WO2022114328A1 - Time synchronization-based contention-free lora wireless communication method and device - Google Patents

Time synchronization-based contention-free lora wireless communication method and device Download PDF

Info

Publication number
WO2022114328A1
WO2022114328A1 PCT/KR2020/017291 KR2020017291W WO2022114328A1 WO 2022114328 A1 WO2022114328 A1 WO 2022114328A1 KR 2020017291 W KR2020017291 W KR 2020017291W WO 2022114328 A1 WO2022114328 A1 WO 2022114328A1
Authority
WO
WIPO (PCT)
Prior art keywords
gateway
transmission
devices
slot
wireless communication
Prior art date
Application number
PCT/KR2020/017291
Other languages
French (fr)
Korean (ko)
Inventor
지영민
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022114328A1 publication Critical patent/WO2022114328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a LoRa (low power, wide area) wireless communication method, and more particularly, to a non-competition LoRa wireless communication method for maximizing battery-based end-device low power through allocation of an end-device transmission guarantee slot to which a synchronization technology is applied. will be.
  • LoRa low power, wide area
  • a class A device of LoRa wireless communication is configured to secure a transmission time through contention in a slotted Aloha scheme as illustrated in FIG. 1 .
  • Class A of LoRa wireless communication will operate as illustrated in FIG. 2 .
  • the end-device When an end-device occupies a channel in the Slotted Aloha method, the corresponding slot becomes available to the end-device. When the channel is occupied, the end-device transmits gateway data to the UL, and the gateway transmits data to the end-device. If there is, it is configured to transmit data to DL1 to DL2.
  • long-distance low-power wireless communication technology is not multi-hop-based, but mostly in the form of a star topology, and in the case of a gateway, it is configured in a form in which low power is not required for data reception and is always powered.
  • the battery life time of the corresponding device can be maximized.
  • the present invention has been devised to solve the above problems, and an object of the present invention is a low-power long-distance battery technology of an IoT sensing device that can allocate a transmission guarantee slot of an end-device to which a time synchronization technology using a gateway and a GPS signal is applied.
  • a time synchronization-based contention-free LoRa wireless communication method includes: registering one or more end-devices to a gateway; sequentially allocating, by the gateway, a transmission guarantee slot to each of the registered end-devices; and receiving, by each end-device, a beacon according to the assigned transmission guarantee slot and transmitting IoT sensing data.
  • transmission guarantee slots are sequentially allocated to the registered end-devices, and in this case, the transmission step, when the gateway is an active section within the cycle period, guaranteeing its own transmission
  • the end-device at which the slot time has arrived may receive a beacon from the gateway and transmit IoT sensing data to the gateway.
  • the gateway may decrease the sleep period within the cycle period and increase the active period at the same time.
  • the gateway may extend the cycle period by a multiple of two to secure the sleep period when the sleep period within the cycle period is reduced to less than or equal to a critical point.
  • the number of end-devices registered in the gateway gradually increases, and when the cycle period is gradually extended by a multiple of 2, when the length of the extended cycle period is greater than or equal to a threshold, the cycle period is stopped from expanding, It is possible to stop allocating a transmission guarantee slot for a newly registered end-device, and to secure a transmission time through contention in the slotted Aloha method.
  • the allocation step when a specific end-device among the registered end-devices relinquishes the occupation of the allocated transmission guaranteed slot, the end-device that has given up the occupation of the transmission guaranteed slot becomes active thereafter, and when data is transmitted , it is possible to secure the transmission time through contention in the slotted Aloha method.
  • the end-device that secures the transmission time through contention transmits IoT sensing data. By checking the frequency, the end-device having the highest frequency may be allocated to the transmission guarantee slot.
  • the end-device calculates its allocated transmission guarantee slot time by using an internal clock, and waits for receiving a beacon signal based on the calculation result, wherein the end-device has an internal clock error
  • synchronization signal loss occurs due to this, after time synchronization is performed through a GPS signal, it is possible to calculate its own transmission guaranteed slot time again.
  • a time synchronization-based non-contention LoRa wireless communication device an end-device for collecting IoT sensing data; and a gateway that registers one or more end-devices and sequentially allocates a transmission guarantee slot to each of the registered end-devices, wherein each end-device transmits a beacon at its assigned transmission guarantee slot time. Receive and transmit IoT sensing data.
  • a time synchronization-based contention-free LoRa wireless communication method includes: sequentially allocating a transmission guarantee slot to each end-device registered by a gateway; and receiving, by each end-device, a beacon according to the allocated transmission guarantee slot and transmitting IoT sensing data.
  • a time synchronization-based non-contention LoRa wireless communication device an end-device for collecting IoT sensing data; and a gateway that sequentially allocates a transmission guarantee slot to each of the registered end-devices, wherein each end-device receives a beacon at its assigned transmission guarantee slot time, and can transmit IoT sensing data.
  • a larger number of end-devices can be managed under the gateway than before, and as the number of end-devices increases, the time taken for transmission increases, but in the sleep interval Battery life can be increased due to the increase, and since all sections except for the end-device registration cycle operate in a non-competition-free manner, the energy consumption of the device is remarkably reduced, thereby maximizing the battery life.
  • Fig. 2 is a view provided for explaining the operation of class A of the LoRa radio communication shown in Fig. 1 above;
  • FIG. 3 is a flowchart provided in the description of a contention-free LoRa wireless communication method according to an embodiment of the present invention
  • FIG. 4 is a view provided for the description of a contention-free LoRa wireless communication method according to an embodiment of the present invention.
  • 5 is a diagram provided for the explanation of a process of extending a cycle when the number of registered end-devices exceeds the available slots;
  • FIG. 6 is a diagram provided in the description of a contention-free LoRa wireless communication device according to an embodiment of the present invention.
  • FIG. 7 is a diagram provided to explain the operation of an end-device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart provided for explaining a contention-free LoRa wireless communication method according to an embodiment of the present invention
  • FIG. 4 is a diagram provided for explaining a contention-free LoRa wireless communication method according to an embodiment of the present invention
  • FIG. 5 is a diagram provided to explain a process of extending a cycle when the number of registered end-devices exceeds the available slots.
  • the contention-free LoRa wireless communication method applies the low-power long-distance battery technology of the IoT sensing device that can allocate the transmission guarantee slot of the end-device 100 to which the time synchronization technology using the gateway 200 and the GPS signal is applied. , is provided to obtain information on a larger number of devices through one gateway 200 and maximize battery life time.
  • the gateway 200 allocates a specific number of transmission guarantee slots to determine an initial cycle and performs an operation.
  • the gateway 200 sequentially allocates a transmission guarantee slot to each of the registered end-devices 100 (S320) , determine the initial cycle, and perform the operation.
  • each registered end-device 100 may receive a beacon (signal) in its own order according to the assigned transmission guarantee slot (S330), and transmit IoT sensing data (S340).
