WO2022118595A1 - Dual rf tag antenna and dual rf tag - Google Patents

Dual rf tag antenna and dual rf tag Download PDF

Info

Publication number
WO2022118595A1
WO2022118595A1 PCT/JP2021/040316 JP2021040316W WO2022118595A1 WO 2022118595 A1 WO2022118595 A1 WO 2022118595A1 JP 2021040316 W JP2021040316 W JP 2021040316W WO 2022118595 A1 WO2022118595 A1 WO 2022118595A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide element
sub
dual
main
tag
Prior art date
Application number
PCT/JP2021/040316
Other languages
French (fr)
Japanese (ja)
Inventor
詩朗 杉村
達次 庭田
雅和 藤井
Original Assignee
株式会社フェニックスソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フェニックスソリューション filed Critical 株式会社フェニックスソリューション
Priority to JP2022566790A priority Critical patent/JPWO2022118595A1/ja
Publication of WO2022118595A1 publication Critical patent/WO2022118595A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable

Definitions

  • the present invention relates to a dual RF tag antenna and a dual RF tag that have a long communication distance and operate in two types of frequency bands.
  • the RFID tag used in the RFID (Radio Frequency Identification) system contains an antenna and an RF chip, and the carrier received from the antenna of the reader / writer is received by the antenna, and the identification data recorded on the RF chip, etc. Is sent back to the reader / writer on the reflected wave, so that it can communicate in a non-contact manner.
  • the dual RF tag of Patent Document 1 is provided with a low band radiation element part, a high band radiation element part, an inductor pattern part, a balance coil part and an IC chip on the front surface, and has a ground element part on the back surface, and is provided with a front surface and a back surface.
  • An insulating base material is provided between the two, and the ground element portion and the balance coil portion are electrically conducted.
  • a low-band radiating element is connected to one end of the primary coil of the balance coil, a high-band radiating element is connected to the other end, and a ground element is connected to the midpoint of the primary coil. Since the ground element is connected to the midpoint of the primary coil, the first coil is from one end of the primary coil to the midpoint, and the second coil is from the other end to the midpoint of the primary coil.
  • the low-band radiating element section functions as an antenna for low frequency and the high-band radiating element section functions as an antenna for high frequency, it operates in two types of frequency bands without switching between low band and high band by a switch mechanism.
  • Patent Document 1 has a two-coil configuration of a first coil and a second coil as the primary side coil, but tentatively, one end to the other end of the temporary side coil is configured as one coil. Compared with the case, in the case of the configuration of Patent Document 1, the transmission / reception power of the balance coil with the secondary coil is halved. In this way, when operating in two types of frequency bands without a switch mechanism for switching between low band and high band, the transmission / reception power is reduced to 1/2, and the communication distance is shortened. be.
  • the dual RF tag antenna of the present invention has an insulating base material, a main waveguide element provided on one surface of the insulating base material, and a sub-device in which at least a part thereof faces each other on the surface of the main waveguide element.
  • a plate-shaped inverted F antenna is configured by the main plate, the feeding portion, and the short-circuit portion, and the position of the sub-wavelength element is changed to change the area of the portion where the sub-wavelength element and the main waveguide element face each other.
  • This is characterized by switching the wavelength ⁇ of the radio wave between the low frequency side and the high frequency side.
  • the sub-waveguide element and the main waveguide element are capacitively coupled at a portion where the sub-waveguide element and the main waveguide element face each other.
  • the sub-waveguide element and the main waveguide element are electrically coupled by contact at a portion where the sub-waveguide element and the main waveguide element face each other.
  • the total length of the side sides of the waveguide composed of the main waveguide element and the sub-waveguide element is ⁇ / 4, ⁇ / 2, 3 ⁇ / 4, 5 ⁇ / 8 ( ⁇ : of the radio wave). It is characterized by being equal to any of (wavelength).
  • the insulating base material, the main waveguide element, the sub-waveguide element, the main plate, the feeding portion and the short-circuit portion are arranged inside the case, and a part of the sub-waveguide element is outside the case. It is exposed, and the exposed portion is operated to change the position of the sub-waveguide element.
  • the dual RF of the present invention is composed of the dual RF tag antenna, an IC chip that operates based on the radio wave, the main waveguide element, the sub-wiride element, the short circuit portion, the main plate, and the feeding portion. Resonance in the frequency band of the radio wave by the inductor pattern section, the capacitor section composed of the main waveguide element, the sub-widging element, the insulating base material, and the main plate, and the inductor pattern section and the capacitor section. It is characterized by having a circuit.
  • a plate-shaped inverted F antenna is composed of an insulating base material, a main waveguide element, a sub-guided element, a main plate, a feeding portion, and a short-circuit portion.
  • the inductor pattern composed of the surface of the main waveguide element, the sub-wividing element, the short-circuit portion, the main plate and the feeding portion, and the capacitor composed of the main waveguide element, the sub waveguide element, the main plate and the insulating base material resonate with each other.
  • the circuit is configured. As a result, the radio waves transmitted from the reader can be received with high sensitivity.
  • a so-called switch mechanism that switches the wavelength ⁇ of the radio wave between the low frequency side and the high frequency side by changing the position of the sub-waveguide element and changing the area of the portion where the sub-waveguide element and the main waveguide element face each other.
  • the communication distance can be lengthened by providing the above.
  • Front side perspective view of antenna for dual RF tag and dual RF tag Graph showing the frequency and reading distance of the radio wave of the antenna for dual RF tags It is an equivalent circuit diagram of the dual RF tag, and the sub-waveguide element is in the first position (a) and the second position (b).
  • FIG. 1 Perspective view showing the state where the dual RF tag is installed on the conductor.
  • (c) and vertical cross-sectional view (d) A vertical cross-sectional view (a) and an equivalent circuit diagram (b) of a dual RF tag in a case with the sub-waveguide element in the first position, and a longitudinal section of the sub-waveguide element in the second position.
  • the dual RF tag antenna 1 includes an insulating base material 10, a main waveguide element 20, a sub-waveguide element 30, a main plate 40, a feeding section 50, and a short-circuit section 60.
  • the dual RF tag 2 is configured by attaching the IC chip 70 to the RF tag antenna 1.
  • the insulating substrate 10 has a front surface (one surface), a back surface (the other surface), and a side surface.
  • the shape of the insulating base material 10 is, for example, a substantially rectangular parallelepiped, but the shape is not limited to this, and may be, for example, curved in a disk shape or an arc shape.
  • the insulating base material 10 preferably has a shape corresponding to the surface shape of the object to be attached to which the dual RF tag 2 is attached. For example, when the object to be attached has a cylindrical shape and the dual RF tag 2 is attached to the curved surface, it is preferable to match the shape of the dual RF tag 2 with the curvature of the curved surface.
  • the insulating base material 10 expanded polystyrene, polyethylene, polyimide, or the like may be used. Further, a dielectric such as ceramic, paper, or resin may be used as the insulating base material 10. When a dielectric is used, the capacitance of the capacitor 102, which will be described later, becomes large, so that the opening area of the main waveguide element 20 can be reduced to reduce the size of the dual RF tag 2. However, since the gain of the antenna 1 for the dual RF tag becomes small, the distance that can be communicated with the reader becomes short.
  • the main waveguide element 20 is provided on the surface of the insulating base material 10.
  • the main waveguide element 20 of the present embodiment has a rectangular shape, and is formed by a well-known method such as etching of a metal thin film such as aluminum or pattern printing.
  • At least a part of the sub-waveguide element 30 is arranged to face the surface of the main waveguide element 20.
  • the sub-waveguide element 30 and the main waveguide element 20 are electrically coupled by contact with each other, or are capacitively coupled via a dielectric arranged between them.
  • the sub-waveguide element 30 functions as the waveguide 80 together with the main waveguide element 20.
  • the sub-waveguide element 30 and the main waveguide element 20 are electrically coupled by contact with each other.
  • the position of the sub-waveguide element 30 with respect to the main waveguide element 20 can be changed to the first position P1 (FIG. 2) and the second position P2 (FIG. 3).
  • the position of the sub-wavelength element 30 is changed to the first position P1 or the second position P2, and the part A where the sub-wavelength element 30 and the main waveguide element 20 face each other (hatched portion in the figure).
