WO2022113613A1 - Spiral-type membrane element and spiral-type membrane module - Google Patents

Spiral-type membrane element and spiral-type membrane module Download PDF

Info

Publication number
WO2022113613A1
WO2022113613A1 PCT/JP2021/039458 JP2021039458W WO2022113613A1 WO 2022113613 A1 WO2022113613 A1 WO 2022113613A1 JP 2021039458 W JP2021039458 W JP 2021039458W WO 2022113613 A1 WO2022113613 A1 WO 2022113613A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding body
flow path
membrane element
type membrane
membrane
Prior art date
Application number
PCT/JP2021/039458
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 宇田
康秀 岡▲崎▼
摩耶 木原
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180031711.3A priority Critical patent/CN115461135A/en
Publication of WO2022113613A1 publication Critical patent/WO2022113613A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules

Definitions

  • the present invention relates to a spiral type membrane element (hereinafter, may be abbreviated as "membrane element”) and a spiral type membrane module using the spiral type membrane element.
  • a flat separation membrane, a permeation side flow path material, and a supply side flow path material are wound around a perforated central tube, and an exterior material is wound around the outer periphery of the obtained winding body. It was manufactured by constructing FRP (fiber reinforced plastic). At that time, ATDs (Anti-telescoping devices, anti-telescope materials) attached to both ends of the membrane element were integrated at the time of FRP construction.
  • FRP fiber reinforced plastic
  • a U packing is attached to the ATD to prevent bypass flow from occurring between the membrane element and the vessel.
  • a bypass flow occurs, the supply liquid flowing through the supply-side flow path inside the membrane element is reduced by that amount, resulting in a decrease in energy efficiency consumed in the filtration process.
  • Pressure loss occurs when the supply liquid flows through the supply-side flow path inside the membrane element, but at the outer periphery of the membrane element (between the outer peripheral surface of the membrane element and the inner surface of the vessel), the pressure changes stepwise before and after the U packing.
  • internal pressure acts on the exterior FRP.
  • the exterior FRP is usually made of GFRP (glass FRP, glass fiber FRP), and has sufficient strength because it can withstand internal pressure in the direction of being reinforced with glass fiber. If the U packing is attached to the ATD on the downstream side, the pressure acting on the exterior FRP becomes an external pressure. In this case, the cross section of the exterior FRP (the cross section orthogonal to the axial direction of the membrane element) buckles and deforms into an elliptical shape or a triangular shape, and as a result, the internal winding body is also pushed by the FRP, causing wrinkles on the membrane. Causes a problem. Therefore, the U packing was basically attached to the ATD on the upstream side.
  • GFRP glass FRP, glass fiber FRP
  • the performance of the spiral type membrane element deteriorates over time as a result of deterioration over time and contamination of the membrane surface due to its use.
  • Regarding the contamination of the membrane surface it is possible to recover to a certain extent by increasing the flow velocity on the supply liquid side, which is called flushing cleaning, to physically wash away the contaminants, or by chemically cleaning by chemical cleaning. At some point, it will reach its limit and the membrane element itself will need to be replaced.
  • the used membrane element after replacement may be reused for other purposes that do not require high performance, but most of it is disposed of.
  • Disposal methods include landfill disposal and incineration disposal.
  • Patent Document 1 discloses a spiral type membrane element in which the outer periphery of the wound body is covered with a permeation side flow path material.
  • the outer peripheral surface of the permeation side flow path material is fixed with a film tape and a brine seal (U packing) is provided.
  • the film tape is provided on the outer periphery of the permeation side flow path material.
  • Patent Document 2 discloses that a cylindrical net-like material is provided on the outer periphery of the winding body in place of the GFRP exterior material as described above, but the present invention also seals the ATD of the membrane element. It is premised that a material (U packing) is provided.
  • the treatment of the membrane element after replacement is a big problem, and the volume of the treatment plant is finite in the landfill disposal, and the membrane element, which is mostly made of plastic material, is not decomposed in the ground, so it is semi-permanent. It is not a sustainable treatment method as it will remain in the ground. Further, since the glass fiber contained in the exterior FRP does not burn, the glass fiber remains in the incinerated ash after incineration, which makes the treatment of the incinerated ash difficult.
  • the winding body and the ATD are integrated by an exterior material, and the structure is provided with U packing on the outer circumference of the ATD, so that the outer diameter of the winding body is the outer diameter of the ATD. It was difficult to increase it regardless of. Moreover, such a structure has increased the number of parts.
  • an object of the present invention is to provide a spiral type membrane element and a spiral type membrane module which do not require glass fiber reinforcement, have a small number of parts, can reduce bypass flow and increase the effective membrane area. ..
  • the spiral type membrane element of the present invention includes a perforated central tube, a winding body wound around the central tube and containing a separation membrane, and an exterior material provided on the outer periphery of the winding body.
  • the outer flow path material covers the outer periphery of the winding body to block the inflow of the supply liquid and forms the flow path outside the winding body, so that the inside of the winding body is formed. Since the liquid flowing through the (membrane-separated supply liquid) and the liquid flowing through the flow path of the exterior flow path material (supply liquid without membrane separation) form independent flow paths, the pressure distributions of both flow paths are independent. Can be controlled. Therefore, the pressure difference between the two channels can be reduced, and the glass fiber reinforcement becomes unnecessary.
  • the supply liquid can flow inside the outer flow path material, so that the effective membrane is increased by increasing the outer diameter of the winding body while reducing the bypass flow.
  • the area can be increased.
  • the bypass flow can be reduced, the ATD and U packing on the upstream side are not required, and the number of parts can be reduced. As a result, it is possible to provide a spiral type membrane element that does not require glass fiber reinforcement, has a small number of parts, can reduce bypass flow, and can increase the effective membrane area.
  • the exterior flow path material preferably contains a sheet material that covers the outer periphery of the winding body and a porous material that covers the sheet material.
  • the sheet material can cover the outer periphery of the winding body to block the inflow of the supply liquid, and the porous material can form a flow path outside the winding body. Further, by using the porous material, it becomes easier to control the pressure loss, and it becomes easier to reduce the pressure difference between the two flow paths.
  • the outer diameter with respect to the outer circumference of the exterior material is 99 to 100% with respect to the inner diameter of the pressure vessel. With such an outer diameter, the gap between the exterior material and the inner surface of the pressure vessel is reduced, and the bypass flow can be reduced and the effective film area can be effectively increased.
  • a removable anti-telescope material on the downstream side of the winding body.
  • the anti-telescope material includes an outer peripheral side obstruction plate arranged on the downstream side near the outer periphery of the winding body and an inner peripheral side obstruction plate arranged on the downstream side near the inner circumference of the winding body. It is preferable that and is provided. Although the detailed reason will be described later, there is a concentration distribution in the concentrated liquid flowing out from the spiral type membrane element, and the concentration becomes small near the outer circumference and the inner circumference of the winding body. In the present invention, the outer flow path material covering the winding body flows through the outer flow path material without the supply liquid being concentrated, so that the concentration of the concentrated liquid becomes smaller near the outer periphery than usual.
  • a low concentration means that the osmotic pressure is low, and it is efficient to flow the part that does not separate the membrane even in the next stage even though it is a supply liquid that can expect a high flux (Flux) if it flows through the membrane surface. Not the target. Therefore, by providing the outer peripheral side baffle plate and the inner peripheral side baffle plate, the concentrated liquid can be stirred and mixed, and the efficiency of membrane separation in the next stage can be improved.
  • the anti-telescope material is attached to the central tube extending to the downstream side of the winding body.
  • the anti-telescope material can be made into a simple detachable structure.
  • the spiral type membrane module of the present invention includes the spiral type membrane element according to any one of the above and the pressure vessel accommodating the spiral type membrane element, and has an outer diameter based on the outer periphery of the exterior material. It is characterized in that it is 99 to 100% with respect to the inner diameter of the pressure vessel.
  • the outer diameter of the membrane element is set to 99 to 100% with respect to the inner diameter of the pressure vessel by using the spiral type membrane element as described above, the above-mentioned action and effect can be obtained. That is, since the outer flow path material of the film element covers the outer periphery of the winding body and blocks the inflow of the supply liquid to form a flow path outside the winding body, the liquid (film) flowing inside the winding body. Since the liquid to be separated) and the liquid flowing inside and outside the porous material (the liquid to which the membrane is not separated) form independent flow paths, the pressure distribution in both flow paths should be controlled independently. Can be done. Therefore, the pressure difference between the two channels can be reduced, and the glass fiber reinforcement becomes unnecessary.
  • the supply liquid can flow inside the outer flow path material, so that the effective membrane is increased by increasing the outer diameter of the winding body while reducing the bypass flow.
  • the area can be increased.
  • the bypass flow can be reduced, the ATD and U packing on the upstream side are not required, and the number of parts can be reduced. As a result, it is possible to provide a spiral type membrane module that does not require glass fiber reinforcement, has a small number of parts, can reduce bypass flow, and can increase the effective membrane area.
  • FIG. 1 It is sectional drawing which shows an example of the state in which the spiral type membrane element of this invention is housed in a pressure vessel, and is a partially enlarged view. It is a top view which shows an example of the separation membrane unit used for the spiral type membrane element of this invention. It is a front view which shows an example of the separation membrane unit used for the spiral type membrane element of this invention. It is a front view which shows an example of the state before laminating and winding the separation membrane unit used for the spiral type membrane element of this invention. It is a partially cutaway perspective view which shows an example of a winding body in which a membrane leaf and a flow path material on a supply side are wound around a central canal.
  • the spiral type membrane element E of the present invention includes a perforated central tube 5, a winding body R wound around the central tube 5 and including a separation membrane 1, and the winding body R thereof. It is provided with an exterior material provided on the outer periphery of the above.
  • the membrane element E includes a plurality of membrane leaves L in which the transmission side flow path material 3 is interposed between the opposing separation membranes 1, and a supply side flow path that is interposed between the membrane leaves L.
  • the material 2 is provided with a perforated central tube 5 around which the membrane leaf L and the supply-side flow path material 2 are wound, and a sealing portion for preventing mixing between the supply-side flow path and the permeation-side flow path. Is common.
  • the sealing portion includes both ends sealing portion 11 and the outer peripheral side sealing portion 12.
  • the both end sealing portions 11 are formed by sealing the two side ends of the film leaf L on both sides in the axial direction A1 with an adhesive.
  • the outer peripheral side sealing portion 12 is formed by sealing the end portion of the outer peripheral side tip of the film leaf L with an adhesive.
  • the membrane element of the present embodiment has a winding body R in which the membrane leaf L and the supply-side flow path material 2 are wound around the central tube 5 via such a central sealing portion 13.
  • the winding body R can be manufactured by, for example, the steps shown in FIGS. 2A to 2C.
  • 2A is a plan view of the separation membrane unit U
  • FIG. 2B is a front view of the separation membrane unit U
  • FIG. 2C is a front view showing a state before laminating and winding the separation membrane unit U.
  • FIG. 3 is a partially cutaway perspective view showing an example of a winding body R in which the membrane leaf L and the supply-side flow path material 2 are wound around the central tube 5.
  • the separation membrane unit U is prepared by applying the adhesives 4 and 6 for forming the side sealing portion 12 to both ends of the transmission side flow path material 3 in the axial direction A1 and the tip of the winding. At this time, a protective tape may be attached to the crease portion of the separation membrane 1.
  • the adhesives 4 and 6 are not particularly limited, and conventionally known adhesives can be adopted. Specifically, any conventionally known adhesive such as a urethane-based adhesive or an epoxy-based adhesive can be used.
  • the same number of separation membrane units U as the membrane leaf L are laminated on the transmission side flow path material 3 having a portion extended from the others, and the separation membrane unit U is laminated.
  • the central side sealing portion 13 can be formed by applying the adhesive to both ends of the extension portion of the lowermost permeation side flow path material 3 in the axial direction A1.
  • the perforated central tube 5 is rotated in the direction of the arrow, and the plurality of separation membrane units U are wound around the central canal 5.
  • the adhesives 4 and 6 adhere the opposing separation membrane 1 and the permeation side flow path material 3 to form a membrane leaf L having both end sealing portions 11 and outer peripheral side sealing portions 12.
  • a winding body R in which the membrane leaf L and the supply-side flow path material 2 are wound around the central tube 5 is formed.
  • the wound body R after sealing may be trimmed at both ends in order to adjust the length in the axial direction A1.
  • an upstream end member such as a seal carrier is provided on the upstream side of the winding body R, and a downstream end member such as an anti-telescope material is constantly provided on the downstream side.
  • a downstream end member such as an anti-telescope material is constantly provided on the downstream side.
  • the membrane element E of the present invention as shown in FIG. 1, it is not necessary to provide the upstream end member integrated with the winding body R. Further, it is preferable that the anti-telescope material 25 is not integrated with the winding body R, but is provided with the detachable anti-telescope material 25.
  • the outer diameter of the wound body R can be made larger than before.
  • the length of the film leaf L (the length perpendicular to the axial direction A1) can be made longer than before. As a result, the effective membrane area of the composite semipermeable membrane can be increased, and a large amount of treatment can be performed, so that the treatment efficiency is improved.
  • the membrane element E When the membrane element E is used, as shown in FIG. 1, it is housed in the pressure vessel 30 (vessel), and the supply liquid 7 is supplied from one end face side of the membrane element.
  • the supplied liquid 7 flows along the supply-side flow path material 2 in a direction parallel to the axial direction A1 of the central tube 5, and is discharged as a concentrated liquid 9 from the other end face side of the membrane element.
  • the permeate liquid 8 that has permeated the separation membrane 1 in the process of flowing along the supply side flow path material 2 flows along the permeation side flow path material 3 and then flows from the opening 5a to the central tube 5. It flows into the inside and is discharged from the end of the central tube 5.
  • the spiral membrane module shown in FIG. 1 will be described in detail later.
  • the exterior material provided on the outer periphery of the winding body R covers the outer periphery of the winding body R to block the inflow of the supply liquid 7 and forms a flow path outside the winding body R. It is characterized by including the road material 21.
  • the exterior flow path material 21 may be composed of a single piece of the uneven sheet material 21s having protrusions and grooves on the outside, as shown in FIG. 8B, but the flow formed outside the winding body R. From the viewpoint of suitably controlling the pressure loss of the road, it is preferable to use a plurality of materials.
  • the exterior flow path material 21 provided on the outer periphery of the winding body R is a sheet material 21a that covers the outer periphery of the winding body R and a porous surface that covers the sheet material 21a.
  • An example including the quality material 21b is shown.
  • the structure can be such that the exterior FRP is omitted.
  • the exterior FRP has a function to withstand the internal pressure, but the porous material 21b that does not contain the reinforcing material such as glass fiber does not have the function to withstand the internal pressure, so the structure is such that the internal pressure is not easily applied. Therefore, the U packing is eliminated so that a small amount of the supply liquid 7 flows in the layer of the porous material 21b. Similar to the flow of the supply liquid 7 inside the winding body R, the supply liquid 7 also flows inside the porous material 21b outside the winding body R, so that the pressure loss in both flow paths becomes substantially the same, and the winding Neither the internal pressure nor the external pressure acts on the sheet material 21a that covers the outer periphery of the body R.
  • the exterior flow path material 21 covers the outer periphery of the winding body R to block the inflow of the supply liquid 7, and the flow formed outside the winding body R.
  • the pressure loss of the path can be controlled independently. The pressure loss can be adjusted by, for example, the thickness of the porous material 21b, the number of layers, the pore size, the porosity, the direction of the knitting structure, the direction of the woven structure, and the like.
  • this gap may exist, but the outer diameter with respect to the outer circumference of the exterior material is preferably 99.0 to 100.0% with respect to the inner diameter of the pressure vessel 30, 99. .5 to 100.0% is more preferable, and 100.0% is even more preferable.
  • the outer diameter within such a range, the gap between the sheet material covering the outer circumference of the winding body and the inner surface of the pressure vessel becomes smaller, and it is possible to more effectively reduce the bypass flow and increase the effective film area.
  • the size of the gap between the porous material 21b and the pressure vessel 30 is preferably 0 to 1 mm, more preferably 0 to 0.5 mm, and most preferably 0 mm.
  • the volume of the winding body R inside the pressure vessel 30 can be increased, and more separation membrane 1 (flat membrane) can be accommodated. That is, the membrane area per element increases, and the permeation flow rate can be increased.
  • the outer diameter of the winding body R can be improved by about 2%, and the axial length can be improved by about 2% by omitting the ATD on the upstream side. Therefore, the film area and the permeation flow rate per element can be improved. It is possible to improve by about 6%.
  • the porosity of the porous material 21b is preferably 5 to 80% from the viewpoint of causing an appropriate pressure loss and suitably controlling the bypass flow and the pressure distribution. More preferably, it is 10 to 50%.
  • the thickness of the porous material 21b (total thickness in the case of a multilayer structure) is preferably 0.2 to 2 mm, preferably 0.5 to 2 mm, from the viewpoint of causing an appropriate pressure loss and appropriately controlling the bypass flow and the pressure distribution. 1.2 mm is more preferable.
  • porous material 21b those that can be used as the supply-side flow path material 2 or the transmission-side flow path material 3 described later, or similar materials, non-woven fabrics, polymer porous membranes, cloths, and the like can be used.
  • a material that can be used as the permeation side flow path material 3 is preferable from the viewpoint of pressure loss, handleability and the like.
  • weft knitting materials such as knitting and pearl knitting, warp knitting materials such as tricot, and woven materials such as plain weave are preferably used.
  • warp knitting materials such as tricot half knitting or double denby knitting, which is often used for the permeation side flow path material 3
  • the direction in which the groove / ridge is formed is the axial direction A1 of the membrane element E. It is preferable to use it in orthogonal directions. This is because the flow resistance of the bypass flow increases and the flow rate of the supply liquid leaking due to the bypass can be reduced.
  • the porous material 21b is a relatively fine material, it is expected that turbid components and the like contained in the feed solution will accumulate during the actual filtration operation, causing clogging.
  • the pressure distribution in the gap between the membrane element E and the pressure vessel 30 becomes a pressure distribution similar to that in the case of using the U packing, and the internal pressure acts on the inner surface of the porous material 21b.
  • the porous material 21b does not have a function of withstanding the internal pressure, but in the present invention, the outer diameter of the wound body R in a state where the porous material 21b is wound is set to a dimension substantially matching the inner diameter of the pressure vessel 30. Therefore, even if the internal pressure acts, the outer surface of the porous material 21b comes into contact with the inner wall of the pressure vessel 30 at the stage of swelling very slightly, so that no particular problem occurs.
  • the sheet material 21a that covers the outer periphery of the winding body R a film, a sheet, a tape, or the like can be used.
  • the outer diameter of the winding body R can be adjusted accurately, and by restraining and fixing the outer circumference of the winding body R, a series of steps can be performed. It also has the effect of being able to do it smoothly. From such a viewpoint, it is preferable to use a sheet material 21a with an adhesive, particularly an adhesive tape whose base material is made of stretched polypropylene.
  • the outer flow path material 21 can be formed by sequentially covering the sheet material 21a and the porous material 21b in a state where the outer periphery of the winding body R is temporarily fixed, and the outer flow path material 21 can be formed, for example, as shown in FIG. 5A. It is also possible to coat the sheet material 21a and the porous material 21b in succession with the winding of the rotating body R.
  • the sheet material 21a is extended via the adhesive portion 21c to the tip portion of any one of the transmission side flow path materials 3 used when forming the wound body R, or the tip portion to which any one is extended. It is possible to cover the outer periphery of the winding body R with the sheet material 21a when winding the winding body R. If the sheet material 21a with an adhesive is used, coating and fixing can be performed at the same time.
  • the permeation side flow path material 3 extended to the side of the central tube 5 is also extended to the outer peripheral side, and the sheet material 21a is adhered to the tip portion thereof via the adhesive portion 21c. Is preferable. Since the permeation side flow path material 3 has a structure sealed together with the separation film 1 when the membrane leaf L is formed, the supply liquid 7 flows through the permeation side flow path material 3 and mixes with the permeation liquid 8. There is no such thing.
  • the coating with the porous material 21b can be performed independently of the coating process of the sheet material 21a, but as shown in FIG. 5B, for example, the tip of the sheet material 21a is made porous via the adhesive portion 21d. It is possible to bond the material 21b and coat the bonded portion 21d in a process continuous with the coating of the sheet material 21a.
  • the coated porous material 21b can be fixed by adhering the overlapping portion to the sheet material 21a.
  • the exterior material may be composed of only the exterior flow path material 21, but may include a tape for fixing or the like. However, it is preferable not to include reinforcing fibers such as glass fibers.
  • this extending portion is used to form a porous material 21b that covers the sheet material 21a.
  • the permeation side flow path material 3 extended to the side of the central tube 5 is extended to the outer peripheral side by a length corresponding to the porous material 21b, and this is made porous. It can be coated as the material 21b.
  • the sheet material 21a is arranged in the portion of the porous material 21b, the sheet material 21a and the porous material 21b can be simultaneously coated on the outer periphery of the wound body R.
  • the permeation side flow path material 3 since the permeation side flow path material 3 has a structure sealed together with the separation film 1 when the membrane leaf L is formed, the supply liquid 7 flows through the permeation side flow path material 3 and the permeation liquid 8 is formed. Does not mix with.
  • the sheet material 21a and the porous material 21b are laminated when winding the permeation side flow path material 3 extending on the side of the central tube 5 and the outer peripheral side. It is also possible to simultaneously cover the outer periphery of the winding body R with these.
  • the exterior flow path material 21 can be formed of a laminate including the sheet material 21a, the porous material 21b, and the sheet material 21a. That is, the sheet material 21a may be provided on the outermost layer of the exterior flow path material 21. However, since the porous material 21b generally has a higher cushioning property, when the outer flow path material 21 is brought into close contact with the inner surface of the pressure vessel 30, the porous material 21b is provided on the outermost layer of the outer flow path material 21. Is preferable.
  • the concavo-convex sheet material 21s having irregularities on the outer and / or inner surfaces instead of the porous material 21b or in addition to the porous material 21b.
  • the uneven shape include a groove shape, a rib shape, a dot shape, an irregular pattern, and grain processing.
  • an embossed sheet As the uneven sheet material 21s, it is preferable to use an embossed sheet. It is also possible to adjust the desired pressure loss by winding the embossed sheet in a plurality of layers. By using the embossed sheet, not only the cost is advantageous, but also the handleability and the binding force at the time of winding are suitable.
  • FIG. 8C is an exterior flow path material 21 in which the concave-convex sheet material 21s and the porous material 21b are combined, and various combinations are possible in the present invention.
  • the supply-side flow path material 2 generally has a role of securing a gap for evenly supplying the fluid to the film surface.
  • a supply-side flow path material 2 for example, a net, knitting, an uneven processing sheet, or the like can be used, and a material having a maximum thickness of about 0.1 to 3 mm can be appropriately used.
  • the pressure loss is low, and it is preferable that the material 2 produces an appropriate turbulent flow effect.
  • the flow path material is installed on both sides of the separation membrane 1, it is common to use different flow path materials as the supply side flow path material 2 on the supply liquid side and the permeation side flow path material 3 on the permeation liquid side. Is the target. It is preferable to use a net-like flow path material having a coarse and thick mesh in the supply side flow path material 2, while using a fine woven fabric or knitted flow path material in the transmission side flow path material 3.
  • the supply side flow path material 2 is provided on the inner surface side of the above-mentioned double-folded composite semipermeable membrane when an RO membrane or an NF membrane is used in applications such as seawater desalination and wastewater treatment.
  • a network structure in which linear objects are arranged in a grid pattern can be preferably used.
  • the constituent material is not particularly limited, but polyethylene, polypropylene, etc. are used. These resins may contain a bactericidal agent or an antibacterial agent.
  • the thickness of the supply-side flow path material 2 is generally 0.2 to 2.0 mm, preferably 0.5 to 1.0 mm. If the thickness is too thick, the amount of permeation decreases with the amount of membrane that can be accommodated in the membrane element, and conversely, if it is too thin, contaminants tend to adhere, so that the permeation performance tends to deteriorate.
  • the present invention by combining with the supply side flow path material 2 having a diameter of 0.6 to 1.0 mm, contaminants are less likely to be deposited and biofouling is less likely to occur. The decrease can be suppressed.
  • the central canal 5 may be any as long as it has an opening 5a around the tube, and any conventional one can be used. Generally, when it is used for desalination of seawater, wastewater treatment, etc., the permeated water that has passed through the separation membrane 1 invades into the central canal 5 through the hole in the wall surface and forms a permeation side flow path.
  • the length of the central tube 5 is generally longer than the axial length of the winding body R, but a central tube 5 having a connected structure such as being divided into a plurality of parts may be used.
  • the material constituting the central tube 5 is not particularly limited, but a thermosetting resin or a thermoplastic resin is used.
  • the central tube 5 extends only to the downstream side of the winding body R, extends to the upstream and downstream sides of the winding body R, or extends only to the upstream side of the winding body R. Any of the cases may be used. However, when the detachable anti-telescope material 25 is provided on the downstream side of the winding body R, it is preferable that the central tube 5 extends at least on the downstream side of the winding body R.
  • the central canal 5 projects to the upstream side and the downstream side with substantially the same length with respect to the winding body R, but as shown in FIG. 7A, the central canal 5 protrudes.
  • peripheral parts used in the conventional structure can be shared.
  • the permeation side flow path material 3 is interposed between the separation membranes 1 facing each other in the membrane leaf L as shown in FIG. 3 when the RO membrane or the NF membrane is used in applications such as seawater desalination and wastewater treatment. It is provided as follows.
  • the permeation side flow path material is required to support the pressure applied to the membrane from the back surface of the membrane and to secure a flow path for the permeation liquid.
  • the permeation side flow path material is formed by the tricot knit, and it is more preferable that the tricot knit is resin-reinforced or fused after the knit is formed. ..
  • constituent yarns of the permeation side flow path material include polyesters such as polyethylene terephthalate and polyethylene naphthalate, and polyolefins such as polyethylene and polypropylene.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate
  • polyolefins such as polyethylene and polypropylene.
  • polyethylene terephthalate is particularly preferably used from the viewpoint of processability and productivity.
  • the constituent yarn of the permeation side flow path material may be monofilament or multifilament, but a tricot knit is formed by the constituent yarn having a certain thickness.
  • a tricot knit is formed by the constituent yarn having a certain thickness.
  • half knits and double denby knits which have a clear structure of linearly continuous grooves, are preferable.
  • the thickness of the permeation side flow path material is preferably 0.10 to 0.40 mm, more preferably 0.15 to 0.35 mm, and even more preferably 0.20 to 0.30 mm.
  • the thickness is 0.10 mm or more, a sufficient flow path is secured and the pressure loss of the permeated liquid can be reduced. Further, when the thickness is 0.40 mm or less, the effective membrane area of the separation membrane in the membrane element becomes large, and it becomes easy to increase the flow rate of the permeate.
  • the constituent yarn of the permeation side flow path material is preferably 0.1 to 0.15 mm in order to form a tricot knit having the above thickness.
  • the width of the linearly continuous grooves in the tricot knitted fabric is preferably 0.05 to 0.40 mm, more preferably 0.10 to 0.28 mm. If the width of the groove is less than 0.05 mm, the pressure loss of the permeate tends to be too large, and if the width of the groove exceeds 0.40 mm, the inhibition rate due to the deformation of the composite semipermeable membrane tends to decrease. May be.
  • the width of the linearly continuous grooves in the tricot knitted fabric refers to the average value between the widest part and the narrowest part of the adjacent loops. From the microscope photograph, the above average values can be measured for 10 pairs of loops, and the average values of the 10 loop pairs can be further averaged to obtain the width of continuous grooves.
  • the direction in which the permeation side flow path material is arranged in the membrane element may be any, but it is preferable that the direction of the linearly continuous groove is wound in the direction along the circumferential direction.
  • Separatation membrane As the separation membrane 1, various porous membranes can be used, but a composite semipermeable membrane having a separation functional layer on the surface of the porous support is preferable.
  • the porous support preferably has a polymer porous layer on one side of the nonwoven fabric layer.
  • the thickness of the separation membrane, particularly the composite semipermeable membrane is preferably about 70 to 160 ⁇ m, more preferably 85 to 130 ⁇ m.
  • RO reverse osmosis
  • NF nanofiltration
  • FO forward osmosis
  • the separation functional layer examples include polyamide-based, cellulose-based, polyether-based, and silicon-based separation functional layers, but those having a polyamide-based separation functional layer are preferable.
  • the polyamide-based separation functional layer is generally a homogeneous film having no visible pores and has a desired ion separation ability.
  • the separation functional layer is not particularly limited as long as it is a polyamide-based thin film that is difficult to peel off from the polymer porous layer, but for example, a polyfunctional amine component and a polyfunctional acid halide component are interfaced on the porous support film.
  • a polymerized polyamide-based separation functional layer is well known.
  • the method for forming the polyamide-based separation functional layer on the surface of the polymer porous layer is not particularly limited, and any known method can be used.
  • a method such as an interfacial polymerization method, a phase separation method, and a thin film coating method can be mentioned, but in the present invention, the interfacial polymerization method is particularly preferably used.
  • the interfacial polymerization method for example, a polymer porous layer is coated with an aqueous amine component containing a polyfunctional amine component, and then an organic solution containing a polyfunctional acid halide component is brought into contact with the coated surface of the aqueous amine component to cause interfacial polymerization.
  • a method of forming a skin layer for example, a polymer porous layer is coated with an aqueous amine component containing a polyfunctional amine component, and then an organic solution containing a polyfunctional acid halide component is brought into contact with the coated surface of the aqueous amine component to cause inter
  • the polyfunctional amine component contained in the aqueous amine solution is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional amines.
  • examples of the aromatic polyfunctional amine include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-.
  • Examples thereof include diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisol, amidol, xylylenediamine and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, n-phenyl-ethylenediamine and the like.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine and the like. Be done. These polyfunctional amines may be used alone or in combination of two or more.
  • m-phenylenediamine when a high inhibition rate is required in the reverse osmosis membrane performance, it is preferable to use m-phenylenediamine as a main component, which can obtain a highly dense separation functional layer, and a high Lux retention in the NF membrane performance.
  • piperazine is preferable to use as the main component.
  • the polyfunctional acid halide component contained in the organic solution is a polyfunctional acid halide having two or more reactive carbonyl groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halide include trimethic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalenedicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, and chlorosulfonylbenzene. Examples thereof include dicarboxylic acid dichloride.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentandicarboxylic acid dichloride, propanthricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentantricarboxylic acid trichloride, glutalyl halide, and hydrangea. Poil halide and the like can be mentioned.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydro.
  • Examples thereof include furantetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, tetrahydrofurandicarboxylic acid dichloride and the like.
  • These polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use a trivalent or higher valent polyfunctional acid halide for at least a part of the polyfunctional acid halide component to form a crosslinked structure.
  • the organic solvent containing the polyfunctional acid halide is not particularly limited as long as it has low solubility in water and dissolves the polyfunctional acid halide component without deteriorating the porous support film.
  • cyclohexane Saturated hydrocarbons such as heptane, octane and nonane, halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane and the like can be mentioned. It is preferably a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably 200 ° C. or lower.
  • Additives for the purpose of improving various performances and handleability may be added to the amine aqueous solution or the organic solution.
  • the additive include polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrylic acid, polyhydric alcohols such as sorbitol and glycerin, and surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate and sodium laurylsulfate.
  • Basic compounds such as sodium hydroxide, trisodium phosphate, and triethylamine that remove hydrogen halide generated by polymerization, acylation catalysts, and solubility parameters described in JP-A-8-224452 (cal). / Cm 3 ) 1/2 compound and the like can be mentioned.
  • a coating layer composed of various polymer components may be provided on the exposed surface of the separation function layer.
  • the polymer component is not particularly limited as long as it is a polymer that does not dissolve the separation functional layer and the porous support film and does not elute during the water treatment operation.
  • polyvinyl alcohol, polyvinylpyrrolidone, hydroxypropyl cellulose, polyethylene. Glycol and saponified polyethylene-vinyl acetate copolymer and the like can be mentioned.
  • polyvinyl alcohol is preferably used, and in particular, polyvinyl alcohol having a saponification degree of 99% or more is used, or polyvinyl alcohol having a saponification degree of 90% or more is crosslinked with the polyamide resin of the skin layer.
  • the charge state of the film surface is adjusted and hydrophilicity is imparted, so that the adhesion of contaminants can be suppressed, and the Lux holding effect is further achieved by the synergistic effect with the present invention. Can be further enhanced.
  • the non-woven fabric layer used in the present invention is not particularly limited as long as it imparts appropriate mechanical strength while maintaining the separation performance and permeation performance of the composite semipermeable membrane, and a commercially available non-woven fabric is used. be able to.
  • a material made of polyolefin, polyester, cellulose or the like is used, and a material obtained by mixing a plurality of materials can also be used.
  • polyester is preferably used in terms of moldability.
  • a long-fiber nonwoven fabric or a short-fiber nonwoven fabric can be used as appropriate, but a long-fiber nonwoven fabric can be preferably used from the viewpoint of fine fluffing that causes pinhole defects and the uniformity of the film surface.
  • the polymer porous layer is not particularly limited as long as it can form the polyamide-based separation functional layer, but is usually a microporous layer having a pore size of about 0.01 to 0.4 ⁇ m.
  • the material for forming the microporous layer include polysulfone, polyaryletherketone exemplified for polyethersulfone, polyimide, polyvinylidene fluoride, and the like.
  • Anti-telescope material In the present invention, as shown in FIG. 1, it is preferable to provide the anti-telescope material 25 on the downstream side of the winding body R, and it is preferable to provide the removable anti-telescope material 25.
  • the anti-telescope material 25 preferably has at least an outer peripheral side obstruction plate 29 arranged on the downstream side near the outer periphery of the winding body R, but as shown in FIG. 4, near the outer periphery of the winding body R. It is more preferable to provide the outer peripheral side obstruction plate 29 arranged on the downstream side and the inner peripheral side obstruction plate 27 arranged on the downstream side near the inner circumference of the winding body R.
  • the vicinity of the inner circumference of the winding body R refers to any position within the range of 0 to 30% from the inner circumference when the distance between the outer circumference and the inner circumference of the winding body R is 100%.
  • Near the outer circumference refers to any position within a range of 70% or more from the inner circumference.
  • the outer diameter of the outer peripheral side baffle plate 29 may be larger than the outer diameter of the winding body R, and is preferably 98 to 100.0% with respect to the inner diameter of the pressure vessel 30, 99 to 100.0. % Is more preferable, and 100.0% is most preferable.
  • the anti-telescope material 25 of the present embodiment shows an example having an annular portion 26 and ribs 28 extending radially from the annular portion 26.
  • the number of ribs 28 is not particularly limited, but 4 to 20 are preferable, and 8 to 16 are more preferable, from the viewpoint of ensuring sufficient flow path and strength while suppressing the telescope.
  • the anti-telescope material 25 is detachably attached to the central tube 5 extending to the downstream side of the winding body R. Therefore, the annular portion 26 has an inner peripheral surface into which the central canal 5 can be fitted.
  • the rib 28 can prevent the winding body R from being deformed in a telescope shape by abutting the end surface on the upstream side of the rib 28 on the downstream end surface of the winding body R.
  • the non-penetrating portion is a portion of the protective tape to be attached to the inside of the crease to protect the crease of the separation film 1 and a portion to which the adhesive of the leaf end portion is applied.
  • concentration distributions exist in the concentrated liquid flowing out from the membrane element E, but in particular, the low-concentration portion corresponding to the latter has room for consideration in discussing the filtration efficiency of the entire membrane module. ..
  • the latter corresponds to the crease portion of the membrane and the portion corresponding to the leaf end, and in terms of the exit cross section of the membrane element E, it is a portion close to the central canal 5 and a portion close to the opposite outer periphery.
  • the concentration of the concentrate 9 flowing out from these parts is lower than that in the other parts, but if it flows into the membrane element E in the next stage in the same distribution state, it may flow on the center tape and the leaf end as in the previous stage. Is high.
  • a low concentration means that the osmotic pressure is low, and it is not efficient to flow a portion that is not filtered by the membrane even though the supply liquid 7 is expected to have a high Lux if the membrane surface is flushed.
  • a baffle plate structure is provided on the anti-telescope material 25 in the two places where the concentration is low so that the supply liquid 7 can detour and flow.
  • the low-concentration part and the high-concentration part are agitated and mixed by the vortex generated in the wake when bypassing the baffle plate, and the filtration performance of the membrane module as a whole can be improved.
  • the concentration is maintained at a low level. This can also be agitated and mixed with the high-concentration portion by bypassing the flow with the baffle plate structure on the outer peripheral side.
  • the outer peripheral side obstruction plate 29 arranged on the downstream side near the outer peripheral side of the winding body R and the inner peripheral side obstruction plate arranged on the downstream side near the inner circumference of the winding body R. 27 may be formed by a continuous plate-shaped portion, and a plurality of openings may be provided in the plate-shaped portion.
  • the inner peripheral side obstruction plate 27 is omitted, or a sealing material (for example, an O-ring) is provided on the outer peripheral side of the outer peripheral side obstruction plate 29, and the anti-telescope material 25 is provided on the inner surface of the pressure vessel 30.
  • a sealing material for example, an O-ring
  • the outer periphery of the surface may be brought into close contact with the surface.
  • the interconnector 35 may be integrated with the anti-telescope material 25 so that the interconnector 35 has a function as the anti-telescope material 25.
  • an inner peripheral side obstruction plate 27 is provided around the interconnector 35, the inner peripheral end of the rib 28 is arranged near the outer periphery of the central tube 5, and the rib 28 is provided.
  • the structure may be such that the outer peripheral side baffle plate 29 is provided via the above.
  • the permeation side flow path material 3 is superposed on the separation membrane 1 folded in half so as to sandwich the supply side flow path material 2.
  • the example of applying the adhesives 4 and 6 has been described.
  • two separation membranes 1 may be used to sandwich the supply side flow path material 2 and a sealing portion may be provided on the winding start side as well.
  • the continuous separation membrane 1 may be used to eliminate the need for the outer peripheral side sealing portion 12.
  • the spiral type membrane module of the present invention includes the spiral type membrane element E as described above and the pressure vessel 30 for accommodating the spiral type membrane element E, and has an outer diameter based on the outer periphery of the exterior material. It is characterized in that it is 99 to 100% with respect to the inner diameter of the pressure vessel 30.
  • the pressure vessel 30 any of those conventionally used for accommodating the membrane element E can be used.
  • the pressure vessel 30 includes an outer cylinder member 31, a downstream end plate member 32, and an upstream end plate member 34, and the holding ring 33 allows the end plate members 32, 34 to be formed. It is liquidtightly held by the outer cylinder member 31.
  • the membrane elements E are connected to each other by an interconnector 35, and the upstream side of the central tube 5 of the membrane element E on the most upstream side is closed by a cap 37.
  • the downstream side of the central tube 5 of the membrane element E on the most downstream side is connected to the opening of the end plate member 32 on the downstream side by an adapter 36, so that the permeate 8 can be discharged.
  • the downstream end plate member 32 is further provided with an opening capable of discharging the concentrated liquid 9
  • the upstream end plate member 34 is provided with an opening capable of supplying the supply liquid 7.
  • the anti-telescope material 25 shown in FIG. 4 is provided, and the outer peripheral side obstruction plate 29 arranged on the downstream side near the outer peripheral surface of the winding body R has the outer peripheral surface on the inner surface of the pressure vessel 30. It is in contact with each other. As a result, the amount of the concentrated liquid 9 flowing through the gap between the outer peripheral side obstruction plate 29 and the inner surface of the pressure vessel 30 can be reduced as much as possible, and the stirring / mixing effect can be further enhanced.
  • each member of the spiral type film element E is as described above.
  • the present invention it is possible to efficiently dispose of the used membrane element. Since no glass fiber is required for the exterior of the film element, no glass remains in the incinerated ash even when incinerated, which facilitates the treatment of the incinerated ash.
  • the used film element When used as a material for thermal recycling, it can be processed into RPF (refuse paper and plastic fuel), and the RPF manufactured by using the waste element can be suitably used in a paper mill. .. When manufacturing an RPF, there is less mechanical wear during crushing and less damage to the crusher.
  • the anti-telescope material is removable, it can be used repeatedly, and the number of uses can be reduced because it is installed only on the downstream side. Since the U packing can be omitted, the cost of the U packing can be reduced. Since the outer diameter and the axial length of the winding body can be expanded, the membrane area per membrane element can be increased, and the amount of the treatment liquid can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are: a spiral-type membrane element that requires no need for glass fiber reinforcement, includes of a small number of components, and enables a reduction in bypass flow and an increase in effective membrane area; and a spiral-type membrane module. A spiral-type membrane element E according to the present invention comprises: a perforated center tube 5; a roll body R that includes a separation membrane 1 and is wound around the center tube 5; and a cladding disposed on the outer circumference of the roll body R. The cladding includes an external flow channel material 21 that forms a flow channel outside the roll body R while blocking inflow of feed liquid 7 by covering the outer circumference of the roll body R. It is preferable for the external flow channel material 21 to comprise: a sheet material 21a for covering the outer circumference of the roll body R; and a porous material 21b that covers said sheet material 21a.

Description

スパイラル型膜エレメント及びスパイラル型膜モジュールSpiral type membrane element and spiral type membrane module
 本発明は、スパイラル型膜エレメント(以下、「膜エレメント」と略称する場合がある)、及びこれを用いたスパイラル型膜モジュールに関する。 The present invention relates to a spiral type membrane element (hereinafter, may be abbreviated as "membrane element") and a spiral type membrane module using the spiral type membrane element.
 従来、スパイラル型膜エレメントは、有孔の中心管の周りに、平膜である分離膜、透過側流路材、及び供給側流路材を巻き付け、得られた巻回体の外周に外装材となるFRP(fiber reinforced plastic)を施工して製造されていた。その際、膜エレメントの両端に取り付けるATD(Anti-telescoping device、アンチテレスコープ材)は、FRPの施工時に一体化されていた。 Conventionally, in a spiral type membrane element, a flat separation membrane, a permeation side flow path material, and a supply side flow path material are wound around a perforated central tube, and an exterior material is wound around the outer periphery of the obtained winding body. It was manufactured by constructing FRP (fiber reinforced plastic). At that time, ATDs (Anti-telescoping devices, anti-telescope materials) attached to both ends of the membrane element were integrated at the time of FRP construction.
 ATDにはUパッキンを取り付けて、膜エレメントとベッセルの間にバイパス流れが生じることを防止する。バイパス流れが生じると、膜エレメント内部の供給側流路を流れる供給液がその分だけ減少することになり、ろ過プロセスで消費するエネルギー効率の低下をもたらす。膜エレメント内部の供給側流路を供給液が流れると圧力損失が生じるが、膜エレメントの外周部(膜エレメント外周面とベッセル内面の間)においては、Uパッキンの前後で圧力がステップ状に変化しており、Uパッキンを上流側のATDに取り付ける場合には、外装FRPには内圧が作用することになる。 A U packing is attached to the ATD to prevent bypass flow from occurring between the membrane element and the vessel. When a bypass flow occurs, the supply liquid flowing through the supply-side flow path inside the membrane element is reduced by that amount, resulting in a decrease in energy efficiency consumed in the filtration process. Pressure loss occurs when the supply liquid flows through the supply-side flow path inside the membrane element, but at the outer periphery of the membrane element (between the outer peripheral surface of the membrane element and the inner surface of the vessel), the pressure changes stepwise before and after the U packing. When the U packing is attached to the upstream ATD, internal pressure acts on the exterior FRP.
 外装FRPは、通常GFRP(glass FRP、ガラス繊維のFRP)で製作されており、内圧に対してはガラス繊維で強化している方向で耐えるので十分な強度を有している。仮に、Uパッキンを下流側のATDに取り付けると、外装FRPに作用する圧力は外圧となる。この場合は外装FRPの断面(膜エレメントの軸方向に直交する断面)が楕円状や三角形状に座屈変形し、その結果内部の巻回体もFRPに押されて、膜にシワを生じるなどの不具合を生じる。そのため、Uパッキンは上流側のATDに取り付けるのが基本であった。 The exterior FRP is usually made of GFRP (glass FRP, glass fiber FRP), and has sufficient strength because it can withstand internal pressure in the direction of being reinforced with glass fiber. If the U packing is attached to the ATD on the downstream side, the pressure acting on the exterior FRP becomes an external pressure. In this case, the cross section of the exterior FRP (the cross section orthogonal to the axial direction of the membrane element) buckles and deforms into an elliptical shape or a triangular shape, and as a result, the internal winding body is also pushed by the FRP, causing wrinkles on the membrane. Causes a problem. Therefore, the U packing was basically attached to the ATD on the upstream side.
 スパイラル型膜エレメントは、その使用により経年の劣化や膜面の汚染などが進んだ結果、経時で性能が低下していく。膜面の汚染については、フラッシング洗浄と呼ぶ供給液側の流速を速めて汚染物質を物理的に洗い流したり、薬品洗浄により化学的に洗浄したりして一定程度の回復が可能であるが、それもいつかは限界となり、膜エレメント自体の交換が必要となる。交換後の使用済み膜エレメントは高い性能を必要としない別用途に再利用されることもあるが、大部分は廃棄処分される。廃棄方法としては埋め立て処分、焼却処分などがある。 The performance of the spiral type membrane element deteriorates over time as a result of deterioration over time and contamination of the membrane surface due to its use. Regarding the contamination of the membrane surface, it is possible to recover to a certain extent by increasing the flow velocity on the supply liquid side, which is called flushing cleaning, to physically wash away the contaminants, or by chemically cleaning by chemical cleaning. At some point, it will reach its limit and the membrane element itself will need to be replaced. The used membrane element after replacement may be reused for other purposes that do not require high performance, but most of it is disposed of. Disposal methods include landfill disposal and incineration disposal.
 上記のようなGFRP外装材を前提としない技術も存在する。例えば特許文献1には、巻回体の外周を透過側流路材で被覆したスパイラル型膜エレメントが開示されている。しかし、実施例では、透過側流路材の外周面をフィルムテープで固定し、ブラインシール(Uパッキン)を設けており、特許文献1の発明は、当該透過側流路材の外周にフィルムテープが存在し、その内側に供給液が流れることを想定している技術であることが明らかである。 There are also technologies that do not assume the above-mentioned GFRP exterior materials. For example, Patent Document 1 discloses a spiral type membrane element in which the outer periphery of the wound body is covered with a permeation side flow path material. However, in the embodiment, the outer peripheral surface of the permeation side flow path material is fixed with a film tape and a brine seal (U packing) is provided. In the invention of Patent Document 1, the film tape is provided on the outer periphery of the permeation side flow path material. It is clear that this is a technique that assumes that the supply liquid exists inside and that the supply liquid flows inside.
 また、特許文献2には、上記のようなGFRP外装材に代えて、円筒状のネット状物を巻回体の外周に設けることが開示されているが、この発明も膜エレメントのATDにシール材(Uパッキン)を設けることを前提としている。 Further, Patent Document 2 discloses that a cylindrical net-like material is provided on the outer periphery of the winding body in place of the GFRP exterior material as described above, but the present invention also seals the ATD of the membrane element. It is premised that a material (U packing) is provided.
特開2019-205954号公報Japanese Unexamined Patent Publication No. 2019-205954 特開2000-354742号公報Japanese Unexamined Patent Publication No. 2000-354742
 ところで、交換後の膜エレメントの処理は大きな課題であり、埋め立て処分は処理場の容積が有限であること、また、プラスチック材料が大部分である膜エレメントは地中で分解されないので、半永久的に地中に残ることになることから、持続可能な処理方法ではない。また、外装FRPに含まれるガラス繊維は燃えないため、焼却後の焼却灰の中にガラス繊維が残り、焼却灰の処理を難しくしている。 By the way, the treatment of the membrane element after replacement is a big problem, and the volume of the treatment plant is finite in the landfill disposal, and the membrane element, which is mostly made of plastic material, is not decomposed in the ground, so it is semi-permanent. It is not a sustainable treatment method as it will remain in the ground. Further, since the glass fiber contained in the exterior FRP does not burn, the glass fiber remains in the incinerated ash after incineration, which makes the treatment of the incinerated ash difficult.
 特許文献1に記載されているように、フィルムテープを外装材とし、膜エレメントの上流側にパッキンを設ける場合、ガラス繊維を省略できるものの、膜エレメントが内圧により変形して、運転時や洗浄時に分離膜が破損するという問題が生じる場合がある。 As described in Patent Document 1, when the film tape is used as the exterior material and the packing is provided on the upstream side of the membrane element, the glass fiber can be omitted, but the membrane element is deformed by the internal pressure and is deformed during operation or cleaning. The problem of breakage of the separation membrane may occur.
 また、特許文献2に記載されているように、円筒状のネット状物を巻回体の外周に設ける場合、ネット状物の外周側の圧力容器との隙間を原水が流れてバイパス流れとなり、濾過効率が低下するという問題があった。 Further, as described in Patent Document 2, when a cylindrical net-like material is provided on the outer periphery of the winding body, raw water flows through a gap between the net-like material and the pressure vessel on the outer peripheral side to form a bypass flow. There was a problem that the filtration efficiency was lowered.
 なお、従来のスパイラル型膜エレメントでは、巻回体とATDとが外装材により一体化されており、ATDの外周にUパッキンを設けた構造のため、巻回体の外径をATDの外径とは無関係に大きくすることが困難であった。また、このような構造は、部品点数を増加させていた。 In the conventional spiral type membrane element, the winding body and the ATD are integrated by an exterior material, and the structure is provided with U packing on the outer circumference of the ATD, so that the outer diameter of the winding body is the outer diameter of the ATD. It was difficult to increase it regardless of. Moreover, such a structure has increased the number of parts.
 そこで、本発明の目的は、ガラス繊維補強を必要とせず、部品点数が少なく、バイパス流れの低減と有効膜面積の増加が可能なスパイラル型膜エレメント、及びスパイラル型膜モジュールを提供することにある。 Therefore, an object of the present invention is to provide a spiral type membrane element and a spiral type membrane module which do not require glass fiber reinforcement, have a small number of parts, can reduce bypass flow and increase the effective membrane area. ..
 上記目的は、以下の如き本発明によって達成できる。 The above object can be achieved by the present invention as follows.
 即ち、本発明のスパイラル型膜エレメントは、有孔の中心管と、その中心管に巻回され分離膜を含む巻回体と、その巻回体の外周に設けられた外装材と、を備えるスパイラル型膜エレメントであって、前記外装材は、前記巻回体の外周を覆って供給液の流入を遮断しつつ前記巻回体の外部に流路を形成する外装流路材を含むことを特徴とする。 That is, the spiral type membrane element of the present invention includes a perforated central tube, a winding body wound around the central tube and containing a separation membrane, and an exterior material provided on the outer periphery of the winding body. A spiral type membrane element, wherein the exterior material includes an exterior flow path material that covers the outer periphery of the winding body to block the inflow of supply liquid and forms a flow path outside the winding body. It is a feature.
 本発明のスパイラル型膜エレメントによると、外装流路材が巻回体の外周を覆って供給液の流入を遮断しつつ前記巻回体の外部に流路を形成するため、巻回体の内部を流れる液体(膜分離される供給液)と、外装流路材の流路を流れる液体(膜分離されない供給液)とが、独立した流路を形成するため、両流路の圧力分布を独立して制御することができる。このため、両流路の圧力差を低減できるので、ガラス繊維補強が不要となる。また、膜エレメントの外周が圧力容器の内面に密着しても、外装流路材の内部を供給液が流動可能なため、バイパス流れを低減しつつ、巻回体の外径の増加により有効膜面積を増加させることができる。更に、バイパス流れを低減できるため、上流側のATDとUパッキンも不要となり、部品点数を少なくすることができる。その結果、ガラス繊維補強を必要とせず、部品点数が少なく、バイパス流れの低減と有効膜面積の増加が可能なスパイラル型膜エレメントを提供することができる。 According to the spiral type membrane element of the present invention, the outer flow path material covers the outer periphery of the winding body to block the inflow of the supply liquid and forms the flow path outside the winding body, so that the inside of the winding body is formed. Since the liquid flowing through the (membrane-separated supply liquid) and the liquid flowing through the flow path of the exterior flow path material (supply liquid without membrane separation) form independent flow paths, the pressure distributions of both flow paths are independent. Can be controlled. Therefore, the pressure difference between the two channels can be reduced, and the glass fiber reinforcement becomes unnecessary. Further, even if the outer circumference of the membrane element is in close contact with the inner surface of the pressure vessel, the supply liquid can flow inside the outer flow path material, so that the effective membrane is increased by increasing the outer diameter of the winding body while reducing the bypass flow. The area can be increased. Further, since the bypass flow can be reduced, the ATD and U packing on the upstream side are not required, and the number of parts can be reduced. As a result, it is possible to provide a spiral type membrane element that does not require glass fiber reinforcement, has a small number of parts, can reduce bypass flow, and can increase the effective membrane area.
 上記において、外装流路材は、前記巻回体の外周を覆うシート材と、そのシート材を覆う多孔質材とを含むことが好ましい。この構成によると、シート材により巻回体の外周を覆って供給液の流入を遮断でき、多孔質材により巻回体の外部に流路を形成することができる。また、多孔質材を用いることで、圧力損失を制御するのがより容易になり、両流路の圧力差の低減を行ない易くなる。 In the above, the exterior flow path material preferably contains a sheet material that covers the outer periphery of the winding body and a porous material that covers the sheet material. According to this configuration, the sheet material can cover the outer periphery of the winding body to block the inflow of the supply liquid, and the porous material can form a flow path outside the winding body. Further, by using the porous material, it becomes easier to control the pressure loss, and it becomes easier to reduce the pressure difference between the two flow paths.
 また、圧力容器に収容して使用された際に、前記外装材の外周を基準とする外径が、前記圧力容器の内径に対して99~100%であることが好ましい。このような外径とすることで、外装材と圧力容器の内面との隙間が小さくなり、バイパス流れの低減と有効膜面積の増加を効果的に行なうことができる。 Further, when it is housed in a pressure vessel and used, it is preferable that the outer diameter with respect to the outer circumference of the exterior material is 99 to 100% with respect to the inner diameter of the pressure vessel. With such an outer diameter, the gap between the exterior material and the inner surface of the pressure vessel is reduced, and the bypass flow can be reduced and the effective film area can be effectively increased.
 更に、前記巻回体の下流側に、着脱式のアンチテレスコープ材を備えることが好ましい。テレスコープを抑制するためのアンチテレスコープ材を着脱式とすることで、廃棄物処理時の処理量を低減でき、アンチテレスコープ材を再利用することができる。また、アンチテレスコープ材を外装材により一体化する工程が不要となり、取付工程も簡易なものになる。 Further, it is preferable to provide a removable anti-telescope material on the downstream side of the winding body. By making the anti-telescope material for suppressing the telescope removable, the amount of waste treated can be reduced and the anti-telescope material can be reused. In addition, the process of integrating the anti-telescope material with the exterior material becomes unnecessary, and the mounting process becomes simple.
 その際、前記アンチテレスコープ材は、前記巻回体の外周付近の下流側に配された外周側邪魔板と、前記巻回体の内周付近の下流側に配された内周側邪魔板とを設けてあることが好ましい。詳細な理由は後述するが、スパイラル型膜エレメントから流出する濃縮液には濃度の分布が存在し、巻回体の外周付近と内周付近とで濃度が小さくなる。本発明では、巻回体を覆う外装流路材を、供給液が濃縮されることなく流動するため、通常よりも外周付近で濃縮液の濃度が小さくなる。濃度が低いということは浸透圧が低いということであり、膜面を流せば高い流束(Flux)を期待できる供給液であるにもかかわらず次の段でも膜分離しない部分を流すのは効率的ではない。このため、外周側邪魔板と内周側邪魔板とを設けることで、濃縮液の攪拌混合が可能となり、次の段での膜分離の効率を向上することができる。 At that time, the anti-telescope material includes an outer peripheral side obstruction plate arranged on the downstream side near the outer periphery of the winding body and an inner peripheral side obstruction plate arranged on the downstream side near the inner circumference of the winding body. It is preferable that and is provided. Although the detailed reason will be described later, there is a concentration distribution in the concentrated liquid flowing out from the spiral type membrane element, and the concentration becomes small near the outer circumference and the inner circumference of the winding body. In the present invention, the outer flow path material covering the winding body flows through the outer flow path material without the supply liquid being concentrated, so that the concentration of the concentrated liquid becomes smaller near the outer periphery than usual. A low concentration means that the osmotic pressure is low, and it is efficient to flow the part that does not separate the membrane even in the next stage even though it is a supply liquid that can expect a high flux (Flux) if it flows through the membrane surface. Not the target. Therefore, by providing the outer peripheral side baffle plate and the inner peripheral side baffle plate, the concentrated liquid can be stirred and mixed, and the efficiency of membrane separation in the next stage can be improved.
 前記アンチテレスコープ材は、前記巻回体の下流側に伸びる前記中心管に取付られていることが好ましい。中心管を利用することで、アンチテレスコープ材を簡易な着脱構造とすることができる。 It is preferable that the anti-telescope material is attached to the central tube extending to the downstream side of the winding body. By using the central canal, the anti-telescope material can be made into a simple detachable structure.
 一方、本発明のスパイラル型膜モジュールは、上記いずれかに記載のスパイラル型膜エレメントと、前記スパイラル型膜エレメントを収容する圧力容器とを含み、前記外装材の外周を基準とする外径が、前記圧力容器の内径に対して99~100%であることを特徴とする。 On the other hand, the spiral type membrane module of the present invention includes the spiral type membrane element according to any one of the above and the pressure vessel accommodating the spiral type membrane element, and has an outer diameter based on the outer periphery of the exterior material. It is characterized in that it is 99 to 100% with respect to the inner diameter of the pressure vessel.
 本発明のスパイラル型膜モジュールによると、以上のようなスパイラル型膜エレメントを用いて圧力容器の内径に対して膜エレメントの外径を99~100%としてあるため、上述の作用効果が得られる。即ち、膜エレメントの外装流路材が巻回体の外周を覆って供給液の流入を遮断しつつ前記巻回体の外部に流路を形成するため、巻回体の内部を流れる液体(膜分離される供給液)と、多孔質材の内部と外周を流れる液体(膜分離されない供給液)とが、独立した流路を形成するため、両流路の圧力分布を独立して制御することができる。このため、両流路の圧力差を低減できるので、ガラス繊維補強が不要となる。また、膜エレメントの外周が圧力容器の内面に密着しても、外装流路材の内部を供給液が流動可能なため、バイパス流れを低減しつつ、巻回体の外径の増加により有効膜面積を増加させることができる。更に、バイパス流れを低減できるため、上流側のATDとUパッキンも不要となり、部品点数を少なくすることができる。その結果、ガラス繊維補強を必要とせず、部品点数が少なく、バイパス流れの低減と有効膜面積の増加が可能なスパイラル型膜モジュールを提供することができる。 According to the spiral type membrane module of the present invention, since the outer diameter of the membrane element is set to 99 to 100% with respect to the inner diameter of the pressure vessel by using the spiral type membrane element as described above, the above-mentioned action and effect can be obtained. That is, since the outer flow path material of the film element covers the outer periphery of the winding body and blocks the inflow of the supply liquid to form a flow path outside the winding body, the liquid (film) flowing inside the winding body. Since the liquid to be separated) and the liquid flowing inside and outside the porous material (the liquid to which the membrane is not separated) form independent flow paths, the pressure distribution in both flow paths should be controlled independently. Can be done. Therefore, the pressure difference between the two channels can be reduced, and the glass fiber reinforcement becomes unnecessary. Further, even if the outer circumference of the membrane element is in close contact with the inner surface of the pressure vessel, the supply liquid can flow inside the outer flow path material, so that the effective membrane is increased by increasing the outer diameter of the winding body while reducing the bypass flow. The area can be increased. Further, since the bypass flow can be reduced, the ATD and U packing on the upstream side are not required, and the number of parts can be reduced. As a result, it is possible to provide a spiral type membrane module that does not require glass fiber reinforcement, has a small number of parts, can reduce bypass flow, and can increase the effective membrane area.
 ガラス繊維補強を必要とせず、部品点数が少なく、バイパス流れの低減と有効膜面積の増加が可能なスパイラル型膜エレメント、及びスパイラル型膜モジュールを提供することができる。 It is possible to provide a spiral type membrane element and a spiral type membrane module that do not require glass fiber reinforcement, have a small number of parts, can reduce bypass flow and increase the effective membrane area.
本発明のスパイラル型膜エレメントを圧力容器に収容した状態の一例を示す断面図であり、一部を拡大したものである。It is sectional drawing which shows an example of the state in which the spiral type membrane element of this invention is housed in a pressure vessel, and is a partially enlarged view. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットの一例を示す平面図である。It is a top view which shows an example of the separation membrane unit used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットの一例を示す正面図である。It is a front view which shows an example of the separation membrane unit used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットを積層して巻回する前の状態の一例を示す正面図である。It is a front view which shows an example of the state before laminating and winding the separation membrane unit used for the spiral type membrane element of this invention. 膜リーフ及び供給側流路材が中心管に巻回された巻回体の一例を示す、一部を切り欠いた斜視図である。It is a partially cutaway perspective view which shows an example of a winding body in which a membrane leaf and a flow path material on a supply side are wound around a central canal. 本発明のスパイラル型膜エレメントに使用可能なアンチテレスコープ材の一例を示す斜視図である。It is a perspective view which shows an example of the anti-telescope material which can be used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットを積層して巻回する前の状態の他の例を示す正面図である。It is a front view which shows the other example of the state before laminating and winding the separation membrane unit used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットを積層して巻回する前の状態の他の例を示す正面図である。It is a front view which shows the other example of the state before laminating and winding the separation membrane unit used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットを積層して巻回する前の状態の他の例を示す正面図である。It is a front view which shows the other example of the state before laminating and winding the separation membrane unit used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用する分離膜ユニットを積層して巻回する前の状態の他の例を示す正面図である。It is a front view which shows the other example of the state before laminating and winding the separation membrane unit used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用可能なアンチテレスコープ材の他の例を示す正面図である。It is a front view which shows the other example of the anti-telescope material which can be used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用可能なアンチテレスコープ材の他の例を示す正面図である。It is a front view which shows the other example of the anti-telescope material which can be used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントに使用可能なアンチテレスコープ材の他の例を示す正面図である。It is a front view which shows the other example of the anti-telescope material which can be used for the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントの他の例における要部を示す断面図である。It is sectional drawing which shows the main part in another example of the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントの他の例における要部を示す断面図である。It is sectional drawing which shows the main part in another example of the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントの他の例の要部を示す断面図である。It is sectional drawing which shows the main part of the other example of the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントの他の例の要部を示す断面図である。It is sectional drawing which shows the main part of the other example of the spiral type membrane element of this invention. 本発明のスパイラル型膜エレメントの他の例の要部を示す断面図である。It is sectional drawing which shows the main part of the other example of the spiral type membrane element of this invention.
 (スパイラル型膜エレメント)
 本発明のスパイラル型膜エレメントEは、例えば図1に示すように、有孔の中心管5と、その中心管5に巻回され分離膜1を含む巻回体Rと、その巻回体Rの外周に設けられた外装材と、を備える。膜エレメントEは、例えば、図3に示すように、対向する分離膜1の間に透過側流路材3が介在する複数の膜リーフLと、膜リーフLの間に介在する供給側流路材2と、膜リーフL及び供給側流路材2を巻回した有孔の中心管5と、供給側流路と透過側流路との混合を防止する封止部と、を備えているのが一般的である。
(Spiral type membrane element)
As shown in FIG. 1, for example, the spiral type membrane element E of the present invention includes a perforated central tube 5, a winding body R wound around the central tube 5 and including a separation membrane 1, and the winding body R thereof. It is provided with an exterior material provided on the outer periphery of the above. As shown in FIG. 3, for example, the membrane element E includes a plurality of membrane leaves L in which the transmission side flow path material 3 is interposed between the opposing separation membranes 1, and a supply side flow path that is interposed between the membrane leaves L. The material 2 is provided with a perforated central tube 5 around which the membrane leaf L and the supply-side flow path material 2 are wound, and a sealing portion for preventing mixing between the supply-side flow path and the permeation-side flow path. Is common.
 分離膜1の表面に凹凸又は溝などを設けて、供給側流路及び/又は透過側流路を分離膜1自体に形成することも可能であり、その場合、供給側流路材2及び/又は透過側流路材3を省略することが可能である。 It is also possible to provide irregularities or grooves on the surface of the separation membrane 1 to form the supply side flow path and / or the transmission side flow path on the separation membrane 1 itself, in which case the supply side flow path material 2 and / or Alternatively, the permeation side flow path material 3 can be omitted.
 本実施形態では、封止部が両端封止部11と外周側封止部12とを含む例を示す。封止部のうち、両端封止部11は、膜リーフLの軸心方向A1の両側における二辺端部を接着剤で封止したものである。外周側封止部12は、膜リーフLの外周側先端の端部を接着剤で封止したものである。 In this embodiment, an example is shown in which the sealing portion includes both ends sealing portion 11 and the outer peripheral side sealing portion 12. Of the sealing portions, the both end sealing portions 11 are formed by sealing the two side ends of the film leaf L on both sides in the axial direction A1 with an adhesive. The outer peripheral side sealing portion 12 is formed by sealing the end portion of the outer peripheral side tip of the film leaf L with an adhesive.
 また、本発明では、図3に示すように、有孔の中心管5と膜リーフLの基端部とを接着剤で封止した中央側封止部13を有することが好ましい。本実施形態の膜エレメントは、このような中央側封止部13を介して、膜リーフL及び供給側流路材2が中心管5に巻回された巻回体Rを有している。 Further, in the present invention, as shown in FIG. 3, it is preferable to have a central sealing portion 13 in which the perforated central tube 5 and the base end portion of the membrane leaf L are sealed with an adhesive. The membrane element of the present embodiment has a winding body R in which the membrane leaf L and the supply-side flow path material 2 are wound around the central tube 5 via such a central sealing portion 13.
 上記の巻回体Rは、例えば図2A~図2Cに示す工程により製造することができる。図2Aは分離膜ユニットUの平面図であり、図2Bは分離膜ユニットUの正面図であり、図2Cは分離膜ユニットUを積層して巻回する前の状態を示す正面図である。また、図3は、膜リーフL及び供給側流路材2が中心管5に巻回された巻回体Rの一例を示す、一部を切り欠いた斜視図である。 The winding body R can be manufactured by, for example, the steps shown in FIGS. 2A to 2C. 2A is a plan view of the separation membrane unit U, FIG. 2B is a front view of the separation membrane unit U, and FIG. 2C is a front view showing a state before laminating and winding the separation membrane unit U. Further, FIG. 3 is a partially cutaway perspective view showing an example of a winding body R in which the membrane leaf L and the supply-side flow path material 2 are wound around the central tube 5.
 まず、図2A及び図2Bに示すように、分離膜1を二つ折りにした間に供給側流路材2を配置したものと透過側流路材3とを積み重ね、両端封止部11と外周側封止部12とを形成するための接着剤4,6を、透過側流路材3の軸心方向A1の両端部及び巻回の先端部に塗布した分離膜ユニットUを準備する。このとき、分離膜1の折り目部分に保護テープを貼り付けてもよい。 First, as shown in FIGS. 2A and 2B, a material in which the supply side flow path material 2 is arranged while the separation membrane 1 is folded in half and a permeation side flow path material 3 are stacked, and both ends sealing portion 11 and the outer periphery thereof are stacked. The separation membrane unit U is prepared by applying the adhesives 4 and 6 for forming the side sealing portion 12 to both ends of the transmission side flow path material 3 in the axial direction A1 and the tip of the winding. At this time, a protective tape may be attached to the crease portion of the separation membrane 1.
 接着剤4,6としては、特に限定されるものではなく、従来公知のものを採用することができる。具体的には、例えばウレタン系接着剤、エポキシ系接着剤等、従来公知のいずれの接着剤も使用することができる。 The adhesives 4 and 6 are not particularly limited, and conventionally known adhesives can be adopted. Specifically, any conventionally known adhesive such as a urethane-based adhesive or an epoxy-based adhesive can be used.
 次ぎに、図2Cに示すように、他のものより延長した部分を有する透過側流路材3の上に、膜リーフLと同数の分離膜ユニットUを積層して、分離膜ユニットUの積層体を準備する。このとき、最も下側の透過側流路材3の延長部分の軸心方向A1の両端部にも接着剤を塗布しておくことで、中央側封止部13を形成することができる。 Next, as shown in FIG. 2C, the same number of separation membrane units U as the membrane leaf L are laminated on the transmission side flow path material 3 having a portion extended from the others, and the separation membrane unit U is laminated. Prepare your body. At this time, the central side sealing portion 13 can be formed by applying the adhesive to both ends of the extension portion of the lowermost permeation side flow path material 3 in the axial direction A1.
 次いで、図2Cに示すように、有孔の中心管5を矢印の方向に回転させて、複数の分離膜ユニットUを中心管5に巻回する。このとき、接着剤4,6が、対向する分離膜1と透過側流路材3とを接着することにより、両端封止部11と外周側封止部12とを有する膜リーフLが形成される。 Next, as shown in FIG. 2C, the perforated central tube 5 is rotated in the direction of the arrow, and the plurality of separation membrane units U are wound around the central canal 5. At this time, the adhesives 4 and 6 adhere the opposing separation membrane 1 and the permeation side flow path material 3 to form a membrane leaf L having both end sealing portions 11 and outer peripheral side sealing portions 12. To.
 その結果、図3に示すように、膜リーフL及び供給側流路材2が中心管5に巻回された巻回体Rが形成される。封止後の巻回体Rは、軸心方向A1の長さを調整するために、両端部のトリミング等を行ってもよい。 As a result, as shown in FIG. 3, a winding body R in which the membrane leaf L and the supply-side flow path material 2 are wound around the central tube 5 is formed. The wound body R after sealing may be trimmed at both ends in order to adjust the length in the axial direction A1.
 従来の膜エレメントEでは、巻回体Rの上流側には、シールキャリア等の上流側端部材が設けられ、下流側にはアンチテレスコープ材等の下流側端部材が一定的に設けられる。しかし、本発明の膜エレメントEでは、図1に示すように、巻回体Rと一体化した上流側端部材は設ける必要がない。また、アンチテレスコープ材25は、巻回体Rと一体化されたものではなく、着脱式のアンチテレスコープ材25を備えることが好ましい。 In the conventional membrane element E, an upstream end member such as a seal carrier is provided on the upstream side of the winding body R, and a downstream end member such as an anti-telescope material is constantly provided on the downstream side. However, in the membrane element E of the present invention, as shown in FIG. 1, it is not necessary to provide the upstream end member integrated with the winding body R. Further, it is preferable that the anti-telescope material 25 is not integrated with the winding body R, but is provided with the detachable anti-telescope material 25.
 一般的な8インチ径のスパイラル型膜エレメントにおいては、膜リーフLは15~30組程度巻回されるが、本発明では、巻回体Rの外径を従来より大きくすることが可能であり、膜リーフLの長さ(軸心方向A1に垂直な長さ)を従来より長くすることができる。これにより、複合半透膜の有効膜面積を高めることができ、さらに大量の処理が可能となるため、処理効率が向上する。 In a general spiral type membrane element having a diameter of 8 inches, about 15 to 30 sets of membrane leaves L are wound, but in the present invention, the outer diameter of the wound body R can be made larger than before. , The length of the film leaf L (the length perpendicular to the axial direction A1) can be made longer than before. As a result, the effective membrane area of the composite semipermeable membrane can be increased, and a large amount of treatment can be performed, so that the treatment efficiency is improved.
 上記膜エレメントEを使用する際は、図1に示すように、圧力容器30(ベッセル)内に収容され、供給液7は膜エレメントの一方の端面側から供給される。供給された供給液7は、供給側流路材2に沿って中心管5の軸心方向A1に平行な方向に流れ、膜エレメントの他方の端面側から濃縮液9として排出される。また、供給液7が供給側流路材2に沿って流れる過程で分離膜1を透過した透過液8は、透過側流路材3に沿って流動した後に、開孔5aから中心管5の内部に流れ込み、この中心管5の端部から排出される。図1に示すスパイラル型膜モジュールについては、後に詳述する。 When the membrane element E is used, as shown in FIG. 1, it is housed in the pressure vessel 30 (vessel), and the supply liquid 7 is supplied from one end face side of the membrane element. The supplied liquid 7 flows along the supply-side flow path material 2 in a direction parallel to the axial direction A1 of the central tube 5, and is discharged as a concentrated liquid 9 from the other end face side of the membrane element. Further, the permeate liquid 8 that has permeated the separation membrane 1 in the process of flowing along the supply side flow path material 2 flows along the permeation side flow path material 3 and then flows from the opening 5a to the central tube 5. It flows into the inside and is discharged from the end of the central tube 5. The spiral membrane module shown in FIG. 1 will be described in detail later.
 (外装材)
 本発明は、巻回体Rの外周に設けられた外装材が、巻回体Rの外周を覆って供給液7の流入を遮断しつつ巻回体Rの外部に流路を形成する外装流路材21を含むことを特徴とする。外装流路材21は、例えば図8Bに示すような、外側に凸部や溝を有する凹凸シート材21sの単体で構成することも可能であるが、巻回体Rの外部に形成される流路の圧力損失を好適に制御する観点から、複数の材料で構成することが好ましい。
(Exterior material)
In the present invention, the exterior material provided on the outer periphery of the winding body R covers the outer periphery of the winding body R to block the inflow of the supply liquid 7 and forms a flow path outside the winding body R. It is characterized by including the road material 21. The exterior flow path material 21 may be composed of a single piece of the uneven sheet material 21s having protrusions and grooves on the outside, as shown in FIG. 8B, but the flow formed outside the winding body R. From the viewpoint of suitably controlling the pressure loss of the road, it is preferable to use a plurality of materials.
 本実施形態では、例えば図1に示すように、巻回体Rの外周に設けられた外装流路材21が、巻回体Rの外周を覆うシート材21aと、そのシート材21aを覆う多孔質材21bとを含む例を示す。このように、本発明では、外装FRPを省略した構造とすることができる。 In the present embodiment, for example, as shown in FIG. 1, the exterior flow path material 21 provided on the outer periphery of the winding body R is a sheet material 21a that covers the outer periphery of the winding body R and a porous surface that covers the sheet material 21a. An example including the quality material 21b is shown. As described above, in the present invention, the structure can be such that the exterior FRP is omitted.
 外装FRPは内圧に耐える機能を有しているが、ガラス繊維などの強化材料を含んでいない多孔質材21bは内圧に耐える機能はないので、内圧が掛かりにくい構成にする。そのために、Uパッキンを無くして、多孔質材21bの層内を少量の供給液7が流れるようにする。巻回体R内部の供給液7の流れと同様に、巻回体R外部の多孔質材21bの内部にも供給液7が流れることにより、両流路における圧力損失が略同等となり、巻回体Rの外周を覆うシート材21aには内圧も外圧も作用しない状態にすることができる。 The exterior FRP has a function to withstand the internal pressure, but the porous material 21b that does not contain the reinforcing material such as glass fiber does not have the function to withstand the internal pressure, so the structure is such that the internal pressure is not easily applied. Therefore, the U packing is eliminated so that a small amount of the supply liquid 7 flows in the layer of the porous material 21b. Similar to the flow of the supply liquid 7 inside the winding body R, the supply liquid 7 also flows inside the porous material 21b outside the winding body R, so that the pressure loss in both flow paths becomes substantially the same, and the winding Neither the internal pressure nor the external pressure acts on the sheet material 21a that covers the outer periphery of the body R.
 つまり、図1の拡大図に示すように、供給された供給液7の殆どは、シート材21aの内側の巻回体Rに供給され、エレメント内流れ7aとなり、一部のみが多孔質材21bに供給されバイパス流れ7bとなる。 That is, as shown in the enlarged view of FIG. 1, most of the supplied liquid supply 7 is supplied to the winding body R inside the sheet material 21a and becomes an in-element flow 7a, and only a part of the supplied liquid material 21b is made of the porous material 21b. It is supplied to the bypass flow 7b.
 なお、巻回体Rの最外周には、供給側流路材2が位置する領域と、膜リーフLの分離膜1が位置する領域とが存在するが、上側拡大図は前者の状態を、下側拡大図は後者の状態を示している。 It should be noted that, on the outermost circumference of the winding body R, there is a region where the supply side flow path material 2 is located and a region where the separation membrane 1 of the membrane leaf L is located. The lower enlarged view shows the latter state.
 本発明では、外装流路材21(本実施形態ではシート材21a)が巻回体Rの外周を覆って供給液7の流入を遮断しており、巻回体Rの外部に形成される流路の圧力損失を独立して制御することができる。圧力損失の調整は、例えば多孔質材21bの厚み、層数、孔径、空隙率、編成組織の方向、織物組織の方向、などにより行なうことができる。 In the present invention, the exterior flow path material 21 (sheet material 21a in the present embodiment) covers the outer periphery of the winding body R to block the inflow of the supply liquid 7, and the flow formed outside the winding body R. The pressure loss of the path can be controlled independently. The pressure loss can be adjusted by, for example, the thickness of the porous material 21b, the number of layers, the pore size, the porosity, the direction of the knitting structure, the direction of the woven structure, and the like.
 本実施形態では、外装材の外周を基準とする外径が、圧力容器30の内径に対して100%である例、すなわち多孔質材21bと圧力容器30の間に隙間がない例を示す。 In this embodiment, an example in which the outer diameter with respect to the outer circumference of the exterior material is 100% with respect to the inner diameter of the pressure vessel 30, that is, an example in which there is no gap between the porous material 21b and the pressure vessel 30 is shown.
 本発明では、この隙間が存在していてもよいが、外装材の外周を基準とする外径が、圧力容器30の内径に対して99.0~100.0%であることが好ましく、99.5~100.0%であることがより好ましく100.0%であることが更に好ましい。このような範囲の外径とすることで、巻回体の外周を覆うシート材と圧力容器の内面との隙間が小さくなり、より効果的にバイパス流れの低減と有効膜面積の増加が可能となる。また、同様の理由から、多孔質材21bと圧力容器30の隙間の大きさとしては、0~1mmが好ましく、0~0.5mmがより好ましく、0mmが最も好ましい。 In the present invention, this gap may exist, but the outer diameter with respect to the outer circumference of the exterior material is preferably 99.0 to 100.0% with respect to the inner diameter of the pressure vessel 30, 99. .5 to 100.0% is more preferable, and 100.0% is even more preferable. By setting the outer diameter within such a range, the gap between the sheet material covering the outer circumference of the winding body and the inner surface of the pressure vessel becomes smaller, and it is possible to more effectively reduce the bypass flow and increase the effective film area. Become. For the same reason, the size of the gap between the porous material 21b and the pressure vessel 30 is preferably 0 to 1 mm, more preferably 0 to 0.5 mm, and most preferably 0 mm.
 本発明では、上記のように、圧力容器30の内部の巻回体Rの容積を増やすことができ、より多くの分離膜1(平膜)を収容することが可能になる。すなわちエレメント当たりの膜面積が増え、透過流量を増加させることが可能になる。そして、巻回体Rの外径で約2%の向上が可能であり、上流側のATD省略により軸方向長さで約2%向上が可能であるため、エレメント当たりの膜面積と透過流量をおよそ6%向上させることが可能となる。 In the present invention, as described above, the volume of the winding body R inside the pressure vessel 30 can be increased, and more separation membrane 1 (flat membrane) can be accommodated. That is, the membrane area per element increases, and the permeation flow rate can be increased. The outer diameter of the winding body R can be improved by about 2%, and the axial length can be improved by about 2% by omitting the ATD on the upstream side. Therefore, the film area and the permeation flow rate per element can be improved. It is possible to improve by about 6%.
 多孔質材21bの空隙率は、適度な圧力損失を生じさせてバイパス流れと圧力分布を好適に制御する観点から、5~80%であることが好ましい。10~50%であることがより好ましい。 The porosity of the porous material 21b is preferably 5 to 80% from the viewpoint of causing an appropriate pressure loss and suitably controlling the bypass flow and the pressure distribution. More preferably, it is 10 to 50%.
 多孔質材21bの厚み(多層構造の場合は総厚み)は、適度な圧力損失を生じさせてバイパス流れと圧力分布を好適に制御する観点から、0.2~2mmが好ましく、0.5 ~1.2mmがより好ましい。 The thickness of the porous material 21b (total thickness in the case of a multilayer structure) is preferably 0.2 to 2 mm, preferably 0.5 to 2 mm, from the viewpoint of causing an appropriate pressure loss and appropriately controlling the bypass flow and the pressure distribution. 1.2 mm is more preferable.
 多孔質材21bとしては、後述する供給側流路材2若しくは透過側流路材3として使用できるもの又はこれらに類するもの、不織布、高分子多孔質膜、布帛等が何れも使用可能であるが、圧力損失、ハンドリング性等の観点から、透過側流路材3として使用できるものが好ましい。 As the porous material 21b, those that can be used as the supply-side flow path material 2 or the transmission-side flow path material 3 described later, or similar materials, non-woven fabrics, polymer porous membranes, cloths, and the like can be used. , A material that can be used as the permeation side flow path material 3 is preferable from the viewpoint of pressure loss, handleability and the like.
 具体的な多孔質材21bとしては、メリヤス編み、パール編みなどの緯編材料、トリコットなどの経編材料、平織などの織物材料が好ましく用いられる。透過側流路材3に用いられることが多いトリコットハーフ編みやダブルデンビー編みなどの経編材料を用いる場合は、その溝/畝が形成されている向きが、膜エレメントEの軸心方向A1と直交する方向で用いることが好ましい。バイパス流れの流れ抵抗が大きくなり、バイパスでリークする供給液流量を低減することができるためである。 As the specific porous material 21b, weft knitting materials such as knitting and pearl knitting, warp knitting materials such as tricot, and woven materials such as plain weave are preferably used. When a warp knitting material such as tricot half knitting or double denby knitting, which is often used for the permeation side flow path material 3, is used, the direction in which the groove / ridge is formed is the axial direction A1 of the membrane element E. It is preferable to use it in orthogonal directions. This is because the flow resistance of the bypass flow increases and the flow rate of the supply liquid leaking due to the bypass can be reduced.
 多孔質材21bは、比較的目の細かいものを使用しているため、実際のろ過運転時には供給液に含まれる濁質成分などが堆積して目詰まりを生じることが想定される。目詰まりを生じると、膜エレメントEと圧力容器30の間の隙間の圧力分布が、Uパッキンを使用する場合と類似の圧力分布となり、多孔質材21bの内面に内圧が作用する。多孔質材21bには内圧に耐える機能はないが、本発明においては、巻回体Rに多孔質材21bを巻いた状態での外径を圧力容器30の内径と略一致する寸法にしているため、仮に内圧が作用してもごくわずか膨らんだ段階で多孔質材21bの外面が圧力容器30内壁に当接するため特段の不具合は生じない。 Since the porous material 21b is a relatively fine material, it is expected that turbid components and the like contained in the feed solution will accumulate during the actual filtration operation, causing clogging. When clogging occurs, the pressure distribution in the gap between the membrane element E and the pressure vessel 30 becomes a pressure distribution similar to that in the case of using the U packing, and the internal pressure acts on the inner surface of the porous material 21b. The porous material 21b does not have a function of withstanding the internal pressure, but in the present invention, the outer diameter of the wound body R in a state where the porous material 21b is wound is set to a dimension substantially matching the inner diameter of the pressure vessel 30. Therefore, even if the internal pressure acts, the outer surface of the porous material 21b comes into contact with the inner wall of the pressure vessel 30 at the stage of swelling very slightly, so that no particular problem occurs.
 一方、巻回体Rの外周を覆うシート材21aとしては、フィルム、シート、テープなどが使用できる。このようなシート材21aで巻回体Rの外周を覆うことにより、巻回体Rの外径を精度よく調整したり、巻回体Rの外周を拘束・固定することで、一連の工程をスムーズに行なうことができるという効果も奏する。このような観点から、粘着剤付きのシート材21a、特に基材が延伸ポリプロピレン製の粘着テープを使用することが好ましい。 On the other hand, as the sheet material 21a that covers the outer periphery of the winding body R, a film, a sheet, a tape, or the like can be used. By covering the outer circumference of the winding body R with such a sheet material 21a, the outer diameter of the winding body R can be adjusted accurately, and by restraining and fixing the outer circumference of the winding body R, a series of steps can be performed. It also has the effect of being able to do it smoothly. From such a viewpoint, it is preferable to use a sheet material 21a with an adhesive, particularly an adhesive tape whose base material is made of stretched polypropylene.
 外装流路材21は、巻回体Rの外周を仮固定等した状態で、シート材21a及び多孔質材21bを順次被覆することで形成することができるが、例えば図5Aに示すよう、巻回体Rの巻回と連続して、シート材21a、多孔質材21bを被覆することも可能である。 The outer flow path material 21 can be formed by sequentially covering the sheet material 21a and the porous material 21b in a state where the outer periphery of the winding body R is temporarily fixed, and the outer flow path material 21 can be formed, for example, as shown in FIG. 5A. It is also possible to coat the sheet material 21a and the porous material 21b in succession with the winding of the rotating body R.
 即ち、巻回体Rを形成する際に使用する透過側流路材3の何れかの先端部、又は何れかを延設した先端部に、接着部21cを介してシート材21aを延設しておき、巻回体Rの巻回を行なう際に、その外周をシート材21aで覆うことが可能である。粘着剤付きのシート材21aを使用すれば、被覆と固定を同時に行なうことができる。 That is, the sheet material 21a is extended via the adhesive portion 21c to the tip portion of any one of the transmission side flow path materials 3 used when forming the wound body R, or the tip portion to which any one is extended. It is possible to cover the outer periphery of the winding body R with the sheet material 21a when winding the winding body R. If the sheet material 21a with an adhesive is used, coating and fixing can be performed at the same time.
 その際、特に中心管5の側に延設された透過側流路材3を、外周側にも延設しておき、その先端部に接着部21cを介してシート材21aを接着しておくことが好ましい。この透過側流路材3は、膜リーフLの形成時に分離膜1と共に封止された構造となるため、供給液7がこの透過側流路材3を流動して、透過液8と混合することはない。 At that time, in particular, the permeation side flow path material 3 extended to the side of the central tube 5 is also extended to the outer peripheral side, and the sheet material 21a is adhered to the tip portion thereof via the adhesive portion 21c. Is preferable. Since the permeation side flow path material 3 has a structure sealed together with the separation film 1 when the membrane leaf L is formed, the supply liquid 7 flows through the permeation side flow path material 3 and mixes with the permeation liquid 8. There is no such thing.
 多孔質材21bによる被覆は、シート材21aの被覆工程とは独立して行なうことも可能であるが、例えば図5Bに示すように、シート材21aの先端部に接着部21dを介して多孔質材21bを接着しておき、シート材21aの被覆と連続した工程で、接着部21dを被覆することが可能である。被覆した多孔質材21bは、重なり部をシート材21aに接着することで、固着することができる。 The coating with the porous material 21b can be performed independently of the coating process of the sheet material 21a, but as shown in FIG. 5B, for example, the tip of the sheet material 21a is made porous via the adhesive portion 21d. It is possible to bond the material 21b and coat the bonded portion 21d in a process continuous with the coating of the sheet material 21a. The coated porous material 21b can be fixed by adhering the overlapping portion to the sheet material 21a.
 なお、外装材は、外装流路材21のみで構成することも可能であるが、固定用のテープなどを含んでいてもよい。但し、ガラス繊維等の補強繊維は含まないことが好ましい。 The exterior material may be composed of only the exterior flow path material 21, but may include a tape for fixing or the like. However, it is preferable not to include reinforcing fibers such as glass fibers.
 (外装材の別の実施形態)
 巻回体Rを形成する際に使用する透過側流路材3の何れかの先端部を延設することで、この延設部分を用いて、シート材21aを覆う多孔質材21bとすることができる。例えば図5Cに示すように、中心管5の側に延設された透過側流路材3を、多孔質材21bに相当する長さだけ外周側にも延設しておき、これを多孔質材21bとして被覆することができる。その際、多孔質材21bの部分にシート材21aを配置しておけば、シート材21aと多孔質材21bとを、巻回体Rの外周に同時に被覆することができる。この場合についても、透過側流路材3が膜リーフLの形成時に分離膜1と共に封止された構造となるため、供給液7がこの透過側流路材3を流動して、透過液8と混合することはない。
(Another embodiment of the exterior material)
By extending the tip of any of the transmission side flow path materials 3 used when forming the winding body R, this extending portion is used to form a porous material 21b that covers the sheet material 21a. Can be done. For example, as shown in FIG. 5C, the permeation side flow path material 3 extended to the side of the central tube 5 is extended to the outer peripheral side by a length corresponding to the porous material 21b, and this is made porous. It can be coated as the material 21b. At that time, if the sheet material 21a is arranged in the portion of the porous material 21b, the sheet material 21a and the porous material 21b can be simultaneously coated on the outer periphery of the wound body R. Also in this case, since the permeation side flow path material 3 has a structure sealed together with the separation film 1 when the membrane leaf L is formed, the supply liquid 7 flows through the permeation side flow path material 3 and the permeation liquid 8 is formed. Does not mix with.
 なお、図5Dに示すように、中心管5の側と外周側とに延設された透過側流路材3を巻回する際に、シート材21aと多孔質材21bとを積層しておき、これらを巻回体Rの外周に同時に被覆することも可能である。 As shown in FIG. 5D, the sheet material 21a and the porous material 21b are laminated when winding the permeation side flow path material 3 extending on the side of the central tube 5 and the outer peripheral side. It is also possible to simultaneously cover the outer periphery of the winding body R with these.
 更に、図8Aに示すように、シート材21aと多孔質材21bとシート材21aとを含む積層体で、外装流路材21を構成することができる。つまり、外装流路材21の最外層にシート材21aを設けてもよい。但し、多孔質材21bの方が一般にクッション性が高いため、圧力容器30の内面に外装流路材21を密着させる場合には、外装流路材21の最外層に多孔質材21bが設けられていることが好ましい。 Further, as shown in FIG. 8A, the exterior flow path material 21 can be formed of a laminate including the sheet material 21a, the porous material 21b, and the sheet material 21a. That is, the sheet material 21a may be provided on the outermost layer of the exterior flow path material 21. However, since the porous material 21b generally has a higher cushioning property, when the outer flow path material 21 is brought into close contact with the inner surface of the pressure vessel 30, the porous material 21b is provided on the outermost layer of the outer flow path material 21. Is preferable.
 一方、図8Bに示すように、多孔質材21bの代わりに、又は、多孔質材21bに加えて、外側及び/又は内側の面に凹凸を有する凹凸シート材21sを設けることも可能である。凹凸形状としては、溝形状、リブ形状、ドット形状、不規則模様、シボ加工などが挙げられる。凹凸シート材21sを設けることで表面の凹凸により流路を形成することができる。その際、凹凸の形状、幅、高さ、ピッチ、などにより圧力損失を調整することができる。 On the other hand, as shown in FIG. 8B, it is also possible to provide the concavo-convex sheet material 21s having irregularities on the outer and / or inner surfaces instead of the porous material 21b or in addition to the porous material 21b. Examples of the uneven shape include a groove shape, a rib shape, a dot shape, an irregular pattern, and grain processing. By providing the uneven sheet material 21s, a flow path can be formed by the unevenness of the surface. At that time, the pressure loss can be adjusted by the shape, width, height, pitch, etc. of the unevenness.
 凹凸シート材21sは、シートをエンボス加工したものを使用するのが好ましい。また、エンボスシートを複数層に巻回することで、所望の圧力損失に調整することも可能である。エンボスシートを使用することで、コスト的に有利になる他、ハンドリング性や巻回時の拘束力も好適になる。 As the uneven sheet material 21s, it is preferable to use an embossed sheet. It is also possible to adjust the desired pressure loss by winding the embossed sheet in a plurality of layers. By using the embossed sheet, not only the cost is advantageous, but also the handleability and the binding force at the time of winding are suitable.
 なお、図8Cに示す例は、凹凸シート材21sと多孔質材21bとを組み合わせた外装流路材21であり、本発明では種々の組合せが可能である。 The example shown in FIG. 8C is an exterior flow path material 21 in which the concave-convex sheet material 21s and the porous material 21b are combined, and various combinations are possible in the present invention.
 (供給側流路材)
 供給側流路材2は一般に、膜面に流体を満遍なく供給するための間隙を確保する役割を有する。このような供給側流路材2は、例えばネット、編み物、凹凸加工シートなどを用いることができ、最大厚さが0.1~3mm程度のものを適宜必要に応じて用いることができる。このような供給側流路材2では、圧力損失が低い方が好ましく、さらに適度な乱流効果を生じさせるものが好ましい。また、流路材は分離膜1の両面に設置するが、供給液側には供給側流路材2、透過液側には透過側流路材3として、異なる流路材を用いることが一般的である。供給側流路材2では目が粗く厚いネット状の流路材を用いる一方で、透過側流路材3では目の細かい織物や編物の流路材を用いることが好ましい。
(Supply side flow path material)
The supply-side flow path material 2 generally has a role of securing a gap for evenly supplying the fluid to the film surface. As such a supply-side flow path material 2, for example, a net, knitting, an uneven processing sheet, or the like can be used, and a material having a maximum thickness of about 0.1 to 3 mm can be appropriately used. In such a supply-side flow path material 2, it is preferable that the pressure loss is low, and it is preferable that the material 2 produces an appropriate turbulent flow effect. Further, although the flow path material is installed on both sides of the separation membrane 1, it is common to use different flow path materials as the supply side flow path material 2 on the supply liquid side and the permeation side flow path material 3 on the permeation liquid side. Is the target. It is preferable to use a net-like flow path material having a coarse and thick mesh in the supply side flow path material 2, while using a fine woven fabric or knitted flow path material in the transmission side flow path material 3.
 供給側流路材2は、海水淡水化や排水処理等の用途において、RO膜やNF膜を用いる場合に、前記の二つ折りにした複合半透膜の内面側に設けられる。供給側流路材2の構造は、一般に線状物を格子状に配列した網目構造のものを好ましく利用することができる。 The supply side flow path material 2 is provided on the inner surface side of the above-mentioned double-folded composite semipermeable membrane when an RO membrane or an NF membrane is used in applications such as seawater desalination and wastewater treatment. As the structure of the flow path material 2 on the supply side, generally, a network structure in which linear objects are arranged in a grid pattern can be preferably used.
 構成する材料としては特に限定されるものではないが、ポリエチレンやポリプロピレンなどが用いられる。これらの樹脂は殺菌剤や抗菌剤を含有していてもよい。この供給側流路材2の厚さは、一般に0.2~2.0mmであり、0.5~1.0mmが好ましい。厚さが厚すぎると膜エレメントに収容できる膜の量とともに透過量が減ってしまい、逆に薄すぎると汚染物質が付着しやすくなるため、透過性能の劣化が生じやすくなる。 The constituent material is not particularly limited, but polyethylene, polypropylene, etc. are used. These resins may contain a bactericidal agent or an antibacterial agent. The thickness of the supply-side flow path material 2 is generally 0.2 to 2.0 mm, preferably 0.5 to 1.0 mm. If the thickness is too thick, the amount of permeation decreases with the amount of membrane that can be accommodated in the membrane element, and conversely, if it is too thin, contaminants tend to adhere, so that the permeation performance tends to deteriorate.
 特に本発明では、0.6~1.0mmの供給側流路材2と組みわせることで、汚染物質が堆積しにくくなるとともに、バイオファウリングも生じにくくなるため、連続使用時にもFluxの低下を抑制することができる。 In particular, in the present invention, by combining with the supply side flow path material 2 having a diameter of 0.6 to 1.0 mm, contaminants are less likely to be deposited and biofouling is less likely to occur. The decrease can be suppressed.
 (中心管)
 中心管5は、管の周囲に開孔5aを有するものであれば良く、従来のものが何れも使用できる。一般に海水淡水化や排水処理等で用いる場合には、分離膜1を経た透過水が壁面の孔から中心管5中に侵入し、透過側流路を形成する。中心管5の長さは巻回体Rの軸方向長さより長いものが一般的だが、複数に分割するなど連結構造の中心管5を用いてもよい。中心管5を構成する材料としては特に限定されるものではないが、熱硬化性樹脂または熱可塑性樹脂が用いられる。
(Central canal)
The central canal 5 may be any as long as it has an opening 5a around the tube, and any conventional one can be used. Generally, when it is used for desalination of seawater, wastewater treatment, etc., the permeated water that has passed through the separation membrane 1 invades into the central canal 5 through the hole in the wall surface and forms a permeation side flow path. The length of the central tube 5 is generally longer than the axial length of the winding body R, but a central tube 5 having a connected structure such as being divided into a plurality of parts may be used. The material constituting the central tube 5 is not particularly limited, but a thermosetting resin or a thermoplastic resin is used.
 即ち、中心管5は、巻回体Rの下流側のみに延出する場合、巻回体Rの上流側及び下流側に延出する場合、又は巻回体Rの上流側のみに延出する場合の何れでもよい。但し、巻回体Rの下流側に、着脱式のアンチテレスコープ材25を備える場合には、巻回体Rの少なくとも下流側に中心管5が延出することが好ましい。 That is, the central tube 5 extends only to the downstream side of the winding body R, extends to the upstream and downstream sides of the winding body R, or extends only to the upstream side of the winding body R. Any of the cases may be used. However, when the detachable anti-telescope material 25 is provided on the downstream side of the winding body R, it is preferable that the central tube 5 extends at least on the downstream side of the winding body R.
 図1に示す膜エレメントEの例では、巻回体Rに対して中心管5は上流側と下流側に略同一の長さで突出しているが、図7Aに示すように、中心管5が巻回体Rの下流側のみに延出する場合は、従来構造で用いられる周辺部品を共用することができるため、より好ましい。 In the example of the membrane element E shown in FIG. 1, the central canal 5 projects to the upstream side and the downstream side with substantially the same length with respect to the winding body R, but as shown in FIG. 7A, the central canal 5 protrudes. When extending only to the downstream side of the winding body R, it is more preferable because peripheral parts used in the conventional structure can be shared.
 (透過側流路材)
 透過側流路材3は、海水淡水化や排水処理等の用途において、RO膜やNF膜を用いる場合に、図3に示すように、膜リーフLにおいて対向する分離膜1の間に介在するように設けられる。この透過側流路材には膜にかかる圧力を膜背面から支えるとともに、透過液の流路を確保することが求められる。
(Transmission side flow path material)
The permeation side flow path material 3 is interposed between the separation membranes 1 facing each other in the membrane leaf L as shown in FIG. 3 when the RO membrane or the NF membrane is used in applications such as seawater desalination and wastewater treatment. It is provided as follows. The permeation side flow path material is required to support the pressure applied to the membrane from the back surface of the membrane and to secure a flow path for the permeation liquid.
 本発明では、このような機能を確保するために、トリコット編物により透過側流路材が形成されていることが好ましく、編物形成後に樹脂補強又は融着処理されたトリコット編物であることがより好ましい。 In the present invention, in order to secure such a function, it is preferable that the permeation side flow path material is formed by the tricot knit, and it is more preferable that the tricot knit is resin-reinforced or fused after the knit is formed. ..
 透過側流路材の構成糸としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。なかでも、加工性と生産性の観点からポリエチレンテレフタレートが特に好ましく用いられる。 Examples of the constituent yarns of the permeation side flow path material include polyesters such as polyethylene terephthalate and polyethylene naphthalate, and polyolefins such as polyethylene and polypropylene. Of these, polyethylene terephthalate is particularly preferably used from the viewpoint of processability and productivity.
 編物形成後に樹脂補強を行なう場合、繊維中に樹脂を含浸して硬化させたり、繊維表面に樹脂を被覆して硬化させる方法などが挙げられる。補強に使用する樹脂としては、メラミン樹脂、エポキシ樹脂などが挙げられる。 When reinforcing the resin after forming the knit, there are methods such as impregnating the fiber with the resin and curing it, or coating the fiber surface with the resin and curing it. Examples of the resin used for reinforcement include melamine resin and epoxy resin.
 透過側流路材の構成糸は、モノフィラメントでもマルチフィラメントでもよいが、一定の太さの構成糸によって、トリコット編物が形成される。トリコット編物のなかでも、直線状に連続する溝の構造が明確なハーフ編みやダブルデンビー編みが好ましい。 The constituent yarn of the permeation side flow path material may be monofilament or multifilament, but a tricot knit is formed by the constituent yarn having a certain thickness. Among the tricot knits, half knits and double denby knits, which have a clear structure of linearly continuous grooves, are preferable.
 透過側流路材の厚みは、0.10~0.40mmが好ましく、0.15~0.35mmがより好ましく、0.20~0.30mmが更に好ましい。厚みが0.10mm以上であると、十分な流路が確保され、透過液の圧力損失を低減できる。また、厚みが0.40mm以下であると、膜エレメントにおける分離膜の有効膜面積が大きくなり、透過液の流量を増加させ易くなる。透過側流路材の構成糸は、上記の厚みのトリコット編物を形成する上で、0.1~0.15mmが好ましい。 The thickness of the permeation side flow path material is preferably 0.10 to 0.40 mm, more preferably 0.15 to 0.35 mm, and even more preferably 0.20 to 0.30 mm. When the thickness is 0.10 mm or more, a sufficient flow path is secured and the pressure loss of the permeated liquid can be reduced. Further, when the thickness is 0.40 mm or less, the effective membrane area of the separation membrane in the membrane element becomes large, and it becomes easy to increase the flow rate of the permeate. The constituent yarn of the permeation side flow path material is preferably 0.1 to 0.15 mm in order to form a tricot knit having the above thickness.
 本発明では、トリコット編物における直線状に連続する溝の幅が0.05~0.40mmであることが好ましく、0.10~0.28mmがより好ましい。溝の幅が0.05mm未満であると、透過液の圧力損失が大きくなりすぎる傾向があり、溝の幅が0.40mmを超えると、複合半透膜の変形による阻止率の低下が起こり易くなる場合がある。 In the present invention, the width of the linearly continuous grooves in the tricot knitted fabric is preferably 0.05 to 0.40 mm, more preferably 0.10 to 0.28 mm. If the width of the groove is less than 0.05 mm, the pressure loss of the permeate tends to be too large, and if the width of the groove exceeds 0.40 mm, the inhibition rate due to the deformation of the composite semipermeable membrane tends to decrease. May be.
 なお、トリコット編物における直線状に連続する溝の幅は、隣接するループ同士の最も間隔の広い部分と最も間隔の狭い部分との平均値を指すものとする。マイクロスコープ写真から、10組のループ対について上記の平均値を測定し、その10個の平均値を更に平均して、連続する溝の幅を求めることができる。 Note that the width of the linearly continuous grooves in the tricot knitted fabric refers to the average value between the widest part and the narrowest part of the adjacent loops. From the microscope photograph, the above average values can be measured for 10 pairs of loops, and the average values of the 10 loop pairs can be further averaged to obtain the width of continuous grooves.
 膜エレメントにおいて透過側流路材を配置する方向は、いずれでもよいが、直線状に連続する溝の方向が周方向に沿った方向で巻回されていることが好ましい。 The direction in which the permeation side flow path material is arranged in the membrane element may be any, but it is preferable that the direction of the linearly continuous groove is wound in the direction along the circumferential direction.
 (分離膜)
 分離膜1としては、各種の多孔質膜を使用することもできるが、多孔性支持体の表面に分離機能層を有する複合半透膜が好ましい。多孔性支持体としては、不織布層の片面にポリマー多孔質層を有するものが好ましい。分離膜、特に複合半透膜の厚さは70~160μm程度が好ましく、85~130μmがより好ましい。
(Separation membrane)
As the separation membrane 1, various porous membranes can be used, but a composite semipermeable membrane having a separation functional layer on the surface of the porous support is preferable. The porous support preferably has a polymer porous layer on one side of the nonwoven fabric layer. The thickness of the separation membrane, particularly the composite semipermeable membrane, is preferably about 70 to 160 μm, more preferably 85 to 130 μm.
 このような複合半透膜はその濾過性能や処理方法に応じてRO(逆浸透)膜、NF(ナノ濾過)膜、FO(正浸透)膜と呼ばれ、超純水製造や、海水淡水化、かん水の脱塩処理、排水の再利用処理などに用いることができる。 Such composite transpermeable membranes are called RO (reverse osmosis) membranes, NF (nanofiltration) membranes, and FO (forward osmosis) membranes depending on their filtration performance and treatment method. , Can be used for desalination treatment of brackish water, reuse treatment of wastewater, etc.
 分離機能層としては、ポリアミド系、セルロース系、ポリエーテル系、シリコン系などの分離機能層が挙げられるが、ポリアミド系の分離機能層を有するものが好ましい。ポリアミド系の分離機能層としては、一般に、視認できる孔のない均質膜であって、所望のイオン分離能を有する。この分離機能層としてはポリマー多孔質層から剥離しにくいポリアミド系薄膜であれば特に限定されるものではないが、例えば、多官能アミン成分と多官能酸ハライド成分とを多孔性支持膜上で界面重合させてなるポリアミド系分離機能層がよく知られている。 Examples of the separation functional layer include polyamide-based, cellulose-based, polyether-based, and silicon-based separation functional layers, but those having a polyamide-based separation functional layer are preferable. The polyamide-based separation functional layer is generally a homogeneous film having no visible pores and has a desired ion separation ability. The separation functional layer is not particularly limited as long as it is a polyamide-based thin film that is difficult to peel off from the polymer porous layer, but for example, a polyfunctional amine component and a polyfunctional acid halide component are interfaced on the porous support film. A polymerized polyamide-based separation functional layer is well known.
 前記ポリアミド系分離機能層をポリマー多孔質層の表面に形成する方法は特に制限されずにあらゆる公知の方法を用いることができる。例えば、界面重合法、相分離法、薄膜塗布法などの方法が挙げられるが、本発明では特に界面重合法が好ましく用いられる。界面重合法は例えば、ポリマー多孔質層上を多官能アミン成分含有アミン水溶液で被覆した後、このアミン水溶液被覆面に多官能酸ハライド成分を含有する有機溶液を接触させることで界面重合が生じ、スキン層を形成する方法である。 The method for forming the polyamide-based separation functional layer on the surface of the polymer porous layer is not particularly limited, and any known method can be used. For example, a method such as an interfacial polymerization method, a phase separation method, and a thin film coating method can be mentioned, but in the present invention, the interfacial polymerization method is particularly preferably used. In the interfacial polymerization method, for example, a polymer porous layer is coated with an aqueous amine component containing a polyfunctional amine component, and then an organic solution containing a polyfunctional acid halide component is brought into contact with the coated surface of the aqueous amine component to cause interfacial polymerization. A method of forming a skin layer.
 前記アミン水溶液に含まれる多官能アミン成分は、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族、及び脂環式の多官能アミンが挙げられる。前記芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。前記脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。前記脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。特に本発明では、逆浸透膜性能において高阻止率を求める場合には緻密性の高い分離機能層が得られるm-フェニレンジアミンを主成分とすることが好ましく、また、NF膜性能において高いFlux保持率を求める場合にはピペラジンを主成分とすることが好ましい。 The polyfunctional amine component contained in the aqueous amine solution is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional amines. Examples of the aromatic polyfunctional amine include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-. Examples thereof include diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisol, amidol, xylylenediamine and the like. Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, n-phenyl-ethylenediamine and the like. Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine and the like. Be done. These polyfunctional amines may be used alone or in combination of two or more. In particular, in the present invention, when a high inhibition rate is required in the reverse osmosis membrane performance, it is preferable to use m-phenylenediamine as a main component, which can obtain a highly dense separation functional layer, and a high Lux retention in the NF membrane performance. When determining the rate, it is preferable to use piperazine as the main component.
 前記有機溶液に含まれる多官能酸ハライド成分は、反応性カルボニル基を2個以上有する多官能酸ハライドであり、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。前記芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。前記脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。前記脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成することが好ましい。 The polyfunctional acid halide component contained in the organic solution is a polyfunctional acid halide having two or more reactive carbonyl groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional acid halides. Examples of the aromatic polyfunctional acid halide include trimethic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalenedicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, and chlorosulfonylbenzene. Examples thereof include dicarboxylic acid dichloride. Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentandicarboxylic acid dichloride, propanthricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentantricarboxylic acid trichloride, glutalyl halide, and hydrangea. Poil halide and the like can be mentioned. Examples of the alicyclic polyfunctional acid halide include cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydro. Examples thereof include furantetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, tetrahydrofurandicarboxylic acid dichloride and the like. These polyfunctional acid halides may be used alone or in combination of two or more. In order to obtain a skin layer with high salt blocking performance, it is preferable to use an aromatic polyfunctional acid halide. Further, it is preferable to use a trivalent or higher valent polyfunctional acid halide for at least a part of the polyfunctional acid halide component to form a crosslinked structure.
 前記多官能酸ハライドを含有させる有機溶媒としては、水に対する溶解度が低く、多孔性支持膜を劣化させることなく、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素である。 The organic solvent containing the polyfunctional acid halide is not particularly limited as long as it has low solubility in water and dissolves the polyfunctional acid halide component without deteriorating the porous support film. For example, cyclohexane. Saturated hydrocarbons such as heptane, octane and nonane, halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane and the like can be mentioned. It is preferably a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably 200 ° C. or lower.
 前記アミン水溶液や有機溶液には、各種性能や取り扱い性の向上を目的とした添加剤を加えてもよい。前記添加剤としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールや、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒及び、特開平8-224452号公報記載の溶解度パラメータが8~14(cal/cm1/2の化合物などが挙げられる。 Additives for the purpose of improving various performances and handleability may be added to the amine aqueous solution or the organic solution. Examples of the additive include polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrylic acid, polyhydric alcohols such as sorbitol and glycerin, and surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate and sodium laurylsulfate. , Basic compounds such as sodium hydroxide, trisodium phosphate, and triethylamine that remove hydrogen halide generated by polymerization, acylation catalysts, and solubility parameters described in JP-A-8-224452 (cal). / Cm 3 ) 1/2 compound and the like can be mentioned.
 前記分離機能層の露出表面には、各種ポリマー成分からなるコーティング層を設けてもよい。前記ポリマー成分は、分離機能層及び多孔性支持膜を溶解せず、また水処理操作時に溶出しないポリマーであれば特に限定されるものではなく、例えば、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、及びケン化ポリエチレン-酢酸ビニル共重合体などが挙げられる。これらのうち、ポリビニルアルコールを用いることが好ましく、特にケン化度が99%以上のポリビニルアルコールを用いるか、ケン化度90%以上のポリビニルアルコールを前記スキン層のポリアミド系樹脂と架橋させることで、水処理時に溶出しにくい構成とすることが好ましい。このようなコーティング層を設けることにより、膜表面の電荷状態が調整されるとともに親水性が付与されるため、汚染物質の付着を抑制することができ、さらに本発明との相乗効果によりFlux保持効果をより高めることができる。 A coating layer composed of various polymer components may be provided on the exposed surface of the separation function layer. The polymer component is not particularly limited as long as it is a polymer that does not dissolve the separation functional layer and the porous support film and does not elute during the water treatment operation. For example, polyvinyl alcohol, polyvinylpyrrolidone, hydroxypropyl cellulose, polyethylene. Glycol and saponified polyethylene-vinyl acetate copolymer and the like can be mentioned. Of these, polyvinyl alcohol is preferably used, and in particular, polyvinyl alcohol having a saponification degree of 99% or more is used, or polyvinyl alcohol having a saponification degree of 90% or more is crosslinked with the polyamide resin of the skin layer. It is preferable to have a structure that does not easily elute during water treatment. By providing such a coating layer, the charge state of the film surface is adjusted and hydrophilicity is imparted, so that the adhesion of contaminants can be suppressed, and the Lux holding effect is further achieved by the synergistic effect with the present invention. Can be further enhanced.
 本発明に用いられる不織布層としては、前記複合半透膜の分離性能および透過性能を保持しつつ、適度な機械強度を付与するものであれば特に限定されるものではなく、市販の不織布を用いることができる。この材料としては例えば、ポリオレフィン、ポリエステル、セルロースなどからなるものが用いられ、複数の素材を混合したものも使用することができる。特に成形性の点ではポリエステルを用いることが好ましい。また適宜、長繊維不織布や短繊維不織布を用いることができるが、ピンホール欠陥の原因となる微細な毛羽立ちや膜面の均一性の点から、長繊維不織布を好ましく用いることができる。 The non-woven fabric layer used in the present invention is not particularly limited as long as it imparts appropriate mechanical strength while maintaining the separation performance and permeation performance of the composite semipermeable membrane, and a commercially available non-woven fabric is used. be able to. As this material, for example, a material made of polyolefin, polyester, cellulose or the like is used, and a material obtained by mixing a plurality of materials can also be used. In particular, polyester is preferably used in terms of moldability. Further, a long-fiber nonwoven fabric or a short-fiber nonwoven fabric can be used as appropriate, but a long-fiber nonwoven fabric can be preferably used from the viewpoint of fine fluffing that causes pinhole defects and the uniformity of the film surface.
 前記ポリマー多孔質層としては、前記ポリアミド系分離機能層を形成しうるものであれば特に限定されないが、通常、0.01~0.4μm程度の孔径を有する微多孔層である。前記微多孔層の形成材料は、例えば、ポリスルホン、ポリエーテルスルホンに例示されるポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンなど種々のものをあげることができる。特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンを用いたポリマー多孔質層を形成することが好ましい。 The polymer porous layer is not particularly limited as long as it can form the polyamide-based separation functional layer, but is usually a microporous layer having a pore size of about 0.01 to 0.4 μm. Examples of the material for forming the microporous layer include polysulfone, polyaryletherketone exemplified for polyethersulfone, polyimide, polyvinylidene fluoride, and the like. In particular, it is preferable to form a polymer porous layer using polysulfone or polyaryletherketone from the viewpoint of chemical, mechanical and thermal stability.
 (アンチテレスコープ材)
 本発明では、図1に示すように、アンチテレスコープ材25を巻回体Rの下流側に設けることが好ましく、着脱式のアンチテレスコープ材25を設けることが好ましい。
(Anti-telescope material)
In the present invention, as shown in FIG. 1, it is preferable to provide the anti-telescope material 25 on the downstream side of the winding body R, and it is preferable to provide the removable anti-telescope material 25.
 アンチテレスコープ材25としては、巻回体Rの外周付近の下流側に配された外周側邪魔板29を少なくとも有することが好ましいが、図4に示すように、巻回体Rの外周付近の下流側に配された外周側邪魔板29と、巻回体Rの内周付近の下流側に配された内周側邪魔板27とを設けてあることがより好ましい。ここで、巻回体Rの内周付近とは、巻回体Rの外周と内周との距離を100%とした場合の内周から0~30%の範囲内の何れかの位置を指し、外周付近とは内周から70%以上の範囲内の何れかの位置を指す。 The anti-telescope material 25 preferably has at least an outer peripheral side obstruction plate 29 arranged on the downstream side near the outer periphery of the winding body R, but as shown in FIG. 4, near the outer periphery of the winding body R. It is more preferable to provide the outer peripheral side obstruction plate 29 arranged on the downstream side and the inner peripheral side obstruction plate 27 arranged on the downstream side near the inner circumference of the winding body R. Here, the vicinity of the inner circumference of the winding body R refers to any position within the range of 0 to 30% from the inner circumference when the distance between the outer circumference and the inner circumference of the winding body R is 100%. , Near the outer circumference refers to any position within a range of 70% or more from the inner circumference.
 なお、外周側邪魔板29の外径は、巻回体Rの外径より大きくてもよく、圧力容器30の内径に対して98~100.0%であることが好ましく、99~100.0%であることがより好ましく、100.0%であることが最も好ましい。このような外周側邪魔板29の外径とすることで、多孔質材21bの層内又は外側を流れる低濃度の濃縮液を、より効果的に混合・攪拌して次の段に供給することができる。 The outer diameter of the outer peripheral side baffle plate 29 may be larger than the outer diameter of the winding body R, and is preferably 98 to 100.0% with respect to the inner diameter of the pressure vessel 30, 99 to 100.0. % Is more preferable, and 100.0% is most preferable. By setting the outer diameter of the outer peripheral side baffle plate 29, the low-concentration concentrated liquid flowing inside or outside the layer of the porous material 21b can be more effectively mixed and stirred and supplied to the next stage. Can be done.
 本実施形態のアンチテレスコープ材25は、図4に示すように、環状部26と、そこから放射状に拡がるリブ28を有する例を示している。リブ28の本数は特に限定されないが、テレスコープを抑制しつつ十分な流路と強度を確保する観点から、4~20本が好ましく、8~16本がより好ましい。 As shown in FIG. 4, the anti-telescope material 25 of the present embodiment shows an example having an annular portion 26 and ribs 28 extending radially from the annular portion 26. The number of ribs 28 is not particularly limited, but 4 to 20 are preferable, and 8 to 16 are more preferable, from the viewpoint of ensuring sufficient flow path and strength while suppressing the telescope.
 アンチテレスコープ材25は、巻回体Rの下流側に伸びる中心管5に着脱自在に取付られていることが好ましい。このため、環状部26は中心管5が嵌入できる内周面を有している。リブ28は、その上流側の端面が、巻回体Rの下流側端面に当接することにより、巻回体Rがテレスコープ状に変形することを抑制することができる。 It is preferable that the anti-telescope material 25 is detachably attached to the central tube 5 extending to the downstream side of the winding body R. Therefore, the annular portion 26 has an inner peripheral surface into which the central canal 5 can be fitted. The rib 28 can prevent the winding body R from being deformed in a telescope shape by abutting the end surface on the upstream side of the rib 28 on the downstream end surface of the winding body R.
 アンチテレスコープ材25に、外周側邪魔板29と内周側邪魔板27とを設けることが好ましい理由について詳述する。 The reason why it is preferable to provide the outer peripheral side obstruction plate 29 and the inner peripheral side obstruction plate 27 on the anti-telescope material 25 will be described in detail.
 膜エレメントEから流出する濃縮液には、濃度の分布が存在している。濃度の不均一をもたらす理由は2つあり、1つはそれぞれの膜リーフLにおいて、中心管5に近いほどFluxが大きく、リーフエンドに近いほどFluxが小さいためであり、供給液7が膜エレメントE内の供給側流路を軸心方向A1に流れるにつれて、中心管5に近いほど供給液7の濃縮が進み、濃度が高くなる。もう1つは膜透過の生じない部分は濃縮されないため、膜透過されて濃度が濃くなる部分と比べると濃度は低いままで維持される。膜透過しない部分とは、分離膜1の折り目の保護のために折り目の内側に貼る保護テープの部分と、リーフエンド部分の接着剤が塗布された部分である。 There is a concentration distribution in the concentrate flowing out of the membrane element E. There are two reasons for causing non-uniformity of concentration, one is that in each membrane leaf L, the closer to the central canal 5 the larger the Lux, and the closer to the leaf end the smaller the Flux, and the feed solution 7 is the membrane element. As the supply-side flow path in E flows in the axial direction A1, the closer to the central tube 5, the more concentrated the supply liquid 7 becomes, and the higher the concentration becomes. The other is that the portion where the membrane permeation does not occur is not concentrated, so that the concentration remains low as compared with the portion where the concentration is increased by the membrane permeation. The non-penetrating portion is a portion of the protective tape to be attached to the inside of the crease to protect the crease of the separation film 1 and a portion to which the adhesive of the leaf end portion is applied.
 膜エレメントEから流出する濃縮液には、これらの濃度分布が存在するが、特に、後者に相当する部分の低濃度部分は、膜モジュール全体でのろ過効率を議論する上では検討の余地がある。後者に相当するのは膜の折り目部分とリーフエンドに相当する部分であり、膜エレメントEの出口断面で言えば、中心管5に近い部分と、反対の外周に近い部分である。これらの部分から流出する濃縮液9はそれ以外の部分と比較すると濃度が低いが、そのままの分布状態で次段の膜エレメントEに流入すると、前段と同じく中央テープ上とリーフエンドを流れる可能性が高い。濃度が低いということは浸透圧が低いということであり、膜面を流せば高いFluxを期待できる供給液7であるにもかかわらず膜ろ過しない部分を流すのは効率的ではない。 These concentration distributions exist in the concentrated liquid flowing out from the membrane element E, but in particular, the low-concentration portion corresponding to the latter has room for consideration in discussing the filtration efficiency of the entire membrane module. .. The latter corresponds to the crease portion of the membrane and the portion corresponding to the leaf end, and in terms of the exit cross section of the membrane element E, it is a portion close to the central canal 5 and a portion close to the opposite outer periphery. The concentration of the concentrate 9 flowing out from these parts is lower than that in the other parts, but if it flows into the membrane element E in the next stage in the same distribution state, it may flow on the center tape and the leaf end as in the previous stage. Is high. A low concentration means that the osmotic pressure is low, and it is not efficient to flow a portion that is not filtered by the membrane even though the supply liquid 7 is expected to have a high Lux if the membrane surface is flushed.
 その対策として、濃度が低い当該2か所の部分のアンチテレスコープ材25に邪魔板構造を設け、供給液7が迂回して流れるようにする。邪魔板を迂回する際の後流に生じる渦により低濃度部と高濃度部が攪拌混合され、膜モジュール全体としてろ過性能を向上させることができる。 As a countermeasure, a baffle plate structure is provided on the anti-telescope material 25 in the two places where the concentration is low so that the supply liquid 7 can detour and flow. The low-concentration part and the high-concentration part are agitated and mixed by the vortex generated in the wake when bypassing the baffle plate, and the filtration performance of the membrane module as a whole can be improved.
 なお、多孔質材21bの層を流れる供給液7も膜ろ過されないので、濃度は低いままで維持されている。これについても外周側の邪魔板構造で流れを迂回させることで、高濃度の部分と攪拌混合することができる。 Since the supply liquid 7 flowing through the layer of the porous material 21b is also not membrane-filtered, the concentration is maintained at a low level. This can also be agitated and mixed with the high-concentration portion by bypassing the flow with the baffle plate structure on the outer peripheral side.
 (アンチテレスコープ材の別の実施形態)
 先の実施形態では、環状部26と、そこから放射状に拡がるリブ28を有する例を示したが、図6Aに示すように、リブ28の内周側が中心管5に当接する等して環状部26を省略することが可能である。
(Another Embodiment of Anti-Telescope Material)
In the previous embodiment, an example having the annular portion 26 and the rib 28 extending radially from the annular portion 26 has been shown, but as shown in FIG. 6A, the inner peripheral side of the rib 28 abuts on the central canal 5 and the like. It is possible to omit 26.
 また、図6Bに示すように、巻回体Rの外周付近の下流側に配された外周側邪魔板29と、巻回体Rの内周付近の下流側に配された内周側邪魔板27とを連続した板状部で形成して、板状部に複数の開口を設けてもよい。 Further, as shown in FIG. 6B, the outer peripheral side obstruction plate 29 arranged on the downstream side near the outer peripheral side of the winding body R and the inner peripheral side obstruction plate arranged on the downstream side near the inner circumference of the winding body R. 27 may be formed by a continuous plate-shaped portion, and a plurality of openings may be provided in the plate-shaped portion.
 また、図6Cに示すように、内周側邪魔板27を省略したり、外周側邪魔板29の外周にシール材(例えばOリング)を設けて、圧力容器30の内面にアンチテレスコープ材25の外周が密着するようにしてもよい。 Further, as shown in FIG. 6C, the inner peripheral side obstruction plate 27 is omitted, or a sealing material (for example, an O-ring) is provided on the outer peripheral side of the outer peripheral side obstruction plate 29, and the anti-telescope material 25 is provided on the inner surface of the pressure vessel 30. The outer periphery of the surface may be brought into close contact with the surface.
 なお、インターコネクタ35にアンチテレスコープ材25としての機能を持たせるべく、インターコネクタ35にアンチテレスコープ材25とを一体化してもよい。例えば、図7Bに示すように、環状部26を設ける代わりにインターコネクタ35の周囲に内周側邪魔板27を設け、リブ28の内周端が中心管5の外周付近に配置され、リブ28を介して外周側邪魔板29を設けた構造としてもよい。 The interconnector 35 may be integrated with the anti-telescope material 25 so that the interconnector 35 has a function as the anti-telescope material 25. For example, as shown in FIG. 7B, instead of providing the annular portion 26, an inner peripheral side obstruction plate 27 is provided around the interconnector 35, the inner peripheral end of the rib 28 is arranged near the outer periphery of the central tube 5, and the rib 28 is provided. The structure may be such that the outer peripheral side baffle plate 29 is provided via the above.
 (スパイラル型膜エレメントの別の実施形態)
 以上の説明に於いては、本発明の最も好適な実施態様について説明した。しかし、本発明は当該実施態様に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一の範囲で種々の変更が可能である。
(Another Embodiment of Spiral Membrane Elements)
In the above description, the most preferable embodiment of the present invention has been described. However, the present invention is not limited to the embodiment, and various modifications can be made within substantially the same range as the technical idea described in the claims of the present invention.
 即ち、前記の実施態様に於いては、図2A~図2Cに示すように、供給側流路材2を挟みこむように二つ折りにした分離膜1の上に、透過側流路材3を重ねて、接着剤4,6を塗布する例で説明した。しかし、本発明では、透過側流路材3の上に二つ折りにした分離膜1を重ねその上に接着剤4,6を塗布することも可能である。また、二つ折りにした分離膜1の代わりに、2枚の分離膜1を用いて供給側流路材2を挟み、巻回開始側にも封止部を設けるようにしてもよい。更に、連続した分離膜1を用いて、外周側封止部12を不要にしてもよい。 That is, in the above embodiment, as shown in FIGS. 2A to 2C, the permeation side flow path material 3 is superposed on the separation membrane 1 folded in half so as to sandwich the supply side flow path material 2. The example of applying the adhesives 4 and 6 has been described. However, in the present invention, it is also possible to superimpose the separation membrane 1 folded in half on the permeation side flow path material 3 and apply the adhesives 4 and 6 on it. Further, instead of the separation membrane 1 folded in half, two separation membranes 1 may be used to sandwich the supply side flow path material 2 and a sealing portion may be provided on the winding start side as well. Further, the continuous separation membrane 1 may be used to eliminate the need for the outer peripheral side sealing portion 12.
 (スパイラル型膜モジュール)
 本発明のスパイラル型膜モジュールは、図1に示すように、以上のようなスパイラル型膜エレメントEと、これを収容する圧力容器30とを含み、外装材の外周を基準とする外径が、圧力容器30の内径に対して99~100%であることを特徴とする。圧力容器30としては従来より膜エレメントEを収容するために使用されていものが、何れも使用できる。
(Spiral type membrane module)
As shown in FIG. 1, the spiral type membrane module of the present invention includes the spiral type membrane element E as described above and the pressure vessel 30 for accommodating the spiral type membrane element E, and has an outer diameter based on the outer periphery of the exterior material. It is characterized in that it is 99 to 100% with respect to the inner diameter of the pressure vessel 30. As the pressure vessel 30, any of those conventionally used for accommodating the membrane element E can be used.
 図示した例では、圧力容器30が、外筒部材31と、下流側の端板部材32と、上流側の端板部材34とを備えており、保持リング33により、端板部材32,34が外筒部材31に液密に保持されている。 In the illustrated example, the pressure vessel 30 includes an outer cylinder member 31, a downstream end plate member 32, and an upstream end plate member 34, and the holding ring 33 allows the end plate members 32, 34 to be formed. It is liquidtightly held by the outer cylinder member 31.
 また、膜エレメントE同士がインターコネクタ35で連結されており、最上流側の膜エレメントEの中心管5の上流側は、キャップ37によって閉塞されている。最下流側の膜エレメントEの中心管5の下流側はアダプタ36により、下流側の端板部材32の開口に連結され、透過液8が排出可能な構造になっている。下流側の端板部材32には、濃縮液9が排出可能な開口が更に設けられ、上流側の端板部材34には供給液7を供給可能な開口が設けられている。 Further, the membrane elements E are connected to each other by an interconnector 35, and the upstream side of the central tube 5 of the membrane element E on the most upstream side is closed by a cap 37. The downstream side of the central tube 5 of the membrane element E on the most downstream side is connected to the opening of the end plate member 32 on the downstream side by an adapter 36, so that the permeate 8 can be discharged. The downstream end plate member 32 is further provided with an opening capable of discharging the concentrated liquid 9, and the upstream end plate member 34 is provided with an opening capable of supplying the supply liquid 7.
 図示した例では、図4に示すアンチテレスコープ材25が設けられており、巻回体Rの外周付近の下流側に配された外周側邪魔板29は、その外周が圧力容器30の内面に接する形状となっている。これにより、外周側邪魔板29と圧力容器30の内面との隙間を流れる濃縮液9を極力少なくして、攪拌・混合効果をより高めることができる。 In the illustrated example, the anti-telescope material 25 shown in FIG. 4 is provided, and the outer peripheral side obstruction plate 29 arranged on the downstream side near the outer peripheral surface of the winding body R has the outer peripheral surface on the inner surface of the pressure vessel 30. It is in contact with each other. As a result, the amount of the concentrated liquid 9 flowing through the gap between the outer peripheral side obstruction plate 29 and the inner surface of the pressure vessel 30 can be reduced as much as possible, and the stirring / mixing effect can be further enhanced.
 スパイラル型膜エレメントEの各部材の材料、構造、製法、アンチテレスコープ材25などについては、前述の通りである。 The material, structure, manufacturing method, anti-telescope material 25, etc. of each member of the spiral type film element E are as described above.
 本発明によれば、使用済みの膜エレメントの廃棄を効率的に進めることができる。膜エレメントの外装にガラス繊維が必要ないので、焼却しても焼却灰にガラスが残ることはなく、焼却灰の処理が容易になる。 According to the present invention, it is possible to efficiently dispose of the used membrane element. Since no glass fiber is required for the exterior of the film element, no glass remains in the incinerated ash even when incinerated, which facilitates the treatment of the incinerated ash.
 使用済み膜エレメントをサーマルリサイクルの材料として利用する場合には、RPF(refuse paper and plastic fuel)に加工することができ、廃エレメントを使用して製造したRPFを製紙工場でも好適に用いることができる。RPFを製造する際には、破砕時の機械の摩耗が少なく、破砕機へのダメージが少ない。 When the used film element is used as a material for thermal recycling, it can be processed into RPF (refuse paper and plastic fuel), and the RPF manufactured by using the waste element can be suitably used in a paper mill. .. When manufacturing an RPF, there is less mechanical wear during crushing and less damage to the crusher.
 アンチテレスコープ材を脱着可能とする場合、繰り返し使用することが可能になり、下流側のみに設ける構成のため、使用数を削減できる。Uパッキンを省略できる構成のため、Uパッキンのコストを削減できる。巻回体の外径と軸方向長さを拡大できるため、膜エレメントあたりの膜面積を大きくすることができ、処理液量を向上させることができる。 If the anti-telescope material is removable, it can be used repeatedly, and the number of uses can be reduced because it is installed only on the downstream side. Since the U packing can be omitted, the cost of the U packing can be reduced. Since the outer diameter and the axial length of the winding body can be expanded, the membrane area per membrane element can be increased, and the amount of the treatment liquid can be improved.
1   :分離膜
2   :供給側流路材
3   :透過側流路材
5   :中心管
7   :供給液
8   :透過液
9   :濃縮液
21  :外装流路材
21a :シート材
21b :多孔質材
21s :凹凸シート材
25  :アンチテレスコープ材
27  :内周側邪魔板
29  :外周側邪魔板
30  :圧力容器
A1  :軸心方向
E   :スパイラル型膜エレメント
R   :巻回体
 
1: Separation film 2: Supply side flow path material 3: Permeation side flow path material 5: Central tube 7: Supply liquid 8: Permeation liquid 9: Concentrate liquid 21: Exterior flow path material 21a: Sheet material 21b: Porous material 21s : Concavo-convex sheet material 25: Anti-telescope material 27: Inner peripheral side obstruction plate 29: Outer peripheral side obstruction plate 30: Pressure vessel A1: Axial center direction E: Spiral type film element R: Winding body

Claims (7)

  1.  有孔の中心管と、その中心管に巻回され分離膜を含む巻回体と、その巻回体の外周に設けられた外装材と、を備えるスパイラル型膜エレメントであって、
     前記外装材は、前記巻回体の外周を覆って供給液の流入を遮断しつつ前記巻回体の外部に流路を形成する外装流路材を含むスパイラル型膜エレメント。
    A spiral membrane element comprising a perforated central tube, a winding body wound around the central tube and containing a separation membrane, and an exterior material provided on the outer periphery of the winding body.
    The exterior material is a spiral type membrane element including an exterior flow path material that covers the outer periphery of the winding body to block the inflow of supply liquid and forms a flow path outside the winding body.
  2.  前記外装流路材は、前記巻回体の外周を覆うシート材と、そのシート材を覆う多孔質材とを含む請求項1記載のスパイラル型膜エレメント。 The spiral type membrane element according to claim 1, wherein the exterior flow path material includes a sheet material that covers the outer periphery of the winding body and a porous material that covers the sheet material.
  3.  圧力容器に収容して使用された際に、前記外装材の外周を基準とする外径が、前記圧力容器の内径に対して99~100%である請求項1又は2記載のスパイラル型膜エレメント。 The spiral type membrane element according to claim 1 or 2, wherein when used in a pressure vessel, the outer diameter with respect to the outer circumference of the exterior material is 99 to 100% with respect to the inner diameter of the pressure vessel. ..
  4.  前記巻回体の下流側に、着脱式のアンチテレスコープ材を備える請求項1~3いずれか1項に記載のスパイラル型膜エレメント。 The spiral type membrane element according to any one of claims 1 to 3, wherein a removable anti-telescope material is provided on the downstream side of the winding body.
  5.  前記アンチテレスコープ材は、前記巻回体の外周付近の下流側に配された外周側邪魔板と、前記巻回体の内周付近の下流側に配された内周側邪魔板とを設けてある請求項4に記載のスパイラル型膜エレメント。 The anti-telescope material is provided with an outer peripheral side obstruction plate arranged on the downstream side near the outer periphery of the winding body and an inner peripheral side obstruction plate arranged on the downstream side near the inner circumference of the winding body. The spiral type membrane element according to claim 4.
  6.  前記アンチテレスコープ材は、前記巻回体の下流側に伸びる前記中心管に取付られている請求項4又は5に記載のスパイラル型膜エレメント。 The spiral type membrane element according to claim 4 or 5, wherein the anti-telescope material is attached to the central tube extending to the downstream side of the winding body.
  7.  請求項1~6いずれか1項に記載のスパイラル型膜エレメントと、前記スパイラル型膜エレメントを収容する圧力容器とを含み、
     前記外装材の外周を基準とする外径が、前記圧力容器の内径に対して99~100%であるスパイラル型膜モジュール。
    The spiral type membrane element according to any one of claims 1 to 6 and a pressure vessel for accommodating the spiral type membrane element are included.
    A spiral type membrane module having an outer diameter based on the outer circumference of the exterior material, which is 99 to 100% of the inner diameter of the pressure vessel.
PCT/JP2021/039458 2020-11-25 2021-10-26 Spiral-type membrane element and spiral-type membrane module WO2022113613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180031711.3A CN115461135A (en) 2020-11-25 2021-10-26 Spiral membrane element and spiral membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-194950 2020-11-25
JP2020194950 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022113613A1 true WO2022113613A1 (en) 2022-06-02

Family

ID=81755539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039458 WO2022113613A1 (en) 2020-11-25 2021-10-26 Spiral-type membrane element and spiral-type membrane module

Country Status (3)

Country Link
CN (1) CN115461135A (en)
TW (1) TWI793832B (en)
WO (1) WO2022113613A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140803U (en) * 1981-02-23 1982-09-03
JPH05192542A (en) * 1991-08-23 1993-08-03 Desalination Syst Inc Spirally wound semipermeable membrane cartridge, method for its production and one piece formed type separating device
JP2007268524A (en) * 2006-03-09 2007-10-18 Nitto Denko Corp Spiral membrane element and method for producing the same
JP2010532256A (en) * 2007-06-29 2010-10-07 フリーズランド ブランズ ビー.ブイ. Swirl filter assembly
JP2014079754A (en) * 2012-09-28 2014-05-08 Fujifilm Corp Separation module, manufacturing method of separation module, tube body and winding displacement prevention member
JP2019205954A (en) * 2018-05-28 2019-12-05 東レ株式会社 Separation membrane element and operation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384341B (en) * 2006-03-09 2012-10-31 日东电工株式会社 Spiral membrane element and method for producing the same
US9522363B2 (en) * 2011-10-19 2016-12-20 General Electric Company Material efficiency and fabrication of membrane elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140803U (en) * 1981-02-23 1982-09-03
JPH05192542A (en) * 1991-08-23 1993-08-03 Desalination Syst Inc Spirally wound semipermeable membrane cartridge, method for its production and one piece formed type separating device
JP2007268524A (en) * 2006-03-09 2007-10-18 Nitto Denko Corp Spiral membrane element and method for producing the same
JP2010532256A (en) * 2007-06-29 2010-10-07 フリーズランド ブランズ ビー.ブイ. Swirl filter assembly
JP2014079754A (en) * 2012-09-28 2014-05-08 Fujifilm Corp Separation module, manufacturing method of separation module, tube body and winding displacement prevention member
JP2019205954A (en) * 2018-05-28 2019-12-05 東レ株式会社 Separation membrane element and operation method thereof

Also Published As

Publication number Publication date
CN115461135A (en) 2022-12-09
TWI793832B (en) 2023-02-21
TW202224760A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US10987632B2 (en) Spiral membrane element
KR102277619B1 (en) Composite semi-permeable membrane
WO2013005826A1 (en) Separation membrane, separation membrane element, and method for producing separation membrane
CN106687201B (en) Spiral membrane element
JP6522185B2 (en) Composite semipermeable membrane
US10974200B2 (en) Spiral membrane element
WO2022113613A1 (en) Spiral-type membrane element and spiral-type membrane module
WO2022137991A1 (en) Spiral membrane element
JP2022096776A (en) Spiral type membrane element and cleaning method of the same
JP2019025419A (en) Separation membrane element and vessel
JP2023183524A (en) spiral membrane element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP