WO2022113415A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2022113415A1
WO2022113415A1 PCT/JP2021/025411 JP2021025411W WO2022113415A1 WO 2022113415 A1 WO2022113415 A1 WO 2022113415A1 JP 2021025411 W JP2021025411 W JP 2021025411W WO 2022113415 A1 WO2022113415 A1 WO 2022113415A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer film
easily peelable
layer
inorganic substrate
Prior art date
Application number
PCT/JP2021/025411
Other languages
French (fr)
Japanese (ja)
Inventor
桂也 ▲徳▼田
哲雄 奥山
直樹 渡辺
正幸 横山
治美 米虫
伝一朗 水口
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022536542A priority Critical patent/JPWO2022113415A1/ja
Publication of WO2022113415A1 publication Critical patent/WO2022113415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides

Definitions

  • the present invention relates to a laminated body.
  • the laminated body is often exposed to a high temperature.
  • a process in a temperature range of about 200 ° C. to 600 ° C. is required.
  • a temperature of about 200 to 300 ° C. may be applied to the film, and further, in order to heat and dehydrogenate the amorphous silicon to obtain low temperature polysilicon, the temperature is about 450 ° C. to 600 ° C. Heating may be required.
  • the polymer film constituting the laminated body is required to have heat resistance, but as a practical matter, the polymer film that can withstand practical use in such a high temperature range is limited.
  • Adhesive it is generally conceivable to use an adhesive or an adhesive for bonding the polymer film to the support, but at that time, the bonding surface between the polymer film and the support (that is, the adhesive for bonding) Adhesive) is also required to have heat resistance.
  • ordinary adhesives and adhesives for bonding do not have sufficient heat resistance, bonding with an adhesive or adhesive cannot be applied when the formation temperature of the functional element is high.
  • the inorganic substrate is made of polyimide before or during device formation by interposing a layer containing a silane coupling agent (hereinafter, also referred to as a silane coupling agent layer) between the inorganic substrate and the polyimide film.
  • a silane coupling agent layer a layer containing a silane coupling agent (hereinafter, also referred to as a silane coupling agent layer) between the inorganic substrate and the polyimide film.
  • the silane coupling agent physically or chemically intervenes between the inorganic substrate and the polyimide film to enhance the initial adhesive force between the two. Further, by using the silane coupling agent, it is suppressed that the adhesive force between the two is increased by the heat at the time of forming the device.
  • the present inventors may obtain a silane coupling agent layer (inorganic substrate) depending on the type of the polymer film. We have found a problem that the peelability of silane may not be sufficient.
  • the present inventors conducted further diligent research. As a result, if an easily peelable layer having a specific composition is provided between the polymer film and the silane coupling agent layer, surprisingly, regardless of the type of the polymer film, it is easy to easily perform after device formation. It has been found that the inorganic substrate can be peeled off from the polymer film. Further, if the easily peelable layer itself having a specific composition is used as a film for forming a device, the inorganic substrate can be easily peeled off from the easily peelable layer (film for forming a device) after the device is formed. I found. From the above, the present invention has been completed.
  • the present invention provides the following. (1) An inorganic substrate, a silane coupling agent layer, and an easily peelable layer are provided in this order.
  • the easily peelable layer is a laminate characterized by having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide.
  • the inorganic substrate can be easily attached to the easily peelable layer (device) after the device is formed. It can be peeled off from the forming film). Further, when the heat-resistant polymer film is further provided on the easily peelable layer, the heat-resistant polymer film and the silane coupling agent layer have the easily peelable layer, so that the heat resistance is high. Regardless of the type of the molecular film (film for forming the device), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed. This is clear from the results of the examples.
  • the easily peelable layer has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, so that the structural unit is highly oriented when it is made into a sheet, and the peeling is performed. It is speculated that cleavage is more likely to occur.
  • the 90 ° peel strength between the easily peelable layer and the inorganic substrate after heating at 450 ° C. for 1 hour is preferably 0.3 N / cm or less.
  • the inorganic substrate is easily peeled from the easy peel layer after the device is formed on the easy peel layer.
  • the 90 ° initial peel strength between the easily peelable layer and the inorganic substrate is 0.03 N / cm or more.
  • the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the easy peel layer from peeling from the inorganic substrate before or during the formation of the device on the easy peel layer.
  • the easily peelable layer is present between the heat-resistant polymer film and the silane coupling agent layer. Therefore, the heat-resistant polymer film (for device formation) is formed. Regardless of the type of film), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed.
  • the 90 ° peel strength between the heat-resistant polymer film and the inorganic substrate after heating at 450 ° C. for 1 hour is preferably 0.3 N / cm or less.
  • the 90 ° peel strength is 0.3 N / cm or less, the inorganic substrate and the heat-resistant polymer film are easily peeled off after the device is formed.
  • the 90 ° initial peel strength between the heat-resistant polymer film and the inorganic substrate is preferably 0.03 N / cm or more.
  • the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the heat-resistant polymer film from peeling from the inorganic substrate before or during device formation.
  • the present invention it is possible to provide a laminate capable of easily peeling an inorganic substrate from a film for forming a device after forming the device.
  • the laminated body according to this embodiment is An inorganic substrate, a silane coupling agent layer, and an easily peelable layer are provided in this order.
  • the easily peelable layer has a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide.
  • the laminate has an easily peelable layer on the silane coupling agent layer
  • the easily peelable layer itself is used as a film for forming a device
  • the inorganic substrate can be easily peeled off (device formation) after the device is formed. It is possible to peel off from the film).
  • the heat-resistant polymer film is further provided on the easily peelable layer
  • the heat-resistant polymer film and the silane coupling agent layer have the easily peelable layer, so that the heat resistance is high.
  • the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed.
  • the 90 ° peel strength between the easily peelable layer and the inorganic substrate after heating at 450 ° C. for 1 hour is preferably 0.3 N / cm or less, and more preferably 0.29 N / cm. Below, it is more preferably 0.28 N / cm or less.
  • the 90 ° peel strength is preferably 0.03 N / cm or more, more preferably 0.05 N / cm or more, and further preferably 0.07 N / cm or more. When the 90 ° peel strength is 0.3 N / cm or less, the inorganic substrate and the easily peelable layer are easily peeled off after the device is formed.
  • the 90 ° peel strength is such that a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the easy peel layer, and conditions for forming a sheet (particularly). , Imidization conditions).
  • the measurement conditions for the 90 ° peel strength are according to the method described in the examples.
  • the 90 ° initial peel strength between the easily peelable layer and the inorganic substrate of the laminated body is preferably 0.03 N / cm or more, more preferably 0.05 N / cm or more, still more preferably 0.07 N. / Cm or more.
  • the 90 ° initial peel strength is preferably 0.3 N / cm or less, more preferably 0.29 N / cm or less, and further preferably 0.28 N / cm or less.
  • the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the easy peel layer from peeling from the inorganic substrate before or during device formation. Further, when the 90 ° initial peel strength is 0.3 N / cm or less, the inorganic substrate and the easily peelable layer are easily peeled off after the device is formed.
  • the 90 ° initial peel strength is determined by adopting a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide as the structure of the easy peel layer, and conditions for forming a sheet (the conditions for forming a sheet). In particular, it can be controlled by the imidization condition).
  • the measurement conditions for the 90 ° initial peel strength are the same as the measurement conditions for the 90 ° peel strength.
  • the 90 ° initial peel strength refers to the 90 ° peel strength between the inorganic substrate and the easy peeling layer after the laminated body is heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere.
  • the laminated body further includes a heat-resistant polymer film on the easily peelable layer.
  • the easily peelable layer is present between the heat-resistant polymer film and the silane coupling agent layer. Therefore, the heat-resistant polymer film (for device formation) is formed. Regardless of the type of film), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed.
  • the 90 ° peel strength between the heat-resistant polymer film and the inorganic substrate after heating at 450 ° C. for 1 hour is 0.3 N / cm or less. , More preferably 0.29 N / cm or less, still more preferably 0.28 N / cm or less.
  • the 90 ° peel strength is preferably 0.03 N / cm or more, more preferably 0.05 N / cm or more, and further preferably 0.07 N / cm or more.
  • the 90 ° peel strength is such that a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the easy peel layer, and conditions for forming a sheet (particularly). , Imidization conditions).
  • the measurement conditions for the 90 ° peel strength are according to the method described in the examples.
  • the laminate preferably has a 90 ° initial peel strength between the heat-resistant polymer film and the inorganic substrate of 0.03 N / cm or more, more preferably 0.05 N / cm. It is cm or more, more preferably 0.07 N / cm or more.
  • the 90 ° initial peel strength is preferably 0.3 N / cm or less, more preferably 0.29 N / cm or less, and further preferably 0.28 N / cm or less.
  • the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the heat-resistant polymer film from peeling from the inorganic substrate before or during device formation.
  • the 90 ° initial peel strength is determined by adopting a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide as the structure of the easy peel layer, and conditions for forming a sheet (the conditions for forming a sheet).
  • the measurement conditions for the 90 ° initial peel strength are the same as the measurement conditions for the 90 ° peel strength.
  • the 90 ° initial peel strength refers to the 90 ° peel strength between the inorganic substrate and the heat-resistant polymer film after the laminated body is heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere.
  • the easily peelable layer is a polyimide film having a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • a polyimide film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • a polyamic acid polyimide precursor
  • precursor film polyamic acid film
  • the green film is heat-treated at high temperature to perform a dehydration ring closure reaction on or in a state of being peeled off from the support for producing a polyimide film. It can be obtained by.
  • the green film refers to a polyamic acid film containing a solvent and having self-supporting properties.
  • the solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and contains, for example, 1 to 50% by mass of a solvent. It can also be obtained by treating a polyimide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
  • diaminobenzanilide is used as the diamines for obtaining the easily peelable layer.
  • diaminobenzanilide 4,4'-diaminobenzanilide (hereinafter, also referred to as DABAN) is preferable.
  • the content of the diaminobenzanilide is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass when the total diamine component is 100% by mass. % Or more, particularly preferably 100% by mass.
  • the diamines other than the diaminobenzanilide are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used. More preferably, diamines used in the heat-resistant polymer film described later can be used.
  • biphenyltetracarboxylic acid dianhydride is used as the tetracarboxylic acids for obtaining the easily peelable layer.
  • the biphenyltetracarboxylic acid dianhydride 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, also referred to as BPDA) is preferable. More preferably, tetracarboxylic acids used in the heat-resistant polymer film described later can be used.
  • the content of the biphenyltetracarboxylic acid dianhydride is preferably 80% by mass or more, more preferably 90% by mass or more, when the total tetracarboxylic acid component is 100% by mass. , More preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the tetracarboxylic acids other than the biphenyltetracarboxylic acid dianhydride are not particularly limited, and aromatic tetracarboxylic acids (including the acid anhydride thereof) and aliphatic tetracarboxylic acids (the acid anhydride thereof) usually used for polyimide synthesis are not particularly limited. (Including the substance), alicyclic tetracarboxylic acids (including the acid anhydride thereof) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good.
  • the easily peelable layer uses diaminobenzanilide as the diamines for obtaining the easily peelable layer and biphenyltetracarboxylic acid dianhydride as the tetracarboxylic acids
  • the easily peelable layer is biphenyltetra. It will have a structural unit derived from carboxylic acid dianhydride and diaminobenzanilide.
  • the easily peelable layer preferably has a structural unit derived from BPDA and DABAN.
  • the total structural units contained in the easily peelable layer are 100% by mass
  • the total of the structural units derived from BPDA and DABAN is preferably 80% by mass or more, more preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the easily peelable layer may contain a composition other than BPDA and polyimide having a structural unit derived from DABAN.
  • the content of the polyimide (BPDA and the polyimide having a structural unit derived from DABAN) contained in the easily peelable layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further. It is preferably 95% by mass or more, and may be 100% by mass.
  • the composition other than BPDA and polyimide having a structural unit derived from DABAN is not particularly limited as long as it does not contradict the gist of the present invention.
  • the easily peelable layer preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and even more preferably 400 ° C. or higher. When the melting point is 250 ° C. or higher, the heat resistance is more excellent. Further, the easily peelable layer preferably has a glass transition temperature of 200 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 380 ° C. or higher. When the glass transition temperature is 200 ° C. or higher, the heat resistance is more excellent. In the present specification, the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it is determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
  • DSC differential thermal analysis
  • the easily peelable layer is a polyamic acid (polyimide precursor) solution obtained by reacting biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent. Is applied to a support for producing a polyimide film and dried to obtain a green film (also referred to as “polyimide acid film”), and the green film is heated at a high temperature on the support for producing a polyimide film or in a state of being peeled off from the support. It is obtained by heat treatment to carry out a dehydration ring closure reaction.
  • polyimide precursor polyamic acid (polyimide precursor) solution obtained by reacting biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent.
  • a polyimide solution obtained by a dehydration ring closure reaction with biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent is used as a support for producing a polyimide film. It is coated and dried to form a polyimide film containing, for example, 1 to 50% by mass of a solvent, and further, a polyimide containing 1 to 50% by mass of a solvent on a support for producing a polyimide film or in a state of being peeled off from the support. It can also be obtained by treating the film at a high temperature and drying it.
  • the solvent used when polymerizing biphenyltetracarboxylic acid dianhydride and diaminobenzanilide to obtain polyamic acid is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid.
  • Polar organic solvents are preferred, for example N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethyl.
  • Examples thereof include phosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols.
  • N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferably applied.
  • These solvents can be used alone or in admixture.
  • the amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material, and the specific amount used is such that the mass of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by mass.
  • the amount is preferably 10 to 20% by mass.
  • the polyamic acid can be produced by a known production method. That is, one or more kinds of tetracarboxylic acid anhydrous components (including biphenyltetracarboxylic acid dianhydride) and one or more kinds of diamine components (including diaminobenzanilide) which are raw materials are used. , Polymerize in the solvent to obtain a polyamic acid solution.
  • the reaction apparatus is preferably equipped with a temperature adjusting device for controlling the reaction temperature, and the reaction temperature is preferably 0 ° C. or higher and 80 ° C. or lower, and further 15 ° C. or higher and 60 ° C. or lower is the reverse of polymerization. It is preferable because it suppresses the hydrolysis of the polyamic acid, which is a reaction, and the viscosity of the polyamic acid tends to increase.
  • an imidization catalyst, inorganic fine particles, or the like may be added to the polyamic acid solution.
  • a tertiary amine As the tertiary amine, a heterocyclic tertiary amine is preferable. Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
  • the amount of the imidization catalyst used is preferably 0.01 to 2.00 equivalents, more preferably 0.02 to 1.20 equivalents, relative to the reaction site of the polyamic acid (polyimide precursor). When the amount of the imidization catalyst used is 0.01 equivalent or more, the effect of the catalyst can be sufficiently obtained. Further, when the amount of the imidization catalyst used is 2.00 equivalents or less, the proportion of the catalyst not involved in the reaction can be reduced, which is preferable in terms of cost.
  • the inorganic fine particles include inorganic oxide powders such as fine-grained silicon dioxide (silica) powder and aluminum oxide powder; and inorganic salt powders such as fine-grained calcium carbonate powder and calcium phosphate powder. If the inorganic fine particles are present as coarse particles, they may cause defects in the next and subsequent steps. Therefore, it is preferable that the inorganic fine particles are uniformly dispersed in the polyamic acid solution. ..
  • the reduced viscosity ( ⁇ sp / C) of the polyamic acid solution or the polyimide solution is preferably 0.1 or more, more preferably 1 or more, and further preferably 2 or more. Further, it is preferably 5 or less, more preferably 4.5 or less, and further preferably 4 or less.
  • the drying temperature is preferably 70 to 130 ° C., more preferably 80. It is about 125 ° C., more preferably 85 to 120 ° C.
  • the drying temperature is preferably 70 to 130 ° C. or lower. It is about 125 ° C., more preferably 85 to 120 ° C.
  • the drying time is preferably 5 to 90 minutes, more preferably 15 to 80 minutes, although it depends on the drying temperature.
  • the drying time is preferably 5 to 90 minutes, more preferably 15 to 80 minutes, although it depends on the drying temperature.
  • By setting the drying time to 90 minutes or less it is possible to suppress a decrease in molecular weight and brittleness of the film. Further, by setting the drying time to 5 minutes or more, it is possible to suppress deterioration of handleability due to insufficient drying.
  • Conventionally known drying devices can be applied, and examples thereof include hot air, hot nitrogen, far infrared rays, and high frequency induction heating.
  • the number of steps is preferably 2 or more, and more preferably 3 or more.
  • the number of steps is preferably 10 or less, more preferably 5 or less.
  • the number of steps is too large, a temperature range in which a reverse reaction is likely to occur is used, and the mechanical properties of the obtained polyimide film may deteriorate. Therefore, by setting the number of steps to 10 or less, it is possible to suppress deterioration of the mechanical properties of the obtained polyimide film.
  • imidization heat treatment
  • the temperature and time in each step are set from the following viewpoints.
  • First step By preferably removing the residual solvent, the thickness unevenness of the film is reduced.
  • 1st to 2nd steps Imidization and tension control are performed with a certain amount of solvent remaining to achieve high orientation. Also, avoid temperature ranges where reverse reactions are likely to occur.
  • the imidization is completed and the terminals produced by the reverse reaction are recombined.
  • the imidization temperature of the first step is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 180 ° C. or higher, because the thickness unevenness of the film can be reduced by removing the residual solvent. It is preferably 185 ° C. or higher, and particularly preferably 190 ° C. or higher.
  • the imidization temperature of the first step is preferably 220 ° C. or lower, more preferably 210 ° C. or lower.
  • the imidization time of the first step is preferably 1 minute or longer, more preferably 2 minutes or longer.
  • the imidization time of the first step is preferably 10 minutes or less, more preferably 5 minutes or less.
  • the imidization reaction (heat treatment) of the second step is performed.
  • the imidization temperature of the second step is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 240 ° C. or higher.
  • the imidization temperature in the second step is preferably 280 ° C. or lower, more preferably 270 ° C. or lower.
  • the imidization time of the second step is preferably 1 minute or longer, more preferably 2 minutes or longer.
  • the imidization time of the second step is preferably 10 minutes or less, more preferably 5 minutes or less.
  • the imidization reaction (heat treatment) of the third step is performed.
  • the imidization temperature in the third step is preferably more than 280 ° C, more preferably 290 ° C or higher, and even more preferably 295 ° C or higher.
  • the imidization temperature in the third step is preferably less than 480 ° C, more preferably 400 ° C or lower, still more preferably 350 ° C or lower, because the thickness unevenness of the film can be reduced. be.
  • the imidization time of the third step is preferably 2 minutes or more, more preferably 4 minutes or more.
  • the imidization time of the third step is preferably 20 minutes or less, more preferably 10 minutes or less.
  • Imidization heat treatment
  • a pin tenter or a clip a clip
  • tension in the width direction and the longitudinal direction of the film it is preferable to make the tension in the width direction and the longitudinal direction of the film as uniform as possible.
  • both ends of the film are pressed with a brush so that the pins are evenly pierced into the film.
  • the brush is preferably a rigid and heat-resistant fibrous brush, and a high-strength and high elastic modulus monofilament can be adopted.
  • the easily peelable layer is preferably manufactured via a green film of polyamic acid. That is, by imidizing the grease film, a release sheet having more excellent peelability and heat resistance can be obtained.
  • the easily peelable layer is usually preferably a non-stretched sheet, but may be a uniaxially or biaxially stretched sheet.
  • the non-stretched sheet means a film obtained by tenter stretching, roll stretching, inflation stretching, or the like without intentionally applying a mechanical external force in the surface expansion direction of the film.
  • the thickness of the easily peelable layer when used by laminating with a polymer film is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the lower limit of the thickness of the easily peelable layer is not particularly limited, but is substantially 0.01 ⁇ m or more.
  • the easily peelable layer is 5 ⁇ m or less, it is possible to suppress the occurrence of warpage due to the difference in CTE and mechanical properties with the polymer film.
  • the thickness of the easily peelable layer is preferably 3 ⁇ m or more, more preferably 11 ⁇ m or more, still more preferably 13 ⁇ m.
  • the above is more preferably 15 ⁇ m or more.
  • the upper limit of the thickness of the easily peelable layer is not particularly limited, but is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 90 ⁇ m or less for use as a flexible electronic device.
  • the average CTE of the easily peelable layer between 30 ° C. and 300 ° C. is preferably ⁇ 5 ppm / ° C. to + 20 ppm / ° C., more preferably ⁇ 5 ppm / ° C. to + 15 ppm / ° C., and even more preferably 1 ppm. It is from / ° C to + 10 ppm / ° C.
  • the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (inorganic substrate) can be kept small, and the easily peelable layer and the inorganic substrate can be peeled off even when subjected to a heat application process. It can be avoided.
  • the CTE difference from the polymer film is small, so that warpage can be suppressed.
  • CTE is a factor that represents reversible expansion and contraction with respect to temperature.
  • the CTE of the easily peelable layer is a value measured for a single film film having the same composition as the easily peelable layer, and is an average of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the coating. Point to a value.
  • the heat shrinkage of the easily peelable layer between 30 ° C. and 500 ° C. is preferably ⁇ 0.9%, more preferably ⁇ 0.6%.
  • the heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature.
  • the heat shrinkage rate of the easily peelable layer is determined by measuring a single-layer film having the same composition as the easily peelable layer.
  • the heat-resistant polymer is a polymer having a melting point of 400 ° C. or higher, preferably 500 ° C. or higher, and a glass transition temperature of 250 ° C. or higher, preferably 320 ° C. or higher, more preferably 380 ° C. or higher. ..
  • the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by observing and observing the thermal deformation behavior when heated at the corresponding temperature.
  • the heat-resistant polymer film includes polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin and alicyclic polyimide resin); polyethylene. , Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate and other copolymerized polyesters (eg, fully aromatic polyesters, semi-aromatic polyesters); copolymerized (meth) acrylates typified by polymethylmethacrylate; polycarbonate.
  • polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin and alicyclic polyimide resin)
  • polyethylene Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate and other copolymerized polyesters (eg, fully aromatic polyesters, semi-
  • Polyimide; Polysulphon; Polyethersulphon; Polyetherketone; Cellulose acetate; Cellulite nitrate; Aromatic polyamide; Polyvinyl chloride; Polyphenol; Polyallylate; Polyphenylene sulfide; Polyphenylene oxide; Polystyrene and other films can be exemplified.
  • the polymer film is premised on being used in a process involving a heat treatment of 450 ° C. or higher, the polymer films exemplified are limited to those that can be actually applied.
  • a film using a so-called super engineering plastic is preferable, and more specifically, an aromatic polyimide film, an aromatic amide film, an aromatic amide imide film, an aromatic benzoxazole film, and an fragrance.
  • an aromatic polyimide film an aromatic amide film, an aromatic amide imide film, an aromatic benzoxazole film, and an fragrance.
  • examples thereof include group benzothiazole film and aromatic benzoimidazole film.
  • a polyimide-based resin film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • polyamic acid film It is also referred to as "polyamic acid film", and is obtained by subjecting a green film to a high-temperature heat treatment on a support for producing a polyimide film or in a state of being peeled off from the support to carry out a dehydration ring closure reaction.
  • the application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Means can be used as appropriate.
  • the diamines constituting the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable. When aromatic diamines having a benzoxazole structure are used, it is possible to develop high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance.
  • the diamines may be used alone or in combination of two or more.
  • the aromatic diamines having a benzoxazole structure are not particularly limited, and are, for example, 5-amino-2- (p-aminophenyl) benzoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5 -Amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2,2' -P-Phenylenebis (6-aminobenzoxazole), 1- (5-aminobenzoxazole) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (4,4-diaminodiphenyl) benzo [1,2-d: 4,5
  • aromatic diamines other than the above-mentioned aromatic diamines having a benzoxazole structure examples include 2,2'-dimethyl-4,4'-diaminobiphenyl and 1,4-bis [2- (4-aminophenyl).
  • a halogen atom an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, a cyano group, or a part or all of a hydrogen atom of an alkyl group or an alkoxyl group having 1 to 3 carbon atoms substituted with a halogen atom.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminootan and the like.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 4,4'-methylenebis (2,6-dimethylcyclohexylamine) and the like.
  • the total amount of diamines (aliphatic diamines and alicyclic diamines) other than aromatic diamines is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less of all diamines. Is. In other words, the aromatic diamines are preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all diamines.
  • tetracarboxylic acids constituting the polyamic acid examples include aromatic tetracarboxylic acids (including its acid anhydride), aliphatic tetracarboxylic acids (including its acid anhydride) and alicyclic tetracarboxylic acids usually used for polyimide synthesis. Acids (including its acid anhydride) can be used. Among them, aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclics are more preferable from the viewpoint of light transmission. Group tetracarboxylic acids are more preferred.
  • the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good.
  • the tetracarboxylic acids may be used alone or in combination of two or more.
  • Examples of the alicyclic tetracarboxylic acid include cyclobutanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid and the like.
  • Examples include carboxylic acids and their acid anhydrides.
  • dianhydrides having two anhydride structures eg, cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride, 3,3', 4,4 '-Bicyclohexyltetracarboxylic acid dianhydride, etc. is suitable.
  • the alicyclic tetracarboxylic acids may be used alone or in combination of two or more.
  • the alicyclic tetracarboxylic acids are preferably, for example, 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all tetracarboxylic acids.
  • aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably an acid anhydride thereof.
  • aromatic tetracarboxylic acids include pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, 3.
  • aromatic tetracarboxylic acids are preferably, for example, 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all tetracarboxylic acids.
  • the thickness of the polymer film is preferably 3 ⁇ m or more, more preferably 11 ⁇ m or more, further preferably 24 ⁇ m or more, and even more preferably 45 ⁇ m or more.
  • the upper limit of the thickness of the polymer film is not particularly limited, but is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 90 ⁇ m or less for use as a flexible electronic device.
  • the average CTE of the polymer film between 30 ° C. and 300 ° C. is preferably ⁇ 5 ppm / ° C. to + 20 ppm / ° C., more preferably ⁇ 5 ppm / ° C. to + 15 ppm / ° C., still more preferably 1 ppm. It is from / ° C to + 10 ppm / ° C.
  • the CTE is within the above range, the difference in the coefficient of linear expansion from the general support (inorganic substrate) can be kept small, and the polymer film and the inorganic substrate are peeled off even when subjected to the heat application process. It can be avoided.
  • CTE is a factor that represents reversible expansion and contraction with respect to temperature.
  • the CTE of the polymer film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the polymer film.
  • the method for measuring CTE of the polymer film is as described in Examples.
  • the thermal shrinkage of the polymer film between 30 ° C. and 500 ° C. is preferably ⁇ 0.9%, more preferably ⁇ 0.6%.
  • the heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature.
  • the tensile breaking strength of the polymer film is preferably 60 MPa or more, more preferably 120 MPa or more, and further preferably 240 MPa or more.
  • the upper limit of the tensile breaking strength is not particularly limited, but is practically less than about 1000 MPa.
  • the tensile breaking strength of the polymer film refers to the average value of the tensile breaking strength in the flow direction (MD direction) and the tensile breaking strength in the width direction (TD direction) of the polymer film.
  • the method for measuring the tensile breaking strength of the polymer film is as described in Examples.
  • the tensile elongation at break of the polymer film is preferably 1% or more, more preferably 5% or more, still more preferably 20% or more. When the tensile elongation at break is 1% or more, the handleability is excellent.
  • the tensile elongation at break of the polymer film refers to the average value of the tensile elongation at break in the flow direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the polymer film.
  • MD direction flow direction
  • TD direction width direction
  • the tensile elastic modulus of the polymer film is preferably 3 GPa or more, more preferably 6 GPa or more, and further preferably 8 GPa or more.
  • the tensile elastic modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and further preferably 10 GPa or less.
  • the polymer film can be used as a flexible film.
  • the tensile elastic modulus of the polymer film refers to the average value of the tensile elastic modulus in the flow direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the polymer film.
  • the method for measuring the tensile elastic modulus of the polymer film is as described in Examples.
  • the thickness unevenness of the polymer film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. When the thickness spot exceeds 20%, it tends to be difficult to apply to a narrow part.
  • the polymer film is preferably obtained in the form of being wound as a long polymer film having a width of 300 mm or more and a length of 10 m or more at the time of its manufacture, and has a roll-like height wound around a winding core.
  • the one in the form of a molecular film is more preferable.
  • a lubricant (particle) having a particle size of about 10 to 1000 nm is added / contained in the polymer film in an amount of about 0.03 to 3% by mass. Therefore, it is preferable to impart fine irregularities to the surface of the polymer film to ensure slipperiness.
  • the inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance.
  • a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramic plates are used.
  • the semiconductor wafer and the composite of the metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
  • the glass plate examples include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pylex (registered trademark)), borosilicate glass (non-alkali), and the like. Includes borosilicate glass (microsheet), aluminosilicate glass and the like. Among these, those having a coefficient of linear expansion of 5 ppm / K or less are desirable, and if they are commercially available products, “Corning (registered trademark) 7059” and “Corning (registered trademark) 1737” manufactured by Corning Inc., which are glass for liquid crystal, are used. "EAGLE”, "AN100” manufactured by Asahi Glass Co., Ltd., “OA10” manufactured by Nippon Electric Glass Co., Ltd., “AF32” manufactured by SCHOTT Co., Ltd., etc. are desirable.
  • the semiconductor wafer is not particularly limited, but is limited to silicon wafer, germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, nitrogen-phosphorus-arsenide-antimony, SiC, InP (indium phosphorus), InGaAs, GaInNAs, and the like. Wafers such as LT, LN, ZnO (zinc oxide), CdTe (cadmium telluride), and ZnSe (zinc selenide) can be mentioned. Among them, the wafer preferably used is a silicon wafer, and particularly preferably a mirror-polished silicon wafer having a size of 8 inches or more.
  • the metal includes single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as inconel, monel, mnemonic, carbon copper, Fe—Ni-based invar alloy, and superinvar alloy. Further, a multilayer metal plate formed by adding another metal layer or a ceramic layer to these metals is also included. In this case, if the overall coefficient of linear expansion (CTE) with the additional layer is low, Cu, Al, or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has properties such as strong adhesion to the polymer film, no diffusion, and good chemical resistance and heat resistance. Although not, Cr, Ni, TiN, Mo-containing Cu and the like are preferable examples.
  • the flat surface portion of the inorganic substrate is sufficiently flat.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is coarser than this, the peel strength between the polymer film layer and the inorganic substrate may be insufficient.
  • the thickness of the inorganic substrate is not particularly limited, but from the viewpoint of handleability, a thickness of 10 mm or less is preferable, 3 mm or less is more preferable, and 1.3 mm or less is further preferable.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.07 mm or more, more preferably 0.15 mm or more, still more preferably 0.3 mm or more.
  • Silane coupling agent layer A silane coupling agent layer containing a silane coupling agent is provided on the inorganic substrate.
  • the silane coupling agent physically or chemically intervenes between the inorganic substrate and the easily peelable layer, and has an effect of enhancing the adhesive force between the inorganic substrate and the easily peelable layer.
  • the coupling agent is not particularly limited, but a silane coupling agent having an amino group or an epoxy group is preferable.
  • Preferred specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (.
  • the silane coupling agent includes n-propyltrimethoxysilane, butyltrichlorosilane, 2-cyanoethyltriethoxysilane, cyclohexyltrichlorosilane, decyltrichlorosilane, diacetoxydimethylsilane, diethoxydimethylsilane, and dimethoxy.
  • a silane coupling agent having one silicon atom in one molecule is particularly preferable, and for example, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- 2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy Examples thereof include propylmethyldiethoxysilane, 3-glycidoxypropyltrie
  • the coupling agent includes 1-mercapto-2-propanol, 3-mercaptopropionate methyl, 3-mercapto-2-butanol, 3-mercaptopropionate butyl, 3- (dimethoxymethylsilyl)-.
  • a method for forming the silane coupling agent layer a method of applying a silane coupling agent solution to the inorganic substrate, a vapor deposition method, or the like can be used.
  • the silane coupling agent layer may be formed on the surface of the easily peelable layer.
  • a spin coating method As a method of applying the silane coupling agent solution, a spin coating method, a curtain coating method, a dip coating method, a slit die coating method, a gravure coating method, a bar, using a solution obtained by diluting the silane coupling agent with a solvent such as alcohol is used.
  • Conventionally known solution coating means such as a coating method, a comma coating method, an applicator method, a screen printing method, and a spray coating method can be appropriately used.
  • the silane coupling agent layer can also be formed by a vapor deposition method, and specifically, the inorganic substrate is formed by exposing the inorganic substrate to the vapor of the silane coupling agent, that is, the silane coupling agent in a substantially gaseous state. ..
  • the vapor of the silane coupling agent can be obtained by heating the silane coupling agent in a liquid state to a temperature from 40 ° C. to about the boiling point of the silane coupling agent.
  • the boiling point of the silane coupling agent varies depending on the chemical structure, but is generally in the range of 100 to 250 ° C. However, heating at 200 ° C. or higher is not preferable because it may cause a side reaction on the organic group side of the silane coupling agent.
  • the environment for heating the silane coupling agent may be any of pressure, normal pressure, and reduced pressure, but in the case of promoting vaporization of the silane coupling agent, normal pressure or reduced pressure is preferable. Since many silane coupling agents are flammable liquids, it is preferable to carry out the vaporization work in a closed container, preferably after replacing the inside of the container with an inert gas.
  • the time for exposing the inorganic substrate to the silane coupling agent is not particularly limited, but is preferably 20 hours or less, more preferably 60 minutes or less, still more preferably 15 minutes or less, and most preferably 1 minute or less.
  • the temperature of the inorganic substrate during exposure of the inorganic substrate to the silane coupling agent is an appropriate temperature between -50 ° C and 200 ° C depending on the type of the silane coupling agent and the desired thickness of the silane coupling agent layer. It is preferable to control the temperature.
  • the film thickness of the silane coupling agent layer is extremely thin compared to the inorganic substrate, the easily peelable layer, the polymer film, etc., and is negligible from the viewpoint of mechanical design. In principle. At a minimum, a thickness on the order of a single molecular layer is sufficient. Generally, it is less than 400 nm, preferably 200 nm or less, more preferably 100 nm or less, more preferably 50 nm or less, still more preferably 10 nm or less in practical use. However, in the calculated region of 5 nm or less, the silane coupling agent layer may exist in a cluster shape rather than as a uniform coating film.
  • the film thickness of the silane coupling agent layer can be calculated from the ellipsometry method or the concentration and coating amount of the silane coupling agent solution at the time of coating.
  • Step A to form a silane coupling agent layer on an inorganic substrate to obtain a first laminate
  • Step B to prepare the easily peelable layer
  • It has at least a step C of forming the easily peelable layer on the first laminated body.
  • the step B is a step of preparing a second laminated body in which the easily peelable layer and the heat-resistant polymer film are laminated.
  • the step C may be a step of laminating the first laminated body and the second laminated body.
  • step A a silane coupling agent layer is formed on the inorganic substrate to obtain a first laminated body. Since the details of the method of forming the silane coupling agent layer on the inorganic substrate have already been described, the description thereof is omitted here.
  • step B an easily peelable layer is prepared. Since the method of preparing the easily peelable layer as a single substance has already been described, the description thereof is omitted here.
  • the step B may be a step of preparing a second laminated body in which the easily peelable layer and the heat-resistant polymer film are laminated.
  • a method for preparing the second laminate first, an easily peelable layer (polyamic acid film) before imidization is prepared, and then a polyamic acid for forming a polymer film is formed on the easily peelable layer before imidization.
  • the solution is applied and dried to form a polymer film (polyamic acid film) before imidization, and finally, imidization (heat treatment) is performed to make the easily peelable layer before imidization and the height before imidization.
  • imidization heat treatment
  • a method of imidizing the molecular film together to obtain a second laminated body in which the easily peelable layer and the heat-resistant polymer film are laminated can be mentioned.
  • the polyamic acid solution for forming the easily peelable layer is applied on the surface coated with the polyamic acid solution without drying (in the solution state).
  • a polyamic acid solution for forming a polymer film is applied, and both are dried to make the easily peelable layer before imidization and the polymer film before imidization laminated, and finally imidization (heating). Treatment) to imidize both the easy-release layer before imidization and the polymer film before imidization to obtain a second laminated body in which the easy-release layer and the heat-resistant polymer film are laminated. Can be mentioned.
  • step C the first laminated body and the easily peelable layer are bonded together.
  • the step C may be a step of laminating the first laminated body and the second laminated body. Specifically, the silane coupling agent layer formed on the inorganic substrate and the easily peelable layer or the second laminated body are pressed and bonded as a bonding surface.
  • the pressurization treatment may be performed, for example, in an atmospheric pressure atmosphere or in a vacuum while heating a press, a laminate, a roll laminate, or the like.
  • a method of pressurizing and heating in a flexible bag can also be applied. From the viewpoint of improving productivity and reducing the processing cost brought about by high productivity, pressing or roll laminating in an air atmosphere is preferable, and a method using rolls (roll laminating or the like) is particularly preferable.
  • the pressure is preferably 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa.
  • the temperature when pressurization and heating are performed at the same time is preferably 80 ° C. to 300 ° C., more preferably 100 ° C. to 250 ° C.
  • the polymer film is a polyimide film, if the temperature is too high, the polyimide film may be damaged, and if the temperature is too low, the adhesion tends to be weakened.
  • Examples of the process of simultaneously heating and pressurizing include high temperature roll laminating.
  • the temperature is high within the above range.
  • the heating / pressurizing time is preferably 1 to 60 seconds, more preferably 1 to 30 seconds.
  • the pressurization treatment can be performed in an atmospheric pressure atmosphere as described above, but it is preferable to perform the pressure treatment under vacuum in order to obtain a stable peel strength on the entire surface.
  • the degree of vacuum is sufficient with the degree of vacuum by a normal oil rotary pump, and about 10 Torr or less is sufficient.
  • a device that can be used for pressure treatment for example, "11FD” manufactured by Imoto Seisakusho can be used for pressing in a vacuum, and a roll-type film laminator in a vacuum or after vacuuming.
  • a film laminator that applies pressure to the entire surface of the glass at once with a thin rubber film
  • "MVLP" manufactured by Meiki Seisakusho can be used.
  • the pressurization process can be performed separately for the pressurization process and the heating process. In this case, only the pressurization process may be performed and the heating process may not be performed.
  • the pressurizing process is separated into a pressurizing process and a heating process, the polymer film and the inorganic substrate are added at a relatively low temperature (for example, a temperature of less than 120 ° C., more preferably 95 ° C. or lower). It is preferable to secure close contact between the two by applying pressure (preferably about 0.2 to 50 MPa).
  • the heating process is performed, the heating process is performed at a relatively high temperature (for example, 100 ° C.
  • the heating time is preferably 1 minute to 120 minutes, more preferably 5 minutes to 90 minutes.
  • the method for producing a laminate according to the present invention is not limited to this example.
  • a polyamic acid solution for forming an easily peelable layer is applied on the silane coupling agent layer, dried, and further, if necessary, high. Examples thereof include a method in which a polyamic acid solution for forming a molecular film is applied, dried, and then imidized to obtain a laminate.
  • an electronic device is formed on the polymer film of the laminate using existing equipment and processes for manufacturing electronic devices, and the polymer film or the easily peelable layer is peeled off from the laminate.
  • Flexible electronic devices can be made.
  • an electronic device is a wiring board having a single-sided, double-sided, or multi-layered structure for electrical wiring, an electronic circuit including active elements such as transistors and diodes, and passive devices such as resistors, capacitors, and inductors, and others.
  • Sensor elements that sense pressure, temperature, light, humidity, etc., biosensor elements, light emitting elements, liquid crystal displays, electrophoretic displays, self-luminous displays and other image display elements, wireless and wired communication elements, arithmetic elements, storage elements, MEMS element, solar cell, thin film, etc.
  • a device is formed on a polymer film or an easily peelable layer of a laminate produced by the above-mentioned method, and then the polymer film is peeled off from the inorganic substrate.
  • the method of peeling the polymer film or the easily peelable layer with the device from the inorganic substrate is not particularly limited, but the method of winding from the end with a tweezers or the like, making a cut in the polymer film, and applying an adhesive tape to one side of the cut portion.
  • a method of winding from the tape portion after sticking, a method of vacuum-adsorbing one side of the cut portion of the polymer film or the easily peelable layer, and then winding from that portion can be adopted.
  • the cut portion of the polymer film or the easily peelable layer is bent with a small curvature, stress is applied to the device at that portion and the device may be destroyed. Therefore, the curvature is as large as possible.
  • a method of making a cut in the polymer film or the easily peelable layer a method of cutting the polymer film or the easily peelable layer with a cutting tool such as a cutting tool, or a polymer film by relatively scanning a laser and a laminate.
  • a method of cutting the easily peelable layer a method of cutting the polymer film or the easily peelable layer by relatively scanning the water jet and the laminate, or a polymer film or a polymer film while slightly cutting to the glass layer by a semiconductor chip dicing device.
  • a method of cutting the easily peelable layer but the method is not particularly limited.
  • the flexible electronic device to be peeled off is the backplane of the display device
  • N- Colloidal silica is a dispersion of dimethylacetamide (DMAc) and colloidal silica (lubricant) dispersed in dimethylacetamide ("Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.).
  • DMAc dimethylacetamide
  • Snowtex colloidal silica
  • ⁇ Preparation Example 2 Preparation of Polyamic Acid Solution 2> After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 11.36 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 11.32 parts by mass of 2,2' -A dispersion consisting of bis (trifluoromethyl) benzidine (TFMB), 21.1 parts by mass of N, N-dimethylacetamide (DMAc), and colloidal silica (lubricant) dispersed in dimethylacetamide (manufactured by Nissan Chemical Industries, Ltd.).
  • DABAN 4,4'-diaminobenzanilide
  • TFMB bis (trifluoromethyl) benzidine
  • DMAc N-dimethylacetamide
  • colloidal silica lubricant
  • ⁇ Preparation Example 3 Preparation of Polyamic Acid Solution 3> A container equipped with a nitrogen introduction tube, a thermometer and a stirring rod was replaced with nitrogen, and then 4,4'-diaminodiphenyl ether (ODA) was added. Next, DMAc was added to completely dissolve it, and then pyrolimetic acid anhydride (PMDA) was added to polymerize ODA and PMDA as monomers in DMAc at a molar ratio of 1/1, and the monomer charging concentration was 15. The mixture was adjusted to be mass% and stirred at 25 ° C. for 5 hours to obtain a brown viscous polyamic acid solution 3. The reduced viscosity ( ⁇ sp / C) was 2.1 dl / g.
  • ODA 4,4'-diaminodiphenyl ether
  • ⁇ Preparation Example 4 Preparation of Polyamic Acid Solution 4> After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 22.72 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 21.1 parts by mass were added. N, N-dimethylacetamide (DMAc) and a dispersion obtained by dispersing colloidal silica (lubricant) in dimethylacetamide (“Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) are used as silica ( Lubricants) were added so that the total amount of polymer solids in the polyamic acid solution was 0.4% by mass, and the mixture was completely dissolved.
  • DMAc N-dimethylacetamide
  • lubricant colloidal silica
  • DMAC-ST-ZL dimethylacetamide
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic acid unihydrate
  • ⁇ Preparation Example 5 Preparation of Polyimide Solution 1> While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube and a reflux tube, a thermometer, and a stirring rod, 19.86 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4') was introduced. -DDS), 4.97 parts by mass of 3,3'-diaminodiphenyl sulfone (3,3'-DDS) and 80 parts by mass of gamma butyrolactone (GBL) were added.
  • GBL gamma butyrolactone
  • ⁇ Manufacturing Example 1 Manufacture of Polyimide Film F1>
  • the polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 ⁇ m using a comma coater.
  • the polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time.
  • the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F1 having a width of 450 mm.
  • ⁇ Manufacturing Example 3 Manufacture of Polyimide Film F3>
  • the polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 0.5 ⁇ m using a comma coater.
  • the polyethylene terephthalate film A4100 passed through the hot air furnace and was wound up, and at this time, it was dried at 100 ° C. for 10 minutes.
  • the polyamic acid solution 3 obtained in Production Example 3 was applied onto the dried product of the polyamic acid solution 1 so that the final film thickness was 15 ⁇ m. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which the pins are arranged, and the film end is gripped by inserting it into the pins so that the film does not break and The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 400 ° C.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 100 m of a polyimide film F3 having a width of 450 mm.
  • ⁇ Manufacturing Example 5 Manufacture of Polyimide Film F5> The same as in Production Example 3 except that the polyimide solution 1 was used instead of the polyamic acid solution 3 and the heat treatment after gripping with a pin sheet was set to 200 ° C. for 3 minutes, 250 ° C. for 2 minutes, and 320 ° C. for 3 minutes. A polyimide film F5 was obtained in an amount of 100 m.
  • ⁇ Manufacturing Example 7 Manufacture of Polyimide Film F7>
  • the polyamic acid solution 1 obtained in Production Example 1 was applied to the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyo Spinning Co., Ltd.) using a comma coater so that the final film thickness was 0.5 ⁇ m.
  • the polyamic acid solution 3 obtained in Production Example 3 was applied onto the polyamic acid solution 1 with a die coater so that the final film thickness was 15 ⁇ m. This was dried at 110 ° C. for 10 minutes.
  • the polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 400 ° C for 6 minutes to carry out the imidization reaction. I made it progress.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 100 m of a polyimide film F7 having a width of 450 mm.
  • ⁇ Manufacturing Example 10 Manufacture of Polyimide Film F10>
  • the polyamic acid solution 1 was changed to the polyimide acid solution 1, and the heat treatment after gripping with the pin sheet was the same as in Production Example 1 except that the heat treatment was performed at 200 ° C. for 3 minutes, 250 ° C. for 2 minutes, and 320 ° C. for 3 minutes.
  • a polyimide film F10 was obtained in an amount of 100 m.
  • a glass substrate was prepared.
  • the glass substrate is 0.7 mm thick OA10G glass (manufactured by NEG) cut into a size of 100 mm ⁇ 100 mm.
  • the glass substrate used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N- 03 manufactured by LAN Technical) for 1 minute to dry wash.
  • a silane coupling agent layer was formed on the glass substrate. The method of applying the silane coupling agent to the glass substrate was carried out using the experimental apparatus shown in FIG. FIG.
  • the experimental apparatus includes a processing chamber (chamber) 6 connected to a gas introduction port 2, an exhaust port 8, and a chemical liquid tank (silane coupling agent tank) 3.
  • the chemical liquid tank (silane coupling agent tank) 3 is filled with a silane coupling agent, and the temperature is controlled by a hot water tank (water bath) 4 provided with a heater 5.
  • a gas introduction port 12 is connected to the chemical liquid tank (silane coupling agent tank) 3, and gas can be introduced from the outside. The gas flow rate is adjusted by the flow meter 1 connected to the gas introduction port 12.
  • the vaporized silane coupling agent in the chemical liquid tank 3 is extruded into the treatment chamber 6, and the silane coupling agent layer is placed on the glass substrate 7 arranged in the treatment chamber 6.
  • Adheres as. 150 g of 3-aminopropyltrimethoxysilane (silane coupling agent Shin-Etsu Chemical KBM903) was placed in a chemical solution tank 3 having a capacity of 1 L, and the outer water bath was warmed to 41 ° C. Then, the steam that came out was sent to the chamber together with clean dry air.
  • the gas flow rate was 25 L / min
  • the substrate temperature was 23 ° C.
  • the exposure time of the glass substrate was 5 minutes.
  • the temperature of the clean dry air was 23 ° C. and the humidity was 1.2% RH. Since the exhaust is connected to the negative pressure exhaust port, it is confirmed by the differential pressure gauge that the chamber has a negative pressure of about 10 Pa.
  • the polyimide film F1 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 1.
  • the polyimide film F2 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 2.
  • the polyimide film F9 was laminated on the silane coupling agent layer to obtain a laminate according to Comparative Example 1.
  • the polyimide film F10 was laminated on the silane coupling agent layer to obtain a laminate according to Comparative Example 2.
  • the polyimide film F11 was laminated on the silane coupling agent layer to obtain a laminate according to Comparative Example 3.
  • the size of the polyimide film to be bonded was 70 mm ⁇ 70 mm.
  • a laminator manufactured by MCK was used for bonding, and the bonding conditions were compressed air pressure: 0.6 MPa, temperature: 23 ° C., humidity: 55% RH, and laminating speed: 50 mm / sec.
  • the polyimide film F1 in Example 1 and the polyimide film F2 in Example 2 correspond to the easily peelable layer in the present invention.
  • Example 3 The laminates according to Examples 3 to 8 were obtained by the same method as the method for producing the laminates according to Examples 1, 2 and Comparative Examples 1, 2 and 3.
  • Example 3 the polyimide film F3 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 3.
  • Example 4 the polyimide film F4 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 4.
  • Example 5 the polyimide film F5 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 5.
  • Example 6 the polyimide film F6 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 6.
  • Example 7 the polyimide film F7 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 7. Further, in Example 8, the polyimide film F8 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 8.
  • the bonding was performed by using a polyimide surface made of a polyamic acid solution 1 or 2 of a two-layered polyimide film as a bonding surface with a silane coupling agent layer.
  • the layer formed from the polyamic acid solution 1 corresponds to the easily peelable layer of the present invention
  • the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
  • the layer formed from the polyamic acid solution 2 corresponds to the easily peelable layer of the present invention
  • the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention.
  • the layer formed from the polyimide solution 1 corresponds to the easily peelable layer of the present invention
  • the layer formed from the polyimide solution 1 corresponds to the polymer film of the present invention.
  • the layer formed from the polyamic acid solution 4 corresponds to the polymer film of the present invention. do.
  • the layer formed from the polyamic acid solution 1 corresponds to the easily peelable layer of the present invention
  • the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
  • the layer formed from the polyamic acid solution 2 corresponds to the easily peelable layer of the present invention
  • the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
  • the laminate obtained by producing the above laminate was heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere. Then, the 90 ° initial peel strength between the inorganic substrate (glass substrate or silicon wafer) and the polyimide film was measured. The results are shown in Table 1.
  • the measurement conditions for the 90 ° initial peel strength are as follows. Peel the film at a 90 ° angle to the inorganic substrate. Measure 5 times and use the average value as the measured value. Measuring device; Shimadzu Autograph AG-IS Measurement temperature; room temperature (25 ° C) Peeling speed; 100 mm / min Atmosphere; Atmosphere measurement sample width; 2.5 cm