  • the wavelength ⁇ of the radio wave received by the dual RF tag antenna 1 can be switched between the low frequency side and the high frequency side.
  • the main plate 40 is provided on the back surface of the insulating base material 10.
  • the main plate 40 of the present embodiment has a rectangular shape, and is formed by a well-known method such as etching of a metal thin film such as aluminum or pattern printing like the main waveguide element 20.
  • the feeding portion 50 is provided on the side surface of the insulating base material 10, and one end thereof is electrically connected to the main plate 40.
  • the short-circuit portion 60 is provided on the side surface of the insulating base material 10, one end thereof is electrically connected to the main waveguide element 20, and the other end is electrically connected to the main plate 40.
  • the main waveguide element 20, the main plate 40, the feeding portion 50, and the short-circuiting portion 60 may be integrally molded, or the main waveguide element 20 and the main plate 40 may be molded separately, and then the feeding portion 50 and the short-circuiting portion 60 are joined. May be good.
  • the main waveguide element 20, the main plate 40, the feeding portion 50, and the short-circuiting portion 60 are formed on a flexible and insulating sheet 90.
  • the sheet 90 is bent at the side portion of the insulating base material 10 and attached to the insulating base material 10.
  • the material of the sheet 90 is not particularly limited as long as it has flexibility and insulation, but for example, PET, polyimide, vinyl or the like may be used.
  • the thickness of the sheet 90 is not particularly limited, but is generally about several tens of ⁇ m. It is not always necessary to form the main waveguide element 20, the main plate 40, the feeding portion 50, and the short-circuit portion 60 on the sheet 90.
  • a plate-shaped inverted-F antenna is composed of an insulating base material 10, a main waveguide element 20, a sub-waveguide element 30, a main plate 40, a feeding portion 50, and a short-circuit portion 60.
  • This plate-shaped inverted-F antenna receives the radio wave transmitted from the reader by the waveguide 80 in which the main waveguide element 20 and the sub-guided element 30 are integrated.
  • the total length L1 of the side sides 81 to 86 is ⁇ / 4, ⁇ / 2, 3 ⁇ / 4, or 5 ⁇ / 8.
  • the total length of the side sides of the waveguide 80 is designed to be ⁇ P1 / 4, ⁇ P1 / 2, 3 ⁇ P1 / 4, or 5 ⁇ P1 / 8.
  • the waveguide portion It is designed so that the total length L2 of the sides 81 to 86 of 80 is ⁇ P2 / 4, ⁇ P2 / 2, 3 ⁇ P2 / 4, or 5 ⁇ P2 / 8.
  • the high frequency side (near 920 MHz) of the RFID frequency in the UHF band as the wavelength ⁇ P2 .
  • FIG. 5 is a graph showing the frequency (horizontal axis) and reading distance (vertical axis) of the radio wave of the dual RF tag antenna 1, and the position of the secondary waveguide element 30 is switched between the first position P1 and the second position P2. It can be seen that it corresponds to two types of frequency bands, the low frequency side (around 860MHz) and the high frequency side (around 920MHz).
  • an adhesive layer is provided on the back surface side of the sub-waveguide element 30 and the sub-waveguide element 30 is placed in the first position.
  • the IC chip 70 is the surface of the insulating base material 10 and is provided between the main waveguide element 20 and the feeding portion 50.
  • the IC chip 70 may be arranged on the side surface of the insulating base material 10 as long as it functions as a plate-shaped inverted-F antenna.
  • the IC chip 70 operates based on the radio waves received by the RF tag antenna. Specifically, the IC chip 70 rectifies a part of the carrier wave transmitted from the reader to generate the power supply voltage required for operation. Then, the IC chip 70 operates a non-volatile memory in which the logic circuit for control in the IC chip 70 and the unique information of the product are stored by the generated power supply voltage, and sends / receives data to / from the reader. Operate the communication circuit, etc.
  • the resonance circuit 100 is configured so as to resonate in the frequency band of the radio wave received by the plate-shaped inverted F antenna.
  • the resonance circuit 100 is composed of an inductor pattern 101, a capacitor 102, and an IC chip 70 as shown in the equivalent circuit diagram of FIG.
  • the inductor pattern 101 is composed of a main waveguide element 20, a sub-waveguide element 30, a short-circuit portion 60, a main plate 40, and a feeding portion 50.
  • the capacitor 102 is composed of a main waveguide element 20, a sub-waveguide element 30, a main plate 40, and an insulating base material 10.
  • FIG. 6 (a) shows the case where the sub-waveguide element 30 is located at the first position P1, and FIG.
  • the plate-shaped inverted-F antenna can receive radio waves in two frequency bands with high sensitivity.
  • Some IC chips 70 include capacitors inside, and IC chips 70 generally have stray capacitance. Therefore, when setting the resonance frequency of the resonance circuit 100, it is preferable to consider the equivalent capacitance inside the IC chip 70.
  • the resonant circuit 100 preferably has a resonant frequency set in consideration of the inductance of the inductor pattern 101, the capacitance of the capacitor 102, and the equivalent capacitance inside the IC chip 70.
  • the inductor pattern 101, the capacitor 102, and the IC chip 70 are connected in parallel to each other.
  • the inductor pattern 101, the capacitor 102, and the IC chip 70 constitute a resonance circuit 100 that resonates in the frequency band of the radio wave transmitted from the reader.
  • the resonance frequency f [Hz] of this resonance circuit 100 is given by Eq. (1).
  • the value of the resonance frequency f is set to be included in the frequency band of the radio wave transmitted from the reader.
  • La the inductance of the inductor pattern 101
  • Ca the capacitance of the capacitor 102
  • Cb the equivalent capacitance inside the IC chip 70.
  • the capacitance value published as one of the specification specifications of the IC chip 70 to be used can be used.
  • the resonance frequency of the resonance circuit 100 can be set accurately in the frequency band of the radio wave.
  • the reading performance of the dual RF tag 2 can be improved.
  • the power supply voltage generated by the IC chip 70 can be increased.
  • the dual RF tag 2 installed on the conductor 200 will be described with reference to FIG. 7.
  • the dual RF tag 2 is installed so that the main plate 40 is in contact with the conductor 200.
  • the main plate 40 is in contact with the conductor 200 is not only when the main plate 40 is in direct contact with the conductor 200, but also in a state where the main plate 40 is considered to be electrically connected to the conductor 200. If so, some substance may be sandwiched between the main plate 40 and the conductor 200.
  • conductor 200 is a "general term for substances having a relatively large electrical conductivity" as in the general dictionary meaning, and a metal is a typical example.
  • the "conductor 200" is not limited to metal, and may be, for example, a human body, grass, wood, water, the ground, or the like. Since the antenna 1 for the dual RF tag is a plate-shaped inverted F antenna, the main plate 40 is electrically connected in contact with the conductor 200, so that the main plate 40 and the conductor 200 are one waveguide element having a large opening area. The radio wave is received together with the main waveguide element 20 and the sub-waveguide element 30. Further, the dual RF tag 2 can be operated even when the radio wave is irradiated to the surface where the dual RF tag 2 is not installed (the surface where the dual RF tag 2 cannot be seen).
  • the dual RF tag 2 receives and operates.
  • the dual RF tag antenna 1 can also be housed inside the case 110.
  • the inside of the case 110 is composed of two upper and lower stages of a first storage unit 111 that stores the sub-waveguide element 30 of the dual RF tag antenna 1 and a second storage unit 112 that stores other than the sub-waveguide element 30. ing.
  • the sub-waveguide element 30 is movable inside the first storage unit 111 to the first position P1 and the second position P2. The user switches the sub-waveguide element 30 between the first position P1 and the second position P2 by holding the knob 31 protruding from the slit 113 on the surface of the case 110.
  • the sub-waveguide element 30 and the main waveguide element 20 are capacitively coupled via the case 110 (dielectric).
  • the material of the case 110 include non-conductive materials such as non-conductive ABS resin, PPS resin, and fiber reinforced plastic.
  • the sub-waveguide element 30, the case 110, and the main waveguide element 20 constitute a small-capacity sub-capacitor 103.
  • the capacitance coupling effect is obtained by the sub-capacitor 103 and the capacitor 102 composed of the main waveguide element 20, the main plate 40, and the insulating base material 10. Therefore, by changing the position of the sub-waveguide element 30 to the first position P1 in FIG. 8 (a) or the second position P2 in FIG.
  • the capacitance of the sub-capacitor 103 can also be adjusted by, for example, the shape and area of the sub-waveguide element 30, and the dielectric constant and thickness of the case 110. By using the case 110, the waterproofness and dustproofness of the dual RF tag 2 can be improved.
  • the present invention is a dual RF tag antenna and a dual RF tag that have a long communication distance and operate in two types of frequency bands, and have industrial applicability.

