WO2022091912A1 - Vinyl-based resin particles - Google Patents

Vinyl-based resin particles Download PDF

Info

Publication number
WO2022091912A1
WO2022091912A1 PCT/JP2021/038803 JP2021038803W WO2022091912A1 WO 2022091912 A1 WO2022091912 A1 WO 2022091912A1 JP 2021038803 W JP2021038803 W JP 2021038803W WO 2022091912 A1 WO2022091912 A1 WO 2022091912A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
structural unit
resin particles
derived
mass
Prior art date
Application number
PCT/JP2021/038803
Other languages
French (fr)
Japanese (ja)
Inventor
晃哉 遠藤
Original Assignee
東邦化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦化学工業株式会社 filed Critical 東邦化学工業株式会社
Priority to JP2022559056A priority Critical patent/JPWO2022091912A1/ja
Priority to CN202180074378.4A priority patent/CN116368178A/en
Publication of WO2022091912A1 publication Critical patent/WO2022091912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to vinyl-based resin particles, and more particularly to vinyl-based resin particles for producing a porous membrane used for making a thermosetting resin or the like porous.
  • polyimide and / or polyamide-imide porous membranes have been studied as filters used as gas or liquid separation membranes, separators for lithium ion batteries, fuel cell electrolyte membranes, or low dielectric constant materials.
  • a varnish in which fine particles such as silica particles are dispersed in a polymer solution of polyamic acid or polyimide is applied onto a substrate, and then applied as necessary.
  • a method is known in which a polyimide film containing fine particles is obtained by heating the film, and then fine particles such as silica particles in the polyimide film are removed using hydrofluoric acid to make the polyimide film porous (see Patent Document 1). ..
  • organic fine particles are often prepared in an aqueous solvent and are often distributed as a fine particle dispersion containing water. Therefore, when using organic fine particles, if a varnish containing polyamic acid or polyimide is prepared using a fine particle dispersion liquid containing water, a varnish containing water is inevitably obtained.
  • the varnish contains water and fine particles, it contains a lump of polyamic acid that embraces the fine particles because the orientation of the polyamic acids is hindered by the poor compatibility between the polyamic acid and the solvent containing water and the presence of the fine particles.
  • a mixture having a non-uniform composition that can cause poor formation of the coating film is likely to be formed, which may lead to a decrease in film strength.
  • the dried organic fine particles have poor dispersion stability and solvent resistance to an organic solvent that dissolves polyamic acid, aggregates are generated, and pores are uniformly formed, and the polyimide porous membrane has good air permeability. There are problems such as difficulty in obtaining.
  • the present invention has been made in view of the above problems, and has excellent dispersion stability and solvent resistance to organic solvents, suppresses the generation of aggregates and gelation, and is uniform and fine on a thermosetting resin film or the like. It is an object of the present invention to provide novel vinyl-based resin particles capable of forming pores.
  • the present invention is intended for the following [1] to [9].
  • It is a polymer having a structural unit (A1) derived from a monofunctional vinyl-based monomer, a structural unit (A2) derived from a polyfunctional vinyl-based monomer, and a structural unit (B) derived from a reactive emulsifier.
  • Vinyl-based resin particles for manufacturing porous membranes The ratio of the structural unit (A1) is 88 to 99% by mass, the ratio of the structural unit (A2) is 0.9 to 10% by mass, and the ratio of the structural unit (B) is 0.1 to 2% by mass.
  • Structural unit (A) derived from vinyl-based monomer and A polymer having a structural unit (b1) derived from a compound represented by the following general formula (I), which is different from the structural unit (A).
  • Vinyl-based resin particles for manufacturing porous membranes [During the ceremony, m represents an integer of 1 to 3 and represents R represents a group represented by the following formula (i) or formula (ii). (In the formula, R 1 represents a hydrogen atom or a methyl group), AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
  • X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group).
  • the structural unit (A) derived from the vinyl-based monomer includes a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer.
  • the structural unit (A1) derived from the monofunctional vinyl-based monomer includes a structural unit (a1) derived from the monofunctional styrene-based monomer.
  • the structural unit (A1) derived from the monofunctional vinyl-based monomer includes a structural unit (a2) derived from the monofunctional (meth) acrylic monomer.
  • the proportion of the polyfunctional vinyl-based monomer (A2) is 0.9% by mass to 10% by mass with respect to the total mass of the structural units of the polymer.
  • the vinyl-based resin particle according to any one of [1] and [4] to [7].
  • a polymerization initiator in an aqueous dispersion medium, It is characterized in that a vinyl-based monomer and a compound represented by the following general formula (I) different from the vinyl-based monomer are emulsion-polymerized.
  • m represents an integer of 1 to 3 and represents R represents a group represented by the following formula (i) or formula (ii).
  • R 1 represents a hydrogen atom or a methyl group
  • AO represents an alkyleneoxy group having 2 to 4 carbon atoms
  • n represents an integer of 0 to 100.
  • X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group).
  • the vinyl-based resin particles of the present invention suppress the generation of aggregates, gelation and increase in viscosity in a mixture with an organic solvent that dissolves a thermosetting resin (for example, polyamic acid which is a precursor of a polyimide resin). It has mixing stability, and the dissolution and shape change of particles are suppressed even in an organic solvent, so that the solvent resistance can be excellent. Therefore, when the vinyl-based resin particles of the present invention are used as a porous material for a thermosetting resin, it is difficult for the particles to dissolve or aggregate even in a mixture with the thermosetting resin material, and a film obtained from the resin material. In the above, uniform and fine pores can be easily formed, and a porous body (porous film) can be produced.
  • a thermosetting resin for example, polyamic acid which is a precursor of a polyimide resin.
  • FIG. 1 shows electron micrographs of resin particles after a solvent resistance test ((a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4).
  • FIG. 2 shows an electron micrograph of the resin particles after the solvent resistance test ((a) Comparative Example 1 and (b) Comparative Example 2).
  • FIG. 3 shows an SEM image of the porous membrane ((a) Example 5, (b) Example 6, (c) Example 7, (d) Example 8).
  • FIG. 4 shows an SEM image of the porous membrane (Comparative Example 3).
  • the present invention is a vinyl-based polymer having a structural unit (A) derived from a vinyl-based monomer and a structural unit (b1) derived from a compound represented by the general formula (I) described later as essential.
  • Targets resin particles the vinyl-based resin particles (polymer) of the present invention is a monomer component containing a vinyl-based monomer and a compound represented by the general formula (I), which constitutes each of the above-mentioned structural units. It can be a copolymer (copolymer) of (mixture).
  • the vinyl-based resin particles of the present invention can be suitably used as a porous material for a thermosetting resin, that is, as vinyl-based resin particles for producing a porous membrane.
  • a structural unit (A1) derived from a monofunctional vinyl-based monomer described later and a structural unit (A2) derived from a polyfunctional vinyl-based monomer described later will be described later.
  • the target is vinyl-based resin particles, which are polymers having a structural unit (B) derived from a reactive emulsifier.
  • the (meth) acrylic monomer means both an acrylic monomer and a methacrylic monomer.
  • (meth) acrylic acid alkyl ester refers to acrylic acid alkyl ester and methacrylic acid alkyl ester.
  • structural unit derived from vinyl-based monomer "structural unit derived from monofunctional styrene-based monomer”
  • structural unit derived from monofunctional (meth) acrylic monomer "structural unit derived from monofunctional (meth) acrylic monomer”
  • Notations such as “structural unit derived from polyfunctional vinyl-based monomer” are vinyl-based monomer, monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer, polyfunctional vinyl-based monomer. However, each indicates a structural unit formed when polymerized, and does not represent those monomers themselves.
  • the polymer which is the vinyl-based resin particles of the present invention has a structural unit (A) derived from the vinyl-based monomer.
  • the structural unit (A) is distinguished from the structural unit (B) derived from the reactive emulsifier described later and the structural unit (b1) derived from the compound represented by the general formula (I).
  • the structural unit (A) can include a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer, and is also monofunctional vinyl-based.
  • the structural unit (A1) derived from the monomer includes a structural unit (a1) derived from a monofunctional styrene-based monomer and a structural unit (a2) derived from a monofunctional (meth) acrylic monomer. be able to.
  • the structural unit (A) includes both a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer.
  • the structural unit (a1) is, but is not limited to, a structural unit represented by the following formula, for example.
  • Ra 1 represents an alkyl group having 1 to 10 carbon atoms
  • M 1 represents an alkali metal atom, a group 2 metal atom, an ammonium group, or an organic ammonium group.
  • p represents 0 or an integer of 1 to 5, and a plurality of Ra1s may be the same or different from each other.
  • Examples of the monofunctional styrene-based monomer constituting the structural unit (a1) include styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2, Styrene such as 5-dimethylstyrene and 2,4,6-trimethylstyrene and derivatives thereof; styrene sulfonates such as sodium styrene sulfonate and ammonium styrene sulfonate can be mentioned. Among these, styrene, ⁇ -methylstyrene, and sodium styrene sulfonate can be mentioned as suitable ones.
  • the structural unit (a2) to be used may be included.
  • the structural unit derived from the (meth) acrylic monomer has the property of being easily decomposed (depolymerized) in the monomer unit regardless of whether it is monofunctional or polyfunctional and has excellent thermal decomposition properties, and the vinyl resin particles of the present invention. The thermal decomposition temperature of the resin can be lowered.
  • the structural unit (a2) is, but is not limited to, a structural unit represented by the following formula, for example.
  • R a21 , R a22 , and R a23 independently represent a hydrogen atom or a methyl group
  • R a24 represents a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
  • Examples of the monofunctional (meth) acrylic monomer constituting the structural unit (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth). ) Isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, 3-methylbutyl (meth) acrylate, (meth) ) N-hexyl acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, etc.
  • (Meta) acrylic acid esters having a number of 1 to 18 can be mentioned.
  • methyl (meth) acrylate and ethyl (meth) acrylate are preferable as the (meth) acrylate-based monomer from the viewpoint that resin particles having the same particle size can be easily obtained.
  • Methyl (meth) acrylate is particularly preferred.
  • the structural unit (A2) derived from the polyfunctional vinyl-based monomer in addition to the structural unit (A1) derived from the monofunctional vinyl-based monomer as the structural unit (A), the structural unit (A2) derived from the polyfunctional vinyl-based monomer is used. Can be included.
  • the structural unit (A2) derived from the polyfunctional vinyl-based monomer By containing the structural unit (A2) derived from the polyfunctional vinyl-based monomer, the solvent resistance of the obtained vinyl-based resin particles is enhanced, and the varnish composition (polyimide varnish) described later due to the swelling of the vinyl-based resin particles. It is possible to suppress a decrease in the viscosity of the resin, and it is easy to obtain vinyl-based resin particles having a high compressive strength and a uniform particle size.
  • the structural unit (A2) include a structural unit (a3) derived from a polyfunctional (meth) acrylic monomer and a structural unit (a4) derived from a polyfunctional (poly) vinyl monomer. Can be done.
  • the structural unit (a3) derived from the polyfunctional (meth) acrylic monomer is not limited, but has, for example, a partial structure represented by the following formula. Can be mentioned.
  • R a21 , R a22 , and R a23 each independently represent a hydrogen atom or a methyl group.
  • polyfunctional (meth) acrylic monomer constituting the structural unit (a3) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and 1,3-butylene.
  • Alkyldi (meth) acrylates having 2 to 50 moles of alkylene oxide groups; ethoxylated glycerintri (meth) acrylates, propylene oxide-modified glycerol tri (meth) acrylates, ethylene oxide-modified trimethylolpropanetri (meth) acrylates, tris.
  • Tri (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as methylol propanetri (meth) acrylates, pentaerythritol monohydroxytri (meth) acrylates, and trimethylolpropanetriethoxytri (meth) acrylates; pentaerythritol tetra Tetra (meth) acrylates of polyhydric alcohols with 1 to 10 carbon atoms such as (meth) acrylates, dipentaerythritol tetra (meth) acrylates and ditrimethylolpropanetetra (meth) acrylates; pentaerythritol penta (meth) acrylates, di.
  • Penta (meth) acrylates of polyhydric alcohols with 1 to 10 carbon atoms such as pentaerythritol (monohydroxy) penta (meth) acrylate; polyhydric alcohols with 1 to 10 carbon atoms such as pentaerythritol hexa (meth) acrylate Hexa (meth) acrylate and the like can be mentioned, but the present invention is not limited thereto.
  • polyfunctional (poly) vinyl-based monomer constituting the structural unit (a4) include polyfunctional aliphatic vinyl-based monomers such as isoprene and butadiene; cyclopentadiene and cyclo.
  • Polyfunctional alicyclic vinyl-based monomer such as hexadiene;
  • Polyfunctional aromatic vinyl-based monomer such as divinylbenzene, divinyltoluene, divinylnaphthalene; divinyl adipate, divinyl maleate, divinyl phthalate, divinyl isophthalate, etc.
  • Polyfunctional vinyl ester-based monomer such as diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, etc.
  • Polyfunctional vinyl ether-based monomer Polyfunctional allyl ether-based monomer such as diallyl ether, diallyl oxyetane, triallyl oxyetane; Polyfunctional vinyl ketone-based monomer such as divinyl ketone and diallyl ketone; Dialyl amine, diallyl isocyanurate , Multifunctional nitrogen-containing vinyl monomers such as diallyl cyanurate, methylenebis (meth) acrylamide, and bismaleimide; Multifunctional silicon-containing vinyl monomers such as dimethyldivinylsilane, divinylmethylphenylsilane, and diphenyldivinylsilane. However, it is not limited to these.
  • ethylene glycol di (meth) acrylate and 1,3-butylene glycol are examples of the polyfunctional vinyl-based monomer constituting the structural unit (A2).
  • Di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, divinylbenzene, divinyltoluene and the like are preferable.
  • ethylene glycol di (meth) acrylate trimethylolpropane tri (meth) acrylate, and 1,3-butylene glycol di (meth) acrylate are mentioned. Of these, ethylene glycol di (meth) acrylate is preferable.
  • the structural unit (A2) derived from the polyfunctional vinyl-based monomer is preferably 1% by mass to 10% by mass with respect to the total mass of the structural unit (A).
  • the polymer which is the vinyl resin particles of the present invention has the structural units (A1) [(a1), (a2)] and (A2) [(a3), (a4) as long as the effects of the present invention are not impaired. )] May contain structural units derived from other vinyl-based monomers (polymerizable monomers). That is, the vinyl-based resin particles of the present invention can be a copolymer of a monomer component (mixture) containing other polymerizable monomers.
  • other polymerizable monomers include monofunctional (meth) acrylonitrile-based single amounts such as (meth) acrylonitrile.
  • Body Monofunctional heterocycle-containing vinyl-based monomer such as N-vinylimidazole and N-vinyl-2-pyrrolidone; Simple such as vinyl acetate (vinyl acetate), isopropenyl acetate, vinyl propionate, vinyl decanoate and the like.
  • Monofunctional vinyl ester-based monomer Monofunctional vinyl ether-based monomer such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, ethylene glycol vinyl ether; Other monofunctional vinyl compounds such as vinyl cyclopentane, vinyl cyclohexane, ethyl vinyl benzene, etc.
  • Monomer Monofunctional (meth) acrylic acid-based monomer such as (meth) acrylic acid and itaconic acid; Monofunctional (meth) acrylamide-based monomer such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide. Examples thereof include, but are not limited to, monomers.
  • the reactive emulsifier is not particularly limited as long as it is an emulsifier reactive with the above-mentioned monomer or its polymer, but has a radically polymerizable double bond, a hydrophilic functional group, and a hydrophobicity in its molecular structure. Examples thereof include those having each group and having emulsifying, dispersing, and wetting functions similar to general emulsifiers.
  • Examples of the structure of the radically polymerizable double bond in the molecular structure include 1-propenyl group, 2-methyl-1-propenyl group, allyl group, methallyl group, vinyl group, acryloyl group, metaacryloyl group and the like. Can be mentioned.
  • hydrophilic functional group in the molecular structure examples include anionic groups such as sulfate group, nitrate group, phosphate group, borate group and carboxyl group (-OSO 3- , -NO 3- , -OPO 3- , and so on. -B (OH) 4- , -COO- , etc.); Cationic groups such as amino groups ( -NH 3+ , etc.); Polyoxyalkylene chains such as polyoxyethylene, polyoxymethylene, polyoxypropylene; hydroxy groups, etc. Can be mentioned.
  • hydrophobic group in the molecular structure examples include an alkyl group, an alkenyl group, a phenyl group, an alkylphenyl group, a styrrified phenyl group, a naphthyl group and the like.
  • Reactive emulsifiers are classified into anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers, amphoteric emulsifiers and the like according to the type of hydrophilic functional group contained in the molecular structure. Further, the radically polymerizable double bond, the hydrophilic functional group, and the hydrophobic group in the molecular structure of the reactive emulsifier can each have a plurality of types of structures and functional groups.
  • the reactive emulsifier preferably has at least a polyoxyalkylene chain and a sulfuric acid group as hydrophilic functional groups inside the molecular structure.
  • the trade name generally commercially available as such a reactive emulsifier is not particularly limited, but for example, Adecaria Soap SR, ER, SE, NE, PP (ADEKA Corporation), Aqualon HS, BC, KH. (Daiichi Kogyo Seiyaku Co., Ltd.), Latemul PD (Kao Co., Ltd.), Eleminor JS, RS (Sanyo Kasei Kogyo Co., Ltd.), Antox MS (Nippon Emulsifier Co., Ltd.) and the like.
  • the polymer which is the vinyl resin particles of the present invention can have a structural unit (b1) derived from the compound represented by the following general formula (I).
  • the compound represented by the following general formula (I) has a hydrophobic group and a hydrophilic group in the molecule, and also has a copolymerizable unsaturated group. Therefore, the compound represented by the following general formula (I) also functions as a reactive (copolymerizable) emulsifier (corresponding to the above-mentioned reactive emulsifier), and various problems in the conventional emulsion polymerization, for example, during emulsion polymerization.
  • m represents an integer of 1 to 3, and preferably represents 2 from the viewpoint of emulsifying property.
  • AO represents an alkyleneoxy group having 2 to 4 carbon atoms.
  • the alkyleneoxy group having 2 to 4 carbon atoms include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group.
  • ethyleneoxy group is preferable as AO. Since the ethyleneoxy group is more hydrophilic than other alkyleneoxy groups and can form a resin emulsion having a dense hydration layer, the stability of the resin particles in the aqueous dispersion medium can be further improved.
  • n represents the number of repetitions of the alkyleneoxy unit (that is, the number of moles of the alkyleneoxy group added).
  • n is an integer of 0 to 100, preferably an integer of 5 to 50, and more preferably an integer of 5 to 30, from the viewpoint of the stability of the resin particles in the aqueous dispersion medium.
  • X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group).
  • M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group.
  • the alkali metal atom include a sodium atom and a potassium atom.
  • Examples of the alkaline earth metal atom include a calcium atom and a barium atom.
  • X is preferably a hydrogen atom, -SO 3 NH 4 , -SO 3 Na, or -SO 3 K, and more preferably -SO 3 NH 4 .
  • R represents a polymerizable unsaturated group, specifically a group represented by the following formula (i) or formula (ii), and in the formula, R 1 represents a hydrogen atom or a methyl group.
  • Examples of the structural unit (b1) derived from the compound represented by the general formula (I) include the following structures.
  • m, R 1 , AO, n, and X are as defined above.
  • m, R 1 , AO, n, and X are as defined above.
  • a compound represented by the following formula (I-1) can be mentioned.
  • m, AO, n, and X are as defined above.
  • the ratio of the structural unit (A) when the total structural unit of the polymer is 100% by mass from the viewpoint of copolymerizability at the time of polymerization, for example, the ratio of the structural unit (A) is 98.0.
  • the mass% to 99.9% by mass and the ratio of the structural unit (B) (for example, the structural unit (b1)) can be 0.1% by mass to 2.0% by mass.
  • the ratio of the structural unit (A1) when the total structural unit of the vinyl resin particles (polymer) is 100% by mass, the ratio of the structural unit (A1) is 88 to 99% by mass, and the ratio of the structural unit (A2) is 0.9 to.
  • the ratio of the structural unit (B) can be 10% by mass and 0.1 to 2% by mass.
  • the ratio of the structural unit (B) may be read as the ratio of the structural unit (b1), or the total of the structural unit (b1) and the structural unit (B) other than the structural unit (b1). It may be read as a ratio.
  • the ratio of the structural unit (a1) derived from the monofunctional styrene-based monomer in the structural unit (A) is set. 10% by mass to 99% by mass, the ratio of the structural unit (a2) derived from the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and the structural unit derived from the polyfunctional vinyl-based monomer ( The ratio of A2) can be 1% by mass to 10% by mass, and the ratio of other structural units derived from the polymerizable monomer can be 0% by mass to 5% by mass (total of 100% by mass).
  • the vinyl-based resin particles of the present invention can be obtained by emulsion polymerization of a monomer component containing the vinyl-based monomer and a reactive emulsifier (for example, a compound represented by the general formula (I)). can.
  • a reactive emulsifier for example, a compound represented by the general formula (I)
  • the emulsification polymerization method is preferable in that particles having a small particle size can be easily obtained.
  • vinyl-based monomer various monomers mentioned in the above description [monofunctional vinyl-based monomer (monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer), Polyfunctional vinyl-based monomers (polyfunctional (meth) acrylic monomers, polyfunctional (poly) vinyl-based monomers), and other polymerizable monomers] can be used as the reactive emulsifiers of the above-mentioned compounds and the like. Can be exemplified respectively.
  • a preferred embodiment of emulsion polymerization is to use a polymerization mixture containing the above-mentioned monomer component, a polymerization initiator, and optionally other additives (surfactant, protective colloid agent, chain transfer agent, pH adjuster, etc.) for emulsion polymerization.
  • the emulsion polymerization step may be included, and if desired, an aging step of aging the reaction solution obtained in the emulsion polymerization step may be included.
  • the emulsion polymerization is usually carried out in an aqueous dispersion medium, and the aqueous dispersion medium is not particularly limited, and examples thereof include water and a mixed solution of water and an alcohol solvent. From the viewpoint of stability (non-aggregation) of the vinyl-based resin particles formed after emulsion polymerization, water is preferable as the aqueous dispersion medium.
  • the amount of the aqueous dispersion medium used can be appropriately set so that the content of the vinyl-based resin particles present in the system after emulsion polymerization is a desired ratio. For example, the content of the vinyl resin particles existing in the system is set to 1% by mass to 70% by mass, 10% by mass to 60% by mass, 20% by mass to 50% by mass, and the amount of the aqueous dispersion medium used is appropriate. Just set it.
  • the polymerization initiator used for the emulsion polymerization is not particularly limited, and a known polymerization initiator can be used.
  • a known polymerization initiator can be used.
  • Azo compounds such as tetrahydrate; persulfates such as potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, ammonium peroxide and the like.
  • peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, ammonium peroxide and the like.
  • the present invention is not limited to these examples.
  • azo compounds and peroxides are preferably used because they can also function as a decomposition accelerator, that is, they can have a function of promoting thermal decomposition when vinyl-based resin particles are applied as a porous material.
  • the amount of the polymerization initiator used is not particularly limited, but is preferably 0.05 parts by mass or more per 100 parts by mass of the monomer component, from the viewpoint of increasing the polymerization rate and reducing the residual amount of the unreacted monomer. Is 0.1 part by mass or more, and can be, for example, 5 parts by mass or less from the viewpoint of polymerization stability.
  • the reactive emulsifier and the compound represented by the general formula (I) also serve as an emulsifier and can satisfactorily initiate and complete emulsion polymerization.
  • a surfactant (emulsifier) generally used for emulsion polymerization may be further used as another additive as long as the effect is not impaired.
  • an anionic surfactant or a cationic surfactant and / or other nonionic surfactant may be used in combination.
  • anionic surfactants include fatty acid sekken; sekken rosinate; alkyl sulfates such as ammonium dodecyl sulfate and sodium dodecyl sulphate; alkyl sulfonates such as ammonium dodecyl sulfonate and sodium dodecyl sulfonate; Alkylaryl sulfonates such as ammonium dodecylbenzene sulfonate, sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfonate; polyoxyalkylene alkyl sulfate; polyoxyalkylene aryl sulfate; polyoxyalkylene alkylaryl sulfate; dialkylsulfosuccinic acid Salts; arylsulfonic acid-formalin condensates; fatty acid salts such as
  • Examples of the cationic surfactant include stearyltrimethylammonium, cetyltrimethylammonium, and lauryltrimethylammonium.
  • Examples of the nonionic surfactant include polyoxyalkylene alkylphenyl ether, polyoxyalkylene alkyl ether, alkyl polyglucoside, polyglycerin alkyl ether, polyoxyalkylene fatty acid ester, polyglycerin fatty acid ester, total ruby monofatty acid ester and the like. Be done.
  • the amount used is, for example, 0.05 parts by mass or more, 0.1 parts by mass or more, or 0.3 parts by mass with respect to 100 parts by mass of the monomer component.
  • the number may be 10 parts by mass or more, and the upper limit thereof may be, for example, 10 parts by mass, 8 parts by mass or less, and 5 parts by mass or less.
  • a known protective colloidal agent may be used in combination as another additive.
  • the protective colloid agent include fully saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyacrylic acid, and gum arabic.
  • a known chain transfer agent or pH adjuster may be used in combination.
  • the chain transfer agent include octyl mercaptan, dodecyl mercaptan, mercaptoethanol, thioglycolic acid, allyl alcohol, isopropyl alcohol, sodium hypophosphite and the like.
  • the pH adjusting agent include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as citric acid, succinic acid, apple acid and lactic acid; and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • Alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, isopropanol, aliphatic amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, aromatic polyamines such as phenylenediamine and tolylenediamine, piperazine.
  • Organic bases such as heterocyclic polyamines such as aminoethylpiperazine and the like.
  • the amount of each monomer used can be appropriately set.
  • the ratio of the vinyl-based monomer to the total amount of all the monomers (total 100% by mass) is 98.0% by mass to 99.9% by mass, and is represented by a reactive emulsifier (for example, the general formula (I)).
  • the proportion of the compound) can be 0.1% by mass to 2.0% by mass.
  • the ratio of the monofunctional vinyl-based monomer is 88% by mass to 99% by mass
  • the ratio of the polyfunctional vinyl-based monomer is 0.9% by mass with respect to the total amount of all the monomers (total 100% by mass).
  • the ratio of the reactive emulsifier can be from% to 10% by mass, and the ratio of the reactive emulsifier can be from 0.1 to 2% by mass.
  • the monofunctional styrene-based monomer is 10% by mass to 99% by mass
  • the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and more.
  • the functional vinyl-based monomer may be 1% by mass to 10% by mass, and the other polymerizable monomer may be 0% by mass to 5% by mass.
  • the emulsion polymerization may be carried out by a known emulsion polymerization method, and for example, a monomer dropping method, a pre-emulsion method, a batch charging polymerization method and the like can be adopted. From the viewpoint of industrial productivity, it is preferable to adopt the pre-emulsion method because it can be polymerized stably and a polymer (resin particles) having few aggregates can be obtained.
  • the method for charging the above-mentioned monomer component, polymerization initiator, and other additives is not particularly limited and may be appropriately set.
  • a vinyl-based monomer is pre-emulsified with a reactive emulsifier (for example, a compound represented by the general formula (I)) and an aqueous dispersion medium such as water.
  • a reactive emulsifier for example, a compound represented by the general formula (I)
  • an aqueous dispersion medium such as water.
  • the remaining polymerization mixture may be dropped or the like.
  • the remaining monomer component and the remaining monomer component may be performed.
  • the emulsion polymerization step is repeated by two or more steps, that is, in an embodiment including, for example, a first emulsion polymerization step and a second emulsion polymerization step, a core portion is formed by the first emulsion polymerization step, and a subsequent second emulsion polymerization step is carried out.
  • the shell portion By forming the shell portion on the surface of the core portion, the core-shell type resin particles can be formed.
  • the second emulsion polymerization step may be performed a plurality of times, and when the second second emulsion polymerization step is performed, the surface of the shell portion formed by the first second emulsion polymerization step is newly formed. Resin particles on which a shell portion is formed can be obtained.
  • the composition of the monomer component used in each step can be changed, and the monomer component used in each step can be changed to 1. It may be a monomer of the seed. That is, in the first emulsion polymerization step and the second emulsion polymerization step, different monomers (one kind) may be used, or a mixture of monomers and a monomer (one kind) may be used. Alternatively, a mixture of different monomers may be used in each step. When a mixture of monomers of the same type is used, a mixture in which the mixing ratio of the monomers is changed can be used.
  • the monofunctional styrene-based monomer, the polyfunctional vinyl-based monomer, and the reactive emulsifier (for example, represented by the general formula (I)) are represented.
  • the monofunctional styrene-based monomer, the monofunctional (meth) acrylic-based monomer, and the polyfunctional vinyl-based monomer among the monofunctional vinyl-based monomers are used.
  • a mixture containing a monomer and a reactive emulsifier for example, a compound represented by the general formula (I) can be used.
  • the polymerization temperature in the emulsion polymerization may be appropriately set depending on the polymerization initiator and the like used, and may be, for example, 30 ° C to 90 ° C or 50 ° C to 80 ° C.
  • the polymerization time may be appropriately set according to the reaction rate obtained from the charged amount of the monomer component and the residual amount in the reaction solution, but is usually about 1 hour to 12 hours, for example, about 2 hours to 8 hours. be.
  • the aging step after the emulsion polymerization step, the unreacted monomers are reduced, or the dispersion containing the polymer particles (vinyl-based resin particles) obtained by the emulsion polymerization is stabilized. It is done for the purpose of doing so.
  • the aging temperature in the aging step can be, for example, 50 ° C. to 90 ° C., and can be, for example, 70 ° C. to 85 ° C. By keeping the aging temperature within the above range, it can be expected that the amount of the unreacted monomer mixture can be reduced while suppressing the aggregation of particles.
  • the aging time may be appropriately set according to the reaction rate obtained from the total amount of the monomer components charged and the residual amount of the monomer components in the reaction solution, but is usually 1 hour to 12 hours, preferably 1 to 12 hours. It takes about 2 to 8 hours.
  • a surfactant may be added if necessary for the purpose of facilitating the suppression of aggregation of the polymer particles during aging.
  • the surfactant used in the aging step it is preferable to use the surfactant mentioned in the emulsion polymerization step described above, and it is also possible to use an anionic surfactant or a nonionic surfactant. ..
  • the amount of the surfactant used in the aging step is, for example, 0.05 parts by mass or more and 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the monomer components attached to the emulsion polymerization step. , 0.3 parts by mass or more, and for example, 10 parts by mass or less, 8 parts by mass or less, and 5 parts by mass.
  • the vinyl-based resin particles of the present invention are obtained in the form of a dispersion (also referred to as a dispersion liquid) containing the formed polymer in an aqueous dispersion medium.
  • a dispersion also referred to as a dispersion liquid
  • the content of the vinyl-based resin particles (polymer) in the aqueous dispersion medium is not particularly limited, but may be, for example, 10 to 80% by mass, 20 to 70% by mass, 30 to 60% by mass, or the like.
  • a vinyl-based monomer containing a monofunctional vinyl-based monomer and a polyfunctional vinyl-based monomer for example, the vinyl-based monomer is used.
  • a method for producing an aqueous dispersion of vinyl-based resin particles which comprises a step of emulsion polymerization of a different reactive emulsifier such as a compound represented by the general formula (I), is also targeted.
  • the vinyl-based resin particles of the present invention are preferably particles having a median diameter D 50 of 0.05 ⁇ m to 2.0 ⁇ m.
  • a value of 50% volume diameter based on a volume measured by a dynamic light scattering method can be adopted.
  • the particle size of the vinyl-based resin particles is compared. It can be a small range.
  • the median diameter is less than 0.2 ⁇ m, the particle size may be too small to contribute to the formation of sufficient pores. Further, if it exceeds 1.5 ⁇ m, there is a possibility that the mechanical strength of the thermosetting resin to be punctured is lowered.
  • the vinyl-based resin particles of the present invention preferably have a pyrolysis temperature lower than the pyrolysis temperature of the thermosetting resin described later under atmospheric pressure.
  • the thermal decomposition temperature is a condition according to JIS K7120 (thermogravimetric analysis method for plastics), and the weight reduction due to thermal decomposition of a sample is measured by a thermogravimetric analyzer (TGA). Means the starting temperature.
  • TGA thermogravimetric analyzer
  • TGA thermogravimetric analyzer
  • the thermal decomposition temperature of the vinyl-based resin particles of the present invention under a nitrogen atmosphere is, for example, 340 to 440 ° C, preferably 370 to 410 ° C.
  • the vinyl-based resin particles are obtained as a dispersion (dispersion liquid) dispersed in an aqueous dispersion medium through the emulsion polymerization step described above, and are used as a dispersion of various solvents depending on the use of the resin particles. can do.
  • the aqueous dispersion medium can be solvent-substituted and used as a form of the dispersion dispersed in the organic solvent (organic solvent dispersion).
  • the aqueous dispersion medium or the organic solvent can be removed from the dispersion dispersed in the aqueous dispersion medium or the organic solvent to obtain vinyl-based resin particles (powder), which can also be used.
  • the method for removing the aqueous dispersion medium and the organic solvent include a freeze-drying method, a hot-air drying method, and a spray-drying method.
  • the obtained resin particles (powder) can be dispersed again in an aqueous dispersion medium or an organic solvent and used as an aqueous solvent dispersion or an organic solvent dispersion.
  • organic solvent examples include lower alcohols such as methanol, ethanol and isopropanol; linear amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc); N-methyl-2- Cyclic amides such as pyrrolidone (NMP); ethers such as ⁇ -butyrolactone (GBL); glycols such as ethyl cellosolve and ethylene glycol, acetonitrile and the like can be mentioned. This substitution can be carried out by a usual method such as a distillation method or an ultrafiltration method. At this time, the content of the vinyl-based resin particles in the organic solvent dispersion can be appropriately set according to the intended use.
  • linear amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc)
  • NMP N-methyl-2- Cyclic amides
  • NMP pyrrolidone
  • GBL ⁇ -
  • the content of the resin particles is 1% by mass or more based on the total mass of the organic solvent dispersion. It can be 70% by mass, 10% by mass to 60% by mass, and 20% by mass to 50% by mass. If the proportion of the resin particles in the organic solvent dispersion is less than 1% by mass, it is not economical, and if it is more than 70% by mass, the resin particles may aggregate or settle without becoming a stable dispersion, which will be described later. There is a risk that handling will deteriorate when mixed with a thermosetting resin.
  • the viscosity of the organic solvent dispersion can be, for example, about 0.6 mPa ⁇ s to 100 mPa ⁇ s at 20 ° C.
  • the dispersion may further contain other compounds such as surfactants.
  • thermosetting resin The vinyl-based resin particles of the present invention are suitably used for making a thermosetting resin porous. That is, according to the present invention, it is possible to provide a porous material made of the vinyl-based resin particles.
  • thermosetting resin include polyimide resin and diallyl phthalate resin.
  • a polyimide resin can be mentioned as a suitable example.
  • thermosetting resin porous Method for producing a porous body
  • the method for making a thermosetting resin porous (method for producing a porous body) using the vinyl-based resin particles of the present invention is not particularly limited.
  • a varnish composition containing a polyimide precursor, a polyamic acid, vinyl-based resin particles of the present invention, and a solvent is first applied onto a substrate to form a coating film.
  • the coating film is dried, that is, the solvent is removed from the coating film to form a film (precursor film of a polyimide porous film) containing a polyimide precursor and vinyl resin particles (precursor film of polyimide porous film).
  • a film precursor film of a polyimide porous film
  • vinyl resin particles precursor film of polyimide porous film
  • Precursor film forming step the film (precursor film of the polyimide porous film) is fired to convert the polyimide precursor into polyimide, and vinyl-based resin particles are removed (thermally decomposed) (removal step of removing vinyl-based resin particles).
  • Polyimide porous film can be obtained.
  • the removal step (firing step) for removing the vinyl-based resin particles can be carried out at a temperature at which the polyimide precursor can be converted into polyimide and the vinyl-based resin particles can be decomposed and disappeared.
  • the film (precursor film of the polyimide porous film) is peeled off from the substrate (peeling step), and the unfired film is fired (the vinyl-based resin particles are removed).
  • the removal step) may be performed.
  • a specific example of the method for making the thermosetting resin porous will be described, but the method is not limited to the following method.
  • This step is a step of applying a varnish composition containing a polyamic acid as a polyimide precursor, the vinyl-based resin particles of the present invention, and a solvent onto a substrate to form a coating film.
  • the substrate include PET films, SUS substrates, glass substrates and the like.
  • a product obtained by polymerizing an arbitrary tetracarboxylic acid dianhydride and a diamine can be used without particular limitation.
  • the tetracarboxylic acid dianhydride and the diamine can be appropriately selected from compounds conventionally used as raw materials for synthesizing polyamic acids.
  • the tetracarboxylic acid dianhydride may be an aromatic tetracarboxylic acid dianhydride or an aliphatic tetracarboxylic acid dianhydride
  • the diamine may be an aromatic diamine or an aliphatic. It may be diamine.
  • the means for producing the polyamic acid is not particularly limited, and a known method such as a method of reacting a tetracarboxylic acid dianhydride component with a diamine component in a solvent can be used.
  • the amount of the tetracarboxylic acid dianhydride and the diamine used is not particularly limited, but for example, 0.50 mol or more and 1.50 mol or less of the diamine is used with respect to 1 mol of the tetracarboxylic acid dianhydride. Can be a percentage.
  • the reaction solution of polyamic acid can be used as it is as a polyamic acid-containing liquid for preparing a varnish composition.
  • the solvent used in the varnish composition examples include water, an organic solvent, or a combination thereof.
  • the organic solvent used in the varnish composition is preferably a compound that exhibits neutrality or weak basicity in water from the viewpoint of avoiding hydrolysis of the polyamic acid.
  • Preferable examples of the organic solvent include, for example, various organic solvents mentioned in the above-mentioned organic solvent dispersion of resin particles.
  • a dispersant may be further added to the varnish composition for the purpose of uniformly dispersing the vinyl resin particles.
  • a dispersant When a dispersant is used, it can be used in an amount of, for example, 0.01% by mass or more and 5% by mass or less with respect to the fine particles.
  • the varnish composition can be produced by mixing the above-mentioned various components in predetermined amounts, and the specific procedure thereof is not particularly limited.
  • the varnish composition is made of vinyl so that, for example, the ratio of vinyl resin particles / polyamic acid is 0.5 to 4.0 (mass ratio) when the polyamic acid-fine particle composite film (precursor film) described later is used. It can contain based resin particles and polyamic acid. Alternatively, these components can be contained so that the volume ratio of the vinyl resin particles / polyamic acid is, for example, 1.0 to 5.0 when the composite film is formed.
  • the solid content concentration of the varnish composition is not particularly limited, but may be, for example, 1% by mass or more, 5% by mass or more, and 10% by mass or more, and the upper limit thereof is, for example, 60% by mass or less. Yes, for example, it can be 30% by mass or less.
  • the solid content concentration referred to here means the concentration of a component other than the solvent, and even a liquid component is included in the weight as a solid content.
  • the viscosity of the varnish composition is not particularly limited as long as a coating film having a desired film thickness can be formed. For example, the viscosity of the varnish composition can be 300 cP or more and 20,000 cP or less.
  • This step is a step of removing the solvent from the coating film obtained in the above step to form a precursor film of the polyimide porous film.
  • the above-mentioned varnish composition is applied onto a substrate to form a coating film, and then 0 ° C. or higher and 100 ° C. or lower, preferably 10 ° C. or higher at normal pressure. It may be dried at 100 ° C. or lower.
  • the precursor film may be formed directly on the substrate, or may be formed on a lower film different from the precursor film formed on the substrate. Further, after forming a precursor film using the above-mentioned varnish composition, an upper film different from the precursor film may be further formed on the upper layer.
  • both the embodiment in which the lower layer film is provided on the substrate and the embodiment in which the upper layer film is provided on the precursor film are included in the precursor film forming step.
  • a peeling step of peeling the precursor film from the substrate may be included.
  • the substrate is not required to have heat resistance that can withstand the temperature at which the precursor film is fired.
  • Step of removing vinyl-based resin particles (firing step)>
  • the vinyl-based resin particles of the present invention are thermally decomposed and removed at the same time as the precursor film of the above-mentioned polyimide porous film is imidized by firing or the like, or during the imidization process, or after the imidization. It is a process.
  • a polyimide porous film can be obtained by forming uniform and fine pores in the polyimide resin film.
  • the vinyl-based resin particles may be removed while imidizing the polyamic acid, or may be performed after the polyamic acid is imidized.
  • the method for imidizing the polyamic acid is not particularly limited.
  • the imidization may be either thermal imidization or chemical imidization.
  • chemical imidization a method such as immersing a precursor membrane containing a polyamic acid in acetic anhydride or a mixed solvent of acetic anhydride and isoquinoline can be used.
  • calcination which is thermal imidization, is preferable because it is not necessary to remove the imidizing agent by washing.
  • calcination related to thermal imidization will be described.
  • the firing temperature varies depending on the structure of the polyamic acid, but is preferably 120 ° C. or higher and 500 ° C. or lower, more preferably 150 ° C. or higher and 450 ° C. or lower, and more preferably 300 ° C. or higher and 450 ° C. or lower.
  • the firing conditions are, for example, a method of raising the temperature from room temperature to about 400 ° C. to 450 ° C. in about 3 hours and then holding the temperature at the same temperature for about 2 to 30 minutes, or stepwise from room temperature in increments of, for example, 50 ° C. Drying-heat including continuous or stepwise temperature raising operation such as raising the temperature to 400 ° C. to 450 ° C.
  • the imidization method can also be used.
  • the precursor film or the laminated film containing the precursor film is once peeled off from the substrate, and the firing step is performed, the end portion of the precursor film or the laminated film is made of SUS. It is also possible to adopt a method of fixing to a mold or the like to prevent deformation due to firing.
  • the film thickness of the polyimide porous film obtained after firing can be obtained by measuring the thicknesses of a plurality of locations with a micrometer or the like and averaging them. What kind of average film thickness is preferable depends on the use of the polyimide porous membrane, but for example, when it is used for a separator or the like, it is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and 15 ⁇ m or more and 30 ⁇ m or less. Is even more preferable. When used for a filter or the like, it is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 300 ⁇ m or less, and further preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the polyimide porous film thus obtained is a non-transparent or yellow or brown colored porous film.
  • the polyimide porous membrane is a porous membrane in which spherical pores communicate with each other throughout the membrane, and the front and back surfaces communicate with each other.
  • the present invention will be described below with reference to examples. However, the present invention is not limited to these Examples and Comparative Examples.
  • the test method for vinyl-based resin particles is as follows.
  • ⁇ Mesian diameter> For a dispersion liquid (resin particle aqueous dispersion) in which resin particles are dispersed in water, a dynamic light scattering (DLS) particle size distribution measuring device Nanotrac (registered trademark) Wave II (trade name, Microtrac Bell Co., Ltd.) ) was used to obtain a volume-based particle size distribution, which was determined as the median diameter (D50) in the particle size distribution.
  • DLS dynamic light scattering
  • ⁇ Mixed stability test> The aqueous dispersion of resin particles was dried in a hot air convection dryer at 105 ° C., and 1 g of the obtained resin particle powder and 5 g of N, N-dimethylacetamide were measured in a sample bottle and dispersed in an ultrasonic cleaner for 30 minutes. Processed. The state of the obtained resin particle dispersion (organic solvent dispersion) was visually confirmed, and the mixing stability of the resin particles with the organic solvent was evaluated according to the following evaluation criteria. ⁇ Evaluation criteria ⁇ ⁇ : It does not gel and maintains fluidity. (Good) ⁇ : Not gelled, but loses fluidity. (usually) X: Gelled or resin particles are dissolved. (Defective)
  • ⁇ Pyrolysis temperature> The aqueous dispersion of resin particles was dried in a hot air convection dryer at 105 ° C., and 10 mg of the obtained resin particle powder was subjected to a differential thermal balance Thermoplus EVO2 (registered trademark) TG8121 (trade name, manufactured by Rigaku Co., Ltd.). JIS compliant conditions, alumina as a reference, nitrogen flow rate 100 ml / min, temperature rise rate 10 ° C / min, temperature rise from 25 ° C to 600 ° C, thermal decomposition start temperature is read from the obtained TG curve, and this is vinyl-based. The thermal decomposition temperature of the resin particles was used.
  • Example 1 In a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, 383.0 g of ion-exchanged water was placed and nitrogen gas was introduced while stirring to perform nitrogen substitution. After that, it was heated with a mantle heater and the temperature was controlled at 72 ⁇ 2 ° C. to obtain a polymerization vessel.
  • styrene as a monofunctional monomer (styrene monomer manufactured by Asahi Kasei Co., Ltd.) 378.6 g, ethylene glycol dimethacrylate (Mitsubishi) as a polyfunctional monomer 22.2 g of Acryester ED manufactured by Chemical Co., Ltd. was added and stirred to obtain a monomer emulsion in which styrene and ethylene glycol dimethacrylate were emulsified in ion-exchanged water.
  • the remaining monomer emulsion and the polymerization initiator aqueous solution were each sent to the polymerization vessel over 240 minutes by a liquid feed pump, and the dropping polymerization was carried out.
  • the liquid feeding line was co-washed with 9.0 g of ion-exchanged water.
  • the mixture was cooled to 40 ° C. to obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
  • Example 2 Polymerization was carried out in the same manner as in Example 1 except that 374.2 g of styrene and 4.4 g of methyl methacrylate were used instead of 378.6 g of styrene in Example 1, and trimethylolpropane trimethacrylate was used instead of ethylene glycol dimethacrylate.
  • a crosslinked polymer aqueous dispersion resin particle aqueous dispersion
  • Example 3 Instead of 378.6 g of styrene in Example 1, 388.8 g of styrene was contained, and instead of 22.2 g of ethylene glycol dimethacrylate, a divinylbenzene mixture (DVB570 manufactured by Nittetsu Chemical & Materials Co., Ltd., 57% divinylbenzene was contained. Polymerization was carried out in the same manner as in Example 1 except that 12.0 g (divinylbenzene: 6.84 g, ethylvinylbenzene: 5.16 g) (containing 43% of ethylvinylbenzene) was used, and a crosslinked polymer having a solid content of 40% was used. An aqueous dispersion (resin particle aqueous dispersion) was obtained.
  • a divinylbenzene mixture (DVB570 manufactured by Nittetsu Chemical & Materials Co., Ltd., 57% divinylbenzene was contained.
  • Example 4 In addition, 364.7 g of styrene and 4.0 g of methyl methacrylate were used instead of 378.6 g of styrene in Example 1, and 32.1 g of 1,3-butylene glycol dimethacrylate was used instead of 22.2 g of ethylene glycol dimethacrylate.
  • Example 4 was polymerized in the same manner as in Example 1 to obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
  • Comparative Example 1 Nitrogen gas was introduced into a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, and nitrogen exchange was performed while stirring. After nitrogen substitution, 0.6 g of a 40% aqueous solution of triethanolamine lauryl sulfate (Alscope LS-40T manufactured by Toho Chemical Industry Co., Ltd.) was added as an emulsifier, heated with a mantle heater, and the temperature was controlled at 72 ⁇ 2 ° C to form a polymerization vessel. ..
  • the remaining monomer emulsion and the remaining polymerization initiator aqueous solution were each sent to the polymerization vessel over 300 minutes by a liquid feed pump, and the dropping polymerization was carried out.
  • the mixture was cooled to 40 ° C. to obtain a non-crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
  • Comparative Example 2 In place of 12.8 g of the polyoxyethylene styrenated propenylphenyl ether sulfate ammonium salt (25% aqueous solution) in Example 1, 8.0 g of lauryl sulfate triethanolamine (40% aqueous solution) was used, and 392.8 g of styrene and ethylene were used. Polymerization was carried out in the same manner as in Example 1 except that glycol dimethacrylate was changed to 8.0 g to obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
  • crosslinked polymer aqueous dispersion resin particle aqueous dispersion
  • Example 5 Production of polyimide porous membrane (1)> ⁇ Preparation of varnish composition> The crosslinked polymer aqueous dispersion (resin particle dispersion) of Example 1 was spray-dried using a spray dryer ADL-311S-A (manufactured by Yamato Kagaku Co., Ltd.) to obtain powdery vinyl-based resin particles.
  • the varnish composition was applied onto a polyethylene terephthalate film and then dried at 90 ° C. for 5 minutes to obtain a precursor film of a polyimide porous film. After the obtained precursor film was peeled off from the polyethylene terephthalate film, the precursor film was fired at 420 ° C. for 5 minutes in a firing furnace to imidize the polyamic acid while thermally decomposing the vinyl resin particles.
  • the polyimide porous film of Example 5 was obtained.
  • the air permeability can be, for example, within 250 seconds or 200 seconds. The lower the value, the more preferable, so the lower limit is not particularly set, but considering the handleability of the porous membrane sample, it can be, for example, 30 seconds or more. If the garley air permeability is within 250 seconds, it can be judged that it can be applied as a separator for a lithium ion battery because it exhibits sufficiently high ion permeability.
  • the vinyl-based resin particles according to the present invention have high air permeability and are polyimide porous having uniform spherical pores having a diameter equivalent to the median diameter of the particles.
  • a quality film can be produced, which is useful as a porous material for thermosetting resins.

Abstract

[Problem] To provide novel vinyl-based resin particles that have excellent dispersion stability and solvent resistance for organic solvents, suppress aggregate generation and gelation, and are capable of forming fine, uniform pores in a film of a thermosetting resin, etc. [Solution] Vinyl-based resin particles that are a polymer having a structural unit (A) derived from a vinyl-based monomer and a structural unit (b1) derived from a compound represented by general formula (I) different from the structural unit (A), to be used to make a thermosetting resin porous. [In the formula, m represents an integer of 1-3, R represents a polymerizable unsaturated group, AO represents a C2-4 alkyleneoxy group, n represents an integer of 0-100, X represents a hydrogen atom or an anionic hydrophilic group selected from the group consisting of -SO3M, -COOM, and -PO3M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group, or an organic ammonium group.).]

Description

ビニル系樹脂粒子Vinyl resin particles
 本発明は、ビニル系樹脂粒子に関し、より詳細には、熱硬化性樹脂等の多孔化に使用される多孔質膜製造用ビニル系樹脂粒子に関する。 The present invention relates to vinyl-based resin particles, and more particularly to vinyl-based resin particles for producing a porous membrane used for making a thermosetting resin or the like porous.
 近年、ガス又は液体の分離膜として使用されるフィルタや、リチウムイオン電池のセパレータ、燃料電池電解質膜、あるいは低誘電率材料として、ポリイミド及び/又はポリアミドイミド多孔質膜の研究がなされている。
 例えば、セパレータ用途に使用されるポリイミドの多孔質膜の製造方法として、ポリアミック酸やポリイミドのポリマー溶液中にシリカ粒子等の微粒子を分散させたワニスを基板上に塗布した後、必要に応じて塗布膜を加熱して微粒子を含むポリイミド膜を得、次いで、ポリイミド膜中のシリカ粒子等の微粒子を、フッ酸を用いて除去し、多孔質化させる方法が知られている(特許文献1参照)。
In recent years, polyimide and / or polyamide-imide porous membranes have been studied as filters used as gas or liquid separation membranes, separators for lithium ion batteries, fuel cell electrolyte membranes, or low dielectric constant materials.
For example, as a method for producing a porous polyimide film used for a separator, a varnish in which fine particles such as silica particles are dispersed in a polymer solution of polyamic acid or polyimide is applied onto a substrate, and then applied as necessary. A method is known in which a polyimide film containing fine particles is obtained by heating the film, and then fine particles such as silica particles in the polyimide film are removed using hydrofluoric acid to make the polyimide film porous (see Patent Document 1). ..
 特許文献1に記載される方法等により多孔質のポリイミド膜を形成する場合、分散が均一な組成のワニスを用いて、厚さや組成の均一な塗布膜を形成することが望まれる。しかしながら、特許文献1に記載の製造方法に用いるフッ酸の取り扱いは一般に容易ではない。このため、フッ酸の使用がポリイミド多孔質膜の製造コストを増加させる要因となっており、フッ酸を使用せずに多孔質膜を製造する方法が求められている。例えば上記シリカ粒子に変えて、有機微粒子等の他の微粒子を用いることが考えられる。 When forming a porous polyimide film by the method described in Patent Document 1, it is desirable to use a varnish having a uniform dispersion to form a coating film having a uniform thickness and composition. However, the handling of hydrofluoric acid used in the production method described in Patent Document 1 is generally not easy. Therefore, the use of hydrofluoric acid is a factor that increases the production cost of the polyimide porous membrane, and there is a demand for a method for producing a porous membrane without using hydrofluoric acid. For example, it is conceivable to use other fine particles such as organic fine particles instead of the above silica particles.
特許第5605566号公報Japanese Patent No. 5605566
 しかし、有機微粒子は、水溶媒中で調製される場合が多く、水を含む微粒子分散液として流通することが多い。そのため有機微粒子の使用にあたり、水を含む微粒子分散液を用いてポリアミック酸やポリイミドを含有するワニスを調製すると、必然的に水を含むワニスが得られることとなる。
 上記ワニスが水と微粒子とを含む場合、ポリアミック酸と水を含む溶媒とのなじみの悪さや、微粒子の存在によりポリアミック酸同士の配向が阻害され、微粒子を抱き込んだポリアミック酸の塊状物を含むものとなるなど、塗布膜の形成不良を引き起こし得る不均一な組成の混合物が形成されやすい問題があり、これは膜強度の低下を引き起こす虞につながる。
However, organic fine particles are often prepared in an aqueous solvent and are often distributed as a fine particle dispersion containing water. Therefore, when using organic fine particles, if a varnish containing polyamic acid or polyimide is prepared using a fine particle dispersion liquid containing water, a varnish containing water is inevitably obtained.
When the varnish contains water and fine particles, it contains a lump of polyamic acid that embraces the fine particles because the orientation of the polyamic acids is hindered by the poor compatibility between the polyamic acid and the solvent containing water and the presence of the fine particles. There is a problem that a mixture having a non-uniform composition that can cause poor formation of the coating film is likely to be formed, which may lead to a decrease in film strength.
 このような問題を避けるために、完全に乾燥した有機微粒子を用いて実質的に水を含まないワニスを製造することが考えられる。しかし、乾燥した有機微粒子はポリアミック酸を溶解する有機溶媒に対する分散安定性や耐溶剤性が悪く、凝集物が発生して、細孔が均一に形成された透気度が良好なポリイミド多孔質膜を得にくい等の問題がある。 In order to avoid such problems, it is conceivable to produce a varnish that is substantially free of water using completely dried organic fine particles. However, the dried organic fine particles have poor dispersion stability and solvent resistance to an organic solvent that dissolves polyamic acid, aggregates are generated, and pores are uniformly formed, and the polyimide porous membrane has good air permeability. There are problems such as difficulty in obtaining.
 本発明は、上記の課題に鑑みなされたものであって、有機溶媒に対する分散安定性や溶剤耐性に優れ、凝集物発生やゲル化が抑制され、熱硬化性樹脂の膜等に均一で微細な空孔を形成できる新規なビニル系樹脂粒子を提供することを目的とする。 The present invention has been made in view of the above problems, and has excellent dispersion stability and solvent resistance to organic solvents, suppresses the generation of aggregates and gelation, and is uniform and fine on a thermosetting resin film or the like. It is an object of the present invention to provide novel vinyl-based resin particles capable of forming pores.
 本発明は、下記[1]~[9]を対象とするものである。
[1]
単官能ビニル系単量体に由来する構造単位(A1)と
多官能ビニル系単量体に由来する構造単位(A2)と
反応性乳化剤に由来する構造単位(B)とを有する重合体である、
多孔質膜製造用ビニル系樹脂粒子であって、
前記構造単位(A1)の割合が88~99質量%、前記構造単位(A2)の割合が0.9~10質量%、前記構造単位(B)の割合が0.1~2質量%である、
多孔質膜製造用ビニル系樹脂粒子。
[2]
ビニル系単量体に由来する構造単位(A)と、
前記構造単位(A)とは異なる下記一般式(I)で表される化合物に由来する構造単位(b1)を有する重合体である、
多孔質膜製造用ビニル系樹脂粒子。
Figure JPOXMLDOC01-appb-C000005
[式中、
mは、1~3の整数を表し、
Rは下記式(i)又は式(ii)で表される基を表し
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子又はメチル基を表す)、
AOは、炭素原子数2~4のアルキレンオキシ基を表し、nは、0~100の整数を表し、
Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。]
[3]
前記構造単位(b1)の割合が、前記重合体の前記構造単位の合計質量に対して0.1質量%~2.0質量%である、[2]に記載のビニル系樹脂粒子。
[4]
前記ビニル系単量体に由来する構造単位(A)が、単官能ビニル系単量体に由来する構造単位(A1)と多官能ビニル系単量体に由来する構造単位(A2)を含む、[2]又は[3]に記載のビニル系樹脂粒子。
[5]
樹脂粒子のメジアン径が0.05μm~2.0μmである、[1]乃至[4]のうち何れか一つに記載のビニル系樹脂粒子。
[6]
前記単官能ビニル系単量体に由来する構造単位(A1)は、単官能スチレン系単量体に由来する構造単位(a1)を含む、
[1]、[4]又は[5]に記載のビニル系樹脂粒子。
[7]
前記単官能ビニル系単量体に由来する構造単位(A1)は、単官能(メタ)アクリル系単量体に由来する構造単位(a2)を含む、
[1]及び[4]乃至[6]のうち何れか一つに記載のビニル系樹脂粒子。
[8]
前記多官能ビニル系単量体(A2)の割合が、前記重合体の前記構造単位の合計質量に対して0.9質量%~10質量%である、
[1]及び[4]乃至[7]のうち何れか一つに記載のビニル系樹脂粒子。
[9]
水性分散媒中で重合開始剤の存在下、
ビニル系単量体と、前記ビニル系単量体とは異なる下記一般式(I)で表される化合物を乳化重合することを特徴とする、
ビニル系樹脂粒子水性分散体の製造方法。
Figure JPOXMLDOC01-appb-C000007
[式中、
mは、1~3の整数を表し、
Rは下記式(i)又は式(ii)で表される基を表し
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子又はメチル基を表す)、
AOは、炭素原子数2~4のアルキレンオキシ基を表し、nは、0~100の整数を表し、
Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。]
The present invention is intended for the following [1] to [9].
[1]
It is a polymer having a structural unit (A1) derived from a monofunctional vinyl-based monomer, a structural unit (A2) derived from a polyfunctional vinyl-based monomer, and a structural unit (B) derived from a reactive emulsifier. ,
Vinyl-based resin particles for manufacturing porous membranes,
The ratio of the structural unit (A1) is 88 to 99% by mass, the ratio of the structural unit (A2) is 0.9 to 10% by mass, and the ratio of the structural unit (B) is 0.1 to 2% by mass. ,
Vinyl-based resin particles for manufacturing porous membranes.
[2]
Structural unit (A) derived from vinyl-based monomer and
A polymer having a structural unit (b1) derived from a compound represented by the following general formula (I), which is different from the structural unit (A).
Vinyl-based resin particles for manufacturing porous membranes.
Figure JPOXMLDOC01-appb-C000005
[During the ceremony,
m represents an integer of 1 to 3 and represents
R represents a group represented by the following formula (i) or formula (ii).
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 represents a hydrogen atom or a methyl group),
AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of. ]
[3]
The vinyl-based resin particles according to [2], wherein the ratio of the structural unit (b1) is 0.1% by mass to 2.0% by mass with respect to the total mass of the structural units of the polymer.
[4]
The structural unit (A) derived from the vinyl-based monomer includes a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer. The vinyl-based resin particles according to [2] or [3].
[5]
The vinyl-based resin particles according to any one of [1] to [4], wherein the resin particles have a median diameter of 0.05 μm to 2.0 μm.
[6]
The structural unit (A1) derived from the monofunctional vinyl-based monomer includes a structural unit (a1) derived from the monofunctional styrene-based monomer.
The vinyl-based resin particles according to [1], [4] or [5].
[7]
The structural unit (A1) derived from the monofunctional vinyl-based monomer includes a structural unit (a2) derived from the monofunctional (meth) acrylic monomer.
The vinyl-based resin particles according to any one of [1] and [4] to [6].
[8]
The proportion of the polyfunctional vinyl-based monomer (A2) is 0.9% by mass to 10% by mass with respect to the total mass of the structural units of the polymer.
The vinyl-based resin particle according to any one of [1] and [4] to [7].
[9]
In the presence of a polymerization initiator in an aqueous dispersion medium,
It is characterized in that a vinyl-based monomer and a compound represented by the following general formula (I) different from the vinyl-based monomer are emulsion-polymerized.
A method for producing an aqueous dispersion of vinyl-based resin particles.
Figure JPOXMLDOC01-appb-C000007
[During the ceremony,
m represents an integer of 1 to 3 and represents
R represents a group represented by the following formula (i) or formula (ii).
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 represents a hydrogen atom or a methyl group),
AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of. ]
 本発明のビニル系樹脂粒子は、熱硬化性樹脂(例えばポリイミド樹脂の前駆体であるポリアミック酸)を溶解する有機溶媒との混合物において、凝集物の発生や、ゲル化や粘度上昇が抑制され、混合安定性を有し、また有機溶媒中でも粒子の溶解や形状変化が抑制され、耐溶剤性に優れるものとすることができる。
 そのため本発明のビニル系樹脂粒子は、熱硬化性樹脂の多孔化材として用いる場合、熱硬化性樹脂材料との混合物においても粒子の溶解や粒子の凝集が生じ難く、該樹脂材料から得られる膜において、均一で微細な空孔を容易に形成し得、多孔質体(多孔質膜)を製造することができる。
The vinyl-based resin particles of the present invention suppress the generation of aggregates, gelation and increase in viscosity in a mixture with an organic solvent that dissolves a thermosetting resin (for example, polyamic acid which is a precursor of a polyimide resin). It has mixing stability, and the dissolution and shape change of particles are suppressed even in an organic solvent, so that the solvent resistance can be excellent.
Therefore, when the vinyl-based resin particles of the present invention are used as a porous material for a thermosetting resin, it is difficult for the particles to dissolve or aggregate even in a mixture with the thermosetting resin material, and a film obtained from the resin material. In the above, uniform and fine pores can be easily formed, and a porous body (porous film) can be produced.
図1は、耐溶剤性試験後の樹脂粒子の電子顕微鏡写真を示す((a)実施例1、(b)実施例2、(c)実施例3、(d)実施例4)。FIG. 1 shows electron micrographs of resin particles after a solvent resistance test ((a) Example 1, (b) Example 2, (c) Example 3, and (d) Example 4). 図2は、耐溶剤性試験後の樹脂粒子の電子顕微鏡写真を示す((a)比較例1、(b)比較例2)FIG. 2 shows an electron micrograph of the resin particles after the solvent resistance test ((a) Comparative Example 1 and (b) Comparative Example 2). 図3は、多孔質膜のSEM画像を示す((a)実施例5、(b)実施例6、(c)実施例7、(d)実施例8)。FIG. 3 shows an SEM image of the porous membrane ((a) Example 5, (b) Example 6, (c) Example 7, (d) Example 8). 図4は、多孔質膜のSEM画像を示す(比較例3)。FIG. 4 shows an SEM image of the porous membrane (Comparative Example 3).
[ビニル系樹脂粒子]
 本発明は、ビニル系単量体に由来する構造単位(A)と、後述する一般式(I)で表される化合物に由来する構造単位(b1)を必須として有する重合体である、ビニル系樹脂粒子を対象とする。
 すなわち本発明のビニル系樹脂粒子(重合体)は、上述の各構造単位を構成することとなる、ビニル系単量体と一般式(I)で表される化合物とを含む単量体成分(混合物)の共重合物(共重合体)とすることができる。
 本発明のビニル系樹脂粒子は、熱硬化性樹脂の多孔化材として、すなわち多孔質膜製造用ビニル系樹脂粒子として好適に使用することができる。
[Vinyl resin particles]
The present invention is a vinyl-based polymer having a structural unit (A) derived from a vinyl-based monomer and a structural unit (b1) derived from a compound represented by the general formula (I) described later as essential. Targets resin particles.
That is, the vinyl-based resin particles (polymer) of the present invention is a monomer component containing a vinyl-based monomer and a compound represented by the general formula (I), which constitutes each of the above-mentioned structural units. It can be a copolymer (copolymer) of (mixture).
The vinyl-based resin particles of the present invention can be suitably used as a porous material for a thermosetting resin, that is, as vinyl-based resin particles for producing a porous membrane.
 また本発明は、その一態様において、後述する単官能ビニル系単量体に由来する構造単位(A1)と、後述する多官能ビニル系単量体に由来する構造単位(A2)と、後述する反応性乳化剤に由来する構造単位(B)とを有する重合体である、ビニル系樹脂粒子を対象とする。 Further, in one embodiment of the present invention, a structural unit (A1) derived from a monofunctional vinyl-based monomer described later and a structural unit (A2) derived from a polyfunctional vinyl-based monomer described later will be described later. The target is vinyl-based resin particles, which are polymers having a structural unit (B) derived from a reactive emulsifier.
 なお、本明細書において(メタ)アクリル系単量体とは、アクリル系単量体とメタクリル系単量体の両方をいう。例えば(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステルとメタクリル酸アルキルエステルをいう。
 また本明細書において、「ビニル系単量体に由来する構造単位」「単官能スチレン系単量体に由来する構造単位」「単官能(メタ)アクリル系単量体に由来する構造単位」「多官能ビニル系単量体に由来する構造単位」などの表記は、ビニル系単量体、単官能スチレン系単量体、単官能(メタ)アクリル系単量体、多官能ビニル系単量体が、それぞれ重合された場合に形成される構造単位を示し、それら単量体そのものを表すものではない。
In the present specification, the (meth) acrylic monomer means both an acrylic monomer and a methacrylic monomer. For example, (meth) acrylic acid alkyl ester refers to acrylic acid alkyl ester and methacrylic acid alkyl ester.
Further, in the present specification, "structural unit derived from vinyl-based monomer", "structural unit derived from monofunctional styrene-based monomer", "structural unit derived from monofunctional (meth) acrylic monomer", and "structural unit". Notations such as "structural unit derived from polyfunctional vinyl-based monomer" are vinyl-based monomer, monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer, polyfunctional vinyl-based monomer. However, each indicates a structural unit formed when polymerized, and does not represent those monomers themselves.
[ビニル系単量体に由来する構造単位(A)]
 本発明のビニル系樹脂粒子である重合体は、ビニル系単量体に由来する構造単位(A)を有する。前記構造単位(A)は、後述する反応性乳化剤に由来する構造単位(B)及び一般式(I)で表される化合物に由来する構造単位(b1)とは区別されるものである。
 前記構造単位(A)は、単官能ビニル系単量体に由来する構造単位(A1)と多官能ビニル系単量体に由来する構造単位(A2)を含むことができ、また単官能ビニル系単量体に由来する構造単位(A1)には単官能スチレン系単量体に由来する構造単位(a1)や、単官能(メタ)アクリル系単量体に由来する構造単位(a2)を含むことができる。
 好適な態様において、構造単位(A)は、単官能ビニル系単量体に由来する構造単位(A1)と多官能ビニル系単量体に由来する構造単位(A2)の双方を含む。
[Structural unit derived from vinyl-based monomer (A)]
The polymer which is the vinyl-based resin particles of the present invention has a structural unit (A) derived from the vinyl-based monomer. The structural unit (A) is distinguished from the structural unit (B) derived from the reactive emulsifier described later and the structural unit (b1) derived from the compound represented by the general formula (I).
The structural unit (A) can include a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer, and is also monofunctional vinyl-based. The structural unit (A1) derived from the monomer includes a structural unit (a1) derived from a monofunctional styrene-based monomer and a structural unit (a2) derived from a monofunctional (meth) acrylic monomer. be able to.
In a preferred embodiment, the structural unit (A) includes both a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer.
[単官能ビニル系単量体に由来する構造単位(A1)]
〈単官能スチレン系単量体に由来する構造単位(a1)〉
 前記単官能ビニル系単量体に由来する構造単位(A1)として、単官能スチレン系単量体に由来する構造単位(a1)を含むことができる。
 スチレン系単量体に由来する構造単位は、均一な真球状の粒子形成に寄与することができる。
[Structural unit derived from monofunctional vinyl monomer (A1)]
<Structural unit derived from monofunctional styrene-based monomer (a1)>
As the structural unit (A1) derived from the monofunctional vinyl-based monomer, the structural unit (a1) derived from the monofunctional styrene-based monomer can be included.
Structural units derived from styrene-based monomers can contribute to the formation of uniform spherical particles.
 前記構造単位(a1)として、但し限定されるものでないが、例えば下記式で表される構造単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
 上記式中、Ra1は炭素原子数1乃至10のアルキル基、-S(O)OMを表し、前記Mはアルカリ金属原子、第2族金属原子、アンモニウム基、または有機アンモニウム基を表す。
 またpは0又は1~5の整数を表し、複数のRa1はそれぞれ違いに同じでも異なってもよい。)
The structural unit (a1) is, but is not limited to, a structural unit represented by the following formula, for example.
Figure JPOXMLDOC01-appb-C000009
In the above formula, Ra 1 represents an alkyl group having 1 to 10 carbon atoms, —S (O) 2 OM 1 , and M 1 represents an alkali metal atom, a group 2 metal atom, an ammonium group, or an organic ammonium group. show.
Further, p represents 0 or an integer of 1 to 5, and a plurality of Ra1s may be the same or different from each other. )
 前記構造単位(a1)を構成することとなる単官能スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、2,4,6-トリメチルスチレン等のスチレン及びその誘導体;スチレンスルホン酸ナトリウム、スチレンスルホン酸アンモニウム等のスチレンスルホン酸塩が挙げられる。これらの中でも、スチレン、α-メチルスチレン、スチレンスルホン酸ナトリウムを好適なものとして挙げることができる。 Examples of the monofunctional styrene-based monomer constituting the structural unit (a1) include styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2, Styrene such as 5-dimethylstyrene and 2,4,6-trimethylstyrene and derivatives thereof; styrene sulfonates such as sodium styrene sulfonate and ammonium styrene sulfonate can be mentioned. Among these, styrene, α-methylstyrene, and sodium styrene sulfonate can be mentioned as suitable ones.
〈単官能(メタ)アクリル系単量体に由来する構造単位(a2)〉
 また前記単官能ビニル系単量体に由来する構造単位(A1)として、前記単官能スチレン系単量体に由来する構造単位(a1)に加え、単官能(メタ)アクリル系単量体に由来する構造単位(a2)を含んでいてもよい。(メタ)アクリル系単量体に由来する構造単位は、単官能・多官能問わずモノマー単位で分解(解重合)しやすく熱分解性に優れるという特性を有し、本発明のビニル系樹脂粒子の熱分解温度を下げることができる。
<Structural unit derived from monofunctional (meth) acrylic monomer (a2)>
Further, as the structural unit (A1) derived from the monofunctional vinyl-based monomer, in addition to the structural unit (a1) derived from the monofunctional styrene-based monomer, it is derived from the monofunctional (meth) acrylic monomer. The structural unit (a2) to be used may be included. The structural unit derived from the (meth) acrylic monomer has the property of being easily decomposed (depolymerized) in the monomer unit regardless of whether it is monofunctional or polyfunctional and has excellent thermal decomposition properties, and the vinyl resin particles of the present invention. The thermal decomposition temperature of the resin can be lowered.
 前記構造単位(a2)として、但し限定されるものでないが、例えば下記式で表される構造単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 上記式中、Ra21、Ra22、Ra23は、それぞれ独立して、水素原子又はメチル基を表し、Ra24は水素原子、炭素原子数1乃至10のアルキル基を表す。
The structural unit (a2) is, but is not limited to, a structural unit represented by the following formula, for example.
Figure JPOXMLDOC01-appb-C000010
In the above formula, R a21 , R a22 , and R a23 independently represent a hydrogen atom or a methyl group, and R a24 represents a hydrogen atom and an alkyl group having 1 to 10 carbon atoms.
 前記構造単位(a2)を構成することとなる単官能(メタ)アクリル系単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸3-メチルブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル等、アルキル基の炭素原子数が1~18である(メタ)アクリル酸エステルを挙げることができる。
 これらの中でも、粒子径の揃った樹脂粒子を得やすいという観点からは、前記(メタ)アクリル酸系単量体として、(メタ)アクリル酸メチルや(メタ)アクリル酸エチルを好適なものとして挙げることができ、特に(メタ)アクリル酸メチルが好ましい。
Examples of the monofunctional (meth) acrylic monomer constituting the structural unit (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth). ) Isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, 3-methylbutyl (meth) acrylate, (meth) ) N-hexyl acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, etc. (Meta) acrylic acid esters having a number of 1 to 18 can be mentioned.
Among these, methyl (meth) acrylate and ethyl (meth) acrylate are preferable as the (meth) acrylate-based monomer from the viewpoint that resin particles having the same particle size can be easily obtained. Methyl (meth) acrylate is particularly preferred.
[多官能ビニル系単量体に由来する構造単位(A2)]
 また本発明のビニル系樹脂粒子において、前記構造単位(A)として単官能ビニル系単量体に由来する構造単位(A1)に加え、多官能ビニル系単量体に由来する構造単位(A2)を含むことができる。
 多官能ビニル系単量体に由来する構造単位(A2)を含むことにより、得られるビニル系樹脂粒子の耐溶剤性を高め、当該ビニル系樹脂粒子の膨潤による後述するワニス組成物(ポリイミドワニス)の粘度低下を抑制することができるとともに、圧縮強度が高く、粒子径の揃ったビニル系樹脂粒子を得やすくなる。
 上記構造単位(A2)としては、多官能(メタ)アクリル系単量体に由来する構造単位(a3)や、多官能(ポリ)ビニル系単量体に由来する構造単位(a4)を挙げることができる。
[Structural unit derived from polyfunctional vinyl-based monomer (A2)]
Further, in the vinyl-based resin particles of the present invention, in addition to the structural unit (A1) derived from the monofunctional vinyl-based monomer as the structural unit (A), the structural unit (A2) derived from the polyfunctional vinyl-based monomer is used. Can be included.
By containing the structural unit (A2) derived from the polyfunctional vinyl-based monomer, the solvent resistance of the obtained vinyl-based resin particles is enhanced, and the varnish composition (polyimide varnish) described later due to the swelling of the vinyl-based resin particles. It is possible to suppress a decrease in the viscosity of the resin, and it is easy to obtain vinyl-based resin particles having a high compressive strength and a uniform particle size.
Examples of the structural unit (A2) include a structural unit (a3) derived from a polyfunctional (meth) acrylic monomer and a structural unit (a4) derived from a polyfunctional (poly) vinyl monomer. Can be done.
 前記構造単位(A2)のうち、多官能(メタ)アクリル系単量体に由来する構造単位(a3)として、但し限定されるものでないが、例えば下記式で表される部分構造を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000011
 上記式中、Ra21、Ra22、Ra23は、それぞれ独立して、水素原子又はメチル基を表す。
Among the structural units (A2), the structural unit (a3) derived from the polyfunctional (meth) acrylic monomer is not limited, but has, for example, a partial structure represented by the following formula. Can be mentioned.
Figure JPOXMLDOC01-appb-C000011
In the above formula, R a21 , R a22 , and R a23 each independently represent a hydrogen atom or a methyl group.
 前記構造単位(a3)を構成することとなる、多官能(メタ)アクリル系単量体の具体例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレンオキシド変性1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのジ(メタ)アクリレート;エチレンオキシドの付加モル数が2~50のポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシドの付加モル数が2~50のポリプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどの炭素原子数2~4のアルキレンオキシド基の付加モル数が2~50であるアルキルジ(メタ)アクリレート;エトキシ化グリセリントリ(メタ)アクリレート、プロピレンオキシド変性グリセロールトリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールモノヒドロキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのトリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのテトラ(メタ)アクリレート;ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトール(モノヒドロキシ)ペンタ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのペンタ(メタ)アクリレート;ペンタエリスリトールヘキサ(メタ)アクリレートなどの炭素原子数1~10の多価アルコールのヘキサ(メタ)アクリレート等が挙げられるがこれらに限定されない。 Specific examples of the polyfunctional (meth) acrylic monomer constituting the structural unit (a3) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and 1,3-butylene. Glycoldi (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethylene oxide-modified 1,6-hexanediol di (meth) acrylate, 1,9-nonan Di (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as diol di (meth) acrylates, propylene oxide-modified neopentyl glycol di (meth) acrylates, and tripropylene glycol di (meth) acrylates; Polyethylene glycol di (meth) acrylate having 2 to 50 numbers, polypropylene glycol di (meth) acrylate having 2 to 50 moles of propylene oxide added, tripropylene glycol di (meth) acrylate, etc. having 2 to 4 carbon atoms. Alkyldi (meth) acrylates having 2 to 50 moles of alkylene oxide groups; ethoxylated glycerintri (meth) acrylates, propylene oxide-modified glycerol tri (meth) acrylates, ethylene oxide-modified trimethylolpropanetri (meth) acrylates, tris. Tri (meth) acrylates of polyhydric alcohols having 1 to 10 carbon atoms such as methylol propanetri (meth) acrylates, pentaerythritol monohydroxytri (meth) acrylates, and trimethylolpropanetriethoxytri (meth) acrylates; pentaerythritol tetra Tetra (meth) acrylates of polyhydric alcohols with 1 to 10 carbon atoms such as (meth) acrylates, dipentaerythritol tetra (meth) acrylates and ditrimethylolpropanetetra (meth) acrylates; pentaerythritol penta (meth) acrylates, di. Penta (meth) acrylates of polyhydric alcohols with 1 to 10 carbon atoms such as pentaerythritol (monohydroxy) penta (meth) acrylate; polyhydric alcohols with 1 to 10 carbon atoms such as pentaerythritol hexa (meth) acrylate Hexa (meth) acrylate and the like can be mentioned, but the present invention is not limited thereto.
 また、前記構造単位(a4)を構成することとなる、多官能(ポリ)ビニル系単量体の具体例としては、イソプレン、ブタジエン等の多官能脂肪族ビニル系単量体;シクロペンタジエン、シクロヘキサジエン等の多官能脂環式ビニル系単量体;ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレン等の多官能芳香族ビニル系単量体;アジピン酸ジビニル、マレイン酸ジビニル、フタル酸ジビニル、イソフタル酸ジビニル等の多官能ビニルエステル系単量体;マレイン酸ジアリル、フタル酸ジアリル、イソフタル酸ジアリル、アジピン酸ジアリル等の多官能アリルエステル系単量体;ジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等の多官能ビニルエーテル系単量体;ジアリルエーテル、ジアリルオキシエタン、トリアリルオキシエタン等の多官能アリルエーテル系単量体;ジビニルケトン、ジアリルケトン等の多官能ビニルケトン系単量体;ジアリルアミン、ジアリルイソシアヌレート、ジアリルシアヌレート、メチレンビス(メタ)アクリルアミド、ビスマレイミド等の多官能含窒素ビニル系単量体;ジメチルジビニルシラン、ジビニルメチルフェニルシラン、ジフェニルジビニルシラン等の多官能含ケイ素ビニル系単量体等が挙げられるがこれらに限定されない。 Specific examples of the polyfunctional (poly) vinyl-based monomer constituting the structural unit (a4) include polyfunctional aliphatic vinyl-based monomers such as isoprene and butadiene; cyclopentadiene and cyclo. Polyfunctional alicyclic vinyl-based monomer such as hexadiene; Polyfunctional aromatic vinyl-based monomer such as divinylbenzene, divinyltoluene, divinylnaphthalene; divinyl adipate, divinyl maleate, divinyl phthalate, divinyl isophthalate, etc. Polyfunctional vinyl ester-based monomer; Polyfunctional allyl ester-based monomer such as diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, etc. Polyfunctional vinyl ether-based monomer; Polyfunctional allyl ether-based monomer such as diallyl ether, diallyl oxyetane, triallyl oxyetane; Polyfunctional vinyl ketone-based monomer such as divinyl ketone and diallyl ketone; Dialyl amine, diallyl isocyanurate , Multifunctional nitrogen-containing vinyl monomers such as diallyl cyanurate, methylenebis (meth) acrylamide, and bismaleimide; Multifunctional silicon-containing vinyl monomers such as dimethyldivinylsilane, divinylmethylphenylsilane, and diphenyldivinylsilane. However, it is not limited to these.
 これらの中でも、粒子径の揃った樹脂粒子を得やすいという観点から、上記構造単位(A2)を構成する多官能ビニル系単量体として、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジビニルベンゼン、ジビニルトルエン等が好ましい。さらに重合安定性に優れ、凝集物の少ない樹脂粒子を得やすいという観点から、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレートが挙げられ、中でもエチレングリコールジ(メタ)アクリレートが好ましい。 Among these, from the viewpoint of making it easy to obtain resin particles having the same particle size, ethylene glycol di (meth) acrylate and 1,3-butylene glycol are examples of the polyfunctional vinyl-based monomer constituting the structural unit (A2). Di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, divinylbenzene, divinyltoluene and the like are preferable. Further, from the viewpoint of excellent polymerization stability and easy acquisition of resin particles with few aggregates, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and 1,3-butylene glycol di (meth) acrylate are mentioned. Of these, ethylene glycol di (meth) acrylate is preferable.
 前記多官能ビニル系単量体に由来する構造単位(A2)は、前記構造単位(A)の合計質量に対して1質量%~10質量%であることが好ましい。 The structural unit (A2) derived from the polyfunctional vinyl-based monomer is preferably 1% by mass to 10% by mass with respect to the total mass of the structural unit (A).
〈その他の重合性単量体に由来する構造単位〉
 本発明のビニル系樹脂粒子である重合体は、本発明の効果を損なわない範囲において、上記構造単位(A1)[(a1)、(a2)]、及び(A2)[(a3)、(a4)]以外のその他のビニル系単量体(重合性単量体)に由来する構造単位を含んでいてもよい。すなわち本発明のビニル系樹脂粒子は、その他の重合性単量体を含む単量体成分(混合物)の共重合体とすることができる。
<Structural unit derived from other polymerizable monomers>
The polymer which is the vinyl resin particles of the present invention has the structural units (A1) [(a1), (a2)] and (A2) [(a3), (a4) as long as the effects of the present invention are not impaired. )] May contain structural units derived from other vinyl-based monomers (polymerizable monomers). That is, the vinyl-based resin particles of the present invention can be a copolymer of a monomer component (mixture) containing other polymerizable monomers.
 例えば、上記単官能スチレン系単量体、上記単官能(メタ)アクリル系単量体以外の、その他の重合性単量体としては、(メタ)アクリロニトリル等の単官能(メタ)アクリロニトリル系単量体;N-ビニルイミダゾール、N-ビニル-2-ピロリドン等の単官能ヘテロ環含有ビニル系単量体;酢酸ビニル(ビニルアセテート)、酢酸イソプロペニル、ビニルプロピオネート、ビニルデカノエート等の単官能ビニルエステル系単量体;エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、エチレングリコールビニルエーテル等の単官能ビニルエーテル系単量体;ビニルシクロペンタン、ビニルシクロヘキサン、エチルビニルベンゼン等のその他単官能ビニル化合物系単量体;(メタ)アクリル酸、イタコン酸等の単官能(メタ)アクリル酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の単官能(メタ)アクリルアミド系単量体等が挙げられるがこれらに限定されない。 For example, other than the monofunctional styrene-based monomer and the monofunctional (meth) acrylic-based monomer, other polymerizable monomers include monofunctional (meth) acrylonitrile-based single amounts such as (meth) acrylonitrile. Body; Monofunctional heterocycle-containing vinyl-based monomer such as N-vinylimidazole and N-vinyl-2-pyrrolidone; Simple such as vinyl acetate (vinyl acetate), isopropenyl acetate, vinyl propionate, vinyl decanoate and the like. Functional vinyl ester-based monomer; Monofunctional vinyl ether-based monomer such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, ethylene glycol vinyl ether; Other monofunctional vinyl compounds such as vinyl cyclopentane, vinyl cyclohexane, ethyl vinyl benzene, etc. Monomer: Monofunctional (meth) acrylic acid-based monomer such as (meth) acrylic acid and itaconic acid; Monofunctional (meth) acrylamide-based monomer such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide. Examples thereof include, but are not limited to, monomers.
<反応性乳化剤及び反応性乳化剤に由来する構造単位(B)>
 前記反応性乳化剤は、上述した単量体又はその重合体と反応性を有する乳化剤であれば特に限定されないが、その分子構造中にラジカル重合性の二重結合、親水性官能基、及び疎水性基をそれぞれ有し、かつ一般の乳化剤と同様に、乳化、分散、及び湿潤機能を持つものが挙げられる。
<Structural unit (B) derived from the reactive emulsifier and the reactive emulsifier>
The reactive emulsifier is not particularly limited as long as it is an emulsifier reactive with the above-mentioned monomer or its polymer, but has a radically polymerizable double bond, a hydrophilic functional group, and a hydrophobicity in its molecular structure. Examples thereof include those having each group and having emulsifying, dispersing, and wetting functions similar to general emulsifiers.
 分子構造中のラジカル重合性の二重結合の構造例としては、例えば、1-プロペニル基、2-メチル-1-プロペニル基、アリル基、メタリル基、ビニル基、アクリロイル基、メタアクリロイル基等が挙げられる。 Examples of the structure of the radically polymerizable double bond in the molecular structure include 1-propenyl group, 2-methyl-1-propenyl group, allyl group, methallyl group, vinyl group, acryloyl group, metaacryloyl group and the like. Can be mentioned.
 分子構造中の親水性官能基としては、例えば、硫酸基、硝酸基、リン酸基、ホウ酸基、カルボキシル基等のアニオン性基(-OSO 、-NO 、-OPO 、-B(OH) 、-COO等);アミノ基等のカチオン性基(-NH 等);ポリオキシエチレン、ポリオキシメチレン、ポリオキシプロピレン等のポリオキシアルキレン鎖;ヒドロキシ基等が挙げられる。 Examples of the hydrophilic functional group in the molecular structure include anionic groups such as sulfate group, nitrate group, phosphate group, borate group and carboxyl group (-OSO 3- , -NO 3- , -OPO 3- , and so on. -B (OH) 4- , -COO- , etc.); Cationic groups such as amino groups ( -NH 3+ , etc.); Polyoxyalkylene chains such as polyoxyethylene, polyoxymethylene, polyoxypropylene; hydroxy groups, etc. Can be mentioned.
 分子構造中の疎水性基としては、例えば、アルキル基、アルケニル基、フェニル基、アルキルフェニル基、スチレン化フェニル基、ナフチル基等が挙げられる。 Examples of the hydrophobic group in the molecular structure include an alkyl group, an alkenyl group, a phenyl group, an alkylphenyl group, a styrrified phenyl group, a naphthyl group and the like.
 反応性乳化剤はその分子構造中に含まれる親水性官能基の種類により、アニオン性乳化剤、ノニオン性乳化剤、カチオン性乳化剤、両性乳化剤等に分類される。
 また反応性乳化剤における分子構造中のラジカル重合性の二重結合、親水性官能基、及び疎水性基は、それぞれ複数の種類の構造、官能基を有することも可能である。
Reactive emulsifiers are classified into anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers, amphoteric emulsifiers and the like according to the type of hydrophilic functional group contained in the molecular structure.
Further, the radically polymerizable double bond, the hydrophilic functional group, and the hydrophobic group in the molecular structure of the reactive emulsifier can each have a plurality of types of structures and functional groups.
 上述した中でも、反応性乳化剤は、少なくとも分子構造内部に親水性官能基としてポリオキシアルキレン鎖及び硫酸基を持つものが好ましい。 Among the above, the reactive emulsifier preferably has at least a polyoxyalkylene chain and a sulfuric acid group as hydrophilic functional groups inside the molecular structure.
 このような反応性乳化剤として一般的に市販されている商品名としては、特に限定されないが、例えば、アデカリアソープSR、ER、SE、NE、PP(株式会社ADEKA)、アクアロンHS、BC、KH(第一工業製薬株式会社)、ラテムルPD(花王株式会社)、エレミノールJS、RS(三洋化成工業株式会社)、アントックスMS(日本乳化剤株式会社)等が挙げられる。 The trade name generally commercially available as such a reactive emulsifier is not particularly limited, but for example, Adecaria Soap SR, ER, SE, NE, PP (ADEKA Corporation), Aqualon HS, BC, KH. (Daiichi Kogyo Seiyaku Co., Ltd.), Latemul PD (Kao Co., Ltd.), Eleminor JS, RS (Sanyo Kasei Kogyo Co., Ltd.), Antox MS (Nippon Emulsifier Co., Ltd.) and the like.
[一般式(I)で表される化合物に由来する構造単位(b1)]
 上述したように、本発明のビニル系樹脂粒子である重合体は、下記一般式(I)で表される化合物に由来する構造単位(b1)を有することができる。
 下記一般式(I)で表される化合物は、分子中に疎水基と親水基を有するとともに、共重合性の不飽和基を有する。そのため、下記一般式(I)で表される化合物は反応性(共重合性)の乳化剤(前述の反応性乳化剤に該当)としても機能し、従来の乳化重合時における諸問題、例えば乳化重合時における重合不安定性や系の泡立ち、また重合後に得られる重合物の物性の劣化等を抑制・改善が期待できる。
Figure JPOXMLDOC01-appb-C000012
上記一般式(I)中、mは、1~3の整数を表し、乳化性の観点から、好ましくは2を表す。
[Structural unit (b1) derived from the compound represented by the general formula (I)]
As described above, the polymer which is the vinyl resin particles of the present invention can have a structural unit (b1) derived from the compound represented by the following general formula (I).
The compound represented by the following general formula (I) has a hydrophobic group and a hydrophilic group in the molecule, and also has a copolymerizable unsaturated group. Therefore, the compound represented by the following general formula (I) also functions as a reactive (copolymerizable) emulsifier (corresponding to the above-mentioned reactive emulsifier), and various problems in the conventional emulsion polymerization, for example, during emulsion polymerization. It can be expected to suppress / improve the polymerization instability, the foaming of the system, and the deterioration of the physical properties of the polymer obtained after the polymerization.
Figure JPOXMLDOC01-appb-C000012
In the above general formula (I), m represents an integer of 1 to 3, and preferably represents 2 from the viewpoint of emulsifying property.
 AOは、炭素原子数2~4のアルキレンオキシ基を表す。炭素原子数2~4のアルキレンオキシ基としては、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基が挙げられる。これらの中でも、AOとしては、エチレンオキシ基が好ましい。エチレンオキシ基は、他のアルキレンオキシ基よりも親水性が高く、密度の高い水和層を有する樹脂エマルションを形成できるため、水性分散媒中での樹脂粒子の安定性をより向上できる。
 nは、アルキレンオキシ単位の繰り返し数(即ち、アルキレンオキシ基の付加モル数)を表す。nは、0~100の整数であり、水性分散媒中での樹脂粒子の安定性の観点から、好ましくは5~50の整数であり、より好ましくは5~30の整数である。
AO represents an alkyleneoxy group having 2 to 4 carbon atoms. Examples of the alkyleneoxy group having 2 to 4 carbon atoms include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group. Among these, ethyleneoxy group is preferable as AO. Since the ethyleneoxy group is more hydrophilic than other alkyleneoxy groups and can form a resin emulsion having a dense hydration layer, the stability of the resin particles in the aqueous dispersion medium can be further improved.
n represents the number of repetitions of the alkyleneoxy unit (that is, the number of moles of the alkyleneoxy group added). n is an integer of 0 to 100, preferably an integer of 5 to 50, and more preferably an integer of 5 to 30, from the viewpoint of the stability of the resin particles in the aqueous dispersion medium.
 Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。
 アルカリ金属原子としては、ナトリウム原子、カリウム原子等が挙げられる。アルカリ土類金属原子としては、カルシウム原子、バリウム原子等が挙げられる。
 Xとしては、乳化性を考慮すると、好ましくは、水素原子、-SONH、-SONa、又は-SOKであり、より好ましくは、-SONHである。
X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of.
Examples of the alkali metal atom include a sodium atom and a potassium atom. Examples of the alkaline earth metal atom include a calcium atom and a barium atom.
Considering the emulsifying property, X is preferably a hydrogen atom, -SO 3 NH 4 , -SO 3 Na, or -SO 3 K, and more preferably -SO 3 NH 4 .
 Rは重合性の不飽和基、具体的には下記式(i)又は式(ii)で表される基を表し、式中、Rは水素原子又はメチル基を表す。
Figure JPOXMLDOC01-appb-C000013
R represents a polymerizable unsaturated group, specifically a group represented by the following formula (i) or formula (ii), and in the formula, R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000013
 上記一般式(I)で表される化合物に由来する構造単位(b1)としては、下記の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 上記式中、m、R、AO、n、Xは前述の定義のとおりである。
Figure JPOXMLDOC01-appb-C000015
 上記式中、m、R、AO、n、Xは前述の定義のとおりである。
Examples of the structural unit (b1) derived from the compound represented by the general formula (I) include the following structures.
Figure JPOXMLDOC01-appb-C000014
In the above formula, m, R 1 , AO, n, and X are as defined above.
Figure JPOXMLDOC01-appb-C000015
In the above formula, m, R 1 , AO, n, and X are as defined above.
 前記一般式(I)で表される化合物の好ましい例として、下記式(I-1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 上記式中、m、AO、n、Xは前述の定義のとおりである。
As a preferable example of the compound represented by the general formula (I), a compound represented by the following formula (I-1) can be mentioned.
Figure JPOXMLDOC01-appb-C000016
In the above formula, m, AO, n, and X are as defined above.
 また上記式(I-1)で表される化合物に由来する構造単位(b1)としては、下記の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000017
 上記式中、m、AO、n、Xは前述の定義のとおりである。
Further, as the structural unit (b1) derived from the compound represented by the above formula (I-1), the following structure can be mentioned.
Figure JPOXMLDOC01-appb-C000017
In the above formula, m, AO, n, and X are as defined above.
 上記一般式(I)で表される化合物は市販品を用いることもでき、例えば、第一工業化学(株)製のアクアロンARシリーズ(AR-10、AR-1025、AR-20、AR-2020)等を挙げることができる。 Commercially available products can also be used as the compound represented by the general formula (I). For example, Aqualon AR series (AR-10, AR-1025, AR-20, AR-2020) manufactured by Daiichi Kogyo Kagaku Co., Ltd. ) Etc. can be mentioned.
 本発明のビニル系樹脂粒子(重合体)において、重合時の共重合性等の観点から、重合体の全構造単位を100質量%としたとき、例えば構造単位(A)の割合は98.0質量%~99.9質量%、構造単位(B)(例えば構造単位(b1))の割合は0.1質量%~2.0質量%とすることができる。
 また、ビニル系樹脂粒子(重合体)の全構造単位を100質量%としたとき、前記構造単位(A1)の割合が88~99質量%、前記構造単位(A2)の割合が0.9~10質量%、前記構造単位(B)の割合が0.1~2質量%とすることができる。
 なお、前述の構造単位(B)の割合は、構造単位(b1)の割合と読み替えてもよいし、構造単位(b1)と、構造単位(b1)以外の構造単位(B)との合計の割合と読み替えてもよい。
In the vinyl-based resin particles (polymer) of the present invention, when the total structural unit of the polymer is 100% by mass from the viewpoint of copolymerizability at the time of polymerization, for example, the ratio of the structural unit (A) is 98.0. The mass% to 99.9% by mass and the ratio of the structural unit (B) (for example, the structural unit (b1)) can be 0.1% by mass to 2.0% by mass.
Further, when the total structural unit of the vinyl resin particles (polymer) is 100% by mass, the ratio of the structural unit (A1) is 88 to 99% by mass, and the ratio of the structural unit (A2) is 0.9 to. The ratio of the structural unit (B) can be 10% by mass and 0.1 to 2% by mass.
The ratio of the structural unit (B) may be read as the ratio of the structural unit (b1), or the total of the structural unit (b1) and the structural unit (B) other than the structural unit (b1). It may be read as a ratio.
 なお、粒子径が均一であり、また溶媒等に対して安定な樹脂粒子を得る観点から、例えば構造単位(A)中の単官能スチレン系単量体に由来する構造単位(a1)の割合を10質量%~99質量%、単官能(メタ)アクリル系単量体に由来する構造単位(a2)の割合を0質量%~80質量%、多官能ビニル系単量体に由来する構造単位(A2)の割合を1質量%~10質量%、その他重合性単量体に由来する構造単位の割合を0質量%~5質量%(以上の合計100質量%)とすることができる。 From the viewpoint of obtaining resin particles having a uniform particle size and being stable to a solvent or the like, for example, the ratio of the structural unit (a1) derived from the monofunctional styrene-based monomer in the structural unit (A) is set. 10% by mass to 99% by mass, the ratio of the structural unit (a2) derived from the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and the structural unit derived from the polyfunctional vinyl-based monomer ( The ratio of A2) can be 1% by mass to 10% by mass, and the ratio of other structural units derived from the polymerizable monomer can be 0% by mass to 5% by mass (total of 100% by mass).
[ビニル系樹脂粒子の製造方法]
 本発明のビニル系樹脂粒子は、上記ビニル系単量体と、反応性乳化剤(例えば一般式(I)で表される化合物)とを含む、単量体成分を、乳化重合して得ることができる。乳化重合法は、粒子径の小さい粒子が得られやすい点で好ましい。なお上記ビニル系単量体としては、前述の説明において挙げた種々の単量体[単官能ビニル系単量体(単官能スチレン系単量体、単官能(メタ)アクリル系単量体)、多官能ビニル系単量体(多官能(メタ)アクリル系単量体、多官能(ポリ)ビニル系単量体)、その他の重合性単量体]を、反応性乳化剤としては前述の化合物等を、それぞれ例示できる。
 好ましい乳化重合の態様は、前記単量体成分、重合開始剤、所望によりその他添加剤(界面活性剤、保護コロイド剤、連鎖移動剤、pH調整剤等)を含む重合用混合液を乳化重合に付す乳化重合工程を含み、所望により、乳化重合工程で得られた反応液を熟成する熟成工程を含んでいてもよい。
[Manufacturing method of vinyl resin particles]
The vinyl-based resin particles of the present invention can be obtained by emulsion polymerization of a monomer component containing the vinyl-based monomer and a reactive emulsifier (for example, a compound represented by the general formula (I)). can. The emulsification polymerization method is preferable in that particles having a small particle size can be easily obtained. As the vinyl-based monomer, various monomers mentioned in the above description [monofunctional vinyl-based monomer (monofunctional styrene-based monomer, monofunctional (meth) acrylic-based monomer), Polyfunctional vinyl-based monomers (polyfunctional (meth) acrylic monomers, polyfunctional (poly) vinyl-based monomers), and other polymerizable monomers] can be used as the reactive emulsifiers of the above-mentioned compounds and the like. Can be exemplified respectively.
A preferred embodiment of emulsion polymerization is to use a polymerization mixture containing the above-mentioned monomer component, a polymerization initiator, and optionally other additives (surfactant, protective colloid agent, chain transfer agent, pH adjuster, etc.) for emulsion polymerization. The emulsion polymerization step may be included, and if desired, an aging step of aging the reaction solution obtained in the emulsion polymerization step may be included.
 前記乳化重合は、通常、水性分散媒中で行われ、該水性分散媒としては特に限定されず、例えば水、水とアルコール系溶剤との混合液等が挙げられる。乳化重合後に形成されるビニル系樹脂粒子の安定性(非凝集性)の観点から、水性分散媒としては水が好ましい。水性分散媒の使用量は、乳化重合後に系内に存在するビニル系樹脂粒子の含有量が所望の割合となるように、適宜設定することができる。例えば系内に存在するビニル系樹脂粒子の含有量を1質量%~70質量%、10質量%~60質量%、20質量%~50質量%などと設定し、水性分散媒の使用量を適宜設定すればよい。 The emulsion polymerization is usually carried out in an aqueous dispersion medium, and the aqueous dispersion medium is not particularly limited, and examples thereof include water and a mixed solution of water and an alcohol solvent. From the viewpoint of stability (non-aggregation) of the vinyl-based resin particles formed after emulsion polymerization, water is preferable as the aqueous dispersion medium. The amount of the aqueous dispersion medium used can be appropriately set so that the content of the vinyl-based resin particles present in the system after emulsion polymerization is a desired ratio. For example, the content of the vinyl resin particles existing in the system is set to 1% by mass to 70% by mass, 10% by mass to 60% by mass, 20% by mass to 50% by mass, and the amount of the aqueous dispersion medium used is appropriate. Just set it.
 前記乳化重合に用いる重合開始剤としては、特に制限はなく、公知の重合開始剤を用いることができる。例えば、アゾビスイソブチロニトリル、2,2-アゾビス(2-メチルブチロニトリル)、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-ジアミノプロパン)ハイドロクロリド、4,4-アゾビス(4-シアノ吉草酸)、2,2-アゾビス(2-メチルプロピオンアミジン)、2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕4水和物などのアゾ化合物;過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩;過酸化水素、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、過酸化アンモニウムなどの過酸化物などが挙げられるが、これら例示のみに限定されるものではない。これらの中でも、アゾ化合物や過酸化物は、分解促進剤としても機能し得、すなわち、ビニル系樹脂粒子を多孔化材として適用する際、熱分解を促進させる機能を有し得ることから好ましく使用できる。
 重合開始剤の使用量は、特に制限されないが、重合速度を高め、未反応の単量体の残存量を低減させる観点から、単量体成分100質量部あたり例えば0.05質量部以上、好ましくは0.1質量部以上であり、重合安定性の観点から例えば5質量部以下とすることができる。
The polymerization initiator used for the emulsion polymerization is not particularly limited, and a known polymerization initiator can be used. For example, azobisisobutyronitrile, 2,2-azobis (2-methylbutyronitrile), 2,2-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2-diaminopropane) hydro. Chloride, 4,4-azobis (4-cyanovaleric acid), 2,2-azobis (2-methylpropion amidine), 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] Azo compounds such as tetrahydrate; persulfates such as potassium persulfate and ammonium persulfate; peroxides such as hydrogen peroxide, benzoyl peroxide, parachlorobenzoyl peroxide, lauroyl peroxide, ammonium peroxide and the like. However, the present invention is not limited to these examples. Among these, azo compounds and peroxides are preferably used because they can also function as a decomposition accelerator, that is, they can have a function of promoting thermal decomposition when vinyl-based resin particles are applied as a porous material. can.
The amount of the polymerization initiator used is not particularly limited, but is preferably 0.05 parts by mass or more per 100 parts by mass of the monomer component, from the viewpoint of increasing the polymerization rate and reducing the residual amount of the unreacted monomer. Is 0.1 part by mass or more, and can be, for example, 5 parts by mass or less from the viewpoint of polymerization stability.
 本発明にあっては、前記反応性乳化剤、そして前記一般式(I)で表される化合物が、乳化剤としての役割も果たし、乳化重合を良好に開始・完結させることができるが、本発明の効果を損なわない範囲において、乳化重合に一般に用いられる界面活性剤(乳化剤)をその他添加剤としてさらに用いてもよい。
 上記界面活性剤としては、アニオン性界面活性剤又はカチオン性界面活性剤又は/及び他の非イオン性界面活性剤を併用してもよい。
 例えば、アニオン系界面活性剤(アニオン性乳化剤)としては、脂肪酸セッケン;ロジン酸セッケン;ドデシル硫酸アンモニウム、ドデシル硫酸ナトリウムなどのアルキル硫酸塩;ドデシルスルホン酸アンモニウム、ドデシルスルホン酸ナトリウムなどのアルキルスルホン酸塩;ドデシルベンゼンスルホン酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルナフタレンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩;ポリオキシアルキレンアルキル硫酸塩;ポリオキシアルキレンアリール硫酸塩;ポリオキシアルキレンアルキルアリール硫酸塩;ジアルキルスルホコハク酸塩;アリールスルホン酸-ホルマリン縮合物;アンモニウムラウリレート、ナトリウムステアリレートなどの脂肪酸塩などが挙げられる。
 カチオン性界面活性剤としては、ステアリルトリメチルアンモニウム、セチルトリメチルアンモニウム、ラウリルトリメチルアンモニウムなどが挙げられる。
 非イオン性界面活性剤としては、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、アルキルポリグルコシド、ポリグリセリンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリグリセリン脂肪酸エステル、総ルビ単脂肪酸エステルなどが挙げられる。
 乳化重合工程において、別途界面活性剤を使用する場合、その使用量は、単量体成分100質量部に対して、例えば0.05質量部以上、また0.1質量部以上、0.3質量部以上とすることができ、その上限としては例えば10質量部、8質量部以下、5質量部以下とすることができる。
In the present invention, the reactive emulsifier and the compound represented by the general formula (I) also serve as an emulsifier and can satisfactorily initiate and complete emulsion polymerization. A surfactant (emulsifier) generally used for emulsion polymerization may be further used as another additive as long as the effect is not impaired.
As the surfactant, an anionic surfactant or a cationic surfactant and / or other nonionic surfactant may be used in combination.
For example, examples of anionic surfactants (anionic emulsifiers) include fatty acid sekken; sekken rosinate; alkyl sulfates such as ammonium dodecyl sulfate and sodium dodecyl sulphate; alkyl sulfonates such as ammonium dodecyl sulfonate and sodium dodecyl sulfonate; Alkylaryl sulfonates such as ammonium dodecylbenzene sulfonate, sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfonate; polyoxyalkylene alkyl sulfate; polyoxyalkylene aryl sulfate; polyoxyalkylene alkylaryl sulfate; dialkylsulfosuccinic acid Salts; arylsulfonic acid-formalin condensates; fatty acid salts such as ammonium laurylate, sodium stearilate and the like.
Examples of the cationic surfactant include stearyltrimethylammonium, cetyltrimethylammonium, and lauryltrimethylammonium.
Examples of the nonionic surfactant include polyoxyalkylene alkylphenyl ether, polyoxyalkylene alkyl ether, alkyl polyglucoside, polyglycerin alkyl ether, polyoxyalkylene fatty acid ester, polyglycerin fatty acid ester, total ruby monofatty acid ester and the like. Be done.
When a surfactant is separately used in the emulsion polymerization step, the amount used is, for example, 0.05 parts by mass or more, 0.1 parts by mass or more, or 0.3 parts by mass with respect to 100 parts by mass of the monomer component. The number may be 10 parts by mass or more, and the upper limit thereof may be, for example, 10 parts by mass, 8 parts by mass or less, and 5 parts by mass or less.
 また乳化重合時の重合安定性を向上させる目的で、その他添加剤として公知の保護コロイド剤を併用してもよい。前記保護コロイド剤としては、完全ケン化ポリビニルアルコール、部分ケン化ポリビニルアルコール、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリアクリル酸、アラビアゴム等が挙げられる。 Further, for the purpose of improving the polymerization stability during emulsion polymerization, a known protective colloidal agent may be used in combination as another additive. Examples of the protective colloid agent include fully saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyacrylic acid, and gum arabic.
 またその他添加剤として、公知の連鎖移動剤やpH調整剤を併用してもよい。
 前記連鎖移動剤としては、例えばオクチルメルカプタン、ドデシルメルカプタン、メルカプトエタノール、チオグリコール酸、アリルアルコール、イソプロピルアルコール、次亜リン酸ナトリウム等が挙げられる。
 前記pH調整剤としては、塩酸、硫酸、リン酸などの無機酸;クエン酸、コハク酸、りんご酸、乳酸等の有機酸;水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イソプロパノール等のアルカノールアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン、フェニレンジアミン、トリレンジアミン等の芳香族ポリアミン、ピペラジン、アミノエチルピペラジン等の複素環式ポリアミン等の有機塩基などが挙げられる。
Further, as other additives, a known chain transfer agent or pH adjuster may be used in combination.
Examples of the chain transfer agent include octyl mercaptan, dodecyl mercaptan, mercaptoethanol, thioglycolic acid, allyl alcohol, isopropyl alcohol, sodium hypophosphite and the like.
Examples of the pH adjusting agent include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as citric acid, succinic acid, apple acid and lactic acid; and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. Alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, isopropanol, aliphatic amines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, aromatic polyamines such as phenylenediamine and tolylenediamine, piperazine. , Organic bases such as heterocyclic polyamines such as aminoethylpiperazine and the like.
 前記乳化重合に付す単量体成分において、各単量体の使用量(仕込み割合)は適宜設定され得る。例えば全単量体の総量(合計100質量%)に対して、ビニル系単量体の割合は98.0質量%~99.9質量%、反応性乳化剤(例えば一般式(I)で表される化合物)の割合は0.1質量%~2.0質量%とすることができる。
 また例えば全単量体の総量(合計100質量%)に対して、単官能ビニル系単量体の割合は88質量%~99質量%、多官能ビニル系単量体の割合は0.9質量%~10質量%、前記反応性乳化剤の割合は0.1~2質量%とすることができる。
 さらにビニル系単量体(合計100質量%)において、単官能スチレン系単量体を10質量%~99質量%、単官能(メタ)アクリル系単量体を0質量%~80質量%、多官能ビニル系単量体を1質量%~10質量%、その他重合性単量体を0質量%~5質量%とすることができる。
In the monomer component to be subjected to the emulsion polymerization, the amount of each monomer used (charge ratio) can be appropriately set. For example, the ratio of the vinyl-based monomer to the total amount of all the monomers (total 100% by mass) is 98.0% by mass to 99.9% by mass, and is represented by a reactive emulsifier (for example, the general formula (I)). The proportion of the compound) can be 0.1% by mass to 2.0% by mass.
Further, for example, the ratio of the monofunctional vinyl-based monomer is 88% by mass to 99% by mass, and the ratio of the polyfunctional vinyl-based monomer is 0.9% by mass with respect to the total amount of all the monomers (total 100% by mass). The ratio of the reactive emulsifier can be from% to 10% by mass, and the ratio of the reactive emulsifier can be from 0.1 to 2% by mass.
Further, in the vinyl-based monomer (100% by mass in total), the monofunctional styrene-based monomer is 10% by mass to 99% by mass, the monofunctional (meth) acrylic monomer is 0% by mass to 80% by mass, and more. The functional vinyl-based monomer may be 1% by mass to 10% by mass, and the other polymerizable monomer may be 0% by mass to 5% by mass.
 前記乳化重合は、公知の乳化重合法で行えばよく、例えば、モノマー滴下法、プレエマルジョン法、一括仕込み重合法などを採用することができる。工業的生産性の観点からみて、安定的に重合することができ、凝集物が少ない重合体(樹脂粒子)を得られる点で、プレエマルジョン法を採用するのが好ましい。 The emulsion polymerization may be carried out by a known emulsion polymerization method, and for example, a monomer dropping method, a pre-emulsion method, a batch charging polymerization method and the like can be adopted. From the viewpoint of industrial productivity, it is preferable to adopt the pre-emulsion method because it can be polymerized stably and a polymer (resin particles) having few aggregates can be obtained.
 前記乳化重合に際し、前述の単量体成分、重合開始剤、その他添加剤の仕込み方法などは、特に制限はなく適宜設定すればよい。
 例えばプレエマルジョン法にて乳化重合させる場合の手順は、予めビニル系単量体を、反応性乳化剤(例えば一般式(I)で表される化合物等)と水等の水性分散媒にて乳化させ、プレエマルジョンを得る。そして得られたプレエマルジョンを反応容器内に滴下し、適宜、重合開始剤を加えて、乳化重合反応を進行させることにより実施され得る。
 また前記重合用混合液の一部を用いて乳化重合を開始した後、残りの重合用混合液を滴下するなどの操作を行っても良い。或いは、予め前記単量体成分の総量の一部と重合開始剤の一部(及びその他添加剤)とからなる混合液を用いて乳化重合を開始した後、残りの前記単量体成分、及び重合開始剤(及びその他添加剤)を別々にあるいは混合して滴下するなどの操作を行ってもよい。
In the emulsion polymerization, the method for charging the above-mentioned monomer component, polymerization initiator, and other additives is not particularly limited and may be appropriately set.
For example, in the case of emulsion polymerization by the pre-emulsion method, a vinyl-based monomer is pre-emulsified with a reactive emulsifier (for example, a compound represented by the general formula (I)) and an aqueous dispersion medium such as water. , Get a pre-emulsion. Then, the obtained pre-emulsion can be carried out by dropping it into a reaction vessel and appropriately adding a polymerization initiator to promote the emulsion polymerization reaction.
Further, after starting emulsion polymerization using a part of the polymerization mixture, the remaining polymerization mixture may be dropped or the like. Alternatively, after starting emulsion polymerization in advance using a mixed solution consisting of a part of the total amount of the monomer component and a part of the polymerization initiator (and other additives), the remaining monomer component and the remaining monomer component, and An operation such as dropping the polymerization initiator (and other additives) separately or by mixing them may be performed.
 また、乳化重合工程を、2工程以上繰り返して行う、すなわち例えば第1乳化重合工程と第2乳化重合工程を含む態様とし、第1乳化重合工程によりコア部を形成し、続く第2乳化重合工程によりコア部の表面にシェル部を形成することにより、コア-シェル型の樹脂粒子を形成することができる。この場合、第2乳化重合工程は複数回行ってもよく、2回目の第2乳化重合工程を行った場合には、1回目の第2乳化重合工程によって形成されたシェル部の表面に新たにシェル部が形成された樹脂粒子が得られる。
 第1乳化重合工程と第2乳化重合工程とを含む場合には、それぞれの工程で使用する単量体成分の組成を変更することができ、またそれぞれの工程で使用する単量体成分を1種の単量体としてもよい。すなわち、第1乳化重合工程と第2乳化重合工程において、それぞれ異なる単量体(一種)を用いてもよいし、単量体の混合物と単量体(一種)とを用いてもよいし、或いは異なる単量体の混合物をそれぞれの工程において用いてもよい。同一種の単量体の混合物を用いる場合、単量体の混合割合を変えた混合物を用いることができる。例えば、第1乳化重合工程では、単官能ビニル系単量体のうち単官能スチレン系単量体と、多官能ビニル系単量体と、反応性乳化剤(例えば一般式(I)で表される化合物)を含有する混合物を用い、続く第2乳化重合工程では、単官能ビニル系単量体のうち単官能スチレン系単量体と単官能(メタ)アクリル系単量体と、多官能ビニル系単量体と、反応性乳化剤(例えば一般式(I)で表される化合物)を含有する混合物を用いることができる。
Further, the emulsion polymerization step is repeated by two or more steps, that is, in an embodiment including, for example, a first emulsion polymerization step and a second emulsion polymerization step, a core portion is formed by the first emulsion polymerization step, and a subsequent second emulsion polymerization step is carried out. By forming the shell portion on the surface of the core portion, the core-shell type resin particles can be formed. In this case, the second emulsion polymerization step may be performed a plurality of times, and when the second second emulsion polymerization step is performed, the surface of the shell portion formed by the first second emulsion polymerization step is newly formed. Resin particles on which a shell portion is formed can be obtained.
When the first emulsion polymerization step and the second emulsion polymerization step are included, the composition of the monomer component used in each step can be changed, and the monomer component used in each step can be changed to 1. It may be a monomer of the seed. That is, in the first emulsion polymerization step and the second emulsion polymerization step, different monomers (one kind) may be used, or a mixture of monomers and a monomer (one kind) may be used. Alternatively, a mixture of different monomers may be used in each step. When a mixture of monomers of the same type is used, a mixture in which the mixing ratio of the monomers is changed can be used. For example, in the first emulsion polymerization step, among the monofunctional vinyl-based monomers, the monofunctional styrene-based monomer, the polyfunctional vinyl-based monomer, and the reactive emulsifier (for example, represented by the general formula (I)) are represented. In the subsequent second emulsion polymerization step using the mixture containing the compound), the monofunctional styrene-based monomer, the monofunctional (meth) acrylic-based monomer, and the polyfunctional vinyl-based monomer among the monofunctional vinyl-based monomers are used. A mixture containing a monomer and a reactive emulsifier (for example, a compound represented by the general formula (I)) can be used.
 前記乳化重合における重合温度は、用いる重合開始剤等に応じて適宜設定すればよいが、例えば30℃~90℃、或いは50℃~80℃とすることができる。重合時間は、前記単量体成分の仕込み量と反応液中の残存量とから求められる反応率に応じて適宜設定すればよいが、通常1時間~12時間、例えば2時間~8時間程度である。 The polymerization temperature in the emulsion polymerization may be appropriately set depending on the polymerization initiator and the like used, and may be, for example, 30 ° C to 90 ° C or 50 ° C to 80 ° C. The polymerization time may be appropriately set according to the reaction rate obtained from the charged amount of the monomer component and the residual amount in the reaction solution, but is usually about 1 hour to 12 hours, for example, about 2 hours to 8 hours. be.
 次に熟成工程は、前記乳化重合工程の後で、未反応の単量体を減少させたり、または、乳化重合で得られた重合体粒子(ビニル系樹脂粒子)を含む分散体を安定化させたりする目的で行われる。
 前記熟成工程における熟成温度は例えば50℃~90℃とすることができ、また例えば70℃~85℃とすることができる。熟成温度を前記範囲内とすることにより、粒子の凝集を抑えながら、未反応の単量体混合物の量を減少させることが期待できる。熟成時間は、単量体成分の総仕込み量と、反応液中の単量体成分の残存量とから求められる反応率に応じて適宜設定すればよいが、通常1時間~12時間、好ましくは2時間~8時間程度である。
Next, in the aging step, after the emulsion polymerization step, the unreacted monomers are reduced, or the dispersion containing the polymer particles (vinyl-based resin particles) obtained by the emulsion polymerization is stabilized. It is done for the purpose of doing so.
The aging temperature in the aging step can be, for example, 50 ° C. to 90 ° C., and can be, for example, 70 ° C. to 85 ° C. By keeping the aging temperature within the above range, it can be expected that the amount of the unreacted monomer mixture can be reduced while suppressing the aggregation of particles. The aging time may be appropriately set according to the reaction rate obtained from the total amount of the monomer components charged and the residual amount of the monomer components in the reaction solution, but is usually 1 hour to 12 hours, preferably 1 to 12 hours. It takes about 2 to 8 hours.
 前記熟成工程において、熟成時の重合体粒子の凝集を抑制し易くする等の目的で、必要に応じて界面活性剤を添加してもよい。
 前記熟成工程で使用される界面活性剤としては、前述の乳化重合工程に挙げた界面活性剤を用いることが好ましく、アニオン系界面活性剤や、またノニオン性界面活性剤を用いることも可能である。
 前記熟成工程で用いる界面活性剤の量としては、前記乳化重合工程に付した単量体成分の総量:100質量部に対して、例えば0.05質量部以上であり、0.1質量部以上、0.3質量部以上とすることができ、また例えば10質量部以下であり、8質量部以下、5質量部とすることができる。
In the aging step, a surfactant may be added if necessary for the purpose of facilitating the suppression of aggregation of the polymer particles during aging.
As the surfactant used in the aging step, it is preferable to use the surfactant mentioned in the emulsion polymerization step described above, and it is also possible to use an anionic surfactant or a nonionic surfactant. ..
The amount of the surfactant used in the aging step is, for example, 0.05 parts by mass or more and 0.1 parts by mass or more with respect to 100 parts by mass of the total amount of the monomer components attached to the emulsion polymerization step. , 0.3 parts by mass or more, and for example, 10 parts by mass or less, 8 parts by mass or less, and 5 parts by mass.
 前記乳化重合工程(及び所望により熟成工程)を経た後、形成された重合体を水性分散媒中に含む、分散体の形態(分散液ともいう)として、本発明のビニル系樹脂粒子を得ることができる。
 水性分散媒中のビニル系樹脂粒子(重合体)の含有量は特に限定されないが、例えば、10乃至80質量%、20乃至70質量%、30乃至60質量%などとすることができる。
After undergoing the emulsion polymerization step (and a aging step if desired), the vinyl-based resin particles of the present invention are obtained in the form of a dispersion (also referred to as a dispersion liquid) containing the formed polymer in an aqueous dispersion medium. Can be done.
The content of the vinyl-based resin particles (polymer) in the aqueous dispersion medium is not particularly limited, but may be, for example, 10 to 80% by mass, 20 to 70% by mass, 30 to 60% by mass, or the like.
 なお本発明は、水性分散媒中で重合開始剤の存在下、単官能ビニル系単量体及び多官能ビニル系単量体を含むビニル系単量体と、例えば前記ビニル系単量体とは異なる前記一般式(I)で表される化合物等の反応性乳化剤を、乳化重合する工程を含む、ビニル系樹脂粒子水性分散体の製造方法も対象とするものである。 In the present invention, in the presence of a polymerization initiator in an aqueous dispersion medium, a vinyl-based monomer containing a monofunctional vinyl-based monomer and a polyfunctional vinyl-based monomer, for example, the vinyl-based monomer is used. A method for producing an aqueous dispersion of vinyl-based resin particles, which comprises a step of emulsion polymerization of a different reactive emulsifier such as a compound represented by the general formula (I), is also targeted.
[ビニル系樹脂粒子の粒径]
 本発明のビニル系樹脂粒子は、メジアン径D50が0.05μm~2.0μmの粒子であることが好ましい。
 なお本発明におけるメジアン径とは、動的光散乱法により測定される体積基準による50%体積径の値を採用できる。
 一般に、粒子径が小さくなると、特に重合時に粒子の凝集が起こりやすいが、本発明のビニル系樹脂粒子はその分散体において優れた凝集抑制効果を発揮するため、ビニル系樹脂粒子の粒子径を比較的小さい範囲とすることができる。メジアン径を上記範囲とすることにより、熱硬化性樹脂の多孔材として使用した際、該樹脂に対して微細な孔を形成できる。
 ただし、上記メジアン径が0.2μm未満であると、粒子径が小さすぎて十分な空孔の形成に寄与できないことがある。また1.5μmを超えると、空孔対象の熱硬化性樹脂の機械的強度を低下させる虞がある。
[Diameter of vinyl resin particles]
The vinyl-based resin particles of the present invention are preferably particles having a median diameter D 50 of 0.05 μm to 2.0 μm.
As the median diameter in the present invention, a value of 50% volume diameter based on a volume measured by a dynamic light scattering method can be adopted.
Generally, when the particle size is small, agglomeration of particles is likely to occur particularly during polymerization, but since the vinyl-based resin particles of the present invention exert an excellent aggregation-suppressing effect in the dispersion, the particle size of the vinyl-based resin particles is compared. It can be a small range. By setting the median diameter in the above range, when used as a porous material of a thermosetting resin, fine pores can be formed in the resin.
However, if the median diameter is less than 0.2 μm, the particle size may be too small to contribute to the formation of sufficient pores. Further, if it exceeds 1.5 μm, there is a possibility that the mechanical strength of the thermosetting resin to be punctured is lowered.
[ビニル系樹脂粒子の熱分解温度]
 本発明のビニル系樹脂粒子は、大気圧下で、後述する熱硬化性樹脂の熱分解温度よりも、低い熱分解温度を有することが好ましい。
 本明細書において、熱分解温度とは、JISK7120(プラスチックの熱重量測定方法)に準拠した条件で、熱重量分析装置(TGA:Thermo Gravimetry Analyzer)における測定において、試料の熱分解に伴う重量減少の開始温度を意味する。
 対象とする熱硬化性樹脂の種類にもよるが、本発明のビニル系樹脂粒子の窒素雰囲気下における熱分解温度は、例えば340~440℃、好ましくは370~410℃である。
[Pyrolysis temperature of vinyl resin particles]
The vinyl-based resin particles of the present invention preferably have a pyrolysis temperature lower than the pyrolysis temperature of the thermosetting resin described later under atmospheric pressure.
In the present specification, the thermal decomposition temperature is a condition according to JIS K7120 (thermogravimetric analysis method for plastics), and the weight reduction due to thermal decomposition of a sample is measured by a thermogravimetric analyzer (TGA). Means the starting temperature.
Although it depends on the type of the target thermosetting resin, the thermal decomposition temperature of the vinyl-based resin particles of the present invention under a nitrogen atmosphere is, for example, 340 to 440 ° C, preferably 370 to 410 ° C.
[ビニル系樹脂粒子及びその分散体]
 前記ビニル系樹脂粒子は、前述の乳化重合工程を経て、水性分散媒に分散された分散体の形態(分散液)として得られ、該樹脂粒子の用途に応じて各種溶媒の分散体として、使用することができる。例えば前述の水性分散媒に分散された分散体において水性分散媒を溶媒置換し、有機溶媒に分散された分散体の形態(有機溶媒分散体)として使用することができる。
 また、前記水性分散媒あるいは有機溶媒に分散された分散体から水性分散媒又は有機溶媒を除去し、ビニル系樹脂粒子(粉体)を得、これを使用することもできる。前記水性分散媒や有機溶媒の除去方法としては、凍結乾燥法、熱風乾燥法、スプレードライ法等を挙げることができる。
 さらに得られた該樹脂粒子(粉体)を水性分散媒又は有機溶媒に再度分散し、水性溶媒分散体や有機溶媒分散体として使用することができる。
[Vinyl resin particles and their dispersions]
The vinyl-based resin particles are obtained as a dispersion (dispersion liquid) dispersed in an aqueous dispersion medium through the emulsion polymerization step described above, and are used as a dispersion of various solvents depending on the use of the resin particles. can do. For example, in the above-mentioned dispersion dispersed in the aqueous dispersion medium, the aqueous dispersion medium can be solvent-substituted and used as a form of the dispersion dispersed in the organic solvent (organic solvent dispersion).
Further, the aqueous dispersion medium or the organic solvent can be removed from the dispersion dispersed in the aqueous dispersion medium or the organic solvent to obtain vinyl-based resin particles (powder), which can also be used. Examples of the method for removing the aqueous dispersion medium and the organic solvent include a freeze-drying method, a hot-air drying method, and a spray-drying method.
Further, the obtained resin particles (powder) can be dispersed again in an aqueous dispersion medium or an organic solvent and used as an aqueous solvent dispersion or an organic solvent dispersion.
 前記有機溶媒の例としては、メタノール、エタノール、イソプロパノール等の低級アルコール;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等の直鎖アミド類;N-メチル-2-ピロリドン(NMP)等の環状アミド類;γ-ブチロラクトン(GBL)等のエーテル類;エチルセロソルブ、エチレングリコール等のグリコール類、アセトニトリル等が挙げられる。この置換は、蒸留法、限外濾過法等による通常の方法により行うことができる。
 このとき、有機溶媒分散体におけるビニル系樹脂粒子の含有量は、その用途に応じて適宜設定され得、例えば有機溶媒分散体の全質量に対して、該樹脂粒子の含有量を1質量%~70質量%、10質量%~60質量%、20質量%~50質量%とすることができる。有機溶媒分散体中、該樹脂粒子の割合が1質量%より少ないと経済的ではなく、70質量%より多いと安定な分散体にならずに樹脂粒子の凝集や沈降が起こり得、また後述する熱硬化性樹脂と混合した際のハンドリングが悪化する虞がある。
 また有機溶媒分散体の粘度は、例えば20℃で、0.6mPa・s~100mPa・s程度とすることができる。
 前記分散体は、さらに、界面活性剤などのその他の化合物を含んでもよい。
Examples of the organic solvent include lower alcohols such as methanol, ethanol and isopropanol; linear amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc); N-methyl-2- Cyclic amides such as pyrrolidone (NMP); ethers such as γ-butyrolactone (GBL); glycols such as ethyl cellosolve and ethylene glycol, acetonitrile and the like can be mentioned. This substitution can be carried out by a usual method such as a distillation method or an ultrafiltration method.
At this time, the content of the vinyl-based resin particles in the organic solvent dispersion can be appropriately set according to the intended use. For example, the content of the resin particles is 1% by mass or more based on the total mass of the organic solvent dispersion. It can be 70% by mass, 10% by mass to 60% by mass, and 20% by mass to 50% by mass. If the proportion of the resin particles in the organic solvent dispersion is less than 1% by mass, it is not economical, and if it is more than 70% by mass, the resin particles may aggregate or settle without becoming a stable dispersion, which will be described later. There is a risk that handling will deteriorate when mixed with a thermosetting resin.
The viscosity of the organic solvent dispersion can be, for example, about 0.6 mPa · s to 100 mPa · s at 20 ° C.
The dispersion may further contain other compounds such as surfactants.
[熱硬化性樹脂]
 本発明のビニル系樹脂粒子は、熱硬化性樹脂の多孔化に好適に使用される。すなわち、本発明により、前記ビニル系樹脂粒子からなる多孔化材を提供することができる。熱硬化性樹脂としては、例えば、ポリイミド樹脂、ジアリルフタレート樹脂等が挙げられる。これらの中でも、本発明のビニル系樹脂粒子の多孔化の対象となる熱硬化性樹脂としては、ポリイミド樹脂を好適例として挙げることができる。本発明のビニル系樹脂粒子をポリイミド樹脂の多孔化材として使用することにより、ポリイミド樹脂の膜に均一な空孔を形成することができる。
[Thermosetting resin]
The vinyl-based resin particles of the present invention are suitably used for making a thermosetting resin porous. That is, according to the present invention, it is possible to provide a porous material made of the vinyl-based resin particles. Examples of the thermosetting resin include polyimide resin and diallyl phthalate resin. Among these, as the thermosetting resin to be the target of the porosity of the vinyl-based resin particles of the present invention, a polyimide resin can be mentioned as a suitable example. By using the vinyl-based resin particles of the present invention as the porous material of the polyimide resin, uniform pores can be formed in the film of the polyimide resin.
 [熱硬化性樹脂の多孔化方法(多孔質体の製造方法)]
 本発明のビニル系樹脂粒子を用いた熱硬化性樹脂の多孔化方法(多孔質体の製造方法)は特に限定されない。
 例えば熱硬化性樹脂としてポリイミド樹脂を採用する場合、まずポリイミド前駆体であるポリアミック酸及び本発明のビニル系樹脂粒子、そして溶媒を含むワニス組成物を基材上に塗布して塗布膜を形成し(塗布膜形成工程)、該塗布膜を乾燥して、すなわち該塗布膜から溶媒を除去して、ポリイミド前駆体及びビニル系樹脂粒子を含む被膜(ポリイミド多孔質膜の前駆膜)を形成する(前駆膜形成工程)。続いて、該被膜(ポリイミド多孔質膜の前駆膜)を焼成し、ポリイミド前駆体をポリイミドに変換するとともに、ビニル系樹脂粒子を除去(熱分解)し(ビニル系樹脂粒子を除去する除去工程)、ポリイミドの多孔質膜を得ることができる。前記ビニル系樹脂粒子を除去する除去工程(焼成工程)は、ポリイミド前駆体をポリイミドに変換するとともに、ビニル系樹脂粒子を分解・消失できる温度にて実施され得る。
 なお、ビニル系樹脂粒子を除去する前に、被膜(ポリイミド多孔質膜の前駆膜)を基材上から剥離し(剥離工程)、この未焼成膜に対して、焼成(ビニル系樹脂粒子を除去する除去工程)を行ってもよい。
 以下、熱硬化性樹脂の多孔化方法について具体例を説明するが、以下の方法に限定されない。
[Method for making a thermosetting resin porous (method for producing a porous body)]
The method for making a thermosetting resin porous (method for producing a porous body) using the vinyl-based resin particles of the present invention is not particularly limited.
For example, when a polyimide resin is used as a thermosetting resin, a varnish composition containing a polyimide precursor, a polyamic acid, vinyl-based resin particles of the present invention, and a solvent is first applied onto a substrate to form a coating film. (Coating film forming step), the coating film is dried, that is, the solvent is removed from the coating film to form a film (precursor film of a polyimide porous film) containing a polyimide precursor and vinyl resin particles (precursor film of polyimide porous film). Precursor film forming step). Subsequently, the film (precursor film of the polyimide porous film) is fired to convert the polyimide precursor into polyimide, and vinyl-based resin particles are removed (thermally decomposed) (removal step of removing vinyl-based resin particles). , Polyimide porous film can be obtained. The removal step (firing step) for removing the vinyl-based resin particles can be carried out at a temperature at which the polyimide precursor can be converted into polyimide and the vinyl-based resin particles can be decomposed and disappeared.
Before removing the vinyl-based resin particles, the film (precursor film of the polyimide porous film) is peeled off from the substrate (peeling step), and the unfired film is fired (the vinyl-based resin particles are removed). The removal step) may be performed.
Hereinafter, a specific example of the method for making the thermosetting resin porous will be described, but the method is not limited to the following method.
〈塗布膜形成工程〉
 本工程は、ポリイミド前駆体であるポリアミック酸と、本発明のビニル系樹脂粒子と、溶媒を含むワニス組成物を基材上に塗布して塗布膜を形成する工程である。
 上記基材としては、例えば、PETフィルム、SUS基板、ガラス基板等が挙げられる。
<Coating film forming process>
This step is a step of applying a varnish composition containing a polyamic acid as a polyimide precursor, the vinyl-based resin particles of the present invention, and a solvent onto a substrate to form a coating film.
Examples of the substrate include PET films, SUS substrates, glass substrates and the like.
《ワニス組成物》
 前記ポリアミック酸としては任意のテトラカルボン酸二無水物とジアミンとを重合して得られる生成物が、特に限定されることなく使用できる。
 上記テトラカルボン酸二無水物並びにジアミンは、従来からポリアミック酸の合成原料として使用されている化合物から適宜選択することができる。上記テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物であっても、脂肪族テトラカルボン酸二無水物であってもよく、上記ジアミンは、芳香族ジアミンであっても、脂肪族ジアミンであってもよい。
 前記ポリアミック酸を製造する手段に特に制限はなく、例えば、溶媒中でテトラカルボン酸二無水物成分とジアミン成分を反応させる方法等の公知の手法を用いることができる。このとき、テトラカルボン酸二無水物及びジアミンの使用量(仕込み量)は特に限定されないが、テトラカルボン酸二無水物1モルに対して、例えばジアミンを0.50モル以上1.50モル以下の割合とすることができる。
 なお、ポリアミック酸の合成を後述する溶媒中で行った場合、ポリアミック酸の反応溶液をそのままポリアミック酸含有液として、ワニス組成物の調製に使用することができる。
《Varnish composition》
As the polyamic acid, a product obtained by polymerizing an arbitrary tetracarboxylic acid dianhydride and a diamine can be used without particular limitation.
The tetracarboxylic acid dianhydride and the diamine can be appropriately selected from compounds conventionally used as raw materials for synthesizing polyamic acids. The tetracarboxylic acid dianhydride may be an aromatic tetracarboxylic acid dianhydride or an aliphatic tetracarboxylic acid dianhydride, and the diamine may be an aromatic diamine or an aliphatic. It may be diamine.
The means for producing the polyamic acid is not particularly limited, and a known method such as a method of reacting a tetracarboxylic acid dianhydride component with a diamine component in a solvent can be used. At this time, the amount of the tetracarboxylic acid dianhydride and the diamine used (charged amount) is not particularly limited, but for example, 0.50 mol or more and 1.50 mol or less of the diamine is used with respect to 1 mol of the tetracarboxylic acid dianhydride. Can be a percentage.
When the synthesis of polyamic acid is carried out in a solvent described later, the reaction solution of polyamic acid can be used as it is as a polyamic acid-containing liquid for preparing a varnish composition.
 前記ワニス組成物に使用する溶媒としては、水や有機溶媒、又はこれらの組み合わせが挙げられる。なおワニス組成物に使用する有機溶媒は、ポリアミック酸の加水分解を避ける観点から、水中において中性、又は弱塩基性を呈する化合物であるのが好ましい。
 有機溶媒の好適な例としては、例えば前述の樹脂粒子の有機溶媒分散体において挙げた種々の有機溶媒を挙げることができる。
Examples of the solvent used in the varnish composition include water, an organic solvent, or a combination thereof. The organic solvent used in the varnish composition is preferably a compound that exhibits neutrality or weak basicity in water from the viewpoint of avoiding hydrolysis of the polyamic acid.
Preferable examples of the organic solvent include, for example, various organic solvents mentioned in the above-mentioned organic solvent dispersion of resin particles.
 なお前記ワニス組成物には、ビニル系樹脂粒子を均一に分散させることを目的に、さらに分散剤を添加してもよい。分散剤が使用される場合、記微粒子に対し例えば0.01質量%以上5質量%以下にて使用することができる。 A dispersant may be further added to the varnish composition for the purpose of uniformly dispersing the vinyl resin particles. When a dispersant is used, it can be used in an amount of, for example, 0.01% by mass or more and 5% by mass or less with respect to the fine particles.
 前記ワニス組成物は、前述の種々の成分を、それぞれ所定量混合することにより製造され得、その具体的手順は特に限定されない。
 前記ワニス組成物は、後述するポリアミック酸-微粒子複合膜(前駆膜)とした際に、例えばビニル系樹脂粒子/ポリアミック酸の比率が0.5~4.0(質量比)であるようにビニル系樹脂粒子及びポリアミック酸を含むことができる。あるいは、前記複合膜とした際に、ビニル系樹脂粒子/ポリアミック酸の体積比率が例えば1.0~5.0となるように、これら成分を含むことができる。
 ワニス組成物の固形分濃度は、特に限定されないが、例えば、1質量%以上であり、5質量%以上であり、また10質量%以上とすることができ、その上限は例えば60質量%以下であり、例えば30質量%以下とすることができる。なおここでいう固形分濃度とは、溶媒以外の成分の濃度を意味し、液状の成分であっても固形分として重量に含めるものとする。
 ワニス組成物の粘度は、所望する膜厚の塗布膜を形成できる限り特に限定されない。例えば、ワニス組成物の粘度を、300cP以上20,000cP以下とすることができる。
The varnish composition can be produced by mixing the above-mentioned various components in predetermined amounts, and the specific procedure thereof is not particularly limited.
The varnish composition is made of vinyl so that, for example, the ratio of vinyl resin particles / polyamic acid is 0.5 to 4.0 (mass ratio) when the polyamic acid-fine particle composite film (precursor film) described later is used. It can contain based resin particles and polyamic acid. Alternatively, these components can be contained so that the volume ratio of the vinyl resin particles / polyamic acid is, for example, 1.0 to 5.0 when the composite film is formed.
The solid content concentration of the varnish composition is not particularly limited, but may be, for example, 1% by mass or more, 5% by mass or more, and 10% by mass or more, and the upper limit thereof is, for example, 60% by mass or less. Yes, for example, it can be 30% by mass or less. The solid content concentration referred to here means the concentration of a component other than the solvent, and even a liquid component is included in the weight as a solid content.
The viscosity of the varnish composition is not particularly limited as long as a coating film having a desired film thickness can be formed. For example, the viscosity of the varnish composition can be 300 cP or more and 20,000 cP or less.
〈前駆膜形成工程〉
 本工程は、前記工程得た塗布膜から溶媒を除き、ポリイミド多孔質膜の前駆膜を形成する工程である。
 前記塗布膜から溶媒を除くには、前述のワニス組成物を基材上に塗布し塗布膜を形成した後、常圧又は真空下で0℃以上100℃以下、好ましくは常圧で10℃以上100℃以下で乾燥すればよい。
<Precursor film forming process>
This step is a step of removing the solvent from the coating film obtained in the above step to form a precursor film of the polyimide porous film.
To remove the solvent from the coating film, the above-mentioned varnish composition is applied onto a substrate to form a coating film, and then 0 ° C. or higher and 100 ° C. or lower, preferably 10 ° C. or higher at normal pressure. It may be dried at 100 ° C. or lower.
 なお前駆膜は、基材上に直接成膜してもよいし、基材上に形成された上記前駆膜とは異なる下層膜上に成膜してもよい。また、前述のワニス組成物を用いて前駆膜を成膜した後に、さらに上層に上記前駆膜とは異なる上層膜を成膜してもよい。なお、本明細書において、基材上に下層膜を設ける態様も、前駆膜の上に上層膜を設ける態様も、前駆膜形成工程に含まれる。 The precursor film may be formed directly on the substrate, or may be formed on a lower film different from the precursor film formed on the substrate. Further, after forming a precursor film using the above-mentioned varnish composition, an upper film different from the precursor film may be further formed on the upper layer. In the present specification, both the embodiment in which the lower layer film is provided on the substrate and the embodiment in which the upper layer film is provided on the precursor film are included in the precursor film forming step.
〈剥離工程〉
 前記〈前駆膜形成工程〉の後、後述する〈ビニル系樹脂粒子を除去する工程〉の前に、基材から前駆膜を剥離させる、剥離工程を含んでいてもよい。本工程が含まれる場合、基材には前駆膜を焼成する温度に耐えうる耐熱性が要求されない。
<Peeling process>
After the <precursor film forming step> and before the <step of removing vinyl-based resin particles> described later, a peeling step of peeling the precursor film from the substrate may be included. When this step is included, the substrate is not required to have heat resistance that can withstand the temperature at which the precursor film is fired.
〈ビニル系樹脂粒子を除去する工程(焼成工程)〉
 本工程は、前述のポリイミド多孔質膜の前駆膜を焼成等によりイミド化するのと同時に若しくはイミド化の進行中に、またはイミド化後に、本発明のビニル系樹脂粒子を熱分解して除去する工程である。本工程により、ポリイミド樹脂の膜に均一で微細な空孔を形成してポリイミド多孔質膜を得ることができる。本工程において、ビニル系樹脂粒子の除去は、ポリアミック酸をイミド化させつつ行ってもよいし、ポリアミック酸をイミド化させた後に行ってもよい。
<Step of removing vinyl-based resin particles (firing step)>
In this step, the vinyl-based resin particles of the present invention are thermally decomposed and removed at the same time as the precursor film of the above-mentioned polyimide porous film is imidized by firing or the like, or during the imidization process, or after the imidization. It is a process. By this step, a polyimide porous film can be obtained by forming uniform and fine pores in the polyimide resin film. In this step, the vinyl-based resin particles may be removed while imidizing the polyamic acid, or may be performed after the polyamic acid is imidized.
 ポリアミック酸をイミド化させる方法は特に限定されない。イミド化は熱イミド化及び化学イミド化のいずれであってもよい。化学イミド化としては、ポリアミック酸を含む前駆膜を、無水酢酸、あるいは無水酢酸とイソキノリンの混合溶媒に浸す等の方法を用いることができる。
 上記のイミド化方法の中では、イミド化剤の洗浄による除去が不要である点等から、熱イミド化である焼成が好ましい。以下、熱イミド化に係る焼成について説明する。
The method for imidizing the polyamic acid is not particularly limited. The imidization may be either thermal imidization or chemical imidization. As the chemical imidization, a method such as immersing a precursor membrane containing a polyamic acid in acetic anhydride or a mixed solvent of acetic anhydride and isoquinoline can be used.
Among the above-mentioned imidization methods, calcination, which is thermal imidization, is preferable because it is not necessary to remove the imidizing agent by washing. Hereinafter, calcination related to thermal imidization will be described.
 焼成温度は、ポリアミック酸の構造等によっても異なるが、120℃以上500℃以下が好ましく、150℃以上450℃以下がより好ましく、300℃以上450℃以下がより好ましい。
 焼成条件は、例えば、室温から400℃~450℃程度までを3時間程度で昇温させた後、同温度で2~30分間程度保持させる方法や、室温から、例えば50℃刻みで段階的に400℃~450℃まで昇温(各ステップ20分程度保持)し、最終的に400℃~450℃で2~30分間程度保持させる等の連続的又は段階的な昇温操作を含む乾燥-熱イミド化法を用いることもできる。
 基材上に前駆膜を成膜し、基材から前駆膜又は前駆膜を含む積層膜を一旦剥離してその焼成工程を実施する場合には、前駆膜又は積層膜の端部をSUS製の型枠等に固定し、焼成による変形を防ぐ方法を採ることもできる。
The firing temperature varies depending on the structure of the polyamic acid, but is preferably 120 ° C. or higher and 500 ° C. or lower, more preferably 150 ° C. or higher and 450 ° C. or lower, and more preferably 300 ° C. or higher and 450 ° C. or lower.
The firing conditions are, for example, a method of raising the temperature from room temperature to about 400 ° C. to 450 ° C. in about 3 hours and then holding the temperature at the same temperature for about 2 to 30 minutes, or stepwise from room temperature in increments of, for example, 50 ° C. Drying-heat including continuous or stepwise temperature raising operation such as raising the temperature to 400 ° C. to 450 ° C. (holding for about 20 minutes in each step) and finally holding at 400 ° C. to 450 ° C. for about 2 to 30 minutes. The imidization method can also be used.
When a precursor film is formed on a substrate, the precursor film or the laminated film containing the precursor film is once peeled off from the substrate, and the firing step is performed, the end portion of the precursor film or the laminated film is made of SUS. It is also possible to adopt a method of fixing to a mold or the like to prevent deformation due to firing.
 焼成後に得られるポリイミド多孔質膜の膜厚は、例えばマイクロメータ等で複数の箇所の厚さを測定し平均することで求めることができる。どのような平均膜厚が好ましいかは、ポリイミド多孔質膜の用途によって異なるが、例えば、セパレータ等に使用する場合は、5μm以上500μm以下が好ましく、10μm以上100μm以下がより好ましく、15μm以上30μm以下がさらに好ましい。フィルタ等に使用する場合は、5μm以上500μm以下が好ましく、10μm以上300μm以下がより好ましく、20μm以上150μm以下がさらに好ましい。 The film thickness of the polyimide porous film obtained after firing can be obtained by measuring the thicknesses of a plurality of locations with a micrometer or the like and averaging them. What kind of average film thickness is preferable depends on the use of the polyimide porous membrane, but for example, when it is used for a separator or the like, it is preferably 5 μm or more and 500 μm or less, more preferably 10 μm or more and 100 μm or less, and 15 μm or more and 30 μm or less. Is even more preferable. When used for a filter or the like, it is preferably 5 μm or more and 500 μm or less, more preferably 10 μm or more and 300 μm or less, and further preferably 20 μm or more and 150 μm or less.
 このようにして得られたポリイミド多孔質膜は、非透明な又は黄色若しくは茶褐色に着色した多孔質膜である。また、いかなる膜厚であっても、ポリイミド多孔質膜は、膜全体に球状孔が連通した状態で分布している多孔質膜であり、表裏面が連通している。 The polyimide porous film thus obtained is a non-transparent or yellow or brown colored porous film. Further, regardless of the film thickness, the polyimide porous membrane is a porous membrane in which spherical pores communicate with each other throughout the membrane, and the front and back surfaces communicate with each other.
 以下実施例により本発明を説明する。但し本発明は、これらの実施例及び比較例によってなんら制限されるものではない。なお、ビニル系樹脂粒子の試験方法は以下の通りである。 The present invention will be described below with reference to examples. However, the present invention is not limited to these Examples and Comparative Examples. The test method for vinyl-based resin particles is as follows.
<メジアン径>
 樹脂粒子が水中に分散している分散液(樹脂粒子水性分散体)について、動的光散乱式(DLS)粒子径分布測定装置 Nanotrac(登録商標)Wave II(商品名、マイクロトラック・ベル(株)製)を使用して体積基準の粒子径分布を得、その粒子径分布におけるメジアン径(D50)として求めた。
<Mesian diameter>
For a dispersion liquid (resin particle aqueous dispersion) in which resin particles are dispersed in water, a dynamic light scattering (DLS) particle size distribution measuring device Nanotrac (registered trademark) Wave II (trade name, Microtrac Bell Co., Ltd.) ) Was used to obtain a volume-based particle size distribution, which was determined as the median diameter (D50) in the particle size distribution.
<混合安定性試験>
 樹脂粒子水性分散体を105℃の熱風対流式乾燥機で乾燥し、得られた樹脂粒子粉末1gとN,N-ジメチルアセトアミド5gをサンプル瓶に測り取り、これを超音波洗浄機で30分間分散処理した。得られた樹脂粒子分散体(有機溶媒分散体)の状態を目視にて確認し、以下の評価基準にて樹脂粒子の有機溶媒との混合安定性を評価した。
〔評価基準〕
   ○:ゲル化しておらず流動性を保っている。(良好)
   △:ゲル化していないが、流動性を失っている。(普通)
   ×:ゲル化、または樹脂粒子が溶解している。(不良)
<Mixed stability test>
The aqueous dispersion of resin particles was dried in a hot air convection dryer at 105 ° C., and 1 g of the obtained resin particle powder and 5 g of N, N-dimethylacetamide were measured in a sample bottle and dispersed in an ultrasonic cleaner for 30 minutes. Processed. The state of the obtained resin particle dispersion (organic solvent dispersion) was visually confirmed, and the mixing stability of the resin particles with the organic solvent was evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
◯: It does not gel and maintains fluidity. (Good)
Δ: Not gelled, but loses fluidity. (usually)
X: Gelled or resin particles are dissolved. (Defective)
<耐溶剤性試験>
 前記<混合安定性試験>で調製した樹脂粒子分散体(有機溶媒分散体)を、室温下エアーブローで乾燥した。乾燥物の電子顕微鏡観察を行い、粒子の形状、及び粒子同士の溶着(粒子の溶解)の有無を確認し、以下の評価基準にて樹脂粒子の耐溶剤性を評価した。
〔評価基準〕
   ○:粒子は真球状を保っており、粒子同士の融着も無い。(良好)
   △:粒子の形状変化、又は粒子同士の融着の一方が生じている。(普通)
   ×:粒子の形状変化、及び粒子同士の融着の何れもが生じている。(不良)
<Solvent resistance test>
The resin particle dispersion (organic solvent dispersion) prepared in the above <Mixing stability test> was dried by air blowing at room temperature. The shape of the particles and the presence or absence of welding of the particles (dissolution of the particles) were confirmed by observing the dried product with an electron microscope, and the solvent resistance of the resin particles was evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
◯: The particles maintain a true spherical shape, and there is no fusion between the particles. (Good)
Δ: One of the shape change of the particles or the fusion of the particles has occurred. (usually)
X: Both the shape change of the particles and the fusion of the particles have occurred. (Defective)
<熱分解温度>
 樹脂粒子水性分散体を105℃の熱風対流式乾燥機で乾燥し、得られた樹脂粒子粉末10mgを示差熱天秤ThermoplusEVO2(登録商標)TG8121(商品名、(株)リガク製)を使用して、JIS準拠の条件、リファレンスとしてアルミナ、窒素流量100ml/分、昇温速度10℃/分、25℃から600℃まで昇温し、得られたTG曲線から熱分解開始温度を読み取り、これをビニル系樹脂粒子の熱分解温度とした。
<Pyrolysis temperature>
The aqueous dispersion of resin particles was dried in a hot air convection dryer at 105 ° C., and 10 mg of the obtained resin particle powder was subjected to a differential thermal balance Thermoplus EVO2 (registered trademark) TG8121 (trade name, manufactured by Rigaku Co., Ltd.). JIS compliant conditions, alumina as a reference, nitrogen flow rate 100 ml / min, temperature rise rate 10 ° C / min, temperature rise from 25 ° C to 600 ° C, thermal decomposition start temperature is read from the obtained TG curve, and this is vinyl-based. The thermal decomposition temperature of the resin particles was used.
[ビニル系樹脂粒子の調製]
実施例1
 撹拌機、温度計、温度コントローラー、コンデンサー、滴下装置を備えた内容量1.0Lのガラス容器に、イオン交換水383.0gを入れ撹拌しながら窒素ガスを導入し窒素置換を行った。その後マントルヒーターで加熱、72±2℃で温度コントロールし重合容器とした。
 撹拌機を備えた内容量1.0Lのガラス容器にイオン交換水122.4g、一般式(I)で表される化合物(反応性乳化剤)としてポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬(株)製 アクアロンAR-1025 (25%水溶液))12.8g、単官能モノマーとしてスチレン(旭化成(株)製 スチレンモノマー)378.6g、多官能モノマーとしてエチレングリコールジメタクリレート(三菱ケミカル(株)製 アクリエステルED)22.2gを入れ撹拌し、スチレン及びエチレングリコールジメタクリレートがイオン交換水に乳化したモノマーエマルジョンを得た。
 撹拌機を備えた内容量0.1Lのガラス容器にイオン交換水48.6g、重合開始剤として2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕4水和物(富士フイルム和光純薬(株)製 VA-057)3.1gを入れ撹拌溶解し、重合開始剤水溶液を得た。
 調製した前記モノマーエマルジョンから26.8g、調製した前記重合開始剤水溶液から5.0gを前記重合容器に入れ、初期重合を120分間行った。
 120分間初期重合を行った後に、残りのモノマーエマルジョン及び重合開始剤水溶液をそれぞれ送液ポンプにて240分間かけて前記重合容器へ送液し、滴下重合を行った。滴下終了後、イオン交換水9.0gで送液ラインの共洗いを行った。
 120分間重合反応を継続した後、40℃まで冷却し固形分40%の架橋ポリマー水性分散体(樹脂粒子水性分散体)を得た。
[Preparation of vinyl resin particles]
Example 1
In a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, 383.0 g of ion-exchanged water was placed and nitrogen gas was introduced while stirring to perform nitrogen substitution. After that, it was heated with a mantle heater and the temperature was controlled at 72 ± 2 ° C. to obtain a polymerization vessel.
122.4 g of ion-exchanged water in a glass container with a content of 1.0 L equipped with a stirrer, polyoxyethylene styrenated propenylphenyl ether sulfate ammonium salt as a compound (reactive emulsifier) represented by the general formula (I) ( Aqualon AR-1025 (25% aqueous solution) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 12.8 g, styrene as a monofunctional monomer (styrene monomer manufactured by Asahi Kasei Co., Ltd.) 378.6 g, ethylene glycol dimethacrylate (Mitsubishi) as a polyfunctional monomer 22.2 g of Acryester ED manufactured by Chemical Co., Ltd. was added and stirred to obtain a monomer emulsion in which styrene and ethylene glycol dimethacrylate were emulsified in ion-exchanged water.
48.6 g of ion-exchanged water in a glass container with a content of 0.1 L equipped with a stirrer, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate as a polymerization initiator 3.1 g of a product (VA-057 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added and dissolved by stirring to obtain an aqueous polymerization initiator solution.
26.8 g from the prepared monomer emulsion and 5.0 g from the prepared aqueous polymerization initiator were placed in the polymerization vessel, and the initial polymerization was carried out for 120 minutes.
After the initial polymerization was carried out for 120 minutes, the remaining monomer emulsion and the polymerization initiator aqueous solution were each sent to the polymerization vessel over 240 minutes by a liquid feed pump, and the dropping polymerization was carried out. After the completion of the dropping, the liquid feeding line was co-washed with 9.0 g of ion-exchanged water.
After continuing the polymerization reaction for 120 minutes, the mixture was cooled to 40 ° C. to obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
実施例2
 実施例1におけるスチレン378.6gの代わりに、スチレン374.2gとメチルメタクリレート4.4g、エチレングリコールジメタクリレートの代わりに、トリメチロールプロパントリメタクリレートを用いた他は、実施例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体(樹脂粒子水性分散体)を得た。
Example 2
Polymerization was carried out in the same manner as in Example 1 except that 374.2 g of styrene and 4.4 g of methyl methacrylate were used instead of 378.6 g of styrene in Example 1, and trimethylolpropane trimethacrylate was used instead of ethylene glycol dimethacrylate. To obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
実施例3
 実施例1におけるスチレン378.6gの代わりに、スチレン388.8gを、エチレングリコールジメタクリレート22.2gの代わりに、ジビニルベンゼン混合物(日鉄ケミカル&マテリアル(株)製 DVB570、ジビニルベンゼン57%含有、エチルビニルベンゼン43%含有)12.0g(ジビニルベンゼン:6.84g、エチルビニルベンゼン:5.16g)を用いた他は、実施例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体(樹脂粒子水性分散体)を得た。
Example 3
Instead of 378.6 g of styrene in Example 1, 388.8 g of styrene was contained, and instead of 22.2 g of ethylene glycol dimethacrylate, a divinylbenzene mixture (DVB570 manufactured by Nittetsu Chemical & Materials Co., Ltd., 57% divinylbenzene was contained. Polymerization was carried out in the same manner as in Example 1 except that 12.0 g (divinylbenzene: 6.84 g, ethylvinylbenzene: 5.16 g) (containing 43% of ethylvinylbenzene) was used, and a crosslinked polymer having a solid content of 40% was used. An aqueous dispersion (resin particle aqueous dispersion) was obtained.
実施例4
 実施例1におけるスチレン378.6gの代わりに、スチレン364.7gとメチルメタクリレート4.0gを、エチレングリコールジメタクリレート22.2gの代わりに、1,3-ブチレングリコールジメタクリレート32.1gを用いた他は、実施例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体(樹脂粒子水性分散体)を得た。
Example 4
In addition, 364.7 g of styrene and 4.0 g of methyl methacrylate were used instead of 378.6 g of styrene in Example 1, and 32.1 g of 1,3-butylene glycol dimethacrylate was used instead of 22.2 g of ethylene glycol dimethacrylate. Was polymerized in the same manner as in Example 1 to obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
比較例1
 撹拌機、温度計、温度コントローラー、コンデンサー、滴下装置を備えた内容量1.0Lのガラス容器に、イオン交換水343.3gを入れ撹拌しながら窒素ガスを導入し窒素置換を行った。窒素置換後、乳化剤として40%ラウリル硫酸トリエタノールアミン水溶液(東邦化学工業(株)製 アルスコープLS-40T)0.6gを入れマントルヒーターで加熱、72±2℃で温度コントロールし重合容器とした。
 撹拌機を備えた内容量1.0Lのガラス容器にイオン交換水169.7g、乳化剤として40%ラウリル硫酸トリエタノールアミン水溶液3.5g、単官能モノマーとしてスチレン364.9g、2-ヒドロキシエチルメタクリレート(三菱ケミカル(株)製 アクリエステルHO)11.1gを入れ撹拌し、スチレン、2-ヒドロキシエチルメタクリレートがイオン交換水に乳化したモノマーエマルジョンを得た。
 撹拌機を備えた内容量0.1Lのガラス容器にイオン交換水49.1g、重合開始剤として2,2’-アゾビス〔N-(2-カルボキシエチル)-2-メチルプロピオンアミジン〕4水和物3.2gを入れ撹拌溶解し、重合開始剤水溶液を得た。
 調製した前記モノマーエマルジョンから28.4g、調製した前記重合開始剤水溶液から4.5gを前記重合容器に入れ、初期重合を120分間行った。
 120分間初期重合を行った後に、残りのモノマーエマルジョン及び残りの重合開始剤水溶液をそれぞれ送液ポンプにて300分間かけて前記重合容器へ送液し、滴下重合を行った。
 120分間重合反応を継続した後、40℃まで冷却し固形分40%の非架橋ポリマー水性分散体(樹脂粒子水性分散体)を得た。
Comparative Example 1
Nitrogen gas was introduced into a glass container having an internal capacity of 1.0 L equipped with a stirrer, a thermometer, a temperature controller, a condenser, and a dropping device, and nitrogen exchange was performed while stirring. After nitrogen substitution, 0.6 g of a 40% aqueous solution of triethanolamine lauryl sulfate (Alscope LS-40T manufactured by Toho Chemical Industry Co., Ltd.) was added as an emulsifier, heated with a mantle heater, and the temperature was controlled at 72 ± 2 ° C to form a polymerization vessel. ..
In a glass container with a content of 1.0 L equipped with a stirrer, 169.7 g of ion-exchanged water, 3.5 g of a 40% triethanolamine lauryl sulfate aqueous solution as an emulsifier, 364.9 g of styrene as a monofunctional monomer, and 2-hydroxyethyl methacrylate ( 11.1 g of Acryester HO manufactured by Mitsubishi Chemical Co., Ltd. was added and stirred to obtain a monomer emulsion in which styrene and 2-hydroxyethyl methacrylate were emulsified in ion-exchanged water.
49.1 g of ion-exchanged water in a glass container with a content of 0.1 L equipped with a stirrer, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate as a polymerization initiator 3.2 g of the product was added and dissolved by stirring to obtain an aqueous polymerization initiator solution.
28.4 g of the prepared monomer emulsion and 4.5 g of the prepared aqueous polymerization initiator were placed in the polymerization vessel, and the initial polymerization was carried out for 120 minutes.
After performing the initial polymerization for 120 minutes, the remaining monomer emulsion and the remaining polymerization initiator aqueous solution were each sent to the polymerization vessel over 300 minutes by a liquid feed pump, and the dropping polymerization was carried out.
After continuing the polymerization reaction for 120 minutes, the mixture was cooled to 40 ° C. to obtain a non-crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
比較例2
 実施例1におけるポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステルアンモニウム塩(25%水溶液)12.8gの代わりにラウリル硫酸トリエタノールアミン(40%水溶液)8.0gを用い、スチレンを392.8g、エチレングリコールジメタクリレートを8.0gに変更した以外は実施例1と同様にして重合を行い、固形分40%の架橋ポリマー水性分散体(樹脂粒子水性分散体)を得た。
Comparative Example 2
In place of 12.8 g of the polyoxyethylene styrenated propenylphenyl ether sulfate ammonium salt (25% aqueous solution) in Example 1, 8.0 g of lauryl sulfate triethanolamine (40% aqueous solution) was used, and 392.8 g of styrene and ethylene were used. Polymerization was carried out in the same manner as in Example 1 except that glycol dimethacrylate was changed to 8.0 g to obtain a crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) having a solid content of 40%.
 実施例1~4及び比較例1~2にて得られた各樹脂粒子水性分散体について、前述の試験方法の手順に従い、樹脂粒子のメジアン径、樹脂粒子と有機溶媒との混合安定性、樹脂粒子の耐溶剤性、及び樹脂粒子の熱分解温度を測定・評価した。
 得られた結果を表1に示す。また<耐溶剤性試験>で得られた電子顕微鏡写真を図1((a):実施例1、(b):実施例2、(c):実施例3、(d):実施例4)及び図2((a):比較例1、(b):比較例2)にそれぞれ示す。
For each of the resin particle aqueous dispersions obtained in Examples 1 to 4 and Comparative Examples 1 and 2, according to the procedure of the above-mentioned test method, the median diameter of the resin particles, the mixing stability of the resin particles and the organic solvent, and the resin. The solvent resistance of the particles and the thermal decomposition temperature of the resin particles were measured and evaluated.
The results obtained are shown in Table 1. Further, the electron micrographs obtained in the <solvent resistance test> are shown in FIG. 1 ((a): Example 1, (b): Example 2, (c): Example 3, (d): Example 4). And FIG. 2 ((a): Comparative Example 1, (b): Comparative Example 2), respectively.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
[試験例]多孔質膜の製造
 実施例1~4及び比較例1~2で得られた架橋ポリマー水性分散体(樹脂粒子水性分散体)を用いて、多孔質膜を調製した。
[Test Example] Production of Porous Membrane A porous membrane was prepared using the crosslinked polymer aqueous dispersion (resin particle aqueous dispersion) obtained in Examples 1 to 4 and Comparative Examples 1 and 2.
<実施例5:ポリイミド多孔質膜の製造(1)>
〈ワニス組成物の調製〉
 実施例1の架橋ポリマー水性分散体(樹脂粒子分散体)を、スプレードライヤADL-311S-A(ヤマト科学(株)製)を用いて噴霧乾燥し、粉体のビニル系樹脂粒子を得た。
 得られた粉体のビニル系樹脂粒子10.7質量部と、N,N-ジメチルアセトアミド(DMAc)43.0質量部とを撹拌・混合してDMAc分散液とし、ここにポリアミック酸(PMDA:ピロメリット酸二無水物とODA:4,4-ジアミノジフェニルエーテルより作製したポリアミック酸のN,N-ジメチルアセトアミド20質量%溶液)46.3質量部を加え、三本ロールミルで分散し、均一な組成のワニス組成物を得た。
<Example 5: Production of polyimide porous membrane (1)>
<Preparation of varnish composition>
The crosslinked polymer aqueous dispersion (resin particle dispersion) of Example 1 was spray-dried using a spray dryer ADL-311S-A (manufactured by Yamato Kagaku Co., Ltd.) to obtain powdery vinyl-based resin particles.
10.7 parts by mass of vinyl-based resin particles of the obtained powder and 43.0 parts by mass of N, N-dimethylacetamide (DMAc) were stirred and mixed to prepare a DMAc dispersion, and a polyamic acid (PMDA:: Add 46.3 parts by mass of (20% by mass solution of N, N-dimethylacetamide) of polyamic acid prepared from pyromellitic acid dianhydride and ODA: 4,4-diaminodiphenyl ether, and disperse with a three-roll mill to make a uniform composition. The varnish composition of was obtained.
〈ポリイミド多孔質膜の製造〉
 上記ワニス組成物を、ポリエチレンテレフタレートフィルム上に塗布した後、90℃で5分間乾燥させて、ポリイミド多孔質膜の前駆膜を得た。得られた前駆膜を、ポリエチレンテレフタレートフィルムから剥離させた後、前駆膜を焼成炉内で420℃で5分間焼成して、ビニル系樹脂粒子を熱分解させながらポリアミック酸のイミド化を行い、実施例5のポリイミド多孔質膜を得た。
<Manufacturing of polyimide porous membrane>
The varnish composition was applied onto a polyethylene terephthalate film and then dried at 90 ° C. for 5 minutes to obtain a precursor film of a polyimide porous film. After the obtained precursor film was peeled off from the polyethylene terephthalate film, the precursor film was fired at 420 ° C. for 5 minutes in a firing furnace to imidize the polyamic acid while thermally decomposing the vinyl resin particles. The polyimide porous film of Example 5 was obtained.
<実施例6~8、比較例3~4:ポリイミド多孔質膜の製造(2)>
 架橋ポリマー水性分散体(樹脂粒子水性分散体)として、実施例1の水性分散体の代わりに、表2に示す実施例2~実施例4又は比較例1~2の各架橋ポリマー水性分散体を用いた以外には、実施例5と同様の手順にて、粉体のビニル系樹脂粒子を調製し、該粉体粒子よりワニス組成物を調製し、そして該ワニス組成物より実施例6~8又は比較例3~4のポリイミド多孔質膜を得た。
<Examples 6 to 8, Comparative Examples 3 to 4: Production of Polyimide Porous Membrane (2)>
As the crosslinked polymer aqueous dispersion (resin particle aqueous dispersion), instead of the aqueous dispersion of Example 1, each of the crosslinked polymer aqueous dispersions of Examples 2 to 4 or Comparative Examples 1 and 2 shown in Table 2 is used. Except for the use, powder vinyl resin particles were prepared in the same procedure as in Example 5, a varnish composition was prepared from the powder particles, and Examples 6 to 8 were prepared from the varnish composition. Alternatively, the polyimide porous films of Comparative Examples 3 to 4 were obtained.
<多孔質膜の評価>
 実施例5~実施例8及び比較例3~4のポリイミド多孔質膜について、下記評価を実施した。得られた結果を表2に示す。
[応力及び破断伸度]
 各多孔質膜を各々3cm×3mmの大きさに切り出して、短冊状のサンプルを得た。
 このサンプルの破断時の応力(MPa;引張強度)及び破断伸度(%GL)を、EZ Test((株)島津製作所製)を用いて評価した。
[透気度]
 各多孔質膜を、各々を5cm×5cmの大きさに切り出して、透気度測定用のサンプルとした。ガーレー式デンソメーター(東洋精機製作所(株)製)を用いて、JIS P 8117に準じて、100mlの空気が上記サンプルを通過する時間を測定した。
 なお透気度の目安としては、例えば250秒以内、200秒以内とすることができる。低いほど好ましいので下限は特に設定されないが、多孔質膜サンプルのハンドリング性を考慮すると、例えば、30秒以上とすることができる。ガーレー透気度が250秒以内であれば、十分高いイオン透過性を示すためリチウムイオン電池のセパレータ用として適用可能と判断できる。
<Evaluation of porous membrane>
The following evaluations were carried out on the polyimide porous membranes of Examples 5 to 8 and Comparative Examples 3 to 4. The results obtained are shown in Table 2.
[Stress and elongation at break]
Each porous membrane was cut into a size of 3 cm × 3 mm to obtain a strip-shaped sample.
The stress (MPa; tensile strength) and elongation at break (% GL) at break of this sample were evaluated using EZ Test (manufactured by Shimadzu Corporation).
[Air permeability]
Each of the porous membranes was cut into a size of 5 cm × 5 cm and used as a sample for measuring air permeability. Using a Garley type densometer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the time for 100 ml of air to pass through the sample was measured according to JIS P 8117.
The air permeability can be, for example, within 250 seconds or 200 seconds. The lower the value, the more preferable, so the lower limit is not particularly set, but considering the handleability of the porous membrane sample, it can be, for example, 30 seconds or more. If the garley air permeability is within 250 seconds, it can be judged that it can be applied as a separator for a lithium ion battery because it exhibits sufficiently high ion permeability.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<多孔質膜のSEM画像観察>
 実施例5~8及び比較例3のポリイミド多孔質膜の表面(基板のフィルム側と空気面側)を走査型電子顕微鏡(SEM)により観察した。
 得られた空気面側のSEM画像を図3((a)実施例5、(b)実施例6、(c)実施例7、(d)実施例8)、図4(比較例3)にそれぞれ示す。
 図3に示すように、実施例のポリイミド多孔質膜には均一な大きさの球状空孔が概ね均一な分布にて形成されていることが確認された。SEMの測長ツールを用いて空孔部の直径を測定した結果、多孔質膜の製造に用いた樹脂粒子分散体の樹脂粒子のメジアン径と同等の大きさの空孔を形成できていることが確認された。
 一方、図4に示すように、比較例3のポリイミド多孔質膜には不均一な大きさの球状空孔が不均一な分布にて形成されていることが確認された。またSEMの測長ツールを用いて空孔部の直径を測定した結果、多孔質膜の製造に用いた比較例1の樹脂粒子分散体の樹脂粒子のメジアン径より、大きな直径を有する空孔が散見されることが確認された。
<Observation of SEM image of porous membrane>
The surfaces of the polyimide porous membranes of Examples 5 to 8 and Comparative Example 3 (the film side and the air surface side of the substrate) were observed with a scanning electron microscope (SEM).
The obtained SEM images on the air surface side are shown in FIG. 3 ((a) Example 5, (b) Example 6, (c) Example 7, (d) Example 8), and FIG. 4 (Comparative Example 3). Each is shown.
As shown in FIG. 3, it was confirmed that spherical pores of uniform size were formed in the polyimide porous membrane of the example with a substantially uniform distribution. As a result of measuring the diameter of the pores using the SEM length measurement tool, it is possible to form pores of the same size as the median diameter of the resin particles of the resin particle dispersion used to manufacture the porous membrane. Was confirmed.
On the other hand, as shown in FIG. 4, it was confirmed that the polyimide porous membrane of Comparative Example 3 had spherical pores of non-uniform size formed in a non-uniform distribution. Further, as a result of measuring the diameter of the pores using the SEM length measuring tool, the pores having a diameter larger than the median diameter of the resin particles of the resin particle dispersion of Comparative Example 1 used for producing the porous film were found. It was confirmed that it was scattered.
 以上、表2及び図3~図4に示すとおり、本発明に係るビニル系樹脂粒子は、透気度が高く、粒子のメジアン径と同等の直径である均一な球状の空孔を持つポリイミド多孔質膜を製造可能であり、熱硬化性樹脂の多孔化材として有用である。 As described above, as shown in Table 2 and FIGS. 3 to 4, the vinyl-based resin particles according to the present invention have high air permeability and are polyimide porous having uniform spherical pores having a diameter equivalent to the median diameter of the particles. A quality film can be produced, which is useful as a porous material for thermosetting resins.

Claims (9)

  1. 単官能ビニル系単量体に由来する構造単位(A1)と
    多官能ビニル系単量体に由来する構造単位(A2)と
    反応性乳化剤に由来する構造単位(B)とを有する重合体である、
    多孔質膜製造用ビニル系樹脂粒子であって、
    前記構造単位(A1)の割合が88~99質量%、前記構造単位(A2)の割合が0.9~10質量%、前記構造単位(B)の割合が0.1~2質量%である、
    多孔質膜製造用ビニル系樹脂粒子。
    It is a polymer having a structural unit (A1) derived from a monofunctional vinyl-based monomer, a structural unit (A2) derived from a polyfunctional vinyl-based monomer, and a structural unit (B) derived from a reactive emulsifier. ,
    Vinyl-based resin particles for manufacturing porous membranes,
    The ratio of the structural unit (A1) is 88 to 99% by mass, the ratio of the structural unit (A2) is 0.9 to 10% by mass, and the ratio of the structural unit (B) is 0.1 to 2% by mass. ,
    Vinyl-based resin particles for manufacturing porous membranes.
  2. ビニル系単量体に由来する構造単位(A)と、
    前記構造単位(A)とは異なる下記一般式(I)で表される化合物に由来する構造単位(b1)を有する重合体である、
    多孔質膜製造用ビニル系樹脂粒子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    mは、1~3の整数を表し、
    Rは下記式(i)又は式(ii)で表される基を表し
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子又はメチル基を表す)、
    AOは、炭素原子数2~4のアルキレンオキシ基を表し、nは、0~100の整数を表し、
    Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。]
    Structural unit (A) derived from vinyl-based monomer and
    A polymer having a structural unit (b1) derived from a compound represented by the following general formula (I), which is different from the structural unit (A).
    Vinyl-based resin particles for manufacturing porous membranes.
    Figure JPOXMLDOC01-appb-C000001
    [During the ceremony,
    m represents an integer of 1 to 3 and represents
    R represents a group represented by the following formula (i) or formula (ii).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 represents a hydrogen atom or a methyl group),
    AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
    X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of. ]
  3. 前記構造単位(b1)の割合が、前記重合体の前記構造単位の合計質量に対して0.1質量%~2.0質量%である、請求項2に記載のビニル系樹脂粒子。 The vinyl-based resin particles according to claim 2, wherein the ratio of the structural unit (b1) is 0.1% by mass to 2.0% by mass with respect to the total mass of the structural units of the polymer.
  4. 前記ビニル系単量体に由来する構造単位(A)が、単官能ビニル系単量体に由来する構造単位(A1)と多官能ビニル系単量体に由来する構造単位(A2)を含む、請求項2又は請求項3に記載のビニル系樹脂粒子。 The structural unit (A) derived from the vinyl-based monomer includes a structural unit (A1) derived from a monofunctional vinyl-based monomer and a structural unit (A2) derived from a polyfunctional vinyl-based monomer. The vinyl-based resin particle according to claim 2 or claim 3.
  5. 樹脂粒子のメジアン径が0.05μm~2.0μmである、請求項1乃至請求項4のうち何れか一項に記載のビニル系樹脂粒子。 The vinyl-based resin particles according to any one of claims 1 to 4, wherein the resin particles have a median diameter of 0.05 μm to 2.0 μm.
  6. 前記単官能ビニル系単量体に由来する構造単位(A1)は、単官能スチレン系単量体に由来する構造単位(a1)を含む、
    請求項1、請求項4又は請求項5に記載のビニル系樹脂粒子。
    The structural unit (A1) derived from the monofunctional vinyl-based monomer includes a structural unit (a1) derived from the monofunctional styrene-based monomer.
    The vinyl-based resin particles according to claim 1, claim 4 or claim 5.
  7. 前記単官能ビニル系単量体に由来する構造単位(A1)は、単官能(メタ)アクリル系単量体に由来する構造単位(a2)を含む、
    請求項1及び請求項4乃至請求項6のうち何れか一項に記載のビニル系樹脂粒子。
    The structural unit (A1) derived from the monofunctional vinyl-based monomer includes a structural unit (a2) derived from the monofunctional (meth) acrylic monomer.
    The vinyl-based resin particle according to any one of claims 1 and 4 to 6.
  8. 前記多官能ビニル系単量体(A2)の割合が、前記重合体の前記構造単位の合計質量に対して0.9質量%~10質量%である、
    請求項1及び請求項4乃至請求項7のうち何れか一項に記載のビニル系樹脂粒子。
    The proportion of the polyfunctional vinyl-based monomer (A2) is 0.9% by mass to 10% by mass with respect to the total mass of the structural units of the polymer.
    The vinyl-based resin particle according to any one of claims 1 and 4 to 7.
  9. 水性分散媒中で重合開始剤の存在下、
    ビニル系単量体と、前記ビニル系単量体とは異なる下記一般式(I)で表される化合物を乳化重合することを特徴とする、
    ビニル系樹脂粒子水性分散体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
    mは、1~3の整数を表し、
    Rは下記式(i)又は式(ii)で表される基を表し
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素原子又はメチル基を表す)、
    AOは、炭素原子数2~4のアルキレンオキシ基を表し、nは、0~100の整数を表し、
    Xは、水素原子を表すか、又は、-SOM、-COOM及び-POM(式中、Mは、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基又は有機アンモニウム基を表す。)からなる群から選ばれるアニオン性親水基を表す。]
     
    In the presence of a polymerization initiator in an aqueous dispersion medium,
    It is characterized in that a vinyl-based monomer and a compound represented by the following general formula (I) different from the vinyl-based monomer are emulsion-polymerized.
    A method for producing an aqueous dispersion of vinyl-based resin particles.
    Figure JPOXMLDOC01-appb-C000003
    [During the ceremony,
    m represents an integer of 1 to 3 and represents
    R represents a group represented by the following formula (i) or formula (ii).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 represents a hydrogen atom or a methyl group),
    AO represents an alkyleneoxy group having 2 to 4 carbon atoms, and n represents an integer of 0 to 100.
    X represents a hydrogen atom or -SO 3 M, -COOM and -PO 3 M (in the formula, M represents an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic ammonium group). Represents an anionic hydrophilic group selected from the group consisting of. ]
PCT/JP2021/038803 2020-10-30 2021-10-20 Vinyl-based resin particles WO2022091912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022559056A JPWO2022091912A1 (en) 2020-10-30 2021-10-20
CN202180074378.4A CN116368178A (en) 2020-10-30 2021-10-20 Vinyl resin particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-182897 2020-10-30
JP2020182897 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022091912A1 true WO2022091912A1 (en) 2022-05-05

Family

ID=81382409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038803 WO2022091912A1 (en) 2020-10-30 2021-10-20 Vinyl-based resin particles

Country Status (4)

Country Link
JP (1) JPWO2022091912A1 (en)
CN (1) CN116368178A (en)
TW (1) TW202235452A (en)
WO (1) WO2022091912A1 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294499A (en) * 1990-04-11 1991-12-25 Kansai Paint Co Ltd Formation of coating film
WO2006080159A1 (en) * 2005-01-27 2006-08-03 Konica Minolta Holdings, Inc. Proton-conductive electrolyte film, process for producing the same, and solid polymer type fuel cell employing the proton-conductive electrolyte film
JP2006294323A (en) * 2005-04-07 2006-10-26 Konica Minolta Holdings Inc Proton conductive electrolyte membrane, manufacturing method of proton conductive electrolyte membrane, and polymer electrolyte fuel cell
JP2007169628A (en) * 2005-11-25 2007-07-05 Nippon Paint Co Ltd Coating composition, coating film, method for reducing underwater friction, and method for producing coating composition
US20110135888A1 (en) * 2009-12-04 2011-06-09 Ppg Industries Ohio, Inc. Crystalline colloidal array of particles bearing reactive surfactant
US20110177352A1 (en) * 2010-01-15 2011-07-21 Ppg Industries Ohio, Inc. One-component, ambient curable waterborne coating compositions, related methods and coated substrates
JP2014222649A (en) * 2013-05-14 2014-11-27 日本ゼオン株式会社 Porous membrane composition for secondary battery, electrode for secondary battery, separator for secondary battery, and secondary battery
JP2014239070A (en) * 2014-08-20 2014-12-18 Jsr株式会社 Lithium ion secondary battery
JP2015058418A (en) * 2013-09-20 2015-03-30 ダイキン工業株式会社 Porous polymer membrane and production method thereof
JP2015058419A (en) * 2013-09-20 2015-03-30 ダイキン工業株式会社 Porous polymer membrane and production method thereof
JP2016184023A (en) * 2015-03-25 2016-10-20 旭化成株式会社 Coating film for solar cell cover glass and method for producing the same
WO2018143371A1 (en) * 2017-02-06 2018-08-09 富士フイルム株式会社 Coating composition, antireflective film and method for producing same, laminated body, and solar cell module
WO2019065772A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Coating composition, layered product, solar cell module and method for producing layered product
WO2019065771A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Coating composition, layered product, method for producing same, solar cell module and porous film
WO2019130677A1 (en) * 2017-12-25 2019-07-04 昭和電工株式会社 Liquid dispersion composition for solid electrolytic capacitor production, and production method for solid electrolytic capacitor
WO2019230140A1 (en) * 2018-05-31 2019-12-05 株式会社クレハ Polymer solution, method of manufacturing film using same, and resin composition for nonaqueous electrolyte secondary battery
JP2020117668A (en) * 2019-01-28 2020-08-06 株式会社日本触媒 Novel emulsion

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294499A (en) * 1990-04-11 1991-12-25 Kansai Paint Co Ltd Formation of coating film
WO2006080159A1 (en) * 2005-01-27 2006-08-03 Konica Minolta Holdings, Inc. Proton-conductive electrolyte film, process for producing the same, and solid polymer type fuel cell employing the proton-conductive electrolyte film
JP2006294323A (en) * 2005-04-07 2006-10-26 Konica Minolta Holdings Inc Proton conductive electrolyte membrane, manufacturing method of proton conductive electrolyte membrane, and polymer electrolyte fuel cell
JP2007169628A (en) * 2005-11-25 2007-07-05 Nippon Paint Co Ltd Coating composition, coating film, method for reducing underwater friction, and method for producing coating composition
US20110135888A1 (en) * 2009-12-04 2011-06-09 Ppg Industries Ohio, Inc. Crystalline colloidal array of particles bearing reactive surfactant
US20110177352A1 (en) * 2010-01-15 2011-07-21 Ppg Industries Ohio, Inc. One-component, ambient curable waterborne coating compositions, related methods and coated substrates
JP2014222649A (en) * 2013-05-14 2014-11-27 日本ゼオン株式会社 Porous membrane composition for secondary battery, electrode for secondary battery, separator for secondary battery, and secondary battery
JP2015058418A (en) * 2013-09-20 2015-03-30 ダイキン工業株式会社 Porous polymer membrane and production method thereof
JP2015058419A (en) * 2013-09-20 2015-03-30 ダイキン工業株式会社 Porous polymer membrane and production method thereof
JP2014239070A (en) * 2014-08-20 2014-12-18 Jsr株式会社 Lithium ion secondary battery
JP2016184023A (en) * 2015-03-25 2016-10-20 旭化成株式会社 Coating film for solar cell cover glass and method for producing the same
WO2018143371A1 (en) * 2017-02-06 2018-08-09 富士フイルム株式会社 Coating composition, antireflective film and method for producing same, laminated body, and solar cell module
WO2019065772A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Coating composition, layered product, solar cell module and method for producing layered product
WO2019065771A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Coating composition, layered product, method for producing same, solar cell module and porous film
WO2019130677A1 (en) * 2017-12-25 2019-07-04 昭和電工株式会社 Liquid dispersion composition for solid electrolytic capacitor production, and production method for solid electrolytic capacitor
WO2019230140A1 (en) * 2018-05-31 2019-12-05 株式会社クレハ Polymer solution, method of manufacturing film using same, and resin composition for nonaqueous electrolyte secondary battery
JP2020117668A (en) * 2019-01-28 2020-08-06 株式会社日本触媒 Novel emulsion

Also Published As

Publication number Publication date
JPWO2022091912A1 (en) 2022-05-05
TW202235452A (en) 2022-09-16
CN116368178A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
KR101920376B1 (en) Conductive paste for positive electrodes of lithium-ion batteries and mixture paste for positive electrodes of lithium-ion batteries
KR20170055923A (en) Conductive paste and mixture paste for lithium ion battery positive electrode
JP6316222B2 (en) Polyvinyl acetal fine particles for aqueous dispersions
JP2014175055A (en) Porous film for secondary battery, slurry for secondary battery porous film, method of manufacturing porous film for secondary battery, electrode for secondary battery, separator for secondary battery, and secondary battery
WO2018043200A1 (en) Aqueous resin composition for lithium ion secondary battery binders and separator for lithium ion secondary batteries
JP2020087591A (en) Raw material of coating material for secondary battery separator, method for manufacturing raw material of coating material for secondary battery separator, coating material for secondary battery separator, secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
US20180339947A1 (en) Binder for production of inorganic sintered body
WO2017188055A1 (en) Aqueous resin composition for lithium ion secondary battery binders and separator for lithium ion secondary batteries
WO2022091912A1 (en) Vinyl-based resin particles
JPWO2018180472A1 (en) Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
JP2008520821A (en) Dispersant for producing vinyl chloride resin and method for producing vinyl chloride resin using the same
JP5559585B2 (en) Vinyl chloride hollow particles, method for producing the same, vinyl chloride resin composition, and vinyl chloride molded article
WO2022091915A1 (en) Varnish for production of polyimide porous membrane
JP5650915B2 (en) Method for producing vinyl chloride hollow particles, vinyl chloride hollow particles, vinyl chloride resin composition, and vinyl chloride molded article
JP5812811B2 (en) Binder for manufacturing inorganic sintered bodies
JP7311587B2 (en) Coating material for secondary battery separator
JP2022507829A (en) Method for manufacturing heat-treated PVDF
JP2017226560A (en) Paste for manufacturing inorganic sintered body
CN114342175B (en) Aqueous resin composition for lithium ion secondary battery binder and separator for lithium ion secondary battery
US20220325020A1 (en) Cross-linked methacrylate resin particles and a pore-forming agent
WO2018235601A1 (en) Composition for nonaqueous rechargeable battery porous membrane, porous membrane for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP2023085047A (en) Crosslinked acrylic polymer particles for production of separator
CN117510690A (en) Low-density small-particle-size hollow polymer microsphere and preparation method and application thereof
CN117242634A (en) Coating material raw material for secondary battery separator, coating material for secondary battery separator, method for producing secondary battery separator, and secondary battery
JP2023012734A (en) Crosslinked polymethyl methacrylate particles for the production of separators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886031

Country of ref document: EP

Kind code of ref document: A1