WO2022114396A1 - Phosphor composition having similar luminescence characteristics to natural teeth and preparation method therefor - Google Patents

Phosphor composition having similar luminescence characteristics to natural teeth and preparation method therefor Download PDF

Info

Publication number
WO2022114396A1
WO2022114396A1 PCT/KR2021/001746 KR2021001746W WO2022114396A1 WO 2022114396 A1 WO2022114396 A1 WO 2022114396A1 KR 2021001746 W KR2021001746 W KR 2021001746W WO 2022114396 A1 WO2022114396 A1 WO 2022114396A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor composition
silicate
phosphate
borate
group
Prior art date
Application number
PCT/KR2021/001746
Other languages
French (fr)
Korean (ko)
Inventor
김원호
조성찬
김혜인
김선욱
정규진
강태욱
Original Assignee
주식회사 메디파이브
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200161388A external-priority patent/KR102558011B1/en
Priority claimed from KR1020200161389A external-priority patent/KR102555515B1/en
Priority claimed from KR1020210005977A external-priority patent/KR102523822B1/en
Application filed by 주식회사 메디파이브, 한국세라믹기술원 filed Critical 주식회사 메디파이브
Publication of WO2022114396A1 publication Critical patent/WO2022114396A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • A61K6/842Rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals

Definitions

  • the present invention relates to a phosphor composition and a method for manufacturing the same, and more specifically, by doping a host material with rare earth elements (REE) metal cations in a specific ratio, similar to the natural teeth of the person being treated.
  • the present invention relates to a silicate-based, phosphate-based and borate-based phosphor composition having light-emitting properties and a method for preparing the same.
  • masticatory and esthetic treatment such as dental restoration, which is a replacement treatment for teeth, is performed for patients who have suffered such damage or loss of teeth. It refers to sealing the cavity formed by cutting out the affected part of the required tooth with a tooth replacement material, and the tooth replacement material used at this time is a dental restoration material.
  • Studel confirmed that natural teeth exhibit strong blue fluorescence under irradiation with an ultraviolet beam. This property makes natural teeth appear whiter and brighter in daylight. In addition, it has been confirmed by Clark that this characteristic is due to the fluorescence that appears on the teeth inside the oral cavity. After that, by many researchers, the fluorescence spectrum of the natural tooth showed the largest band at the wavelength of about 410 nm to 420 nm, which is a characteristic of the blue mauve, and gradually increased to 680 nm. was observed to decrease.
  • the present inventors prepared silicate-based, phosphate-based and borate-based phosphor compositions containing cations of rare earth metals, and the composition according to the present invention adjusts the doping concentration of the rare earth metal cations, so that the luminescent properties of natural teeth are similar to those of natural teeth. It was confirmed that luminescent properties could be exhibited.
  • Another object of the present invention is to provide a method for preparing a silicate-based phosphor composition.
  • Another object of the present invention is to provide a dental composition comprising a silicate-based phosphor composition.
  • Another object of the present invention relates to a method of applying a silicate-based phosphor composition.
  • Another object of the present invention is to provide a phosphate-based phosphor composition.
  • Another object of the present invention is to provide a method for preparing a phosphate-based phosphor composition.
  • Another object of the present invention is to provide a dental composition comprising a phosphate-based phosphor composition.
  • Another object of the present invention relates to a method of applying a phosphate-based phosphor composition.
  • Another object of the present invention is to provide a borate-based phosphor composition.
  • Another object of the present invention is to provide a method for preparing a borate-based phosphor composition.
  • Another object of the present invention is to provide a dental composition comprising a borate-based phosphor composition.
  • Another object of the present invention relates to a method of applying a borate-based phosphor composition.
  • the present invention relates to a phosphor composition and a method for preparing the same, and more particularly, by controlling the doping ratio of rare earth elements (REE) metal cations in a host material, similar to the natural teeth of the recipient.
  • the present invention relates to a silicate-based, phosphate-based and borate-based phosphor composition having light-emitting properties and a method for preparing the same.
  • An example of the present invention relates to a silicate-based phosphor composition represented by the formula (1).
  • the term “mother crystal material” may mean Al 2 Si 2 O 8 .
  • AE may mean any one of alkaline earth elements selected from the group consisting of barium (Ba), strontium (Sr), and calcium (Ca), for example, calcium may be, but is not limited thereto.
  • the alkaline earth metal may mean a group 2 element group on the periodic table of elements.
  • REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and thulium (Tm) may be any one selected from the group consisting of rare earth elements (REE), for example, For example, it may be europium, but is not limited thereto.
  • REE rare earth elements
  • REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and thulium (Tm) may be any one selected from the group consisting of rare earth elements (REE), for example, For example, it may be terbium, but is not limited thereto.
  • REE rare earth elements
  • rare earth elements may mean a metal belonging to the group of atomic numbers 57 to 71 on the periodic table of elements.
  • x may be 0 ⁇ x ⁇ 0.15, which may mean that x does not include 0 but includes 0.15, but has a value between 0 and 0.15.
  • the element ratio of the chemical formula is generally described as an integer, but if the ratio of elements included in one molecule, such as an alloy or special mineral, is complicated, and writing as a decimal is simpler than writing as an integer, it is a decimal It can also be written as
  • x in Formula 1 is the ratio of the rare earth metal REE2 doped to the REE1 site of the parent crystal in the formula, and can be expressed in wt% or mol% according to synthesis methods such as solid phase method and liquid phase method. For example, in the case of 5 wt% or 5 mol%, x may be 0.05.
  • x in Formula 1 may be 0.01 to 0.15, 0.01 to 0.13, 0.01 to 0.11, 0.01 to 0.09, 0.03 to 0.15, 0.03 to 0.13, 0.03 to 0.11, or 0.03 to 0.09, for example, 0.03 to It may be 0.09, but is not limited thereto.
  • y in Formula 1 may be 0 ⁇ y ⁇ 0.15, which may mean that y includes 0 and 0.15, but has a value between 0 and 0.15.
  • y in Formula 1 may be 0 to 0.05, 0 to 0.04, 0.01 to 0.05, or 0.01 to 0.04, for example, 0.01 to 0.03, but is not limited thereto.
  • y may represent the mol% concentration of the rare earth metal in the aqueous solution as a decimal number. For example, when the concentration of the rare earth metal in the aqueous solution is 1 mol%, y may be 0.01.
  • the term “doping” may refer to an action of improving or reforming the properties of the parent crystal material by adding a trace amount of another material to the parent crystal material in the field of metallurgy.
  • the silicate-based composition represented by Formula 1 may be (Ca 0.95 Eu 0.05 )Al 2 Si 2 O 8 .
  • the silicate-based composition represented by Formula 1 may be (Ca 0.85 Eu 0.12 Tb 0.03 )Al 2 Si 2 O 8 .
  • the silicate-based composition represented by Formula 1 may be (Ca 0.87 Eu 0.12 Tb 0.01 )Al 2 Si 2 O 8 .
  • the average particle diameter of the phosphor composition is 0.01 to 10 um, 0.01 to 8 um, 0.01 to 6 um, 0.01 to 4 um, 0.1 to 10 um, 0.1 to 8 um, 0.1 to 6 um, 0.1 to 4 um, 1 to 10 um, 1 to 8 um, 1 to 6 um, 1 to 4 um, 2 to 10 um, 2 to 8 um, 2 to 6 um, 2 to 4 um, 3 to 10 um, 3 to 8 um, It may be 3 to 6 um or 3 to 4 um, for example, 3 um, but is not limited thereto.
  • the emission wavelength of the silicate-based phosphor composition is 420 to 600 nm, 420 to 590 nm, 420 to 580 nm, 420 to 570 nm, 420 to 560 nm, 420 to 550 nm, 420 to 540 nm, 420 to 530 nm, 420-520 nm, 420-510 nm, 430-600 nm, 430-590 nm, 430-580 nm, 430-570 nm, 430-560 nm, 430-550 nm, 430-540 nm, 430-530 nm, 430-520 nm, 430-510 nm, 440-600 nm, 440-590 nm, 440-580 nm, 440-570 nm, 440-560 nm, 440-550 nm, 440-540 nm, 440-530 nm, 430-520 nm,
  • the silicate-based melt preparation step is calcium carbonate (Calcium carbonate, CaCO 3 ), aluminum oxide (Aluminium oxide, Al 2 O 3 ), silicon oxide (Silicon Dioxide, SiO 2 ) and europium oxide [Europium (III) oxide, Eu 2 O 3 ] may be dry mixed and dissolved in a solvent to prepare a silicate-based lysate.
  • the solvent may be any one selected from the group consisting of distilled water, sulfuric acid aqueous solution, nitric acid aqueous solution, and hydrochloric acid aqueous solution, for example, distilled water, but is not limited thereto.
  • the phase of the lysate may be an aqueous phase, but is not limited thereto.
  • the silicate-based melt drying step may be performed under a temperature condition of 100 to 200 °C, 100 to 180 °C, 100 to 160 °C, 120 to 200 °C, 120 to 180 °C, or 120 to 160 °C, , for example, may be carried out under a temperature condition of 150 °C, but is not limited thereto.
  • the silicate-based melt drying step may be performed for 12 to 72 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, or 12 to 24 hours, for example, performed for 12 hours. may be, but is not limited thereto.
  • the solvent contained in the silicate-based melt may not sufficiently evaporate, and the solvent may remain, thereby contaminating the silicate-based phosphor composition.
  • the first silicate-based calcination step may be to obtain a first silicate-based calcination mixture by heat-treating the silicate-based dry mixture that has been subjected to the silicate-based melt drying step.
  • the first silicate-based calcination step is 700 to 1100 °C, 700 to 1050 °C, 700 to 1000 °C, 700 to 950 °C, 700 to 900 °C, 750 to 1100 °C, 750 to 1050 °C, 750 to 1000 °C , 750 to 950 ° C., or may be carried out under a temperature condition of 750 to 900 ° C. For example, it may be carried out under a temperature condition of 750 to 900 ° C., but is not limited thereto.
  • the first silicate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, 6 to 8 hours. It may be performed during, but is not limited thereto.
  • the second silicate-based calcination step may be a step of calcining the first silicate-based calcination mixture to obtain a second silicate-based calcination mixture.
  • the second silicate-based calcination step is 700 to 1100 °C, 700 to 1050 °C, 700 to 1000 °C, 750 to 1100 °C, 750 to 1050 °C, 750 to 1000 °C, 800 to 1100 °C, 800 to 1050 °C , 800 to 1000 ° C, 900 to 1100 ° C, 900 to 1050 ° C, or 900 to 1000 ° C. It is not limited.
  • the second silicate-based calcination step is 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 8 to 24 hours, 8 to 20 hours, 8 to 16 hours, 10 to 24 hours, 10 to 20 hours.
  • it may be performed for 10 to 16 hours, for example, it may be performed for 10 to 16 hours, but is not limited thereto.
  • the second silicate-based calcination step includes H 2 and N 2 gas for the reduction of doped rare earth metal ions, and is performed under a mixed gas condition that does not include other types of gases. it could be
  • the mixed gas may include 5 to 10%, 5 to 9%, 5 to 8%, 5 to 7%, or 5 to 6% of H 2 gas based on the molar gas fraction of the total gas, For example, it may include 5%, but is not limited thereto.
  • the mixed gas may include 90 to 95%, 91 to 95%, 92 to 95%, 93 to 95%, or 94 to 95% of N 2 gas based on the molar gas fraction of the total gas, For example, it may include 95%, but is not limited thereto.
  • the method for producing a silicate-based phosphor may further include a pulverization step of pulverizing the second silicate-based calcination mixture after the second silicate-based calcination step is completed.
  • the pulverizing step may be pulverizing the calcined mixture using either a fine pulverizer or an ultra pulverizer, but is not limited thereto.
  • the pulverizer is any one selected from the group consisting of a ball mill, a vibration mill, a roller mill, a jet mill, and a planetary mill.
  • a ball mill any one selected from the group consisting of a ball mill, a vibration mill, a roller mill, a jet mill, and a planetary mill.
  • the grinding step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, it may be performed for 6 hours. , but is not limited thereto.
  • the silicate-based phosphor composition when the pulverization step is performed for less than 6 hours, the silicate-based phosphor composition is not pulverized sufficiently, and the uniformity of the pulverized powder of the composition is lowered, so it may be difficult to implement a smooth surface when applied (applied) to the teeth. .
  • Another embodiment of the present invention is to provide a dental composition comprising a silicate-based phosphor composition represented by Formula 1.
  • the formulation of the dental composition in the present invention may be any one or more selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis, but is not limited thereto.
  • teeth may refer to natural and/or artificial teeth.
  • the powder is a dental glaze powder, and may mean a dental material for giving an artificial tooth a gloss to create an aesthetic feeling, but is not limited thereto.
  • the silicate-based powder mixture may include the phosphor composition and powder represented by Formula 1, but is not limited thereto.
  • the weight ratio (w/w%) of the silicate-based phosphor composition and the powder included in the silicate-based powder mixture may be 2:8, but is not limited thereto.
  • the binder may be propylene glycol, but is not limited thereto, and an appropriate binder may be used to facilitate moldability of the silicate-based phosphor composition.
  • the weight ratio (w/w%) of the silicate-based powder mixture contained in the silicate-based coating material is 50 to 70% by weight, 50 to 65% by weight, 50 to 60% by weight, 55 to 70% by weight, 55 to It may be 65% by weight or 55 to 60% by weight, but is not limited thereto.
  • the weight ratio (w/w%) of the binder contained in the silicate-based coating material is 30 to 50 wt%, 30 to 45 wt%, 35 to 50 wt%, 35 to 45 wt%, 40 to 50 wt% Or it may be 40 to 45% by weight, but is not limited thereto.
  • the silicate-based coating material may be a mixture of a silicate-based powder mixture and a binder to have a viscosity to be properly applied to an object, but is not limited thereto.
  • the temperature increase rate of the silicate-based coating heat treatment step is 40 to 60 °C/min, 40 to 58 °C/min, 40 to 56 °C/min, 40 to 54 °C/min, 40 to 52 °C/min, 42 to 60 °C/min, 42 to 58 °C/min, 42 to 56 °C/min, 42 to 54 °C/min, 42 to 52 °C/min, 44 to 60 °C/min, 44 to 58 °C/min, 44 to 56 °C/min, 44 to 54 °C/min, 44 to 52 °C/min, 46 to 60 °C/min, 46 to 58 °C/min, 46 to 56 °C/min, 46 to 54 °C/min, 46 to 52 °C/min, 48 to 60 °C/min, 48 to 58 °C/min, 48 to 56 °C/min, 48 to 54 °C/min, or 48 to 52 °C/min, for example, 48
  • the silicate-based heat treatment step is 300 to 900 °C, 300 to 800 °C, 300 to 700 °C, 300 to 600 °C, 400 to 900 °C, 400 to 800 °C, 400 to 700 °C, 400 to 600 °C, 500 to 900 °C, 500 to 800 °C, 500 to 700 °C, or may be carried out at a temperature condition of 500 to 600 °C, for example, it may be carried out at a temperature condition of 500 to 600 °C, but limited thereto it is not
  • the silicate-based heat treatment step may be to maintain an isothermal state for 20 to 40 minutes, 20 to 35 minutes, 25 to 40 minutes, or 25 to 30 minutes, for example, isothermal state for 25 to 30 minutes. may be to maintain, but is not limited thereto.
  • Another embodiment of the present invention relates to a phosphate-based phosphor composition represented by the formula (2).
  • the term “mother crystalline material” may mean rubidium carbonate (RbCO 3 ).
  • REE3 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and thulium (Tm) may be any one selected from the group consisting of rare earth elements (REE), for example, For example, it may be europium, but is not limited thereto.
  • REE rare earth elements
  • x may be 0 ⁇ x ⁇ 0.15, which may mean that x does not include 0 but includes 0.15, but has a value between 0 and 0.15.
  • x in Formula 2 is the ratio of the rare earth metal REE3 doped to the metal AE site of the parent crystal in the formula, and can be expressed as wt% or mol% according to synthesis methods such as solid-phase method and liquid-phase method. For example, in the case of 5 wt% or 5 mol%, x may be 0.05.
  • x in Formula 2 is 0.01 to 0.15, 0.01 to 0.14, 0.01 to 0.13, 0.01 to 0.12, 0.01 to 0.11, 0.01 to 0.10, 0.01 to 0.09, 0.01 to 0.08, 0.01 to 0.07, 0.01 to 0.06, 0.01 to 0.05, 0.01 to 0.04, or 0.01 to 0.03, for example, may be 0.03, but is not limited thereto.
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.99 Eu 0.01 )PO 4 .
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.97 Eu 0.03 )PO 4 .
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.95 Eu 0.05 )PO 4 .
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.93 Eu 0.07 )PO 4 .
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.90 Eu 0.10 )PO 4 .
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.87 Eu 0.13 )PO 4 .
  • the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.85 Eu 0.15 )PO 4 .
  • the emission wavelength of the phosphate-based phosphor composition is 410 to 600 nm, 410 to 590 nm, 410 to 580 nm, 410 to 570 nm, 410 to 560 nm, 410 to 550 nm, 410 to 540 nm, 410 to 530 nm, 410-520 nm, 420-600 nm, 420-590 nm, 420-580 nm, 420-570 nm, 420-560 nm, 420-550 nm, 420-540 nm, 420-530 nm, 420-520 nm, 430-600 nm, 430-590 nm, 430-580 nm, 430-570 nm, 430-560 nm, 430-550 nm, 430-540 nm, 430-530 nm, 430-520 nm, 430-600 nm, 430-590 nm,
  • the phosphate-based lysate preparation step is rubidium carbonate (Rb 2 CO 3 ), calcium carbonate (CaCO 3 ), phosphorus pentoxide (P 2 O 5 ) and europium oxide [Europium ( III) oxide, Eu 2 O 3 ] may be prepared by dissolving a phosphate-based lysate in a solvent.
  • the phosphate-based melt drying step may be carried out under a temperature condition of 100 to 200 °C, 100 to 180 °C, 100 to 160 °C, 120 to 200 °C, 120 to 180 °C, or 120 to 160 °C, , for example, may be carried out under a temperature condition of 150 °C, but is not limited thereto.
  • the drying step of the phosphate-based lysate may be performed for 12 to 72 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, or 12 to 24 hours, for example, it is performed for 12 hours. may be, but is not limited thereto.
  • the solvent contained in the melt may not sufficiently evaporate, and the solvent may remain, thereby contaminating the phosphate-based phosphor composition.
  • the first phosphate-based calcination step may be to obtain a first phosphate-based calcination mixture by heat-treating the phosphate-based dry mixture in which the phosphate-based melt drying step has been performed.
  • the first phosphate-based calcination step may be performed under a temperature condition of 700 to 1100 °C, 700 to 1000 °C, 700 to 900 °C, 750 to 1100 °C, 750 to 1000 °C, or 750 to 900 °C, , for example, may be carried out under a temperature condition of 800 °C, but is not limited thereto.
  • the first phosphate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, performed for 6 hours may be, but is not limited thereto.
  • the second phosphate-based calcination step may be a step of heat-treating the first phosphate-based calcination mixture to obtain a second phosphate-based calcination mixture.
  • the second phosphate-based calcination step is 700 to 1100 °C, 700 to 1000 °C, 750 to 1100 °C, 750 to 1000 °C, 800 to 1100 °C, 800 to 1000 °C, 900 to 1100 °C, or 900 to 1000 °C. It may be carried out under a temperature condition of °C, for example, it may be carried out under a temperature condition of 950 °C, but is not limited thereto.
  • the second phosphate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, or 6 to 12 hours, for example, it may be carried out for 12 hours,
  • the present invention is not limited thereto.
  • the second phosphate-based calcination step includes H 2 and N 2 gas for the reduction of doped rare earth metal ions, and other types of gases are not included. It is performed under a mixed gas condition. it could be
  • the mixed gas may include 5 to 10%, 5 to 9%, 5 to 8%, 5 to 7%, or 5 to 6% of H 2 gas based on the molar gas fraction of the total gas, For example, it may include 5%, but is not limited thereto.
  • the mixed gas may include 90 to 95%, 91 to 95%, 92 to 95%, 93 to 95%, or 94 to 95% of N 2 gas based on the molar gas fraction of the total gas, For example, it may include 95%, but is not limited thereto.
  • the method for producing a phosphate-based phosphor may further include a pulverization step of pulverizing the second phosphate-based calcination mixture after the second phosphate-based calcination step is completed.
  • Another embodiment of the present invention is to provide a dental composition comprising a phosphate-based phosphor composition represented by Chemical Formula 2.
  • the formulation of the dental composition in the present invention may be any one or more selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis, but is not limited thereto.
  • teeth may refer to natural and/or artificial teeth.
  • a phosphate-based mixing step of preparing a phosphate-based coating material by mixing a phosphate-based powder mixture comprising a phosphor composition represented by Formula 2 and a powder, and a binder;
  • the phosphate-based powder mixture may include the phosphor composition represented by Formula 2 and the powder, but is not limited thereto.
  • the weight ratio (w/w%) of the phosphate-based phosphor composition and the powder included in the phosphate-based powder mixture may be 1:9, but is not limited thereto.
  • the binder may be butanediol, propylene glycol, or a combination thereof, but is not limited thereto, and an appropriate binder may be used to facilitate moldability of the phosphate-based phosphor composition.
  • the weight ratio (w/w%) of the phosphate-based powder mixture contained in the phosphate-based coating material is 50 to 70% by weight, 50 to 65% by weight, 50 to 60% by weight, 55 to 70% by weight, 55 to It may be 65% by weight or 55 to 60% by weight, but is not limited thereto.
  • the weight ratio (w/w%) of the binder included in the phosphate-based coating material is 30 to 50 wt%, 30 to 45 wt%, 35 to 50 wt%, 35 to 45 wt%, 40 to 50 wt% Or it may be 40 to 45% by weight, but is not limited thereto.
  • the phosphate-based coating material may be a mixture of a phosphate-based powder mixture and a binder to have a viscosity to be properly applied to an object, but is not limited thereto.
  • the temperature increase rate of the phosphate-based heat treatment step is 40 to 60 °C/min, 40 to 58 °C/min, 40 to 56 °C/min, 40 to 54 °C/min, 40 to 52 °C/min, 42 to 60 °C/min, 42 to 58 °C/min, 42 to 56 °C/min, 42 to 54 °C/min, 42 to 52 °C/min, 44 to 60 °C/min, 44 to 58 °C/min, 44 to 56 °C/min, 44-54 °C/min, 44-52 °C/min, 46-60 °C/min, 46-58 °C/min, 46-56 °C/min, 46-54 °C/min, 46-52 °C /min, 48 to 60 °C/min, 48 to 58 °C/min, 48 to 56 °C/min, 48 to 54 °C/min, or 48 to 52 °C/min, for example, 48 to
  • the phosphate-based heat treatment step is 650 to 850 °C, 650 to 825 °C, 650 to 800 °C, 650 to 775 °C, 700 to 850 °C, 700 to 825 °C, 700 to 800 °C, 700 to 775 °C, It may be carried out at a temperature condition of 725 to 850 °C, 725 to 800 °C, and 725 to 775 °C, for example, it may be carried out at a temperature condition of 725 to 775 °C, but is not limited thereto.
  • the phosphate-based heat treatment step may be to maintain an isothermal state for 20 to 40 minutes, 20 to 35 minutes, 25 to 40 minutes, or 25 to 30 minutes, for example, isothermal state for 25 to 30 minutes. may be to maintain, but is not limited thereto.
  • Another example of the present invention relates to a borate-based phosphor composition represented by the formula (3).
  • the term “maternal crystal material” may mean AE 3 (REE1) 2 (BO 3 ) 4 .
  • REE4 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , erbium (Er) and thulium (Tm) may be one selected from the group consisting of rare earth elements (REE), for example, may be lanthanum, but is not limited thereto.
  • REE5 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , erbium (Er) and thulium (Tm) may be one selected from the group consisting of rare earth elements (REE), for example, cerium, but is not limited thereto.
  • REE rare earth elements
  • x in Formula 3 may be 0 ⁇ x ⁇ 0.15, which may mean that x does not include 0 but includes 0.15, but has a value between 0 and 0.15.
  • x in Formula 3 is the ratio of the rare earth metal REE5 doped to the REE4 site of the parent crystal in the formula, and can be expressed as wt% or mol% according to synthesis methods such as solid phase method and liquid phase method. For example, when the wt% of REE5 is 5 wt% or 5 mol%, x may be 0.05.
  • x in Formula 3 may be 0.01 to 0.15, 0.01 to 0.14, 0.01 to 0.13, 0.03 to 0.15, 0.03 to 0.14, 0.03 to 0.13, 0.05 to 0.15, 0.05 to 0.14 or 0.05 to 0.13, for example, For example, it may be 0.05 to 0.13, but is not limited thereto.
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.99 Ce 0.01 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.97 Ce 0.03 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.95 Ce 0.05 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.93 Ce 0.07 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.90 Ce 0.10 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.87 Ce 0.13 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.85 Ce 0.15 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.99 Tb 0.01 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.97 Tb 0.03 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.95 Tb 0.05 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.93 Tb 0.07 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.90 Tb 0.10 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.87 Tb 0.13 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.85 Tb 0.15 ) 2 (BO 3 ) 4 .
  • REE6 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , erbium (Er) and thulium (Tm) may be one selected from the group consisting of rare earth elements (REE), for example, terbium, but is not limited thereto.
  • REE rare earth elements
  • y in Formula 3 is the ratio of the rare earth metal REE6 doped to the REE4 site of the parent crystal in the formula, and can be expressed in wt% or mol% according to synthesis methods such as solid phase method and liquid phase method. For example, when the wt% or mol% of REE6 is 10 wt% or 10 mol%, y may be 0.07.
  • y in Formula 3 may be 0 ⁇ y ⁇ 0.15, which may mean that y includes 0 and 0.15 and has a value between 0 and 0.15.
  • y in Formula 3 is 0.01 to 0.15, 0.01 to 0.14, 0.01 to 0.13, 0.03 to 0.15, 0.03 to 0.14, 0.03 to 0.13, 0.05 to 0.15, 0.05 to 0.14, 0.05 to 0.13, 0.07 to 0.15, 0.07 to 0.14 or 0.07 to 0.13, for example, may be 0.07 to 0.13, but is not limited thereto.
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.92 Ce 0.07 Tb 0.01 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.90 Ce 0.07 Tb 0.03 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.88 Ce 0.07 Tb 0.05 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.86 Ce 0.07 Tb 0.07 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.83 Ce 0.07 Tb 0.10 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.80 Ce 0.07 Tb 0.13 ) 2 (BO 3 ) 4 .
  • the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.78 Ce 0.07 Tb 0.15 ) 2 (BO 3 ) 4 .
  • the light emission wavelength of the borate-based phosphor composition is 410 to 600 nm, 410 to 590 nm, 410 to 580 nm, 410 to 570 nm, 410 to 560 nm, 410 to 550 nm, 410 to 540 nm, 410 to 530 nm, 410-520 nm, 420-600 nm, 420-590 nm, 420-580 nm, 420-570 nm, 420-560 nm, 420-550 nm, 420-540 nm, 420-530 nm, 420-520 nm, 430-600 nm, 430-590 nm, 430-580 nm, 430-570 nm, 430-560 nm, 430-550 nm, 430-540 nm, 430-530 nm, 430-520 nm, 430-600 nm, 430-590 nm,
  • Barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], Lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce(NO 3 ) 3 ], and Hydrogen borate, HBO 3 ) by dissolving in a solvent to prepare a borate-based lysate preparing a borate-based lysate;
  • the borate-based melt preparation step is barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], cerium nitrate [Cerium nitrate, Ce(NO 3 ) ) 3 ] and boric acid (Hydrogen borate, HBO 3 ) may be dissolved in a solvent to prepare a borate-based lysate.
  • the borate-based lysate preparation step may be to prepare a borate-based lysate by further dissolving terbium nitrate [Terbium nitrate, Tb(NO3)3] in a solvent.
  • the borate-based melt drying step is performed under a temperature condition of 80 to 150 °C, 80 to 140 °C, 80 to 130 °C, 80 to 120 °C, 80 to 110 °C, 80 to 100 °C, or 80 to 90 °C. It may be carried out, for example, it may be carried out under a temperature condition of 80 to 90 °C, but is not limited thereto.
  • the borate-based lysate drying step may be performed for 12 to 72 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, or 12 to 24 hours, for example, it is performed for 12 hours. may be, but is not limited thereto.
  • the solvent contained in the borate-based melt may not be sufficiently evaporated, and the solvent may remain, thereby contaminating the borate-based phosphor composition.
  • the borate-based calcination step may be to obtain a borate-based calcination mixture by heat-treating the borate-based dry mixture that has been subjected to the borate-based melt drying step.
  • the borate-based calcination step may be carried out at a temperature condition of 900 to 1300 ° C, 900 to 1200 ° C, 1000 to 1300 ° C, 1000 to 1200 ° C, 1100 to 1300 ° C, or 1100 to 1200 ° C.
  • a temperature condition of 1100 to 1200 °C but is not limited thereto.
  • the borate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, to be performed for 6 hours.
  • the present invention is not limited thereto.
  • the borate-based calcination step is performed for less than 6 hours, some of Ba(NO 3 ) 2 , La(NO 3 ) 3 , Tb(NO 3 ) 3 , Ce(NO 3 ) 3 , and HBO 3 are added to the borate-based phosphor composition Since it cannot be synthesized as an impurity or residue, the yield of the borate-based phosphor composition may be lowered.
  • the borate-based calcination step includes H 2 and N 2 gas for the reduction of doped rare earth metal ions, and may be performed under a mixed gas condition that does not include other types of gases. have.
  • the mixed gas may include 5 to 10%, 5 to 9%, 5 to 8%, 5 to 7%, or 5 to 6% of H 2 gas based on the molar gas fraction of the total gas, For example, it may include 5%, but is not limited thereto.
  • the mixed gas may include 90 to 95%, 91 to 95%, 92 to 95%, 93 to 95%, or 94 to 95% of N 2 gas based on the molar gas fraction of the total gas, For example, it may include 95%, but is not limited thereto.
  • the borate-based calcination step may further include a grinding step of pulverizing the borate-based calcination mixture.
  • Another example of the present invention is to provide a dental composition comprising a borate-based phosphor composition represented by Chemical Formula 3.
  • the dental composition may be at least one selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis, but is not limited thereto.
  • teeth may refer to natural and/or artificial teeth.
  • Another example of the present invention relates to a method for applying a borate-based phosphor composition comprising the steps of:
  • a borate-based mixing step of preparing a borate-based coating material by mixing a borate-based powder mixture comprising a phosphor composition represented by Formula 3 and a powder, and a binder;
  • the borate-based powder mixture may include the borate-based phosphor composition and powder represented by Formula 3, but is not limited thereto.
  • the weight ratio (w/w%) of the borate-based phosphor composition and the powder included in the borate-based powder mixture may be 1:9, but is not limited thereto.
  • the binder may be butanediol, propylene glycol, or a combination thereof, but is not limited thereto, and an appropriate binder may be used to facilitate moldability of the borate-based phosphor composition.
  • the weight ratio (w/w%) of the borate-based powder mixture contained in the borate-based coating material is 50 to 70% by weight, 50 to 65% by weight, 50 to 60% by weight, 55 to 70% by weight, 55 to It may be 65% by weight or 55 to 60% by weight, but is not limited thereto.
  • the weight ratio (w/w%) of the binder included in the borate-based coating material is 30 to 50 wt%, 30 to 45 wt%, 35 to 50 wt%, 35 to 45 wt%, 40 to 50 wt% Or it may be 40 to 45% by weight, but is not limited thereto.
  • the object may be a natural tooth, an artificial tooth, or a dental composition, but is not limited thereto.
  • the borate-based coating material may be a mixture of a borate-based powder mixture and a binder to have a viscosity to be properly applied to an object, but is not limited thereto.
  • the temperature increase rate of the borate-based heat treatment step is 40 to 60 °C/min, 40 to 58 °C/min, 40 to 56 °C/min, 40 to 54 °C/min, 40 to 52 °C/min, 42 to 60 °C/min, 42 to 58 °C/min, 42 to 56 °C/min, 42 to 54 °C/min, 42 to 52 °C/min, 44 to 60 °C/min, 44 to 58 °C/min, 44 to 56 °C/min, 44-54 °C/min, 44-52 °C/min, 46-60 °C/min, 46-58 °C/min, 46-56 °C/min, 46-54 °C/min, 46-52 °C /min, 48 to 60 °C/min, 48 to 58 °C/min, 48 to 56 °C/min, 48 to 54 °C/min, or 48 to 52 °C/min, for example, 48 to 52 °C/
  • the borate-based heat treatment step is 250 to 750 °C, 250 to 700 °C, 250 to 650 °C, 250 to 600 °C, 250 to 550 °C, 250 to 500 °C, 300 to 750 °C, 300 to 700 °C, 300 to 650 °C, 300 to 600 °C, 300 to 550 °C, 300 to 500 °C, 350 to 750 °C, 350 to 700 °C, 350 to 650 °C, 350 to 600 °C, 350 to 550 °C, 350 to 500 °C, 400 to 750 ° C, 400 to 700 ° C, 400 to 650 ° C, 400 to 600 ° C, 400 to 550 ° C, or 400 to 500 ° C. It may be to raise the temperature to, but is not limited thereto.
  • the borate-based heat treatment step may be to maintain an isothermal state for 20 to 40 minutes, 20 to 35 minutes, 25 to 40 minutes, or 25 to 30 minutes, for example, isothermal state for 25 to 30 minutes. may be to maintain, but is not limited thereto.
  • the present invention provides a silicate-based, phosphate-based and borate-based phosphor composition having a luminescent property similar to that of the natural teeth of a person to be treated by doping a host material with rare earth elements (REE) metal cations in a specific ratio. , and a method for manufacturing the same, and by controlling the doping concentration ratio of the rare-earth metal cation, the luminescent property of the phosphor composition can be controlled, so that the aesthetic effect on the appearance of the teeth of the recipient can be improved.
  • REE rare earth elements
  • FIG. 1 is a graph showing the luminescence characteristics (PL/PLE) of a silicate-based phosphor composition according to an experimental example of the present invention.
  • FIG. 3 is a photograph taken in order to analyze the apparent luminescence characteristics by applying a silicate-based phosphor composition to a substrate according to an experimental example of the present invention.
  • FIG. 4 is a graph analyzing the apparent luminescence characteristics (PL/PLE) when a silicate-based phosphor composition is applied according to an experimental example of the present invention.
  • FIG. 6 is a graph showing luminescence characteristics (PL/PLE) of phosphate-based phosphor compositions having different alkaline earth metals.
  • FIG. 8 is a graph analyzing XRD patterns according to Eu 2+ doping concentration of a phosphate-based phosphor composition that has undergone a first calcination step according to an experimental example of the present invention.
  • FIG. 9 is a graph analyzing the XRD pattern of a phosphate-based phosphor composition in which the first calcination step is not performed according to an experimental example of the present invention.
  • FIG. 11 is a graph comparing and analyzing the luminescence characteristics before the phosphate-based phosphor composition of the present invention is applied to the substrate and the luminescence characteristics after the phosphate-based phosphor composition is applied to the substrate and subjected to a heat treatment process.
  • FIG. 12 is a microscopic view of a particle diameter of a borate-based phosphor composition according to an embodiment of the present invention. (Scale bar: 10 um)
  • 13A to 13C are graphs showing XRD patterns of borate-based phosphor compositions according to an experimental example of the present invention.
  • 14A and 14B are graphs showing PL/PLE of a borate-based phosphor composition (lanthanum-cerium-terbium) according to an experimental example of the present invention.
  • 15A and 15B are graphs showing PL/PLE of a borate-based phosphor composition (lanthanum-cerium) according to an experimental example of the present invention.
  • 16A and 16B are graphs showing PL/PLE of a borate-based phosphor composition (lanthanum-terbium) according to an experimental example of the present invention.
  • FIG. 17 shows the appearance of a borate-based phosphor composition applied to a substrate and subjected to heat treatment at 300° C., 400° C., ° C. and 700° C. according to an experimental example of the present invention, and the borate-based phosphor composition emits light when irradiated with ultraviolet rays It's a picture of what you're doing.
  • FIG. 18 is a graph comparing and analyzing the luminescence characteristics before the borate-based phosphor composition is applied to the substrate and the luminescence characteristics after the borate phosphor composition is applied to the substrate and subjected to a heat treatment process.
  • a phosphor composition represented by Formula 1 A phosphor composition represented by Formula 1.
  • the AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
  • REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er) and any one selected from the group consisting of thulium (Tm),
  • REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  • La lanthanum
  • Gd gadolinium
  • Y yttrium
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • the term “excitation wavelength” may mean a wavelength of light that excites electrons of the phosphor composition to have a high energy level, and in general, the excitation spectrum is one that matches the absorption spectrum can
  • emission wavelength refers to the wavelength of light emitted by the phosphor composition when electrons excited to have a high energy level of the phosphor composition lose energy and return to the energy level before excitation. have.
  • Calcium carbonate (CaCO 3 ), aluminum oxide (Aluminum oxide, Al 2 O 3 ), silicon dioxide (SiO 2 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] were dry mixed and , to prepare a mixture by mixing with 10% by weight of water based on the total weight of the mixture.
  • Example 1 Example 2
  • Example 3 Ca (mol%) 95 85 87 Eu (mol%) 5 12 12 Tb (mol%) - 3
  • One Sum 100 100 100
  • the mixtures of Examples 1 to 3 were sufficiently dried at a temperature of 80° C. for 12 hours to obtain a dried product.
  • the obtained dried product was subjected to primary heat treatment (first silicate-based calcination step) under air conditions for 6 hours at a temperature of 800° C. to obtain a primary calcination mixture (first silicate-based calcination mixture).
  • the primary silicate-based calcined mixture was subjected to a secondary heat treatment under a mixed gas condition containing 95% N 2 and 5% H 2 based on the molar gas fraction of the total gas for 12 hours at a temperature condition of 950° C. (second silicate-based mixture) calcination step) to obtain a secondary silicate-based calcination mixture (second silicate-based calcination mixture).
  • the silicate-based phosphor compositions of Examples 1 to 3 were pulverized for 6 hours using a ball mill so that the average particle diameter of the second silicate-based calcined mixture was 10 ⁇ m or less, and had a white (or ivory) body color.
  • [(AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8 ] was prepared.
  • silicate-based phosphor compositions of Examples 1 to 3 photoluminescence and excitation wavelength were analyzed under a temperature condition of room temperature using a spectrofluorometer.
  • the silicate-based phosphor composition When the silicate-based phosphor composition is irradiated with a light source having a wavelength ( ⁇ ex ) of 365 to 405 nm, the light emitting characteristics of the composition are shown in FIGS. 1 and 2 .
  • Example 1 Example 2
  • Example 3 Emission wavelength (nm) 505 550 550 Luminescence intensity (a.u.) 2150 2500 2010
  • a silicate-based powder mixture was prepared by mixing the silicate-based phosphor composition and IPS e.max Ceram Glaze powder in a ratio of 2:8 (w/w%).
  • a paste silicate-based coating material was prepared by mixing a silicate-based powder mixture and a binder (propylene glycol) in a ratio of 7:3 to 5:5 (w/w%), and then a glass-ceramic block (e.max CAD block, Ivoclar vivadent) and heat treatment was performed for a total of 30 minutes while heating at a high speed from room temperature to a temperature of 300 to 700 °C at a temperature increase rate of 50 °C/min.
  • a glass-ceramic block e.max CAD block, Ivoclar vivadent
  • Example 3 the paste not subjected to the elevated temperature heat treatment of Example 1 or Example 4, 300° C. of Example 5, 400° C. of Example 6, 500° C. of Example 7, 600° C. of Example 8, or A paste was prepared which was subjected to a temperature increase heat treatment in the temperature range of 700° C. of Example 8.
  • Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Ca (mol%) 95 95 95 95 95 95 95 Eu (mol%) 5 5 5 5 5 5 5 Elevated heat treatment temperature (°C) not done 300 400 500 600 700
  • FIG. 3 shows pictures of the appearance of the paste emitting light when the substrates coated with Examples 1 and 4 to 9 are irradiated with ultraviolet light having a wavelength of 365 nm.
  • Table 4 show PL/PLE graphs analyzing the luminescence characteristics of the applied phosphor composition and paste.
  • the silicate-based phosphor compositions of Examples 1 and 4 to 9 showed the emission intensity and emission wavelength of Table 4, and after correcting the emission intensity to show a constant emission intensity in order to effectively compare the emission wavelengths, it is shown in FIG. .
  • Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Emission wavelength (nm) 470 446 448 448 452 449 Luminescence intensity (a.u.) 775 559 940 1452 2590 2444
  • the light emission of the phosphor composition was maintained even after heat treatment by mixing the silicate-based phosphor composition with a binder.
  • the phosphor composition when the phosphor composition is subjected to high-temperature heat treatment, the phosphor composition interacts with the binder and light emission disappears, whereas the interaction and damage between the binder and the silicate-based phosphor is reduced through very fast and high-temperature heat treatment for the silicate-based phosphor composition. It was possible to maintain the luminescence by minimizing it.
  • Example 10 Component (mol%) Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Ca 2+ 99 97 95 93 90 87 85 Eu 2+ One 3 5 7 10 13 15 Sum 100 100 100 100 100 100 100 100 100 100 100
  • the mixture of Examples 10 to 16 was sufficiently dried for 12 hours at a temperature of 80° C. to obtain a phosphate-based dried product.
  • the obtained phosphate-based dried product was subjected to primary heat treatment (first phosphate-based calcination step) under atmospheric conditions for 4 hours at a temperature of 800° C. to obtain a primary calcination mixture (first phosphate-based calcination mixture). .
  • the primary phosphate-based calcined mixture was subjected to a secondary heat treatment under a mixed gas condition containing 95% N 2 and 5% H 2 based on the molar gas fraction of the total gas for 12 hours at a temperature condition of 950° C. (second phosphate-based calcination mixture) calcination step) to obtain a second calcination mixture (second phosphate-based calcination mixture).
  • the secondary phosphate-based calcined mixture was pulverized for 6 hours using a ball mill so that the average particle diameter was 10 ⁇ m or less, and the phosphate-based phosphor compositions of Examples 1 to 7 having a white (or ivory) body color [Rb(Ca 1-x Eu x )PO 4 ] was prepared.
  • FIG. 5A the appearance of the phosphor composition prepared by omitting the primary heat treatment is shown in FIG. 5A
  • the appearance of the phosphor composition prepared in Preparation Example 2 is shown in FIG. 5B
  • 5B is a photograph taken by arranging the appearance of the phosphor compositions from Examples 10 to 16 from left to right.
  • the phosphor compositions of Examples 10 to 16 had a body color closer to black as the concentration of Eu 2+ increased, and closer to white as the concentration of Eu 2+ decreased.
  • phosphate-based phosphor composition having a difference in alkaline earth metal photoluminescence and excitation wavelength were analyzed under a temperature condition of room temperature using a spectrofluorometer.
  • Example 10 The components and contents of the phosphate-based phosphor composition having a difference in the alkaline earth metal are shown in Example 10 and Comparative Examples 1 and 2 of Table 6.
  • Table 7 show the luminescence characteristics when irradiated with a light source having a wavelength ( ⁇ ex ) of 365 to 405 nm to a phosphor composition having a difference in alkaline earth metal.
  • Example 10 Comparative Example 1 Comparative Example 2 Emission wavelength (nm) 470 455 440 Luminescence intensity (a.u.) 770 1170 1540
  • the alkaline earth metal is converted from barium to strontium and calcium, that is, as the radius of the ion decreases, the emission peak is It was red-shifted toward the infrared wavelength by about 15 nm.
  • the luminescence characteristics of the phosphor composition are shown in FIGS. 7 and 8 .
  • the phosphor compositions of Examples 10 to 16 showed the emission intensity and emission wavelength of Table 8, and after correcting the emission intensity to show a constant emission intensity in order to effectively compare the emission wavelengths, it is shown in FIG. 7 .
  • Example 10 Example 11
  • Example 12 Example 13
  • Example 14 Example 15
  • Example 16 Emission wavelength (nm) 462 471 492 510 512 495 512 Luminescence intensity (a.u.) 19732 19837 19947 19960 8257 10036 7830
  • the emission wavelength was changed according to the concentration of Eu 2+ , and the emission peak was red-shifted toward the infrared wavelength.
  • the crystal structure of the parent phosphor composition was not affected as the Eu ions at various concentrations were substituted.
  • Example 11 prepared by omitting the first phosphate-based calcination step
  • Example 11 When the phosphor composition of Example 11 was prepared by omitting the heat treatment process (the first phosphate-based calcination step) under air atmospheric conditions for 4 hours at a temperature of 800° C., the XRD pattern was analyzed, and the result is shown in FIG. 9 shown in
  • Example 11 (Ca 0.97 Eu 0.03 RbPO 4 ), Comparative Example 3 (Ca 0.95 Eu 0.05 Al 2 Si 2 O 8 ) or Comparative Example 4 (Ca 0.87 Eu 0.12 Tb 0.01 Al 2 Si 2 O 8 ) and IPS e.max Ceram Glaze powder were mixed in a ratio of 1:9 (w/w%) to prepare a phosphate-based powder mixture.
  • a paste (phosphate-based coating material) was prepared by mixing the phosphate-based powder mixture and the binder propylene glycol at 6:4 (w/w%), and then applied to a glass ceramic block (e.max CAD Block, Ivoclar vivadent) at room temperature. The heat treatment was performed for a total of 30 minutes while heating at a high speed to a temperature condition of 750° C. at a temperature increase rate of 50° C./min, and the appearance thereof is shown in FIG.
  • a glass ceramic block e.max CAD Block, Ivoclar vivadent
  • FIG. 11 a PL/PLE graph in which the light emission characteristics of the coated phosphor composition of Example 11 were analyzed is shown in FIG. 11 .
  • the phosphor composition of Example 11 maintained light emission even after heat treatment after mixing with the binder.
  • the interaction and damage between the binder and the phosphate-based phosphor is reduced through very fast and high-temperature heat treatment for the phosphate-based phosphor composition, compared to that the phosphor composition interacts with the binder to extinguish light emission. It was possible to maintain the emission wavelength by minimizing it.
  • Barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], Lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Terbium nitrate [Terbium nitrate, Tb(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce (NO 3 ) 3 ] and boric acid (Hydrogen borate, HBO 3 ) were dry mixed, and a mixture was prepared by mixing with 10% by weight of water based on the total weight of the mixture. Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
  • Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
  • the mixture whose pH was controlled to 9 was stirred at 60° C. for 2 hours using a stirrer. Using a centrifuge, the stirred mixture was dried under a temperature condition of 80° C. for 12 hours to obtain a borate-based dried product.
  • a borate-based calcination mixture was obtained by heat-treating the obtained borate-based dried material at a temperature of 1200° C. for 6 hours under mixed gas conditions containing 95% N 2 and 5% H 2 based on the molar gas fraction of the total gas. did
  • the borate-based phosphor compositions of Examples 17 to 23 were prepared by grinding for 6 hours using a ball mill so that the average particle diameter of the borate-based calcination mixture was 3 ⁇ m or less, and the particle diameter of the borate-based phosphor composition was confirmed. Thus, it is shown in FIG. 12 .
  • barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce(NO 3 ) 3 ] and boric acid (Hydrogen borate, HBO 3 ) were dry mixed, and a mixture was prepared by mixing with 10% by weight of water based on the total weight of the mixture. Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
  • NH 4 OH ammonia water
  • barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], terbium nitrate [Terbium nitrate, Tb(NO 3 ) 3 ] and boric acid (Hydrogen borate) , HBO 3 ) was dry mixed, and a mixture was prepared by mixing with 10% by weight of water based on the total weight of the mixture. Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
  • NH 4 OH ammonia water
  • Examples 17 to 23 are shown in FIG. 13A
  • Examples 24 to 30 are shown in FIG. 13B
  • Examples 31 to 27 are shown in FIG. 13C.
  • Example 17 Example 18 Example 19 Example 20
  • Example 21 Example 22
  • Example 23 emission wavelength ( ⁇ em ) 546 546 546 546 546 546 546 excitation wavelength ( ⁇ ex ) 329 324 320 324 320 324 330 Luminescence intensity (a.u.) 360 1,247 1,628 2,220 4,520 3,870 3,134
  • the borate-based phosphor composition containing 7 mol% of Ce and 10 mol% of Tb has the strongest PL intensity, and when Ce 7 mol% contains more than 10 mol% of Tb, the luminescence intensity is rather decreased. confirmed to be.
  • the minimum excitation wavelength was 320 nm and the maximum excitation wavelength was 329 nm.
  • the phosphor composition was not excited when the light source wavelength was 405 nm, so that the excitation wavelength was hardly measured.
  • Example 24 Example 25 Example 26 Example 27 Example 28 Example 29 Example 30 emission wavelength ( ⁇ em ) 473 473 473 472 482 475 489 excitation wavelength ( ⁇ ex ) 323 320 320 320 329 324 323 Luminescence intensity (a.u.) 404 495 466 652 421 515 447
  • the phosphor composition of Example 27 of Ce 3+ 7 mol% was 652 au, showing the strongest intensity of luminescence.
  • concentration quenching occurred. It was determined that the minimum excitation wavelength was 320 nm and the maximum excitation wavelength was 329 nm.
  • Example 31 Example 32 Example 33 Example 34 Example 35 Example 36 Example 37 emission wavelength ( ⁇ em ) 546 546 546 546 546 546 546 excitation wavelength ( ⁇ ex ) 245 245 246 250 251 251 251 Luminescence intensity (a.u.) 403 498 733 1,272 1,324 1,270 669
  • the phosphor composition of Example 35 having Tb 3+ 10 mol% was 1,324 au, indicating the strongest intensity of luminescence.
  • the phosphor composition contained 13 mol% or more of Tb 3+ it was confirmed that the luminescence intensity was rather decreased, resulting in concentration quenching. It was determined that the minimum excitation wavelength was 245 nm and the maximum excitation wavelength was 251 nm.
  • the emission wavelength of the phosphor composition can be adjusted in the range of 473 to 547 nm. It is possible to adjust the light emission characteristics according to the
  • a borate-based powder mixture was prepared by mixing the phosphor composition of Example 21 (Ce 7%, Tb 10%) and IPS e.max Ceram Glaze powder at 2:8 (w/w%).
  • a paste (borate-based coating material) was prepared by mixing a borate-based powder mixture and a binder (propylene glycol) in a ratio of 7:3 (w/w%), and then applied to a substrate at a temperature increase rate of 300 to 50°C from room temperature. Heat treatment was performed for a total of 30 minutes while heating at high speed to a temperature condition of 700° C., and the appearance thereof is shown in FIG. 16 .
  • the phosphor composition when the phosphor composition is subjected to high-temperature heat treatment, the phosphor composition interacts with the binder and light emission disappears, whereas the interaction between the binder and the borate-based phosphor and It was possible to maintain the emission wavelength by minimizing the damage.
  • the present invention relates to a silicate-based, phosphate-based and borate-based phosphor composition, and a method for preparing the same, and specifically, by doping a host material with rare earth elements (REE) metal cations in a specific ratio.
  • the present invention relates to a phosphor composition having luminescent properties similar to natural teeth of a person to be treated, and a method for preparing the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a phosphor composition and a preparation method therefor and, specifically, to silicate-based, phosphate-based, and borate-based phosphor compositions and preparation methods therefor, wherein the compositions have similar luminescence characteristics to natural teeth of a subject to be treated, by doping a host material with metal cations of rare earth elements (REE) at a predetermined ratio.