Abstract

Provided are a dual RF tag antenna and a dual RF tag that have a long communication range and that operate in two types of frequency bands. A dual RF tag antenna 1 of the present invention is provided with an insulating base material 10, a main waveguide element 20 provided on one face of the insulating base material, an auxiliary waveguide element 30 disposed such that at least a portion thereof faces the surface of the main waveguide element, a ground plate 40 provided on another face of the insulating base material, a feed unit 50, and a short circuiting unit 60, which all together constitute a planar inverted F antenna. The area of the portion where the auxiliary waveguide element and the main waveguide element face one another changes as a result of the the position of the auxiliary waveguide element being changed. As a result, the wavelength λ of radio waves can be switched between a low-frequency side and a high-frequency side, and radio waves in two types of frequency bands can be received at high sensitivity.

Description

デュアルRFタグ用アンテナ及びデュアルRFタグDual RF tag antenna and dual RF tag
 本発明は、通信距離が長く、2種類の周波数帯域で動作するデュアルRFタグ用アンテナ及びデュアルRFタグに関する。 The present invention relates to a dual RF tag antenna and a dual RF tag that have a long communication distance and operate in two types of frequency bands.
 RFID(Radio Frequency Identification)システムで使用するRFIDタグにはアンテナ及びRFチップが格納されており、リーダ・ライタのアンテナから送信された搬送波をアンテナで受信し、RFチップに記録されている識別データ等を反射波に乗せてリーダ・ライタへ返送することにより、非接触で交信する仕組みになっている。
 特許文献1のデュアルRFタグは、表面にローバンド放射エレメント部、ハイバンド放射エレメント部、インダクタパターン部、バランスコイル部及びICチップを備えており、裏面にグランドエレメント部を備えており、表面と裏面の間に絶縁基材を備えており、グランドエレメント部とバランスコイル部を電気的に導通させている。
 そして、バランスコイル部の一次側コイルの一方の端部にローバンド放射エレメント部、他方の端部にハイバンド放射エレメント部を接続し、一次側コイルの中間点にグランドエレメントを接続している。一次側コイルの中間点にグランドエレメントを接続していることから、一次側コイルの一方の端部から中間点までが第1コイル、一次側コイルの他方の端部から中間点までが第2コイルとなる二つのコイル構成となる。ローバンド放射エレメント部が低周波数用、ハイバンド放射エレメント部が高周波数用のアンテナとして機能することで、ローバンドとハイバンドをスイッチ機構で切り替えることなく、2種類の周波数帯域で動作する。
The RFID tag used in the RFID (Radio Frequency Identification) system contains an antenna and an RF chip, and the carrier received from the antenna of the reader / writer is received by the antenna, and the identification data recorded on the RF chip, etc. Is sent back to the reader / writer on the reflected wave, so that it can communicate in a non-contact manner.
The dual RF tag of Patent Document 1 is provided with a low band radiation element part, a high band radiation element part, an inductor pattern part, a balance coil part and an IC chip on the front surface, and has a ground element part on the back surface, and is provided with a front surface and a back surface. An insulating base material is provided between the two, and the ground element portion and the balance coil portion are electrically conducted.
A low-band radiating element is connected to one end of the primary coil of the balance coil, a high-band radiating element is connected to the other end, and a ground element is connected to the midpoint of the primary coil. Since the ground element is connected to the midpoint of the primary coil, the first coil is from one end of the primary coil to the midpoint, and the second coil is from the other end to the midpoint of the primary coil. There are two coil configurations. Since the low-band radiating element section functions as an antenna for low frequency and the high-band radiating element section functions as an antenna for high frequency, it operates in two types of frequency bands without switching between low band and high band by a switch mechanism.
国際公開第2019/039447号公報International Publication No. 2019/039447
 上記特許文献1の技術は一次側コイルとして第1コイル及び第2コイルの二つのコイル構成にしているが、仮に一時側コイルとして一方の端部から他方の端部までを一つのコイル構成にする場合と比較すると、特許文献1の構成の場合はバランスコイルの二次側コイルとの送受信電力が1/2になってしまう。このように、ローバンドとハイバンドとを切り替えるためのスイッチ機構を備えずに2種類の周波数帯域で動作させる場合には送受信電力が1/2に減少してしまい、通信距離が短くなるという問題がある。 The technique of Patent Document 1 has a two-coil configuration of a first coil and a second coil as the primary side coil, but tentatively, one end to the other end of the temporary side coil is configured as one coil. Compared with the case, in the case of the configuration of Patent Document 1, the transmission / reception power of the balance coil with the secondary coil is halved. In this way, when operating in two types of frequency bands without a switch mechanism for switching between low band and high band, the transmission / reception power is reduced to 1/2, and the communication distance is shortened. be.
 本発明はこのような問題を考慮して、通信距離が長く、2種類の周波数帯域で動作するデュアルRFタグ用アンテナ及びデュアルRFタグを提供することを目的とする。 In consideration of such a problem, it is an object of the present invention to provide a dual RF tag antenna and a dual RF tag that have a long communication distance and operate in two types of frequency bands.
 本発明のデュアルRFタグ用アンテナは、絶縁基材と、前記絶縁基材の一方の面に設けられる主導波素子と、前記主導波素子の表面に少なくともその一部が対向して配置される副導波素子と、前記絶縁基材の他方の面に設けられる地板と、前記地板に電気的に接続される給電部と、
 前記主導波素子に一端が電気的に接続され、前記地板に他端が電気的に接続される短絡部とを備えており、前記絶縁基材、前記主導波素子、前記副導波素子、前記地板、前記給電部及び前記短絡部により板状逆Fアンテナが構成され、前記副導波素子の位置を変更して、前記副導波素子と前記主導波素子が対向する部分の面積を変更することにより、電波の波長λを低周波数側と高周波数側に切り替えることを特徴とする。
 また、前記副導波素子と前記主導波素子が対向する部分において前記副導波素子と前記主導波素子とが容量結合することを特徴とする。
 また、前記副導波素子と前記主導波素子が対向する部分において前記副導波素子と前記主導波素子とが接触により電気的に結合することを特徴とする。
 また、前記主導波素子と前記副導波素子とで構成される導波部の側辺の長さの合計がλ/4、λ/2、3λ/4、5λ/8(λ:前記電波の波長)のいずれかに等しいことを特徴とする。
 また、前記絶縁基材、前記主導波素子、前記副導波素子、前記地板、前記給電部及び前記短絡部がケース内に配置されており、前記副導波素子の一部が前記ケース外に露出しており、当該露出した部分を操作して前記副導波素子の位置を変更するものであることを特徴とする。
The dual RF tag antenna of the present invention has an insulating base material, a main waveguide element provided on one surface of the insulating base material, and a sub-device in which at least a part thereof faces each other on the surface of the main waveguide element. A waveguide element, a main plate provided on the other surface of the insulating base material, and a feeding portion electrically connected to the main plate.
It is provided with a short-circuit portion in which one end is electrically connected to the main waveguide element and the other end is electrically connected to the main plate, and the insulating base material, the main waveguide element, the sub-wavelength element, and the above. A plate-shaped inverted F antenna is configured by the main plate, the feeding portion, and the short-circuit portion, and the position of the sub-wavelength element is changed to change the area of the portion where the sub-wavelength element and the main waveguide element face each other. This is characterized by switching the wavelength λ of the radio wave between the low frequency side and the high frequency side.
Further, the sub-waveguide element and the main waveguide element are capacitively coupled at a portion where the sub-waveguide element and the main waveguide element face each other.
Further, it is characterized in that the sub-waveguide element and the main waveguide element are electrically coupled by contact at a portion where the sub-waveguide element and the main waveguide element face each other.
Further, the total length of the side sides of the waveguide composed of the main waveguide element and the sub-waveguide element is λ / 4, λ / 2, 3λ / 4, 5λ / 8 (λ: of the radio wave). It is characterized by being equal to any of (wavelength).
Further, the insulating base material, the main waveguide element, the sub-waveguide element, the main plate, the feeding portion and the short-circuit portion are arranged inside the case, and a part of the sub-waveguide element is outside the case. It is exposed, and the exposed portion is operated to change the position of the sub-waveguide element.
 本発明のデュアルRFは、上記デュアルRFタグ用アンテナと、前記電波に基づいて動作するICチップと、前記主導波素子、前記副導波素子、前記短絡部、前記地板及び前記給電部により構成されるインダクタパターン部と、前記主導波素子、前記副導波素子、前記絶縁基材及び前記地板により構成されるコンデンサ部と、前記インダクタパターン部及び前記コンデンサ部により前記電波の周波数帯域で共振する共振回路とを備えることを特徴とする。 The dual RF of the present invention is composed of the dual RF tag antenna, an IC chip that operates based on the radio wave, the main waveguide element, the sub-wiride element, the short circuit portion, the main plate, and the feeding portion. Resonance in the frequency band of the radio wave by the inductor pattern section, the capacitor section composed of the main waveguide element, the sub-widging element, the insulating base material, and the main plate, and the inductor pattern section and the capacitor section. It is characterized by having a circuit.
 本発明のデュアルRFタグ用アンテナ及びデュアルRFタグは、絶縁基材、主導波素子、副導波素子、地板、給電部及び短絡部により板状逆Fアンテナが構成される。さらに、主導波素子の表面、副導波素子、短絡部、地板及び給電部により構成されるインダクタパターンと、主導波素子、副導波素子、地板及び絶縁基材により構成されるコンデンサとにより共振回路が構成される。これにより、読取装置から送信された電波を高感度で受信できる。
 また、副導波素子の位置を変更して、副導波素子と主導波素子が対向する部分の面積を変更することで電波の波長λを低周波数側と高周波数側に切り替えるといういわゆるスイッチ機構を備えることにより通信距離を長くすることができる。
In the dual RF tag antenna and the dual RF tag of the present invention, a plate-shaped inverted F antenna is composed of an insulating base material, a main waveguide element, a sub-guided element, a main plate, a feeding portion, and a short-circuit portion. Further, the inductor pattern composed of the surface of the main waveguide element, the sub-wividing element, the short-circuit portion, the main plate and the feeding portion, and the capacitor composed of the main waveguide element, the sub waveguide element, the main plate and the insulating base material resonate with each other. The circuit is configured. As a result, the radio waves transmitted from the reader can be received with high sensitivity.
In addition, a so-called switch mechanism that switches the wavelength λ of the radio wave between the low frequency side and the high frequency side by changing the position of the sub-waveguide element and changing the area of the portion where the sub-waveguide element and the main waveguide element face each other. The communication distance can be lengthened by providing the above.
デュアルRFタグ用アンテナ及びデュアルRFタグの表面側の斜視図(a)、裏面側の斜視図(b)及び副導波素子を備えた状態のシートの展開図(c)Front side perspective view (a), back side perspective view (b) of dual RF tag antenna and dual RF tag, and development view of sheet with sub-waveguide element (c) 副導波素子が第1ポジションに位置する状態のデュアルRFタグ用アンテナ及びデュアルRFタグの斜視図(a)及び(b)Perspective views (a) and (b) of the dual RF tag antenna and the dual RF tag with the sub-waveguide element located in the first position. 副導波素子が第2ポジションに位置する状態のデュアルRFタグ用アンテナ及びデュアルRFタグの斜視図(a)及び(b)Perspective views (a) and (b) of the dual RF tag antenna and the dual RF tag with the sub-waveguide element located in the second position. デュアルRFタグ用アンテナ及びデュアルRFタグの表面側の斜視図Front side perspective view of antenna for dual RF tag and dual RF tag デュアルRFタグ用アンテナの電波の周波数と読取距離を示すグラフGraph showing the frequency and reading distance of the radio wave of the antenna for dual RF tags デュアルRFタグの等価回路図であり、副導波素子が第1ポジションにある状態(a)、第2ポジションにある状態(b)It is an equivalent circuit diagram of the dual RF tag, and the sub-waveguide element is in the first position (a) and the second position (b). デュアルRFタグを導体に設置した状態を示す斜視図Perspective view showing the state where the dual RF tag is installed on the conductor. ケースに入れた状態のデュアルRFタグであり副導波素子が第1ポジションにある状態の斜視図(a)及び縦断面図(b)、副導波素子が第2ポジションにある状態の斜視図(c)及び縦断面図(d)A perspective view (a) and a vertical cross-sectional view (b) of a dual RF tag in a case with the sub-waveguide element in the first position, and a perspective view of the sub-waveguide element in the second position. (c) and vertical cross-sectional view (d) ケースに入れた状態のデュアルRFタグであり副導波素子が第1ポジションにある状態の縦断面図(a)及び等価回路図(b)、副導波素子が第2ポジションにある状態の縦断面図(c)及び等価回路図(d)A vertical cross-sectional view (a) and an equivalent circuit diagram (b) of a dual RF tag in a case with the sub-waveguide element in the first position, and a longitudinal section of the sub-waveguide element in the second position. Top view (c) and equivalent circuit diagram (d)
 本発明のデュアルRFタグ用アンテナ1及びデュアルRFタグ2の実施の形態について図面を用いて説明する。
 図1に示すようにデュアルRFタグ用アンテナ1は絶縁基材10、主導波素子20、副導波素子30、地板40、給電部50及び短絡部60を備えている。デュアルRFタグ2はRFタグ用アンテナ1にICチップ70を取り付けて構成される。
An embodiment of the dual RF tag antenna 1 and the dual RF tag 2 of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the dual RF tag antenna 1 includes an insulating base material 10, a main waveguide element 20, a sub-waveguide element 30, a main plate 40, a feeding section 50, and a short-circuit section 60. The dual RF tag 2 is configured by attaching the IC chip 70 to the RF tag antenna 1.
 絶縁基材10は、表面(一方の面)、裏面(他方の面)及び側面を有する。絶縁基材10の形状は例えば略直方体であるが、これに限らず例えば円盤状や円弧状に湾曲したものであってもよい。絶縁基材10はデュアルRFタグ2が取り付けられる被取付物の表面形状に応じた形状を有するのが好ましい。例えば被取付物が円筒形状であってその湾曲面にデュアルRFタグ2を取り付ける場合には、デュアルRFタグ2の形状を湾曲面の曲率に合わせるのが好ましい。絶縁基材10としては発泡スチロール、ポリエチレン、ポリイミド等を用いればよい。
 また、絶縁基材10としてセラミック、紙、樹脂等の誘電体を用いてもよい。誘電体を用いる場合、後述するコンデンサ102の静電容量が大きくなるため、主導波素子20の開口面積を小さくしてデュアルRFタグ2を小型化することができる。ただし、デュアルRFタグ用アンテナ1の利得が小さくなるため、読取装置との間で通信可能な距離が短くなる。
The insulating substrate 10 has a front surface (one surface), a back surface (the other surface), and a side surface. The shape of the insulating base material 10 is, for example, a substantially rectangular parallelepiped, but the shape is not limited to this, and may be, for example, curved in a disk shape or an arc shape. The insulating base material 10 preferably has a shape corresponding to the surface shape of the object to be attached to which the dual RF tag 2 is attached. For example, when the object to be attached has a cylindrical shape and the dual RF tag 2 is attached to the curved surface, it is preferable to match the shape of the dual RF tag 2 with the curvature of the curved surface. As the insulating base material 10, expanded polystyrene, polyethylene, polyimide, or the like may be used.
Further, a dielectric such as ceramic, paper, or resin may be used as the insulating base material 10. When a dielectric is used, the capacitance of the capacitor 102, which will be described later, becomes large, so that the opening area of the main waveguide element 20 can be reduced to reduce the size of the dual RF tag 2. However, since the gain of the antenna 1 for the dual RF tag becomes small, the distance that can be communicated with the reader becomes short.
 主導波素子20は絶縁基材10の表面に設けられる。本実施の形態の主導波素子20は長方形状であり、アルミ等の金属薄膜のエッチングやパターン印刷等の周知の手法によって形成される。
 副導波素子30は、主導波素子20の表面に少なくともその一部が対向して配置される。副導波素子30と主導波素子20とは両者が接触することにより電気的に結合するか、又は両者の間に配置した誘電体を介して容量結合する。これにより副導波素子30は主導波素子20と一体となって導波部80として機能する。図1~図4の構成では副導波素子30と主導波素子20が接触することにより電気的に結合している。
 副導波素子30は主導波素子20に対してその位置を第1ポジションP1(図2)と第2ポジションP2(図3)に変更可能な構成になっている。詳しい説明は後述するが、第1ポジションP1又は第2ポジションP2に副導波素子30の位置を変更し、副導波素子30と主導波素子20が対向する部分A(図中の斜線部分)の面積を変えることによりデュアルRFタグ用アンテナ1で受信する電波の波長λを低周波数側と高周波数側に切り替えることができる。
The main waveguide element 20 is provided on the surface of the insulating base material 10. The main waveguide element 20 of the present embodiment has a rectangular shape, and is formed by a well-known method such as etching of a metal thin film such as aluminum or pattern printing.
At least a part of the sub-waveguide element 30 is arranged to face the surface of the main waveguide element 20. The sub-waveguide element 30 and the main waveguide element 20 are electrically coupled by contact with each other, or are capacitively coupled via a dielectric arranged between them. As a result, the sub-waveguide element 30 functions as the waveguide 80 together with the main waveguide element 20. In the configurations of FIGS. 1 to 4, the sub-waveguide element 30 and the main waveguide element 20 are electrically coupled by contact with each other.
The position of the sub-waveguide element 30 with respect to the main waveguide element 20 can be changed to the first position P1 (FIG. 2) and the second position P2 (FIG. 3). A detailed explanation will be given later, but the position of the sub-wavelength element 30 is changed to the first position P1 or the second position P2, and the part A where the sub-wavelength element 30 and the main waveguide element 20 face each other (hatched portion in the figure). By changing the area of, the wavelength λ of the radio wave received by the dual RF tag antenna 1 can be switched between the low frequency side and the high frequency side.
 地板40は絶縁基材10の裏面に設けられる。本実施の形態の地板40は長方形状であり、主導波素子20と同様にアルミ等の金属薄膜のエッチングやパターン印刷等の周知の手法によって形成される。