  • the end-device 100 at which its transmission guarantee slot time has arrived receives a beacon from the gateway 200, and IoT sensing to the gateway 200 data will be transmitted.
  • the gateway 200 registers the new end-device 100 during the sleep period within the cycle period, and when the new end-device 100 is registered, sequentially allocates transmission guarantee slots to allow the node to cycle through the cycle. Allows to receive beacons and transmit data in their own order of cycles (a specific order).
  • the number of end-devices 100 to be registered gradually increases, and the transmission guarantee slots allocated within the cycle period increase, so that the active period within the cycle period is extended according to the number of registered devices. .
  • the gateway 200 may decrease the sleep period within the cycle period and increase the active period at the same time.
  • the gateway 200 may extend the cycle period by a multiple of two as illustrated in FIG. 5 to secure the sleep period.
  • the multiple expansion of 2 means that the cycle section length is extended to 2 times, 4 times, 8 times, 16 times, etc. the length of the initial cycle section.
  • the gateway 200 may secure the sleep period by extending the cycle period by a multiple of 2. Accordingly, when the number of connected end-devices 100 increases, the transmission period is also gradually intermittently transmitted.
  • a specific end-device 100 may give up the occupation of the allocated transmission guarantee slot, and if the occupation of its own transmission guarantee slot is given up, the end-device 100 giving up the occupation of the transmission guarantee slot After becoming active, when data is to be transmitted, a transmission guarantee slot may be allocated or the transmission time may be secured through contention in the Slotted Aloha method.
  • the transmission time can be secured through contention.
  • the gateway 200 determines the transmission time through contention in the Slotted Aloha method. By checking the frequency of IoT sensing data transmitted by the secured end-devices 100 , the end-device 100 having the highest frequency may be allocated to the transmission guarantee slot.
  • the end-device 100 does not transmit IoT sensing data even when the allocated transmission guarantee slot time arrives, and energy consumption can be reduced for the life of the battery (life time).
  • the gateway 200 when the number of end-devices 100 to be registered gradually increases, and the cycle period is gradually extended to a multiple of 2, when the length of the extended cycle period is equal to or greater than a threshold, the cycle period is extended , stops allocating a transmission guarantee slot to the newly registered end-device 100, and secures a transmission time through contention in the slotted Aloha method.
  • the gateway 200 extends the cycle period by a multiple of 2 when the sleep period within the cycle period is reduced below a preset threshold point, but when it becomes 16 times the initial cycle period, stops the extension of the cycle period, and newly Slotted to stop allocating a transmission guarantee slot for the end-device 100 to be registered, receive a beacon signal transmitted by the gateway 200, compete within a sleep period to receive a transmission guarantee slot, and proceed with the device registration procedure It is possible to secure the transmission time in the Aloha method.
  • FIG. 6 is a diagram provided to explain a contention-free LoRa wireless communication device according to an embodiment of the present invention.
  • the end-device 100 may include a sensor 110 , a first communication unit, a first processor 130 , and a GPS module 140 .
  • the sensor 110 is the IoT sensor 110 , and the first communication unit may receive a beacon from the gateway 200 and transmit IoT sensing data received from the sensor 110 to the gateway 200 .
  • the first communication unit may be composed of a receiving end 121 (RX) receiving a beacon from the gateway 200 and a transmitting end 122 (TX) transmitting IoT sensing data.
  • RX receiving end 121
  • TX transmitting end 122
  • the first processor 130 is provided to process general matters of the end-device 100 .
  • the first processor 130 may receive beacons in its own order according to the allocated transmission guarantee slot and transmit IoT sensing data.
  • the first processor 130 gives up its assigned transmission guarantee slot occupation, continues to operate in a sleep state to reduce energy consumption, and receives a transmission guarantee slot again or an active state In the Slotted Aloha method, the transmission time can be secured through contention.
  • the end-device 100 synchronization of its own transmission guarantee slot time for receiving a beacon signal is the biggest issue, and the first processor 130 according to the present embodiment utilizes an internal clock to transmit its own transmission. It calculates the guaranteed slot time, finds its own transmission guaranteed slot, and waits for beacon (signal) reception.
  • the first processor 130 calculates its own transmission guarantee slot time again after performing time synchronization by enabling the GPS module 140 . And, it is possible to wait for the beacon (signal) reception by finding the transmission guaranteed slot time through the calculated result.
  • the GPS module 140 may provide a GPS signal to the first processor 130 .
  • the gateway 200 may include a second communication unit 210 and a second processor 220 .
  • the second communication unit 210 may be connected to the first communication unit.
  • the second processor 220 may register the end-device 100 through the second communication unit 210 or may sequentially allocate a transmission guarantee slot to each of the registered end-devices 100 .
  • the second processor 220 may transmit a beacon to the specific end-device 100 according to the allocated transmission guarantee slot and receive IoT sensing data.
  • the second processor 220 may secure the sleep period by extending the cycle period by a multiple of 2.
  • FIG. 7 is a diagram provided to explain the operation of the end-device 100 according to an embodiment of the present invention.
  • the end-device 100 is in an inactive sleep state (S710), and when its own transmission guarantee slot time arrives, it becomes an active state (S720) and waits for a beacon (signal) reception is done (S730).
  • the end-device 100 does not receive a beacon from the gateway 200 (S740-No), it switches the GPS module 140 to an operating state (S750), and performs time synchronization (S755), and then the next It may be in the sleep state until the transmission guarantee slot time (S760).
  • the end-device 100 receives a beacon from the gateway 200 (S740-Yes), it updates its own transmission guarantee slot time (S770), and transmits IoT sensing data to the gateway 200 ( S780). When the transmission of IoT sensing data is completed, thereafter, it returns to the sleep state again (S790).
  • the end-device 100 may change the GPS module 140 to an operating state to perform time synchronization, and when the time synchronization matches, the GPS module 140 By limiting the operation of the battery, it is possible to extend the life of the battery.
  • the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be any data storage system readable by the computer and capable of storing data.
  • the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
  • the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a contention-free LoRa wireless communication method for battery-based end-device low power maximization through guaranteed transmission slot allocation of an end-device to which a synchronization technology is applied. A time synchronization-based contention-free LoRa wireless communication method according to an embodiment of the present invention comprises: a step in which one or more end-devices are registered in a gateway; a step in which the gateway sequentially allocates a guaranteed transmission slot to each of the registered end-devices; and a step in which each of the end-devices receives a beacon according to the allocated guaranteed transmission slot, and transmits IoT sensing data. Accordingly, a larger number of end-devices can be managed under a gateway than in the prior art, as the number of end-devices increases, a time taken for transmission increases, but a battery lifetime can be increased upon an increase in a sleep interval, and since all intervals except for an end-device registration period operate in a contention-free manner without contention, energy consumption of a device is considerably reduced and a maximum battery lifetime can thus be secured.

Description

시간 동기화 기반 비경쟁 로라 무선 통신 방법 및 장치Time synchronization-based contention-free LoRa wireless communication method and apparatus
본 발명은 로라(저전력, 광역) 무선 통신 방법에 관한 것으로, 더욱 상세하게는 동기화 기술을 적용한 엔드-디바이스의 전송 보장 슬롯 할당을 통한 배터리 기반 엔드-디바이스 저전력 극대화를 위한 비경쟁 로라 무선 통신 방법에 관한 것이다.The present invention relates to a LoRa (low power, wide area) wireless communication method, and more particularly, to a non-competition LoRa wireless communication method for maximizing battery-based end-device low power through allocation of an end-device transmission guarantee slot to which a synchronization technology is applied. will be.
로라 무선 통신의 클래스 A 디바이스는 도 1에 예시된 바와 같이 Slotted Aloha 방식으로 전송 타임을 경쟁을 통하여 확보하도록 구성되어 있다. A class A device of LoRa wireless communication is configured to secure a transmission time through contention in a slotted Aloha scheme as illustrated in FIG. 1 .
구체적으로, 로라 무선 통신의 클래스 A는 도 2에 예시된 바와 같이 동작하게 된다. Specifically, Class A of LoRa wireless communication will operate as illustrated in FIG. 2 .
엔드-디바이스가 Slotted Aloha 방식으로 채널 점유를 하면, 해당 슬롯은 그 엔드-디바이스가 활용할 수 있게 되는데, 채널이 점유되면 UL로 엔드-디바이스에서 게이트웨이 데이터를 전송하고, 게이트웨이는 엔드-디바이스로 내릴 데이터가 있는 경우 DL1~DL2로 데이터를 전송하도록 구성이 되어 있다.When an end-device occupies a channel in the Slotted Aloha method, the corresponding slot becomes available to the end-device. When the channel is occupied, the end-device transmits gateway data to the UL, and the gateway transmits data to the end-device. If there is, it is configured to transmit data to DL1 to DL2.
이때, 종단에 있는 엔드-디바이스의 수가 적은 경우에는 경쟁이 심하지 않기 때문에 전송에 큰 에너지를 소비 하지 않을 수 있지만, 게이트웨이에 붙어 있는 엔드-디바이스가 많아 질수록 경쟁이 심하게 되어 에너지 소모를 증가 시키는 요인이 되는 문제점이 존재한다. At this time, if the number of end-devices at the end is small, the transmission may not consume a lot of energy because there is not intense competition. There is a problem with this.
한편, 장거리 저전력 무선 통신 기술은 멀티 홉 기반이 아니라 대부분 스타토플로지 형태로 구성되며, 게이트웨이의 경우 데이터 수신을 위해 저전력이 필요하지 않은 상시 전원이 인가된 형태로 구성된다. On the other hand, long-distance low-power wireless communication technology is not multi-hop-based, but mostly in the form of a star topology, and in the case of a gateway, it is configured in a form in which low power is not required for data reception and is always powered.
즉, 말단 엔드-디바이스의 시간 동기화 및 전송 타임만 명확하게 맞출 수 있다면, 해당 장치의 배터리 라이프 타임을 극대화 시킬 수 있다.That is, if only the time synchronization and transmission time of the terminal end-device can be clearly adjusted, the battery life time of the corresponding device can be maximized.
따라서, IoT 센싱 디바이스의 저전력 장거리 배터리 기술을 적용하여, 하나의 게이트웨이를 통하여 보다 많은 수의 다비이스의 정보를 취득하며, 배터리 라이프 타임을 최대화시킬 수 있는 방안의 모색이 요구된다. Therefore, it is required to find a way to maximize the battery life time by applying the low-power long-distance battery technology of the IoT sensing device to acquire information of a larger number of devices through one gateway.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 게이트웨이 및 GPS 신호를 이용한 시간 동기화 기술을 적용한 엔드-디바이스의 전송 보장 슬롯 할당이 가능한 IoT 센싱 디바이스의 저전력 장거리 배터리 기술을 적용하여, 하나의 게이트웨이를 통하여 보다 많은 수의 다비이스의 정보를 취득하며, 배터리 라이프 타임을 최대화시킬 수 있는, 시간 동기화 기반 비경쟁 로라 무선 통신 방법 및 장치를 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is a low-power long-distance battery technology of an IoT sensing device that can allocate a transmission guarantee slot of an end-device to which a time synchronization technology using a gateway and a GPS signal is applied. To provide a time synchronization-based contention-free LoRa wireless communication method and apparatus that can obtain information on a larger number of devices through a single gateway and maximize battery life time by applying .
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 시간 동기화 기반 비경쟁 로라 무선 통신 방법은, 게이트웨이에 하나 이상의 엔드-디바이스가 등록되는 단계; 게이트웨이가 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 단계; 및 할당된 전송 보장 슬롯에 따라 각각의 엔드-디바이스가 비콘을 수신하고, IoT 센싱 데이터를 전송하는 단계;를 포함한다. According to an embodiment of the present invention for achieving the above object, a time synchronization-based contention-free LoRa wireless communication method includes: registering one or more end-devices to a gateway; sequentially allocating, by the gateway, a transmission guarantee slot to each of the registered end-devices; and receiving, by each end-device, a beacon according to the assigned transmission guarantee slot and transmitting IoT sensing data.
그리고 등록 단계는, 게이트웨이가 사이클 구간 내 슬립 구간일 때, 신규 엔드-디바이스가 등록될 수 있다.And, in the registration step, when the gateway is in the sleep period within the cycle period, a new end-device may be registered.
또한, 할당 단계는, 게이트웨이에 신규 엔드-디바이스가 등록되면, 등록된 엔드-디바이스에 순차적으로 전송 보장 슬롯이 할당되며, 이때, 전송 단계는, 게이트웨이가 사이클 구간 내 활성 구간이면, 자신의 전송 보장 슬롯 시간이 도래한 엔드-디바이스가, 게이트웨이로부터 비콘을 수신하고, 게이트웨이에 IoT 센싱 데이터를 전송할 수 있다.In addition, in the allocation step, when a new end-device is registered with the gateway, transmission guarantee slots are sequentially allocated to the registered end-devices, and in this case, the transmission step, when the gateway is an active section within the cycle period, guaranteeing its own transmission The end-device at which the slot time has arrived may receive a beacon from the gateway and transmit IoT sensing data to the gateway.
그리고 게이트웨이는, 등록되는 엔드-디바이스 수가 증가하면, 사이클 구간 내 슬립 구간을 감소시키는 동시에 활성 구간을 증가시킬 수 있다.And, when the number of registered end-devices increases, the gateway may decrease the sleep period within the cycle period and increase the active period at the same time.
또한, 게이트웨이는, 사이클 구간 내 슬립 구간이 임계점 이하로 감소되면, 슬립 구간을 확보하기 위해, 사이클 구간을 2의 배수로 확장시킬 수 있다.Also, the gateway may extend the cycle period by a multiple of two to secure the sleep period when the sleep period within the cycle period is reduced to less than or equal to a critical point.
그리고 할당 단계는, 게이트웨이에 등록되는 엔드-디바이스의 수가 점차적으로 증가하여, 사이클 구간이 점차적으로 2의 배수로 확장되는 경우, 확장된 사이클 구간의 길이가 임계치 이상인 경우, 사이클 구간의 확장을 중단하고, 신규로 등록되는 엔드-디바이스에 대하여 전송 보장 슬롯 할당을 중단하며, Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 할 수 있다.And in the allocating step, the number of end-devices registered in the gateway gradually increases, and when the cycle period is gradually extended by a multiple of 2, when the length of the extended cycle period is greater than or equal to a threshold, the cycle period is stopped from expanding, It is possible to stop allocating a transmission guarantee slot for a newly registered end-device, and to secure a transmission time through contention in the slotted Aloha method.
또한, 할당 단계는, 등록된 엔드-디바이스 중 특정 엔드-디바이스가 할당된 전송 보장 슬롯의 점유를 포기하면, 전송 보장 슬롯 점유를 포기한 엔드-디바이스가 이후 활성화 상태가 되어, 데이터를 전송하고자 할 때, Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 할 수 있다.In addition, in the allocation step, when a specific end-device among the registered end-devices relinquishes the occupation of the allocated transmission guaranteed slot, the end-device that has given up the occupation of the transmission guaranteed slot becomes active thereafter, and when data is transmitted , it is possible to secure the transmission time through contention in the slotted Aloha method.
그리고 할당 단계는, 확장된 사이클 구간의 길이가 임계치 이상인 경우, 특정 엔드-디바이스가 할당된 전송 보장 슬롯의 점유를 포기하면, 경쟁을 통하여 전송 시간을 확보하는 엔드-디바이스가 전송하는 IoT 센싱 데이터의 빈도를 체크하여, 빈도수가 가장 높은 엔드-디바이스를 전송 보장 슬롯에 할당할 수 있다.And in the allocation step, when the length of the extended cycle period is equal to or greater than a threshold, if a specific end-device gives up the occupation of the allocated transmission guarantee slot, the end-device that secures the transmission time through contention transmits IoT sensing data. By checking the frequency, the end-device having the highest frequency may be allocated to the transmission guarantee slot.
또한, 전송 단계는, 엔드-디바이스가 내부 클럭을 활용하여, 할당된 자신의 전송 보장 슬롯 시간을 계산하고, 계산 결과를 기반으로 비콘 신호 수신을 대기하며, 이때, 엔드-디바이스는, 내부 클럭 오차로 인하여 동기 신호 손실이 발생하면, GPS 시그널을 통하여 시간 동기화를 진행한 이후, 다시 자신의 전송 보장 슬롯 시간을 계산할 수 있다.In addition, in the transmission step, the end-device calculates its allocated transmission guarantee slot time by using an internal clock, and waits for receiving a beacon signal based on the calculation result, wherein the end-device has an internal clock error When synchronization signal loss occurs due to this, after time synchronization is performed through a GPS signal, it is possible to calculate its own transmission guaranteed slot time again.
한편, 본 발명의 다른 실시예에 따른, 시간 동기화 기반 비경쟁 로라 무선 통신 장치는, IoT 센싱 데이터를 수집하는 엔드-디바이스; 및 하나 이상의 엔드-디바이스를 등록하고, 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 게이트웨이;를 포함하고, 각각의 엔드-디바이스는, 할당된 자신의 전송 보장 슬롯 시간에 비콘을 수신하고, IoT 센싱 데이터를 전송할 수 있다.On the other hand, according to another embodiment of the present invention, a time synchronization-based non-contention LoRa wireless communication device, an end-device for collecting IoT sensing data; and a gateway that registers one or more end-devices and sequentially allocates a transmission guarantee slot to each of the registered end-devices, wherein each end-device transmits a beacon at its assigned transmission guarantee slot time. Receive and transmit IoT sensing data.
또한, 본 발명의 다른 실시예에 따른, 시간 동기화 기반 비경쟁 로라 무선 통신 방법은, 게이트웨이가 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 단계; 및 할당된 전송 보장 슬롯에 따라 각각의 엔드-디바이스가 비콘을 수신하고, IoT 센싱 데이터를 전송하는 단계;를 포함한다. In addition, according to another embodiment of the present invention, a time synchronization-based contention-free LoRa wireless communication method includes: sequentially allocating a transmission guarantee slot to each end-device registered by a gateway; and receiving, by each end-device, a beacon according to the allocated transmission guarantee slot and transmitting IoT sensing data.
그리고 본 발명의 다른 실시예에 따른, 시간 동기화 기반 비경쟁 로라 무선 통신 장치는, IoT 센싱 데이터를 수집하는 엔드-디바이스; 및 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 게이트웨이;를 포함하고, 각각의 엔드-디바이스는, 할당된 자신의 전송 보장 슬롯 시간에 비콘을 수신하고, IoT 센싱 데이터를 전송할 수 있다. And according to another embodiment of the present invention, a time synchronization-based non-contention LoRa wireless communication device, an end-device for collecting IoT sensing data; and a gateway that sequentially allocates a transmission guarantee slot to each of the registered end-devices, wherein each end-device receives a beacon at its assigned transmission guarantee slot time, and can transmit IoT sensing data. have.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 게이트웨이 하위에 기존 보다 많은 수의 엔드-디바이스를 관리 할 수 있으며, 엔드-디바이스 수가 늘어나면 늘어날수록 전송에 걸리는 시간은 늘어나게 되나, 슬립 구간의 증가로 배터리 라이프 타임이 증가되도록 할 수 있으며, 엔드-디바이스 등록 주기만 제외하고 모든 구간이 경쟁이 없는 비경쟁으로 동작하기 때문에 디바이스의 에너지 소비가 현저하게 줄어들어 배터리 라이프타임을 최대로 확보할 수 있다.As described above, according to the embodiments of the present invention, a larger number of end-devices can be managed under the gateway than before, and as the number of end-devices increases, the time taken for transmission increases, but in the sleep interval Battery life can be increased due to the increase, and since all sections except for the end-device registration cycle operate in a non-competition-free manner, the energy consumption of the device is remarkably reduced, thereby maximizing the battery life.
도 1은, Slotted Aloha 방식의 로라 무선 통신의 설명에 제공된 도면,1 is a diagram provided for the description of LoRa wireless communication in the Slotted Aloha scheme;
도 2는, 상기 도 1에 도시된 로라 무선 통신의 클래스 A의 동작 설명에 제공된 도면, Fig. 2 is a view provided for explaining the operation of class A of the LoRa radio communication shown in Fig. 1 above;
도 3은, 본 발명의 일 실시예에 따른 비경쟁 로라 무선 통신 방법의 설명에 제공된 흐름도, 3 is a flowchart provided in the description of a contention-free LoRa wireless communication method according to an embodiment of the present invention;
도 4는, 본 발명의 일 실시예에 따른 비경쟁 로라 무선 통신 방법의 설명에 제공된 도면, 4 is a view provided for the description of a contention-free LoRa wireless communication method according to an embodiment of the present invention;
도 5는, 엔드-디바이스의 등록 수가 가용 슬롯을 초과하는 경우, 사이클을 확장하는 과정의 설명에 제공된 도면,5 is a diagram provided for the explanation of a process of extending a cycle when the number of registered end-devices exceeds the available slots;
도 6은, 본 발명의 일 실시예에 따른 비경쟁 로라 무선 통신 장치의 설명에 제공된 도면, 그리고 6 is a diagram provided in the description of a contention-free LoRa wireless communication device according to an embodiment of the present invention;
도 7는, 본 발명의 일 실시예에 따른 엔드-디바이스의 동작 설명에 제공된 도면이다. 7 is a diagram provided to explain the operation of an end-device according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 3은, 본 발명의 일 실시예에 따른 비경쟁 로라 무선 통신 방법의 설명에 제공된 흐름도이고, 도 4는, 본 발명의 일 실시예에 따른 비경쟁 로라 무선 통신 방법의 설명에 제공된 도면이며, 도 5는, 엔드-디바이스의 등록 수가 가용 슬롯을 초과하는 경우, 사이클을 확장하는 과정의 설명에 제공된 도면이다.3 is a flowchart provided for explaining a contention-free LoRa wireless communication method according to an embodiment of the present invention, FIG. 4 is a diagram provided for explaining a contention-free LoRa wireless communication method according to an embodiment of the present invention, FIG. 5 is a diagram provided to explain a process of extending a cycle when the number of registered end-devices exceeds the available slots.
본 실시예에 따른 비경쟁 로라 무선 통신 방법은, 게이트웨이(200) 및 GPS 신호를 이용한 시간 동기화 기술을 적용한 엔드-디바이스(100)의 전송 보장 슬롯 할당이 가능한 IoT 센싱 디바이스의 저전력 장거리 배터리 기술을 적용하여, 하나의 게이트웨이(200)를 통하여 보다 많은 수의 다비이스의 정보를 취득하며, 배터리 라이프 타임을 최대화 시키기 위해 마련된다.The contention-free LoRa wireless communication method according to this embodiment applies the low-power long-distance battery technology of the IoT sensing device that can allocate the transmission guarantee slot of the end-device 100 to which the time synchronization technology using the gateway 200 and the GPS signal is applied. , is provided to obtain information on a larger number of devices through one gateway 200 and maximize battery life time.
이를 위해, 본 비경쟁 로라 무선 통신 방법은, 게이트웨이(200)가 전송 보장 슬롯을 특정 수만큼 할당하여 초기 사이클을 결정하고, 동작을 수행하게 된다. To this end, in the present contention-free LoRa wireless communication method, the gateway 200 allocates a specific number of transmission guarantee slots to determine an initial cycle and performs an operation.
구체적으로, 게이트웨이(200)에 하나 이상의 엔드-디바이스(100)가 등록되면(S310), 게이트웨이(200)가 등록된 엔드-디바이스(100) 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하여(S320), 초기 사이클을 결정하고, 동작을 수행하게 된다.Specifically, when one or more end-devices 100 are registered in the gateway 200 (S310), the gateway 200 sequentially allocates a transmission guarantee slot to each of the registered end-devices 100 (S320) , determine the initial cycle, and perform the operation.
이때, 초기에 게이트웨이(200)에 연결된 엔드-디바이스(100)가 존재하지 않으므로, 모든 구간이 슬립(=비활성) 구간으로 동작을 하게 된다. In this case, since the end-device 100 initially connected to the gateway 200 does not exist, all sections operate as a sleep (=inactive) section.
그리고 등록된 각각의 엔드-디바이스(100)는, 할당된 전송 보장 슬롯에 따라 자신의 순서에 비콘(신호)을 수신하고(S330), IoT 센싱 데이터를 전송할 수 있다(S340). And each registered end-device 100 may receive a beacon (signal) in its own order according to the assigned transmission guarantee slot (S330), and transmit IoT sensing data (S340).
구체적으로, 게이트웨이(200)는, 사이클 구간 내 활성 구간이면, 자신의 전송 보장 슬롯 시간이 도래한 엔드-디바이스(100)가, 게이트웨이(200)로부터 비콘을 수신하고, 게이트웨이(200)에 IoT 센싱 데이터를 전송하게 된다. Specifically, if the gateway 200 is an active period within the cycle period, the end-device 100 at which its transmission guarantee slot time has arrived receives a beacon from the gateway 200, and IoT sensing to the gateway 200 data will be transmitted.
즉, 게이트웨이(200)는 사이클 구간 내 슬립 구간일 때, 신규 엔드-디바이스(100)를 등록하게 되며, 신규 엔드-디바이스(100)가 등록되면, 순차적으로 전송 보장 슬롯을 할당하여 해당 노드가 사이클 주기의 자신의 순서(특정 순서)에 비콘을 수신하고 데이터를 전송할 수 있도록 한다.That is, the gateway 200 registers the new end-device 100 during the sleep period within the cycle period, and when the new end-device 100 is registered, sequentially allocates transmission guarantee slots to allow the node to cycle through the cycle. Allows to receive beacons and transmit data in their own order of cycles (a specific order).
이에 따라, 게이트웨이(200)는 점차적으로 등록되는 엔드-디바이스(100)가 증가하게 되고, 사이클 주기 내에 할당된 전송 보장 슬롯이 늘어나게 되어, 사이클 주기 내에 활성 구간이 등록된 디바이스 수에 따라 확장하게 된다.Accordingly, in the gateway 200, the number of end-devices 100 to be registered gradually increases, and the transmission guarantee slots allocated within the cycle period increase, so that the active period within the cycle period is extended according to the number of registered devices. .
이때, 게이트웨이(200)는, 등록되는 엔드-디바이스(100) 수가 증가하면, 사이클 구간 내 슬립 구간을 감소시키는 동시에 활성 구간을 증가시킬 수 있다. In this case, when the number of registered end-devices 100 increases, the gateway 200 may decrease the sleep period within the cycle period and increase the active period at the same time.
또한, 게이트웨이(200)는, 사이클 구간 내 슬립 구간이 기설정된 임계점 이하로 감소되면, 슬립 구간을 확보하기 위해, 도 5에 예시된 바와 같이 사이클 구간을 2의 배수로 확장시킬 수 있다. 여기서, 2의 배수 확장은, 사이클 구간 길이가 최초 사이클 구간 길이의 2배, 4배, 8배, 16배 등으로 확장되는 것을 의미한다. Also, when the sleep period within the cycle period is reduced below a preset threshold, the gateway 200 may extend the cycle period by a multiple of two as illustrated in FIG. 5 to secure the sleep period. Here, the multiple expansion of 2 means that the cycle section length is extended to 2 times, 4 times, 8 times, 16 times, etc. the length of the initial cycle section.
구체적으로, 게이트웨이(200)는, 기설정된 임계점 이상의 슬립 구간의 슬롯 수가 줄어 들게되면, 사이클 구간을 2의 배수로 확장하여 슬립 구간을 확보할 수 있다. 따라서 연결된 엔드-디바이스(100)의 수가 늘어나게 되면, 전송 주기도 점차적으로 간혈적으로 전송되게 된다. Specifically, when the number of slots in the sleep period equal to or greater than the preset threshold is reduced, the gateway 200 may secure the sleep period by extending the cycle period by a multiple of 2. Accordingly, when the number of connected end-devices 100 increases, the transmission period is also gradually intermittently transmitted.
그리고 등록된 엔드-디바이스 중 특정 엔드-디바이스(100)는 할당된 전송 보장 슬롯의 점유를 포기할 수 있는데, 자신의 전송 보장 슬롯의 점유를 포기하면, 전송 보장 슬롯 점유를 포기한 엔드-디바이스(100)가 이후 활성화 상태가 되어, 데이터를 전송하고자 할 때, 전송 보장 슬롯을 할당받거나 또는 Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 할 수 있다. And among the registered end-devices, a specific end-device 100 may give up the occupation of the allocated transmission guarantee slot, and if the occupation of its own transmission guarantee slot is given up, the end-device 100 giving up the occupation of the transmission guarantee slot After becoming active, when data is to be transmitted, a transmission guarantee slot may be allocated or the transmission time may be secured through contention in the Slotted Aloha method.
즉, 특정 엔드-디바이스(100)는 빈번한 전송을 원하지 않는 경우, 자신에게 할당된 전송 보장 슬롯 점유를 포기하고, 계속 슬립 상태로 운영하여 에너지 소모를 줄이고, 다시 전송 보장 슬롯을 할당받거나 또는 활성 상태에서 Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 할 수 있다. That is, when a specific end-device 100 does not want frequent transmission, it gives up its assigned transmission guarantee slot occupation, continues to operate in a sleep state to reduce energy consumption, and is allocated a transmission guarantee slot again or is in an active state In the Slotted Aloha method, the transmission time can be secured through contention.
또한, 이때, 확장된 사이클 구간의 길이가 임계치 이상인 경우, 특정 엔드-디바이스(100)가 할당된 전송 보장 슬롯의 점유를 포기하면, 게이트웨이(200)는, Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하는 엔드-디바이스(100)들이 전송하는 IoT 센싱 데이터의 빈도를 체크하여, 빈도수가 가장 높은 엔드-디바이스(100)를 전송 보장 슬롯에 할당할 수 있다. In addition, at this time, if the length of the extended cycle period is equal to or greater than the threshold, if the specific end-device 100 gives up the occupation of the allocated transmission guarantee slot, the gateway 200 determines the transmission time through contention in the Slotted Aloha method. By checking the frequency of IoT sensing data transmitted by the secured end-devices 100 , the end-device 100 having the highest frequency may be allocated to the transmission guarantee slot.
이를 통해, 엔드-디바이스(100)는, 할당된 전송 보장 슬롯 시간이 도래하더라도, IoT 센싱 데이터를 전송하지 않고, 배터리의 수명(라이프 타임)을 위해, 에너지 소비를 절감시킬 수 있다. Through this, the end-device 100 does not transmit IoT sensing data even when the allocated transmission guarantee slot time arrives, and energy consumption can be reduced for the life of the battery (life time).
한편, 게이트웨이(200)는, 등록되는 엔드-디바이스(100)의 수가 점차적으로 증가하여, 사이클 구간이 점차적으로 2의 배수로 확장되는 경우, 확장된 사이클 구간의 길이가 임계치 이상인 경우, 사이클 구간의 확장을 중단하고, 신규로 등록되는 엔드-디바이스(100)에 대하여 전송 보장 슬롯 할당을 중단하며, Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 할 수 있다. On the other hand, the gateway 200, when the number of end-devices 100 to be registered gradually increases, and the cycle period is gradually extended to a multiple of 2, when the length of the extended cycle period is equal to or greater than a threshold, the cycle period is extended , stops allocating a transmission guarantee slot to the newly registered end-device 100, and secures a transmission time through contention in the slotted Aloha method.
구체적으로, 게이트웨이(200)는, 사이클 구간 내 슬립 구간이 기설정된 임계점 이하로 감소되면, 사이클 구간을 2의 배수로 확장시키되, 최초 사이클 구간의 16배가 되면, 사이클 구간의 확장을 중단하고, 신규로 등록되는 엔드-디바이스(100)에 대하여 전송 보장 슬롯 할당을 중단하며, 게이트웨이(200)가 전송하는 비콘 신호를 수신하고, 슬립 구간 내에서 경쟁하여 전송 보장 슬롯을 할당받아 디바이스 등록 절차를 진행하는 Slotted Aloha 방식으로 전송 시간을 확보하도록 할 수 있다. Specifically, the gateway 200 extends the cycle period by a multiple of 2 when the sleep period within the cycle period is reduced below a preset threshold point, but when it becomes 16 times the initial cycle period, stops the extension of the cycle period, and newly Slotted to stop allocating a transmission guarantee slot for the end-device 100 to be registered, receive a beacon signal transmitted by the gateway 200, compete within a sleep period to receive a transmission guarantee slot, and proceed with the device registration procedure It is possible to secure the transmission time in the Aloha method.
도 6은, 본 발명의 일 실시예에 따른 비경쟁 로라 무선 통신 장치의 설명에 제공된 도면이다. 6 is a diagram provided to explain a contention-free LoRa wireless communication device according to an embodiment of the present invention.
도 6을 참조하면, 본 엔드-디바이스(100)는, 센서(110), 제1 통신부, 제1 프로세서(130), GPS 모듈(140)을 포함할 수 있다. Referring to FIG. 6 , the end-device 100 may include a sensor 110 , a first communication unit, a first processor 130 , and a GPS module 140 .
센서(110)는 IoT 센서(110)이며, 제1 통신부는 게이트웨이(200)로부터 비콘을 수신하고, 게이트웨이(200)에 센서(110)로부터 수신되는 IoT 센싱 데이터를 전송할 수 있다. The sensor 110 is the IoT sensor 110 , and the first communication unit may receive a beacon from the gateway 200 and transmit IoT sensing data received from the sensor 110 to the gateway 200 .
이를 위해, 제1 통신부는 게이트웨이(200)로부터 비콘을 수신하는 수신단(121)(RX) 및 IoT 센싱 데이터를 전송하는 송신단(122)(TX)으로 구성될 수 있다. To this end, the first communication unit may be composed of a receiving end 121 (RX) receiving a beacon from the gateway 200 and a transmitting end 122 (TX) transmitting IoT sensing data.
제1 프로세서(130)는, 엔드-디바이스(100)의 제반사항을 처리하기 위해 마련된다. The first processor 130 is provided to process general matters of the end-device 100 .
구체적으로, 제1 프로세서(130)는, 할당된 전송 보장 슬롯에 따라 자신의 순서에 비콘을 수신하고, IoT 센싱 데이터를 전송할 수 있다. Specifically, the first processor 130 may receive beacons in its own order according to the allocated transmission guarantee slot and transmit IoT sensing data.
또한, 제1 프로세서(130)는, 빈번한 전송을 원하지 않는 경우, 자신에게 할당된 전송 보장 슬롯 점유를 포기하고, 계속 슬립 상태로 운영하여 에너지 소모를 줄이고, 다시 전송 보장 슬롯을 할당받거나 또는 활성 상태에서 Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 할 수 있다. In addition, if frequent transmission is not desired, the first processor 130 gives up its assigned transmission guarantee slot occupation, continues to operate in a sleep state to reduce energy consumption, and receives a transmission guarantee slot again or an active state In the Slotted Aloha method, the transmission time can be secured through contention.
한편, 엔드-디바이스(100)는, 비콘 신호 수신을 위한 자신의 전송 보장 슬롯 시간에 동기화가 가장 큰 이슈인데, 본 실시예에 따른 제1 프로세서(130)는, 내부 클럭을 활용하여 자신의 전송 보장 슬롯 시간을 계산하고 자신의 전송 보장 슬롯을 찾아서 비콘(신호) 수신을 대기하게 된다. On the other hand, the end-device 100, synchronization of its own transmission guarantee slot time for receiving a beacon signal is the biggest issue, and the first processor 130 according to the present embodiment utilizes an internal clock to transmit its own transmission. It calculates the guaranteed slot time, finds its own transmission guaranteed slot, and waits for beacon (signal) reception.
그러나, 제1 프로세서(130)는, 내부 클럭의 오차로 발생하는 동기 신호의 손실이 발생하면, GPS 모듈(140)을 인에이블하여 시간 동기화를 진행한 이후에 다시 자신의 전송 보장 슬롯 시간을 계산하고, 계산된 결과를 통해 전송 보장 슬롯 시간를 찾아 비콘(신호) 수신을 대기할 수 있다. However, when the loss of the synchronization signal caused by the error of the internal clock occurs, the first processor 130 calculates its own transmission guarantee slot time again after performing time synchronization by enabling the GPS module 140 . And, it is possible to wait for the beacon (signal) reception by finding the transmission guaranteed slot time through the calculated result.
GPS 모듈(140)은, 제1 프로세서(130)에 GPS 시그널을 제공할 수 있다. The GPS module 140 may provide a GPS signal to the first processor 130 .
게이트웨이(200)는, 제2 통신부(210) 및 제2 프로세서(220)를 포함할 수 있다. The gateway 200 may include a second communication unit 210 and a second processor 220 .
제2 통신부(210)는, 제1 통신부와 연결될 수 있다. The second communication unit 210 may be connected to the first communication unit.
제2 프로세서(220)는, 제2 통신부(210)를 통해, 엔드-디바이스(100)가 등록되도록 하거나, 등록된 엔드-디바이스(100) 각각에 대하여 전송 보장 슬롯을 순차적으로 할당할 수 있다. The second processor 220 may register the end-device 100 through the second communication unit 210 or may sequentially allocate a transmission guarantee slot to each of the registered end-devices 100 .
또한, 제2 프로세서(220)는, 할당된 전송 보장 슬롯에 따라 특정 엔드-디바이스(100)에 비콘을 전송하고, IoT 센싱 데이터를 수신할 수 있다. Also, the second processor 220 may transmit a beacon to the specific end-device 100 according to the allocated transmission guarantee slot and receive IoT sensing data.
그리고 제2 프로세서(220)는, 전술한 바와 같이 기설정된 임계점 이상의 슬립 구간의 슬롯 수가 줄어 들면, 사이클 구간을 2의 배수로 확장하여 슬립 구간을 확보할 수 있다.In addition, as described above, when the number of slots in the sleep period equal to or greater than the preset threshold is reduced, the second processor 220 may secure the sleep period by extending the cycle period by a multiple of 2.
도 7는, 본 발명의 일 실시예에 따른 엔드-디바이스(100)의 동작 설명에 제공된 도면이다. 7 is a diagram provided to explain the operation of the end-device 100 according to an embodiment of the present invention.
도 7을 참조하면, 본 엔드-디바이스(100)는, 비활성화 상태인 슬립 상태에서(S710), 자신의 전송 보장 슬롯 시간이 도래하면, 활성화 상태가 되어(S720), 비콘(신호) 수신을 대기하게 된다(S730). Referring to FIG. 7 , the end-device 100 is in an inactive sleep state (S710), and when its own transmission guarantee slot time arrives, it becomes an active state (S720) and waits for a beacon (signal) reception is done (S730).
엔드-디바이스(100)는, 게이트웨이(200)로부터 비콘을 수신하지 못하면(S740-No), GPS 모듈(140)을 동작 상태로 전환하여(S750), 시간 동기화를 진행하고(S755), 이후 다음 전송 보장 슬롯 시간까지 슬립 상태가 될 수 있다(S760). If the end-device 100 does not receive a beacon from the gateway 200 (S740-No), it switches the GPS module 140 to an operating state (S750), and performs time synchronization (S755), and then the next It may be in the sleep state until the transmission guarantee slot time (S760).
그리고 엔드-디바이스(100)는, 게이트웨이(200)로부터 비콘을 수신하면(S740-Yes), 자신의 전송 보장 슬롯 시간을 갱신하고(S770), IoT 센싱 데이터를 게이트웨이(200)에 전송하게 된다(S780). IoT 센싱 데이터의 전송이 완료되면, 이후, 다시 슬립 상태로 돌아가게 된다(S790). And when the end-device 100 receives a beacon from the gateway 200 (S740-Yes), it updates its own transmission guarantee slot time (S770), and transmits IoT sensing data to the gateway 200 ( S780). When the transmission of IoT sensing data is completed, thereafter, it returns to the sleep state again (S790).
이를 통하여, 엔드-디바이스(100)는, 시간 동기화가 일치되지 않는 경우, GPS 모듈(140)을 동작 상태로 전환하여, 시간 동기화를 진행할 수 있으며, 시간 동기화가 일치하는 경우, GPS 모듈(140)의 동작을 제한함으로써, 배터리의 수명을 연장시킬 수 있다.Through this, when the time synchronization does not match, the end-device 100 may change the GPS module 140 to an operating state to perform time synchronization, and when the time synchronization matches, the GPS module 140 By limiting the operation of the battery, it is possible to extend the life of the battery.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 시스템이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.On the other hand, it goes without saying that the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment. In addition, the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium. The computer-readable recording medium may be any data storage system readable by the computer and capable of storing data. For example, the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like. In addition, the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims In addition, various modifications are possible by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.

Claims (12)

  1. 게이트웨이에 하나 이상의 엔드-디바이스가 등록되는 단계;registering one or more end-devices with the gateway;
    게이트웨이가 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 단계; 및sequentially allocating, by the gateway, a transmission guarantee slot to each of the registered end-devices; and
    할당된 전송 보장 슬롯에 따라 각각의 엔드-디바이스가 비콘을 수신하고, IoT 센싱 데이터를 전송하는 단계;를 포함하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.A time synchronization-based contention-free LoRa wireless communication method comprising: each end-device receiving a beacon according to an assigned transmission guarantee slot and transmitting IoT sensing data.
  2. 청구항 1에 있어서,The method according to claim 1,
    등록 단계는,The registration steps are:
    게이트웨이가 사이클 구간 내 슬립 구간일 때, 신규 엔드-디바이스가 등록되는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.Time synchronization-based contention-free LoRa wireless communication method, characterized in that when the gateway is in the sleep period within the cycle period, a new end-device is registered.
  3. 청구항 2에 있어서,3. The method according to claim 2,
    할당 단계는,The allocation step is
    게이트웨이에 신규 엔드-디바이스가 등록되면, 등록된 엔드-디바이스에 순차적으로 전송 보장 슬롯이 할당되며,When a new end-device is registered in the gateway, transmission guarantee slots are sequentially allocated to the registered end-devices,
    전송 단계는, The transmission step is
    게이트웨이가 사이클 구간 내 활성 구간이면, 자신의 전송 보장 슬롯 시간이 도래한 엔드-디바이스가, 게이트웨이로부터 비콘을 수신하고, 게이트웨이에 IoT 센싱 데이터를 전송하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.If the gateway is an active period within the cycle period, the end-device, whose transmission guaranteed slot time has arrived, receives a beacon from the gateway, and transmits IoT sensing data to the gateway. .
  4. 청구항 2에 있어서,3. The method according to claim 2,
    게이트웨이는,gateway,
    등록되는 엔드-디바이스 수가 증가하면, 사이클 구간 내 슬립 구간을 감소시키는 동시에 활성 구간을 증가시키는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.When the number of registered end-devices increases, the sleep period within the cycle period is reduced and the active period is increased at the same time.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    게이트웨이는,gateway,
    사이클 구간 내 슬립 구간이 임계점 이하로 감소되면, 슬립 구간을 확보하기 위해, 사이클 구간을 2의 배수로 확장시키는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.When the sleep period within the cycle period is reduced to less than or equal to a critical point, the time synchronization-based contention-free LoRa wireless communication method, characterized in that the cycle period is extended by a multiple of two in order to secure the sleep period.
  6. 청구항 5에 있어서,6. The method of claim 5,
    할당 단계는, The allocation step is
    게이트웨이에 등록되는 엔드-디바이스의 수가 점차적으로 증가하여, 사이클 구간이 점차적으로 2의 배수로 확장되는 경우, 확장된 사이클 구간의 길이가 임계치 이상인 경우, 사이클 구간의 확장을 중단하고, 신규로 등록되는 엔드-디바이스에 대하여 전송 보장 슬롯 할당을 중단하며, Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.When the number of end-devices registered in the gateway increases gradually, and the cycle period is gradually extended by a multiple of 2, when the length of the extended cycle period is greater than or equal to a threshold, the extension of the cycle period is stopped, and the newly registered end - Time synchronization-based contention-free LoRa wireless communication method, characterized in that the transmission guarantee slot assignment to the device is stopped, and the transmission time is secured through contention in the slotted Aloha method.
  7. 청구항 6에 있어서,7. The method of claim 6,
    할당 단계는,The allocation step is
    등록된 엔드-디바이스 중 특정 엔드-디바이스가 할당된 전송 보장 슬롯의 점유를 포기하면, 전송 보장 슬롯 점유를 포기한 엔드-디바이스가 이후 활성화 상태가 되어, 데이터를 전송하고자 할 때, Slotted Aloha 방식으로 경쟁을 통하여 전송 시간을 확보하도록 하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.If a specific end-device among the registered end-devices relinquishes the occupation of the allocated transmission guaranteed slot, the end-device that has given up the occupation of the transmission guaranteed slot becomes active after that. Time synchronization-based contention-free LoRa wireless communication method, characterized in that to secure the transmission time through.
  8. 청구항 7에 있어서,8. The method of claim 7,
    할당 단계는,The allocation step is
    확장된 사이클 구간의 길이가 임계치 이상인 경우, 특정 엔드-디바이스가 할당된 전송 보장 슬롯의 점유를 포기하면, 경쟁을 통하여 전송 시간을 확보하는 엔드-디바이스가 전송하는 IoT 센싱 데이터의 빈도를 체크하여, 빈도수가 가장 높은 엔드-디바이스를 전송 보장 슬롯에 할당하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.If the length of the extended cycle period is greater than or equal to the threshold, if a specific end-device gives up the occupation of the allocated transmission guarantee slot, the frequency of IoT sensing data transmitted by the end-device that secures the transmission time through contention is checked, A time synchronization-based contention-free LoRa wireless communication method, characterized in that the highest frequency end-device is allocated to a transmission guarantee slot.
  9. 청구항 1에 있어서,The method according to claim 1,
    전송 단계는, The transmission step is
    엔드-디바이스가 내부 클럭을 활용하여, 할당된 자신의 전송 보장 슬롯 시간을 계산하고, 계산 결과를 기반으로 비콘 신호 수신을 대기하며,The end-device uses the internal clock to calculate its assigned transmission guaranteed slot time, and waits to receive a beacon signal based on the calculation result;
    엔드-디바이스는,The end-device is
    내부 클럭 오차로 인하여 동기 신호 손실이 발생하면, GPS 시그널을 통하여 시간 동기화를 진행한 이후, 다시 자신의 전송 보장 슬롯 시간을 계산하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.When synchronization signal loss occurs due to an internal clock error, time synchronization is performed through a GPS signal, and then its own transmission guarantee slot time is calculated again.
  10. IoT 센싱 데이터를 수집하는 엔드-디바이스; 및end-devices that collect IoT sensing data; and
    하나 이상의 엔드-디바이스를 등록하고, 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 게이트웨이;를 포함하고,A gateway that registers one or more end-devices and sequentially allocates a transmission guarantee slot to each of the registered end-devices;
    각각의 엔드-디바이스는, Each end-device is
    할당된 자신의 전송 보장 슬롯 시간에 비콘을 수신하고, IoT 센싱 데이터를 전송하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 장치.A time synchronization-based contention-free LoRa wireless communication device, characterized in that it receives a beacon in its assigned transmission guaranteed slot time, and transmits IoT sensing data.
  11. 게이트웨이가 등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 단계; 및sequentially allocating, by the gateway, a transmission guarantee slot to each of the registered end-devices; and
    할당된 전송 보장 슬롯에 따라 각각의 엔드-디바이스가 비콘을 수신하고, IoT 센싱 데이터를 전송하는 단계;를 포함하는 시간 동기화 기반 비경쟁 로라 무선 통신 방법.A time synchronization-based contention-free LoRa wireless communication method comprising: each end-device receiving a beacon according to an assigned transmission guarantee slot and transmitting IoT sensing data.
  12. IoT 센싱 데이터를 수집하는 엔드-디바이스; 및end-devices that collect IoT sensing data; and
    등록된 엔드-디바이스 각각에 대하여 전송 보장 슬롯을 순차적으로 할당하는 게이트웨이;를 포함하고,Including; a gateway for sequentially allocating a transmission guarantee slot to each registered end-device;
    각각의 엔드-디바이스는, Each end-device is
    할당된 자신의 전송 보장 슬롯 시간에 비콘을 수신하고, IoT 센싱 데이터를 전송하는 것을 특징으로 하는 시간 동기화 기반 비경쟁 로라 무선 통신 장치.A time synchronization-based contention-free LoRa wireless communication device, characterized in that it receives a beacon in its assigned transmission guaranteed slot time, and transmits IoT sensing data.
PCT/KR2020/017291 2020-11-30 2020-11-30 Time synchronization-based contention-free lora wireless communication method and device WO2022114328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0163689 2020-11-30
KR1020200163689A KR102278731B1 (en) 2020-11-30 2020-11-30 Wireless communication method and system for Non-competitive low Power wide area long range based on time synchronization

Publications (1)

Publication Number Publication Date
WO2022114328A1 true WO2022114328A1 (en) 2022-06-02

Family

ID=77125704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017291 WO2022114328A1 (en) 2020-11-30 2020-11-30 Time synchronization-based contention-free lora wireless communication method and device

Country Status (2)

Country Link
KR (1) KR102278731B1 (en)
WO (1) WO2022114328A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030000A (en) * 2011-09-16 2013-03-26 삼성전기주식회사 Network apparatus for channel access in contention free period
KR101467310B1 (en) * 2013-11-19 2014-12-01 성균관대학교산학협력단 Method for media access control of vehicular ad hoc network using variable length frame and road side unit using the same
KR101594525B1 (en) * 2007-12-26 2016-02-16 삼성전자주식회사 Communication method and system using medium access control protocol in a wireless network
KR20180076770A (en) * 2016-12-28 2018-07-06 부산대학교 산학협력단 Apparatus and Method for distributed scheduling based on retransmission reservation slot in industrial wireless sensor network
JP6407147B2 (en) * 2013-06-07 2018-10-17 古野電気株式会社 Wireless communication system and wireless communication method
KR101976576B1 (en) * 2017-11-23 2019-05-09 (주)에프씨아이 Method And Apparatus for Saving Power in Wireless LAN

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615098A1 (en) * 2012-01-10 2013-07-17 Studiengesellschaft Kohle mbH Chiral imidodiphosphates and derivatives thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101594525B1 (en) * 2007-12-26 2016-02-16 삼성전자주식회사 Communication method and system using medium access control protocol in a wireless network
KR20130030000A (en) * 2011-09-16 2013-03-26 삼성전기주식회사 Network apparatus for channel access in contention free period
JP6407147B2 (en) * 2013-06-07 2018-10-17 古野電気株式会社 Wireless communication system and wireless communication method
KR101467310B1 (en) * 2013-11-19 2014-12-01 성균관대학교산학협력단 Method for media access control of vehicular ad hoc network using variable length frame and road side unit using the same
KR20180076770A (en) * 2016-12-28 2018-07-06 부산대학교 산학협력단 Apparatus and Method for distributed scheduling based on retransmission reservation slot in industrial wireless sensor network
KR101976576B1 (en) * 2017-11-23 2019-05-09 (주)에프씨아이 Method And Apparatus for Saving Power in Wireless LAN

Also Published As

Publication number Publication date
KR102278731B1 (en) 2021-07-19

Similar Documents

Publication Publication Date Title
US20220272632A1 (en) Method For Indicating Downlink Service Data and Device
EP2454831A2 (en) Communication method and apparatus in wireless body area network
US9064404B2 (en) Method and system of radio frequency (RF) power transmission in a wireless network
RU2690014C1 (en) Device and method for wireless communication system and spectrum control device
WO2010041802A2 (en) Cognitive radio communication terminal and method for detecting collision using feature detection
US8873520B2 (en) TDMA-based wireless networks
WO2019117349A1 (en) Method for managing internet of things for lorawan based large-scale facilities management, and internet of things network server and terminal applying same
KR100555674B1 (en) Wireless communication method for transmitting voice in low rate WPAN
WO2011129515A1 (en) Low power mac communication method for a sensor network based on energy acquired from the environment
WO2011149154A1 (en) Dynamic cfp allocation method for mac protocol in a wireless body area network and a communication method using the same
BRPI0303339B1 (en) radiocommunication device and method for administering a wireless network, and radiocommunication system
CN105873170B (en) Multi-channel medium access control method for cognitive radio mobile ad hoc network
WO2012153917A2 (en) Method and device for selecting a channel according to a device's mobility
WO2018124481A1 (en) Scheduling device and method for rapid synchronization for tsch in congested industrial wireless network environment
KR20090005844A (en) Method for transmitting and receiving data using beacon scheduling in wireless sensor network
CN102892183A (en) Wireless communication system for determining mobile devices positions and related method
WO2013067946A1 (en) Method, system and related apparatus for communication between wireless access point and terminal
CN105265013A (en) Apparatus and method for reducing power in a wireless sensor network
CN107787029A (en) The transmission method and device of wake-up association in a kind of WLAN
WO2012161396A1 (en) Mac protocol in wireless body area network capable of processing emergency data and wireless network communication method using same
WO2014084463A1 (en) Time division multiple access frame structure for ad-hoc network and method for allocating dynamic time slots using same
KR20140037229A (en) Identifier assignment method and device in wireless local area network
WO2013089504A1 (en) Wireless charging apparatus and method
WO2012141440A2 (en) Channel switching method in a medical body area network
WO2014182034A1 (en) Time synchronization method for high energy efficiency in wireless network and network applying same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963722

Country of ref document: EP

Kind code of ref document: A1