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This laminate comprises an inorganic substrate, a silane coupling agent layer, and an easily peelable layer in this order. The easily peelable layer has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.

Description

積層体Laminate
 本発明は、積層体に関する。 The present invention relates to a laminated body.
 近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムが基板として用いられている。 In recent years, technological development for forming these elements on a polymer film has been actively carried out for the purpose of reducing the weight, size and thickness, and flexibility of functional elements such as semiconductor elements, MEMS elements, and display elements. That is, as a material for a base material of electronic parts such as information communication equipment (broadcasting equipment, mobile radio, portable communication equipment, etc.), radar, high-speed information processing equipment, etc., conventionally, it has heat resistance and a signal of the information communication equipment. Ceramics that can handle higher frequencies in the band (reaching the GHz band) have been used, but since ceramics are not flexible and difficult to thin, there is a drawback that the applicable fields are limited, so recently. A polymer film is used as a substrate.
 半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・ツー・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業等の業界では、これまでウエハベースまたはガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そこで、既存インフラを利用して機能素子を高分子フィルム上に形成するために、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体に貼り合わせ、その上に所望の素子を形成した後に支持体から剥離するというプロセスが用いられている。 When forming functional elements such as semiconductor elements, MEMS elements, and display elements on the surface of polymer films, it is ideal to process them by a so-called roll-to-roll process that utilizes the flexibility that is a characteristic of polymer films. It is said that. However, in industries such as the semiconductor industry, the MEMS industry, and the display industry, process techniques for rigid flat substrates such as wafer-based or glass substrate-based have been constructed so far. Therefore, in order to form a functional element on a polymer film using the existing infrastructure, the polymer film is bonded to a rigid support made of an inorganic substance such as a glass plate, a ceramic plate, a silicon wafer, or a metal plate. A process is used in which a desired element is formed on the element and then peeled off from the support.
 ところで、高分子フィルムと無機物からなる支持体とを貼り合わせた積層体に所望の機能素子を形成するプロセスにおいては、該積層体は高温に曝されることが多い。例えば、ポリシリコンや酸化物半導体などの機能素子の形成においては200℃~600℃程度の温度域での工程が必要である。また、水素化アモルファスシリコン薄膜の作製においては200~300℃程度の温度がフィルムに加わる場合あり、さらにアモルファスシリコンを加熱、脱水素化して低温ポリシリコンとするためには450℃~600℃程度の加熱が必要になる場合がある。したがって、積層体を構成する高分子フィルムには耐熱性が求められるが、現実問題としてかかる高温域にて実用に耐える高分子フィルムは限られている。また、支持体への高分子フィルムの貼り合わせには一般に粘着剤や接着剤を用いることが考えられるが、その際の高分子フィルムと支持体との接合面(すなわち貼り合せ用の接着剤や粘着剤)にも耐熱性が求められる。しかし、通常の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していないため、機能素子の形成温度が高い場合には接着剤や粘着剤による貼り合わせは適用できない。 By the way, in the process of forming a desired functional element in a laminated body in which a polymer film and a support made of an inorganic substance are bonded together, the laminated body is often exposed to a high temperature. For example, in the formation of functional elements such as polysilicon and oxide semiconductors, a process in a temperature range of about 200 ° C. to 600 ° C. is required. Further, in the production of a hydrided amorphous silicon thin film, a temperature of about 200 to 300 ° C. may be applied to the film, and further, in order to heat and dehydrogenate the amorphous silicon to obtain low temperature polysilicon, the temperature is about 450 ° C. to 600 ° C. Heating may be required. Therefore, the polymer film constituting the laminated body is required to have heat resistance, but as a practical matter, the polymer film that can withstand practical use in such a high temperature range is limited. In addition, it is generally conceivable to use an adhesive or an adhesive for bonding the polymer film to the support, but at that time, the bonding surface between the polymer film and the support (that is, the adhesive for bonding) Adhesive) is also required to have heat resistance. However, since ordinary adhesives and adhesives for bonding do not have sufficient heat resistance, bonding with an adhesive or adhesive cannot be applied when the formation temperature of the functional element is high.
 充分な耐熱性を有する粘着剤や接着剤が存在しないと考えられていため、従来、上述した用途においては、高分子溶液または高分子の前駆体溶液を無機基板上に塗布して無機基板上で乾燥・硬化させてフィルム化し、当該用途に使用する技術が採用されていた。しかしながら、かかる手段により得られる高分子フィルムは、脆く裂けやすいため、高分子フィルム表面に形成された機能素子は無機基板から剥離する際に破壊してしまう場合が多い。特に無機基板から大面積のフィルムを剥離するのは極めて難しく、およそ工業的に成り立つ歩留まりを得ることはできない。
 このような事情に鑑み、機能素子を形成するための高分子フィルムと無機基板との積層体として、耐熱性に優れ強靭で薄膜化が可能なポリイミドフィルムを、シランカップリング剤を介して無機基板に貼り合わせた積層体が提案されている(例えば、特許文献1~3参照)。
Since it is considered that there is no pressure-sensitive adhesive or adhesive having sufficient heat resistance, conventionally, in the above-mentioned applications, a polymer solution or a polymer precursor solution is applied onto an inorganic substrate and used on the inorganic substrate. The technique of drying and curing to form a film and using it for this purpose was adopted. However, since the polymer film obtained by such means is brittle and easily torn, the functional element formed on the surface of the polymer film is often destroyed when peeled from the inorganic substrate. In particular, it is extremely difficult to peel off a large-area film from an inorganic substrate, and it is not possible to obtain an industrially viable yield.
In view of these circumstances, as a laminate of a polymer film and an inorganic substrate for forming a functional element, a polyimide film having excellent heat resistance, toughness, and thinning is possible through an inorganic substrate via a silane coupling agent. A laminate bonded to the above has been proposed (see, for example, Patent Documents 1 to 3).
特許第5152104号公報Japanese Patent No. 5152104 特許第5304490号公報Japanese Patent No. 5304490 特許第5531781号公報Japanese Patent No. 5531781
 上述した積層体では、無機基板とポリイミドフィルムとの間にシランカップリング剤を含む層(以下、シランカップリング剤層ともいう)を介在させることにより、デバイス形成前や形成中に無機基板がポリイミドフィルムから剥がれてしまうことを防止するとともに、デバイス形成後には、容易に無機基板をポリイミドフィルムから剥離することを可能としている。すなわち、上述した積層体では、シランカップリング剤が、無機基板とポリイミドフィルムとの間に物理的ないし化学的に介在し、両者間の初期の接着力を高めている。また、シランカップリング剤を用いることにより、デバイス形成時の熱によって、両者間の接着力が高まることを抑制している。 In the above-mentioned laminate, the inorganic substrate is made of polyimide before or during device formation by interposing a layer containing a silane coupling agent (hereinafter, also referred to as a silane coupling agent layer) between the inorganic substrate and the polyimide film. In addition to preventing the film from peeling off, the inorganic substrate can be easily peeled off from the polyimide film after the device is formed. That is, in the above-mentioned laminate, the silane coupling agent physically or chemically intervenes between the inorganic substrate and the polyimide film to enhance the initial adhesive force between the two. Further, by using the silane coupling agent, it is suppressed that the adhesive force between the two is increased by the heat at the time of forming the device.
 しかしながら、本発明者らは、無機基板とポリイミドフィルムとの間にシランカップリング剤層を介在させた場合であっても、高分子フィルムの種類によっては、シランカップリング剤層(無機基板)との剥離性が充分ではない場合があるといった課題を見出した。 However, even when the silane coupling agent layer is interposed between the inorganic substrate and the polyimide film, the present inventors may obtain a silane coupling agent layer (inorganic substrate) depending on the type of the polymer film. We have found a problem that the peelability of silane may not be sufficient.
 この点につき、本発明者らはさらに鋭意研究を行った。その結果、高分子フィルムとシランカップリング剤層との間に、特定の組成を有する易剥離層を設ければ、驚くべきことに、高分子フィルムの種類に関わらず、デバイス形成後に、容易に無機基板を高分子フィルムから剥離することが可能となることを見出した。また、特定の組成を有する易剥離層自体をデバイス形成用のフィルムとすれば、デバイス形成後に、容易に無機基板を当該易剥離層(デバイス形成用のフィルム)から剥離することが可能となることを見出した。以上より、本発明を完成するに至った。 In this regard, the present inventors conducted further diligent research. As a result, if an easily peelable layer having a specific composition is provided between the polymer film and the silane coupling agent layer, surprisingly, regardless of the type of the polymer film, it is easy to easily perform after device formation. It has been found that the inorganic substrate can be peeled off from the polymer film. Further, if the easily peelable layer itself having a specific composition is used as a film for forming a device, the inorganic substrate can be easily peeled off from the easily peelable layer (film for forming a device) after the device is formed. I found. From the above, the present invention has been completed.
 すなわち、本発明は以下を提供する。
(1)無機基板と、シランカップリング剤層と、易剥離層とをこの順で備え、
 前記易剥離層は、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有することを特徴とする積層体。
That is, the present invention provides the following.
(1) An inorganic substrate, a silane coupling agent layer, and an easily peelable layer are provided in this order.
The easily peelable layer is a laminate characterized by having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide.
 前記構成によれば、シランカップリング剤層上に易剥離層を備えるため、当該易剥離層自体をデバイス形成用のフィルムとすれば、デバイス形成後に、容易に無機基板を当該易剥離層(デバイス形成用のフィルム)から剥離することが可能となる。また、易剥離層上にさらに耐熱高分子フィルムを備える構成とした場合には、耐熱高分子フィルムとシランカップリング剤層との間に、前記易剥離層が存在する構成となるため、耐熱高分子フィルム(デバイス形成用のフィルム)の種類に関わらず、デバイス形成後に、容易に無機基板を耐熱高分子フィルムから剥離することが可能となる。このことは、実施例の結果からも明らかである。本発明者は、その理由として、易剥離層がビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有するため、シートとした際に前記構造単位が高配向し、剥離の際にへき開が起こりやすくなるためと推察している。 According to the above configuration, since the easily peelable layer is provided on the silane coupling agent layer, if the easily peelable layer itself is used as a film for forming a device, the inorganic substrate can be easily attached to the easily peelable layer (device) after the device is formed. It can be peeled off from the forming film). Further, when the heat-resistant polymer film is further provided on the easily peelable layer, the heat-resistant polymer film and the silane coupling agent layer have the easily peelable layer, so that the heat resistance is high. Regardless of the type of the molecular film (film for forming the device), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed. This is clear from the results of the examples. The reason for this is that the easily peelable layer has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, so that the structural unit is highly oriented when it is made into a sheet, and the peeling is performed. It is speculated that cleavage is more likely to occur.
 (2)前記(1)の構成においては、450℃で1時間加熱した後の前記易剥離層と前記無機基板との90°剥離強度が、0.3N/cm以下であることが好ましい。 (2) In the configuration of (1), the 90 ° peel strength between the easily peelable layer and the inorganic substrate after heating at 450 ° C. for 1 hour is preferably 0.3 N / cm or less.
 前記90°剥離強度が0.3N/cm以下であると、当該易剥離層上にデバイスを形成した後に、無機基板を易剥離層から剥離しやすい。 When the 90 ° peel strength is 0.3 N / cm or less, the inorganic substrate is easily peeled from the easy peel layer after the device is formed on the easy peel layer.
 (3)前記(1)又は(2)の構成においては、前記易剥離層と前記無機基板との90°初期剥離強度が、0.03N/cm以上であることが好ましい。 (3) In the configuration of (1) or (2), it is preferable that the 90 ° initial peel strength between the easily peelable layer and the inorganic substrate is 0.03 N / cm or more.
 前記90°初期剥離強度が0.03N/cm以上であると、当該易剥離層上にデバイスを形成する前や形成中に易剥離層が無機基板から剥がれてしまうことを防止することができる。 When the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the easy peel layer from peeling from the inorganic substrate before or during the formation of the device on the easy peel layer.
 (4)前記(1)の構成においては、さらに、前記易剥離層上に、耐熱高分子フィルムを備えることも好ましい。 (4) In the configuration of (1), it is also preferable to provide a heat-resistant polymer film on the easily peelable layer.
 前記易剥離層上に、耐熱高分子フィルムを備えると、耐熱高分子フィルムとシランカップリング剤層との間に、前記易剥離層が存在する構成となるため、耐熱高分子フィルム(デバイス形成用のフィルム)の種類に関わらず、デバイス形成後に、容易に無機基板を耐熱高分子フィルムから剥離することが可能となる。 When the heat-resistant polymer film is provided on the easily peelable layer, the easily peelable layer is present between the heat-resistant polymer film and the silane coupling agent layer. Therefore, the heat-resistant polymer film (for device formation) is formed. Regardless of the type of film), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed.
 (5)前記(4)の構成においては、450℃で1時間加熱した後の前記耐熱高分子フィルムと前記無機基板との90°剥離強度が、0.3N/cm以下であることが好ましい。 (5) In the configuration of (4), the 90 ° peel strength between the heat-resistant polymer film and the inorganic substrate after heating at 450 ° C. for 1 hour is preferably 0.3 N / cm or less.
 前記90°剥離強度が0.3N/cm以下であると、デバイス形成後に、無機基板と耐熱高分子フィルムとを剥離しやすい。 When the 90 ° peel strength is 0.3 N / cm or less, the inorganic substrate and the heat-resistant polymer film are easily peeled off after the device is formed.
 (6)前記(4)又は(5)の構成においては、前記耐熱高分子フィルムと前記無機基板との90°初期剥離強度が、0.03N/cm以上であることが好ましい。 (6) In the configuration of (4) or (5), the 90 ° initial peel strength between the heat-resistant polymer film and the inorganic substrate is preferably 0.03 N / cm or more.
 前記90°初期剥離強度が0.03N/cm以上であると、デバイス形成前や形成中に耐熱高分子フィルムが無機基板から剥がれてしまうことを防止することができる。 When the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the heat-resistant polymer film from peeling from the inorganic substrate before or during device formation.
 本発明によれば、デバイス形成後に、容易に無機基板をデバイス形成用のフィルムから剥離することが可能な積層体を提供することができる。 According to the present invention, it is possible to provide a laminate capable of easily peeling an inorganic substrate from a film for forming a device after forming the device.
ガラス基板にシランカップリング剤を塗布する実験装置の模式図である。It is a schematic diagram of the experimental apparatus which applies a silane coupling agent to a glass substrate.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本実施形態に係る積層体は、
 無機基板と、シランカップリング剤層と、易剥離層とをこの順で備え、
 前記易剥離層は、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する。
The laminated body according to this embodiment is
An inorganic substrate, a silane coupling agent layer, and an easily peelable layer are provided in this order.
The easily peelable layer has a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide.
 前記積層体は、シランカップリング剤層上に易剥離層を備えるため、当該易剥離層自体をデバイス形成用のフィルムとすれば、デバイス形成後に、容易に無機基板を当該易剥離層(デバイス形成用のフィルム)から剥離することが可能となる。また、易剥離層上にさらに耐熱高分子フィルムを備える構成とした場合には、耐熱高分子フィルムとシランカップリング剤層との間に、前記易剥離層が存在する構成となるため、耐熱高分子フィルム(デバイス形成用のフィルム)の種類に関わらず、デバイス形成後に、容易に無機基板を耐熱高分子フィルムから剥離することが可能となる。 Since the laminate has an easily peelable layer on the silane coupling agent layer, if the easily peelable layer itself is used as a film for forming a device, the inorganic substrate can be easily peeled off (device formation) after the device is formed. It is possible to peel off from the film). Further, when the heat-resistant polymer film is further provided on the easily peelable layer, the heat-resistant polymer film and the silane coupling agent layer have the easily peelable layer, so that the heat resistance is high. Regardless of the type of the molecular film (film for forming the device), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed.
 前記積層体は、450℃で1時間加熱した後の前記易剥離層と前記無機基板との90°剥離強度が、0.3N/cm以下であることが好ましく、より好ましくは0.29N/cm以下、さらに好ましくは0.28N/cm以下である。また、前記90°剥離強度は、0.03N/cm以上であることが好ましく、より好ましくは0.05N/cm以上、さらに好ましくは0.07N/cm以上である。前記90°剥離強度が0.3N/cm以下であると、デバイス形成後に、無機基板と易剥離層とを剥離しやすい。また、前記90°剥離強度が0.03N/cm以上であると、デバイス形成の途中等、意図していない段階での無機基板と易剥離層との剥離を防止することができる。
 前記90°剥離強度は、前記易剥離層の構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)によりコントロールすることができる。
 前記90°剥離強度の測定条件は、実施例記載の方法による。
The 90 ° peel strength between the easily peelable layer and the inorganic substrate after heating at 450 ° C. for 1 hour is preferably 0.3 N / cm or less, and more preferably 0.29 N / cm. Below, it is more preferably 0.28 N / cm or less. The 90 ° peel strength is preferably 0.03 N / cm or more, more preferably 0.05 N / cm or more, and further preferably 0.07 N / cm or more. When the 90 ° peel strength is 0.3 N / cm or less, the inorganic substrate and the easily peelable layer are easily peeled off after the device is formed. Further, when the 90 ° peel strength is 0.03 N / cm or more, it is possible to prevent the inorganic substrate from peeling from the easily peelable layer at an unintended stage such as during device formation.
The 90 ° peel strength is such that a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the easy peel layer, and conditions for forming a sheet (particularly). , Imidization conditions).
The measurement conditions for the 90 ° peel strength are according to the method described in the examples.
 前記積層体は、前記易剥離層と前記無機基板との90°初期剥離強度が、0.03N/cm以上であることが好ましく、より好ましくは0.05N/cm以上、さらに好ましくは0.07N/cm以上である。また、前記90°初期剥離強度は、0.3N/cm以下が好ましく、より好ましくは0.29N/cm以下、さらに好ましくは0.28N/cm以下である。前記90°初期剥離強度が0.03N/cm以上であると、デバイス形成前や形成中に易剥離層が無機基板から剥がれてしまうことを防止することができる。また、前記90°初期剥離強度が0.3N/cm以下であると、デバイス形成後、無機基板と易剥離層とを剥離しやすい。つまり、前記90°初期剥離強度が0.3/cm以下であると、デバイス形成中に、無機基板と易剥離層との間の剥離強度が多少上昇したとしても、両者を容易に剥離しやすい。
 前記90°初期剥離強度は、前記易剥離層の構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)によりコントロールすることができる。
 前記90°初期剥離強度の測定条件は、前記90°剥離強度の測定条件と同様である。
 本明細書において、前記90°初期剥離強度は、前記積層体を、大気雰囲気下、100℃10分間熱処理した後の無機基板と易剥離層との間の90°剥離強度をいう。
The 90 ° initial peel strength between the easily peelable layer and the inorganic substrate of the laminated body is preferably 0.03 N / cm or more, more preferably 0.05 N / cm or more, still more preferably 0.07 N. / Cm or more. The 90 ° initial peel strength is preferably 0.3 N / cm or less, more preferably 0.29 N / cm or less, and further preferably 0.28 N / cm or less. When the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the easy peel layer from peeling from the inorganic substrate before or during device formation. Further, when the 90 ° initial peel strength is 0.3 N / cm or less, the inorganic substrate and the easily peelable layer are easily peeled off after the device is formed. That is, when the 90 ° initial peel strength is 0.3 / cm or less, even if the peel strength between the inorganic substrate and the easy peel layer is slightly increased during device formation, both are easily peeled. ..
The 90 ° initial peel strength is determined by adopting a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide as the structure of the easy peel layer, and conditions for forming a sheet (the conditions for forming a sheet). In particular, it can be controlled by the imidization condition).
The measurement conditions for the 90 ° initial peel strength are the same as the measurement conditions for the 90 ° peel strength.
In the present specification, the 90 ° initial peel strength refers to the 90 ° peel strength between the inorganic substrate and the easy peeling layer after the laminated body is heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere.
 前記積層体は、さらに、前記易剥離層上に、耐熱高分子フィルムを備えることが好ましい。前記易剥離層上に、耐熱高分子フィルムを備えると、耐熱高分子フィルムとシランカップリング剤層との間に、前記易剥離層が存在する構成となるため、耐熱高分子フィルム(デバイス形成用のフィルム)の種類に関わらず、デバイス形成後に、容易に無機基板を耐熱高分子フィルムから剥離することが可能となる。 It is preferable that the laminated body further includes a heat-resistant polymer film on the easily peelable layer. When the heat-resistant polymer film is provided on the easily peelable layer, the easily peelable layer is present between the heat-resistant polymer film and the silane coupling agent layer. Therefore, the heat-resistant polymer film (for device formation) is formed. Regardless of the type of film), the inorganic substrate can be easily peeled off from the heat-resistant polymer film after the device is formed.
 耐熱高分子フィルムを備える場合、前記積層体は、450℃で1時間加熱した後の前記耐熱高分子フィルムと前記無機基板との90°剥離強度が、0.3N/cm以下であることが好ましく、より好ましくは0.29N/cm以下、さらに好ましくは0.28N/cm以下である。また、前記90°剥離強度は、0.03N/cm以上であることが好ましく、より好ましくは0.05N/cm以上、さらに好ましくは0.07N/cm以上である。前記90°剥離強度が0.3N/cm以下であると、デバイス形成後に、無機基板と耐熱高分子フィルムとを剥離しやすい。また、前記90°剥離強度が0.03N/cm以上であると、デバイス形成の途中等、意図していない段階での無機基板と耐熱高分子フィルムとの剥離を防止することができる。
 前記90°剥離強度は、前記易剥離層の構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)によりコントロールすることができる。
 前記90°剥離強度の測定条件は、実施例記載の方法による。
When the heat-resistant polymer film is provided, it is preferable that the 90 ° peel strength between the heat-resistant polymer film and the inorganic substrate after heating at 450 ° C. for 1 hour is 0.3 N / cm or less. , More preferably 0.29 N / cm or less, still more preferably 0.28 N / cm or less. The 90 ° peel strength is preferably 0.03 N / cm or more, more preferably 0.05 N / cm or more, and further preferably 0.07 N / cm or more. When the 90 ° peel strength is 0.3 N / cm or less, the inorganic substrate and the heat-resistant polymer film are easily peeled after the device is formed. Further, when the 90 ° peel strength is 0.03 N / cm or more, it is possible to prevent the inorganic substrate from peeling from the heat-resistant polymer film at an unintended stage such as during device formation.
The 90 ° peel strength is such that a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the easy peel layer, and conditions for forming a sheet (particularly). , Imidization conditions).
The measurement conditions for the 90 ° peel strength are according to the method described in the examples.
  耐熱高分子フィルムを備える場合、前記積層体は、前記耐熱高分子フィルムと前記無機基板との90°初期剥離強度が、0.03N/cm以上であることが好ましく、より好ましくは0.05N/cm以上、さらに好ましくは0.07N/cm以上である。また、前記90°初期剥離強度は、0.3N/cm以下が好ましく、より好ましくは0.29N/cm以下、さらに好ましくは0.28N/cm以下である。前記90°初期剥離強度が0.03N/cm以上であると、デバイス形成前や形成中に耐熱高分子フィルムが無機基板から剥がれてしまうことを防止することができる。また、前記90°初期剥離強度が0.3N/cm以下であると、デバイス形成後、無機基板と耐熱高分子フィルムとを剥離しやすい。つまり、前記90°初期剥離強度が0.3N/cm以下であると、デバイス形成中に、無機基板と耐熱高分子フィルムとの間の剥離強度が多少上昇したとしても、両者を容易に剥離しやすい。
 前記90°初期剥離強度は、前記易剥離層の構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)によりコントロールすることができる。
 前記90°初期剥離強度の測定条件は、前記90°剥離強度の測定条件と同様である。
 本明細書において、前記90°初期剥離強度は、前記積層体を、大気雰囲気下、100℃10分間熱処理した後の無機基板と耐熱高分子フィルムとの間の90°剥離強度をいう。
When the heat-resistant polymer film is provided, the laminate preferably has a 90 ° initial peel strength between the heat-resistant polymer film and the inorganic substrate of 0.03 N / cm or more, more preferably 0.05 N / cm. It is cm or more, more preferably 0.07 N / cm or more. The 90 ° initial peel strength is preferably 0.3 N / cm or less, more preferably 0.29 N / cm or less, and further preferably 0.28 N / cm or less. When the 90 ° initial peel strength is 0.03 N / cm or more, it is possible to prevent the heat-resistant polymer film from peeling from the inorganic substrate before or during device formation. Further, when the 90 ° initial peel strength is 0.3 N / cm or less, the inorganic substrate and the heat-resistant polymer film are easily peeled off after the device is formed. That is, when the 90 ° initial peel strength is 0.3 N / cm or less, even if the peel strength between the inorganic substrate and the heat-resistant polymer film is slightly increased during device formation, both are easily peeled off. Cheap.
The 90 ° initial peel strength is determined by adopting a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide as the structure of the easy peel layer, and conditions for forming a sheet (the conditions for forming a sheet). In particular, it can be controlled by the imidization condition).
The measurement conditions for the 90 ° initial peel strength are the same as the measurement conditions for the 90 ° peel strength.
In the present specification, the 90 ° initial peel strength refers to the 90 ° peel strength between the inorganic substrate and the heat-resistant polymer film after the laminated body is heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere.
<易剥離層>
 前記易剥離層は、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有するポリイミドフィルムである。
<Easy peeling layer>
The easily peelable layer is a polyimide film having a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
 一般的に、ポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「前駆体フィルム」、「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で、グリーンフィルムを高温熱処理して脱水閉環反応を行わせることで得られる。ここで、グリーンフィルムとは、溶媒を含有し、自己支持性を有するポリアミド酸のフィルムをいう。グリーンフィルムの溶媒含有量は、自己支持性を有していれば特に限定されないが、1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上であり、よりさらに好ましくは20質量%以上であり、特に好ましくは30質量%以上である。また、80質量%以下であることが好ましく、より好ましくは70質量%以下であり、さらに好ましくは60質量%以下であり、特に好ましくは50質量%以下である。
 また、別の方法として、溶媒中でジアミン類とテトラカルボン酸類との脱水閉環反応により得られるポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。
Generally, a polyimide film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried. (Also referred to as "precursor film" or "polyamic acid film"), and the green film is heat-treated at high temperature to perform a dehydration ring closure reaction on or in a state of being peeled off from the support for producing a polyimide film. It can be obtained by. Here, the green film refers to a polyamic acid film containing a solvent and having self-supporting properties. The solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
As another method, a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and contains, for example, 1 to 50% by mass of a solvent. It can also be obtained by treating a polyimide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
 本実施形態では、前記易剥離層を得るためのジアミン類として、ジアミノベンズアニリドを用いる。前記ジアミノベンズアニリドとしては、4,4’-ジアミノベンズアニリド(以下、DABANともいう)が好ましい。 In this embodiment, diaminobenzanilide is used as the diamines for obtaining the easily peelable layer. As the diaminobenzanilide, 4,4'-diaminobenzanilide (hereinafter, also referred to as DABAN) is preferable.
 前記ジアミノベンズアニリド(特に、DABAN)の含有量は、全ジアミン成分を100質量%としたとき、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特別に好ましくは、100質量%である。 The content of the diaminobenzanilide (particularly DABAN) is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass when the total diamine component is 100% by mass. % Or more, particularly preferably 100% by mass.
 前記ジアミノベンズアニリド以外のジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。より好ましくは、後述する耐熱性高分子フィルムに用いられるジアミン類を用いることができる。 The diamines other than the diaminobenzanilide are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used. More preferably, diamines used in the heat-resistant polymer film described later can be used.
 また、本実施形態では、前記易剥離層を得るためのテトラカルボン酸類として、ビフェニルテトラカルボン酸二無水物を用いる。前記ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)が好ましい。より好ましくは、後述する耐熱性高分子フィルムに用いられるテトラカルボン酸類を用いることができる。 Further, in the present embodiment, biphenyltetracarboxylic acid dianhydride is used as the tetracarboxylic acids for obtaining the easily peelable layer. As the biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, also referred to as BPDA) is preferable. More preferably, tetracarboxylic acids used in the heat-resistant polymer film described later can be used.
 前記ビフェニルテトラカルボン酸二無水物(特に、BPDA)の含有量は、全テトラカルボン酸成分を100質量%としたとき、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特別に好ましくは、100質量%である。 The content of the biphenyltetracarboxylic acid dianhydride (particularly BPDA) is preferably 80% by mass or more, more preferably 90% by mass or more, when the total tetracarboxylic acid component is 100% by mass. , More preferably 95% by mass or more, and particularly preferably 100% by mass.
 前記ビフェニルテトラカルボン酸二無水物以外のテトラカルボン酸類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。 The tetracarboxylic acids other than the biphenyltetracarboxylic acid dianhydride are not particularly limited, and aromatic tetracarboxylic acids (including the acid anhydride thereof) and aliphatic tetracarboxylic acids (the acid anhydride thereof) usually used for polyimide synthesis are not particularly limited. (Including the substance), alicyclic tetracarboxylic acids (including the acid anhydride thereof) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good.
 上述の通り、前記易剥離層は、前記易剥離層を得るためのジアミン類としてジアミノベンズアニリドを用い、テトラカルボン酸類としてビフェニルテトラカルボン酸二無水物を用いるため、前記易剥離層は、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有することとなる。 As described above, since the easily peelable layer uses diaminobenzanilide as the diamines for obtaining the easily peelable layer and biphenyltetracarboxylic acid dianhydride as the tetracarboxylic acids, the easily peelable layer is biphenyltetra. It will have a structural unit derived from carboxylic acid dianhydride and diaminobenzanilide.
 前記易剥離層は、なかでも、BPDA、及び、DABANに由来する構造単位を有するものであることが好ましい。前記易剥離層に含まれる全構造単位を100質量%としたとき、BPDA、及び、DABANに由来する構造単位の合計が80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは、100質量%である。 The easily peelable layer preferably has a structural unit derived from BPDA and DABAN. When the total structural units contained in the easily peelable layer are 100% by mass, the total of the structural units derived from BPDA and DABAN is preferably 80% by mass or more, more preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass.
 前記易剥離層は、BPDA、及び、DABANに由来する構造単位を有するポリイミド以外の組成を含有していてもよい。前記易剥離層に含まれる前記ポリイミド(BPDA、及び、DABANに由来する構造単位を有するポリイミド)の含有量は、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、100質量%であっても差し支えない。
 BPDA、及び、DABANに由来する構造単位を有するポリイミド以外の組成としては、本発明の趣旨に反しない限りにおいて特に限定されない。
The easily peelable layer may contain a composition other than BPDA and polyimide having a structural unit derived from DABAN. The content of the polyimide (BPDA and the polyimide having a structural unit derived from DABAN) contained in the easily peelable layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further. It is preferably 95% by mass or more, and may be 100% by mass.
The composition other than BPDA and polyimide having a structural unit derived from DABAN is not particularly limited as long as it does not contradict the gist of the present invention.
 前記易剥離層は、好ましくは融点が250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは400℃以上である。融点が250℃以上であると、耐熱性により優れる。また、前記易剥離層は、ガラス転移温度が200℃以上であることが好ましく、より好ましくは320℃以上であり、さらに好ましくは380℃以上である。ガラス転移温度が200℃以上であると、耐熱性により優れる。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を超える場合には、該当温度にて加熱した際の熱変形挙動を目視観察することで融点に達しているか否かを判断する。 The easily peelable layer preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and even more preferably 400 ° C. or higher. When the melting point is 250 ° C. or higher, the heat resistance is more excellent. Further, the easily peelable layer preferably has a glass transition temperature of 200 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 380 ° C. or higher. When the glass transition temperature is 200 ° C. or higher, the heat resistance is more excellent. In the present specification, the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it is determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
 上述した通り、前記易剥離層は、溶媒中でビフェニルテトラカルボン酸二無水物(テトラカルボン酸類)、及び、ジアミノベンズアニリド(ジアミン類)とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
 また、別の方法として、溶媒中でビフェニルテトラカルボン酸二無水物(テトラカルボン酸類)、及び、ジアミノベンズアニリド(ジアミン類)との脱水閉環反応により得られるポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。
As described above, the easily peelable layer is a polyamic acid (polyimide precursor) solution obtained by reacting biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent. Is applied to a support for producing a polyimide film and dried to obtain a green film (also referred to as “polyimide acid film”), and the green film is heated at a high temperature on the support for producing a polyimide film or in a state of being peeled off from the support. It is obtained by heat treatment to carry out a dehydration ring closure reaction.
As another method, a polyimide solution obtained by a dehydration ring closure reaction with biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent is used as a support for producing a polyimide film. It is coated and dried to form a polyimide film containing, for example, 1 to 50% by mass of a solvent, and further, a polyimide containing 1 to 50% by mass of a solvent on a support for producing a polyimide film or in a state of being peeled off from the support. It can also be obtained by treating the film at a high temperature and drying it.
 ビフェニルテトラカルボン酸二無水物とジアミノベンズアニリドとを重合してポリアミド酸を得るときに用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。なかでもN-メチル-2-ピロリドン、N,N-ジメチルアセトアミドが好ましく適用される。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの質量が、通常5~40質量%、好ましくは10~20質量%となるような量が挙げられる。 The solvent used when polymerizing biphenyltetracarboxylic acid dianhydride and diaminobenzanilide to obtain polyamic acid is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid. Polar organic solvents are preferred, for example N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethyl. Examples thereof include phosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols. Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferably applied. These solvents can be used alone or in admixture. The amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material, and the specific amount used is such that the mass of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by mass. The amount is preferably 10 to 20% by mass.
 前記ポリアミド酸は公知の製造方法により製造可能である。すなわち、原料である1種または2種以上のテトラカルボン酸無水成分(ビフェニルテトラカルボン酸二無水物を含む)、及び、1種または2種以上のジアミン成分(ジアミノベンズアニリドを含む)を使用し、前記溶媒中で重合してポリアミド酸溶液を得る。反応装置には、反応温度を制御するための温度調整装置を備えていることが好ましく、反応温度としては0℃以上80℃以下が好ましく、さらに15℃以上60℃以下であることが重合の逆反応であるポリアミド酸の加水分解を抑制し、しかもポリアミド酸の粘度が上昇しやすいことから好ましい。 The polyamic acid can be produced by a known production method. That is, one or more kinds of tetracarboxylic acid anhydrous components (including biphenyltetracarboxylic acid dianhydride) and one or more kinds of diamine components (including diaminobenzanilide) which are raw materials are used. , Polymerize in the solvent to obtain a polyamic acid solution. The reaction apparatus is preferably equipped with a temperature adjusting device for controlling the reaction temperature, and the reaction temperature is preferably 0 ° C. or higher and 80 ° C. or lower, and further 15 ° C. or higher and 60 ° C. or lower is the reverse of polymerization. It is preferable because it suppresses the hydrolysis of the polyamic acid, which is a reaction, and the viscosity of the polyamic acid tends to increase.
 前記ポリアミド酸溶液には、必要に応じでイミド化触媒、無機微粒子等を加えてもよい。 If necessary, an imidization catalyst, inorganic fine particles, or the like may be added to the polyamic acid solution.
 前記イミド化触媒としては、3級アミンを用いることが好ましい。前記3級アミンとしては複素環式の3級アミンが好ましい。前記複素環式の3級アミンの好ましい具体例としては、ピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、イソキノリンなどを挙げることができる。前記イミド化触媒の使用量は、ポリアミド酸(ポリイミド前駆体)の反応部位に対して0.01~2.00当量が好ましく、0.02~1.20当量がより好ましい。前記イミド化触媒の使用量を0.01当量以上にすると、触媒の効果を十分に得ることができる。また、前記イミド化触媒の使用量を2.00当量以下にすると、反応に関与しない触媒の割合を減らすことができ、費用の面で好適である。 It is preferable to use a tertiary amine as the imidization catalyst. As the tertiary amine, a heterocyclic tertiary amine is preferable. Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like. The amount of the imidization catalyst used is preferably 0.01 to 2.00 equivalents, more preferably 0.02 to 1.20 equivalents, relative to the reaction site of the polyamic acid (polyimide precursor). When the amount of the imidization catalyst used is 0.01 equivalent or more, the effect of the catalyst can be sufficiently obtained. Further, when the amount of the imidization catalyst used is 2.00 equivalents or less, the proportion of the catalyst not involved in the reaction can be reduced, which is preferable in terms of cost.
 前記無機微粒子としては、微粒子状の二酸化ケイ素(シリカ)粉末、酸化アルミニウム粉末等の無機酸化物粉末;微粒子状の炭酸カルシウム粉末、リン酸カルシウム粉末等の無機塩粉末を挙げることができる。前記無機微粒子が粗大な粒として存在していると、次工程以降での欠陥の原因となる可能性があるため、前記無機微粒子は、前記ポリアミド酸溶液中に、均一に分散されることが好ましい。 Examples of the inorganic fine particles include inorganic oxide powders such as fine-grained silicon dioxide (silica) powder and aluminum oxide powder; and inorganic salt powders such as fine-grained calcium carbonate powder and calcium phosphate powder. If the inorganic fine particles are present as coarse particles, they may cause defects in the next and subsequent steps. Therefore, it is preferable that the inorganic fine particles are uniformly dispersed in the polyamic acid solution. ..
 ポリアミド酸(ポリイミド前駆体)溶液、又は、ポリイミド溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。 Conventional methods such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating have been applied to the polyamic acid (polyimide precursor) solution or the polyimide solution. A known solution coating means can be appropriately used.
 前記ポリアミド酸溶液、又は、ポリイミド溶液の還元粘度(ηsp/C)は、0.1以上であることが好ましく、より好ましくは1以上であり、さらに好ましくは2以上である。また5以下であることが好ましく、より好ましくは4.5以下であり、さらに好ましくは4以下である。 The reduced viscosity (ηsp / C) of the polyamic acid solution or the polyimide solution is preferably 0.1 or more, more preferably 1 or more, and further preferably 2 or more. Further, it is preferably 5 or less, more preferably 4.5 or less, and further preferably 4 or less.
 グリーンフィルムを得るための乾燥条件(塗布したポリアミド酸の乾燥条件)としては、例えば、N,N-ジメチルアセトアミドを溶媒として用いる場合は、乾燥温度は、好ましくは70~130℃、より好ましくは80~125℃であり、さらに好ましくは85~120℃である。前記乾燥温度を130℃以下とすることにより、分子量低下がおこり、グリーンフィルムが脆くなることを防止することができる。また、前記乾燥温度を130℃以下とすることにより、グリーンフィルム製造時にイミド化が一部進行し、イミド化工程時に所望の物性が得られにくくなることを防止することかできる。また、前記乾燥温度を70℃以上とすることにより、乾燥時間が長くなること、分子量低下がおこりやすくなること、及び、乾燥不十分によるハンドリング性の低下を抑制することができる。また、乾燥時間としては、乾燥温度にもよるが、好ましくは5~90分間であり、より好ましくは15~80分間である。乾燥時間を90分以下とすることにより、分子量低下やフィルムが脆くなることを抑制することができる。また、乾燥時間を5分以上とすることにより、乾燥不十分によるハンドリング性の低下を抑制することができる。
 乾燥装置は従来公知のものを適用でき、熱風、熱窒素、遠赤外線、高周波誘導加熱などを挙げることができる。
As the drying conditions for obtaining the green film (drying conditions for the applied polyamic acid), for example, when N, N-dimethylacetamide is used as a solvent, the drying temperature is preferably 70 to 130 ° C., more preferably 80. It is about 125 ° C., more preferably 85 to 120 ° C. By setting the drying temperature to 130 ° C. or lower, it is possible to prevent the green film from becoming brittle due to a decrease in molecular weight. Further, by setting the drying temperature to 130 ° C. or lower, it is possible to prevent the imidization from partially progressing during the production of the green film and making it difficult to obtain the desired physical properties during the imidization step. Further, by setting the drying temperature to 70 ° C. or higher, it is possible to suppress a long drying time, a tendency for a decrease in molecular weight, and a decrease in handleability due to insufficient drying. The drying time is preferably 5 to 90 minutes, more preferably 15 to 80 minutes, although it depends on the drying temperature. By setting the drying time to 90 minutes or less, it is possible to suppress a decrease in molecular weight and brittleness of the film. Further, by setting the drying time to 5 minutes or more, it is possible to suppress deterioration of handleability due to insufficient drying.
Conventionally known drying devices can be applied, and examples thereof include hot air, hot nitrogen, far infrared rays, and high frequency induction heating.
 グリーンフィルムをイミド化する具体的な方法としては、加熱処理を複数ステップで行いイミド化させることが好ましい。ステップ数としては、2以上であることが好ましく、より好ましくは3以上である。またステップ数としては、10以下が好ましく、より好ましくは5以下である。
 ステップ数を2以上(より好ましくは3以上)とすることにより、急激な加熱による溶媒の急激な蒸発を防止することができる。その結果、表面平滑性を良好とすることができる。また、ステップ数を2以上(より好ましくは3以上)とすることにより、分子が動き易くなり、テンションコントロールにより分子配向を高め易くすることができる。
 一方でステップ数が多すぎると逆反応が起こりやすい温度帯を使用することになり、得られるポリイミドフィルムの力学物性が低下するおそれがある。そこで、ステップ数を10以下とすることにより、得られるポリイミドフィルムの力学物性が低下することを抑制することができる。
 イミド化(加熱処理)を3ステップで行う場合、各ステップにおける温度や時間は、以下の観点で設定する。
 第1ステップ:残存溶媒を好適に除去することにより、フィルムの厚さ斑を少なくする。
 第1~第2ステップ:ある程度溶媒が残った状態でイミド化とテンションコントロールを行い、高配向とする。また、逆反応の起こりやすい温度域を避ける。
 第3ステップ:イミド化を完了させ、逆反応により生じた末端を再結合させる。
 具体的に、イミド化(加熱処理)を3ステップで行う場合の各ステップにおける温度や時間の好ましい範囲は、以下の通りである。
 第1ステップのイミド化温度としては、残存溶媒を除去することにより、フィルムの厚さ斑を少なくすることができることから、150℃以上であることが好ましく、より好ましくは180℃超であり、さらに好ましくは185℃以上であり、特に、好ましくは190℃以上である。また、第1ステップのイミド化温度は、220℃以下であることが好ましく、より好ましくは210℃以下である。
 第1ステップのイミド化時間としては、1分以上であることが好ましく、より好ましくは2分以上である。また、第1ステップのイミド化時間としては、10分以下であることが好ましく、より好ましくは5分以下である。
 第1ステップ終了後、第2ステップのイミド化反応(加熱処理)を行う。第2ステップのイミド化温度としては、220℃超であることが好ましく、より好ましくは230℃以上であり、さらに好ましくは240℃以上である。また、第2ステップのイミド化温度としては、280℃以下であることが好ましく、より好ましくは270℃以下である。
 第2ステップのイミド化時間としては、1分以上であることが好ましく、より好ましくは2分以上である。また、第2ステップのイミド化時間としては、10分以下であることが好ましく、より好ましくは5分以下である。
 第2ステップ終了後、第3ステップのイミド化反応(加熱処理)を行う。第3ステップのイミド化温度としては、280℃超であることが好ましく、より好ましくは290℃以上であり、さらに好ましくは295℃以上である。また、第3ステップのイミド化温度としては、フィルムの厚さ斑を少なくすることができることから、480℃未満であることが好ましく、より好ましくは400℃以下であり、さらに好ましくは350℃以下である。
 第3ステップのイミド化時間としては、2分以上であることが好ましく、より好ましくは4分以上である。また、第3ステップのイミド化時間としては、20分以下であることが好ましく、より好ましくは10分以下である。
 上記複数ステップを経由することで、フィルムの厚さ斑の少ない易剥離層を得ることができる。
As a specific method for imidizing the green film, it is preferable to perform a heat treatment in a plurality of steps to imidize the green film. The number of steps is preferably 2 or more, and more preferably 3 or more. The number of steps is preferably 10 or less, more preferably 5 or less.
By setting the number of steps to 2 or more (more preferably 3 or more), it is possible to prevent rapid evaporation of the solvent due to rapid heating. As a result, the surface smoothness can be improved. Further, by setting the number of steps to 2 or more (more preferably 3 or more), the molecules can move easily, and the tension control can easily increase the molecular orientation.
On the other hand, if the number of steps is too large, a temperature range in which a reverse reaction is likely to occur is used, and the mechanical properties of the obtained polyimide film may deteriorate. Therefore, by setting the number of steps to 10 or less, it is possible to suppress deterioration of the mechanical properties of the obtained polyimide film.
When imidization (heat treatment) is performed in three steps, the temperature and time in each step are set from the following viewpoints.
First step: By preferably removing the residual solvent, the thickness unevenness of the film is reduced.
1st to 2nd steps: Imidization and tension control are performed with a certain amount of solvent remaining to achieve high orientation. Also, avoid temperature ranges where reverse reactions are likely to occur.
Third step: The imidization is completed and the terminals produced by the reverse reaction are recombined.
Specifically, when imidization (heat treatment) is performed in three steps, the preferable range of temperature and time in each step is as follows.
The imidization temperature of the first step is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 180 ° C. or higher, because the thickness unevenness of the film can be reduced by removing the residual solvent. It is preferably 185 ° C. or higher, and particularly preferably 190 ° C. or higher. The imidization temperature of the first step is preferably 220 ° C. or lower, more preferably 210 ° C. or lower.
The imidization time of the first step is preferably 1 minute or longer, more preferably 2 minutes or longer. The imidization time of the first step is preferably 10 minutes or less, more preferably 5 minutes or less.
After the completion of the first step, the imidization reaction (heat treatment) of the second step is performed. The imidization temperature of the second step is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 240 ° C. or higher. The imidization temperature in the second step is preferably 280 ° C. or lower, more preferably 270 ° C. or lower.
The imidization time of the second step is preferably 1 minute or longer, more preferably 2 minutes or longer. The imidization time of the second step is preferably 10 minutes or less, more preferably 5 minutes or less.
After the completion of the second step, the imidization reaction (heat treatment) of the third step is performed. The imidization temperature in the third step is preferably more than 280 ° C, more preferably 290 ° C or higher, and even more preferably 295 ° C or higher. The imidization temperature in the third step is preferably less than 480 ° C, more preferably 400 ° C or lower, still more preferably 350 ° C or lower, because the thickness unevenness of the film can be reduced. be.
The imidization time of the third step is preferably 2 minutes or more, more preferably 4 minutes or more. The imidization time of the third step is preferably 20 minutes or less, more preferably 10 minutes or less.
By going through the above-mentioned plurality of steps, an easily peelable layer with less thickness unevenness of the film can be obtained.
 イミド化(加熱処理)は、フィルム両端をピンテンターやクリップで把持して実施される。その際、フィルムの均一性を保持するためには、可能な限りフィルムの幅方向及び長手方向の張力を均一にすることが好ましい。具体的には、フィルムをピンテンターに供する直前に、フィルム両端部をブラシで押さえ、ピンが均一にフィルムに突き刺さるような工夫を挙げることができる。ブラシは、剛直で耐熱性のある繊維状のものが望ましく、高強度高弾性率モノフィラメントを採用することができる。これらイミド化の条件(温度、時間、張力)を満たすことにより、フィルム内部(表裏や平面方向)の配向歪の発生を抑制し、厚さ斑等が所定範囲となり、かつ機械的な物性(特に、引張弾性率、引張破断強度等)を充分に維持した易剥離層(ポリイミドフィルム)を得ることができる。 Imidization (heat treatment) is carried out by grasping both ends of the film with a pin tenter or a clip. At that time, in order to maintain the uniformity of the film, it is preferable to make the tension in the width direction and the longitudinal direction of the film as uniform as possible. Specifically, just before the film is applied to the pin tenter, both ends of the film are pressed with a brush so that the pins are evenly pierced into the film. The brush is preferably a rigid and heat-resistant fibrous brush, and a high-strength and high elastic modulus monofilament can be adopted. By satisfying these imidization conditions (temperature, time, tension), the occurrence of orientation strain inside the film (front and back and plane direction) is suppressed, the thickness unevenness and the like are within a predetermined range, and the mechanical properties (particularly) are mechanical. , Tension elastic modulus, tensile breaking strength, etc.) can be sufficiently maintained to obtain an easily peelable layer (polyimide film).
 前記易剥離層は、ポリアミド酸のグリーンフィルムを経由して製造されることが好ましい。すなわち、グリーフィルムをイミド化反応することで、より剥離性や耐熱性に優れた剥離シートを得ることができる。 The easily peelable layer is preferably manufactured via a green film of polyamic acid. That is, by imidizing the grease film, a release sheet having more excellent peelability and heat resistance can be obtained.
 前記易剥離層は、通常は無延伸のシートであることが好ましいが、1軸または2軸に延伸されたシートであっても構わない。ここで、無延伸のシートとは、テンター延伸、ロール延伸、インフレーション延伸などによってフィルムの面拡張方向に機械的な外力を意図的に加えずに得られるフィルムをいう。 The easily peelable layer is usually preferably a non-stretched sheet, but may be a uniaxially or biaxially stretched sheet. Here, the non-stretched sheet means a film obtained by tenter stretching, roll stretching, inflation stretching, or the like without intentionally applying a mechanical external force in the surface expansion direction of the film.
 高分子フィルムと積層して使用する場合の易剥離層の厚さは5μm以下が好ましく、より好ましくは3μm以下であり、さらに好ましくは1μm以下である。易剥離層の厚さの下限は特に制限されないが、実質的には0.01μm以上である。易剥離層が5μm以下であると、高分子フィルムとのCTE、力学物性差による反りの発生を抑制することができる。
 また、易剥離層を、高分子フィルムと積層せずに、デバイス形成用のフィルムとして使用する場合、易剥離層の厚さは3μm以上が好ましく、より好ましくは11μm以上であり、さらに好ましくは13μm以上であり、より一層好ましくは15μm以上である。前記易剥離層の厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。
The thickness of the easily peelable layer when used by laminating with a polymer film is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 1 μm or less. The lower limit of the thickness of the easily peelable layer is not particularly limited, but is substantially 0.01 μm or more. When the easily peelable layer is 5 μm or less, it is possible to suppress the occurrence of warpage due to the difference in CTE and mechanical properties with the polymer film.
When the easily peelable layer is used as a film for forming a device without being laminated with a polymer film, the thickness of the easily peelable layer is preferably 3 μm or more, more preferably 11 μm or more, still more preferably 13 μm. The above is more preferably 15 μm or more. The upper limit of the thickness of the easily peelable layer is not particularly limited, but is preferably 250 μm or less, more preferably 150 μm or less, still more preferably 90 μm or less for use as a flexible electronic device.
 前記易剥離層の30℃から300℃の間の平均のCTEは、好ましくは、-5ppm/℃~+20ppm/℃であり、より好ましくは-5ppm/℃~+15ppm/℃であり、さらに好ましくは1ppm/℃~+10ppm/℃である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても易剥離層と無機基板とが剥がれることを回避できる。特に、高分子フィルムと積層して使用する場合には、高分子フィルムとのCTE差も小さいため、反りを抑制できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記易剥離層のCTEとは、易剥離層と同組成の単膜フィルムについて測定した値であり、塗工の流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。 The average CTE of the easily peelable layer between 30 ° C. and 300 ° C. is preferably −5 ppm / ° C. to + 20 ppm / ° C., more preferably −5 ppm / ° C. to + 15 ppm / ° C., and even more preferably 1 ppm. It is from / ° C to + 10 ppm / ° C. When the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (inorganic substrate) can be kept small, and the easily peelable layer and the inorganic substrate can be peeled off even when subjected to a heat application process. It can be avoided. In particular, when it is used by laminating it with a polymer film, the CTE difference from the polymer film is small, so that warpage can be suppressed. Here, CTE is a factor that represents reversible expansion and contraction with respect to temperature. The CTE of the easily peelable layer is a value measured for a single film film having the same composition as the easily peelable layer, and is an average of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the coating. Point to a value.
 前記易剥離層の30℃から500℃の間の熱収縮率は、±0.9%であることが好ましく、さらに好ましくは±0.6%である。熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。易剥離層の熱収縮率は、易剥離層と同一組成の単層フィルムの測定により求める。 The heat shrinkage of the easily peelable layer between 30 ° C. and 500 ° C. is preferably ± 0.9%, more preferably ± 0.6%. The heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature. The heat shrinkage rate of the easily peelable layer is determined by measuring a single-layer film having the same composition as the easily peelable layer.
<耐熱高分子フィルム>
 本明細書において、耐熱高分子とは、融点が400℃以上、好ましくは500℃以上であり、ガラス転移温度が250℃以上、好ましくは320℃以上、さらに好ましくは380℃以上の高分子である。以下、煩雑さを避けるために単に高分子とも称する。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を越える場合には、該当温度にて加熱した際の熱変形挙動を目し観察することで融点に達しているか否かを判断して良い。
<Heat-resistant polymer film>
In the present specification, the heat-resistant polymer is a polymer having a melting point of 400 ° C. or higher, preferably 500 ° C. or higher, and a glass transition temperature of 250 ° C. or higher, preferably 320 ° C. or higher, more preferably 380 ° C. or higher. .. Hereinafter, it is also simply referred to as a polymer in order to avoid complication. In the present specification, the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by observing and observing the thermal deformation behavior when heated at the corresponding temperature.
 前記耐熱高分子フィルム(以下、単に高分子フィルムとも称する)としては、ポリイミド、ポリアミドイミド、ポリエーテルイミド、フッ素化ポリイミドといったポリイミド系樹脂(例えば、芳香族ポリイミド樹脂、脂環族ポリイミド樹脂);ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートといった共重合ポリエステル(例えば、全芳香族ポリエステル、半芳香族ポリエステル);ポリメチルメタクリレートに代表される共重合(メタ)アクリレート;ポリカーボネート;ポリアミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルケトン;酢酸セルロース;硝酸セルロース;芳香族ポリアミド;ポリ塩化ビニル;ポリフェノール;ポリアリレート;ポリフェニレンスルフィド;ポリフェニレンオキシド;ポリスチレン等のフィルムを例示できる。
 ただし、前記高分子フィルムは、450℃以上の熱処理を伴うプロセスに用いられることが前提であるため、例示された高分子フィルムの中から実際に適用できる物は限られる。前記高分子フィルムのなかでも好ましくは、所謂スーパーエンジニアリングプラスチックを用いたフィルムであり、より具体的には、芳香族ポリイミドフィルム、芳香族アミドフィルム、芳香族アミドイミドフィルム、芳香族ベンゾオキサゾールフィルム、芳香族ベンゾチアゾールフィルム、芳香族ベンゾイミダゾールフィルム等が挙げられる。
The heat-resistant polymer film (hereinafter, also simply referred to as a polymer film) includes polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin and alicyclic polyimide resin); polyethylene. , Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate and other copolymerized polyesters (eg, fully aromatic polyesters, semi-aromatic polyesters); copolymerized (meth) acrylates typified by polymethylmethacrylate; polycarbonate. Polyimide; Polysulphon; Polyethersulphon; Polyetherketone; Cellulose acetate; Cellulite nitrate; Aromatic polyamide; Polyvinyl chloride; Polyphenol; Polyallylate; Polyphenylene sulfide; Polyphenylene oxide; Polystyrene and other films can be exemplified.
However, since the polymer film is premised on being used in a process involving a heat treatment of 450 ° C. or higher, the polymer films exemplified are limited to those that can be actually applied. Among the polymer films, a film using a so-called super engineering plastic is preferable, and more specifically, an aromatic polyimide film, an aromatic amide film, an aromatic amide imide film, an aromatic benzoxazole film, and an fragrance. Examples thereof include group benzothiazole film and aromatic benzoimidazole film.
 以下に前記高分子フィルムの一例であるポリイミド系樹脂フィルム(ポリイミドフィルムと称する場合もある)についての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。 The details of the polyimide resin film (sometimes referred to as a polyimide film), which is an example of the polymer film, will be described below. Generally, a polyimide-based resin film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried. It is also referred to as "polyamic acid film"), and is obtained by subjecting a green film to a high-temperature heat treatment on a support for producing a polyimide film or in a state of being peeled off from the support to carry out a dehydration ring closure reaction.
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。 The application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Means can be used as appropriate.
 ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。 The diamines constituting the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable. When aromatic diamines having a benzoxazole structure are used, it is possible to develop high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance. The diamines may be used alone or in combination of two or more.
 ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。 The aromatic diamines having a benzoxazole structure are not particularly limited, and are, for example, 5-amino-2- (p-aminophenyl) benzoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5 -Amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2,2' -P-Phenylenebis (6-aminobenzoxazole), 1- (5-aminobenzoxazole) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (4,4-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole, 2, 6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole, 2,6- (3,3'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,3') -Diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole and the like can be mentioned.
 上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(ビスアニリン)、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、および前記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。 Examples of aromatic diamines other than the above-mentioned aromatic diamines having a benzoxazole structure include 2,2'-dimethyl-4,4'-diaminobiphenyl and 1,4-bis [2- (4-aminophenyl). )-2-propyl] benzene (bisaniline), 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4 '-Bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl ] Sulfates, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl ] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 3,3'- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4' -Diaminodiphenylsulfoxide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4, 4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [ 4- (4-Aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [4- (4-aminophenoxy) phenyl] propane, 1, 2-Bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] Propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3 -Bis [4- (4-aminophenoxy) phenyl] butane, 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane , 2,3-Bis [4- (4-aminophenoxy) phenyl] butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl] Propane, 2,2-bis [4- (4-aminophenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy)- 3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl]- 1,1,1,3,3,3-hexafluoropropane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-) Aminophenoxy) Benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4 -(4-Aminophenoxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl ] Ether, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3- (3-) Aminophenoxy) benzoyl] benzene, 4,4'-bis [(3-aminophenoxy) benzoyl] benzene, 1,1-bis [4- (3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-Aminophenoxy) Benzene] Propane, 3,4'-diaminodiphenylsulfide, 2,2-bis [3- (3-Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoro Propane, bis [4- (3-aminophenoxy) phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2-bis [4- (3-aminophenoxy) phenyl] Etan, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4'-bis [3- (4-Aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [4- (4-amino-α, α-) Dimethylbenzyl) phenoxy] benzophenone, 4,4'-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl] Sulfone, 1,4-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] Benzene, 1,3-bis [4- (4-amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluorophenoxy) -Α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino) -6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3'-diamino-4,4'-diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3, 4'-Diamino-4,5'-diphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-Diamino-5'-Phenoxybenzophenone, 3,3'-Diamino-4,4'-Dibiphenoxybenzophenone, 4,4'-Diamino-5,5'-Dibiphenoxybenzophenone, 3,4'- Diamino-4,5'-dibiphenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-Diamino-5'-biphenoxybenzophenone, 1,3-bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1, 3-Bis (4-amino-5-phenoxybenzoyl) benzene, 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-bif) Enoxybenzoyl) benzene, 1,4-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4) -Amino-5-biphenoxybenzoyl) benzene, 2,6-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzonitrile, and one of the hydrogen atoms on the aromatic ring of the aromatic diamine. Part or all of a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, a cyano group, or a part or all of a hydrogen atom of an alkyl group or an alkoxyl group having 1 to 3 carbon atoms substituted with a halogen atom. Examples thereof include aromatic diamines substituted with an alkyl halide group or an alkoxyl group.
 前記脂肪族ジアミン類としては、例えば、1,2-ジアミノエタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,8-ジアミノオタン等が挙げられる。
 前記脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。
 芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
Examples of the aliphatic diamines include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminootan and the like.
Examples of the alicyclic diamines include 1,4-diaminocyclohexane, 4,4'-methylenebis (2,6-dimethylcyclohexylamine) and the like.
The total amount of diamines (aliphatic diamines and alicyclic diamines) other than aromatic diamines is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less of all diamines. Is. In other words, the aromatic diamines are preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all diamines.
 ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環族テトラカルボン酸類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 Examples of the tetracarboxylic acids constituting the polyamic acid include aromatic tetracarboxylic acids (including its acid anhydride), aliphatic tetracarboxylic acids (including its acid anhydride) and alicyclic tetracarboxylic acids usually used for polyimide synthesis. Acids (including its acid anhydride) can be used. Among them, aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclics are more preferable from the viewpoint of light transmission. Group tetracarboxylic acids are more preferred. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good. The tetracarboxylic acids may be used alone or in combination of two or more.
 脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
Examples of the alicyclic tetracarboxylic acid include cyclobutanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid and the like. Examples include carboxylic acids and their acid anhydrides. Among these, dianhydrides having two anhydride structures (eg, cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride, 3,3', 4,4 '-Bicyclohexyltetracarboxylic acid dianhydride, etc.) is suitable. The alicyclic tetracarboxylic acids may be used alone or in combination of two or more.
When transparency is important, the alicyclic tetracarboxylic acids are preferably, for example, 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all tetracarboxylic acids.
 芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。
 芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
The aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably an acid anhydride thereof. Examples of such aromatic tetracarboxylic acids include pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, 3. , 3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 2,2-bis [4- (3,4-di) Carboxylic phenoxy) phenyl] propanoic acid anhydride and the like can be mentioned.
When heat resistance is important, the aromatic tetracarboxylic acids are preferably, for example, 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more of all tetracarboxylic acids.
 前記高分子フィルムの厚さは3μm以上が好ましく、より好ましくは11μm以上であり、さらに好ましくは24μm以上であり、より一層好ましくは45μm以上である。前記高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。 The thickness of the polymer film is preferably 3 μm or more, more preferably 11 μm or more, further preferably 24 μm or more, and even more preferably 45 μm or more. The upper limit of the thickness of the polymer film is not particularly limited, but is preferably 250 μm or less, more preferably 150 μm or less, still more preferably 90 μm or less for use as a flexible electronic device.
 前記高分子フィルムの30℃から300℃の間の平均のCTEは、好ましくは、-5ppm/℃~+20ppm/℃であり、より好ましくは-5ppm/℃~+15ppm/℃であり、さらに好ましくは1ppm/℃~+10ppm/℃である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと無機基板とが剥がれることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記高分子フィルムのCTEとは、高分子フィルムの流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。前記高分子フィルムのCTEの測定方法は、実施例に記載の方法による。 The average CTE of the polymer film between 30 ° C. and 300 ° C. is preferably −5 ppm / ° C. to + 20 ppm / ° C., more preferably −5 ppm / ° C. to + 15 ppm / ° C., still more preferably 1 ppm. It is from / ° C to + 10 ppm / ° C. When the CTE is within the above range, the difference in the coefficient of linear expansion from the general support (inorganic substrate) can be kept small, and the polymer film and the inorganic substrate are peeled off even when subjected to the heat application process. It can be avoided. Here, CTE is a factor that represents reversible expansion and contraction with respect to temperature. The CTE of the polymer film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the polymer film. The method for measuring CTE of the polymer film is as described in Examples.
 前記高分子フィルムの30℃から500℃の間の熱収縮率は、±0.9%であることが好ましく、さらに好ましくは±0.6%である。熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。 The thermal shrinkage of the polymer film between 30 ° C. and 500 ° C. is preferably ± 0.9%, more preferably ± 0.6%. The heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature.
 前記高分子フィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは120MP以上であり、さらに好ましくは240MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。前記引張破断強度が60MPa以上であると、無機基板から剥離する際に前記高分子フィルムが破断してしまうことを防止することができる。なお、前記高分子フィルムの引張破断強度とは、高分子フィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。前記高分子フィルムの引張破断強度の測定方法は、実施例に記載の方法による。 The tensile breaking strength of the polymer film is preferably 60 MPa or more, more preferably 120 MPa or more, and further preferably 240 MPa or more. The upper limit of the tensile breaking strength is not particularly limited, but is practically less than about 1000 MPa. When the tensile breaking strength is 60 MPa or more, it is possible to prevent the polymer film from breaking when peeled from the inorganic substrate. The tensile breaking strength of the polymer film refers to the average value of the tensile breaking strength in the flow direction (MD direction) and the tensile breaking strength in the width direction (TD direction) of the polymer film. The method for measuring the tensile breaking strength of the polymer film is as described in Examples.
 前記高分子フィルムの引張破断伸度は、1%以上が好ましく、より好ましくは5%以上であり、さらに好ましくは20%以上である。前記引張破断伸度が、1%以上であると、取り扱い性に優れる。なお、前記高分子フィルムの引張破断伸度とは、高分子フィルムの流れ方向(MD方向)の引張破断伸度及び幅方向(TD方向)の引張破断伸度の平均値を指す。前記高分子フィルムの引張破断伸度の測定方法は、実施例に記載の方法による。 The tensile elongation at break of the polymer film is preferably 1% or more, more preferably 5% or more, still more preferably 20% or more. When the tensile elongation at break is 1% or more, the handleability is excellent. The tensile elongation at break of the polymer film refers to the average value of the tensile elongation at break in the flow direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the polymer film. The method for measuring the tensile elongation at break of the polymer film is as described in Examples.
 前記高分子フィルムの引張弾性率は、3GPa以上が好ましく、より好ましくは6GPa以上であり、さらに好ましくは8GPa以上である。前記引張弾性率が、3GPa以上であると、無機基板から剥離する際の前記高分子フィルムの伸び変形が少なく、取り扱い性に優れる。前記引張弾性率は、20GPa以下が好ましく、より好ましくは12GPa以下であり、さらに好ましくは10GPa以下である。前記引張弾性率が、20GPa以下であると、前記高分子フィルムをフレキシブルなフィルムとして使用できる。なお、前記高分子フィルムの引張弾性率とは、高分子フィルムの流れ方向(MD方向)の引張弾性率及び幅方向(TD方向)の引張弾性率の平均値を指す。前記高分子フィルムの引張弾性率の測定方法は、実施例に記載の方法による。 The tensile elastic modulus of the polymer film is preferably 3 GPa or more, more preferably 6 GPa or more, and further preferably 8 GPa or more. When the tensile elastic modulus is 3 GPa or more, the polymer film is less stretched and deformed when peeled from the inorganic substrate, and is excellent in handleability. The tensile elastic modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and further preferably 10 GPa or less. When the tensile elastic modulus is 20 GPa or less, the polymer film can be used as a flexible film. The tensile elastic modulus of the polymer film refers to the average value of the tensile elastic modulus in the flow direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the polymer film. The method for measuring the tensile elastic modulus of the polymer film is as described in Examples.
 前記高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
The thickness unevenness of the polymer film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. When the thickness spot exceeds 20%, it tends to be difficult to apply to a narrow part. The film thickness unevenness can be obtained, for example, by randomly extracting about 10 positions from the film to be measured with a contact-type film thickness meter, measuring the film thickness, and using the following formula.
Film thickness spots (%)
= 100 x (maximum film thickness-minimum film thickness) ÷ average film thickness
 前記高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺高分子フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状高分子フィルムの形態のものがより好ましい。前記高分子フィルムがロール状に巻かれていると、ロール状に巻かれた耐熱高分子フィルムという形態での輸送が容易となる。 The polymer film is preferably obtained in the form of being wound as a long polymer film having a width of 300 mm or more and a length of 10 m or more at the time of its manufacture, and has a roll-like height wound around a winding core. The one in the form of a molecular film is more preferable. When the polymer film is wound in a roll shape, it can be easily transported in the form of a heat-resistant polymer film wound in a roll shape.
 前記高分子フィルムにおいては、ハンドリング性および生産性を確保する為、高分子フィルム中に粒子径が10~1000nm程度の滑材(粒子)を、0.03~3質量%程度、添加・含有させて、高分子フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。 In the polymer film, in order to ensure handleability and productivity, a lubricant (particle) having a particle size of about 10 to 1000 nm is added / contained in the polymer film in an amount of about 0.03 to 3% by mass. Therefore, it is preferable to impart fine irregularities to the surface of the polymer film to ensure slipperiness.
<無機基板>
 前記無機基板としては無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
<Inorganic substrate>
The inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance. For example, a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramic plates are used. Examples of the semiconductor wafer and the composite of the metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
 前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。 Examples of the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pylex (registered trademark)), borosilicate glass (non-alkali), and the like. Includes borosilicate glass (microsheet), aluminosilicate glass and the like. Among these, those having a coefficient of linear expansion of 5 ppm / K or less are desirable, and if they are commercially available products, "Corning (registered trademark) 7059" and "Corning (registered trademark) 1737" manufactured by Corning Inc., which are glass for liquid crystal, are used. "EAGLE", "AN100" manufactured by Asahi Glass Co., Ltd., "OA10" manufactured by Nippon Electric Glass Co., Ltd., "AF32" manufactured by SCHOTT Co., Ltd., etc. are desirable.
 前記半導体ウエハとしては、特に限定されないが、シリコンウエハ、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。なかでも、好ましく用いられるウエハはシリコンウエハであり、特に好ましくは8インチ以上のサイズの鏡面研磨シリコンウエハである。 The semiconductor wafer is not particularly limited, but is limited to silicon wafer, germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, nitrogen-phosphorus-arsenide-antimony, SiC, InP (indium phosphorus), InGaAs, GaInNAs, and the like. Wafers such as LT, LN, ZnO (zinc oxide), CdTe (cadmium telluride), and ZnSe (zinc selenide) can be mentioned. Among them, the wafer preferably used is a silicon wafer, and particularly preferably a mirror-polished silicon wafer having a size of 8 inches or more.
 前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体の線膨張係数(CTE)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、高分子フィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、Cr、Ni、TiN、Mo含有Cuなどが好適な例として挙げられる。 The metal includes single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as inconel, monel, mnemonic, carbon copper, Fe—Ni-based invar alloy, and superinvar alloy. Further, a multilayer metal plate formed by adding another metal layer or a ceramic layer to these metals is also included. In this case, if the overall coefficient of linear expansion (CTE) with the additional layer is low, Cu, Al, or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has properties such as strong adhesion to the polymer film, no diffusion, and good chemical resistance and heat resistance. Although not, Cr, Ni, TiN, Mo-containing Cu and the like are preferable examples.
 前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、高分子フィルム層と無機基板との剥離強度が不充分となる場合がある。 It is desirable that the flat surface portion of the inorganic substrate is sufficiently flat. Specifically, the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is coarser than this, the peel strength between the polymer film layer and the inorganic substrate may be insufficient.
 前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.07mm以上、より好ましくは0.15mm以上、さらに好ましくは0.3mm以上である。 The thickness of the inorganic substrate is not particularly limited, but from the viewpoint of handleability, a thickness of 10 mm or less is preferable, 3 mm or less is more preferable, and 1.3 mm or less is further preferable. The lower limit of the thickness is not particularly limited, but is preferably 0.07 mm or more, more preferably 0.15 mm or more, still more preferably 0.3 mm or more.
 <シランカップリング剤層>
 前記無機基板上には、シランカプッリング剤を含有するシランカプッリング剤層が設けられている。
<Silane coupling agent layer>
A silane coupling agent layer containing a silane coupling agent is provided on the inorganic substrate.
 前記シランカップリング剤は、無機基板と易剥離層との間に物理的ないし化学的に介在し、無機基板と易剥離層との間の接着力を高める作用を有する。
 前記カップリング剤は、特に限定されるものではないが、アミノ基あるいはエポキシ基を持ったシランカップリング剤が好ましい。シランカップリング剤の好ましい具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
The silane coupling agent physically or chemically intervenes between the inorganic substrate and the easily peelable layer, and has an effect of enhancing the adhesive force between the inorganic substrate and the easily peelable layer.
The coupling agent is not particularly limited, but a silane coupling agent having an amino group or an epoxy group is preferable. Preferred specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (. Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-Epoxycyclohexyl) Ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, vinyltricrolsilane, Vinyl trimethoxysilane, vinyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycid Xipropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-Acryloxypropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane , 3-Chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isoxapropyltriethoxysilane, tris- (3-trimethoxy) Cyrilpropyl) isocyanurate, chloromethylphenetyltrimethoxysilane, chloromethyltrimethoxysilane, aminophenyltrimethoxysilane, aminophenetyltrimethoxysilane, aminophenylaminomethylphenetyltrimethoxysilane and the like.
 前記シランカップリング剤としては、前記のほかに、n-プロピルトリメトキシシラン、ブチルトリクロロシラン、2-シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n-オクチルトリクロロシラン、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2-メトキシエトキシ)シラン、トリクロロ-2-シアノエチルシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシランなどを使用することもできる。 In addition to the above, the silane coupling agent includes n-propyltrimethoxysilane, butyltrichlorosilane, 2-cyanoethyltriethoxysilane, cyclohexyltrichlorosilane, decyltrichlorosilane, diacetoxydimethylsilane, diethoxydimethylsilane, and dimethoxy. Didimethylsilane, dimethoxydiphenylsilane, dimethoxymethylphenylsilane, dodecyllichlorosilane, dodecyltrimethoxylane, ethyltrichlorosilane, hexyltrimethoxysilane, octadecyltriethoxysilane, octadecyltrimethoxysilane, n-octyltrichlorosilane, n-octyltri. Ethoxysilane, n-octyltrimethoxysilane, triethoxyethylsilane, triethoxymethylsilane, trimethoxymethylsilane, trimethoxyphenylsilane, pentyltriethoxysilane, pentyllichlorosilane, triacetoxymethylsilane, trichlorohexylsilane, trichloromethyl Silane, Trichlorooctadecylsilane, Trichloropropylsilane, Trichlorotetradecylsilane, Trimethoxypropylsilane, Allyltrichlorosilane, Allyltriethoxysilane, Allyltrimethoxysilane, Diethoxymethylvinylsilane, Dimethoxymethylvinylsilane, Trichlorovinylsilane, Triethoxyvinylsilane, Vinyltris (2-methoxyethoxy) silane, trichloro-2-cyanoethylsilane, diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane, etc. can also be used. can.
 前記シランカップリング剤のなかでも、1つの分子中に1個のケイ素原子を有するシランカップリング剤が特に好ましく、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
 前記カップリング剤としては、前記のほかに、1-メルカプト-2-プロパノール、3-メルカプトプロピオン酸メチル、3-メルカプト-2-ブタノール、3-メルカプトプロピオン酸ブチル、3-(ジメトキシメチルシリル)-1-プロパンチオール、4-(6-メルカプトヘキサロイル)ベンジルアルコール、11-アミノ-1-ウンデセンチオール、11-メルカプトウンデシルホスホン酸、11-メルカプトウンデシルトリフルオロ酢酸、2,2’-(エチレンジオキシ)ジエタンチオール、11-メルカプトウンデシトリ(エチレングリコール)、(1-メルカプトウンデイック-11-イル)テトラ(エチレングリコール)、1-(メチルカルボキシ)ウンデック-11-イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2-エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレート、3-グリシジルオキシプロピルトリメトキシシラン、2,3-ブタンジチオール、1-ブタンチオール、2-ブタンチオール、シクロヘキサンチオール、シクロペンタンチオール、1-デカンチオール、1-ドデカンチオール、3-メルカプトプロピオン酸-2-エチルヘキシル、3-メルカプトプロピオン酸エチル、1-ヘプタンチオール、1-ヘキサデカンチオール、ヘキシルメルカプタン、イソアミルメルカプタン、イソブチルメルカプタン、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸-3-メトキシブチル、2-メチル-1-ブタンチオール、1-オクタデカンチオール、1-オクタンチオール、1-ペンタデカンチオール、1-ペンタンチオール、1-プロパンチオール、1-テトラデカンチオール、1-ウンデカンチオール、1-(12-メルカプトドデシル)イミダゾール、1-(11-メルカプトウンデシル)イミダゾール、1-(10-メルカプトデシル)イミダゾール、1-(16-メルカプトヘキサデシル)イミダゾール、1-(17-メルカプトヘプタデシル)イミダゾール、1-(15-メルカプト)ドデカン酸、1-(11-メルカプト)ウンデカン酸、1-(10-メルカプト)デカン酸などを使用することもできる。
Among the silane coupling agents, a silane coupling agent having one silicon atom in one molecule is particularly preferable, and for example, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- 2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy Examples thereof include propylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyltrimethoxysilane, aminophenetyltrimethoxysilane, and aminophenylaminomethylphenetyltrimethoxysilane. When particularly high heat resistance is required in the process, it is desirable to connect Si and an amino group with an aromatic group.
In addition to the above, the coupling agent includes 1-mercapto-2-propanol, 3-mercaptopropionate methyl, 3-mercapto-2-butanol, 3-mercaptopropionate butyl, 3- (dimethoxymethylsilyl)-. 1-Propanethiol, 4- (6-mercaptohexaloyl) benzyl alcohol, 11-amino-1-undecenethiol, 11-mercaptoundecylphosphonic acid, 11-mercaptoundecyltrifluoroacetic acid, 2,2'-( Ethylenedioxy) dietanthiol, 11-mercaptoundecitri (ethylene glycol), (1-mercaptoundic-11-yl) tetra (ethylene glycol), 1- (methylcarboxy) undec-11-yl) hexa (ethylene) Glycol), hydroxyundecyl disulfide, carboxyundecyl disulfide, hydroxyhexadodecyl disulfide, carboxyhexadecyl disulfide, tetrakis (2-ethylhexyloxy) titanium, titanium dioctyloxybis (octylene glycolate), zirconium tributoxymonoacetylacet Nate, zirconium monobutoxyacetylacetonate bis (ethylacetacetate), zirconium tributoxymonostearate, acetalkoxyaluminum diisopropilate, 3-glycidyloxypropyltrimethoxysilane, 2,3-butanedithiol, 1-butanethiol, 2-Butanthiol, Cyclohexanethiol, Cyclopentanethiol, 1-decanethiol, 1-dodecanethiol, 3-mercaptopropionic acid-2-ethylhexyl, 3-mercaptopropionic acid ethyl, 1-heptanethiol, 1-hexadecanethiol, hexyl Mercaptan, Isoamyl mercaptan, Isobutyl mercaptan, 3-mercaptopropionic acid, 3-mercaptopropionic acid-3-methoxybutyl, 2-methyl-1-butanethiol, 1-octadecanethiol, 1-octanethiol, 1-pentadecanethiol, 1 -Pentanthiol, 1-Propanethiol, 1-Tetradecanethiol, 1-Undecanethiol, 1- (12-mercaptododecyl) imidazole, 1- (11-mercaptoundesyl) imidazole, 1- (10-mercaptodecyl) imidazole, 1- (16-mercaptohexadecyl) imidazole, 1- (17-mercapto) Heptadecyl) imidazole, 1- (15-mercapto) dodecanoic acid, 1- (11-mercapto) undecanoic acid, 1- (10-mercapto) decanoic acid and the like can also be used.
<シランカップリング剤層の形成方法>
 シランカップリング剤層の形成方法としては、シランカップリング剤溶液を前記無機基板に塗布する方法や蒸着法などを用いることができる。なお、シランカップリング剤層の形成は、前記易剥離層の表面に行ってもよい。
<Method of forming the silane coupling agent layer>
As a method for forming the silane coupling agent layer, a method of applying a silane coupling agent solution to the inorganic substrate, a vapor deposition method, or the like can be used. The silane coupling agent layer may be formed on the surface of the easily peelable layer.
 シランカップリング剤溶液を塗布する方法としては、シランカップリング剤をアルコールなどの溶媒で希釈した溶液を用いて、スピンコート法、カーテンコート法、ディップコート法、スリットダイコート法、グラビアコート法、バーコート法、コンマコート法、アプリケーター法、スクリーン印刷法、スプレーコート法等の従来公知の溶液の塗布手段を適宜用いることができる。 As a method of applying the silane coupling agent solution, a spin coating method, a curtain coating method, a dip coating method, a slit die coating method, a gravure coating method, a bar, using a solution obtained by diluting the silane coupling agent with a solvent such as alcohol is used. Conventionally known solution coating means such as a coating method, a comma coating method, an applicator method, a screen printing method, and a spray coating method can be appropriately used.
 また、シランカップリング剤層を蒸着法によって形成することもでき、具体的には、前記無機基板をシランカップリング剤の蒸気、すなわち実質的に気体状態のシランカップリング剤に暴露して形成する。シランカップリング剤の蒸気は、液体状態のシランカップリング剤を40℃~シランカップリング剤の沸点程度までの温度に加温することによって得ることができる。シランカップリング剤の沸点は、化学構造によって異なるが、概ね100~250℃の範囲である。ただし200℃以上の加熱は、シランカップリング剤の有機基側の副反応を招く恐れがあるため好ましくない。
 シランカップリング剤を加温する環境は、加圧下、常圧下、減圧下のいずれでも構わないが、シランカップリング剤の気化を促進する場合には常圧下ないし減圧下が好ましい。多くのシランカップリング剤は可燃性液体であるため、密閉容器内にて、好ましくは容器内を不活性ガスで置換した後に気化作業を行うことが好ましい。
 前記無機基板をシランカップリング剤に暴露する時間は特に制限されないが、20時間以内が好ましく、より好ましくは60分以内、さらに好ましくは15分以内、最も好ましくは1分以内である。
 前記無機基板をシランカップリング剤に暴露する間の前記無機基板の温度は、シランカップリング剤の種類と、求めるシランカップリング剤層の厚さにより-50℃から200℃の間の適正な温度に制御することが好ましい。
Further, the silane coupling agent layer can also be formed by a vapor deposition method, and specifically, the inorganic substrate is formed by exposing the inorganic substrate to the vapor of the silane coupling agent, that is, the silane coupling agent in a substantially gaseous state. .. The vapor of the silane coupling agent can be obtained by heating the silane coupling agent in a liquid state to a temperature from 40 ° C. to about the boiling point of the silane coupling agent. The boiling point of the silane coupling agent varies depending on the chemical structure, but is generally in the range of 100 to 250 ° C. However, heating at 200 ° C. or higher is not preferable because it may cause a side reaction on the organic group side of the silane coupling agent.
The environment for heating the silane coupling agent may be any of pressure, normal pressure, and reduced pressure, but in the case of promoting vaporization of the silane coupling agent, normal pressure or reduced pressure is preferable. Since many silane coupling agents are flammable liquids, it is preferable to carry out the vaporization work in a closed container, preferably after replacing the inside of the container with an inert gas.
The time for exposing the inorganic substrate to the silane coupling agent is not particularly limited, but is preferably 20 hours or less, more preferably 60 minutes or less, still more preferably 15 minutes or less, and most preferably 1 minute or less.
The temperature of the inorganic substrate during exposure of the inorganic substrate to the silane coupling agent is an appropriate temperature between -50 ° C and 200 ° C depending on the type of the silane coupling agent and the desired thickness of the silane coupling agent layer. It is preferable to control the temperature.
 シランカップリング剤層の膜厚は、無機基板、易剥離層、高分子フィルム等と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。一般には400nm未満であり、200nm以下が好ましく、さらに実用上は100nm以下が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。ただし、計算上5nm以下の領域になるとシランカップリング剤層が均一な塗膜としてではなく、クラスター状に存在するおそれがある。なお、シランカップリング剤層の膜厚は、エリプソメトリー法または塗布時のシランカップリング剤溶液の濃度と塗布量から計算して求めることができる。 The film thickness of the silane coupling agent layer is extremely thin compared to the inorganic substrate, the easily peelable layer, the polymer film, etc., and is negligible from the viewpoint of mechanical design. In principle. At a minimum, a thickness on the order of a single molecular layer is sufficient. Generally, it is less than 400 nm, preferably 200 nm or less, more preferably 100 nm or less, more preferably 50 nm or less, still more preferably 10 nm or less in practical use. However, in the calculated region of 5 nm or less, the silane coupling agent layer may exist in a cluster shape rather than as a uniform coating film. The film thickness of the silane coupling agent layer can be calculated from the ellipsometry method or the concentration and coating amount of the silane coupling agent solution at the time of coating.
<積層体の製造方法>
 以下、本実施形態に係る積層体の製造方法について説明する。
 本実施形態に係る積層体の製造方法は、
 無機基板に、シランカップリング剤層を形成して第1積層体を得る工程Aと、
 易剥離層を準備する工程Bと、
 前記第1積層体上に前記易剥離層を形成する工程Cとを少なくとも有する。
<Manufacturing method of laminated body>
Hereinafter, a method for manufacturing a laminated body according to the present embodiment will be described.
The method for manufacturing a laminated body according to the present embodiment is as follows.
Step A to form a silane coupling agent layer on an inorganic substrate to obtain a first laminate,
Step B to prepare the easily peelable layer and
It has at least a step C of forming the easily peelable layer on the first laminated body.
 前記構成において、前記工程Bは、易剥離層と耐熱高分子フィルムとが積層された第2積層体を準備する工程であり、
 前記工程Cは、前記第1積層体と前記第2積層体とを貼り合わせる工程であってもよい。
In the above configuration, the step B is a step of preparing a second laminated body in which the easily peelable layer and the heat-resistant polymer film are laminated.
The step C may be a step of laminating the first laminated body and the second laminated body.
 <工程A>
 工程Aにおいては、無機基板に、シランカップリング剤層を形成して第1積層体を得る。無機基板に、シランカップリング剤層を形成する方法の詳細についてはすでに説明したのでここでの説明は省略する。
<Process A>
In step A, a silane coupling agent layer is formed on the inorganic substrate to obtain a first laminated body. Since the details of the method of forming the silane coupling agent layer on the inorganic substrate have already been described, the description thereof is omitted here.
 <工程B>
 工程Bにおいては、易剥離層を準備する。易剥離層を単体で準備する方法についてはすでに説明したのでここでの説明は省略する。
 ここで、前記工程Bは、易剥離層と耐熱高分子フィルムとが積層された第2積層体を準備する工程であってもよい。前記第2積層体を準備する方法としては、まず、イミド化前の易剥離層(ポリアミド酸フィルム)を作成した後、前記イミド化前の易剥離層上に、高分子フィルム形成用のポリアミド酸溶液を塗布、乾燥してイミド化前の高分子フィルム(ポリアミド酸フィルム)を形成し、最後に、イミド化(加熱処理)を行うことにより、イミド化前の易剥離層とイミド化前の高分子フィルムとを共にイミド化させて、易剥離層と耐熱高分子フィルムとが積層された第2積層体を得る方法が挙げられる。
 また、他の方法として、支持体上に易剥離層形成用のポリアミド酸溶液を塗布した後、乾燥させずに(溶液状態のまま)、前記易剥離層形成用のポリアミド酸溶液塗布面上に、高分子フィルム形成用のポリアミド酸溶液を塗布し、両者を乾燥させて、イミド化前の易剥離層とイミド化前の高分子フィルムとが積層された状態とし、最後に、イミド化(加熱処理)を行うことにより、イミド化前の易剥離層とイミド化前の高分子フィルムとを共にイミド化させて、易剥離層と耐熱高分子フィルムとが積層された第2積層体を得る方法が挙げられる。
<Process B>
In step B, an easily peelable layer is prepared. Since the method of preparing the easily peelable layer as a single substance has already been described, the description thereof is omitted here.
Here, the step B may be a step of preparing a second laminated body in which the easily peelable layer and the heat-resistant polymer film are laminated. As a method for preparing the second laminate, first, an easily peelable layer (polyamic acid film) before imidization is prepared, and then a polyamic acid for forming a polymer film is formed on the easily peelable layer before imidization. The solution is applied and dried to form a polymer film (polyamic acid film) before imidization, and finally, imidization (heat treatment) is performed to make the easily peelable layer before imidization and the height before imidization. A method of imidizing the molecular film together to obtain a second laminated body in which the easily peelable layer and the heat-resistant polymer film are laminated can be mentioned.
Further, as another method, after applying the polyamic acid solution for forming the easily peelable layer on the support, the polyamic acid solution for forming the easily peelable layer is applied on the surface coated with the polyamic acid solution without drying (in the solution state). , A polyamic acid solution for forming a polymer film is applied, and both are dried to make the easily peelable layer before imidization and the polymer film before imidization laminated, and finally imidization (heating). Treatment) to imidize both the easy-release layer before imidization and the polymer film before imidization to obtain a second laminated body in which the easy-release layer and the heat-resistant polymer film are laminated. Can be mentioned.
 <工程C>
 工程Cにおいては、前記第1積層体と前記易剥離層とを貼り合わせる。前記工程Cは、前記第1積層体と前記第2積層体とを貼り合わせる工程であってもよい。具体的には、前記無機基板上に形成された前記シランカップリング剤層と、前記易剥離層又は前記第2積層体とを貼り合わせ面として、加圧して、貼り合わせる。
<Process C>
In step C, the first laminated body and the easily peelable layer are bonded together. The step C may be a step of laminating the first laminated body and the second laminated body. Specifically, the silane coupling agent layer formed on the inorganic substrate and the easily peelable layer or the second laminated body are pressed and bonded as a bonding surface.
 加圧処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。 The pressurization treatment may be performed, for example, in an atmospheric pressure atmosphere or in a vacuum while heating a press, a laminate, a roll laminate, or the like. In addition, a method of pressurizing and heating in a flexible bag can also be applied. From the viewpoint of improving productivity and reducing the processing cost brought about by high productivity, pressing or roll laminating in an air atmosphere is preferable, and a method using rolls (roll laminating or the like) is particularly preferable.
 加圧と加熱を同時に行う場合の圧力としては、1MPa~20MPaが好ましく、さらに好ましくは3MPa~10MPaである。20MPa以下であると、無機基板を破損することを抑制できる。また、1MPa以上であると、密着しない部分が生じることや、接着が不充分になることを防止できる。加圧と加熱を同時に行う場合の温度としては、好ましくは80℃~300℃、より好ましくは100℃~250℃である。高分子フィルムがポリイミドフィルムである場合には、温度が高すぎると、ポリイミドフィルムにダメージを与える虞があり、温度が低すぎると、密着力が弱くなる傾向がある。加熱と加圧を同時に行う処理として、たとえば高温ロールラミネートが挙げられる。この場合、無機基板とフィルムが加熱・加圧される時間が短いため、上記範囲の中でも高温であることが好ましい。加圧と加熱を同時に行う場合の加熱・加圧の時間としては、好ましくは1~60秒、より好ましくは1~30秒である。
 また加圧処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した剥離強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
 加圧処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
When pressurization and heating are performed at the same time, the pressure is preferably 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. When it is 20 MPa or less, it is possible to suppress damage to the inorganic substrate. Further, when it is 1 MPa or more, it is possible to prevent a portion that does not adhere to each other and insufficient adhesion. The temperature when pressurization and heating are performed at the same time is preferably 80 ° C. to 300 ° C., more preferably 100 ° C. to 250 ° C. When the polymer film is a polyimide film, if the temperature is too high, the polyimide film may be damaged, and if the temperature is too low, the adhesion tends to be weakened. Examples of the process of simultaneously heating and pressurizing include high temperature roll laminating. In this case, since the time for heating and pressurizing the inorganic substrate and the film is short, it is preferable that the temperature is high within the above range. When the pressurization and the heating are performed at the same time, the heating / pressurizing time is preferably 1 to 60 seconds, more preferably 1 to 30 seconds.
Further, the pressurization treatment can be performed in an atmospheric pressure atmosphere as described above, but it is preferable to perform the pressure treatment under vacuum in order to obtain a stable peel strength on the entire surface. At this time, the degree of vacuum is sufficient with the degree of vacuum by a normal oil rotary pump, and about 10 Torr or less is sufficient.
As a device that can be used for pressure treatment, for example, "11FD" manufactured by Imoto Seisakusho can be used for pressing in a vacuum, and a roll-type film laminator in a vacuum or after vacuuming. For vacuum laminating such as a film laminator that applies pressure to the entire surface of the glass at once with a thin rubber film, for example, "MVLP" manufactured by Meiki Seisakusho can be used.
 前記加圧処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、加圧プロセスのみ行い、加熱プロセスを行わなくてもよい。加圧処理を加圧プロセスと加熱プロセスとに分離する場合の加圧プロセスとしては、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)で高分子フィルムと無機基板とを加圧(好ましくは0.2~50MPa程度)して両者の密着確保することが好ましい。加熱プロセスを行う場合、加熱プロセスとしては、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば100℃以上、より好ましくは120~250℃、さらに好ましくは150~250℃)で加熱することが好ましい。これにより、密着界面の化学反応が促進されて高分子フィルムと無機基板とを積層できる。加圧処理と加熱処理を分離して行う場合には、加圧処理の主な目的は無機基板とフィルムを密着させることであるため、加圧と加熱を同時に行う場合に対して低温でも良い。その場合、加熱工程としてはバッチ式オーブンなど長時間加熱可能な装置の使用が想定されるため、加熱温度は加圧と加熱を同時に行う場合に対して低温でも処理が可能である。加圧プロセスと加熱プロセスとに分離して行う場合の加熱の時間としては、好ましくは1分~120分、より好ましくは5分~90分である。 The pressurization process can be performed separately for the pressurization process and the heating process. In this case, only the pressurization process may be performed and the heating process may not be performed. When the pressurizing process is separated into a pressurizing process and a heating process, the polymer film and the inorganic substrate are added at a relatively low temperature (for example, a temperature of less than 120 ° C., more preferably 95 ° C. or lower). It is preferable to secure close contact between the two by applying pressure (preferably about 0.2 to 50 MPa). When the heating process is performed, the heating process is performed at a relatively high temperature (for example, 100 ° C. or higher, more preferably 120 to 250 ° C.) at low pressure (preferably less than 0.2 MPa, more preferably 0.1 MPa or less) or normal pressure. More preferably, it is heated at 150 to 250 ° C.). As a result, the chemical reaction at the close contact interface is promoted, and the polymer film and the inorganic substrate can be laminated. When the pressure treatment and the heat treatment are performed separately, the main purpose of the pressure treatment is to bring the inorganic substrate and the film into close contact with each other. In that case, since it is assumed that a device capable of heating for a long time such as a batch oven is used as the heating step, the heating temperature can be low even when pressurization and heating are performed at the same time. When the pressurizing process and the heating process are performed separately, the heating time is preferably 1 minute to 120 minutes, more preferably 5 minutes to 90 minutes.
 以上により、前記第1積層体と前記易剥離層とが貼り合わされた積層体、又は、前記第1積層体と前記第2積層体とが貼り合わされた積層体を得ることができる。ただし、本発明に係る積層体の製造方法は、この例に限定されない。他の例としては、無機基板上にシランカップリング剤層を形成した後、シランカップリング剤層上に易剥離層形成用のポリアミド酸溶液を塗布、乾燥させ、さらに、必要に応じて、高分子フィルム形成用のポリアミド酸溶液を塗布、乾燥させ、その後、イミド化して、積層体を得る方法が挙げられる。 From the above, it is possible to obtain a laminated body in which the first laminated body and the easily peelable layer are bonded together, or a laminated body in which the first laminated body and the second laminated body are bonded together. However, the method for producing a laminate according to the present invention is not limited to this example. As another example, after forming the silane coupling agent layer on the inorganic substrate, a polyamic acid solution for forming an easily peelable layer is applied on the silane coupling agent layer, dried, and further, if necessary, high. Examples thereof include a method in which a polyamic acid solution for forming a molecular film is applied, dried, and then imidized to obtain a laminate.
<フレキシブル電子デバイスの製造方法>
 前記積層体を用いると、既存の電子デバイス製造用の設備、プロセスを用いて積層体の高分子フィルム上に電子デバイスを形成し、積層体から高分子フィルム又は易剥離層ごと剥離することで、フレキシブルな電子デバイスを作製することができる。
 本明細書において電子デバイスとは、電気配線を担う片面、両面、あるいは多層構造を有する配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、バイオセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどをいう。
<Manufacturing method of flexible electronic device>
When the laminate is used, an electronic device is formed on the polymer film of the laminate using existing equipment and processes for manufacturing electronic devices, and the polymer film or the easily peelable layer is peeled off from the laminate. Flexible electronic devices can be made.
As used herein, an electronic device is a wiring board having a single-sided, double-sided, or multi-layered structure for electrical wiring, an electronic circuit including active elements such as transistors and diodes, and passive devices such as resistors, capacitors, and inductors, and others. Sensor elements that sense pressure, temperature, light, humidity, etc., biosensor elements, light emitting elements, liquid crystal displays, electrophoretic displays, self-luminous displays and other image display elements, wireless and wired communication elements, arithmetic elements, storage elements, MEMS element, solar cell, thin film, etc.
 本明細書におけるデバイス構造体の製造方法では、上述した方法で作製された積層体の高分子フィルム又は易剥離層上にデバイスを形成した後、該高分子フィルムを前記無機基板から剥離する。 In the method for manufacturing a device structure in the present specification, a device is formed on a polymer film or an easily peelable layer of a laminate produced by the above-mentioned method, and then the polymer film is peeled off from the inorganic substrate.
 デバイス付きの高分子フィルム又は易剥離層を無機基板から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、高分子フィルムに切り込みを入れ、切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、高分子フィルム又は易剥離層の切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、高分子フィルム又は易剥離層の切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊するおそれがあるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
 前記高分子フィルム又は易剥離層に切り込みを入れる方法としては、刃物などの切削具によって高分子フィルム又は易剥離層を切断する方法や、レーザーと積層体を相対的にスキャンさせることにより高分子フィルム又は易剥離層を切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより高分子フィルム又は易剥離層を切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルム又は易剥離層を切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
 また、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。
The method of peeling the polymer film or the easily peelable layer with the device from the inorganic substrate is not particularly limited, but the method of winding from the end with a tweezers or the like, making a cut in the polymer film, and applying an adhesive tape to one side of the cut portion. A method of winding from the tape portion after sticking, a method of vacuum-adsorbing one side of the cut portion of the polymer film or the easily peelable layer, and then winding from that portion can be adopted. At the time of peeling, if the cut portion of the polymer film or the easily peelable layer is bent with a small curvature, stress is applied to the device at that portion and the device may be destroyed. Therefore, the curvature is as large as possible. It is desirable to peel it off in the state. For example, it is desirable to wind it while winding it on a roll having a large curvature, or to use a machine having a structure in which the roll having a large curvature is located at the peeling portion.
As a method of making a cut in the polymer film or the easily peelable layer, a method of cutting the polymer film or the easily peelable layer with a cutting tool such as a cutting tool, or a polymer film by relatively scanning a laser and a laminate. Alternatively, a method of cutting the easily peelable layer, a method of cutting the polymer film or the easily peelable layer by relatively scanning the water jet and the laminate, or a polymer film or a polymer film while slightly cutting to the glass layer by a semiconductor chip dicing device. There is a method of cutting the easily peelable layer, but the method is not particularly limited. For example, in adopting the above-mentioned method, it is also possible to appropriately adopt a method such as superimposing ultrasonic waves on the cutting tool or adding a reciprocating motion or a vertical motion to improve the cutting performance.
Further, it is also useful to attach another reinforcing base material to the part to be peeled off in advance and peel off the entire reinforcing base material. When the flexible electronic device to be peeled off is the backplane of the display device, it is also possible to attach the front plane of the display device in advance, integrate it on an inorganic substrate, and then peel off both at the same time to obtain a flexible display device. be.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
<作製例1:ポリアミド酸溶液1の作製>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.73質量部の4,4’-ジアミノベンズアニリド(DABAN)と、201.1質量部のN,N-ジメチルアセトアミド(DMAc)と、コロイダルシリカ(滑剤)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とを、コロイダルシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%になるように加え完全に溶解させた。次いで、22.73質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、固形分(NV)12質量%、還元粘度(ηsp/C)3.10dl/gのポリアミド酸溶液1を得た。
<Preparation Example 1: Preparation of Polyamic Acid Solution 1>
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 22.73 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 21.1 parts by mass of N, N- Colloidal silica (lubricant) is a dispersion of dimethylacetamide (DMAc) and colloidal silica (lubricant) dispersed in dimethylacetamide ("Snowtex (registered trademark) DMAC-ST-ZL" manufactured by Nissan Chemical Industries, Ltd.). The total amount of polymer solids in the polyamic acid solution was added to 0.4% by mass, and the mixture was completely dissolved. Then, 22.73 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) was added separately as a solid, and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 1 having a solid content (NV) of 12% by mass and a reduction viscosity (ηsp / C) of 3.10 dl / g.
<作製例2:ポリアミド酸溶液2の作製>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、11.36質量部の4,4’-ジアミノベンズアニリド(DABAN)と、11.32質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)と、201.1質量部のN,N-ジメチルアセトアミド(DMAc)と、コロイダルシリカ(滑剤)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とを、シリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%になるように加え完全に溶解させた。次いで、22.73質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、固形分(NV)12質量%、還元粘度(ηsp/C)3.28dl/gのポリアミド酸溶液2を得た。
<Preparation Example 2: Preparation of Polyamic Acid Solution 2>
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 11.36 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 11.32 parts by mass of 2,2' -A dispersion consisting of bis (trifluoromethyl) benzidine (TFMB), 21.1 parts by mass of N, N-dimethylacetamide (DMAc), and colloidal silica (lubricant) dispersed in dimethylacetamide (manufactured by Nissan Chemical Industries, Ltd.). "Snowtex (registered trademark) DMAC-ST-ZL") was added so that the total amount of polymer solids in the polyamic acid solution of silica (lubricant) was 0.4% by mass, and the mixture was completely dissolved. Then, 22.73 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) was added separately as a solid, and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 2 having a solid content (NV) of 12% by mass and a reduction viscosity (ηsp / C) of 3.28 dl / g.
<作製例3:ポリアミド酸溶液3の作製>
 窒素導入管、温度計、攪拌棒を備えた容器を窒素置換した後、4,4’-ジアミノジフェニルエーテル(ODA)を入れた。次いで、DMAcを加えて完全に溶解させてから、ピロリメット酸無水物(PMDA)を加えて、モノマーとしてのODAとPMDAとが1/1のモル比でDMAc中で重合し、モノマー仕込濃度が15質量%となるようにし、25℃にて5時間攪拌すると、褐色の粘調なポリアミド酸溶液3を得た。還元粘度(ηsp/C)は2.1dl/gであった。
<Preparation Example 3: Preparation of Polyamic Acid Solution 3>
A container equipped with a nitrogen introduction tube, a thermometer and a stirring rod was replaced with nitrogen, and then 4,4'-diaminodiphenyl ether (ODA) was added. Next, DMAc was added to completely dissolve it, and then pyrolimetic acid anhydride (PMDA) was added to polymerize ODA and PMDA as monomers in DMAc at a molar ratio of 1/1, and the monomer charging concentration was 15. The mixture was adjusted to be mass% and stirred at 25 ° C. for 5 hours to obtain a brown viscous polyamic acid solution 3. The reduced viscosity (ηsp / C) was 2.1 dl / g.
<作製例4:ポリアミド酸溶液4の作製>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.72質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)と、201.1質量部のN,N-ジメチルアセトアミド(DMAc)と、コロイダルシリカ(滑剤)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とを、シリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%になるように加え完全に溶解させた。次いで、22.73質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)を分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、固形分(NV)12質量%、還元粘度(ηsp/C)3.28dl/gのポリアミド酸溶液4を得た。
<Preparation Example 4: Preparation of Polyamic Acid Solution 4>
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 22.72 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 21.1 parts by mass were added. N, N-dimethylacetamide (DMAc) and a dispersion obtained by dispersing colloidal silica (lubricant) in dimethylacetamide (“Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) are used as silica ( Lubricants) were added so that the total amount of polymer solids in the polyamic acid solution was 0.4% by mass, and the mixture was completely dissolved. Then, 22.73 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid unihydrate (CBDA) was added in portions and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 4 having a solid content (NV) of 12% by mass and a reduction viscosity (ηsp / C) of 3.28 dl / g.
<作製例5:ポリイミド溶液1の作製>
 窒素導入管、ディーン・スターク管及び還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、19.86質量部の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、4.97質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、80質量部のガンマブチロラクトン(GBL)を加えた。続いて31.02質量部の4,4’-オキシジフタル酸無二水物(ODPA)、24質量部のGBL、13質量部のトルエンを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、固形分が20質量%濃度となるようにGBLを加え、還元粘度0.70(ηsp/C)dl/gのポリイミド溶液1を得た。
<Preparation Example 5: Preparation of Polyimide Solution 1>
While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube and a reflux tube, a thermometer, and a stirring rod, 19.86 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4') was introduced. -DDS), 4.97 parts by mass of 3,3'-diaminodiphenyl sulfone (3,3'-DDS) and 80 parts by mass of gamma butyrolactone (GBL) were added. Subsequently, 31.02 parts by mass of 4,4'-oxydiphthalic acid unihydrate (ODPA), 24 parts by mass of GBL, and 13 parts by mass of toluene were added at room temperature, and then the temperature was raised to 160 ° C. The mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature, GBL was added so that the solid content had a concentration of 20% by mass, and a polyimide solution 1 having a reduced viscosity of 0.70 (ηsp / C) dl / g was obtained.
<製造例1:ポリイミドフィルムF1の製造>
 ポリアミド酸溶液1を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製の支持体)の無滑材面上にコンマコーターを用いて最終膜厚が15μmとなるように調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルム(グリーンフィルム)を支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF1を500m得た。
<Manufacturing Example 1: Manufacture of Polyimide Film F1>
The polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 μm using a comma coater. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After drying, the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F1 having a width of 450 mm.
<製造例2:ポリイミドフィルムF2の製造>
 ポリアミド酸溶液1をポリアミド酸溶液2に変更した以外は製造例1と同様にしてポリイミドフィルムF2を得た。
<Manufacturing Example 2: Manufacture of Polyimide Film F2>
A polyimide film F2 was obtained in the same manner as in Production Example 1 except that the polyamic acid solution 1 was changed to the polyamic acid solution 2.
<製造例3:ポリイミドフィルムF3の製造>
 ポリアミド酸溶液1を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上にコンマコーターを用いて最終膜厚が0.5μmとなるように調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内を通過して巻き取られてゆき、この時に100℃にて10分間乾燥した。これを巻き取った後にコンマコーター側にセットしなおして、続いて作製例3で得たポリアミド酸溶液3をポリアミド酸溶液1の乾燥物上に最終膜厚が15μmになるように塗布した。これを100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、400℃で6分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温まで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF3を100m得た。
<Manufacturing Example 3: Manufacture of Polyimide Film F3>
The polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 0.5 μm using a comma coater. The polyethylene terephthalate film A4100 passed through the hot air furnace and was wound up, and at this time, it was dried at 100 ° C. for 10 minutes. After winding this, it was set again on the comma coater side, and subsequently, the polyamic acid solution 3 obtained in Production Example 3 was applied onto the dried product of the polyamic acid solution 1 so that the final film thickness was 15 μm. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which the pins are arranged, and the film end is gripped by inserting it into the pins so that the film does not break and The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 400 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 100 m of a polyimide film F3 having a width of 450 mm.
<製造例4:ポリイミドフィルムF4の製造>
 ポリアミド酸溶液1をポリアミド酸溶液2にした以外は製造例3と同様にしてポリイミドフィルムF4を100m得た。
<Manufacturing Example 4: Manufacture of Polyimide Film F4>
A polyimide film F4 was obtained in the same manner as in Production Example 3 except that the polyamic acid solution 1 was changed to the polyamic acid solution 2.
<製造例5:ポリイミドフィルムF5の製造>
 ポリアミド酸溶液3の代わりにポリイミド溶液1を使用し、ピンシートで把持後の熱処理を200℃で3分、250℃で2分、320℃で3分とした以外は製造例3と同様にしてポリイミドフィルムF5を100m得た。
<Manufacturing Example 5: Manufacture of Polyimide Film F5>
The same as in Production Example 3 except that the polyimide solution 1 was used instead of the polyamic acid solution 3 and the heat treatment after gripping with a pin sheet was set to 200 ° C. for 3 minutes, 250 ° C. for 2 minutes, and 320 ° C. for 3 minutes. A polyimide film F5 was obtained in an amount of 100 m.
<製造例6:ポリイミドフィルムF6の製造>
 ポリイミド溶液1の代わりにポリアミド酸溶液4を用いた以外は製造例5と同様にしてポリイミドフィルムF6を100m得た。
<Manufacturing Example 6: Manufacture of Polyimide Film F6>
A polyimide film F6 was obtained in the same manner as in Production Example 5 except that the polyamic acid solution 4 was used instead of the polyimide solution 1.
<製造例7:ポリイミドフィルムF7の製造>
 作製例1で得たポリアミド酸溶液1を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が0.5μmとなるように塗布し、続いて作製例3で得たポリアミド酸溶液3をポリアミド酸溶液1の上に最終膜厚が15μmとなるようにダイコーターによって塗布した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100フィルムから剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、400℃で6分の条件で加熱し、イミド化反応を進行させた。その後2分間で室温まで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF7を100m得た。
<Manufacturing Example 7: Manufacture of Polyimide Film F7>
The polyamic acid solution 1 obtained in Production Example 1 was applied to the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyo Spinning Co., Ltd.) using a comma coater so that the final film thickness was 0.5 μm. The polyamic acid solution 3 obtained in Production Example 3 was applied onto the polyamic acid solution 1 with a die coater so that the final film thickness was 15 μm. This was dried at 110 ° C. for 10 minutes. The polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 400 ° C for 6 minutes to carry out the imidization reaction. I made it progress. After that, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 100 m of a polyimide film F7 having a width of 450 mm.
<製造例8:ポリイミドフィルムF8の製造>
 ポリアミド酸溶液1の代わりにポリアミド酸溶液2を用いた以外は製造例7と同様にしてポリイミドフィルムF8を100m得た。
<Manufacturing Example 8: Manufacture of Polyimide Film F8>
A polyimide film F8 was obtained in the same manner as in Production Example 7 except that the polyamic acid solution 2 was used instead of the polyamic acid solution 1.
<製造例9:ポリイミドフィルムF9の製造>
 ポリアミド酸溶液1を、ポリアミド酸溶液3に変更し、ピンシートで把持後の熱処理を200℃で3分、250℃で2分、400℃で3分とした以外は製造例1と同様にしてポリイミドフィルムF9を100m得た。
<Manufacturing Example 9: Manufacture of Polyimide Film F9>
The polyamic acid solution 1 was changed to the polyamic acid solution 3, and the heat treatment after gripping with the pin sheet was the same as in Production Example 1 except that the heat treatment was performed at 200 ° C. for 3 minutes, 250 ° C. for 2 minutes, and 400 ° C. for 3 minutes. A polyimide film F9 was obtained in an amount of 100 m.
<製造例10:ポリイミドフィルムF10の製造>
 ポリアミド酸溶液1を、ポリイミド酸溶液1に変更し、ピンシートで把持後の熱処理を200℃で3分、250℃で2分、320℃で3分とした以外は製造例1と同様にしてポリイミドフィルムF10を100m得た。
<Manufacturing Example 10: Manufacture of Polyimide Film F10>
The polyamic acid solution 1 was changed to the polyimide acid solution 1, and the heat treatment after gripping with the pin sheet was the same as in Production Example 1 except that the heat treatment was performed at 200 ° C. for 3 minutes, 250 ° C. for 2 minutes, and 320 ° C. for 3 minutes. A polyimide film F10 was obtained in an amount of 100 m.
<製造例11:ポリイミドフィルムF11の製造>
 ポリアミド酸溶液1をポリアミド酸溶液4に変更した以外は製造例1と同様にしてポリイミドフィルムF11を100m得た。
<Manufacturing Example 11: Manufacture of Polyimide Film F11>
A polyimide film F11 was obtained in the same manner as in Production Example 1 except that the polyamic acid solution 1 was changed to the polyamic acid solution 4.
[積層体の作製]
 <実施例1、2、及び、比較例1、2、3>
 まず、ガラス基板を準備した。前記ガラス基板は、100mm×100mmサイズに切断した、厚さ0.7mmのOA10Gガラス(NEG社製)である。前記ガラス基板は、純水洗浄、乾燥後にUV/O照射器(LANテクニカル製SKR1102N-03)で1分間照射してドライ洗浄したものを用いた。
 次に、前記ガラス基板上にシランカップリング剤層を形成した。前記ガラス基板へのシランカップリング剤の塗布方法は、図1に示す実験装置を用いて行った。図1は、ガラス基板にシランカップリング剤を塗布する実験装置の模式図である。図1に示すように、前記実験装置は、ガス導入口2と排気口8と薬液タンク(シランカップリング剤槽)3とに接続された処理室(チャンバー)6を備える。薬液タンク(シランカップリング剤槽)3には、シランカップリング剤が充填されており、ヒーター5を備える温水槽(湯煎)4により調温されている。薬液タンク(シランカップリング剤槽)3には、ガス導入口12が接続されており、外部からガスを導入することかできる。ガスの流量は、ガス導入口12に接続されたフローメーター1により調整されている。ガス導入口12からガスが導入されると、薬液タンク3内の気化されたシランカップリング剤が処理室6に押し出され、処理室6内に配置されたガラス基板7上にシランカップリング剤層として付着する。
 容量1Lの薬液タンク3の中に3-アミノプロピルトリメトキシシラン(シランカップリング剤 信越化学KBM903)を150gを入れて、この外側の湯煎を41℃に温めた。そして出てくる蒸気をクリーンドライエアとともにチャンバーに送った。ガス流量は25L/min、基板温度23℃、ガラス基板の暴露時間は5分間とした。クリーンドライエアの温度は23℃、湿度は1.2%RHであった。排気は負圧の排気口に接続したため、チャンバーは10Pa程度の負圧となっていることを差圧計によって確認している。
 次に、前記シランカップリング剤層上に、ポリイミドフィルムF1を貼り合わせ、実施例1に係る積層体を得た。また、同様に、前記シランカップリング剤層上に、ポリイミドフィルムF2を貼り合わせ、実施例2に係る積層体を得た。また、前記シランカップリング剤層上に、ポリイミドフィルムF9を貼り合わせ、比較例1に係る積層体を得た。また、前記シランカップリング剤層上に、ポリイミドフィルムF10を貼り合わせ、比較例2に係る積層体を得た。また、前記シランカップリング剤層上に、ポリイミドフィルムF11を貼り合わせ、比較例3に係る積層体を得た。貼り合わせるポリイミドフィルムのサイズは、70mm×70mmサイズとした。貼り合わせには、MCK社製ラミネーターを用い、貼合条件は、圧縮空気の圧力:0.6MPa、温度:23℃、湿度:55%RH、ラミネート速度:50mm/secとした。
 なお、実施例1におけるポリイミドフィルムF1、及び、実施例2におけるポリイミドフィルムF2は、本発明における易剥離層に相当する。
[Preparation of laminated body]
<Examples 1, 2 and Comparative Examples 1, 2, 3>
First, a glass substrate was prepared. The glass substrate is 0.7 mm thick OA10G glass (manufactured by NEG) cut into a size of 100 mm × 100 mm. The glass substrate used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N- 03 manufactured by LAN Technical) for 1 minute to dry wash.
Next, a silane coupling agent layer was formed on the glass substrate. The method of applying the silane coupling agent to the glass substrate was carried out using the experimental apparatus shown in FIG. FIG. 1 is a schematic view of an experimental device for applying a silane coupling agent to a glass substrate. As shown in FIG. 1, the experimental apparatus includes a processing chamber (chamber) 6 connected to a gas introduction port 2, an exhaust port 8, and a chemical liquid tank (silane coupling agent tank) 3. The chemical liquid tank (silane coupling agent tank) 3 is filled with a silane coupling agent, and the temperature is controlled by a hot water tank (water bath) 4 provided with a heater 5. A gas introduction port 12 is connected to the chemical liquid tank (silane coupling agent tank) 3, and gas can be introduced from the outside. The gas flow rate is adjusted by the flow meter 1 connected to the gas introduction port 12. When the gas is introduced from the gas introduction port 12, the vaporized silane coupling agent in the chemical liquid tank 3 is extruded into the treatment chamber 6, and the silane coupling agent layer is placed on the glass substrate 7 arranged in the treatment chamber 6. Adheres as.
150 g of 3-aminopropyltrimethoxysilane (silane coupling agent Shin-Etsu Chemical KBM903) was placed in a chemical solution tank 3 having a capacity of 1 L, and the outer water bath was warmed to 41 ° C. Then, the steam that came out was sent to the chamber together with clean dry air. The gas flow rate was 25 L / min, the substrate temperature was 23 ° C., and the exposure time of the glass substrate was 5 minutes. The temperature of the clean dry air was 23 ° C. and the humidity was 1.2% RH. Since the exhaust is connected to the negative pressure exhaust port, it is confirmed by the differential pressure gauge that the chamber has a negative pressure of about 10 Pa.
Next, the polyimide film F1 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 1. Similarly, the polyimide film F2 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 2. Further, the polyimide film F9 was laminated on the silane coupling agent layer to obtain a laminate according to Comparative Example 1. Further, the polyimide film F10 was laminated on the silane coupling agent layer to obtain a laminate according to Comparative Example 2. Further, the polyimide film F11 was laminated on the silane coupling agent layer to obtain a laminate according to Comparative Example 3. The size of the polyimide film to be bonded was 70 mm × 70 mm. A laminator manufactured by MCK was used for bonding, and the bonding conditions were compressed air pressure: 0.6 MPa, temperature: 23 ° C., humidity: 55% RH, and laminating speed: 50 mm / sec.
The polyimide film F1 in Example 1 and the polyimide film F2 in Example 2 correspond to the easily peelable layer in the present invention.
 <実施例3~8>
 上記の実施例1、2、及び、比較例1、2、3に係る積層体の製造方法と同様の方法にて、実施例3~8に係る積層体を得た。なお、実施例3では、前記シランカップリング剤層上に、ポリイミドフィルムF3を貼り合わせ、実施例3に係る積層体を得た。実施例4では、前記シランカップリング剤層上に、ポリイミドフィルムF4を貼り合わせ、実施例4に係る積層体を得た。実施例5では、前記シランカップリング剤層上に、ポリイミドフィルムF5を貼り合わせ、実施例5に係る積層体を得た。また、実施例6では、前記シランカップリング剤層上に、ポリイミドフィルムF6を貼り合わせ、実施例6に係る積層体を得た。また、実施例7では、前記シランカップリング剤層上に、ポリイミドフィルムF7を貼り合わせ、実施例7に係る積層体を得た。また、実施例8では、前記シランカップリング剤層上に、ポリイミドフィルムF8を貼り合わせ、実施例8に係る積層体を得た。貼り合わせは、2層構成のポリイミドフィルムのポリアミド酸溶液1または2からできたポリイミド面を、シランカップリング剤層との貼り合わせ面として行った。
 なお、実施例3のポリイミドフィルムF3のうち、ポリアミド酸溶液1から形成された層は本発明の易剥離層に相当し、ポリアミド酸溶液3から形成された層は本発明の高分子フィルムに相当する。
 また、実施例4のポリイミドフィルムF4のうち、ポリアミド酸溶液2から形成された層は本発明の易剥離層に相当し、ポリアミド酸溶液3から形成された層は本発明の高分子フィルムに相当する。
 また、実施例5のポリイミドフィルムF5のうち、ポリアミド酸溶液1から形成された層は本発明の易剥離層に相当し、ポリイミド溶液1から形成された層は本発明の高分子フィルムに相当する。
 また、実施例6のポリイミドフィルムF6のうち、ポリアミド酸溶液1から形成された層は本発明の易剥離層に相当し、ポリアミド酸溶液4から形成された層は本発明の高分子フィルムに相当する。
 また、実施例7のポリイミドフィルムF7のうち、ポリアミド酸溶液1から形成された層は本発明の易剥離層に相当し、ポリアミド酸溶液3から形成された層は本発明の高分子フィルムに相当する。
 また、実施例8のポリイミドフィルムF8のうち、ポリアミド酸溶液2から形成された層は本発明の易剥離層に相当し、ポリアミド酸溶液3から形成された層は本発明の高分子フィルムに相当する。
<Examples 3 to 8>
The laminates according to Examples 3 to 8 were obtained by the same method as the method for producing the laminates according to Examples 1, 2 and Comparative Examples 1, 2 and 3. In Example 3, the polyimide film F3 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 3. In Example 4, the polyimide film F4 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 4. In Example 5, the polyimide film F5 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 5. Further, in Example 6, the polyimide film F6 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 6. Further, in Example 7, the polyimide film F7 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 7. Further, in Example 8, the polyimide film F8 was bonded onto the silane coupling agent layer to obtain a laminate according to Example 8. The bonding was performed by using a polyimide surface made of a polyamic acid solution 1 or 2 of a two-layered polyimide film as a bonding surface with a silane coupling agent layer.
In the polyimide film F3 of Example 3, the layer formed from the polyamic acid solution 1 corresponds to the easily peelable layer of the present invention, and the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
Further, in the polyimide film F4 of Example 4, the layer formed from the polyamic acid solution 2 corresponds to the easily peelable layer of the present invention, and the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
Further, in the polyimide film F5 of Example 5, the layer formed from the polyamic acid solution 1 corresponds to the easily peelable layer of the present invention, and the layer formed from the polyimide solution 1 corresponds to the polymer film of the present invention. ..
Further, in the polyimide film F6 of Example 6, the layer formed from the polyamic acid solution 1 corresponds to the easily peelable layer of the present invention, and the layer formed from the polyamic acid solution 4 corresponds to the polymer film of the present invention. do.
Further, in the polyimide film F7 of Example 7, the layer formed from the polyamic acid solution 1 corresponds to the easily peelable layer of the present invention, and the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
Further, in the polyimide film F8 of Example 8, the layer formed from the polyamic acid solution 2 corresponds to the easily peelable layer of the present invention, and the layer formed from the polyamic acid solution 3 corresponds to the polymer film of the present invention. do.
<90°初期剥離強度の測定>
 上記積層体の作製で得られた積層体を、大気雰囲気下、100℃10分間熱処理した。その後、無機基板(ガラス基板、又は、シリコンウエハ)とポリイミドフィルムとの間の90°初期剥離強度を測定した。結果を表1に示す。
 90°初期剥離強度の測定条件は、下記の通りである。
 無機基板に対してフィルムを90°の角度で引き剥がす。
 5回測定を行い、平均値を測定値とする。
  測定装置    ; 島津製作所社製 オートグラフAG-IS
  測定温度    ; 室温(25℃)
 剥離速度    ; 100mm/min
 雰囲気     ; 大気
 測定サンプル幅 ; 2.5cm
<Measurement of 90 ° initial peel strength>
The laminate obtained by producing the above laminate was heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere. Then, the 90 ° initial peel strength between the inorganic substrate (glass substrate or silicon wafer) and the polyimide film was measured. The results are shown in Table 1.
The measurement conditions for the 90 ° initial peel strength are as follows.
Peel the film at a 90 ° angle to the inorganic substrate.
Measure 5 times and use the average value as the measured value.
Measuring device; Shimadzu Autograph AG-IS
Measurement temperature; room temperature (25 ° C)
Peeling speed; 100 mm / min
Atmosphere; Atmosphere measurement sample width; 2.5 cm
<450℃1時間加熱した後の90°剥離強度の測定>
 上記積層体の作製で得られた積層体を、窒素雰囲気下、100℃10分熱処理した。さらに、窒素雰囲気下で450℃1時間加熱した。その後、無機基板とポリイミドフィルムとの間の90°剥離強度を測定した。結果を表1に示す。450℃1時間加熱した後の90°剥離強度の測定条件は、90°初期剥離強度と同様とした。
<Measurement of 90 ° peel strength after heating at 450 ° C for 1 hour>
The laminate obtained by producing the above laminate was heat-treated at 100 ° C. for 10 minutes under a nitrogen atmosphere. Further, it was heated at 450 ° C. for 1 hour in a nitrogen atmosphere. Then, the 90 ° peel strength between the inorganic substrate and the polyimide film was measured. The results are shown in Table 1. The measurement conditions for the 90 ° peel strength after heating at 450 ° C. for 1 hour were the same as the 90 ° initial peel strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1  フローメーター
 2  ガス導入口
 3  薬液タンク(シランカップリング剤槽)
 4  温水槽(湯煎)
 5  ヒーター
 6  処理室(チャンバー)
 7  ガラス基板
 8  排気口
12  ガス導入口
1 Flow meter 2 Gas inlet 3 Chemical tank (silane coupling agent tank)
4 Hot water tank (water bath)
5 Heater 6 Processing chamber (chamber)
7 Glass substrate 8 Exhaust port 12 Gas inlet

Claims (6)

  1.  無機基板と、シランカップリング剤層と、易剥離層とをこの順で備え、
     前記易剥離層は、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有することを特徴とする積層体。
    An inorganic substrate, a silane coupling agent layer, and an easily peelable layer are provided in this order.
    The easily peelable layer is a laminate characterized by having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide.
  2.  450℃で1時間加熱した後の前記易剥離層と前記無機基板との90°剥離強度が、0.3N/cm以下であることを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, wherein the 90 ° peel strength between the easily peelable layer and the inorganic substrate after heating at 450 ° C. for 1 hour is 0.3 N / cm or less.
  3.  前記易剥離層と前記無機基板との90°初期剥離強度が、0.03N/cm以上であることを特徴とする請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the 90 ° initial peel strength between the easily peelable layer and the inorganic substrate is 0.03 N / cm or more.
  4.  さらに、前記易剥離層上に、耐熱高分子フィルムを備えることを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, further comprising a heat-resistant polymer film on the easily peelable layer.
  5.  450℃で1時間加熱した後の前記耐熱高分子フィルムと前記無機基板との90°剥離強度が、0.3N/cm以下であることを特徴とする請求項4に記載の積層体。 The laminate according to claim 4, wherein the 90 ° peel strength between the heat-resistant polymer film and the inorganic substrate after heating at 450 ° C. for 1 hour is 0.3 N / cm or less.
  6.  前記耐熱高分子フィルムと前記無機基板との90°初期剥離強度が、0.03N/cm以上であることを特徴とする請求項4又は5に記載の積層体。 The laminate according to claim 4 or 5, wherein the 90 ° initial peel strength between the heat-resistant polymer film and the inorganic substrate is 0.03 N / cm or more.
PCT/JP2021/025411 2020-11-27 2021-07-06 Laminate WO2022113415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536542A JPWO2022113415A1 (en) 2020-11-27 2021-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020196640 2020-11-27
JP2020-196640 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113415A1 true WO2022113415A1 (en) 2022-06-02

Family

ID=81754455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025411 WO2022113415A1 (en) 2020-11-27 2021-07-06 Laminate

Country Status (2)

Country Link
JP (1) JPWO2022113415A1 (en)
WO (1) WO2022113415A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319421A (en) * 1999-05-12 2000-11-21 Kanegafuchi Chem Ind Co Ltd Polyimide film
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2006068986A (en) * 2004-09-01 2006-03-16 Toray Ind Inc Multilayered polyimide film and laminated polyimide film with metal layer using it
US20080214777A1 (en) * 2005-08-02 2008-09-04 Srs Technologies Heteropolymeric Polyimide Polymer Compositions
JP2009172941A (en) * 2008-01-28 2009-08-06 Toray Ind Inc Laminated film with metal foil and flexible printed circuit board using it
CN102816431A (en) * 2012-08-30 2012-12-12 江西先材纳米纤维科技有限公司 Superfine fiber porous film and preparation method and application thereof
JP2013222520A (en) * 2012-04-13 2013-10-28 Toray Ind Inc Organic electroluminescent display device having color filter layer
JP2019203117A (en) * 2018-05-16 2019-11-28 東レ株式会社 Polyimide precursor resin composition, polyimide resin composition and film-like product thereof, laminate comprising the same, and flexible device
JP2020500111A (en) * 2017-01-31 2020-01-09 エルジー・ケム・リミテッド Laminate for manufacturing flexible substrate and method for manufacturing flexible substrate using the same
JP2020125466A (en) * 2019-01-31 2020-08-20 Jxtgエネルギー株式会社 Polyimide alloy, polyimide alloy precursor resin composition, polyimide alloy precursor resin solution, and method for producing polyimide alloy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319421A (en) * 1999-05-12 2000-11-21 Kanegafuchi Chem Ind Co Ltd Polyimide film
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2006068986A (en) * 2004-09-01 2006-03-16 Toray Ind Inc Multilayered polyimide film and laminated polyimide film with metal layer using it
US20080214777A1 (en) * 2005-08-02 2008-09-04 Srs Technologies Heteropolymeric Polyimide Polymer Compositions
JP2009172941A (en) * 2008-01-28 2009-08-06 Toray Ind Inc Laminated film with metal foil and flexible printed circuit board using it
JP2013222520A (en) * 2012-04-13 2013-10-28 Toray Ind Inc Organic electroluminescent display device having color filter layer
CN102816431A (en) * 2012-08-30 2012-12-12 江西先材纳米纤维科技有限公司 Superfine fiber porous film and preparation method and application thereof
JP2020500111A (en) * 2017-01-31 2020-01-09 エルジー・ケム・リミテッド Laminate for manufacturing flexible substrate and method for manufacturing flexible substrate using the same
JP2019203117A (en) * 2018-05-16 2019-11-28 東レ株式会社 Polyimide precursor resin composition, polyimide resin composition and film-like product thereof, laminate comprising the same, and flexible device
JP2020125466A (en) * 2019-01-31 2020-08-20 Jxtgエネルギー株式会社 Polyimide alloy, polyimide alloy precursor resin composition, polyimide alloy precursor resin solution, and method for producing polyimide alloy

Also Published As

Publication number Publication date
JPWO2022113415A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP5152429B2 (en) Laminated body
JP7167693B2 (en) LAMINATED FILM, LAMINATE, AND LAMINATE MANUFACTURING METHOD
JP7013875B2 (en) Laminated body, manufacturing method of laminated body, manufacturing method of flexible electronic device
WO2014119648A1 (en) Laminate, method for producing laminate, and method for manufacturing flexible electronic device
JP6848496B2 (en) Laminate
JP6332617B2 (en) Polyimide precursor film layer / inorganic substrate laminate, and method for producing the same, polyimide film layer / inorganic substrate laminate, and flexible electronic device
JP6950713B2 (en) Method for manufacturing polymer film laminated substrate and flexible electronic device
JP6638415B2 (en) Method for manufacturing flexible electronic device
JP7205687B2 (en) LAMINATED PRODUCT, LAMINATED PRODUCTION METHOD, AND HEAT-RESISTANT POLYMER FILM WITH METAL-CONTAINING LAYER
JP2017124586A (en) Method for manufacturing flexible electronic device
WO2022113415A1 (en) Laminate
KR20230030640A (en) Laminate of inorganic substrate and cured polyamic acid
JP6955681B2 (en) Laminated body and method for manufacturing the laminated body
JP6981011B2 (en) Manufacturing method of temporary support substrate and device for device formation
JP6981012B2 (en) Manufacturing method of temporary support substrate and device for device formation
WO2021241571A1 (en) Layered product including high temperature-resistant transparent film
WO2021241570A1 (en) Multilayer body comprising highly heat-resistant transparent film
WO2023021899A1 (en) Transparent heat-resistant laminated film
WO2021241574A1 (en) Laminate including transparent film with high heat resistance
JP7432126B2 (en) Laminated body and flexible device manufacturing method
WO2023286685A1 (en) Laminate of inorganic substrate and heat-resistant polymer film
JP6981010B2 (en) Manufacturing method of temporary support substrate and device for device formation
WO2022034809A1 (en) Laminate, method for manufacturing laminate, and method for manufacturing flexible electronic device
JP7095283B2 (en) Method for manufacturing release layer forming agent and flexible electronic device
WO2024009853A1 (en) Layered product and method for producing layered product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022536542

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21897395

Country of ref document: EP

Kind code of ref document: A1