 給電部50は絶縁基材10の側面に設けられ、その一端が地板40に電気的に接続される。
 短絡部60は絶縁基材10の側面に設けられ、その一端が主導波素子20に電気的に接続され、他端が地板40に電気的に接続される。
 主導波素子20、地板40、給電部50及び短絡部60を一体成形してもよく、或いは主導波素子20と地板40を別体に成形した後、給電部50と短絡部60を接合してもよい。
The main plate 40 is provided on the back surface of the insulating base material 10. The main plate 40 of the present embodiment has a rectangular shape, and is formed by a well-known method such as etching of a metal thin film such as aluminum or pattern printing like the main waveguide element 20.
The feeding portion 50 is provided on the side surface of the insulating base material 10, and one end thereof is electrically connected to the main plate 40.
The short-circuit portion 60 is provided on the side surface of the insulating base material 10, one end thereof is electrically connected to the main waveguide element 20, and the other end is electrically connected to the main plate 40.
The main waveguide element 20, the main plate 40, the feeding portion 50, and the short-circuiting portion 60 may be integrally molded, or the main waveguide element 20 and the main plate 40 may be molded separately, and then the feeding portion 50 and the short-circuiting portion 60 are joined. May be good.
 主導波素子20、地板40、給電部50及び短絡部60は可撓性及び絶縁性を有するシート90の上に形成されている。シート90を絶縁基材10の辺の部分で折り曲げて絶縁基材10に貼り付けている。シート90の材料としては可撓性及び絶縁性を備えていれば特に限定されないが、例えばPET、ポリイミド、ビニールなどを用いればよい。シート90の厚さは特に限定されるものではないが一般的には数十μm程度である。なお、必ずしも主導波素子20、地板40、給電部50及び短絡部60をシート90上に形成する必要はない。
 絶縁基材10、主導波素子20、副導波素子30、地板40、給電部50及び短絡部60により板状逆Fアンテナが構成される。この板状逆Fアンテナは読取装置から送信された電波を、主導波素子20と副導波素子30が一体となった導波部80で受信する。
The main waveguide element 20, the main plate 40, the feeding portion 50, and the short-circuiting portion 60 are formed on a flexible and insulating sheet 90. The sheet 90 is bent at the side portion of the insulating base material 10 and attached to the insulating base material 10. The material of the sheet 90 is not particularly limited as long as it has flexibility and insulation, but for example, PET, polyimide, vinyl or the like may be used. The thickness of the sheet 90 is not particularly limited, but is generally about several tens of μm. It is not always necessary to form the main waveguide element 20, the main plate 40, the feeding portion 50, and the short-circuit portion 60 on the sheet 90.
A plate-shaped inverted-F antenna is composed of an insulating base material 10, a main waveguide element 20, a sub-waveguide element 30, a main plate 40, a feeding portion 50, and a short-circuit portion 60. This plate-shaped inverted-F antenna receives the radio wave transmitted from the reader by the waveguide 80 in which the main waveguide element 20 and the sub-guided element 30 are integrated.
 図4に示すように導波部80は平面視した場合にその側辺81~86の長さの合計L1がλ/4、λ/2、3λ/4、5λ/8のいずれかになるように設計されている。
 具体的には、図2に示すように副導波素子30と主導波素子20が対向する部分Aの面積が小さくなるように副導波素子30を第1ポジションP1に移動させた際に、導波部80の側辺の長さの合計L1がλP1/4、λP1/2、3λP1/4、5λP1/8のいずれかになるように設計されている。この場合の波長λP1としてUHF帯のRFID周波数の低周波数側(860MHz付近)を使用するのが好ましい。
As shown in FIG. 4, when the waveguide 80 is viewed in a plan view, the total length L1 of the side sides 81 to 86 is λ / 4, λ / 2, 3λ / 4, or 5λ / 8. Designed for.
Specifically, when the sub-waveguide element 30 is moved to the first position P1 so that the area of the portion A where the sub-waveguide element 30 and the main waveguide element 20 face each other becomes smaller as shown in FIG. The total length of the side sides of the waveguide 80 is designed to be λ P1 / 4, λ P1 / 2, 3λ P1 / 4, or 5λ P1 / 8. In this case, it is preferable to use the low frequency side (near 860 MHz) of the RFID frequency in the UHF band as the wavelength λ P1 .
 一方、図3に示すように副導波素子30と主導波素子20が対向する部分Aの面積が大きくなるように副導波素子30を第2ポジションP2に移動させた際に、導波部80の側辺81~86の長さの合計L2がλP2/4、λP2/2、3λP2/4、5λP2/8のいずれかになるように設計されている。この場合の波長λP2としてUHF帯のRFID周波数の高周波数側(920MHz付近)を使用するのが好ましい。
 図5はデュアルRFタグ用アンテナ1の電波の周波数(横軸)と読取距離(縦軸)を示すグラフであり、副導波素子30の位置を第1ポジションP1と第2ポジションP2に切り替えることで低周波数側(860MHz付近)と高周波数側(920MHz付近)の2種類の周波数帯域に対応しているのが分かる。
 なお、副導波素子30の位置を第1ポジションP1又は第2ポジションP2に切り替えるのではなく、副導波素子30の裏面側に粘着層を設けておき、副導波素子30を第1ポジションP1に貼り付けるか又は第2ポジションP2に貼り付けるかによって副導波素子30の位置を変更することで副導波素子30と主導波素子20が対向する部分Aの面積を変更することにしてもよい。
On the other hand, as shown in FIG. 3, when the sub-waveguide element 30 is moved to the second position P2 so that the area of the portion A where the sub-waveguide element 30 and the main waveguide element 20 face each other becomes large, the waveguide portion It is designed so that the total length L2 of the sides 81 to 86 of 80 is λ P2 / 4, λ P2 / 2, 3λ P2 / 4, or 5λ P2 / 8. In this case, it is preferable to use the high frequency side (near 920 MHz) of the RFID frequency in the UHF band as the wavelength λ P2 .
FIG. 5 is a graph showing the frequency (horizontal axis) and reading distance (vertical axis) of the radio wave of the dual RF tag antenna 1, and the position of the secondary waveguide element 30 is switched between the first position P1 and the second position P2. It can be seen that it corresponds to two types of frequency bands, the low frequency side (around 860MHz) and the high frequency side (around 920MHz).
Instead of switching the position of the sub-waveguide element 30 to the first position P1 or the second position P2, an adhesive layer is provided on the back surface side of the sub-waveguide element 30 and the sub-waveguide element 30 is placed in the first position. By changing the position of the sub-waveguide element 30 depending on whether it is pasted on P1 or the second position P2, the area of the portion A where the sub-waveguide element 30 and the main waveguide element 20 face each other is changed. May be good.
 図1に示すようにICチップ70は絶縁基材10の表面であって、主導波素子20と給電部50の間に設けられている。なお、板状逆Fアンテナとして機能する範囲内であればICチップ70を絶縁基材10の側面に配置してもよい。
 ICチップ70はRFタグ用アンテナが受信した電波に基づいて動作する。具体的にはICチップ70は読取装置から送信される搬送波の一部を整流し、動作に必要な電源電圧を生成する。そしてICチップ70は生成した電源電圧によって、ICチップ70内の制御用の論理回路や商品の固有情報等が格納された不揮発性メモリを動作させ、読取装置との間でデータの送受信を行うための通信回路等を動作させる。
As shown in FIG. 1, the IC chip 70 is the surface of the insulating base material 10 and is provided between the main waveguide element 20 and the feeding portion 50. The IC chip 70 may be arranged on the side surface of the insulating base material 10 as long as it functions as a plate-shaped inverted-F antenna.
The IC chip 70 operates based on the radio waves received by the RF tag antenna. Specifically, the IC chip 70 rectifies a part of the carrier wave transmitted from the reader to generate the power supply voltage required for operation. Then, the IC chip 70 operates a non-volatile memory in which the logic circuit for control in the IC chip 70 and the unique information of the product are stored by the generated power supply voltage, and sends / receives data to / from the reader. Operate the communication circuit, etc.
 デュアルRFタグ用アンテナ1では板状逆Fアンテナで受信する電波の周波数帯域で共振するように共振回路100を構成する。この共振回路100は図6の等価回路図に示すようにインダクタパターン101、コンデンサ102及びICチップ70により構成される。インダクタパターン101は主導波素子20、副導波素子30、短絡部60、地板40及び給電部50で構成される。コンデンサ102は主導波素子20、副導波素子30、地板40及び絶縁基材10により構成される。図6(a)は副導波素子30が第1ポジションP1に位置する場合、図6(b)は副導波素子30が第2ポジションP2に位置する場合を示している。この共振回路100によって2種類の周波数帯域の電波を板状逆Fアンテナが高感度で受信できる。
 ICチップ70はその内部にコンデンサを含むものがあり、また、一般的にICチップ70は浮遊容量を有する。このため共振回路100の共振周波数を設定する際、ICチップ70内部の等価容量を考慮することが好ましい。換言すれば、共振回路100はインダクタパターン101のインダクタンス、コンデンサ102の静電容量及びICチップ70内部の等価容量を考慮して設定された共振周波数を有することが好ましい。
In the dual RF tag antenna 1, the resonance circuit 100 is configured so as to resonate in the frequency band of the radio wave received by the plate-shaped inverted F antenna. The resonance circuit 100 is composed of an inductor pattern 101, a capacitor 102, and an IC chip 70 as shown in the equivalent circuit diagram of FIG. The inductor pattern 101 is composed of a main waveguide element 20, a sub-waveguide element 30, a short-circuit portion 60, a main plate 40, and a feeding portion 50. The capacitor 102 is composed of a main waveguide element 20, a sub-waveguide element 30, a main plate 40, and an insulating base material 10. FIG. 6 (a) shows the case where the sub-waveguide element 30 is located at the first position P1, and FIG. 6 (b) shows the case where the sub-waveguide element 30 is located at the second position P2. With this resonance circuit 100, the plate-shaped inverted-F antenna can receive radio waves in two frequency bands with high sensitivity.
Some IC chips 70 include capacitors inside, and IC chips 70 generally have stray capacitance. Therefore, when setting the resonance frequency of the resonance circuit 100, it is preferable to consider the equivalent capacitance inside the IC chip 70. In other words, the resonant circuit 100 preferably has a resonant frequency set in consideration of the inductance of the inductor pattern 101, the capacitance of the capacitor 102, and the equivalent capacitance inside the IC chip 70.
 デュアルRFタグ2の等価回路ではインダクタパターン101と、コンデンサ102と、ICチップ70とは互いに並列接続されている。インダクタパターン101、コンデンサ102及びICチップ70が読取装置から送信される電波の周波数帯域で共振する共振回路100を構成する。この共振回路100の共振周波数f[Hz]は、式(1)により与えられる。共振周波数fの値は、読取装置から送信される電波の周波数帯域に含まれるように設定される。
Figure JPOXMLDOC01-appb-M000001
 ここで、La: インダクタパターン101のインダクタンス、Ca: コンデンサ102の静電容量、Cb:ICチップ70内部の等価容量である。なお、Cbとしては例えば使用するICチップ70の仕様諸元の一つとして公表されている静電容量値を用いることができる。
 このようにICチップ70内部の等価容量を考慮することで、共振回路100の共振周波数を電波の周波数帯域に精度良く設定することができる。その結果、デュアルRFタグ2の読み取り性能を向上させることができる。また、ICチップ70が生成する電源電圧を高くすることができる。
In the equivalent circuit of the dual RF tag 2, the inductor pattern 101, the capacitor 102, and the IC chip 70 are connected in parallel to each other. The inductor pattern 101, the capacitor 102, and the IC chip 70 constitute a resonance circuit 100 that resonates in the frequency band of the radio wave transmitted from the reader. The resonance frequency f [Hz] of this resonance circuit 100 is given by Eq. (1). The value of the resonance frequency f is set to be included in the frequency band of the radio wave transmitted from the reader.
Figure JPOXMLDOC01-appb-M000001
Here, La: the inductance of the inductor pattern 101, Ca: the capacitance of the capacitor 102, and Cb: the equivalent capacitance inside the IC chip 70. As Cb, for example, the capacitance value published as one of the specification specifications of the IC chip 70 to be used can be used.
By considering the equivalent capacitance inside the IC chip 70 in this way, the resonance frequency of the resonance circuit 100 can be set accurately in the frequency band of the radio wave. As a result, the reading performance of the dual RF tag 2 can be improved. In addition, the power supply voltage generated by the IC chip 70 can be increased.
 図7を参照して導体200に設置したデュアルRFタグ2について説明する。
 デュアルRFタグ2は地板40が導体200に接触するように設置される。なお、本願において「地板40が導体200に接触する」とは、地板40が導体200に直接接触する場合のみならず、地板40が導体200に電気的に接続していると見做せる状態であれば、何らかの物質が地板40と導体200の間に挟まれていてもよい。本願において「導体200」とは、一般的な辞書的意味と同様に「電気の伝導率が比較的大きな物質の総称」であり、金属が典型的な例である。ただし、「導体200」は金属に限定されるものではなく、例えば人体、草、木、水、地面などであってもよい。
 デュアルRFタグ用アンテナ1は板状逆Fアンテナであるため、地板40が導体200に接触して電気的に接続されることで、地板40と導体200は大きな開口面積を有する一つの導波素子として主導波素子20及び副導波素子30と共に電波を受信する。
 また、デュアルRFタグ2を設置していない面(デュアルRFタグ2が見えない面)に電波を照射した場合でも、デュアルRFタグ2を動作させることができる。更に、デュアルRFタグ2をゴム等の非導体(絶縁体)上に設置して、デュアルRFタグ2を設置していない面に対して電波を照射した場合でも、絶縁体を透過した電波をデュアルRFタグ2が受信して動作する。
The dual RF tag 2 installed on the conductor 200 will be described with reference to FIG. 7.
The dual RF tag 2 is installed so that the main plate 40 is in contact with the conductor 200. In the present application, "the main plate 40 is in contact with the conductor 200" is not only when the main plate 40 is in direct contact with the conductor 200, but also in a state where the main plate 40 is considered to be electrically connected to the conductor 200. If so, some substance may be sandwiched between the main plate 40 and the conductor 200. In the present application, "conductor 200" is a "general term for substances having a relatively large electrical conductivity" as in the general dictionary meaning, and a metal is a typical example. However, the "conductor 200" is not limited to metal, and may be, for example, a human body, grass, wood, water, the ground, or the like.
Since the antenna 1 for the dual RF tag is a plate-shaped inverted F antenna, the main plate 40 is electrically connected in contact with the conductor 200, so that the main plate 40 and the conductor 200 are one waveguide element having a large opening area. The radio wave is received together with the main waveguide element 20 and the sub-waveguide element 30.
Further, the dual RF tag 2 can be operated even when the radio wave is irradiated to the surface where the dual RF tag 2 is not installed (the surface where the dual RF tag 2 cannot be seen). Furthermore, even if the dual RF tag 2 is installed on a non-conductor (insulator) such as rubber and the radio wave is applied to the surface on which the dual RF tag 2 is not installed, the radio wave transmitted through the insulator is dual. RF tag 2 receives and operates.
 図8に示すようにデュアルRFタグ用アンテナ1をケース110の内部に格納することもできる。ケース110の内部はデュアルRFタグ用アンテナ1のうち副導波素子30を格納する第1格納部111と、副導波素子30以外を格納する第2格納部112の上下2段の構成になっている。副導波素子30は第1格納部111の内部を第1ポジションP1と第2ポジションP2に移動可能になっている。使用者はケース110の表面のスリット113から突出する摘み31を持って副導波素子30を第1ポジションP1と第2ポジションP2に切り替える。図8の構成では副導波素子30と主導波素子20とはケース110(誘電体)を介して容量結合している。ケース110の素材としては非導電性のABS樹脂、PPS樹脂、繊維強化プラスチック等の非導電性の素材が挙げられる。
 この場合、図9の等価回路図に示すように副導波素子30、ケース110及び主導波素子20によって小容量の副コンデンサ103が構成される。この副コンデンサ103と、主導波素子20、地板40及び絶縁基材10により構成されるコンデンサ102によって静電容量結合効果が得られる。よって、副導波素子30の位置を図8(a)の第1ポジションP1又は図8(c)の第2ポジションP2に変更し、副コンデンサ103の静電容量を調節することで、コンデンサ102と副コンデンサ103の合成容量を調節し、デュアルRFタグ用アンテナ1の共振周波数を容易に調節することができる。副コンデンサ103の静電容量は副導波素子30の位置を変更する以外にも例えば副導波素子30の形状や面積、ケース110の誘電率や厚さによって調節することもできる。ケース110を使用することでデュアルRFタグ2の防水性や防塵性を高めることができる。
As shown in FIG. 8, the dual RF tag antenna 1 can also be housed inside the case 110. The inside of the case 110 is composed of two upper and lower stages of a first storage unit 111 that stores the sub-waveguide element 30 of the dual RF tag antenna 1 and a second storage unit 112 that stores other than the sub-waveguide element 30. ing. The sub-waveguide element 30 is movable inside the first storage unit 111 to the first position P1 and the second position P2. The user switches the sub-waveguide element 30 between the first position P1 and the second position P2 by holding the knob 31 protruding from the slit 113 on the surface of the case 110. In the configuration of FIG. 8, the sub-waveguide element 30 and the main waveguide element 20 are capacitively coupled via the case 110 (dielectric). Examples of the material of the case 110 include non-conductive materials such as non-conductive ABS resin, PPS resin, and fiber reinforced plastic.
In this case, as shown in the equivalent circuit diagram of FIG. 9, the sub-waveguide element 30, the case 110, and the main waveguide element 20 constitute a small-capacity sub-capacitor 103. The capacitance coupling effect is obtained by the sub-capacitor 103 and the capacitor 102 composed of the main waveguide element 20, the main plate 40, and the insulating base material 10. Therefore, by changing the position of the sub-waveguide element 30 to the first position P1 in FIG. 8 (a) or the second position P2 in FIG. 8 (c) and adjusting the capacitance of the sub capacitor 103, the capacitor 102 And the combined capacitance of the sub-capacitor 103 can be adjusted to easily adjust the resonance frequency of the dual RF tag antenna 1. In addition to changing the position of the sub-waveguide element 30, the capacitance of the sub-capacitor 103 can also be adjusted by, for example, the shape and area of the sub-waveguide element 30, and the dielectric constant and thickness of the case 110. By using the case 110, the waterproofness and dustproofness of the dual RF tag 2 can be improved.
 本発明は、通信距離が長く、2種類の周波数帯域で動作するデュアルRFタグ用アンテナ及びデュアルRFタグであり、産業上の利用可能性を有する。 The present invention is a dual RF tag antenna and a dual RF tag that have a long communication distance and operate in two types of frequency bands, and have industrial applicability.
A 対向する部分
P1 第1ポジション
P2 第2ポジション
1 デュアルRFタグ用アンテナ
2 デュアルRFタグ
10 絶縁基材
20 主導波素子
30 副導波素子
31 摘み
40 地板
50 給電部
60 短絡部
70 ICチップ
80 導波部
81~86 側辺
90 シート
100 共振回路
101 インダクタパターン
102 コンデンサ
103 副コンデンサ
110 ケース
111 第1格納部
112 第2格納部
113 スリット
200 導体
 
A Opposing part
P1 1st position
P2 2nd position
1 Antenna for dual RF tags
2 Dual RF tag
10 Insulation base material
20 Main waveguide element
30 Sub-waveguide element
31 picking
40 main plate
50 Power supply unit
60 Short circuit
70 IC chip
80 Waveguide
81-86 side
90 sheets
100 resonant circuit
101 inductor pattern
102 Capacitor
103 Secondary capacitor
110 case
111 First storage
112 Second storage
113 slit
200 conductor

Claims (6)

  1.  絶縁基材と、
     前記絶縁基材の一方の面に設けられる主導波素子と、
     前記主導波素子の表面に少なくともその一部が対向して配置される副導波素子と、
     前記絶縁基材の他方の面に設けられる地板と、
     前記地板に電気的に接続される給電部と、
     前記主導波素子に一端が電気的に接続され、前記地板に他端が電気的に接続される短絡部とを備えており、
     前記絶縁基材、前記主導波素子、前記副導波素子、前記地板、前記給電部及び前記短絡部により板状逆Fアンテナが構成され、
     前記副導波素子の位置を変更して、前記副導波素子と前記主導波素子が対向する部分の面積を変更することにより、電波の波長λを低周波数側と高周波数側に切り替えることを特徴とするデュアルRFタグ用アンテナ。
     
    Insulating base material and
    The main waveguide element provided on one surface of the insulating base material and
    A sub-waveguide element, at least a part of which is arranged to face the surface of the main waveguide element, and a sub-waveguide element.
    A main plate provided on the other surface of the insulating base material and
    A power supply unit that is electrically connected to the main plate,
    It is provided with a short-circuit portion in which one end is electrically connected to the main waveguide element and the other end is electrically connected to the main plate.
    A plate-shaped inverted-F antenna is composed of the insulating base material, the main waveguide element, the sub-waveguide element, the main plate, the feeding portion, and the short-circuited portion.
    By changing the position of the sub-wavelength element and changing the area of the portion where the sub-wavelength element and the main waveguide element face each other, the wavelength λ of the radio wave can be switched between the low frequency side and the high frequency side. Features dual RF tag antenna.
  2. 前記副導波素子と前記主導波素子が対向する部分において前記副導波素子と前記主導波素子とが容量結合することを特徴とする請求項1に記載のデュアルRFタグ用アンテナ。
     
    The dual RF tag antenna according to claim 1, wherein the sub-waveguide element and the main waveguide element are capacitively coupled at a portion where the sub-waveguide element and the main waveguide element face each other.
  3. 前記副導波素子と前記主導波素子が対向する部分において前記副導波素子と前記主導波素子とが接触により電気的に結合することを特徴とする請求項1に記載のデュアルRFタグ用アンテナ。
     
    The dual RF tag antenna according to claim 1, wherein the sub-waveguide element and the main waveguide element are electrically coupled by contact at a portion where the sub-waveguide element and the main waveguide element face each other. ..
  4.  前記主導波素子と前記副導波素子とで構成される導波部の側辺の長さの合計がλ/4、λ/2、3λ/4、5λ/8(λ:前記電波の波長)のいずれかに等しいことを特徴とする請求項1~3のいずれか一項に記載のデュアルRFタグ用アンテナ。
     
    The total length of the side sides of the waveguide composed of the main waveguide element and the sub-guided element is λ / 4, λ / 2, 3λ / 4, 5λ / 8 (λ: wavelength of the radio wave). The antenna for a dual RF tag according to any one of claims 1 to 3, wherein the antenna is equal to any one of the above.
  5.  前記絶縁基材、前記主導波素子、前記副導波素子、前記地板、前記給電部及び前記短絡部がケース内に配置されており、前記副導波素子の一部が前記ケース外に露出しており、当該露出した部分を操作して前記副導波素子の位置を変更するものであることを特徴とする請求項1~4のいずれか一項に記載のデュアルRFタグ用アンテナ。
     
    The insulating base material, the main waveguide element, the sub-waveguide element, the main plate, the feeding portion, and the short-circuit portion are arranged inside the case, and a part of the sub-waveguide element is exposed to the outside of the case. The dual RF tag antenna according to any one of claims 1 to 4, wherein the exposed portion is operated to change the position of the sub-waveguide element.
  6.  請求項1~5のいずれか1項に記載のデュアルRFタグ用アンテナと、
     前記電波に基づいて動作するICチップと、
     前記主導波素子、前記副導波素子、前記短絡部、前記地板及び前記給電部により構成されるインダクタパターン部と、
     前記主導波素子、前記副導波素子、前記絶縁基材及び前記地板により構成されるコンデンサ部と、
     前記インダクタパターン部及び前記コンデンサ部により前記電波の周波数帯域で共振する共振回路とを備えることを特徴とするデュアルRFタグ。
     
    The dual RF tag antenna according to any one of claims 1 to 5.
    An IC chip that operates based on the radio waves and
    An inductor pattern portion composed of the main waveguide element, the sub-guided element, the short-circuit portion, the main plate, and the feeding portion.
    A capacitor portion composed of the main waveguide element, the sub-waveguide element, the insulating base material, and the main plate.
    A dual RF tag including a resonance circuit that resonates in the frequency band of the radio wave by the inductor pattern portion and the capacitor portion.
PCT/JP2021/040316 2020-12-02 2021-11-02 Dual rf tag antenna and dual rf tag WO2022118595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566790A JPWO2022118595A1 (en) 2020-12-02 2021-11-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-200515 2020-12-02
JP2020200515 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022118595A1 true WO2022118595A1 (en) 2022-06-09

Family

ID=81853130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040316 WO2022118595A1 (en) 2020-12-02 2021-11-02 Dual rf tag antenna and dual rf tag

Country Status (2)

Country Link
JP (1) JPWO2022118595A1 (en)
WO (1) WO2022118595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750508A (en) * 1993-08-06 1995-02-21 Fujitsu Ltd Antenna module
JP2002064324A (en) * 2000-08-23 2002-02-28 Matsushita Electric Ind Co Ltd Antenna device
US6437747B1 (en) * 2001-04-09 2002-08-20 Centurion Wireless Technologies, Inc. Tunable PIFA antenna
US20080001829A1 (en) * 2006-06-30 2008-01-03 Nokia Corporation Mechanically tunable antenna for communication devices
WO2020090319A1 (en) * 2018-10-29 2020-05-07 株式会社フェニックスソリューション Rf tag antenna, rf tag, tire provided with rf tag, and tire with built-in rf tag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750508A (en) * 1993-08-06 1995-02-21 Fujitsu Ltd Antenna module
JP2002064324A (en) * 2000-08-23 2002-02-28 Matsushita Electric Ind Co Ltd Antenna device
US6437747B1 (en) * 2001-04-09 2002-08-20 Centurion Wireless Technologies, Inc. Tunable PIFA antenna
US20080001829A1 (en) * 2006-06-30 2008-01-03 Nokia Corporation Mechanically tunable antenna for communication devices
WO2020090319A1 (en) * 2018-10-29 2020-05-07 株式会社フェニックスソリューション Rf tag antenna, rf tag, tire provided with rf tag, and tire with built-in rf tag

Also Published As

Publication number Publication date
JPWO2022118595A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP6705116B2 (en) RF tag antenna, manufacturing method thereof, and RF tag
US7504998B2 (en) PIFA and RFID tag using the same
KR100960210B1 (en) Rfid tag and manufacturing method thereof
KR101012528B1 (en) Rfid tag
JP4186149B2 (en) Auxiliary antenna for IC card
KR100781933B1 (en) Single layer dual band antenna with circular polarization and single feed point
US20090140947A1 (en) Antenna Device and Radio-Communication System Using the Same
US20110068987A1 (en) Multiband RFID tag
US20080122628A1 (en) RFID tag antenna and RFID tag
KR100793060B1 (en) Antenna Using Inductively Coupled Feeding Method, RFID Tag thereof and Antenna Impedence Matching Method thereof
CN101719225A (en) Radio frequency IC tag
WO2006077645A1 (en) Antenna and rfid tag mounted with same
WO2022118595A1 (en) Dual rf tag antenna and dual rf tag
KR20100118477A (en) Rfid tag antenna
WO2024075325A1 (en) Antenna for rf tags and rf tag
JP2005236468A (en) Wireless tag
KR100951138B1 (en) Compact broadband RFID tag antenna
JP2024033152A (en) RFID cover with waveguide function and RFID tag set
JP7133232B2 (en) Parts management card and parts management device
FI130267B (en) A uhf rfid tag
US11984656B2 (en) RF tag antenna, RF tag, tire provided with RF tag, and tire with built-in RF tag
JP7063546B2 (en) Non-contact data transmitter / receiver
WO2019225526A1 (en) Rf tag antenna, rf tag and rf tag with conductor
KR100812061B1 (en) Rfid antenna, rfid tag and rfid system
US20220051069A1 (en) Rf tag antenna, rf tag, tire provided with rf tag, and tire with built-in rf tag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900350

Country of ref document: EP

Kind code of ref document: A1