Description

자연치와 유사한 발광 특성을 갖는 형광체 조성물 및 이의 제조 방법Phosphor composition having luminescent properties similar to natural tooth and method for preparing same
본 특허출원은 2020년 11월 26일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2020-0161388호 및 제10-2020-0161389호와, 2021년 1월 15일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2021-0005977호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application is based on the Korean Patent Application Nos. 10-2020-0161388 and 10-2020-0161389 submitted to the Korean Intellectual Property Office on November 26, 2020, and the Korean Patent Application filed with the Korean Intellectual Property Office on January 15, 2021. Priority is claimed to Application No. 10-2021-0005977, the disclosure of which is incorporated herein by reference.
본 발명은 형광체 조성물, 및 이의 제조 방법에 관한 것으로서, 구체적으로, 모체 결정 물질 (Host material)에 희토류 (Rare earth elements, REE) 금속 양이온을 특정 비율로 도핑함으로써 피시술자의 자연치 (natural teeth)와 유사한 발광 특성을 갖는 실리케이트계, 포스페이트계 및 보레이트계 형광체 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a phosphor composition and a method for manufacturing the same, and more specifically, by doping a host material with rare earth elements (REE) metal cations in a specific ratio, similar to the natural teeth of the person being treated. The present invention relates to a silicate-based, phosphate-based and borate-based phosphor composition having light-emitting properties and a method for preparing the same.
일반적으로 치아가 우식이나 파절에 의한 손상 또는 결손 등으로 상실되면 발음, 저작, 심미성에 큰 장애가 발생한다. 또한, 치아가 없는 빈 공간으로 인접치아들이 이동함으로써, 치아의 정상적인 배열이 어긋나기 시작하면, 치아 사이에 음식물이 끼게 되어 충치나 풍치가 발생하고, 입 냄새가 나게 된다. 특히, 어금니의 손상 또는 결손은 식사를 제대로 하지 못하기 때문에 영양부족 현상이 발생할 수 있다. 또한, 앞니의 손상 또는 결손은 심미적인 문제를 야기할 뿐만 아니라, 손상 또는 결손된 부위에 2차 우식이 발생할 확률이 급격히 높아지게 된다.In general, when a tooth is lost due to damage or loss due to caries or fracture, a major impairment in pronunciation, mastication, and esthetics occurs. Also, when adjacent teeth move to an empty space without teeth, and the normal arrangement of the teeth starts to deviate, food gets caught between the teeth, causing cavities or bad breath, and bad breath occurs. In particular, damage or missing molars can lead to malnutrition because they can't eat properly. In addition, damage or loss of incisors not only causes aesthetic problems, but also increases the probability of secondary caries occurring in the damaged or missing area rapidly.
따라서, 이러한 치아의 손상 또는 결손이 발생된 환자에게는 치아 대체 치료인 치과용 수복 등의 저작 및 심미적 치료를 실시하고 있으며, 치과용 수복이란 치아의 우식이나 파절에 의한 부분적 손상 등의 원인으로 시술이 필요해진 치아에 환부를 도려내어 형성된 와동 (cavity)을 치아 대체 재료로 밀봉하는 것을 말하며, 이때 사용하는 치아 대체 재료가 치과용 수복재료이다.Therefore, masticatory and esthetic treatment such as dental restoration, which is a replacement treatment for teeth, is performed for patients who have suffered such damage or loss of teeth. It refers to sealing the cavity formed by cutting out the affected part of the required tooth with a tooth replacement material, and the tooth replacement material used at this time is a dental restoration material.
치과용 수복재료는 구강 내의 특수한 환경으로 인해 일반 재료와는 다르게 교합압, 생체조직 친밀도, 과민 반응 유발 여부 등 여러 가지 특성들이 요구된다. 최근에는 대중 매체의 발달로 개인의 심미적 욕구 등이 높아짐을 반영하여, 치질과의 색 조화 등도 고려되어야 한다.Different from general materials due to the special environment in the oral cavity, dental restorative materials require various characteristics such as occlusal pressure, intimacy with living tissue, and whether or not hypersensitivity reaction is caused. In recent years, with the development of mass media, individual aesthetic needs are increasing, and color harmony with hemorrhoids should be considered.
1991년에 Studel이 자외선 빔의 조사하에 자연치가 강한 푸른 형광성 (strong blue fluorescence)이 나타냄을 확인하였다. 이러한 특성은 일광 (daylight)에서 자연치를 보다 하얗고 밝게 보이도록 한다. 또한, 이러한 특성은 구강 내부의 치아에 나타나는 형광성에 의한 것임이 Clark에 의해 확인된 바 있다. 이 후, 많은 연구자들에 의해 자연치의 형광스펙트럼 (fluorescence spectrum)이 블루 모브 (blue mauve)의 특성인 약 410 nm에서 420 nm의 파장에서 가장 큰 폭의 대역 (band)을 보이다가 점차 680 nm까지 감소되는 것을 관찰하였다.In 1991, Studel confirmed that natural teeth exhibit strong blue fluorescence under irradiation with an ultraviolet beam. This property makes natural teeth appear whiter and brighter in daylight. In addition, it has been confirmed by Clark that this characteristic is due to the fluorescence that appears on the teeth inside the oral cavity. After that, by many researchers, the fluorescence spectrum of the natural tooth showed the largest band at the wavelength of about 410 nm to 420 nm, which is a characteristic of the blue mauve, and gradually increased to 680 nm. was observed to decrease.
이러한 자연치는 구강내 자외선 (ultraviolet radiation)을 노출시킬 때, 단일의 치아 또는 치아들 사이로부터 다양한 형광이 나타나는데, 사람마다 차이는 있으나 청백색 (bluish-white) 내지 옐로우위쉬 화이트 (yellowish-white) 색상을 보인다. 자연치의 형광은 치아의 길이와 면적에 많은 영향을 미치게 되는데, 서양인 치아는 길이와 면적에서 동양인보다 크기 때문에 청백색에 가까우며, 동양인의 경우에는 잇몸으로부터 오는 붉은색 (reddish)에 의해 옐로우위쉬 화이트 색 (yellowish-white)에 가깝다.When these natural teeth are exposed to intraoral ultraviolet (ultraviolet radiation), various fluorescence appears from a single tooth or between teeth, although there is a difference from person to person, but the color is blue-white to yellowish-white. see. The fluorescence of natural teeth has a great influence on the length and area of teeth. Western teeth are closer to blue-white because they are larger than Asians in length and area, and in the case of Asians, yellow-wish white color ( yellowish-white).
따라서, 자연치 (natural teeth) 발광 특성과 유사하여, 각기 다른 심미적 욕구를 만족시킬 수 있는 형광체 조성물의 개발이 필요하다.Accordingly, there is a need to develop a phosphor composition that is similar to the luminescent properties of natural teeth and can satisfy different aesthetic needs.
이에 본 발명자들은 희토류 금속의 양이온을 포함하는 실리케이트계, 포스페이트계 및 보레이트계 형광체 조성물을 제조하였고, 본 발명에 따른 조성물은 희토류 금속 양이온의 도핑 농도를 조절함으로써, 자연치 (natural teeth) 발광 특성과 유사한 발광 특성을 나타낼 수 있음을 확인하였다.Accordingly, the present inventors prepared silicate-based, phosphate-based and borate-based phosphor compositions containing cations of rare earth metals, and the composition according to the present invention adjusts the doping concentration of the rare earth metal cations, so that the luminescent properties of natural teeth are similar to those of natural teeth. It was confirmed that luminescent properties could be exhibited.
이에, 본 발명의 목적은 실리케이트계 형광체 조성물을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a silicate-based phosphor composition.
본 발명의 다른 목적은 실리케이트계 형광체 조성물의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a silicate-based phosphor composition.
본 발명의 또 다른 목적은 실리케이트계 형광체 조성물을 포함하는 치과용 조성물을 제공하는 것이다.Another object of the present invention is to provide a dental composition comprising a silicate-based phosphor composition.
본 발명의 또 다른 목적은 실리케이트계 형광체 조성물의 도포 방법에 관한 것이다.Another object of the present invention relates to a method of applying a silicate-based phosphor composition.
본 발명의 또 다른 목적은 포스페이트계 형광체 조성물을 제공하는 것이다.Another object of the present invention is to provide a phosphate-based phosphor composition.
본 발명의 또 다른 목적은 포스페이트계 형광체 조성물의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a phosphate-based phosphor composition.
본 발명의 또 다른 목적은 포스페이트계 형광체 조성물을 포함하는 치과용 조성물을 제공하는 것이다.Another object of the present invention is to provide a dental composition comprising a phosphate-based phosphor composition.
본 발명의 또 다른 목적은 포스페이트계 형광체 조성물의 도포 방법에 관한 것이다.Another object of the present invention relates to a method of applying a phosphate-based phosphor composition.
본 발명의 또 다른 목적은 보레이트계 형광체 조성물을 제공하는 것이다.Another object of the present invention is to provide a borate-based phosphor composition.
본 발명의 또 다른 목적은 보레이트계 형광체 조성물의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a borate-based phosphor composition.
본 발명의 또 다른 목적은 보레이트계 형광체 조성물을 포함하는 치과용 조성물을 제공하는 것이다.Another object of the present invention is to provide a dental composition comprising a borate-based phosphor composition.
본 발명의 또 다른 목적은 보레이트계 형광체 조성물의 도포 방법에 관한 것이다.Another object of the present invention relates to a method of applying a borate-based phosphor composition.
본 발명은 형광체 조성물 및, 이의 제조 방법에 관한 것으로서, 구체적으로, 모체 결정 물질 (host material)에 희토류 (rare earth elements, REE) 금속 양이온의 도핑 비율을 조절함으로써 피시술자의 자연치 (natural teeth)와 유사한 발광 특성을 갖는 실리케이트계, 포스페이트계 및 보레이트계 형광체 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a phosphor composition and a method for preparing the same, and more particularly, by controlling the doping ratio of rare earth elements (REE) metal cations in a host material, similar to the natural teeth of the recipient. The present invention relates to a silicate-based, phosphate-based and borate-based phosphor composition having light-emitting properties and a method for preparing the same.
이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 예는 화학식 1로 표시되는 실리케이트계 형광체 조성물에 관한 것이다.An example of the present invention relates to a silicate-based phosphor composition represented by the formula (1).
[화학식 1][Formula 1]
(AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
본 발명의 실리케이트계 형광체 조성물에 있어서 용어 “모체 결정 물질”은 Al2Si2O8를 의미하는 것일 수 있다.In the silicate-based phosphor composition of the present invention, the term “mother crystal material” may mean Al 2 Si 2 O 8 .
본 발명에 있어서 AE는 바륨 (Ba), 스트론튬 (Sr), 및 칼슘 (Ca) 등으로 이루어진 군으로부터 선택되는 어느 하나인 알칼리 토금속 (Alkali earth elements)을 의미하는 것일 수 있으며, 예를 들어, 칼슘일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, AE may mean any one of alkaline earth elements selected from the group consisting of barium (Ba), strontium (Sr), and calcium (Ca), for example, calcium may be, but is not limited thereto.
본 발명에 있어서 알칼리 토금속은 원소 주기율표상 2족 원소 군을 의미하는 것일 수 있다.In the present invention, the alkaline earth metal may mean a group 2 element group on the periodic table of elements.
본 발명에 있어서 REE1은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나인 희토류 금속 (rare earth elements, REE)일 수 있으며, 예를 들어, 유로퓸일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and thulium (Tm) may be any one selected from the group consisting of rare earth elements (REE), for example, For example, it may be europium, but is not limited thereto.
본 발명에 있어서 REE2는 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나인 희토류 금속 (rare earth elements, REE)일 수 있으며, 예를 들어, 터븀일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and thulium (Tm) may be any one selected from the group consisting of rare earth elements (REE), for example, For example, it may be terbium, but is not limited thereto.
본 발명에 있어서 용어 “희토류 금속 (rare earth elements, REE)”은 원소주기율표상 원자 번호 57번부터 71번까지의 군에 속하는 금속을 의미하는 것일 수 있다.In the present invention, the term “rare earth elements (REE)” may mean a metal belonging to the group of atomic numbers 57 to 71 on the periodic table of elements.
본 발명에 있어서 x는 0<x≤0.15인 것일 수 있고, 이는 x가 0은 포함하지 않고 0.15를 포함하되, 0과 0.15의 사이의 값을 갖는 것임을 의미하는 것일 수 있다.In the present invention, x may be 0<x≤0.15, which may mean that x does not include 0 but includes 0.15, but has a value between 0 and 0.15.
본 발명에 있어서 화학식의 원소비는 일반적으로 정수로 기재하는 것이나, 합금 또는 특수광물 등 하나의 분자에 포함되는 원소의 비율이 복잡하여 소수로 기재하는 것이 정수로 기재하는 것보다 더 간단한 경우에는 소수로 기재할 수도 있다.In the present invention, the element ratio of the chemical formula is generally described as an integer, but if the ratio of elements included in one molecule, such as an alloy or special mineral, is complicated, and writing as a decimal is simpler than writing as an integer, it is a decimal It can also be written as
본 발명에 있어서 화학식 1의 x는 화학식에서 모체결정의 희토류 금속 REE1 자리에 도핑되는 희토류 금속 REE2의 비율이며, 고상법 및 액상법 등 합성법에 따라 wt% 또는 mol%로 표기할 수 있다. 예를 들어, 5 wt% 또는 5 mol%인 경우 x는 0.05인 것일 수 있다.In the present invention, x in Formula 1 is the ratio of the rare earth metal REE2 doped to the REE1 site of the parent crystal in the formula, and can be expressed in wt% or mol% according to synthesis methods such as solid phase method and liquid phase method. For example, in the case of 5 wt% or 5 mol%, x may be 0.05.
본 발명에 있어서 화학식 1의 x는 0.01 내지 0.15, 0.01 내지 0.13, 0.01 내지 0.11, 0.01 내지 0.09, 0.03 내지 0.15, 0.03 내지 0.13, 0.03 내지 0.11 또는 0.03 내지 0.09일 수 있으며, 예를 들어, 0.03 내지 0.09일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, x in Formula 1 may be 0.01 to 0.15, 0.01 to 0.13, 0.01 to 0.11, 0.01 to 0.09, 0.03 to 0.15, 0.03 to 0.13, 0.03 to 0.11, or 0.03 to 0.09, for example, 0.03 to It may be 0.09, but is not limited thereto.
본 발명에 있어서 화학식 1의 y는 0≤y≤0.15인 것일 수 있고, 이는 y가 0 및 0.15를 포함하되, 0과 0.15의 사이의 값을 갖는 것임을 의미하는 것일 수 있다.In the present invention, y in Formula 1 may be 0≤y≤0.15, which may mean that y includes 0 and 0.15, but has a value between 0 and 0.15.
본 발명에 있어서 화학식 1의 y는 0 내지 0.05, 0 내지 0.04, 0.01 내지 0.05 또는 0.01 내지 0.04일 수 있으며, 예를 들어, 0.01 내지 0.03일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, y in Formula 1 may be 0 to 0.05, 0 to 0.04, 0.01 to 0.05, or 0.01 to 0.04, for example, 0.01 to 0.03, but is not limited thereto.
화학식 1의 y는 수용액에서 희토류 금속의 mol% 농도를 소수로 나타낸 것일 수 있으며, 예를 들어, 수용액에서 희토류 금속의 농도가 1 mol%인 경우 y는 0.01인 것일 수 있다.In Formula 1, y may represent the mol% concentration of the rare earth metal in the aqueous solution as a decimal number. For example, when the concentration of the rare earth metal in the aqueous solution is 1 mol%, y may be 0.01.
본 발명에 있어서 용어 “도핑 (dopping)”은 금속공학 분야에서 모체 결정 물질에 미량의 다른 물질을 첨가하여 모체 결정 물질의 성질을 개선 또는 개질 (reforming)하는 행위를 의미하는 것일 수 있다.In the present invention, the term “doping” may refer to an action of improving or reforming the properties of the parent crystal material by adding a trace amount of another material to the parent crystal material in the field of metallurgy.
본 발명의 일 구현예에서, 화학식 1로 표시되는 실리케이트계 조성물은 (Ca0.95Eu0.05)Al2Si2O8인 것일 수 있다.In one embodiment of the present invention, the silicate-based composition represented by Formula 1 may be (Ca 0.95 Eu 0.05 )Al 2 Si 2 O 8 .
본 발명의 일 구현예에서, 화학식 1로 표시되는 실리케이트계 조성물은 (Ca0.85Eu0.12Tb0.03)Al2Si2O8인 것일 수 있다.In one embodiment of the present invention, the silicate-based composition represented by Formula 1 may be (Ca 0.85 Eu 0.12 Tb 0.03 )Al 2 Si 2 O 8 .
본 발명의 일 구현예에서, 화학식 1로 표시되는 실리케이트계 조성물은 (Ca0.87Eu0.12Tb0.01)Al2Si2O8인 것일 수 있다.In one embodiment of the present invention, the silicate-based composition represented by Formula 1 may be (Ca 0.87 Eu 0.12 Tb 0.01 )Al 2 Si 2 O 8 .
본 발명에 있어서 형광체 조성물의 평균 입자경은 0.01 내지 10 um, 0.01 내지 8 um, 0.01 내지 6 um, 0.01 내지 4 um, 0.1 내지 10 um, 0.1 내지 8 um, 0.1 내지 6 um, 0.1 내지 4 um, 1 내지 10 um, 1 내지 8 um, 1 내지 6 um, 1 내지 4 um, 2 내지 10 um, 2 내지 8 um, 2 내지 6 um, 2 내지 4 um, 3 내지 10 um, 3 내지 8 um, 3 내지 6 um 또는 3 내지 4 um일 수 있으며, 예를 들어, 3 um일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the average particle diameter of the phosphor composition is 0.01 to 10 um, 0.01 to 8 um, 0.01 to 6 um, 0.01 to 4 um, 0.1 to 10 um, 0.1 to 8 um, 0.1 to 6 um, 0.1 to 4 um, 1 to 10 um, 1 to 8 um, 1 to 6 um, 1 to 4 um, 2 to 10 um, 2 to 8 um, 2 to 6 um, 2 to 4 um, 3 to 10 um, 3 to 8 um, It may be 3 to 6 um or 3 to 4 um, for example, 3 um, but is not limited thereto.
본 발명에 있어서 실리케이트계 형광체 조성물의 발광 파장은 420 내지 600 nm, 420 내지 590 nm, 420 내지 580 nm, 420 내지 570 nm, 420 내지 560 nm, 420 내지 550 nm, 420 내지 540 nm, 420 내지 530 nm, 420 내지 520 nm, 420 내지 510 nm, 430 내지 600 nm, 430 내지 590 nm, 430 내지 580 nm, 430 내지 570 nm, 430 내지 560 nm, 430 내지 550 nm, 430 내지 540 nm, 430 내지 530 nm, 430 내지 520 nm, 430 내지 510 nm, 440 내지 600 nm, 440 내지 590 nm, 440 내지 580 nm, 440 내지 570 nm, 440 내지 560 nm, 440 내지 550 nm, 440 내지 540 nm, 440 내지 530 nm, 440 내지 520 nm, 440 내지 510 nm, 450 내지 600 nm, 450 내지 590 nm, 450 내지 580 nm, 450 내지 570 nm, 450 내지 560 nm, 450 내지 550 nm, 450 내지 540 nm, 450 내지 530 nm, 450 내지 520 nm, 450 내지 510 nm, 460 내지 600 nm, 460 내지 590 nm, 460 내지 580 nm, 460 내지 570 nm, 460 내지 560 nm, 460 내지 550 nm, 460 내지 540 nm, 460 내지 530 nm, 460 내지 520 nm, 460 내지 510 nm, 470 내지 600 nm, 470 내지 590 nm, 470 내지 580 nm, 470 내지 570 nm, 470 내지 560 nm, 470 내지 550 nm, 470 내지 540 nm, 470 내지 530 nm, 470 내지 520 nm, 470 내지 510 nm, 480 내지 600 nm, 480 내지 590 nm, 480 내지 580 nm, 480 내지 570 nm, 480 내지 560 nm, 480 내지 550 nm, 480 내지 540 nm, 480 내지 530 nm, 480 내지 520 nm 또는 480 내지 510 nm일 수 있으며, 예를 들어, 480 내지 510 nm일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the emission wavelength of the silicate-based phosphor composition is 420 to 600 nm, 420 to 590 nm, 420 to 580 nm, 420 to 570 nm, 420 to 560 nm, 420 to 550 nm, 420 to 540 nm, 420 to 530 nm, 420-520 nm, 420-510 nm, 430-600 nm, 430-590 nm, 430-580 nm, 430-570 nm, 430-560 nm, 430-550 nm, 430-540 nm, 430-530 nm, 430-520 nm, 430-510 nm, 440-600 nm, 440-590 nm, 440-580 nm, 440-570 nm, 440-560 nm, 440-550 nm, 440-540 nm, 440-530 nm, 440-520 nm, 440-510 nm, 450-600 nm, 450-590 nm, 450-580 nm, 450-570 nm, 450-560 nm, 450-550 nm, 450-540 nm, 450-530 nm, 450-520 nm, 450-510 nm, 460-600 nm, 460-590 nm, 460-580 nm, 460-570 nm, 460-560 nm, 460-550 nm, 460-540 nm, 460-530 nm, 460-520 nm, 460-510 nm, 470-600 nm, 470-590 nm, 470-580 nm, 470-570 nm, 470-560 nm, 470-550 nm, 470-540 nm, 470-530 nm, 470-520 nm, 470-510 nm, 480-600 nm, 480-590 nm, 480-580 nm, 480-570 nm, 480- 560 nm, 480 to 550 nm, 480 to 540 nm, 480 to 530 nm, 480 to 520 nm, or 480 to 510 nm, for example, may be 480 to 510 nm, but is not limited thereto.
본 발명의 다른 일 예는 다음의 단계를 포함하는 실리케이트계 형광체 조성물의 제조 방법에 관한 것이다:Another embodiment of the present invention relates to a method for preparing a silicate-based phosphor composition comprising the steps of:
탄산칼슘 (Calcium carbonate, CaCO3), 산화알루미늄 (Aluminium oxide, Al2O3), 산화규소 (Silicon Dioxide, SiO2) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 용매에 용해하여 실리케이트계 용해물을 준비하는 실리케이트계 용해물 준비 단계;Calcium carbonate (CaCO 3 ), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] are dissolved in a solvent a silicate-based lysate preparation step of preparing a silicate-based lysate;
상기 실리케이트계 용해물을 건조하여 실리케이트계 건조 혼합물을 수득하는 실리케이트계 용해물 건조 단계;a silicate-based melt drying step of drying the silicate-based melt to obtain a silicate-based dry mixture;
상기 실리케이트계 건조 혼합물을 대기 (air) 조건 하에서 열처리하여 제1 실리케이트계 하소 혼합물을 수득하는 제1 실리케이트계 하소 단계; 및a first silicate-based calcination step of heat-treating the silicate-based dry mixture under air conditions to obtain a first silicate-based calcination mixture; and
상기 제1 실리케이트계 하소 혼합물을 혼합 가스 조건 하에서 열처리하여 제2 실리케이트계 하소 혼합물을 수득하는 제2 실리케이트계 하소 단계.A second silicate-based calcination step of heat-treating the first silicate-based calcined mixture under mixed gas conditions to obtain a second silicate-based calcined mixture.
본 발명에 있어서 실리케이트계 용해물 준비 단계는 탄산칼슘 (Calcium carbonate, CaCO3), 산화알루미늄 (Aluminium oxide, Al2O3), 산화규소 (Silicon Dioxide, SiO2) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 건식 혼합하고 용매에 용해하여 실리케이트계 용해물을 준비하는 것일 수 있다.In the present invention, the silicate-based melt preparation step is calcium carbonate (Calcium carbonate, CaCO 3 ), aluminum oxide (Aluminium oxide, Al 2 O 3 ), silicon oxide (Silicon Dioxide, SiO 2 ) and europium oxide [Europium (III) oxide, Eu 2 O 3 ] may be dry mixed and dissolved in a solvent to prepare a silicate-based lysate.
본 발명에 있어서 용매는 증류수, 황산 수용액, 질산 수용액, 및 염산 수용액으로 이루어진 군으로부터 선택되는 어느 하나인 것일 수 있으며, 예를 들어, 증류수일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the solvent may be any one selected from the group consisting of distilled water, sulfuric acid aqueous solution, nitric acid aqueous solution, and hydrochloric acid aqueous solution, for example, distilled water, but is not limited thereto.
본 발명에 있어서 용해물의 상 (phase)은 수용액상일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the phase of the lysate may be an aqueous phase, but is not limited thereto.
본 발명에 있어서 실리케이트계 용해물 건조 단계는 100 내지 200℃, 100 내지 180℃, 100 내지 160℃, 120 내지 200℃, 120 내지 180℃, 또는 120 내지 160℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 150℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the silicate-based melt drying step may be performed under a temperature condition of 100 to 200 ℃, 100 to 180 ℃, 100 to 160 ℃, 120 to 200 ℃, 120 to 180 ℃, or 120 to 160 ℃, , for example, may be carried out under a temperature condition of 150 ℃, but is not limited thereto.
본 발명에 있어서 실리케이트계 용해물 건조 단계는 12 내지 72시간, 12 내지 60시간, 12 내지 48시간, 12 내지 36시간 또는 12 내지 24시간 동안 수행되는 것일 수 있으며, 예를 들어, 12시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the silicate-based melt drying step may be performed for 12 to 72 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, or 12 to 24 hours, for example, performed for 12 hours. may be, but is not limited thereto.
실리케이트계 용해물 건조 단계가 12시간 보다 적게 수행되는 경우, 실리케이트계 용해물에 포함되는 용매가 충분히 증발되지 못하고, 용매가 잔류하여 실리케이트계 형광체 조성물이 오염될 수 있다.When the silicate-based melt drying step is performed for less than 12 hours, the solvent contained in the silicate-based melt may not sufficiently evaporate, and the solvent may remain, thereby contaminating the silicate-based phosphor composition.
본 발명에 있어서 제1 실리케이트계 하소 단계는 실리케이트계 용해물 건조 단계를 수행한 실리케이트계 건조 혼합물을 열처리하여 제1 실리케이트계 하소 혼합물을 수득하는 것일 수 있다.In the present invention, the first silicate-based calcination step may be to obtain a first silicate-based calcination mixture by heat-treating the silicate-based dry mixture that has been subjected to the silicate-based melt drying step.
본 발명에 있어서 제1 실리케이트계 하소 단계는 700 내지 1100℃, 700 내지 1050℃, 700 내지 1000℃, 700 내지 950℃, 700 내지 900℃, 750 내지 1100℃, 750 내지 1050℃, 750 내지 1000℃, 750 내지 950℃, 또는 750 내지 900℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 750 내지 900℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the first silicate-based calcination step is 700 to 1100 °C, 700 to 1050 °C, 700 to 1000 °C, 700 to 950 °C, 700 to 900 °C, 750 to 1100 °C, 750 to 1050 °C, 750 to 1000 °C , 750 to 950 ° C., or may be carried out under a temperature condition of 750 to 900 ° C. For example, it may be carried out under a temperature condition of 750 to 900 ° C., but is not limited thereto.
본 발명에 있어서 제1 실리케이트계 하소 단계는 6 내지 24시간, 6 내지 20시간, 6 내지 16시간, 6 내지 12시간 또는 6 내지 8시간 동안 수행되는 것일 수 있으며, 예를 들어, 6 내지 8시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the first silicate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, 6 to 8 hours. It may be performed during, but is not limited thereto.
본 발명에 있어서 제2 실리케이트계 하소 단계는 제1 실리케이트계 하소 혼합물을 하소하여 제2 실리케이트계 하소 혼합물을 수득하는 단계일 수 있다.In the present invention, the second silicate-based calcination step may be a step of calcining the first silicate-based calcination mixture to obtain a second silicate-based calcination mixture.
본 발명에 있어서 제2 실리케이트계 하소 단계는 700 내지 1100℃, 700 내지 1050℃, 700 내지 1000℃, 750 내지 1100℃, 750 내지 1050℃, 750 내지 1000℃, 800 내지 1100℃, 800 내지 1050℃, 800 내지 1000℃, 900 내지 1100℃, 900 내지 1050℃, 또는 900 내지 1000℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 900 내지 1000℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the second silicate-based calcination step is 700 to 1100 °C, 700 to 1050 °C, 700 to 1000 °C, 750 to 1100 °C, 750 to 1050 °C, 750 to 1000 °C, 800 to 1100 °C, 800 to 1050 °C , 800 to 1000 ° C, 900 to 1100 ° C, 900 to 1050 ° C, or 900 to 1000 ° C. It is not limited.
본 발명에 있어서 제2 실리케이트계 하소 단계는 6 내지 24시간, 6 내지 20시간, 6 내지 16시간, 8 내지 24 시간, 8 내지 20 시간, 8 내지 16 시간, 10 내지 24 시간, 10 내지 20 시간 또는 10 내지 16 시간 동안 수행되는 것일 수 있으며, 예를 들어, 10 내지 16 시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the second silicate-based calcination step is 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 8 to 24 hours, 8 to 20 hours, 8 to 16 hours, 10 to 24 hours, 10 to 20 hours. Alternatively, it may be performed for 10 to 16 hours, for example, it may be performed for 10 to 16 hours, but is not limited thereto.
본 발명의 일 구현예에서, 제2 실리케이트계 하소 단계는 도핑되는 희토류 금속 이온의 환원을 위해 H2 및 N2 가스를 포함하고, 이를 제외한 다른 종류의 가스는 포함하지 않는 혼합 가스 조건 하에서 수행되는 것일 수 있다.In one embodiment of the present invention, the second silicate-based calcination step includes H 2 and N 2 gas for the reduction of doped rare earth metal ions, and is performed under a mixed gas condition that does not include other types of gases. it could be
본 발명에 있어서 혼합 가스는 전체 가스의 몰 기체 분율을 기준으로 H2 가스를 5 내지 10%, 5 내지 9%, 5 내지 8%, 5 내지 7% 또는 5 내지 6% 포함하는 것일 수 있으며, 예를 들어, 5% 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the mixed gas may include 5 to 10%, 5 to 9%, 5 to 8%, 5 to 7%, or 5 to 6% of H 2 gas based on the molar gas fraction of the total gas, For example, it may include 5%, but is not limited thereto.
본 발명에 있어서 혼합 가스는 전체 가스의 몰 기체 분율을 기준으로 N2 가스를 90 내지 95%, 91 내지 95%, 92 내지 95%, 93 내지 95% 또는 94 내지 95% 포함하는 것일 수 있으며, 예를 들어, 95% 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the mixed gas may include 90 to 95%, 91 to 95%, 92 to 95%, 93 to 95%, or 94 to 95% of N 2 gas based on the molar gas fraction of the total gas, For example, it may include 95%, but is not limited thereto.
본 발명에 있어서 실리케이트계 형광체 제조 방법은 제2 실리케이트계 하소 단계가 완료된 후, 제2 실리케이트계 하소 혼합물을 분쇄하는 분쇄 단계를 더 포함하는 것일 수 있다.In the present invention, the method for producing a silicate-based phosphor may further include a pulverization step of pulverizing the second silicate-based calcination mixture after the second silicate-based calcination step is completed.
본 발명에 있어서 분쇄 단계는 미분쇄기 또는 초분쇄기 중 어느 하나인 것으로 하소 혼합물을 분쇄하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the pulverizing step may be pulverizing the calcined mixture using either a fine pulverizer or an ultra pulverizer, but is not limited thereto.
본 발명에 있어서 미분쇄기는 볼 밀 (ball mill), 진동 밀 (vibration mill), 롤러 밀 (roller mill), 제트 밀 (jet mill) 및 유성 밀 (Planetary mill)로 이루어진 군으로부터 선택되는 어느 하나인 것일 수 있으며, 예를 들어, 볼 밀일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the pulverizer is any one selected from the group consisting of a ball mill, a vibration mill, a roller mill, a jet mill, and a planetary mill. may be, for example, may be a ball mill, but is not limited thereto.
본 발명에 있어서 분쇄 단계는 6 내지 24시간, 6 내지 20시간, 6 내지 16시간, 6 내지 12시간 또는 6 내지 8시간 동안 수행되는 것일 수 있으며, 예를 들어, 6시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the grinding step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, it may be performed for 6 hours. , but is not limited thereto.
본 발명에 있어서 분쇄 단계는 6시간 미만 수행되는 경우, 실리케이트계 형광체 조성물이 충분한 분쇄되지 않아, 조성물을 분쇄한 분말의 균일도가 떨어지므로 치아에 적용 (도포) 시 매끈한 표면을 구현하는 것이 곤란할 수 있다.In the present invention, when the pulverization step is performed for less than 6 hours, the silicate-based phosphor composition is not pulverized sufficiently, and the uniformity of the pulverized powder of the composition is lowered, so it may be difficult to implement a smooth surface when applied (applied) to the teeth. .
본 발명의 또 다른 일 예는 화학식 1로 표시되는 실리케이트계 형광체 조성물을 포함하는 치과용 조성물을 제공하는 것이다.Another embodiment of the present invention is to provide a dental composition comprising a silicate-based phosphor composition represented by Formula 1.
[화학식 1][Formula 1]
(AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
본 발명에 있어서 치과용 조성물의 제형은 치아 수복물, 치아 보철물 및 치아 보형물 표면처리제로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.The formulation of the dental composition in the present invention may be any one or more selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis, but is not limited thereto.
본 발명에 있어서 치아는 자연치 및/또는 인공치를 의미하는 것일 수 있다.In the present invention, teeth may refer to natural and/or artificial teeth.
본 발명의 또 다른 일 예는 다음의 단계를 포함하는 실리케이트계 형광체 조성물의 도포 방법에 관한 것이다:Another embodiment of the present invention relates to a method of applying a silicate-based phosphor composition comprising the steps of:
화학식 1로 표시되는 형광체 조성물 및 파우더를 포함하는 실리케이트계 분말 혼합물, 및 바인더를 혼합하여 실리케이트계 도포물을 준비하는 실리케이트계 형광체 조성물 혼합 단계;A silicate-based phosphor composition mixing step of preparing a silicate-based coating material by mixing a silicate-based powder mixture comprising the phosphor composition and powder represented by Formula 1, and a binder;
대상체에 상기 실리케이트계 도포물을 도포하는 실리케이트계 도포물 도포 단계; 및a silicate-based coating material application step of applying the silicate-based coating material to an object; and
대상체에 도포된 실리케이트계 도포물을 40 내지 60 ℃/분의 승온 속도로 300 내지 900℃의 온도 조건까지 승온시키고 20 내지 40분 동안 등온 상태로 유지하는 실리케이트계 도포물 열 처리 단계.A silicate-based coating heat treatment step of raising the temperature of the silicate-based coating applied to the object to a temperature condition of 300 to 900°C at a temperature increase rate of 40 to 60°C/min and maintaining the isothermal state for 20 to 40 minutes.
[화학식 1][Formula 1]
(AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
본 발명에 있어서 파우더는 치과용 글레이즈 파우더로서, 인공 치아에 광택을 부여하여 심미감을 일으키게 하기 위한 치과 재료를 의미하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the powder is a dental glaze powder, and may mean a dental material for giving an artificial tooth a gloss to create an aesthetic feeling, but is not limited thereto.
본 발명에 있어서 실리케이트계 분말 혼합물은 화학식 1로 표시되는 형광체 조성물 및 파우더를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the silicate-based powder mixture may include the phosphor composition and powder represented by Formula 1, but is not limited thereto.
본 발명에 있어서 실리케이트계 분말 혼합물에 포함되는 실리케이트계 형광체 조성물 및 파우더의 중량비 (w/w%)는 2:8인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the silicate-based phosphor composition and the powder included in the silicate-based powder mixture may be 2:8, but is not limited thereto.
본 발명에 있어서 바인더는 프로필렌 글리콜 (propylene glycol)일 수 있으나, 이에 한정되는 것은 아니고, 실리케이트계 형광체 조성물의 성형성을 용이하게 하기 위하여 적절한 것을 이용할 수 있다.In the present invention, the binder may be propylene glycol, but is not limited thereto, and an appropriate binder may be used to facilitate moldability of the silicate-based phosphor composition.
본 발명에 있어서 실리케이트계 도포물에 포함되는 실리케이트계 분말 혼합물의 중량비 (w/w%)는 50 내지 70 중량%, 50 내지 65 중량%, 50 내지 60 중량%, 55 내지 70 중량%, 55 내지 65 중량% 또는 55 내지 60 중량%일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the silicate-based powder mixture contained in the silicate-based coating material is 50 to 70% by weight, 50 to 65% by weight, 50 to 60% by weight, 55 to 70% by weight, 55 to It may be 65% by weight or 55 to 60% by weight, but is not limited thereto.
본 발명에 있어서 실리케이트계 도포물에 포함되는 바인더의 중량비 (w/w%)는 30 내지 50 중량%, 30 내지 45 중량%, 35 내지 50 중량%, 35 내지 45 중량%, 40 내지 50 중량% 또는 40 내지 45 중량%일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the binder contained in the silicate-based coating material is 30 to 50 wt%, 30 to 45 wt%, 35 to 50 wt%, 35 to 45 wt%, 40 to 50 wt% Or it may be 40 to 45% by weight, but is not limited thereto.
본 발명에 있어서 실리케이트계 도포물은 대상체에 적절히 도포되기 위한 점도를 갖도록 실리케이트계 분말 혼합물 및 바인더를 혼합한 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the silicate-based coating material may be a mixture of a silicate-based powder mixture and a binder to have a viscosity to be properly applied to an object, but is not limited thereto.
본 발명에 있어서 실리케이트계 도포물 열 처리 단계의 승온 속도는 40 내지 60 ℃/분, 40 내지 58 ℃/분, 40 내지 56 ℃/분, 40 내지 54 ℃/분, 40 내지 52 ℃/분, 42 내지 60 ℃/분, 42 내지 58 ℃/분, 42 내지 56 ℃/분, 42 내지 54 ℃/분, 42 내지 52 ℃/분, 44 내지 60 ℃/분, 44 내지 58 ℃/분, 44 내지 56 ℃/분, 44 내지 54 ℃/분, 44 내지 52 ℃/분, 46 내지 60 ℃/분, 46 내지 58 ℃/분, 46 내지 56 ℃/분, 46 내지 54 ℃/분, 46 내지 52 ℃/분, 48 내지 60 ℃/분, 48 내지 58 ℃/분, 48 내지 56 ℃/분, 48 내지 54 ℃/분 또는 48 내지 52 ℃/분 일 수 있으며, 예를 들어, 48 내지 52 ℃/분일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the temperature increase rate of the silicate-based coating heat treatment step is 40 to 60 °C/min, 40 to 58 °C/min, 40 to 56 °C/min, 40 to 54 °C/min, 40 to 52 °C/min, 42 to 60 °C/min, 42 to 58 °C/min, 42 to 56 °C/min, 42 to 54 °C/min, 42 to 52 °C/min, 44 to 60 °C/min, 44 to 58 °C/min, 44 to 56 °C/min, 44 to 54 °C/min, 44 to 52 °C/min, 46 to 60 °C/min, 46 to 58 °C/min, 46 to 56 °C/min, 46 to 54 °C/min, 46 to 52 °C/min, 48 to 60 °C/min, 48 to 58 °C/min, 48 to 56 °C/min, 48 to 54 °C/min, or 48 to 52 °C/min, for example, 48 to 52 °C/min. It may be °C / min, but is not limited thereto.
본 발명에 있어서 실리케이트계 열 처리 단계는 300 내지 900℃, 300 내지 800℃, 300 내지 700℃, 300 내지 600℃, 400 내지 900℃, 400 내지 800℃, 400 내지 700℃, 400 내지 600℃, 500 내지 900℃, 500 내지 800℃, 500 내지 700℃, 또는 500 내지 600℃의 온도 조건에서 수행되는 것일 수 있으며, 예를 들어 500 내지 600℃의 온도 조건에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the silicate-based heat treatment step is 300 to 900 ℃, 300 to 800 ℃, 300 to 700 ℃, 300 to 600 ℃, 400 to 900 ℃, 400 to 800 ℃, 400 to 700 ℃, 400 to 600 ℃, 500 to 900 ℃, 500 to 800 ℃, 500 to 700 ℃, or may be carried out at a temperature condition of 500 to 600 ℃, for example, it may be carried out at a temperature condition of 500 to 600 ℃, but limited thereto it is not
본 발명에 있어서 실리케이트계 열 처리 단계는 20 내지 40 분, 20 내지 35 분, 25 내지 40 분 또는 25 내지 30 분 동안 등온 상태를 유지하는 것일 수 있으며, 예를 들어, 25 내지 30 분 동안 등온 상태를 유지하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the silicate-based heat treatment step may be to maintain an isothermal state for 20 to 40 minutes, 20 to 35 minutes, 25 to 40 minutes, or 25 to 30 minutes, for example, isothermal state for 25 to 30 minutes. may be to maintain, but is not limited thereto.
본 발명의 또 다른 일 예는 화학식 2로 표시되는 포스페이트계 형광체 조성물에 관한 것이다.Another embodiment of the present invention relates to a phosphate-based phosphor composition represented by the formula (2).
[화학식 2][Formula 2]
Rb(AE1-xREE3x)PO4 Rb(AE 1-x REE3 x )PO 4
본 발명의 포스페이트계 형광체 조성물에 있어서 용어 “모체 결정 물질”은 탄산루비듐 (Rubidium carbonate, RbCO3)을 의미하는 것일 수 있다.In the phosphate-based phosphor composition of the present invention, the term “mother crystalline material” may mean rubidium carbonate (RbCO 3 ).
본 발명에 있어서 REE3은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나인 희토류 금속 (rare earth elements, REE)일 수 있으며, 예를 들어, 유로퓸일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, REE3 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd) ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and thulium (Tm) may be any one selected from the group consisting of rare earth elements (REE), for example, For example, it may be europium, but is not limited thereto.
본 발명에 있어서 x는 0<x≤0.15인 것일 수 있고, 이는 x가 0은 포함하지 않고 0.15를 포함하되, 0과 0.15의 사이의 값을 갖는 것임을 의미하는 것일 수 있다.In the present invention, x may be 0<x≤0.15, which may mean that x does not include 0 but includes 0.15, but has a value between 0 and 0.15.
본 발명에 있어서 화학식 2의 x는 화학식에서 모체결정의 금속 AE 자리에 도핑되는 희토류 금속 REE3의 비율이며, 고상법 및 액상법 등 합성법에 따라 wt% 또는 mol%로 표기할 수 있다. 예를 들어, 5 wt% 또는 5 mol%인 경우 x는 0.05인 것일 수 있다.In the present invention, x in Formula 2 is the ratio of the rare earth metal REE3 doped to the metal AE site of the parent crystal in the formula, and can be expressed as wt% or mol% according to synthesis methods such as solid-phase method and liquid-phase method. For example, in the case of 5 wt% or 5 mol%, x may be 0.05.
본 발명에 있어서 화학식 2의 x는 0.01 내지 0.15, 0.01 내지 0.14, 0.01 내지 0.13, 0.01 내지 0.12, 0.01 내지 0.11, 0.01 내지 0.10, 0.01 내지 0.09, 0.01 내지 0.08, 0.01 내지 0.07, 0.01 내지 0.06, 0.01 내지 0.05, 0.01 내지 0.04 또는 0.01 내지 0.03일 수 있으며, 예를 들어, 0.03일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, x in Formula 2 is 0.01 to 0.15, 0.01 to 0.14, 0.01 to 0.13, 0.01 to 0.12, 0.01 to 0.11, 0.01 to 0.10, 0.01 to 0.09, 0.01 to 0.08, 0.01 to 0.07, 0.01 to 0.06, 0.01 to 0.05, 0.01 to 0.04, or 0.01 to 0.03, for example, may be 0.03, but is not limited thereto.
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.99Eu0.01)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.99 Eu 0.01 )PO 4 .
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.97Eu0.03)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.97 Eu 0.03 )PO 4 .
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.95Eu0.05)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.95 Eu 0.05 )PO 4 .
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.93Eu0.07)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.93 Eu 0.07 )PO 4 .
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.90Eu0.10)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.90 Eu 0.10 )PO 4 .
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.87Eu0.13)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.87 Eu 0.13 )PO 4 .
본 발명의 일 구현예에서, 화학식 2로 표시되는 포스페이트계 형광체 조성물은 Rb(Ca0.85Eu0.15)PO4인 것일 수 있다.In one embodiment of the present invention, the phosphate-based phosphor composition represented by Formula 2 may be Rb(Ca 0.85 Eu 0.15 )PO 4 .
본 발명에 있어서 포스페이트계 형광체 조성물의 발광 파장은 410 내지 600 nm, 410 내지 590 nm, 410 내지 580 nm, 410 내지 570 nm, 410 내지 560 nm, 410 내지 550 nm, 410 내지 540 nm, 410 내지 530 nm, 410 내지 520 nm, 420 내지 600 nm, 420 내지 590 nm, 420 내지 580 nm, 420 내지 570 nm, 420 내지 560 nm, 420 내지 550 nm, 420 내지 540 nm, 420 내지 530 nm, 420 내지 520 nm, 430 내지 600 nm, 430 내지 590 nm, 430 내지 580 nm, 430 내지 570 nm, 430 내지 560 nm, 430 내지 550 nm, 430 내지 540 nm, 430 내지 530 nm, 430 내지 520 nm, 440 내지 600 nm, 440 내지 590 nm, 440 내지 580 nm, 440 내지 570 nm, 440 내지 560 nm, 440 내지 550 nm, 440 내지 540 nm, 440 내지 530 nm, 440 내지 520 nm, 450 내지 600 nm, 450 내지 590 nm, 450 내지 580 nm, 450 내지 570 nm, 450 내지 560 nm, 450 내지 550 nm, 450 내지 540 nm, 450 내지 530 nm, 450 내지 520 nm, 460 내지 600 nm, 460 내지 590 nm, 460 내지 580 nm, 460 내지 570 nm, 460 내지 560 nm, 460 내지 550 nm, 460 내지 540 nm, 460 내지 530 nm, 460 내지 520 nm, 470 내지 600 nm, 470 내지 590 nm, 470 내지 580 nm, 470 내지 570 nm, 470 내지 560 nm, 470 내지 550 nm, 470 내지 540 nm, 470 내지 530 nm, 470 내지 520 nm, 480 내지 600 nm, 480 내지 590 nm, 480 내지 580 nm, 480 내지 570 nm, 480 내지 560 nm, 480 내지 550 nm, 480 내지 540 nm, 480 내지 530 nm 또는 480 내지 520 nm 일 수 있으며, 예를 들어, 480 내지 510 nm일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the emission wavelength of the phosphate-based phosphor composition is 410 to 600 nm, 410 to 590 nm, 410 to 580 nm, 410 to 570 nm, 410 to 560 nm, 410 to 550 nm, 410 to 540 nm, 410 to 530 nm, 410-520 nm, 420-600 nm, 420-590 nm, 420-580 nm, 420-570 nm, 420-560 nm, 420-550 nm, 420-540 nm, 420-530 nm, 420-520 nm, 430-600 nm, 430-590 nm, 430-580 nm, 430-570 nm, 430-560 nm, 430-550 nm, 430-540 nm, 430-530 nm, 430-520 nm, 440-600 nm, 440-590 nm, 440-580 nm, 440-570 nm, 440-560 nm, 440-550 nm, 440-540 nm, 440-530 nm, 440-520 nm, 450-600 nm, 450-590 nm, 450-580 nm, 450-570 nm, 450-560 nm, 450-550 nm, 450-540 nm, 450-530 nm, 450-520 nm, 460-600 nm, 460-590 nm, 460-580 nm, 460-570 nm, 460-560 nm, 460-550 nm, 460-540 nm, 460-530 nm, 460-520 nm, 470-600 nm, 470-590 nm, 470-580 nm, 470-570 nm, 470-560 nm, 470-550 nm, 470-540 nm, 470-530 nm, 470-520 nm, 480-600 nm, 480- 590 nm, 480-580 nm, 480-570 nm, 480-560 nm, 480-550 nm, 480-540 nm, 480-530 nm or 480-520 nm, for example, 480-510 nm However, the present invention is not limited thereto.
본 발명의 또 다른 일 예는 다음의 단계를 포함하는 포스페이트계 형광체 조성물의 제조 방법에 관한 것이다:Another embodiment of the present invention relates to a method for preparing a phosphate-based phosphor composition comprising the steps of:
탄산루비듐 (Rubidium carbonate, Rb2CO3), 탄산칼슘 (Calcium carbonate, CaCO3), 오산화인 (Phosphorus pentoxide, P2O5) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 용매에 용해하여 포스페이트계 용해물을 준비하는 포스페이트계 용해물 준비 단계;Rubidium carbonate (Rb 2 CO 3 ), calcium carbonate (CaCO 3 ), phosphorus pentoxide (P 2 O 5 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] as a solvent A phosphate-based lysate preparation step of dissolving in to prepare a phosphate-based lysate;
포스페이트계 용해물을 건조하여 포스페이트계 건조 혼합물을 수득하는 포스페이트계 용해물 건조 단계;a phosphate-based melt drying step of drying the phosphate-based melt to obtain a phosphate-based dry mixture;
포스페이트계 건조 혼합물을 대기 (air) 조건 하에서 열처리하여 제1 포스페이트계 하소 혼합물을 수득하는 제1 포스페이트계 하소 단계; 및a first phosphate-based calcination step of heat-treating the phosphate-based dry mixture under air conditions to obtain a first phosphate-based calcination mixture; and
상기 제1 포스페이트계 하소 혼합물을 혼합 가스 조건 하에서 열처리하여 제2 포스페이트계 하소 혼합물을 수득하는 제2 포스페이트계 하소 단계.A second phosphate-based calcination step of heat-treating the first phosphate-based calcined mixture under mixed gas conditions to obtain a second phosphate-based calcined mixture.
본 발명에 있어서 포스페이트계 용해물 준비 단계는 탄산루비듐 (Rubidium carbonate, Rb2CO3), 탄산칼슘 (Calcium carbonate, CaCO3), 오산화인 (Phosphorus pentoxide, P2O5) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 용매에 용해한 포스페이트계 용해물을 준비하는 것일 수 있다.In the present invention, the phosphate-based lysate preparation step is rubidium carbonate (Rb 2 CO 3 ), calcium carbonate (CaCO 3 ), phosphorus pentoxide (P 2 O 5 ) and europium oxide [Europium ( III) oxide, Eu 2 O 3 ] may be prepared by dissolving a phosphate-based lysate in a solvent.
본 발명에 있어서 포스페이트계 용해물 건조 단계는 100 내지 200℃, 100 내지 180℃, 100 내지 160℃, 120 내지 200℃, 120 내지 180℃, 또는 120 내지 160℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 150℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the phosphate-based melt drying step may be carried out under a temperature condition of 100 to 200 ℃, 100 to 180 ℃, 100 to 160 ℃, 120 to 200 ℃, 120 to 180 ℃, or 120 to 160 ℃, , for example, may be carried out under a temperature condition of 150 ℃, but is not limited thereto.
본 발명에 있어서 포스페이트계 용해물 건조 단계는 12 내지 72시간, 12 내지 60시간, 12 내지 48시간, 12 내지 36시간 또는 12 내지 24시간 동안 수행되는 것일 수 있으며, 예를 들어, 12시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the drying step of the phosphate-based lysate may be performed for 12 to 72 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, or 12 to 24 hours, for example, it is performed for 12 hours. may be, but is not limited thereto.
포스페이트계 용해물 건조 단계가 12시간 보다 적게 수행되는 경우, 용해물에 포함되는 용매가 충분히 증발되지 못하고, 용매가 잔류하여 포스페이트계 형광체 조성물이 오염될 수 있다.If the phosphate-based melt drying step is performed for less than 12 hours, the solvent contained in the melt may not sufficiently evaporate, and the solvent may remain, thereby contaminating the phosphate-based phosphor composition.
본 발명에 있어서 제1 포스페이트계 하소 단계는 포스페이트계 용해물 건조 단계를 수행한 포스페이트계 건조 혼합물을 열처리하여 제1 포스페이트계 하소 혼합물을 수득하는 것일 수 있다.In the present invention, the first phosphate-based calcination step may be to obtain a first phosphate-based calcination mixture by heat-treating the phosphate-based dry mixture in which the phosphate-based melt drying step has been performed.
본 발명에 있어서 제1 포스페이트계 하소 단계는 700 내지 1100℃, 700 내지 1000℃, 700 내지 900℃, 750 내지 1100℃, 750 내지 1000℃, 또는 750 내지 900℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 800℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the first phosphate-based calcination step may be performed under a temperature condition of 700 to 1100 ℃, 700 to 1000 ℃, 700 to 900 ℃, 750 to 1100 ℃, 750 to 1000 ℃, or 750 to 900 ℃, , for example, may be carried out under a temperature condition of 800 ℃, but is not limited thereto.
본 발명에 있어서 제1 포스페이트계 하소 단계는 6 내지 24시간, 6 내지 20시간, 6 내지 16시간, 6 내지 12시간 또는 6 내지 8시간 동안 수행되는 것일 수 있으며, 예를 들어, 6시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the first phosphate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, performed for 6 hours may be, but is not limited thereto.
본 발명에 있어서 제2 포스페이트계 하소 단계는 제1 포스페이트계 하소 혼합물을 열처리하여 제2 포스페이트계 하소 혼합물을 수득하는 단계일 수 있다.In the present invention, the second phosphate-based calcination step may be a step of heat-treating the first phosphate-based calcination mixture to obtain a second phosphate-based calcination mixture.
본 발명에 있어서 제2 포스페이트계 하소 단계는 700 내지 1100℃, 700 내지 1000℃, 750 내지 1100℃, 750 내지 1000℃, 800 내지 1100℃, 800 내지 1000℃, 900 내지 1100℃, 또는 900 내지 1000℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 950℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the second phosphate-based calcination step is 700 to 1100 °C, 700 to 1000 °C, 750 to 1100 °C, 750 to 1000 °C, 800 to 1100 °C, 800 to 1000 °C, 900 to 1100 °C, or 900 to 1000 °C. It may be carried out under a temperature condition of ℃, for example, it may be carried out under a temperature condition of 950 ℃, but is not limited thereto.
본 발명에 있어서 제2 포스페이트계 하소 단계는 6 내지 24시간, 6 내지 20시간, 6 내지 16시간 또는 6 내지 12시간 동안 수행되는 것일 수 있으며, 예를 들어, 12시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the second phosphate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, or 6 to 12 hours, for example, it may be carried out for 12 hours, The present invention is not limited thereto.
본 발명의 일 구현예에서, 제2 포스페이트계 하소 단계는 도핑되는 희토류 금속 이온의 환원을 위해 H2 및 N2 가스를 포함하고, 이를 제외한 다른 종류의 가스는 포함하지 않는 혼합 가스 조건 하에서 수행되는 것일 수 있다.In one embodiment of the present invention, the second phosphate-based calcination step includes H 2 and N 2 gas for the reduction of doped rare earth metal ions, and other types of gases are not included. It is performed under a mixed gas condition. it could be
본 발명에 있어서 혼합 가스는 전체 가스의 몰 기체 분율을 기준으로 H2 가스를 5 내지 10%, 5 내지 9%, 5 내지 8%, 5 내지 7% 또는 5 내지 6% 포함하는 것일 수 있으며, 예를 들어, 5% 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the mixed gas may include 5 to 10%, 5 to 9%, 5 to 8%, 5 to 7%, or 5 to 6% of H 2 gas based on the molar gas fraction of the total gas, For example, it may include 5%, but is not limited thereto.
본 발명에 있어서 혼합 가스는 전체 가스의 몰 기체 분율을 기준으로 N2 가스를 90 내지 95%, 91 내지 95%, 92 내지 95%, 93 내지 95% 또는 94 내지 95% 포함하는 것일 수 있으며, 예를 들어, 95% 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the mixed gas may include 90 to 95%, 91 to 95%, 92 to 95%, 93 to 95%, or 94 to 95% of N 2 gas based on the molar gas fraction of the total gas, For example, it may include 95%, but is not limited thereto.
본 발명에 있어서 포스페이트계 형광체 제조 방법은 제2 포스페이트계 하소 단계가 완료된 후, 제2 포스페이트계 하소 혼합물을 분쇄하는 분쇄 단계를 더 포함하는 것일 수 있다.In the present invention, the method for producing a phosphate-based phosphor may further include a pulverization step of pulverizing the second phosphate-based calcination mixture after the second phosphate-based calcination step is completed.
본 발명의 또 다른 일 예는 화학식 2로 표시되는 포스페이트계 형광체 조성물을 포함하는 치과용 조성물을 제공하는 것이다.Another embodiment of the present invention is to provide a dental composition comprising a phosphate-based phosphor composition represented by Chemical Formula 2.
[화학식 2][Formula 2]
Rb(AE1-xREE3x)PO4 Rb(AE 1-x REE3 x )PO 4
본 발명에 있어서 치과용 조성물의 제형은 치아 수복물, 치아 보철물 및 치아 보형물 표면처리제로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.The formulation of the dental composition in the present invention may be any one or more selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis, but is not limited thereto.
본 발명에 있어서 치아는 자연치 및/또는 인공치를 의미하는 것일 수 있다.In the present invention, teeth may refer to natural and/or artificial teeth.
본 발명의 또 다른 일 예는 다음의 단계를 포함하는 포스페이트계 형광체 조성물의 도포 방법에 관한 것이다:Another embodiment of the present invention relates to a method for applying a phosphate-based phosphor composition comprising the steps of:
화학식 2로 표시되는 형광체 조성물 및 파우더를 포함하는 포스페이트계 분말 혼합물, 및 바인더를 혼합하여 포스페이트계 도포물을 준비하는 포스페이트계 혼합 단계;A phosphate-based mixing step of preparing a phosphate-based coating material by mixing a phosphate-based powder mixture comprising a phosphor composition represented by Formula 2 and a powder, and a binder;
대상체에 상기 포스페이트계 도포물을 도포하는 포스페이트계 도포물 도포 단계; 및a phosphate-based coating material application step of applying the phosphate-based coating material to an object; and
대상체에 도포된 포스페이트계 도포물을 40 내지 60 ℃/분의 승온 속도로 650 내지 750℃의 온도 조건까지 승온시키고 10 내지 40분 동안 등온 상태로 유지하는 포스페이트계 도포물 열 처리 단계.A phosphate-based coating heat treatment step of raising the temperature of the phosphate-based coating applied to the object to a temperature condition of 650 to 750° C. at a temperature increase rate of 40 to 60° C./min and maintaining the isothermal state for 10 to 40 minutes.
[화학식 2][Formula 2]
Rb(AE1-xREE3x)PO4 Rb(AE 1-x REE3 x )PO 4
본 발명에 있어서 포스페이트계 분말 혼합물은 화학식 2로 표시되는 형광체 조성물 및 파우더를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the phosphate-based powder mixture may include the phosphor composition represented by Formula 2 and the powder, but is not limited thereto.
본 발명에 있어서 포스페이트계 분말 혼합물에 포함되는 포스페이트계 형광체 조성물 및 파우더의 중량비 (w/w%)는 1:9인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the phosphate-based phosphor composition and the powder included in the phosphate-based powder mixture may be 1:9, but is not limited thereto.
본 발명에 있어서 바인더는 부탄디올 (butanediol), 프로필렌 글리콜 (propylene glycol) 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니고, 포스페이트계 형광체 조성물의 성형성을 용이하게 하기 위하여 적절한 것을 이용할 수 있다.In the present invention, the binder may be butanediol, propylene glycol, or a combination thereof, but is not limited thereto, and an appropriate binder may be used to facilitate moldability of the phosphate-based phosphor composition.
본 발명에 있어서 포스페이트계 도포물에 포함되는 포스페이트계 분말 혼합물의 중량비 (w/w%)는 50 내지 70 중량%, 50 내지 65 중량%, 50 내지 60 중량%, 55 내지 70 중량%, 55 내지 65 중량% 또는 55 내지 60 중량%일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the phosphate-based powder mixture contained in the phosphate-based coating material is 50 to 70% by weight, 50 to 65% by weight, 50 to 60% by weight, 55 to 70% by weight, 55 to It may be 65% by weight or 55 to 60% by weight, but is not limited thereto.
본 발명에 있어서 포스페이트계 도포물에 포함되는 바인더의 중량비 (w/w%)는 30 내지 50 중량%, 30 내지 45 중량%, 35 내지 50 중량%, 35 내지 45 중량%, 40 내지 50 중량% 또는 40 내지 45 중량%일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the binder included in the phosphate-based coating material is 30 to 50 wt%, 30 to 45 wt%, 35 to 50 wt%, 35 to 45 wt%, 40 to 50 wt% Or it may be 40 to 45% by weight, but is not limited thereto.
본 발명에 있어서 포스페이트계 도포물은 대상체에 적절히 도포되기 위한 점도를 갖도록 포스페이트계 분말 혼합물 및 바인더를 혼합한 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the phosphate-based coating material may be a mixture of a phosphate-based powder mixture and a binder to have a viscosity to be properly applied to an object, but is not limited thereto.
본 발명에 있어서 포스페이트계 열 처리 단계의 승온 속도는 40 내지 60 ℃/분, 40 내지 58 ℃/분, 40 내지 56 ℃/분, 40 내지 54 ℃/분, 40 내지 52 ℃/분, 42 내지 60 ℃/분, 42 내지 58 ℃/분, 42 내지 56 ℃/분, 42 내지 54 ℃/분, 42 내지 52 ℃/분, 44 내지 60 ℃/분, 44 내지 58 ℃/분, 44 내지 56 ℃/분, 44 내지 54 ℃/분, 44 내지 52 ℃/분, 46 내지 60 ℃/분, 46 내지 58 ℃/분, 46 내지 56 ℃/분, 46 내지 54 ℃/분, 46 내지 52 ℃/분, 48 내지 60 ℃/분, 48 내지 58 ℃/분, 48 내지 56 ℃/분, 48 내지 54 ℃/분 또는 48 내지 52 ℃/분 일 수 있으며, 예를 들어, 48 내지 52 ℃/분일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the temperature increase rate of the phosphate-based heat treatment step is 40 to 60 °C/min, 40 to 58 °C/min, 40 to 56 °C/min, 40 to 54 °C/min, 40 to 52 °C/min, 42 to 60 °C/min, 42 to 58 °C/min, 42 to 56 °C/min, 42 to 54 °C/min, 42 to 52 °C/min, 44 to 60 °C/min, 44 to 58 °C/min, 44 to 56 °C/min, 44-54 °C/min, 44-52 °C/min, 46-60 °C/min, 46-58 °C/min, 46-56 °C/min, 46-54 °C/min, 46-52 °C /min, 48 to 60 °C/min, 48 to 58 °C/min, 48 to 56 °C/min, 48 to 54 °C/min, or 48 to 52 °C/min, for example, 48 to 52 °C/min. minutes, but is not limited thereto.
본 발명에 있어서 포스페이트계 열 처리 단계는 650 내지 850℃, 650 내지 825℃, 650 내지 800℃, 650 내지 775℃, 700 내지 850℃, 700 내지 825℃, 700 내지 800℃, 700 내지 775℃, 725 내지 850℃, 725 내지 800℃, 725 내지 775℃의 온도 조건에서 수행되는 것일 수 있으며, 예를 들어 725 내지 775℃의 온도 조건에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the phosphate-based heat treatment step is 650 to 850 °C, 650 to 825 °C, 650 to 800 °C, 650 to 775 °C, 700 to 850 °C, 700 to 825 °C, 700 to 800 °C, 700 to 775 °C, It may be carried out at a temperature condition of 725 to 850 °C, 725 to 800 °C, and 725 to 775 °C, for example, it may be carried out at a temperature condition of 725 to 775 °C, but is not limited thereto.
본 발명에 있어서 포스페이트계 열 처리 단계는 20 내지 40 분, 20 내지 35 분, 25 내지 40 분 또는 25 내지 30 분 동안 등온 상태를 유지하는 것일 수 있으며, 예를 들어, 25 내지 30 분 동안 등온 상태를 유지하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the phosphate-based heat treatment step may be to maintain an isothermal state for 20 to 40 minutes, 20 to 35 minutes, 25 to 40 minutes, or 25 to 30 minutes, for example, isothermal state for 25 to 30 minutes. may be to maintain, but is not limited thereto.
본 발명의 또 다른 일 예는 화학식 3으로 표시되는 보레이트계 형광체 조성물에 관한 것이다.Another example of the present invention relates to a borate-based phosphor composition represented by the formula (3).
[화학식 3][Formula 3]
AE3(REE41-x-yREE5xREE6y)2(BO3)4 AE 3 (REE4 1-xy REE5 x REE6 y ) 2 (BO 3 ) 4
본 발명의 보레이트계 형광체 조성물에 있어서 용어 “모체 결정 물질”은 AE3(REE1)2(BO3)4를 의미하는 것일 수 있다.In the borate-based phosphor composition of the present invention, the term “maternal crystal material” may mean AE 3 (REE1) 2 (BO 3 ) 4 .
본 발명에 있어서 REE4는 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종인 희토류 금속 (rare earth elements, REE)일 수 있으며, 예를 들어, 란타넘일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, REE4 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , erbium (Er) and thulium (Tm) may be one selected from the group consisting of rare earth elements (REE), for example, may be lanthanum, but is not limited thereto.
본 발명에 있어서 REE5는 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종인 희토류 금속 (rare earth elements, REE)일 수 있으며, 예를 들어, 세륨일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, REE5 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , erbium (Er) and thulium (Tm) may be one selected from the group consisting of rare earth elements (REE), for example, cerium, but is not limited thereto.
본 발명에 있어서 화학식 3의 x는 0<x≤0.15인 것일 수 있고, 이는 x가 0은 포함하지 않고 0.15를 포함하되, 0과 0.15의 사이의 값을 가짐을 의미하는 것일 수 있다.In the present invention, x in Formula 3 may be 0<x≤0.15, which may mean that x does not include 0 but includes 0.15, but has a value between 0 and 0.15.
본 발명에 있어서 화학식 3의 x는 화학식에서 모체결정의 희토류 금속 REE4 자리에 도핑되는 희토류 금속 REE5의 비율이며, 고상법 및 액상법 등 합성법에 따라 wt% 또는 mol%로 표기할 수 있다. 예를 들어, REE5의 wt%가 5 wt% 또는 5 mol%인 경우 x는 0.05인 것일 수 있다.In the present invention, x in Formula 3 is the ratio of the rare earth metal REE5 doped to the REE4 site of the parent crystal in the formula, and can be expressed as wt% or mol% according to synthesis methods such as solid phase method and liquid phase method. For example, when the wt% of REE5 is 5 wt% or 5 mol%, x may be 0.05.
본 발명에 있어서 화학식 3의 x는 0.01 내지 0.15, 0.01 내지 0.14, 0.01 내지 0.13, 0.03 내지 0.15, 0.03 내지 0.14, 0.03 내지 0.13, 0.05 내지 0.15, 0.05 내지 0.14 또는 0.05 내지 0.13일 수 있으며, 예를 들어, 0.05 내지 0.13일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, x in Formula 3 may be 0.01 to 0.15, 0.01 to 0.14, 0.01 to 0.13, 0.03 to 0.15, 0.03 to 0.14, 0.03 to 0.13, 0.05 to 0.15, 0.05 to 0.14 or 0.05 to 0.13, for example, For example, it may be 0.05 to 0.13, but is not limited thereto.
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.99Ce0.01)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.99 Ce 0.01 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.97Ce0.03)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.97 Ce 0.03 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.95Ce0.05)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.95 Ce 0.05 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.93Ce0.07)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.93 Ce 0.07 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.90Ce0.10)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.90 Ce 0.10 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.87Ce0.13)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.87 Ce 0.13 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.85Ce0.15)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.85 Ce 0.15 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.99Tb0.01)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.99 Tb 0.01 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.97Tb0.03)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.97 Tb 0.03 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.95Tb 0.05)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.95 Tb 0.05 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.93Tb 0.07)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.93 Tb 0.07 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.90Tb 0.10)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.90 Tb 0.10 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.87Tb 0.13)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.87 Tb 0.13 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.85Tb 0.15)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.85 Tb 0.15 ) 2 (BO 3 ) 4 .
본 발명에 있어서 REE6은 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종인 희토류 금속 (rare earth elements, REE)일 수 있으며, 예를 들어, 터븀일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, REE6 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , erbium (Er) and thulium (Tm) may be one selected from the group consisting of rare earth elements (REE), for example, terbium, but is not limited thereto.
본 발명에 있어서 화학식 3의 y는 화학식에서 모체결정의 희토류 금속 REE4 자리에 도핑되는 희토류 금속 REE6의 비율이며, 고상법 및 액상법 등 합성법에 따라 wt% 또는 mol%로 표기할 수 있다. 예를 들어, REE6의 wt% 또는 mol%가 10 wt% 또는 10 mol%인 경우 y는 0.07인 것일 수 있다.In the present invention, y in Formula 3 is the ratio of the rare earth metal REE6 doped to the REE4 site of the parent crystal in the formula, and can be expressed in wt% or mol% according to synthesis methods such as solid phase method and liquid phase method. For example, when the wt% or mol% of REE6 is 10 wt% or 10 mol%, y may be 0.07.
본 발명에 있어서 화학식 3의 y는 0≤y≤0.15인 것일 수 있고, 이는 y가 0 및 0.15를 포함하고, 0과 0.15의 사이의 값을 가짐을 의미하는 것일 수 있다.In the present invention, y in Formula 3 may be 0≤y≤0.15, which may mean that y includes 0 and 0.15 and has a value between 0 and 0.15.
본 발명에 있어서 화학식 3의 y는 0.01 내지 0.15, 0.01 내지 0.14, 0.01 내지 0.13, 0.03 내지 0.15, 0.03 내지 0.14, 0.03 내지 0.13, 0.05 내지 0.15, 0.05 내지 0.14, 0.05 내지 0.13, 0.07 내지 0.15, 0.07 내지 0.14 또는 0.07 내지 0.13일 수 있으며, 예를 들어, 0.07 내지 0.13일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, y in Formula 3 is 0.01 to 0.15, 0.01 to 0.14, 0.01 to 0.13, 0.03 to 0.15, 0.03 to 0.14, 0.03 to 0.13, 0.05 to 0.15, 0.05 to 0.14, 0.05 to 0.13, 0.07 to 0.15, 0.07 to 0.14 or 0.07 to 0.13, for example, may be 0.07 to 0.13, but is not limited thereto.
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.92Ce0.07Tb0.01)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.92 Ce 0.07 Tb 0.01 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.90Ce0.07Tb0.03)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.90 Ce 0.07 Tb 0.03 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.88Ce0.07Tb0.05)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.88 Ce 0.07 Tb 0.05 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.86Ce0.07Tb0.07)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.86 Ce 0.07 Tb 0.07 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.83Ce0.07Tb0.10)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.83 Ce 0.07 Tb 0.10 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.80Ce0.07Tb0.13)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.80 Ce 0.07 Tb 0.13 ) 2 (BO 3 ) 4 .
본 발명의 일 구현예에서, 화학식 3으로 표시되는 보레이트계 형광체 조성물은 Ba3(La0.78Ce0.07Tb0.15)2(BO3)4인 것일 수 있다.In one embodiment of the present invention, the borate-based phosphor composition represented by Formula 3 may be Ba 3 (La 0.78 Ce 0.07 Tb 0.15 ) 2 (BO 3 ) 4 .
본 발명에 있어서 보레이트계 형광체 조성물의 발광 파장은 410 내지 600 nm, 410 내지 590 nm, 410 내지 580 nm, 410 내지 570 nm, 410 내지 560 nm, 410 내지 550 nm, 410 내지 540 nm, 410 내지 530 nm, 410 내지 520 nm, 420 내지 600 nm, 420 내지 590 nm, 420 내지 580 nm, 420 내지 570 nm, 420 내지 560 nm, 420 내지 550 nm, 420 내지 540 nm, 420 내지 530 nm, 420 내지 520 nm, 430 내지 600 nm, 430 내지 590 nm, 430 내지 580 nm, 430 내지 570 nm, 430 내지 560 nm, 430 내지 550 nm, 430 내지 540 nm, 430 내지 530 nm, 430 내지 520 nm, 440 내지 600 nm, 440 내지 590 nm, 440 내지 580 nm, 440 내지 570 nm, 440 내지 560 nm, 440 내지 550 nm, 440 내지 540 nm, 440 내지 530 nm, 440 내지 520 nm, 450 내지 600 nm, 450 내지 590 nm, 450 내지 580 nm, 450 내지 570 nm, 450 내지 560 nm, 450 내지 550 nm, 450 내지 540 nm, 450 내지 530 nm, 450 내지 520 nm, 460 내지 600 nm, 460 내지 590 nm, 460 내지 580 nm, 460 내지 570 nm, 460 내지 560 nm, 460 내지 550 nm, 460 내지 540 nm, 460 내지 530 nm, 460 내지 520 nm, 470 내지 600 nm, 470 내지 590 nm, 470 내지 580 nm, 470 내지 570 nm, 470 내지 560 nm, 470 내지 550 nm, 470 내지 540 nm, 470 내지 530 nm, 470 내지 520 nm, 480 내지 600 nm, 480 내지 590 nm, 480 내지 580 nm, 480 내지 570 nm, 480 내지 560 nm, 480 내지 550 nm, 480 내지 540 nm, 480 내지 530 nm 또는 480 내지 520 nm 일 수 있으며, 예를 들어, 480 내지 510 nm일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the light emission wavelength of the borate-based phosphor composition is 410 to 600 nm, 410 to 590 nm, 410 to 580 nm, 410 to 570 nm, 410 to 560 nm, 410 to 550 nm, 410 to 540 nm, 410 to 530 nm, 410-520 nm, 420-600 nm, 420-590 nm, 420-580 nm, 420-570 nm, 420-560 nm, 420-550 nm, 420-540 nm, 420-530 nm, 420-520 nm, 430-600 nm, 430-590 nm, 430-580 nm, 430-570 nm, 430-560 nm, 430-550 nm, 430-540 nm, 430-530 nm, 430-520 nm, 440-600 nm, 440-590 nm, 440-580 nm, 440-570 nm, 440-560 nm, 440-550 nm, 440-540 nm, 440-530 nm, 440-520 nm, 450-600 nm, 450-590 nm, 450-580 nm, 450-570 nm, 450-560 nm, 450-550 nm, 450-540 nm, 450-530 nm, 450-520 nm, 460-600 nm, 460-590 nm, 460-580 nm, 460-570 nm, 460-560 nm, 460-550 nm, 460-540 nm, 460-530 nm, 460-520 nm, 470-600 nm, 470-590 nm, 470-580 nm, 470-570 nm, 470-560 nm, 470-550 nm, 470-540 nm, 470-530 nm, 470-520 nm, 480-600 nm, 480-5 90 nm, 480-580 nm, 480-570 nm, 480-560 nm, 480-550 nm, 480-540 nm, 480-530 nm or 480-520 nm, for example, 480-510 nm However, the present invention is not limited thereto.
본 발명의 또 다른 일 예는 다음의 단계를 포함하는 보레이트계 형광체 조성물의 제조 방법에 관한 것이다:Another embodiment of the present invention relates to a method for preparing a borate-based phosphor composition comprising the steps of:
질산바륨 [Barium nitrate, Ba(NO3)2], 질산란타넘 [Lanthanum nitrate, La(NO3)3], 질산세륨 [Cerium nitrate, Ce(NO3)3] 및 붕산 (Hydrogen borate, HBO3)을 용매에 용해하여 보레이트계 용해물을 준비하는 보레이트계 용해물 준비 단계;Barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], Lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce(NO 3 ) 3 ], and Hydrogen borate, HBO 3 ) by dissolving in a solvent to prepare a borate-based lysate preparing a borate-based lysate;
보레이트계 용해물을 건조하여 보레이트계 건조 혼합물을 수득하는 보레이트계 용해물 건조 단계; 및drying the borate-based lysate to obtain a borate-based dry mixture by drying the borate-based lysate; and
보레이트계 건조 혼합물을, H2 및 N2 가스를 포함하는 혼합 가스 조건 하에서 열 처리하여 보레이트계 하소 혼합물을 수득하는 보레이트계 하소 단계.A borate-based calcination step of heat-treating the borate-based dry mixture under a mixed gas condition comprising H 2 and N 2 gas to obtain a borate-based calcination mixture.
본 발명에 있어서 보레이트계 용해물 준비 단계는 질산바륨 [Barium nitrate, Ba(NO3)2], 질산란타넘 [Lanthanum nitrate, La(NO3)3], 질산세륨 [Cerium nitrate, Ce(NO3)3] 및 붕산 (Hydrogen borate, HBO3)를 용매에 용해하여 보레이트계 용해물을 준비하는 것일 수 있다.In the present invention, the borate-based melt preparation step is barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], cerium nitrate [Cerium nitrate, Ce(NO 3 ) ) 3 ] and boric acid (Hydrogen borate, HBO 3 ) may be dissolved in a solvent to prepare a borate-based lysate.
본 발명에 있어서 보레이트계 용해물 준비 단계는 질산터븀 [Terbium nitrate, Tb(NO3)3]를 용매에 추가로 용해하여 보레이트계 용해물을 준비하는 것일 수 있다.In the present invention, the borate-based lysate preparation step may be to prepare a borate-based lysate by further dissolving terbium nitrate [Terbium nitrate, Tb(NO3)3] in a solvent.
본 발명에 있어서 보레이트계 용해물 건조 단계는 80 내지 150℃, 80 내지 140℃, 80 내지 130℃, 80 내지 120℃, 80 내지 110℃, 80 내지 100℃, 또는 80 내지 90℃의 온도 조건 하에서 수행되는 것일 수 있으며, 예를 들어, 80 내지 90℃의 온도 조건 하에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based melt drying step is performed under a temperature condition of 80 to 150 ℃, 80 to 140 ℃, 80 to 130 ℃, 80 to 120 ℃, 80 to 110 ℃, 80 to 100 ℃, or 80 to 90 ℃. It may be carried out, for example, it may be carried out under a temperature condition of 80 to 90 ℃, but is not limited thereto.
본 발명에 있어서 보레이트계 용해물 건조 단계는 12 내지 72시간, 12 내지 60시간, 12 내지 48시간, 12 내지 36시간 또는 12 내지 24시간 동안 수행되는 것일 수 있으며, 예를 들어, 12시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based lysate drying step may be performed for 12 to 72 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, or 12 to 24 hours, for example, it is performed for 12 hours. may be, but is not limited thereto.
보레이트계 용해물 건조 단계가 12시간 보다 적게 수행되는 경우, 보레이트계 용해물에 포함되는 용매가 충분히 증발되지 못하고, 용매가 잔류하여 보레이트계 형광체 조성물이 오염될 수 있다.If the borate-based melt drying step is performed for less than 12 hours, the solvent contained in the borate-based melt may not be sufficiently evaporated, and the solvent may remain, thereby contaminating the borate-based phosphor composition.
본 발명에 있어서 보레이트계 하소 단계는 보레이트계 용해물 건조 단계를 수행한 보레이트계 건조 혼합물을 열 처리하여 보레이트계 하소 혼합물을 수득하는 것일 수 있다.In the present invention, the borate-based calcination step may be to obtain a borate-based calcination mixture by heat-treating the borate-based dry mixture that has been subjected to the borate-based melt drying step.
본 발명에 있어서 보레이트계 하소 단계는 900 내지 1300℃, 900 내지 1200℃, 1000 내지 1300℃, 1000 내지 1200℃, 1100 내지 1300℃, 또는 1100 내지 1200℃의 온도 조건에서 수행되는 것일 수 있으며, 예를 들어, 1100 내지 1200℃의 온도 조건에서 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based calcination step may be carried out at a temperature condition of 900 to 1300 ° C, 900 to 1200 ° C, 1000 to 1300 ° C, 1000 to 1200 ° C, 1100 to 1300 ° C, or 1100 to 1200 ° C. For example, it may be carried out at a temperature condition of 1100 to 1200 ℃, but is not limited thereto.
본 발명에 있어서 보레이트계 하소 단계는 6 내지 24시간, 6 내지 20시간, 6 내지 16시간, 6 내지 12시간 또는 6 내지 8시간 동안 수행되는 것일 수 있으며, 예를 들어, 6시간 동안 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based calcination step may be performed for 6 to 24 hours, 6 to 20 hours, 6 to 16 hours, 6 to 12 hours, or 6 to 8 hours, for example, to be performed for 6 hours. However, the present invention is not limited thereto.
보레이트계 하소 단계가 6시간 보다 적게 수행되는 경우, Ba(NO3)2, La(NO3)3, Tb(NO3)3, Ce(NO3)3 및 HBO3 중 일부가 보레이트계 형광체 조성물로 합성되지 못하므로, 불순물 또는 잔류물로 남아 보레이트계 형광체 조성물의 수율이 낮아질 수 있다.When the borate-based calcination step is performed for less than 6 hours, some of Ba(NO 3 ) 2 , La(NO 3 ) 3 , Tb(NO 3 ) 3 , Ce(NO 3 ) 3 , and HBO 3 are added to the borate-based phosphor composition Since it cannot be synthesized as an impurity or residue, the yield of the borate-based phosphor composition may be lowered.
본 발명의 일 구현예에서, 보레이트계 하소 단계는 도핑되는 희토류 금속 이온의 환원을 위해 H2 및 N2 가스를 포함하고, 이를 제외한 다른 종류의 가스를 포함하지 않는 혼합 가스 조건 하에서 수행되는 것일 수 있다.In one embodiment of the present invention, the borate-based calcination step includes H 2 and N 2 gas for the reduction of doped rare earth metal ions, and may be performed under a mixed gas condition that does not include other types of gases. have.
본 발명에 있어서 혼합 가스는 전체 가스의 몰 기체 분율을 기준으로 H2 가스를 5 내지 10%, 5 내지 9%, 5 내지 8%, 5 내지 7% 또는 5 내지 6% 포함하는 것일 수 있으며, 예를 들어, 5% 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the mixed gas may include 5 to 10%, 5 to 9%, 5 to 8%, 5 to 7%, or 5 to 6% of H 2 gas based on the molar gas fraction of the total gas, For example, it may include 5%, but is not limited thereto.
본 발명에 있어서 혼합 가스는 전체 가스의 몰 기체 분율을 기준으로 N2 가스를 90 내지 95%, 91 내지 95%, 92 내지 95%, 93 내지 95% 또는 94 내지 95% 포함하는 것일 수 있으며, 예를 들어, 95% 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the mixed gas may include 90 to 95%, 91 to 95%, 92 to 95%, 93 to 95%, or 94 to 95% of N 2 gas based on the molar gas fraction of the total gas, For example, it may include 95%, but is not limited thereto.
본 발명에 있어서 보레이트계 하소 단계는 보레이트계 하소 혼합물을 분쇄하는 분쇄 단계를 추가로 포함하는 것일 수 있다.In the present invention, the borate-based calcination step may further include a grinding step of pulverizing the borate-based calcination mixture.
본 발명의 또 다른 일 예는 화학식 3으로 표시되는 보레이트계 형광체 조성물을 포함하는 치과용 조성물을 제공하는 것이다.Another example of the present invention is to provide a dental composition comprising a borate-based phosphor composition represented by Chemical Formula 3.
[화학식 3][Formula 3]
AE3(REE41-x-yREE5xREE6y)2(BO3)4 AE 3 (REE4 1-xy REE5 x REE6 y ) 2 (BO 3 ) 4
본 발명에 있어서 치과용 조성물은 치아 수복물, 치아 보철물 및 치아 보형물 표면처리제로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the dental composition may be at least one selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis, but is not limited thereto.
본 발명에 있어서 치아는 자연치 및/또는 인공치를 의미하는 것일 수 있다.In the present invention, teeth may refer to natural and/or artificial teeth.
본 발명의 또 다른 일 예는 다음의 단계를 포함하는 보레이트계 형광체 조성물의 도포 방법에 관한 것이다:Another example of the present invention relates to a method for applying a borate-based phosphor composition comprising the steps of:
화학식 3으로 표시되는 형광체 조성물 및 파우더를 포함하는 보레이트계 분말 혼합물, 및 바인더를 혼합하여 보레이트계 도포물을 준비하는 보레이트계 혼합 단계;a borate-based mixing step of preparing a borate-based coating material by mixing a borate-based powder mixture comprising a phosphor composition represented by Formula 3 and a powder, and a binder;
대상체에 상기 보레이트계 도포물을 도포하는 보레이트계 도포물 도포 단계; 및a borate-based coating material application step of applying the borate-based coating material to an object; and
대상체에 도포된 보레이트계 도포물을 40 내지 60 ℃/분의 승온 속도로 650 내지 750℃의 온도 조건까지 승온시키고 20 내지 40분 동안 등온 상태로 유지하는 보레이트계 열 처리 단계.A borate-based heat treatment step of raising the temperature of the borate-based coating applied to the object to a temperature condition of 650 to 750°C at a temperature increase rate of 40 to 60°C/min and maintaining the isothermal state for 20 to 40 minutes.
[화학식 3][Formula 3]
AE3(REE41-x-yREE5xREE6y)2(BO3)4 AE 3 (REE4 1-xy REE5 x REE6 y ) 2 (BO 3 ) 4
본 발명에 있어서 보레이트계 분말 혼합물은 화학식 3으로 표시되는 보레이트계 형광체 조성물 및 파우더를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based powder mixture may include the borate-based phosphor composition and powder represented by Formula 3, but is not limited thereto.
본 발명에 있어서 보레이트계 분말 혼합물에 포함되는 보레이트계 형광체 조성물 및 파우더의 중량비 (w/w%)는 1:9인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the borate-based phosphor composition and the powder included in the borate-based powder mixture may be 1:9, but is not limited thereto.
본 발명에 있어서 바인더는 부탄디올 (butanediol), 프로필렌 글리콜 (propylene glycol) 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니고, 보레이트계 형광체 조성물의 성형성을 용이하게 하기 위하여 적절한 것을 이용할 수 있다.In the present invention, the binder may be butanediol, propylene glycol, or a combination thereof, but is not limited thereto, and an appropriate binder may be used to facilitate moldability of the borate-based phosphor composition.
본 발명에 있어서 보레이트계 도포물에 포함되는 보레이트계 분말 혼합물의 중량비 (w/w%)는 50 내지 70 중량%, 50 내지 65 중량%, 50 내지 60 중량%, 55 내지 70 중량%, 55 내지 65 중량% 또는 55 내지 60 중량%일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the borate-based powder mixture contained in the borate-based coating material is 50 to 70% by weight, 50 to 65% by weight, 50 to 60% by weight, 55 to 70% by weight, 55 to It may be 65% by weight or 55 to 60% by weight, but is not limited thereto.
본 발명에 있어서 보레이트계 도포물에 포함되는 바인더의 중량비 (w/w%)는 30 내지 50 중량%, 30 내지 45 중량%, 35 내지 50 중량%, 35 내지 45 중량%, 40 내지 50 중량% 또는 40 내지 45 중량%일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the weight ratio (w/w%) of the binder included in the borate-based coating material is 30 to 50 wt%, 30 to 45 wt%, 35 to 50 wt%, 35 to 45 wt%, 40 to 50 wt% Or it may be 40 to 45% by weight, but is not limited thereto.
본 발명에 있어서 대상체는 자연치, 인공치 또는 치과용 조성물일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the object may be a natural tooth, an artificial tooth, or a dental composition, but is not limited thereto.
본 발명에 있어서 보레이트계 도포물은 대상체에 적절히 도포되기 위한 점도를 갖도록 보레이트계 분말 혼합물 및 바인더를 혼합한 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based coating material may be a mixture of a borate-based powder mixture and a binder to have a viscosity to be properly applied to an object, but is not limited thereto.
본 발명에 있어서 보레이트계 열 처리 단계의 승온 속도는 40 내지 60 ℃/분, 40 내지 58 ℃/분, 40 내지 56 ℃/분, 40 내지 54 ℃/분, 40 내지 52 ℃/분, 42 내지 60 ℃/분, 42 내지 58 ℃/분, 42 내지 56 ℃/분, 42 내지 54 ℃/분, 42 내지 52 ℃/분, 44 내지 60 ℃/분, 44 내지 58 ℃/분, 44 내지 56 ℃/분, 44 내지 54 ℃/분, 44 내지 52 ℃/분, 46 내지 60 ℃/분, 46 내지 58 ℃/분, 46 내지 56 ℃/분, 46 내지 54 ℃/분, 46 내지 52 ℃/분, 48 내지 60 ℃/분, 48 내지 58 ℃/분, 48 내지 56 ℃/분, 48 내지 54 ℃/분 또는 48 내지 52 ℃/분 일 수 있으며, 예를 들어, 48 내지 52 ℃/분일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the temperature increase rate of the borate-based heat treatment step is 40 to 60 °C/min, 40 to 58 °C/min, 40 to 56 °C/min, 40 to 54 °C/min, 40 to 52 °C/min, 42 to 60 °C/min, 42 to 58 °C/min, 42 to 56 °C/min, 42 to 54 °C/min, 42 to 52 °C/min, 44 to 60 °C/min, 44 to 58 °C/min, 44 to 56 °C/min, 44-54 °C/min, 44-52 °C/min, 46-60 °C/min, 46-58 °C/min, 46-56 °C/min, 46-54 °C/min, 46-52 °C /min, 48 to 60 °C/min, 48 to 58 °C/min, 48 to 56 °C/min, 48 to 54 °C/min, or 48 to 52 °C/min, for example, 48 to 52 °C/min. minutes, but is not limited thereto.
본 발명에 있어서 보레이트계 열 처리 단계는 250 내지 750℃, 250 내지 700℃, 250 내지 650℃, 250 내지 600℃, 250 내지 550℃, 250 내지 500℃, 300 내지 750℃, 300 내지 700℃, 300 내지 650℃, 300 내지 600℃, 300 내지 550℃, 300 내지 500℃, 350 내지 750℃, 350 내지 700℃, 350 내지 650℃, 350 내지 600℃, 350 내지 550℃, 350 내지 500℃, 400 내지 750℃, 400 내지 700℃, 400 내지 650℃, 400 내지 600℃, 400 내지 550℃, 또는 400 내지 500℃의 온도 조건까지 승온시키는 것일 수 있으며, 예를 들어 400 내지 500℃의 온도 조건까지 승온시키는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based heat treatment step is 250 to 750 ℃, 250 to 700 ℃, 250 to 650 ℃, 250 to 600 ℃, 250 to 550 ℃, 250 to 500 ℃, 300 to 750 ℃, 300 to 700 ℃, 300 to 650 °C, 300 to 600 °C, 300 to 550 °C, 300 to 500 °C, 350 to 750 °C, 350 to 700 °C, 350 to 650 °C, 350 to 600 °C, 350 to 550 °C, 350 to 500 °C, 400 to 750 ° C, 400 to 700 ° C, 400 to 650 ° C, 400 to 600 ° C, 400 to 550 ° C, or 400 to 500 ° C. It may be to raise the temperature to, but is not limited thereto.
본 발명에 있어서 보레이트계 열 처리 단계는 20 내지 40 분, 20 내지 35 분, 25 내지 40 분 또는 25 내지 30 분 동안 등온 상태를 유지하는 것일 수 있으며, 예를 들어, 25 내지 30 분 동안 등온 상태를 유지하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the borate-based heat treatment step may be to maintain an isothermal state for 20 to 40 minutes, 20 to 35 minutes, 25 to 40 minutes, or 25 to 30 minutes, for example, isothermal state for 25 to 30 minutes. may be to maintain, but is not limited thereto.
본 발명은 모체 결정 물질 (Host material)에 희토류 (Rare earth elements, REE) 금속 양이온을 특정 비율로 도핑하여 피시술자의 자연치 (natural teeth)와 유사한 발광 특성을 갖는 실리케이트계, 포스페이트계 및 보레이트계 형광체 조성물, 및 이의 제조 방법에 관한 것으로, 희토류 금속 양이온의 도핑 농도 비율을 조절함으로써 형광체 조성물의 발광 특성을 조절할 수 있으므로, 피시술자의 치아 외관상 심미적 효과를 개선할 수 있다.The present invention provides a silicate-based, phosphate-based and borate-based phosphor composition having a luminescent property similar to that of the natural teeth of a person to be treated by doping a host material with rare earth elements (REE) metal cations in a specific ratio. , and a method for manufacturing the same, and by controlling the doping concentration ratio of the rare-earth metal cation, the luminescent property of the phosphor composition can be controlled, so that the aesthetic effect on the appearance of the teeth of the recipient can be improved.
도 1은 본 발명의 일 실험예에 따라 실리케이트계 (Silicate) 형광체 조성물의 발광 특성 (PL/PLE)을 나타낸 그래프이다.1 is a graph showing the luminescence characteristics (PL/PLE) of a silicate-based phosphor composition according to an experimental example of the present invention.
도 2는 본 발명의 실리케이트계 형광체 조성물의 XRD 패턴을 분석한 그래프이다.2 is a graph analyzing the XRD pattern of the silicate-based phosphor composition of the present invention.
도 3은 본 발명의 일 실험예에 따라 실리케이트계 형광체 조성물을 기판에 도포하여 외관상 발광 특성을 분석하기 위하여 촬영한 사진이다.3 is a photograph taken in order to analyze the apparent luminescence characteristics by applying a silicate-based phosphor composition to a substrate according to an experimental example of the present invention.
도 4는 본 발명의 일 실험예에 따라 실리케이트계 형광체 조성물을 도포한 경우 외관상 발광 특성 (PL/PLE)을 분석한 그래프이다.4 is a graph analyzing the apparent luminescence characteristics (PL/PLE) when a silicate-based phosphor composition is applied according to an experimental example of the present invention.
도 5는 제1하소 단계를 수행하지 않아 회색의 body color를 갖는 비교군의 포스페이트계 (Phosphate) 형광체 조성물 (a)과 본 발명의 제1하소 단계를 수행하여 흰색 또는 상아색의 body color를 갖는 포스페이트계 형광체 조성물 (b)의 외관 색상을 비교하여 촬영한 사진이다.5 is a phosphate-based phosphor composition (a) of a comparative group having a gray body color without performing the first calcination step and phosphate having a white or ivory body color after performing the first calcination step of the present invention It is a photograph taken by comparing the external color of the phosphor composition (b).
도 6은 알칼리 토금속이 다른 포스페이트계 형광체 조성물의 발광 특성 (PL/PLE)을 나타낸 그래프이다.6 is a graph showing luminescence characteristics (PL/PLE) of phosphate-based phosphor compositions having different alkaline earth metals.
도 7은 Eu2+ 도핑 농도에 따른 포스페이트계 형광체 조성물의 발광 특성을 분석한 그래프이다.7 is a graph analyzing the emission characteristics of the phosphate-based phosphor composition according to the Eu 2+ doping concentration.
도 8은 본 발명의 일 실험예에 따라 제1하소 단계를 수행한 포스페이트계 형광체 조성물의 Eu2+ 도핑 농도에 따른 XRD 패턴을 분석한 그래프이다.8 is a graph analyzing XRD patterns according to Eu 2+ doping concentration of a phosphate-based phosphor composition that has undergone a first calcination step according to an experimental example of the present invention.
도 9는 본 발명의 일 실험예에 따라 제1하소 단계를 수행하지 않은 포스페이트계 형광체 조성물의 XRD 패턴을 분석한 그래프이다.9 is a graph analyzing the XRD pattern of a phosphate-based phosphor composition in which the first calcination step is not performed according to an experimental example of the present invention.
도 10은 본 발명의 일 실험예에 따라 포스페이트계 형광체 조성물을 기판에 도포한 후의 외관을 촬영한 사진이다.10 is a photograph taken after the phosphate-based phosphor composition is applied to a substrate according to an experimental example of the present invention.
도 11은 본 발명의 포스페이트계 형광체 조성물이 기판에 도포되기 전의 발광 특성과 기판에 도포하여 열 처리 과정을 거친 후의 발광 특성을 비교 분석한 그래프이다.11 is a graph comparing and analyzing the luminescence characteristics before the phosphate-based phosphor composition of the present invention is applied to the substrate and the luminescence characteristics after the phosphate-based phosphor composition is applied to the substrate and subjected to a heat treatment process.
도 12는 본 발명의 일 실시예에 따른 보레이트계 형광체 조성물의 입자경을 현미경으로 관찰한 사진이다. (Scale bar: 10 um)12 is a microscopic view of a particle diameter of a borate-based phosphor composition according to an embodiment of the present invention. (Scale bar: 10 um)
도 13a 내지 13c는 본 발명의 일 실험예에 따른 보레이트계 형광체 조성물의 XRD 패턴을 나타낸 그래프이다.13A to 13C are graphs showing XRD patterns of borate-based phosphor compositions according to an experimental example of the present invention.
도 14a 및 14b는 본 발명의 일 실험예에 따른 보레이트계 형광체 조성물 (란타넘-세륨-터븀)의 PL/PLE를 나타낸 그래프이다.14A and 14B are graphs showing PL/PLE of a borate-based phosphor composition (lanthanum-cerium-terbium) according to an experimental example of the present invention.
도 15a 및 15b는 본 발명의 일 실험예에 따른 보레이트계 형광체 조성물 (란타넘-세륨)의 PL/PLE를 나타낸 그래프이다.15A and 15B are graphs showing PL/PLE of a borate-based phosphor composition (lanthanum-cerium) according to an experimental example of the present invention.
도 16a 및 16b는 본 발명의 일 실험예에 따른 보레이트계 형광체 조성물 (란타넘-터븀)의 PL/PLE를 나타낸 그래프이다.16A and 16B are graphs showing PL/PLE of a borate-based phosphor composition (lanthanum-terbium) according to an experimental example of the present invention.
도 17은 본 발명의 일 실험예에 따라 보레이트계 형광체 조성물을 기판에 도포하여 300℃, 400℃, ℃℃ 및 700℃의 열 처리 과정을 거친 후의 외관과, 자외선 조사시 보레이트계 형광체 조성물이 발광하는 모습을 촬영한 사진이다.17 shows the appearance of a borate-based phosphor composition applied to a substrate and subjected to heat treatment at 300° C., 400° C., ° C. and 700° C. according to an experimental example of the present invention, and the borate-based phosphor composition emits light when irradiated with ultraviolet rays It's a picture of what you're doing.
도 18은 보레이트계 형광체 조성물이 기판에 도포되기 전의 발광 특성과 기판에 도포하여 열 처리 과정을 거친 후의 발광 특성을 비교 분석한 그래프이다.18 is a graph comparing and analyzing the luminescence characteristics before the borate-based phosphor composition is applied to the substrate and the luminescence characteristics after the borate phosphor composition is applied to the substrate and subjected to a heat treatment process.
화학식 1로 표시되는 형광체 조성물.A phosphor composition represented by Formula 1.
[화학식 1][Formula 1]
(AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
여기서,here,
상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
상기 REE1은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이고,REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er) and any one selected from the group consisting of thulium (Tm),
상기 REE2는 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terminology used herein is used only to describe specific embodiments, and is not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 명세서에서 “포함하다” 또는 “가지다” 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.In this specification, terms such as “include” or “have” are intended to designate that the features, components, etc. described in the specification are present, and one or more other features or components are not present or cannot be added. does not mean
본 명세서에서 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise herein, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present specification. does not
본 명세서에서 사용하는 정도의 용어 “약”, “실질적으로”등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서에서 “하는 단계” 또는 “의 단계”는 “을 위한 단계”를 의미하지 않는다.As used herein, the terms "about", "substantially" and the like are used in or close to the numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and are used to enhance the understanding of the present invention. To help, precise or absolute figures are used to prevent unfair use by unconscionable infringers of the stated disclosure. In addition, in the present specification, “step of doing” or “step of” does not mean “step for”.
본 발명에 있어서 용어 “여기 파장 (excitation wavelength)”은 형광체 조성물의 전자를 높은 에너지 준위를 갖도록 여기시키는 (excitation) 빛의 파장을 의미하는 것일 수 있으며, 일반적으로 여기 스펙트럼은 흡수 스펙트럼과 일치하는 것일 수 있다.In the present invention, the term “excitation wavelength” may mean a wavelength of light that excites electrons of the phosphor composition to have a high energy level, and in general, the excitation spectrum is one that matches the absorption spectrum can
본 발명에 있어서 용어 “발광 파장 (emission wavelength)”은 형광체 조성물의 높은 에너지 준위를 갖도록 여기된 전자가 에너지를 잃고 여기 전 에너지 준위로 돌아갈 때, 형광체 조성물이 방출하는 빛의 파장을 의미하는 것일 수 있다.In the present invention, the term “emission wavelength” refers to the wavelength of light emitted by the phosphor composition when electrons excited to have a high energy level of the phosphor composition lose energy and return to the energy level before excitation. have.
이하, 제조예 및 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 제조예 및 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 제조예 및 실시예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through Preparation Examples and Examples. These Preparations and Examples are only for explaining the present invention in more detail, and it is common knowledge in the art that the scope of the present invention is not limited by these Preparations and Examples according to the gist of the present invention. It will be self-evident in person.
제조예 1. WASSR법 (Water assisted solid state reaction)을 이용한 실리케이트계 형광체 조성물의 제조Preparation Example 1. Preparation of silicate-based phosphor composition using WASSR method (Water assisted solid state reaction)
탄산칼슘 (Calcium carbonate, CaCO3), 산화알루미늄 (Aluminium oxide, Al2O3), 산화규소 (Silicon Dioxide, SiO2) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 건식 혼합하고, 혼합물 총 중량 대비 10 중량%의 물과 혼합하여 혼합물을 준비하였다.Calcium carbonate (CaCO 3 ), aluminum oxide (Aluminum oxide, Al 2 O 3 ), silicon dioxide (SiO 2 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] were dry mixed and , to prepare a mixture by mixing with 10% by weight of water based on the total weight of the mixture.
실시예 1 내지 실시예 3의 혼합물에 포함되는 Ca2+ 이온, Eu2+ 이온 및 Tb2+ 이온의 mol% 비율은 표 1에 나타내었다.The mol% ratios of Ca 2+ ions, Eu 2+ ions, and Tb 2+ ions included in the mixtures of Examples 1 to 3 are shown in Table 1.
성분ingredient 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3
Ca (mol%)Ca (mol%) 9595 8585 8787
Eu (mol%)Eu (mol%) 55 1212 1212
Tb (mol%)Tb (mol%) -- 33 1One
합계Sum 100100 100100 100100
실시예 1 내지 3의 혼합물은 80℃의 온도 조건에서 12 시간 동안 충분히 건조시켜 건조물을 수득하였다. 수득된 건조물을 800℃의 온도 조건에서 6 시간 동안 대기 (air) 조건 하에서 1차 열처리 (제1 실리케이트계 하소 단계)하여 1차 하소 혼합물 (제1 실리케이트계 하소 혼합물)을 수득하였다. 1차 실리케이트계 하소 혼합물을 950℃의 온도 조건에서 12시간 동안, 전체 가스의 몰 기체 분율을 기준으로 95% N2 및 5% H2를 포함하는 혼합 가스 조건 하에서 2차 열처리 (제2 실리케이트계 하소 단계)함으로써 2차 실리케이트계 하소 혼합물 (제2 실리케이트계 하소 혼합물)을 수득하였다.The mixtures of Examples 1 to 3 were sufficiently dried at a temperature of 80° C. for 12 hours to obtain a dried product. The obtained dried product was subjected to primary heat treatment (first silicate-based calcination step) under air conditions for 6 hours at a temperature of 800° C. to obtain a primary calcination mixture (first silicate-based calcination mixture). The primary silicate-based calcined mixture was subjected to a secondary heat treatment under a mixed gas condition containing 95% N 2 and 5% H 2 based on the molar gas fraction of the total gas for 12 hours at a temperature condition of 950° C. (second silicate-based mixture) calcination step) to obtain a secondary silicate-based calcination mixture (second silicate-based calcination mixture).
제2 실리케이트계 하소 혼합물의 평균 입자경이 10 um 이하가 되도록 볼 밀 (ball mill)을 이용하여 6시간 동안 분쇄하였고, 흰색 (또는 상아색)의 body color를 갖는 실시예 1 내지 3의 실리케이트계 형광체 조성물 [(AE1-x-yREE1xREE2y)2Al2Si2O8]을 제조하였다. The silicate-based phosphor compositions of Examples 1 to 3 were pulverized for 6 hours using a ball mill so that the average particle diameter of the second silicate-based calcined mixture was 10 μm or less, and had a white (or ivory) body color. [(AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8 ] was prepared.
실험예 1. 실리케이트계 형광체 조성물의 PL/PLE 분석Experimental Example 1. PL/PLE analysis of silicate-based phosphor composition
실시예 1 내지 3의 실리케이트계 형광체 조성물에 대하여 분광형광계 (spectrofluorometer)를 이용하여, 상온의 온도 조건 하에서 발광 특성 (photoluminescence) 및 여기 파장 (excitation wavelength)을 분석하였다.For the silicate-based phosphor compositions of Examples 1 to 3, photoluminescence and excitation wavelength were analyzed under a temperature condition of room temperature using a spectrofluorometer.
실리케이트계 형광체 조성물에 파장 (λex)이 365 내지 405 nm인 광원을 조사할 경우, 조성물의 발광 특성을 도 1 및 표 2에 나타내었다.When the silicate-based phosphor composition is irradiated with a light source having a wavelength (λ ex ) of 365 to 405 nm, the light emitting characteristics of the composition are shown in FIGS. 1 and 2 .
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3
발광 파장 (nm)Emission wavelength (nm) 505505 550550 550550
발광 세기(a.u.)Luminescence intensity (a.u.) 21502150 25002500 20102010
실험예 2. 실리케이트계 형광체 조성물의 XRD 패턴 분석Experimental Example 2. XRD pattern analysis of silicate-based phosphor composition
실시예 1의 실리케이트계 형광체 조성물에 대하여 X-레이 회절분석법 (X-ray diffraction, XRD)을 이용하여, XRD 패턴을 분석한 결과를 도 2에 나타내었다.The result of analyzing the XRD pattern of the silicate-based phosphor composition of Example 1 using X-ray diffraction (XRD) is shown in FIG. 2 .
도 2에서 확인할 수 있듯이, 대조군 (CaAl2Si2O8)의 단일상이 잘 나타났으며, 실시예 1의 실리케이트계 형광체 조성물 [(Ca0.95Eu0.05)Al2Si2O8]은 다른 불순물이 검출되지 않았다.As can be seen in FIG. 2 , a single phase of the control (CaAl 2 Si 2 O 8 ) was well observed, and the silicate-based phosphor composition of Example 1 [(Ca 0.95 Eu 0.05 ) Al 2 Si 2 O 8 ] was other impurities. This was not detected.
실험예 3. 실리케이트계 형광체 조성물의 도포시 발광 특성Experimental Example 3. Light emitting properties upon application of silicate-based phosphor composition
실리케이트계 형광체 조성물과 IPS e.max Ceram Glaze powder를 2:8 (w/w%)로 혼합하여 실리케이트계 분말 혼합물을 준비하였다. 실리케이트계 분말 혼합물과 바인더 (propylene glycol)를 7:3 내지 5:5 (w/w%)로 혼합하여 페이스트 (실리케이트계 도포물)를 제조한 후, 글라스세라믹 블록(e.max CAD block, Ivoclar vivadent)에 도포하여 상온에서부터 50 ℃/min의 승온 속도로, 300 내지 700℃의 온도 조건까지 고속 가열 승온시키면서 총 30분 동안 열 처리를 수행하였다.A silicate-based powder mixture was prepared by mixing the silicate-based phosphor composition and IPS e.max Ceram Glaze powder in a ratio of 2:8 (w/w%). A paste (silicate-based coating material) was prepared by mixing a silicate-based powder mixture and a binder (propylene glycol) in a ratio of 7:3 to 5:5 (w/w%), and then a glass-ceramic block (e.max CAD block, Ivoclar vivadent) and heat treatment was performed for a total of 30 minutes while heating at a high speed from room temperature to a temperature of 300 to 700 °C at a temperature increase rate of 50 °C/min.
표 3에 따라, 실시예 1, 실시예 4의 승온 열 처리를 하지 않은 페이스트, 실시예 5의 300℃, 실시예 6의 400℃, 실시예 7의 500℃, 실시예 8의 600℃, 또는 실시예 8의 700℃의 온도 범위에서 승온 열 처리를 수행한 페이스트를 준비하였다.According to Table 3, the paste not subjected to the elevated temperature heat treatment of Example 1 or Example 4, 300° C. of Example 5, 400° C. of Example 6, 500° C. of Example 7, 600° C. of Example 8, or A paste was prepared which was subjected to a temperature increase heat treatment in the temperature range of 700° C. of Example 8.
실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9
Ca (mol%)Ca (mol%) 9595 9595 9595 9595 9595 9595
Eu (mol%)Eu (mol%) 55 55 55 55 55 55
승온 열 처리 온도 (℃)Elevated heat treatment temperature (℃) 미실시not done 300300 400400 500500 600600 700700
실시예 1 및 실시예 4 내지 9가 도포된 기판에 365 nm 파장의 자외선을 조사할 경우 발광하는 페이스트의 외관을 촬영한 사진을 도 3에 나타내었다.3 shows pictures of the appearance of the paste emitting light when the substrates coated with Examples 1 and 4 to 9 are irradiated with ultraviolet light having a wavelength of 365 nm.
도포한 형광체 조성물 및 페이스트의 발광 특성을 분석한 PL/PLE 그래프를 도 4 및 표 4에 나타내었다. 실시예 1 및 4 내지 9의 실리케이트계 형광체 조성물은 표 4의 발광 세기 및 발광 파장을 나타내었고, 발광 파장을 효과적으로 비교하기 위하여 일정한 발광 세기를 나타내도록 발광 세기를 보정한 후, 도 4에 나타내었다.4 and Table 4 show PL/PLE graphs analyzing the luminescence characteristics of the applied phosphor composition and paste. The silicate-based phosphor compositions of Examples 1 and 4 to 9 showed the emission intensity and emission wavelength of Table 4, and after correcting the emission intensity to show a constant emission intensity in order to effectively compare the emission wavelengths, it is shown in FIG. .
실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9
발광 파장 (nm)Emission wavelength (nm) 470470 446446 448448 448448 452452 449449
발광 세기(a.u.)Luminescence intensity (a.u.) 775775 559559 940940 14521452 25902590 24442444
도 4 및 표 4로부터 확인할 수 있듯이, 실리케이트계 형광체 조성물을 바인더와 혼합하여 열처리한 후에도 형광체 조성물의 발광이 유지되었다.As can be seen from FIG. 4 and Table 4, the light emission of the phosphor composition was maintained even after heat treatment by mixing the silicate-based phosphor composition with a binder.
일반적으로 형광체 조성물을 고온 열처리할 경우, 형광체 조성물은 바인더와 상호작용하여 발광이 소멸하는 것에 비하여, 실리케이트계 형광체 조성물에 대한 아주 빠른 고속의 승온 열처리를 통해 바인더와 실리케이트계 형광체의 상호작용 및 데미지를 최소화하여 발광을 유지시킬 수 있었다.In general, when the phosphor composition is subjected to high-temperature heat treatment, the phosphor composition interacts with the binder and light emission disappears, whereas the interaction and damage between the binder and the silicate-based phosphor is reduced through very fast and high-temperature heat treatment for the silicate-based phosphor composition. It was possible to maintain the luminescence by minimizing it.
제조예 2. WASSR법 (Water assisted solid state reaction)을 이용한 유로퓸 포스페이트계 형광체 조성물의 제조Preparation Example 2. Preparation of europium phosphate-based phosphor composition using WASSR method (Water assisted solid state reaction)
탄산루비듐 (Rubidium carbonate, Rb2CO3), 탄산칼슘 (Calcium carbonate, CaCO3), 오산화인 (Phosphorus pentoxide, P2O5) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 건식 혼합하여 건식 혼합물을 준비한 후, 혼합물 총 중량 대비 10 중량%의 물과 혼합하여 실시예 10 내지 실시예 16의 혼합물을 준비하였다.Rubidium carbonate (Rb 2 CO 3 ), calcium carbonate (CaCO 3 ), phosphorus pentoxide (P 2 O 5 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] were dried After mixing to prepare a dry mixture, the mixture of Examples 10 to 16 was prepared by mixing with water in an amount of 10% by weight based on the total weight of the mixture.
실시예 10 내지 실시예 16의 혼합물에 포함되는 Ca2+ 이온 및 Eu2+ 이온의 mol% 비율은 표 5에 나타내었다.The mol% ratios of Ca 2+ ions and Eu 2+ ions included in the mixtures of Examples 10 to 16 are shown in Table 5.
성분 (mol%)Component (mol%) 실시예 10Example 10 실시예 11Example 11 실시예 12Example 12 실시예 13Example 13 실시예 14Example 14 실시예 15Example 15 실시예 16Example 16
Ca2+ Ca 2+ 9999 9797 9595 9393 9090 8787 8585
Eu2+ Eu 2+ 1One 33 55 77 1010 1313 1515
합계Sum 100100 100100 100100 100100 100100 100100 100100
실시예 10 내지 실시예 16의 혼합물은 80℃의 온도 조건에서 12 시간 동안 충분히 건조시킨 후 포스페이트계 건조물을 수득하였다. 수득한 포스페이트계 건조물을 800℃의 온도 조건에서 4 시간 동안, 대기 (air) 조건 하에서 1차 열 처리 (제1 포스페이트계 하소 단계)하여 1차 하소 혼합물 (제1 포스페이트계 하소 혼합물)을 수득하였다.The mixture of Examples 10 to 16 was sufficiently dried for 12 hours at a temperature of 80° C. to obtain a phosphate-based dried product. The obtained phosphate-based dried product was subjected to primary heat treatment (first phosphate-based calcination step) under atmospheric conditions for 4 hours at a temperature of 800° C. to obtain a primary calcination mixture (first phosphate-based calcination mixture). .
1차 포스페이트계 하소 혼합물을 950℃의 온도 조건에서 12시간 동안, 전체 가스의 몰 기체 분율을 기준으로 95% N2 및 5% H2를 포함하는 혼합 가스 조건 하에서 2차 열처리 (제2 포스페이트계 하소 단계)하여 2차 하소 혼합물 (제2 포스페이트계 하소 혼합물)을 수득하였다.The primary phosphate-based calcined mixture was subjected to a secondary heat treatment under a mixed gas condition containing 95% N 2 and 5% H 2 based on the molar gas fraction of the total gas for 12 hours at a temperature condition of 950° C. (second phosphate-based calcination mixture) calcination step) to obtain a second calcination mixture (second phosphate-based calcination mixture).
2차 포스페이트계 하소 혼합물은 평균 입자경이 10 um 이하가 되도록 볼 밀 (ball mill)을 이용하여 6시간 동안 분쇄하였고, 흰색 (또는 상아색)의 body color를 갖는 실시예 1 내지 7의 포스페이트계 형광체 조성물 [Rb(Ca1-xEux)PO4]을 제조하였다.The secondary phosphate-based calcined mixture was pulverized for 6 hours using a ball mill so that the average particle diameter was 10 μm or less, and the phosphate-based phosphor compositions of Examples 1 to 7 having a white (or ivory) body color [Rb(Ca 1-x Eu x )PO 4 ] was prepared.
제조예 2에서, 1차 열처리를 생략하고 제조한 형광체 조성물의 외관을 도 5의 a에 나타내었고, 제조예 2에서 제조한 형광체 조성물의 외관을 도 5의 b에 나타내었다. 도 5의 b는 좌측에서부터 우측으로 실시예 10 부터 실시예 16까지의 형광체 조성물 외관을 나열하여 촬영한 것이다.In Preparation Example 2, the appearance of the phosphor composition prepared by omitting the primary heat treatment is shown in FIG. 5A, and the appearance of the phosphor composition prepared in Preparation Example 2 is shown in FIG. 5B. 5B is a photograph taken by arranging the appearance of the phosphor compositions from Examples 10 to 16 from left to right.
도 5의 a 및 b로부터 확인할 수 있듯이, 실시예 10 내지 16의 형광체 조성물은 Eu2+ 농도가 높아질수록 body color가 검은색에 가까웠으며, Eu2+의 농도가 낮을수록 흰색에 가까웠다.As can be seen from a and b of FIG. 5 , the phosphor compositions of Examples 10 to 16 had a body color closer to black as the concentration of Eu 2+ increased, and closer to white as the concentration of Eu 2+ decreased.
실험예 4. 알칼리 토금속이 다른 포스페이트계 형광체 조성물의 PL/PLE 분석Experimental Example 4. PL/PLE Analysis of Phosphate-Based Phosphor Compositions Different from Alkaline Earth Metals
알칼리 토금속에 차이가 있는 포스페이트계 형광체 조성물에 대하여 분광형광계 (spectrofluorometer)를 이용하여, 상온의 온도 조건 하에서 발광 특성 (photoluminescence) 및 여기 파장 (excitation wavelength)을 분석하였다.For the phosphate-based phosphor composition having a difference in alkaline earth metal, photoluminescence and excitation wavelength were analyzed under a temperature condition of room temperature using a spectrofluorometer.
알칼리 토금속에 차이가 있는 포스페이트계 형광체 조성물의 성분 및 함량은 표 6의 실시예 10, 비교예 1 및 2에 나타내었다.The components and contents of the phosphate-based phosphor composition having a difference in the alkaline earth metal are shown in Example 10 and Comparative Examples 1 and 2 of Table 6.
성분ingredient 실시예 10Example 10 비교예 1Comparative Example 1 비교예 2Comparative Example 2
Ca (mol%)Ca (mol%) 9999 -- --
Sr (mol%)Sr (mol%) -- 9999 --
Ba (mol%)Ba (mol%) -- -- 9999
Eu (mol%)Eu (mol%) 1One 1One 1One
합계Sum 100100 100100 100100
알칼리 토금속에 차이가 있는 형광체 조성물에 파장 (λex)이 365 내지 405 nm인 광원을 조사할 경우 나타나는 발광 특성을 도 6 및 표 7에 나타내었다.6 and Table 7 show the luminescence characteristics when irradiated with a light source having a wavelength (λ ex ) of 365 to 405 nm to a phosphor composition having a difference in alkaline earth metal.
실시예 10Example 10 비교예 1Comparative Example 1 비교예 2Comparative Example 2
발광 파장 (nm)Emission wavelength (nm) 470470 455455 440440
발광 세기(a.u.)Luminescence intensity (a.u.) 770770 11701170 15401540
도 6 및 표 7로부터 확인할 수 있듯이, 실시예 10, 비교예 1 및 2의 포스페이트계 형광체 조성물은 알칼리 토금속이 바륨으로부터 스트론튬과 칼슘으로, 즉 이온의 반경이 작아질수록 발광 피크 (emission peak)가 약 15 nm씩 적외선 파장 쪽으로 red-shift 되었다.As can be seen from FIGS. 6 and 7, in the phosphate-based phosphor compositions of Example 10 and Comparative Examples 1 and 2, the alkaline earth metal is converted from barium to strontium and calcium, that is, as the radius of the ion decreases, the emission peak is It was red-shifted toward the infrared wavelength by about 15 nm.
실시예 10의 Ca0.99Eu0.01RbPO4는 청록색 (Cyan) 발광을 하며, 비교예 1 및 2는 청색 (blue) 발광을 나타내었다.Ca 0.99 Eu 0.01 RbPO 4 of Example 10 exhibited cyan light emission, and Comparative Examples 1 and 2 exhibited blue light emission.
실험예 5. 포스페이트계 형광체 조성물의 PL/PLE 분석Experimental Example 5. PL/PLE analysis of phosphate-based phosphor composition
실시예 10 내지 실시예 16의 포스페이트계 형광체 조성물에 대하여 분광형광계 (spectrofluorometer)를 이용하여, 상온의 온도 조건 하에서 발광 특성 (photoluminescence) 및 여기 파장 (excitation wavelength)을 분석하였다.For the phosphate-based phosphor compositions of Examples 10 to 16, using a spectrofluorometer, photoluminescence and excitation wavelength were analyzed under room temperature conditions.
형광체 조성물에 파장 (λex)이 365 nm인 광원을 조사할 경우, 형광체 조성물의 발광 특성을 도 7 및 표 8에 나타내었다. 실시예 10 내지 16의 형광체 조성물은 표 8의 발광 세기 및 발광 파장을 나타내었고, 발광 파장을 효과적으로 비교하기 위하여 일정한 발광 세기를 나타내도록 발광 세기를 보정한 후, 도 7에 나타내었다.When the phosphor composition is irradiated with a light source having a wavelength (λ ex ) of 365 nm, the luminescence characteristics of the phosphor composition are shown in FIGS. 7 and 8 . The phosphor compositions of Examples 10 to 16 showed the emission intensity and emission wavelength of Table 8, and after correcting the emission intensity to show a constant emission intensity in order to effectively compare the emission wavelengths, it is shown in FIG. 7 .
실시예 10Example 10 실시예 11Example 11 실시예 12Example 12 실시예 13Example 13 실시예 14Example 14 실시예 15Example 15 실시예 16Example 16
발광 파장 (nm)Emission wavelength (nm) 462462 471471 492492 510510 512512 495495 512512
발광 세기(a.u.)Luminescence intensity (a.u.) 1973219732 1983719837 1994719947 1996019960 82578257 1003610036 78307830
도 7 및 표 8로부터 확인할 수 있듯이, Eu2+의 농도에 따라 발광 파장의 변화가 나타났으며, 발광 피크 (emission peak)는 적외선 파장 쪽으로 red-shift 되었다.As can be seen from FIGS. 7 and 8, the emission wavelength was changed according to the concentration of Eu 2+ , and the emission peak was red-shifted toward the infrared wavelength.
실험예 6. 포스페이트계 형광체 조성물의 XRD 패턴 분석Experimental Example 6. XRD pattern analysis of phosphate-based phosphor composition
6-1. 실시예 11 내지 실시예 16의 형광체 조성물6-1. Phosphor compositions of Examples 11 to 16
실시예 11 내지 실시예 16의 형광체 조성물에 대하여 X-레이 회절분석법 (X-ray diffraction, XRD)을 이용하여, XRD 패턴을 분석한 결과를 도 8에 나타내었다.The results of XRD pattern analysis of the phosphor compositions of Examples 11 to 16 using X-ray diffraction (XRD) are shown in FIG. 8 .
도 8에서 확인할 수 있듯이, 여러 농도의 Eu 이온이 치환됨에 따라 모체 형광체 조성물의 결정구조에 영향을 미치지 않았다.As can be seen in FIG. 8 , the crystal structure of the parent phosphor composition was not affected as the Eu ions at various concentrations were substituted.
6-2. 제1 포스페이트계 하소 단계를 생략하여 제조한 실시예 11의 형광체 조성물6-2. The phosphor composition of Example 11 prepared by omitting the first phosphate-based calcination step
실시예 11의 형광체 조성물 제조시 800℃의 온도 조건에서 4 시간 동안 air 대기 조건 하에서 열처리하는 과정 (제1 포스페이트계 하소 단계)을 생략하여 제조한 경우, XRD 패턴을 분석하여, 그 결과를 도 9에 나타내었다.When the phosphor composition of Example 11 was prepared by omitting the heat treatment process (the first phosphate-based calcination step) under air atmospheric conditions for 4 hours at a temperature of 800° C., the XRD pattern was analyzed, and the result is shown in FIG. 9 shown in
도 9에서 확인할 수 있듯이, 공기 (air) 대기 조건 하에서 열처리하는 제1 포스페이트계 하소 단계를 생략하면, 포스페이트계 형광체 조성물은 일부만 합성되고 나머지 일부는 미반응물 및 불순물로 존재하였다.As can be seen in FIG. 9 , if the first phosphate-based calcination step of heat treatment under air atmospheric conditions is omitted, only a part of the phosphate-based phosphor composition is synthesized and the remaining part is present as unreacted substances and impurities.
실험예 7. 포스페이트계 형광체 조성물의 도포시 발광 특성Experimental Example 7. Luminescence characteristics when phosphate-based phosphor composition is applied
실시예 11 (Ca0.97Eu0.03RbPO4)의 조성물, 비교예 3 (Ca0.95Eu0.05Al2Si2O8) 또는 비교예 4 (Ca0.87Eu0.12Tb0.01Al2Si2O8)의 형광체 조성물과 IPS e.max Ceram Glaze powder을 1:9 (w/w%)로 혼합하여 포스페이트계 분말 혼합물을 준비하였다. 포스페이트계 분말 혼합물과 바인더propylene glycol를 6:4 (w/w%)로 혼합하여 페이스트 (포스페이트계 도포물)를 제조한 후, 글라스 세라믹 블록 (e.max CAD Block, Ivoclar vivadent)에 도포하여 상온에서부터 50 ℃/min 승온속도로, 750℃의 온도 조건까지 고속 가열 승온시키면서 총 30분 동안 열 처리를 수행하여, 그 외관을 도 10에 나타내었다.The phosphor composition of Example 11 (Ca 0.97 Eu 0.03 RbPO 4 ), Comparative Example 3 (Ca 0.95 Eu 0.05 Al 2 Si 2 O 8 ) or Comparative Example 4 (Ca 0.87 Eu 0.12 Tb 0.01 Al 2 Si 2 O 8 ) and IPS e.max Ceram Glaze powder were mixed in a ratio of 1:9 (w/w%) to prepare a phosphate-based powder mixture. A paste (phosphate-based coating material) was prepared by mixing the phosphate-based powder mixture and the binder propylene glycol at 6:4 (w/w%), and then applied to a glass ceramic block (e.max CAD Block, Ivoclar vivadent) at room temperature. The heat treatment was performed for a total of 30 minutes while heating at a high speed to a temperature condition of 750° C. at a temperature increase rate of 50° C./min, and the appearance thereof is shown in FIG.
그리고, 도포한 실시예 11 형광체 조성물의 발광 특성을 분석한 PL/PLE 그래프를 도 11에 나타내었다.In addition, a PL/PLE graph in which the light emission characteristics of the coated phosphor composition of Example 11 were analyzed is shown in FIG. 11 .
도 11로부터 확인할 수 있듯이, 실시예 11의 형광체 조성물은 바인더와 혼합한 후 열처리하여도 발광이 유지되었다.As can be seen from FIG. 11 , the phosphor composition of Example 11 maintained light emission even after heat treatment after mixing with the binder.
일반적으로 형광체 조성물을 고온 열처리할 경우, 형광체 조성물은 바인더와 상호작용하여 발광이 소멸하는 것에 비하여, 포스페이트계 형광체 조성물에 대한 아주 빠른 고속의 승온 열처리를 통해 바인더와 포스페이트계 형광체의 상호작용 및 데미지를 최소화하여 발광 파장을 유지시킬 수 있었다.In general, when the phosphor composition is subjected to high-temperature heat treatment, the interaction and damage between the binder and the phosphate-based phosphor is reduced through very fast and high-temperature heat treatment for the phosphate-based phosphor composition, compared to that the phosphor composition interacts with the binder to extinguish light emission. It was possible to maintain the emission wavelength by minimizing it.
제조예 3. 보레이트계 형광체 조성물의 제조 (란타넘-세륨-터븀)Preparation Example 3. Preparation of borate-based phosphor composition (lanthanum-cerium-terbium)
출발 물질로서 질산바륨 [Barium nitrate, Ba(NO3)2], 질산란타넘 [Lanthanum nitrate, La(NO3)3], 질산터븀 [Terbium nitrate, Tb(NO3)3], 질산세륨 [Cerium nitrate, Ce(NO3)3] 및 붕산 (Hydrogen borate, HBO3)을 건식 혼합하고, 혼합물 총 중량 대비 10 중량%의 물과 혼합하여 혼합물을 준비하였다. 혼합물에 암모니아수 (NH4OH)를 추가로 첨가하여 pH를 9로 제어하였다.as a starting material Barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], Lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Terbium nitrate [Terbium nitrate, Tb(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce (NO 3 ) 3 ] and boric acid (Hydrogen borate, HBO 3 ) were dry mixed, and a mixture was prepared by mixing with 10% by weight of water based on the total weight of the mixture. Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
실시예 17 내지 실시예 23의 혼합물에 포함되는 La, Ce3+ 및 Tb3+의 mol%는 표 9에 나타내었다.The mol% of La, Ce 3+ and Tb 3+ contained in the mixtures of Examples 17 to 23 are shown in Table 9.
원소 (mol%)element (mol%) 실시예 17Example 17 실시예 18Example 18 실시예 19Example 19 실시예 20Example 20 실시예 21Example 21 실시예 22Example 22 실시예 23Example 23
La (mol%)La (mol%) 9292 9090 8888 8686 8383 8080 7878
Ce (mol%)Ce (mol%) 77 77 77 77 77 77 77
Tb (mol%)Tb (mol%) 1One 33 55 77 1010 1313 1515
합계Sum 100100 100100 100100 100100 100100 100100 100100
pH를 9로 제어한 혼합물을 교반기를 이용하여 60℃, 에서 2시간 동안 교반하였다. 원심분리기를 이용하여 교반된 혼합물을 80℃의 온도 조건 하에서 12시간 동안 건조시켜 보레이트계 건조물을 수득하였다. 수득된 보레이트계 건조물을 1200℃의 온도 조건에서 6시간 동안, 전체 가스의 몰 기체 분율을 기준으로 95% N2 및 5% H2를 포함하는 혼합 가스 조건하에서 열 처리함으로써 보레이트계 하소 혼합물을 수득하였다.The mixture whose pH was controlled to 9 was stirred at 60° C. for 2 hours using a stirrer. Using a centrifuge, the stirred mixture was dried under a temperature condition of 80° C. for 12 hours to obtain a borate-based dried product. A borate-based calcination mixture was obtained by heat-treating the obtained borate-based dried material at a temperature of 1200° C. for 6 hours under mixed gas conditions containing 95% N 2 and 5% H 2 based on the molar gas fraction of the total gas. did
보레이트계 하소 혼합물의 평균 입자경이 3 um 이하가 되도록 볼 밀 (ball mill)을 이용하여 6시간 동안 분쇄하여, 실시예 17 내지 23의 보레이트계 형광체 조성물을 제조하였고, 보레이트계 형광체 조성물의 입자경을 확인하여 도 12에 나타내었다.The borate-based phosphor compositions of Examples 17 to 23 were prepared by grinding for 6 hours using a ball mill so that the average particle diameter of the borate-based calcination mixture was 3 μm or less, and the particle diameter of the borate-based phosphor composition was confirmed. Thus, it is shown in FIG. 12 .
제조예 4. 보레이트계 형광체 조성물의 제조 (란타넘-세륨)Preparation Example 4. Preparation of borate-based phosphor composition (lanthanum-cerium)
출발 물질로써 질산바륨 [Barium nitrate, Ba(NO3)2], 질산란타넘 [Lanthanum nitrate, La(NO3)3], 질산세륨 [Cerium nitrate, Ce(NO3)3] 및 붕산 (Hydrogen borate, HBO3)을 건식 혼합하고, 혼합물 총 중량 대비 10 중량%의 물과 혼합하여 혼합물을 준비하였다. 혼합물에 암모니아수 (NH4OH)를 추가로 첨가하여 pH를 9로 제어하였다.As a starting material, barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce(NO 3 ) 3 ] and boric acid (Hydrogen borate, HBO 3 ) were dry mixed, and a mixture was prepared by mixing with 10% by weight of water based on the total weight of the mixture. Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
실시예 24 내지 실시예 30의 혼합물에 포함되는 La 및 Ce의 mol% 비율은 표 10에 나타내었다.The mol% ratios of La and Ce contained in the mixtures of Examples 24 to 30 are shown in Table 10.
원소 (mol%)element (mol%) 실시예 24Example 24 실시예 25Example 25 실시예 26Example 26 실시예 27Example 27 실시예 28Example 28 실시예 29Example 29 실시예 30Example 30
La (mol%)La (mol%) 9999 9797 9595 9393 9090 8787 8585
Ce (mol%)Ce (mol%) 1One 33 55 77 1010 1313 1515
합계Sum 100100 100100 100100 100100 100100 100100 100100
제조예 5. 보레이트계 형광체 조성물의 제조 (란타넘-터븀) Preparation 5. Preparation of borate-based phosphor composition (lanthanum-terbium)
출발 물질로써 질산바륨 [Barium nitrate, Ba(NO3)2], 질산란타넘 [Lanthanum nitrate, La(NO3)3], 질산터븀 [Terbium nitrate, Tb(NO3)3] 및 붕산 (Hydrogen borate, HBO3)을 건식 혼합하고, 혼합물 총 중량 대비 10 중량%의 물과 혼합하여 혼합물을 준비하였다. 혼합물에 암모니아수 (NH4OH)를 추가로 첨가하여 pH를 9로 제어하였다.As starting materials, barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], terbium nitrate [Terbium nitrate, Tb(NO 3 ) 3 ] and boric acid (Hydrogen borate) , HBO 3 ) was dry mixed, and a mixture was prepared by mixing with 10% by weight of water based on the total weight of the mixture. Ammonia water (NH 4 OH) was further added to the mixture to adjust the pH to 9.
실시예 24 내지 실시예 30의 혼합물에 포함되는 La 및 Tb의 mol% 비율은 표 11에 나타내었다.The mol% ratios of La and Tb contained in the mixtures of Examples 24 to 30 are shown in Table 11.
원소 (mol%)element (mol%) 실시예 31Example 31 실시예 32Example 32 실시예 33Example 33 실시예 34Example 34 실시예 35Example 35 실시예 36Example 36 실시예 37Example 37
La (mol%)La (mol%) 9999 9797 9595 9393 9090 8787 8585
Tb (mol%)Tb (mol%) 1One 33 55 77 1010 1313 1515
합계Sum 100100 100100 100100 100100 100100 100100 100100
실험예 8. 보레이트계 형광체 조성물의 XRD 패턴 분석Experimental Example 8. XRD pattern analysis of borate-based phosphor composition
실시예 17 내지 실시예 37의 보레이트계 형광체 조성물에 대하여 X-레이 회절분석법 (X-ray diffraction, XRD)을 이용하여, XRD 패턴을 분석한 결과, 실시예 17 내지 실시예 23은 도 13a에 실시예 24 내지 실시예 30은 도 13b에, 실시예 31 내지 실시예 27은 도 13c에 나타내었다.As a result of analyzing the XRD patterns of the borate-based phosphor compositions of Examples 17 to 37 using X-ray diffraction (XRD), Examples 17 to 23 are shown in FIG. 13A Examples 24 to 30 are shown in FIG. 13B, and Examples 31 to 27 are shown in FIG. 13C.
도 13a 내지 13c에서 확인할 수 있듯이, 실시예 17 내지 실시예 37의 보레이트계 형광체 조성물은 Tb3+ 이온과 Ce3+ 이온의 농도가 증가하여도 불순물이나 미반응물이 검출되지 않았고, Peak는 단일상으로 측정되었다.13A to 13C, in the borate-based phosphor compositions of Examples 17 to 37, no impurities or unreacted substances were detected even when the concentrations of Tb 3+ ions and Ce 3+ ions were increased, and the peak was a single phase. was measured as
또한, Tb3+ 이온 및 Ce3+ 이온의 농도가 증가함에 따라 Ba3La2(BO3)4 결정 격자가 수축하기 때문에, XRD 피크의 위치가 고각으로 이동하는 것을 확인하였으며, 이를 통해 Tb3+ 이온과 Ce3+ 이온이 Ba3La2(BO3)4 결정 격자 내의 La3+ 이온 자리에 성공적으로 치환된 것이라 판단하였다.In addition, as the concentration of Tb 3+ ions and Ce 3+ ions increased, the Ba 3 La 2 (BO 3 ) 4 crystal lattice contracted, so it was confirmed that the position of the XRD peak shifted to a higher angle, through which Tb 3 It was determined that + ions and Ce 3+ ions were successfully substituted for La 3+ ions in the Ba 3 La 2 (BO 3 ) 4 crystal lattice.
실험예 9. 보레이트계 형광체 조성물의 PL/PLE 분석Experimental Example 9. PL/PLE analysis of borate-based phosphor composition
9-1. 란타넘-터븀-세륨 형광체 조성물9-1. Lanthanum-terbium-cerium phosphor composition
실시예 17 내지 실시예 23의 보레이트계 형광체 조성물에 대하여 분광형광계 (spectrofluorometer)를 이용하여, 상온의 온도 조건 하에서 발광 특성 (photoluminescence) 및 여기 파장 (excitation wavelength)을 분석하였다.For the borate-based phosphor compositions of Examples 17 to 23, using a spectrofluorometer, photoluminescence and excitation wavelength were analyzed under a temperature condition of room temperature.
실시예 17 내지 실시예 23의 보레이트계 형광체 조성물에 광원 파장 (λex)이 365 내지 405 nm인 광원을 조사할 경우, 발광 특성을 도 14a, 14b 및 표 12에 나타내었다.When the borate-based phosphor compositions of Examples 17 to 23 were irradiated with a light source having a light source wavelength (λ ex ) of 365 to 405 nm, light emission characteristics are shown in FIGS. 14A, 14B and Table 12.
실시예 17Example 17 실시예 18Example 18 실시예 19Example 19 실시예 20Example 20 실시예 21Example 21 실시예 22Example 22 실시예 23Example 23
발광 파장 (λem)emission wavelength (λ em ) 546546 546546 546546 546546 546546 546546 546546
여기 파장 (λex)excitation wavelength (λ ex ) 329329 324324 320320 324324 320320 324324 330330
발광 세기 (a.u.)Luminescence intensity (a.u.) 360360 1,2471,247 1,6281,628 2,2202,220 4,5204,520 3,8703,870 3,1343,134
도 14a 및 표 12에서 확인할 수 있듯이, 광원 파장이 365 내지 405 nm인 경우, Ce 7%, Tb 10%의 실시예 21 형광체 조성물이 가장 강한 세기 (intensity)의 발광 (luminescence)을 나타내었다. 도 14a에서 각 피크는 Ex365 nm = 490 nm, 545 nm, 585 nm, 623 nm인 것으로 측정되었다.14A and Table 12, when the light source wavelength was 365 to 405 nm, the phosphor composition of Example 21 having 7% Ce and 10% Tb exhibited the strongest intensity of luminescence. In Figure 14a, each peak was measured to be Ex 365 nm = 490 nm, 545 nm, 585 nm, and 623 nm.
Ce 7 mol% 및 Tb 10 mol%를 포함하는 보레이트계 형광체 조성물은 발광 세기 (PL intensity)가 가장 강한 것으로 측정되었으며, Ce 7 mol%에 Tb 10 mol%를 초과 포함하는 경우에는 오히려 발광 세기가 감소되는 것을 확인하였다.The borate-based phosphor composition containing 7 mol% of Ce and 10 mol% of Tb has the strongest PL intensity, and when Ce 7 mol% contains more than 10 mol% of Tb, the luminescence intensity is rather decreased. confirmed to be.
도 14b 및 표 12에서 확인할 수 있듯이, 최소 여기 파장은 320 nm이고, 최대 여기 파장은 329 nm 인 것으로 측정되었다. 형광체 조성물은 광원 파장이 405 nm인 경우 여기되지 않아, 여기 파장이 거의 측정되지 않았다.As can be seen in FIG. 14B and Table 12, it was measured that the minimum excitation wavelength was 320 nm and the maximum excitation wavelength was 329 nm. The phosphor composition was not excited when the light source wavelength was 405 nm, so that the excitation wavelength was hardly measured.
9-2. 란타넘-세륨 형광체 조성물9-2. Lanthanum-cerium phosphor composition
실시예 24 내지 실시예 30의 보레이트계 형광체 조성물에 대하여 분광형광계를 이용하여, 상온의 온도 조건 하에서 발광 특성 (photoluminescence) 및 여기 파장 (excitation wavelength)을 분석하였다.For the borate-based phosphor compositions of Examples 24 to 30, using a spectrofluorometer, photoluminescence and excitation wavelength were analyzed under room temperature conditions.
실시예 24 내지 실시예 30의 형광체 조성물에 광원 파장 (λex)이 365 내지 405 nm인 광원을 조사할 경우, 발광 특성을 도 15a, 15b 및 표 13에 나타내었다.When the phosphor compositions of Examples 24 to 30 were irradiated with a light source having a light source wavelength (λ ex ) of 365 to 405 nm, light emission characteristics are shown in FIGS. 15A, 15B and Table 13.
실시예 24Example 24 실시예 25Example 25 실시예 26Example 26 실시예 27Example 27 실시예 28Example 28 실시예 29Example 29 실시예 30Example 30
발광 파장(λem)emission wavelength (λ em ) 473473 473473 473473 472472 482482 475475 489489
여기 파장(λex)excitation wavelength (λ ex ) 323323 320320 320320 320320 329329 324324 323323
발광 세기(a.u.)Luminescence intensity (a.u.) 404404 495495 466466 652652 421421 515515 447447
도 15a, 15b 및 표 13에서 확인할 수 있듯이, 광원 파장이 365 nm인 경우, Ce3+ 7 mol%의 실시예 27 형광체 조성물이 652 a.u.로 가장 강한 세기 (intensity)의 발광 (luminescence)을 나타내었다. 형광체 조성물은 Ce3+를 10 mol% 이상 포함하면 농도 소광 (concentration quenching)이 발생하였다. 최소 여기 파장은 320 nm이고, 최대 여기 파장은 329 nm 인 것으로 측정되었다.As can be seen in FIGS. 15A, 15B and Table 13, when the light source wavelength was 365 nm, the phosphor composition of Example 27 of Ce 3+ 7 mol% was 652 au, showing the strongest intensity of luminescence. . When the phosphor composition contained 10 mol% or more of Ce 3+ , concentration quenching occurred. It was determined that the minimum excitation wavelength was 320 nm and the maximum excitation wavelength was 329 nm.
9-3. 란타넘-터븀 형광체 조성물9-3. Lanthanum-terbium phosphor composition
실시예 31 내지 실시예 37의 보레이트계 형광체 조성물에 대하여 분광형광계를 이용하여, 상온의 온도 조건 하에서 발광 특성 (photoluminescence) 및 여기 파장 (excitation wavelength)을 분석하였다.For the borate-based phosphor compositions of Examples 31 to 37, photoluminescence and excitation wavelength were analyzed under a temperature condition of room temperature using a spectrofluorometer.
실시예 31 내지 실시예 37의 형광체 조성물에 광원 파장 (λex)이 365 내지 405 nm인 광원을 조사할 경우, 발광 특성을 도 16a, 16b 및 표 14에 나타내었다.When the phosphor compositions of Examples 31 to 37 were irradiated with a light source having a light source wavelength (λ ex ) of 365 to 405 nm, light emission characteristics are shown in FIGS. 16A, 16B and Table 14.
실시예 31Example 31 실시예 32Example 32 실시예 33Example 33 실시예 34Example 34 실시예 35Example 35 실시예 36Example 36 실시예 37Example 37
발광 파장(λem)emission wavelength (λ em ) 546546 546546 546546 546546 546546 546546 546546
여기 파장(λex)excitation wavelength (λ ex ) 245245 245245 246246 250250 251251 251251 251251
발광 세기(a.u.)Luminescence intensity (a.u.) 403403 498498 733733 1,2721,272 1,3241,324 1,2701,270 669669
도 16a, 16b 및 표 14에서 확인할 수 있듯이, 광원 파장이 365 nm인 경우, Tb3+ 10 mol%의 실시예 35 형광체 조성물이 1,324 a.u.로 가장 강한 세기 (intensity)의 발광 (luminescence)을 나타내었다. 형광체 조성물은 Tb3+를 13 mol% 이상 포함하면 오히려 발광 세기가 감소하여 농도 소광 (concentration quenching)이 나타나는 것을 확인하였다. 최소 여기 파장은 245 nm이고 최대 여기 파장은 251 nm인 것으로 측정되었다.As can be seen in FIGS. 16a, 16b and Table 14, when the light source wavelength was 365 nm, the phosphor composition of Example 35 having Tb 3+ 10 mol% was 1,324 au, indicating the strongest intensity of luminescence. . When the phosphor composition contained 13 mol% or more of Tb 3+ , it was confirmed that the luminescence intensity was rather decreased, resulting in concentration quenching. It was determined that the minimum excitation wavelength was 245 nm and the maximum excitation wavelength was 251 nm.
종합하면, Ce3+ 7 mol% 및 Tb3+ 0 mol% 포함하는 형광체 조성물 (실시예 27)의 경우, 가장 짧은 발광 파장인 473 nm의 청록색 (cyan blue) 발광을 나타내었고, Ce3+ 7 mol% 및 Tb3+ 10 mol% 포함하는 형광체 조성물 (실시예 21)의 경우, 가장 긴 발광 파장인 547 nm의 옐로우위시-화이트 (yellowish-white) 발광을 나타내었다. 옐로우위시-화이트 발광이란, 가시광 영역의 전체 발광 파장들의 합한 발광을 의미한다.In summary, in the case of the phosphor composition containing Ce 3+ 7 mol% and Tb 3+ 0 mol% (Example 27), cyan blue emission was exhibited at 473 nm, which is the shortest emission wavelength, and Ce 3+ 7 In the case of the phosphor composition containing mol% and Tb 3+ 10 mol% (Example 21), yellowish-white light emission of 547 nm, which is the longest emission wavelength, was exhibited. Yellow-wish-white emission refers to emission of the sum of all emission wavelengths in the visible region.
본 발명의 형광체 조성물은 자연치의 형광 특성을 참조하여, Ce3+ 및 Tb3+의 mol% 농도를 조절함으로써, 형광체 조성물의 발광 파장을 473 내지 547 nm 범위에서 조절할 수 있어, 자연치의 심미적 특성에 따라 발광 특성을 조절할 수 있다.In the phosphor composition of the present invention, by adjusting the mol% concentration of Ce 3+ and Tb 3+ with reference to the fluorescence properties of natural teeth, the emission wavelength of the phosphor composition can be adjusted in the range of 473 to 547 nm. It is possible to adjust the light emission characteristics according to the
실험예 10. 보레이트계 형광체 조성물의 도포시 발광 특성Experimental Example 10. Luminescence properties of borate-based phosphor composition
실시예 21의 형광체 조성물 (Ce 7%, Tb 10%)과 IPS e.max Ceram Glaze powder를 2:8 (w/w%)로 혼합하여 보레이트계 분말 혼합물을 준비하였다. 보레이트계 분말 혼합물과 바인더 (propylene glycol)를 7:3 (w/w%)으로 혼합하여 페이스트 (보레이트계 도포물)를 제조한 후, 기판에 도포하여 상온에서부터 50℃, 승온 속도로, 300 내지 700℃의 온도 조건까지 고속 가열 승온시키면서 총 30분 동안 열 처리를 수행하여, 그 외관을 도 16에 나타내었다.A borate-based powder mixture was prepared by mixing the phosphor composition of Example 21 (Ce 7%, Tb 10%) and IPS e.max Ceram Glaze powder at 2:8 (w/w%). A paste (borate-based coating material) was prepared by mixing a borate-based powder mixture and a binder (propylene glycol) in a ratio of 7:3 (w/w%), and then applied to a substrate at a temperature increase rate of 300 to 50°C from room temperature. Heat treatment was performed for a total of 30 minutes while heating at high speed to a temperature condition of 700° C., and the appearance thereof is shown in FIG. 16 .
그리고, 기판에 도포한 형광체 조성물의 승온 온도별 발광 특성을 비교 분석한 PL/PLE 그래프를 도 17 및 표 15에 나타내었다.In addition, PL/PLE graphs comparing and analyzing the light emission characteristics of the phosphor composition applied to the substrate at each temperature increase are shown in FIG. 17 and Table 15.
PastePaste 300℃300 400℃400 500℃500 600℃600 700℃700℃
발광 파장 (nm)Emission wavelength (nm) 545545 545545 545545 545545 545545 545545
발광 세기(a.u.)Luminescence intensity (a.u.) 4,0004,000 2,2552,255 1,2101,210 792792 957957 683683
도 17 및 표 15에서 확인할 수 있듯이, 실시예 21의 형광체 조성물은 바인더와 혼합하여 열 처리하면 발광 세기는 감소하나 발광 파장이 유지되었다.17 and Table 15, when the phosphor composition of Example 21 was mixed with a binder and heat-treated, the light emission intensity was decreased, but the emission wavelength was maintained.
일반적으로 형광체 조성물을 고온 열 처리할 경우, 형광체 조성물은 바인더와 상호작용하여 발광이 소멸하는 것에 비하여, 보레이트계 형광체 조성물에 대한 아주 빠른 고속의 승온 열 처리를 통해 바인더와 보레이트계 형광체의 상호작용 및 데미지를 최소화하여 발광 파장을 유지시킬 수 있었다.In general, when the phosphor composition is subjected to high-temperature heat treatment, the phosphor composition interacts with the binder and light emission disappears, whereas the interaction between the binder and the borate-based phosphor and It was possible to maintain the emission wavelength by minimizing the damage.
본 발명은 실리케이트계, 포스페이트계 및 보레이트계 조성물 형광체 조성물, 및 이의 제조 방법에 관한 것으로서, 구체적으로, 모체 결정 물질 (Host material)에 희토류 (Rare earth elements, REE) 금속 양이온을 특정 비율로 도핑함으로써 피시술자의 자연치 (natural teeth)와 유사한 발광 특성을 갖는 형광체 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a silicate-based, phosphate-based and borate-based phosphor composition, and a method for preparing the same, and specifically, by doping a host material with rare earth elements (REE) metal cations in a specific ratio. The present invention relates to a phosphor composition having luminescent properties similar to natural teeth of a person to be treated, and a method for preparing the same.

Claims (46)

  1. 화학식 1로 표시되는 형광체 조성물:A phosphor composition represented by the formula (1):
    [화학식 1][Formula 1]
    (AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE1은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이고,REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er) and any one selected from the group consisting of thulium (Tm),
    상기 REE2는 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.The REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  2. 제1항에 있어서, 상기 x는 0.03≤x≤0.09, 상기 y는 0≤y≤0.05인 것인, 형광체 조성물.The phosphor composition of claim 1, wherein x is 0.03≤x≤0.09, and y is 0≤y≤0.05.
  3. 제1항에 있어서, 상기 AE는 칼슘 (Ca)인 것인, 형광체 조성물.The phosphor composition of claim 1, wherein AE is calcium (Ca).
  4. 제1항에 있어서, 상기 REE1은 유로퓸 (Eu)이고, 상기 REE2는 터븀 (Tb)인 것인, 형광체 조성물.The phosphor composition of claim 1, wherein REE1 is europium (Eu), and REE2 is terbium (Tb).
  5. 제1항에 있어서, 상기 형광체 조성물은 평균 입자경이 0.01 내지 10 um인 것인, 실리케이트계 형광체 조성물.The silicate-based phosphor composition according to claim 1, wherein the phosphor composition has an average particle diameter of 0.01 to 10 um.
  6. 다음의 단계를 포함하는 형광체 조성물의 제조 방법:A method for preparing a phosphor composition comprising the steps of:
    탄산칼슘 (Calcium carbonate, CaCO3), 산화알루미늄 (Aluminium oxide, Al2O3), 산화규소 (Silicon Dioxide, SiO2) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 용매에 용해하여 실리케이트계 용해물을 준비하는 실리케이트계 용해물 준비 단계;Calcium carbonate (CaCO 3 ), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] are dissolved in a solvent a silicate-based lysate preparation step of preparing a silicate-based lysate;
    상기 실리케이트계 용해물을 건조하여 실리케이트계 건조 혼합물을 수득하는 실리케이트계 용해물 건조 단계;a silicate-based melt drying step of drying the silicate-based melt to obtain a silicate-based dry mixture;
    상기 실리케이트계 건조 혼합물을 대기 (air) 조건 하에서 열처리하여 제1 실리케이트계 하소 혼합물을 수득하는 제1 실리케이트계 하소 단계; 및a first silicate-based calcination step of heat-treating the silicate-based dry mixture under an air condition to obtain a first silicate-based calcination mixture; and
    상기 제1 실리케이트계 하소 혼합물을 혼합 가스 조건 하에서 열처리하여 제2 실리케이트계 하소 혼합물을 수득하는 제2 실리케이트계 하소 단계.A second silicate-based calcination step of heat-treating the first silicate-based calcined mixture under mixed gas conditions to obtain a second silicate-based calcined mixture.
  7. 제6항에 있어서, 상기 실리케이트계 용해물 건조 단계는 100 내지 200℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 6, wherein the drying of the silicate-based melt is performed under a temperature condition of 100 to 200°C.
  8. 제6항에 있어서, 상기 실리케이트계 용해물 건조 단계는 12 내지 72시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 6, wherein the drying of the silicate-based melt is performed for 12 to 72 hours.
  9. 제6항에 있어서, 상기 제1 실리케이트계 하소 단계는 700 내지 1100℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 6, wherein the first silicate-based calcination step is performed under a temperature condition of 700 to 1100°C.
  10. 제6항에 있어서, 상기 제1 실리케이트계 하소 단계는 6 내지 24시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 6, wherein the first silicate-based calcination step is performed for 6 to 24 hours.
  11. 제6항에 있어서, 상기 제2 실리케이트계 하소 단계는 700 내지 1100℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 6, wherein the second silicate-based calcination step is performed under a temperature condition of 700 to 1100°C.
  12. 제6항에 있어서, 상기 제2 실리케이트계 하소 단계는 6 내지 24시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 6, wherein the second silicate-based calcination step is performed for 6 to 24 hours.
  13. 화학식 1로 표시되는 실리케이트계 형광체 조성물을 포함하는 치과용 조성물:A dental composition comprising a silicate-based phosphor composition represented by Formula 1:
    [화학식 1][Formula 1]
    (AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE1은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이고,REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er) and any one selected from the group consisting of thulium (Tm),
    상기 REE2는 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  14. 제13항에 있어서, 상기 치과용 조성물은 치아 수복물, 치아 보철물 및 치아 보형물 표면처리제로 이루어진 군으로부터 선택되는 어느 하나 이상인 것인, 치과용 조성물.The dental composition of claim 13, wherein the dental composition is at least one selected from the group consisting of a dental restoration, a dental prosthesis, and a dental prosthesis surface treatment agent.
  15. 다음의 단계를 포함하는 실리케이트계 형광체 조성물의 도포 방법:A method of applying a silicate-based phosphor composition comprising the steps of:
    화학식 1로 표시되는 형광체 조성물 및 파우더를 포함하는 실리케이트계 분말 혼합물, 및 바인더를 혼합하여 실리케이트계 도포물을 준비하는 실리케이트계 형광체 조성물 혼합 단계;A silicate-based phosphor composition mixing step of preparing a silicate-based coating material by mixing a silicate-based powder mixture comprising the phosphor composition represented by Formula 1 and a powder, and a binder;
    대상체에 상기 실리케이트계 도포물을 도포하는 실리케이트계 도포물 도포 단계; 및a silicate-based coating material application step of applying the silicate-based coating material to an object; and
    대상체에 도포된 실리케이트계 도포물을 40 내지 60 ℃/분의 승온 속도로 300 내지 900℃의 온도 조건까지 승온시키고 20 내지 40분 동안 등온 상태로 유지하는 실리케이트계 도포물 열 처리 단계.A silicate-based coating heat treatment step of raising the temperature of the silicate-based coating applied to the object to a temperature condition of 300 to 900°C at a temperature increase rate of 40 to 60°C/min and maintaining the isothermal state for 20 to 40 minutes.
    [화학식 1][Formula 1]
    (AE1-x-yREE1xREE2y)2Al2Si2O8 (AE 1-xy REE1 x REE2 y ) 2 Al 2 Si 2 O 8
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE1은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이고,REE1 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er) and any one selected from the group consisting of thulium (Tm),
    상기 REE2는 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.REE2 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  16. 화학식 2로 표시되는 형광체 조성물:A phosphor composition represented by the formula (2):
    [화학식 2][Formula 2]
    Rb(AE1-xREE3x)PO4 Rb(AE 1-x REE3 x )PO 4
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE3은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.The REE3 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  17. 제16항에 있어서, 상기 x는 0.01≤x≤0.05인 것인, 형광체 조성물.The phosphor composition of claim 16, wherein x is 0.01≤x≤0.05.
  18. 제16항에 있어서, 상기 AE는 칼슘 (Ca)인 것인, 형광체 조성물.The phosphor composition of claim 16, wherein AE is calcium (Ca).
  19. 제16항에 있어서, 상기 REE는 유로퓸 (Eu)인 것인, 형광체 조성물.The phosphor composition of claim 16, wherein the REE is europium (Eu).
  20. 제16항에 있어서, 상기 REE는 2가 양이온인 것인, 형광체 조성물.The phosphor composition of claim 16, wherein the REE is a divalent cation.
  21. 제16항에 있어서, 상기 형광체 조성물의 평균 입자경은 0.01 내지 10 um인 것인, 형광체 조성물.The phosphor composition according to claim 16, wherein the average particle diameter of the phosphor composition is 0.01 to 10 um.
  22. 다음의 단계를 포함하는 형광체 조성물의 제조 방법:A method for preparing a phosphor composition comprising the steps of:
    탄산루비듐 (Rubidium carbonate, Rb2CO3), 탄산칼슘 (Calcium carbonate, CaCO3), 오산화인 (Phosphorus pentoxide, P2O5) 및 산화유로퓸 [Europium(III) oxide, Eu2O3]을 용매에 용해하여 포스페이트계 용해물을 준비하는 포스페이트계 용해물 준비 단계;Rubidium carbonate (Rb 2 CO 3 ), calcium carbonate (CaCO 3 ), phosphorus pentoxide (P 2 O 5 ) and europium oxide [Europium(III) oxide, Eu 2 O 3 ] as a solvent A phosphate-based lysate preparation step of dissolving in to prepare a phosphate-based lysate;
    상기 포스페이트계 용해물을 건조하여 포스페이트계 건조 혼합물을 수득하는 포스페이트계 용해물 건조 단계;a phosphate-based melt drying step of drying the phosphate-based melt to obtain a phosphate-based dry mixture;
    포스페이트계 건조 혼합물을 대기 (air) 조건 하에서 열처리하여 제1 포스페이트계 하소 혼합물을 수득하는 제1 포스페이트계 하소 단계; 및a first phosphate-based calcination step of heat-treating the phosphate-based dry mixture under an air condition to obtain a first phosphate-based calcination mixture; and
    상기 제1 포스페이트계 하소 혼합물을 혼합 가스 조건 하에서 열처리하여 제2 포스페이트계 하소 혼합물을 수득하는 제2 포스페이트계 하소 단계.A second phosphate-based calcination step of heat-treating the first phosphate-based calcined mixture under a mixed gas condition to obtain a second phosphate-based calcined mixture.
  23. 제22항에 있어서, 상기 포스페이트계 건조 단계는 100 내지 200℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 22, wherein the phosphate-based drying step is performed under a temperature condition of 100 to 200°C.
  24. 제22항에 있어서, 상기 포스페이트계 건조 단계는 12 내지 72시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 22, wherein the phosphate-based drying step is performed for 12 to 72 hours.
  25. 제22항에 있어서, 상기 제1 포스페이트계 하소 단계는 700 내지 1100℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 22, wherein the first phosphate-based calcination step is performed under a temperature condition of 700 to 1100°C.
  26. 제22항에 있어서, 상기 제1 포스페이트계 하소 단계는 6 내지 24시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 22, wherein the first phosphate-based calcination step is performed for 6 to 24 hours.
  27. 제22항에 있어서, 상기 제2 포스페이트계 하소 단계는 700 내지 1100℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 22, wherein the second phosphate-based calcination step is performed under a temperature condition of 700 to 1100°C.
  28. 제22항에 있어서, 상기 제2 포스페이트계 하소 단계는 6 내지 24시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 22, wherein the second phosphate-based calcination step is performed for 6 to 24 hours.
  29. 화학식 2로 표시되는 형광체 조성물을 포함하는 치과용 조성물:A dental composition comprising a phosphor composition represented by Formula 2:
    [화학식 2][Formula 2]
    Rb(AE1-xREE3x)PO4 Rb(AE 1-x REE3 x )PO 4
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE3은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.The REE3 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  30. 제29항에 있어서, 상기 치과용 조성물은 치아 수복물, 치아 보철물 및 치아 보형물 표면처리제로 이루어진 군으로부터 선택되는 어느 하나 이상인 것인, 치과용 조성물.The dental composition of claim 29, wherein the dental composition is at least one selected from the group consisting of a dental restoration, a dental prosthesis, and a surface treatment agent for a dental prosthesis.
  31. 다음의 단계를 포함하는 형광체 조성물의 도포 방법:A method of applying a phosphor composition comprising the steps of:
    화학식 2로 표시되는 형광체 조성물 및 파우더를 포함하는 포스페이트계 분말 혼합물, 및 바인더를 혼합하여 포스페이트계 도포물을 준비하는 포스페이트계 형광체 조성물 혼합 단계;A phosphate-based phosphor composition mixing step of preparing a phosphate-based coating material by mixing a phosphate-based powder mixture comprising a phosphor composition represented by Formula 2 and a powder, and a binder;
    대상체에 상기 포스페이스계 도포물을 도포하는 포스페이트계 도포물 도포 단계; 및a phosphate-based coating material application step of applying the phosphate-based coating material to an object; and
    대상체에 도포된 포스페이트계 도포물을 40 내지 60 ℃/분의 승온 속도로 650 내지 750℃의 온도 조건까지 승온시키고 10 내지 40분 동안 등온 상태로 유지하는 포스페이트계 열 처리 단계.A phosphate-based heat treatment step in which the phosphate-based coating material applied to the object is heated to a temperature condition of 650 to 750° C. at a temperature increase rate of 40 to 60° C./min and maintained in an isothermal state for 10 to 40 minutes.
    [화학식 2][Formula 2]
    Rb(AE1-xREE3x)PO4 Rb(AE 1-x REE3 x )PO 4
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 어느 하나이고,The AE is any one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE3은 란타넘 (La), 가돌리늄 (Gd), 이트륨 (Y), 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 어느 하나이다.The REE3 is lanthanum (La), gadolinium (Gd), yttrium (Y), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), and any one selected from the group consisting of thulium (Tm).
  32. 화학식 3으로 표시되는 형광체 조성물:A phosphor composition represented by the formula (3):
    [화학식 3][Formula 3]
    AE3(REE41-x-yREE5xREE6y)2(BO3)4 AE 3 (REE4 1-xy REE5 x REE6 y ) 2 (BO 3 ) 4
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 1종이고,The AE is one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE4는 란타넘 (La), 가돌리늄 (Gd) 및 이트륨 (Y)으로 이루어진 군으로부터 선택되는 1종이고,The REE4 is one selected from the group consisting of lanthanum (La), gadolinium (Gd) and yttrium (Y),
    상기 REE5는 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종이고,The REE5 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Er) and one selected from the group consisting of thulium (Tm),
    상기 REE6은 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종이다.The REE6 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Er) and thulium (Tm) is one selected from the group consisting of.
  33. 제32항에 있어서, 상기 REE2는 세륨 (Ce)인 것인, 형광체 조성물.The phosphor composition of claim 32, wherein REE2 is cerium (Ce).
  34. 제33항에 있어서, 상기 x는 0.05≤x≤0.13인 것인, 형광체 조성물.The phosphor composition of claim 33, wherein x is 0.05≤x≤0.13.
  35. 제32항에 있어서, 상기 REE3은 터븀 (Tb)인 것인, 형광체 조성물.The phosphor composition of claim 32, wherein the REE3 is terbium (Tb).
  36. 제35항에 있어서, 상기 y는 0.07≤y≤0.13인 것인, 형광체 조성물.The phosphor composition of claim 35, wherein y is 0.07≤y≤0.13.
  37. 제32항에 있어서, 상기 형광체 조성물의 평균 입자경은 0.01 내지 10 um인 것인, 형광체 조성물.The phosphor composition according to claim 32, wherein the average particle diameter of the phosphor composition is 0.01 to 10 um.
  38. 다음의 단계를 포함하는 형광체 조성물의 제조 방법:A method for preparing a phosphor composition comprising the steps of:
    질산바륨 [Barium nitrate, Ba(NO3)2], 질산란타넘 [Lanthanum nitrate, La(NO3)3], 질산세륨 [Cerium nitrate, Ce(NO3)3] 및 붕산 (Hydrogen borate, HBO3)을 용매에 용해하여 보레이트계 용해물을 준비하는 보레이트계 용해물 준비 단계;Barium nitrate [Barium nitrate, Ba(NO 3 ) 2 ], Lanthanum nitrate [Lanthanum nitrate, La(NO 3 ) 3 ], Cerium nitrate [Cerium nitrate, Ce(NO 3 ) 3 ], and Hydrogen borate, HBO 3 ) by dissolving in a solvent to prepare a borate-based lysate preparing a borate-based lysate;
    보레이트계 용해물을 건조하여 보레이트계 건조 혼합물을 수득하는 보레이트계 용해물 건조 단계;drying the borate-based lysate to obtain a borate-based dry mixture by drying the borate-based lysate;
    보레이트계 건조 혼합물을, H2 및 N2 가스를 포함하는 혼합 가스 조건 하에서 열 처리하여 보레이트계 하소 혼합물을 수득하는 보레이트계 하소 단계.A borate-based calcination step of heat-treating the borate-based dry mixture under a mixed gas condition comprising H 2 and N 2 gas to obtain a borate-based calcination mixture.
  39. 제38항에 있어서, 보레이트계 용해물 준비 단계는 용매에 질산터븀 [Terbium nitrate, Tb(NO3)3]을 추가로 용매에 용해하는 것인, 형광체 조성물의 제조 방법.The method of claim 38, wherein the preparing of the borate-based solution comprises dissolving terbium nitrate [Terbium nitrate, Tb(NO 3 ) 3 ] in a solvent in a solvent.
  40. 제38항에 있어서, 상기 보레이트계 용해물 건조 단계는 80 내지 150℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 38, wherein the drying of the borate-based melt is performed under a temperature condition of 80 to 150°C.
  41. 제38항에 있어서, 상기 보레이트계 용해물 건조 단계는 12 내지 72시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 38, wherein the drying of the borate-based lysate is performed for 12 to 72 hours.
  42. 제38항에 있어서, 상기 보레이트계 하소 단계는 900 내지 1300℃의 온도 조건 하에서 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 38, wherein the borate-based calcination step is performed under a temperature condition of 900 to 1300°C.
  43. 제38항에 있어서, 상기 보레이트계 하소 단계는 6 내지 24시간 동안 수행되는 것인, 형광체 조성물의 제조 방법.The method of claim 38, wherein the borate-based calcination step is performed for 6 to 24 hours.
  44. 화학식 3으로 표시되는 형광체 조성물을 포함하는 치과용 조성물:A dental composition comprising a phosphor composition represented by Formula 3:
    [화학식 3][Formula 3]
    AE3(REE41-x-yREE5xREE6y)2(BO3)4 AE 3 (REE4 1-xy REE5 x REE6 y ) 2 (BO 3 ) 4
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 1종이고,The AE is one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE4는 란타넘 (La), 가돌리늄 (Gd) 및 이트륨 (Y)으로 이루어진 군으로부터 선택되는 1종이고,The REE4 is one selected from the group consisting of lanthanum (La), gadolinium (Gd) and yttrium (Y),
    상기 REE5는 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종이고,The REE5 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Er) and one selected from the group consisting of thulium (Tm),
    상기 REE6은 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종이다.The REE6 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Er) and thulium (Tm) is one selected from the group consisting of.
  45. 제44항에 있어서, 상기 치과용 조성물은 치아 수복물, 치아 보철물 및 치아 보형물 표면처리제로 이루어진 군으로부터 선택되는 1종 이상인 것인, 치과용 조성물.The dental composition of claim 44, wherein the dental composition is at least one selected from the group consisting of dental restorations, dental prostheses, and dental prosthesis surface treatment agents.
  46. 다음의 단계를 포함하는 형광체 조성물의 도포 방법:A method of applying a phosphor composition comprising the steps of:
    화학식 3으로 표시되는 형광체 조성물 및 파우더를 포함하는 보레이트계 분말 혼합물, 및 바인더를 혼합하여 보레이트계 도포물을 준비하는 보레이트계 형광체 조성물 혼합 단계;A borate-based phosphor composition mixing step of preparing a borate-based coating material by mixing a borate-based powder mixture comprising the phosphor composition and powder represented by Formula 3, and a binder;
    대상체에 상기 보레이트계 도포물을 도포하는 보레이트계 도포물 도포 단계; 및a borate-based coating material application step of applying the borate-based coating material to an object; and
    대상체에 도포된 보레이트계 도포물을 40 내지 60 ℃/분의 승온 속도로 250 내지 750℃의 온도 조건까지 승온시키고 20 내지 40분 동안 등온 상태로 유지하는 보레이트계 도포물 열 처리 단계.A borate-based coating heat treatment step of raising the temperature of the borate-based coating applied to the object to a temperature condition of 250 to 750°C at a temperature increase rate of 40 to 60°C/min and maintaining the isothermal state for 20 to 40 minutes.
    [화학식 3][Formula 3]
    AE3(REE41-x-yREE5xREE6y)2(BO3)4 AE 3 (REE4 1-xy REE5 x REE6 y ) 2 (BO 3 ) 4
    여기서,here,
    상기 x는 0<x≤0.15이고,wherein x is 0<x≤0.15,
    상기 y는 0≤y≤0.15이고,Wherein y is 0≤y≤0.15,
    상기 AE는 바륨 (Ba), 스트론튬 (Sr) 및 칼슘 (Ca)으로 이루어진 군으로부터 선택되는 1종이고,The AE is one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca),
    상기 REE4는 란타넘 (La), 가돌리늄 (Gd) 및 이트륨 (Y)으로 이루어진 군으로부터 선택되는 1종이고,The REE4 is one selected from the group consisting of lanthanum (La), gadolinium (Gd) and yttrium (Y),
    상기 REE5는 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종이고,The REE5 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Er) and one selected from the group consisting of thulium (Tm),
    상기 REE6은 세륨 (Ce), 프라세오디뮴 (Pr), 네오디뮴 (Nd), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 터븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 어븀 (Er) 및 툴륨 (Tm)으로 이루어진 군으로부터 선택되는 1종이다.The REE6 is cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium ( Er) and thulium (Tm) is one selected from the group consisting of.
PCT/KR2021/001746 2020-11-26 2021-02-09 Phosphor composition having similar luminescence characteristics to natural teeth and preparation method therefor WO2022114396A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020200161388A KR102558011B1 (en) 2020-11-26 2020-11-26 Silicate composition having luminescence properties similar to natural teeth and method for manufacturing the same
KR10-2020-0161388 2020-11-26
KR10-2020-0161389 2020-11-26
KR1020200161389A KR102555515B1 (en) 2020-11-26 2020-11-26 Phosphate composition having luminescence properties similar to natural teeth and method for manufacturing the same
KR10-2021-0005977 2021-01-15
KR1020210005977A KR102523822B1 (en) 2021-01-15 2021-01-15 Borate composition having luminescence properties similar to natural teeth and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022114396A1 true WO2022114396A1 (en) 2022-06-02

Family

ID=81754689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001746 WO2022114396A1 (en) 2020-11-26 2021-02-09 Phosphor composition having similar luminescence characteristics to natural teeth and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2022114396A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274045B2 (en) * 2005-03-17 2007-09-25 Lumination Llc Borate phosphor materials for use in lighting applications
KR20120006872A (en) * 2010-07-13 2012-01-19 서울대학교산학협력단 Phosphor for white light emitting diode and white light emitting diode using the same
JP2017502965A (en) * 2013-12-31 2017-01-26 デンツプライ インターナショナル インコーポレーテッド Dental composition containing upconversion phosphor and method of use
CN109897631A (en) * 2019-03-11 2019-06-18 武汉工程大学 A kind of europium doping aluminosilicate fluorescent powder material and its reduzate that can be restored under air environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274045B2 (en) * 2005-03-17 2007-09-25 Lumination Llc Borate phosphor materials for use in lighting applications
KR20120006872A (en) * 2010-07-13 2012-01-19 서울대학교산학협력단 Phosphor for white light emitting diode and white light emitting diode using the same
JP2017502965A (en) * 2013-12-31 2017-01-26 デンツプライ インターナショナル インコーポレーテッド Dental composition containing upconversion phosphor and method of use
CN109897631A (en) * 2019-03-11 2019-06-18 武汉工程大学 A kind of europium doping aluminosilicate fluorescent powder material and its reduzate that can be restored under air environment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SABALIAUSKIENE A.; BEGANSKIENE A.; ISHIKAWA K.; KAREIVA A.: "Lanthanide-Doping Effects on the Formation of Leucite KAlSiO", SILICON, SPRINGER, DORDRECHT, vol. 12, no. 5, 15 July 2019 (2019-07-15), Dordrecht , pages 1213 - 1223, XP037093316, ISSN: 1876-990X, DOI: 10.1007/s12633-019-00223-4 *
SONG HEE JO, YIM DONG KYUN, ROH HEE-SUK, CHO IN SUN, KIM SEUNG-JOO, JIN YUN-HO, SHIM HYUN-WOO, KIM DONG-WAN, HONG KUG SUN: "RbBaPO 4 :Eu 2+ : a new alternative blue-emitting phosphor for UV-based white light-emitting diodes", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 1, no. 3, 1 January 2013 (2013-01-01), GB , pages 500 - 505, XP055934045, ISSN: 2050-7526, DOI: 10.1039/C2TC00162D *
ZHEN MING CHU, YAN XIA LI, XU SHENG WANG, XI YAO: "Blue-Green Mechanoluminescence of CaAl2Si2O8:Eu2+ and CaAl2Si2O8:Eu2+,Dy3+", ADVANCED MATERIALS RESEARCH, vol. 815, 1 October 2013 (2013-10-01), CH , pages 655 - 661, XP009536788, ISSN: 1662-8985, DOI: 10.4028/www.scientific.net/AMR.815.655 *

Similar Documents

Publication Publication Date Title
WO2015072765A1 (en) Blue-green phosphor, and light-emitting device package and lighting apparatus comprising same
WO2022045532A1 (en) Versatile color-tunable upconversion nanophosphor
WO2012020880A1 (en) Fluorescent body, method for manufacturing fluorescent body, and white light emitting element
WO2011028033A2 (en) Phosphor, preparation method of phosphor, and white light emitting device
WO2011099800A2 (en) Fluorescent substance, light emitting device, surface light source device, display device and illuminating device
WO2019098601A1 (en) Method for manufacturing quantum dot film, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
WO2011014010A2 (en) Oxynitride phosphor powder, nitride phosphor powder and a production method therefor
WO2010018999A2 (en) Method for producing a β-sialon phosphor
WO2021034104A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2010147318A2 (en) Aminoanthracene derivative and an organic electroluminescent element employing the same
WO2012175059A2 (en) Water-soluble nail beautification and protection dual-purpose coating solution
WO2022114396A1 (en) Phosphor composition having similar luminescence characteristics to natural teeth and preparation method therefor
WO2010074391A1 (en) Oxynitride phosphor, method for preparing the same, and light-emitting device
CN101374929A (en) Photoluminescent material
WO2012165906A2 (en) Manufacturing method for silicon nitride fluorescent substance using metal silicon oxynitride fluorescent substance, halo-nitride red fluorescent substance, manufacturing method for same and light emitting element comprising same
WO2016122006A1 (en) Core-shell nanowire, method for synthesizing the core-shell nanowire, and transparent electrode and organic light emitting diode including the core-shell nanowire
WO2022139455A1 (en) Organic compound and organic electroluminescent device using same
WO2010134711A9 (en) Fluorescent phosphor and light-emitting device using same
WO2012111929A2 (en) Fluorescent substance and a production method therefor
WO2023018016A1 (en) High-efficiency energy down-conversion system
WO2020184996A2 (en) Light-sintering copper precursor, manufacturing method therefor, and light-sintering method therfor
WO2024058586A1 (en) Curable composition
WO2012165905A9 (en) Silicate fluorescent substance and white light emitting element comprising same
WO2022145942A1 (en) Light source module for plant cultivation and plant cultivation device comprising same
WO2024058649A1 (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898226

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21898226

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/11/2023)