. At the interface between different substances, the Rashba effect occurs and the amount of spin injected into the first ferromagnetic layer 1 increases.
(第3変形例)
 図8は、第3変形例に係る磁気抵抗効果素子103の断面図である。図8は、スピン軌道トルク配線20のy方向の中心を通るxz断面である。図8において、図3と同じ構成には同様の符号を付し、説明を省く。
(Third modification example)
FIG. 8 is a cross-sectional view of the magnetoresistive effect element 103 according to the third modification. FIG. 8 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction. In FIG. 8, the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
 第3変形例に係る磁気抵抗効果素子103は、スピン軌道トルク配線20と第1強磁性層1との間に、第1中間層40及び第2中間層50を有する。第1中間層40と第2中間層50とは、それぞれ1層以上ある。第1中間層40と第2中間層50とは、例えば、交互に積層されている。第1中間層40と第2中間層50との積層順は問わない。第1強磁性層1に接する層が第1中間層40の場合は、第1中間層40で生じたスピンを効率的に第1強磁性層1に注入できる。 The magnetoresistive element 103 according to the third modification has a first intermediate layer 40 and a second intermediate layer 50 between the spin-orbit torque wiring 20 and the first ferromagnetic layer 1. The first intermediate layer 40 and the second intermediate layer 50 each have one or more layers. The first intermediate layer 40 and the second intermediate layer 50 are laminated alternately, for example. The stacking order of the first intermediate layer 40 and the second intermediate layer 50 does not matter. When the layer in contact with the first ferromagnetic layer 1 is the first intermediate layer 40, the spin generated in the first intermediate layer 40 can be efficiently injected into the first ferromagnetic layer 1.
 第1中間層40は、第1変形例と同様のものである。第2中間層50は、第2変形例と同様のものである。第1中間層40及び第2中間層50の積層数は問わない。第1中間層40と第2中間層50とは、第1成膜工程の後に、第2成膜工程と第3成膜工程とを繰り返すことで形成される。これらの層は、第1成膜工程で成膜された酸化物層上に形成される。 The first intermediate layer 40 is the same as the first modification. The second intermediate layer 50 is the same as that of the second modification. The number of layers of the first intermediate layer 40 and the second intermediate layer 50 does not matter. The first intermediate layer 40 and the second intermediate layer 50 are formed by repeating the second film forming step and the third film forming step after the first film forming step. These layers are formed on the oxide layer formed in the first film forming step.
 磁気抵抗効果素子103は、第1中間層40及び第2中間層50を有することで、配線全体としての抵抗を下げることができる。また第1強磁性層1とスピン軌道トルク配線20との間に、複数の異種界面があることで、ラシュバ効果に伴い第1強磁性層1に注入されるスピン量を増やすことができる。 By having the first intermediate layer 40 and the second intermediate layer 50, the magnetoresistive effect element 103 can reduce the resistance of the wiring as a whole. Further, since there are a plurality of different types of interfaces between the first ferromagnetic layer 1 and the spin-orbit torque wiring 20, the amount of spin injected into the first ferromagnetic layer 1 can be increased due to the Rashba effect.
(第4変形例)
 図9は、第4変形例に係る磁気抵抗効果素子104の断面図である。図9は、スピン軌道トルク配線20のy方向の中心を通るxz断面である。図9において、図3と同じ構成には同様の符号を付し、説明を省く。
(Fourth modification)
FIG. 9 is a cross-sectional view of the magnetoresistive effect element 104 according to the fourth modification. FIG. 9 is an xz cross section passing through the center of the spin-orbit torque wiring 20 in the y direction. In FIG. 9, the same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
 図9に示す積層体10は、磁化固定層(第2強磁性層2)が基板Subの近くにあるボトムピン構造である。磁化固定層が基板Sub側にあると、磁化固定層の磁化の安定性が高まり、磁気抵抗効果素子104のMR比が高くなる。スピン軌道トルク配線20は、例えば、積層体10上にある。第1導電層31及び第2導電層32は、スピン軌道トルク配線20上にある。 The laminate 10 shown in FIG. 9 has a bottom pin structure in which the magnetization fixing layer (second ferromagnetic layer 2) is near the substrate Sub. When the magnetization fixing layer is on the substrate Sub side, the magnetization stability of the magnetization fixing layer is enhanced, and the MR ratio of the magnetoresistive element 104 is increased. The spin-orbit torque wiring 20 is, for example, on the laminated body 10. The first conductive layer 31 and the second conductive layer 32 are on the spin-orbit torque wiring 20.
 第4変形例にかかる磁気抵抗効果素子104は、各構成の位置関係が異なるだけであり、第1実施形態にかかる磁気抵抗効果素子100と同様の効果が得られる。 The magnetoresistive sensor 104 according to the fourth modification is different only in the positional relationship of each configuration, and the same effect as the magnetoresistive element 100 according to the first embodiment can be obtained.
「第2実施形態」
 図10は、第2実施形態に係る磁化回転素子105の断面図である。図1において、磁化回転素子105は、第1実施形態に係る磁気抵抗効果素子100と置き換えられる。
"Second embodiment"
FIG. 10 is a cross-sectional view of the magnetization rotating element 105 according to the second embodiment. In FIG. 1, the magnetization rotating element 105 is replaced with the magnetoresistive effect element 100 according to the first embodiment.
 磁化回転素子105は、例えば、第1強磁性層1に対して光を入射し、第1強磁性層1で反射した光を評価する。磁気カー効果により磁化の配向方向が変化すると、反射した光の偏向状態が変わる。磁化回転素子105は、例えば、光の偏向状態の違いを利用した例えば映像表示装置等の光学素子として用いることができる。 The magnetizing rotating element 105, for example, incidents light on the first ferromagnetic layer 1 and evaluates the light reflected by the first ferromagnetic layer 1. When the orientation direction of magnetization changes due to the magneto-optic Kerr effect, the deflection state of the reflected light changes. The magnetization rotating element 105 can be used, for example, as an optical element for, for example, an image display device that utilizes a difference in the deflection state of light.
 この他、磁化回転素子105は、単独で、異方性磁気センサ、磁気ファラデー効果を利用した光学素子等としても利用できる。 In addition, the magnetization rotating element 105 can be used alone as an anisotropic magnetic sensor, an optical element utilizing the magnetic Faraday effect, and the like.
 磁化回転素子105のスピン軌道トルク配線20は、パイロクロア構造の化合物を有する。 The spin-orbit torque wiring 20 of the magnetizing rotating element 105 has a compound having a pyrochlore structure.
 第2実施形態に係る磁化回転素子105は、磁気抵抗効果素子100から非磁性層3及び第2強磁性層2が除かれているだけであり、第1実施形態にかかる磁気抵抗効果素子100と同様の効果が得られる。 In the magnetization rotating element 105 according to the second embodiment, only the non-magnetic layer 3 and the second ferromagnetic layer 2 are removed from the magnetoresistive effect element 100, and the magnetoresistive element 100 according to the first embodiment is used. A similar effect can be obtained.
 ここまで、第1実施形態、第2実施形態及び変形例を基に、本発明の好ましい態様を例示したが、本発明はこれらの実施形態に限られるものではない。例えば、それぞれの実施形態及び変形例における特徴的な構成を他の実施形態及び変形例に適用してもよい。 Up to this point, preferred embodiments of the present invention have been exemplified based on the first embodiment, the second embodiment, and modifications, but the present invention is not limited to these embodiments. For example, the characteristic configurations in each embodiment and modification may be applied to other embodiments and modifications.
1…第1強磁性層、2…第2強磁性層、3…非磁性層、10…積層体、20…スピン軌道トルク配線、31…第1導電層、32…第2導電層、40…第1中間層、50…第2中間層、100,101,102,103,104…磁気抵抗効果素子、105…磁化回転素子、200…磁気メモリ、CL…共通配線、RL…読出し配線、WL…書き込み配線、In…絶縁層 1 ... 1st ferromagnetic layer, 2 ... 2nd ferromagnetic layer, 3 ... non-magnetic layer, 10 ... laminate, 20 ... spin track torque wiring, 31 ... first conductive layer, 32 ... second conductive layer, 40 ... 1st intermediate layer, 50 ... 2nd intermediate layer, 100, 101, 102, 103, 104 ... Magnetic resistance effect element, 105 ... Magnetized rotating element, 200 ... Magnetic memory, CL ... Common wiring, RL ... Read wiring, WL ... Write wiring, In ... Insulation layer

Claims (19)

  1.  スピン軌道トルク配線と、
     前記スピン軌道トルク配線に積層された第1強磁性層と、を備え、
     前記スピン軌道トルク配線は、パイロクロア構造の化合物を含む、磁化回転素子。
    Spin-orbit torque wiring and
    A first ferromagnetic layer laminated on the spin-orbit torque wiring is provided.
    The spin-orbit torque wiring is a magnetized rotating element containing a compound having a pyrochlore structure.
  2.  前記化合物は、酸化物である、請求項1に記載の磁化回転素子。 The magnetization rotating element according to claim 1, wherein the compound is an oxide.
  3.  前記酸化物は、化学量論組成でRIrの組成式で表され、
     前記組成式におけるRは、Pr、Nd、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素である、請求項2に記載の磁化回転素子。
    The oxide is represented by the composition formula of R 2 Ir 2 O 7 in the stoichiometric composition.
    The magnetization rotating element according to claim 2, wherein R in the composition formula is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho.
  4.  前記組成式におけるRは、第1元素を含み、
     前記第1元素は、PrとNdとのうち少なくとも一方である、請求項3に記載の磁化回転素子。
    R in the composition formula contains the first element and contains.
    The magnetization rotating element according to claim 3, wherein the first element is at least one of Pr and Nd.
  5.  前記組成式におけるRは、第1元素と第2元素とを含み、
     前記第1元素は、PrとNdとのうち少なくとも一方であり、
     前記第2元素は、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素である、請求項4に記載の磁化回転素子。
    R in the composition formula includes a first element and a second element, and contains.
    The first element is at least one of Pr and Nd, and is
    The magnetization rotating element according to claim 4, wherein the second element is one or more elements selected from the group consisting of Sm, Eu, Gd, Tb, Dy and Ho.
  6.  前記第2元素の組成比は、前記第1元素の組成比より少ない、請求項5に記載の磁化回転素子。 The magnetization rotating element according to claim 5, wherein the composition ratio of the second element is smaller than the composition ratio of the first element.
  7.  前記酸化物は、酸素欠損している、請求項2~6のいずれか一項に記載の磁化回転素子。 The magnetization rotating element according to any one of claims 2 to 6, wherein the oxide is oxygen-deficient.
  8.  前記スピン軌道トルク配線は、電気抵抗率が1mΩ・cm以上である、請求項1~7のいずれか一項に記載の磁化回転素子。 The magnetized rotating element according to any one of claims 1 to 7, wherein the spin-orbit torque wiring has an electrical resistivity of 1 mΩ · cm or more.
  9.  前記スピン軌道トルク配線は、電気抵抗率が10mΩ・cm以下である、請求項1~8のいずれか一項に記載の磁化回転素子。 The magnetized rotating element according to any one of claims 1 to 8, wherein the spin-orbit torque wiring has an electrical resistivity of 10 mΩ · cm or less.
  10.  前記第1強磁性層と前記スピン軌道トルク配線との間に、第1中間層を有し、
     前記第1中間層は、イットリウムより原子番号の大きな重金属を含む、請求項1~9のいずれか一項に記載の磁化回転素子。
    A first intermediate layer is provided between the first ferromagnetic layer and the spin-orbit torque wiring.
    The magnetization rotating element according to any one of claims 1 to 9, wherein the first intermediate layer contains a heavy metal having an atomic number larger than that of yttrium.
  11.  前記第1強磁性層と前記スピン軌道トルク配線との間に、第2中間層を有し、
     前記第2中間層は、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む、請求項1~10のいずれか一項に記載の磁化回転素子。
    A second intermediate layer is provided between the first ferromagnetic layer and the spin-orbit torque wiring.
    The magnetization rotating element according to any one of claims 1 to 10, wherein the second intermediate layer contains one or more elements selected from the group consisting of Cu, Al, Si and Al.
  12.  前記第1強磁性層と前記スピン軌道トルク配線との間に、第1中間層と第2中間層とをそれぞれ1層以上有し、
     前記第1中間層は、イットリウムより原子番号の大きな重金属を含み、
     前記第2中間層は、Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む、請求項1~11のいずれか一項に記載の磁化回転素子。
    A first intermediate layer and a second intermediate layer are provided between the first ferromagnetic layer and the spin-orbit torque wiring, respectively.
    The first intermediate layer contains a heavy metal having an atomic number larger than that of yttrium.
    The magnetization rotating element according to any one of claims 1 to 11, wherein the second intermediate layer contains one or more elements selected from the group consisting of Cu, Al, Si and Al.
  13.  請求項1~12のいずれか一項に記載の磁化回転素子と、
     前記磁化回転素子の前記第1強磁性層に接する非磁性層と、
     前記第1強磁性層と共に前記非磁性層を間に挟む第2強磁性層と、を備える、磁気抵抗効果素子。
    The magnetizing rotating element according to any one of claims 1 to 12,
    A non-magnetic layer in contact with the first ferromagnetic layer of the magnetization rotating element,
    A magnetoresistive sensor comprising the first ferromagnetic layer and a second ferromagnetic layer sandwiching the non-magnetic layer.
  14.  請求項13に記載の磁気抵抗効果素子を複数備える、磁気メモリ。 A magnetic memory provided with a plurality of magnetoresistive elements according to claim 13.
  15.  酸化物をRFスパッタリングすると同時に又は後に、金属をDCスパッタリングし、パイロクロア構造を含む酸化物層を成膜する第1成膜工程を有する、配線の製造方法。 A method for manufacturing wiring, which comprises a first film forming step of forming an oxide layer containing a pyrochlore structure by DC sputtering of a metal at the same time as or after RF sputtering of an oxide.
  16.  前記酸化物は、R(Rは、Pr、Nd、Sm、Eu、Gd、Tb、Dy及びHoからなる群から選択される1種以上の元素)であり、
     前記金属は、Irである、請求項15に記載の配線の製造方法。
    The oxide is R 2 O 3 (R is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho).
    The method for manufacturing wiring according to claim 15, wherein the metal is Ir.
  17.  前記第1成膜工程を酸素雰囲気中で行う、請求項15又は16に記載の配線の製造方法。 The method for manufacturing wiring according to claim 15 or 16, wherein the first film forming step is performed in an oxygen atmosphere.
  18.  前記第1成膜工程の後に、イットリウムより原子番号の大きな重金属を含む重金属層を成膜する第2成膜工程を有し、
     前記第2成膜工程におけるガス圧は、前記第1成膜工程におけるガス圧より高い、請求項15~17のいずれか一項に記載の配線の製造方法。
    After the first film forming step, there is a second film forming step of forming a heavy metal layer containing a heavy metal having an atomic number larger than that of yttrium.
    The method for manufacturing wiring according to any one of claims 15 to 17, wherein the gas pressure in the second film forming step is higher than the gas pressure in the first film forming step.
  19.  イットリウムより原子番号の大きな重金属を含む重金属層を成膜する第2成膜工程と、
     Cu、Al、Si及びAlからなる群から選択される1種以上の元素を含む層を成膜する第3成膜工程とを、前記第1成膜工程の後にさらに有し、
     前記第2成膜工程と前記第3成膜工程とを交互に行う、請求項15~17のいずれか一項に記載の配線の製造方法。
    A second film forming step for forming a heavy metal layer containing a heavy metal having an atomic number larger than that of yttrium, and
    A third film forming step for forming a layer containing one or more elements selected from the group consisting of Cu, Al, Si and Al is further provided after the first film forming step.
    The method for manufacturing wiring according to any one of claims 15 to 17, wherein the second film forming step and the third film forming step are alternately performed.
PCT/JP2020/046050 2020-12-10 2020-12-10 Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring WO2022123726A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/046050 WO2022123726A1 (en) 2020-12-10 2020-12-10 Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring
JP2021158757A JP2022092571A (en) 2020-12-10 2021-09-29 Magnetization rotation element, magnetoresistive element, magnetic memory, and manufacturing method for spin-orbit torque wiring
US17/545,467 US20220190234A1 (en) 2020-12-10 2021-12-08 Magnetization rotation element, magnetoresistance effect element, magnetic memory, and method of manufacturing spin-orbit torque wiring
CN202111499478.XA CN114628575A (en) 2020-12-10 2021-12-09 Magnetization rotating element, magnetoresistance effect element, magnetic memory, and method for manufacturing spin-orbit torque wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046050 WO2022123726A1 (en) 2020-12-10 2020-12-10 Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring

Publications (1)

Publication Number Publication Date
WO2022123726A1 true WO2022123726A1 (en) 2022-06-16

Family

ID=81973461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046050 WO2022123726A1 (en) 2020-12-10 2020-12-10 Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring

Country Status (2)

Country Link
JP (1) JP2022092571A (en)
WO (1) WO2022123726A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214018A (en) * 1995-11-30 1997-08-15 Nec Corp Magnetic sensor, and magnetic head including it
JP2014110419A (en) * 2012-12-04 2014-06-12 Imec Spin transfer torque magnetic memory device
JP2018182256A (en) * 2017-04-21 2018-11-15 Tdk株式会社 Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
JP6530527B1 (en) * 2018-03-19 2019-06-12 株式会社東芝 Magnetic storage
JP2019165244A (en) * 2018-02-22 2019-09-26 Tdk株式会社 Magnetization rotary element, magnetoresistive effect element, and magnetic memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214018A (en) * 1995-11-30 1997-08-15 Nec Corp Magnetic sensor, and magnetic head including it
JP2014110419A (en) * 2012-12-04 2014-06-12 Imec Spin transfer torque magnetic memory device
JP2018182256A (en) * 2017-04-21 2018-11-15 Tdk株式会社 Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
JP2019165244A (en) * 2018-02-22 2019-09-26 Tdk株式会社 Magnetization rotary element, magnetoresistive effect element, and magnetic memory
JP6530527B1 (en) * 2018-03-19 2019-06-12 株式会社東芝 Magnetic storage

Also Published As

Publication number Publication date
JP2022092571A (en) 2022-06-22

Similar Documents

Publication Publication Date Title
CN108292702B (en) Magnetoresistive effect element, magnetic memory, magnetization reversal method, and spin current magnetization reversal element
US10937480B2 (en) Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
US11211547B2 (en) Spin-orbit-torque type magnetization rotating element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
CN111492491B (en) Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
JP2021090041A (en) Magnetization rotation element, magnetoresistive element, semiconductor element, magnetic recording array, and manufacturing method of magnetoresistive element
WO2021130796A1 (en) Magnetoresistive sensor and magnetic recording array
CN111279489A (en) Spin-orbit torque type magnetoresistance effect element and magnetic memory
CN111480240B (en) Spin orbit torque type magneto-resistance effect element and magnetic memory
WO2022123726A1 (en) Magnetization rotation element, magnetoresistance effect element, magnetic memory, and production method for wiring
CN115000291A (en) Magnetic device
US20230107965A1 (en) Magnetization rotation element, magnetoresistance effect element, magnetic recording array, high frequency device, and method for manufacturing magnetization rotation element
WO2022102122A1 (en) Magnetization rotational element, magnetoresistive effect element, and magnetic memory
US20220190234A1 (en) Magnetization rotation element, magnetoresistance effect element, magnetic memory, and method of manufacturing spin-orbit torque wiring
WO2023162121A1 (en) Magnetized rotary element, magnetoresistive element, and magnetic memory
WO2023170738A1 (en) Magnetization rotating element, magnetoresistive element, and magnetic memory
WO2023089766A1 (en) Magnetization rotational element, magnetoresistive effect element, and magnetic memory
US11257533B2 (en) Magnetic memory and method for controlling the same
WO2024004125A1 (en) Magnetization rotation element, magnetoresistive effect element, and magnetic memory
US11696512B2 (en) Magnetic domain wall moving element and magnetic array
JP7081694B2 (en) Magnetic recording layer, domain wall moving element and magnetic recording array
WO2021245768A1 (en) Magnetoresistive element and magnetic recording array
WO2024009417A1 (en) Magnetized rotating element, magnetoresistive element, magnetic memory, and method for manufacturing magnetized rotating element
WO2023228308A1 (en) Magnetoresistance effect element
US20220077386A1 (en) Magnetoresistance effect element and magnetic memory
WO2020230771A1 (en) Magnetic domain wall moving element and magnetic recording array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP