WO2022080053A1 - Vehicle air conditioning device - Google Patents

Vehicle air conditioning device Download PDF

Info

Publication number
WO2022080053A1
WO2022080053A1 PCT/JP2021/033464 JP2021033464W WO2022080053A1 WO 2022080053 A1 WO2022080053 A1 WO 2022080053A1 JP 2021033464 W JP2021033464 W JP 2021033464W WO 2022080053 A1 WO2022080053 A1 WO 2022080053A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heating mode
heating
mode
vehicle
Prior art date
Application number
PCT/JP2021/033464
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 矢田
伸治 梯
直樹 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022080053A1 publication Critical patent/WO2022080053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • B60H1/10Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle
    • B60H1/12Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle using an air blower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Definitions

  • This disclosure relates to a vehicle air conditioner that heats the interior of a vehicle.
  • Patent Document 1 discloses a vehicle air conditioner applied to a hybrid vehicle.
  • a hybrid vehicle is a vehicle that obtains driving force for traveling from an internal combustion engine (that is, an engine) and an electric motor.
  • the engine may be stopped even while the vehicle is running in order to improve fuel efficiency. Therefore, the temperature of the engine cooling water may not rise to a temperature that can be used as a heat source for heating.
  • the vehicle air conditioner of Patent Document 1 not only the engine cooling water is used as a heat source, but also a refrigerating cycle device having an electric compressor can generate warm air. Further, in the vehicle air conditioner of Patent Document 1, the created hot air and cold air such as outside air are mixed and blown air blown into the vehicle interior so that the occupant can obtain a comfortable heating feeling during heating operation. The temperature of the car is adjusted.
  • Patent Document 1 in a vehicle air conditioner that adjusts the temperature of the blown air by mixing hot air and cold air during heating operation, hot air having a higher temperature than the blown air blown into the vehicle interior is produced. There must be. Therefore, in the vehicle air conditioner of Patent Document 1, the power consumption of the refrigeration cycle device increases when the temperature of the engine cooling water is low or the like.
  • an object of the present disclosure to provide an air conditioner for vehicles capable of reducing power consumption while suppressing deterioration of a feeling of heating.
  • the vehicle air conditioner includes an air passage forming section, a blowing section, an inside air rate adjusting section, a heating section, and a heated air volume adjusting section.
  • the air passage forming portion forms an air passage through which the blown air blown into the vehicle interior is circulated.
  • the blower unit blows the blown air.
  • the inside air ratio adjusting unit adjusts the inside air ratio, which is the ratio of the air in the vehicle interior to the blown air introduced into the air passage.
  • the heating unit uses electric power to heat the blown air.
  • the heated air volume adjusting unit adjusts the ratio of the heated air volume heated by the heating unit to the blown air.
  • a normal heating mode and a power saving heating mode are provided, and the power saving heating mode is an operation mode in which the heating capacity of the heating unit is reduced as compared with the normal heating mode.
  • control is performed to increase the amount of air blown by the blower unit compared to the normal heating mode, control to increase the internal air rate compared to the normal heating mode, and control to increase the ratio of the heated air volume compared to the normal heating mode. At least one of them is executed.
  • the heating capacity of the heating unit is reduced as compared with the normal heating mode, so that the power consumption of the heating unit can be reduced.
  • the temperature of the blown air introduced into the air passage can be raised more than in the normal heating mode by executing the control to raise the inside air rate more than in the normal heating mode. Therefore, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
  • the air volume of the blown air heated in the heating unit can be increased as compared with the normal heating mode. Therefore, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
  • the vehicle air conditioner 1 is applied to an electric vehicle in which a driving force for traveling a vehicle is obtained from an electric motor for traveling.
  • the vehicle air-conditioning device 1 air-conditions the interior of an electric vehicle, which is a space to be air-conditioned.
  • the vehicle air conditioner 1 can switch the operation mode in order to perform air conditioning in the vehicle interior.
  • the operation mode of the vehicle air conditioner 1 includes a cooling mode, a series dehumidifying / heating mode, a parallel dehumidifying / heating mode, and a heating mode.
  • the cooling mode is an operation mode in which the inside of the vehicle is cooled by cooling the blown air and blowing it into the vehicle interior.
  • the series dehumidifying / heating mode is an operation mode in which dehumidifying / heating the interior of the vehicle is performed by reheating the cooled and dehumidified blown air and blowing it into the vehicle interior.
  • the parallel dehumidifying and heating mode is an operation mode in which the dehumidified and heated air inside the vehicle is dehumidified and heated by reheating the cooled and dehumidified blown air with a heating capacity higher than that of the series dehumidifying and heating mode and blowing it into the vehicle interior.
  • the heating mode is an operation mode in which the interior of the vehicle is heated by heating the blown air and blowing it into the interior of the vehicle. Further, in the vehicle air conditioner 1 of the present embodiment, as the heating mode, a normal heating mode, a power saving heating mode, a power saving anti-fog heating mode, and a power saving low noise heating mode are provided.
  • the power-saving heating mode, the power-saving anti-fog heating mode, and the power-saving low-noise heating mode heat the refrigerating cycle device 10 more than the normal heating mode in order to reduce the power consumption of the refrigerating cycle device 10 forming the heating unit.
  • This is an operation mode that reduces the capacity.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, a heat medium circuit 30, an indoor air conditioner unit 40, an air conditioner control device 50 shown in FIG. 2, and the like.
  • the refrigeration cycle device 10 adjusts the temperature of the blown air blown into the vehicle interior in the vehicle air conditioner 1.
  • the refrigerating cycle device 10 can switch the refrigerant circuit according to the operation mode of the vehicle air conditioner 1. Specifically, the refrigerating cycle device 10 can be switched to a cooling mode refrigerant circuit, a series dehumidifying / heating mode refrigerant circuit, a parallel dehumidifying / heating mode refrigerant circuit, and a heating mode refrigerant circuit.
  • an HFO-based refrigerant (specifically, R1234yf) is used as the refrigerant.
  • the refrigeration cycle device 10 constitutes a steam compression type subcritical refrigeration cycle in which the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant of the refrigeration cycle device 10. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in the drive unit room on the front side of the vehicle.
  • the drive unit room forms a space in which at least a part of a device (for example, an electric motor) for generating a driving force for traveling a vehicle is arranged.
  • the compressor 11 is an electric compressor in which a fixed capacity type compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor.
  • the rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by the control signal output from the air conditioning control device 50.
  • the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
  • the water-refrigerant heat exchanger 12 has a refrigerant passage for circulating the discharged refrigerant discharged from the compressor 11 and a water passage for circulating the heat medium circulating in the heat medium circuit 30.
  • the water-refrigerant heat exchanger 12 is a heat exchanger for heating a heat medium that heats the heat medium by exchanging heat between the discharged refrigerant flowing through the refrigerant passage and the heat medium flowing through the water passage.
  • the inlet side of the first three-way joint 13a having three inflow outlets communicating with each other is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes a second three-way joint 13b to a fourth three-way joint 13d, as will be described later.
  • the basic configuration of the second three-way joint 13b to the fourth three-way joint 13d is the same as that of the first three-way joint 13a.
  • the first three-way joint 13a to the fourth three-way joint 13d are branch portions for branching the flow of the refrigerant when one of the three inflow outlets is used as the inlet and two are used as the outlets. Further, when two of the three inflow ports are used as the inflow port and one is used as the outflow port, it becomes a merging portion where the flow of the refrigerant is merged.
  • the inlet side of the heating expansion valve 14a is connected to one of the outlets of the first three-way joint 13a.
  • One inflow port side of the second three-way joint 13b is connected to the other outflow port of the first three-way joint 13a via a bypass passage 22a.
  • a dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
  • the heating expansion valve 14a is a heating decompression unit that reduces the pressure of the high-pressure refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12 in the heating mode or the like. Further, the heating expansion valve 14a is a heating flow rate adjusting unit that adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side in the heating mode or the like.
  • the heating expansion valve 14a is an electric variable throttle mechanism having a valve body configured to change the throttle opening and an electric actuator for changing the opening of the valve body.
  • the operation of the heating expansion valve 14a is controlled by a control signal (specifically, a control pulse) output from the air conditioning control device 50.
  • the refrigeration cycle device 10 is provided with a cooling expansion valve 14b, as will be described later.
  • the basic configuration of the cooling expansion valve 14b is the same as that of the heating expansion valve 14a.
  • the expansion valve 14a for heating and the expansion valve 14b for cooling have a fully open function that functions as a mere refrigerant passage without exerting a refrigerant depressurizing action and a flow rate adjusting action by fully opening the valve opening. Further, the heating expansion valve 14a and the cooling expansion valve 14b have a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
  • the expansion valve 14a for heating and the expansion valve 14b for cooling can switch the refrigerant circuit of the refrigeration cycle device 10 by exerting the fully closed function. Therefore, the heating expansion valve 14a and the cooling expansion valve 14b also have a function as a refrigerant circuit switching unit for switching the refrigerant circuit.
  • the expansion valve 14a for heating and the expansion valve 14b for cooling may be formed by combining a variable throttle mechanism having no fully closed function and an on-off valve.
  • the on-off valve serves as the refrigerant circuit switching unit.
  • the heating expansion valve 14a may not have a fully closed function.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a.
  • the outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown by the outside air fan 16a.
  • the outdoor heat exchanger 16 is arranged on the front side of the drive unit room. Therefore, when the vehicle is running, the running wind that has flowed into the drive unit room through the grill can be applied to the outdoor heat exchanger 16.
  • the outside air fan 16a is an electric blower whose rotation speed (that is, blowing capacity) is controlled by a control voltage output from the air conditioning control device 50.
  • the inlet side of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 16.
  • One inflow port side of the fourth three-way joint 13d is connected to one outflow port of the third three-way joint 13c via a heating passage 22b.
  • a heating on-off valve 15b is arranged in the heating passage 22b.
  • the heating on-off valve 15b is a solenoid valve that opens and closes the heating passage 22b.
  • the dehumidifying on-off valve 15a described above is a solenoid valve that opens and closes the bypass passage 22a.
  • the basic configurations of the dehumidifying on-off valve 15a and the heating on-off valve 15b are the same.
  • the opening / closing operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b is controlled by the control voltage output from the air conditioning control device 50.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage. Therefore, the dehumidifying on-off valve 15a and the heating on-off valve 15b, together with the heating expansion valve 14a and the cooling expansion valve 14b, are refrigerant circuit switching units that switch the refrigerant circuit.
  • the other inlet side of the second three-way joint 13b is connected to the other outlet of the third three-way joint 13c.
  • a check valve 17 is arranged in the refrigerant passage connecting the other outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b. The check valve 17 allows the refrigerant to flow from the third three-way joint 13c side to the second three-way joint 13b side, and prohibits the refrigerant from flowing from the second three-way joint 13b side to the third three-way joint 13c side.
  • the inlet side of the cooling expansion valve 14b is connected to the outlet of the second three-way joint 13b.
  • the cooling expansion valve 14b is a cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 in the cooling mode or the like. Further, the cooling expansion valve 14b is a cooling flow rate adjusting unit that adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side in the cooling mode or the like.
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b.
  • the indoor evaporator 18 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40, which will be described later.
  • the indoor evaporator 18 is a heat exchanger for cooling the blown air that cools the blown air by exchanging heat between the low pressure refrigerant decompressed by the cooling expansion valve 14b and the blown air and evaporating the low pressure refrigerant. ..
  • the other inlet side of the fourth three-way joint 13d is connected to the refrigerant outlet of the indoor evaporator 18.
  • the refrigerant inlet side of the accumulator 21 is connected to the outlet of the fourth three-way joint 13d.
  • the accumulator 21 is a liquid storage unit that separates the gas and liquid of the refrigerant flowing out from the heat exchanger functioning as an evaporator and stores the separated liquid phase refrigerant as a surplus refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
  • the heat medium circuit 30 is a heat medium circulation circuit that circulates a heat medium.
  • an ethylene glycol aqueous solution is used as the heat medium.
  • a water passage of the water-refrigerant heat exchanger 12, a heat medium pump 31, a heater core 32, and the like are arranged.
  • the heat medium pump 31 is a water pump that pumps a heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12.
  • the heat medium pump 31 is an electric pump that rotationally drives an impeller (that is, an impeller) with an electric motor.
  • the rotation speed (that is, the water pressure feeding capacity) of the heat medium pump 31 is controlled by the control voltage output from the air conditioning control device 50.
  • the heat medium inlet side of the heater core 32 is connected to the outlet of the water passage of the water-refrigerant heat exchanger 12.
  • the heater core 32 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40.
  • the heater core 32 is a heat exchanger for heating blown air that heats the blown air by exchanging heat between the heat medium heated by the water-refrigerator heat exchanger 12 and the blown air that has passed through the indoor evaporator 18. ..
  • the heating unit for heating the blown air by using electric power is formed by each component device arranged in the refrigerating cycle device 10 and the heat medium circuit 30.
  • the compressor 11 discharges high-temperature and high-pressure discharged refrigerant using electric power.
  • the discharged refrigerant discharged from the compressor 11 dissipates heat to the heat medium in the water-refrigerant heat exchanger 12.
  • the heat medium heated by the water-refrigerant heat exchanger 12 dissipates heat to the blown air at the heater core 32. As a result, the blown air is heated.
  • the temperature of the discharged refrigerant and the heat medium can be increased by increasing the refrigerant discharge capacity of the compressor 11, and the heating capacity of the blown air can be increased. Further, by reducing the refrigerant discharge capacity of the compressor 11, the temperatures of the discharged refrigerant and the heat medium can be lowered, and the heating capacity of the blown air can be reduced.
  • the indoor air conditioning unit 40 is a unit in which various components are integrated in the vehicle air-conditioning device 1 in order to blow out appropriately temperature-controlled blown air to an appropriate place in the vehicle interior.
  • the indoor air conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 40 is formed by accommodating an indoor blower 42, an indoor evaporator 18, a heater core 32, etc. in an air conditioning case 41.
  • the air-conditioning case 41 is an air passage forming portion that forms the outer shell of the indoor air-conditioning unit 40 and also forms the air passage 40a that allows the blown air blown into the vehicle interior to flow inside.
  • the air-conditioning case 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 43 is arranged at the most upstream part of the blast air flow of the air conditioning case 41.
  • the inside / outside air switching device 43 adjusts the ratio of the inside air (that is, the air inside the vehicle interior) and the outside air (that is, the air outside the vehicle interior) in the blown air introduced into the air passage 40a. Therefore, the inside / outside air switching device 43 is an inside air ratio adjusting unit that adjusts the inside air ratio RF, which is the ratio of the inside air in the blown air introduced into the air passage 40a.
  • an inside air introduction port 43a and an outside air introduction port 43b are formed at a portion of the air conditioning case 41 that forms the inside / outside air switching device 43.
  • the inside air introduction port 43a is an opening for introducing inside air into the air passage 40a.
  • the outside air introduction port 43b is an opening for introducing outside air into the air passage 40a.
  • an inside / outside air switching door 43c is arranged inside the inside / outside air switching device 43.
  • the inside / outside air switching door 43c is a plate door that continuously changes the opening ratio between the opening degree of the inside air introduction port 43a and the opening degree of the outside air introduction port 43b.
  • the inside / outside air switching door 43c is driven by an electric actuator 43d of the inside / outside air switching device.
  • the operation of the electric actuator 43d of the inside / outside air switching device is controlled by a control signal output from the air conditioning control device 50.
  • An indoor blower 42 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 43.
  • the indoor blower 42 is a blower unit that blows the blown air sucked through the inside / outside air switching device 43 toward the vehicle interior.
  • the indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the indoor blower 42 is controlled by a control voltage (hereinafter, referred to as a blower voltage Vb) output from the air conditioning control device 50.
  • a control voltage hereinafter, referred to as a blower voltage Vb
  • the indoor evaporator 18 and the heater core 32 are arranged on the downstream side of the blower air flow of the indoor blower 42.
  • the indoor evaporator 18 is arranged on the upstream side of the blown air flow with respect to the heater core 32.
  • a cold air bypass passage 45 is formed in which the blown air that has passed through the indoor evaporator 18 is bypassed by the heater core 32 and flows to the downstream side.
  • the air mix door 44 is arranged on the downstream side of the blown air flow of the indoor evaporator 18 and on the upstream side of the blown air flow of the heater core 32.
  • the air mix door 44 adjusts the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45 in the air blown air after passing through the indoor evaporator 18. Therefore, the air mix door 44 is a heated air volume adjusting unit that adjusts the ratio of the air volume (that is, the heated air volume) of the air blown air heated by the heater core 32 forming the heating unit to the air blown air after passing through the indoor evaporator 18. Is.
  • the position of the air mix door 44 can be represented by the air mix opening SW.
  • the air mix opening degree SW 0%
  • the air mix door 44 is displaced to the so-called Max Cool position where the air passage on the heater core 32 side is fully closed and the cold air bypass passage 45 is fully opened.
  • a mixing space 46 that mixes the blown air heated by the heater core 32 and the blown air that has passed through the cold air bypass passage 45 and is not heated by the heater core 32. Is formed. Therefore, the temperature of the conditioned air mixed in the mixing space 46 is adjusted by adjusting the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45 by the air mix door 44.
  • an opening hole is arranged for blowing the blast air mixed in the mixing space 46 and adjusting the temperature into the vehicle interior.
  • a defroster opening hole 47a, a face opening hole 47b, and a foot opening hole 47c are provided.
  • the defroster opening hole 47a is an opening hole for blowing air conditioning air toward the vehicle window glass FW.
  • the face opening hole 47b is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior.
  • the foot opening hole 47c is an opening hole for blowing air-conditioned air toward the feet of the occupant.
  • the defroster opening hole 47a, the face opening hole 47b, and the foot opening hole 47c are connected to the defroster outlet, the face outlet, and the foot outlet provided in the vehicle interior, respectively, via a dedicated duct.
  • the defroster door 48a, the face door 48b, and the foot door 48c are arranged on the upstream side of the blast air flow of the defroster opening hole 47a, the face opening hole 47b, and the foot opening hole 47c, respectively.
  • the defroster door 48a adjusts the opening area of the defroster opening hole 47a.
  • the face door 48b adjusts the opening area of the face opening hole 47b.
  • the foot door 48c adjusts the opening area of the foot opening hole 47c.
  • the defroster door 48a, face door 48b, and foot door 48c are outlet mode switching units for switching the outlet mode.
  • the defroster door 48a, the face door 48b, and the foot door 48c are rotationally operated in conjunction with each other by the electric actuator 48 for the outlet mode door via a link mechanism or the like.
  • the operation of the electric actuator 48 for the air outlet mode door is controlled by a control signal output from the air conditioning control device 50.
  • the face mode is an outlet mode in which the air conditioning air is blown out from the face outlet with the face opening hole 47b fully opened.
  • the bi-level mode is an outlet mode in which both the face opening hole 47b and the foot opening hole 47c are opened to blow out the conditioned air from the face outlet and also to blow out the conditioned air from the foot outlet.
  • the foot mode is an outlet mode in which both the defroster opening hole 47a and the foot opening hole 47c are opened to blow out the conditioned air from the defroster outlet and also to blow out the conditioned air from the foot outlet.
  • the defroster mode is an outlet mode in which the defroster opening hole 47a is fully opened and the air-conditioned air is blown out from the defroster outlet.
  • the vehicle air conditioner 1 of the present embodiment includes a seat heater 90.
  • the seat heater 90 is a seat heating device that heats the surface of the seat on which the occupant sits with an electric heater.
  • the seat heater 90 is an auxiliary heating device that improves the heating feeling of the occupant.
  • the operation of the seat heater 90 is controlled by a control signal output from the air conditioning control device 50.
  • the air conditioning control device 50 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the air conditioning control device 50 performs various calculations and processes based on the air conditioning control program stored in the ROM, and is connected to the output side of 11, 14a, 14b, 15a, 15b, 16a, 31, 42, 43d, 44a. , 48, 90, etc. are controlled.
  • the air conditioning control device 50 On the input side of the air conditioning control device 50, there are an inside temperature sensor 61, an outside temperature sensor 62, a solar radiation sensor 63, a first refrigerant temperature sensor 64a to a third refrigerant temperature sensor 64c, an evaporator temperature sensor 64f, and a first refrigerant pressure sensor 65a. , Second refrigerant pressure sensor 65b, heat medium temperature sensor 66, humidity sensor 68, air conditioning air temperature sensor 69, and other sensor groups for air conditioning control are connected. The detection signals of these sensors are input to the air conditioning control device 50.
  • the internal air temperature sensor 61 is an internal air temperature detection unit that detects the vehicle interior temperature (internal air temperature) Tr.
  • the outside air temperature sensor 62 is an outside air temperature detection unit that detects the outside air temperature (outside air temperature) Tam.
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
  • the first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the discharge refrigerant discharged from the compressor 11.
  • the second refrigerant temperature sensor 64b is a second refrigerant temperature detecting unit that detects the temperature T2 of the refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the third refrigerant temperature sensor 64c is a third refrigerant temperature detecting unit that detects the temperature T3 of the refrigerant flowing out from the outdoor heat exchanger 16.
  • the evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18.
  • the evaporator temperature sensor 64f of the present embodiment specifically detects the temperature of the heat exchange fins of the indoor evaporator 18.
  • the first refrigerant pressure sensor 65a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the second refrigerant pressure sensor 65b is a second refrigerant pressure detecting unit that detects the pressure P2 of the refrigerant flowing out from the outdoor heat exchanger 16.
  • the heat medium temperature sensor 66 is a heat medium temperature detecting unit that detects the heat medium temperature TWH, which is the temperature of the heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 and flowing into the heater core 32.
  • the humidity sensor 68 is an inside air humidity detection unit that detects the inside air humidity Rh (relative humidity) in the vicinity of the vehicle window glass FW in the vehicle interior.
  • the internal air humidity Rh in the vicinity of the vehicle window glass FW is a physical quantity that correlates with the susceptibility to fogging of the vehicle window glass FW.
  • the inside air humidity Rh can be used to determine whether or not the vehicle window glass FW needs to be anti-fog. Therefore, the humidity sensor 68 also has a function as a window fogging detection unit.
  • the conditioned air temperature sensor 69 is an conditioned air temperature detecting unit that detects the blast air temperature TAV blown from the mixed space to the vehicle interior.
  • an operation panel 70 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 50.
  • the operation signals of various operation switches provided on the operation panel 70 are input to the air conditioning control device 50.
  • Various operation switches provided on the operation panel 70 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, an outlet mode changeover switch, an economy switch 70a, a seat heater switch 70b, and the like.
  • the auto switch is an air conditioning control setting unit that sets or cancels the automatic air conditioning control of the vehicle air conditioning device 1 by the operation of the occupant.
  • the air conditioner switch is a cooling request unit for air conditioning that requires the indoor evaporator 18 to cool the blown air by the operation of an occupant.
  • the air volume setting switch is an air volume setting unit for manually setting the air volume of the indoor blower 42 by the operation of the occupant.
  • the temperature setting switch is a target temperature setting unit that sets the target temperature Tset in the vehicle interior by the operation of the occupant.
  • the outlet mode changeover switch is an outlet mode setting unit that sets the outlet mode by the operation of the occupant.
  • the economy switch 70a is a heating mode switching requesting unit that requires switching between the normal heating mode and the power saving heating mode by the operation of the occupant.
  • the seat heater switch 70b is an auxiliary heating requesting unit that requires the seat heater 90, which is an auxiliary heating device, to be supplied with electric power to generate heat by the operation of an occupant.
  • the air conditioning control device 50 is integrally configured with a control unit that controls various controlled devices connected to the output side of the air conditioning control device 50. Therefore, in the air conditioning control device 50, the configuration (hardware and software) that controls the operation of each controlled target device constitutes a control unit that controls the operation of each controlled target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 constitutes the discharge capacity control unit 50a.
  • the configuration for controlling the ventilation capacity of the indoor blower 42 constitutes the ventilation capacity control unit 50b.
  • the configuration for controlling the operation of the inside / outside air switching device 43 constitutes the inside / outside air ratio control unit 50c.
  • the configuration for controlling the operation of the air mix door 44 constitutes the heated air volume control unit 50d.
  • the operation mode is switched in order to realize appropriate air conditioning in the vehicle interior.
  • the operation mode is switched by executing the air conditioning control program.
  • the air conditioning control program is executed when the auto switch of the operation panel 70 is turned on (ON) and the automatic control operation is set.
  • the detection signal of the sensor group for air conditioning control described above and the operation signal from various air conditioning operation switches are read. Then, based on the values of the read detection signal and the operation signal, the target blowing temperature TAO, which is the target temperature of the blowing air blown into the vehicle interior, is calculated.
  • the target blowout temperature TAO is calculated using the following mathematical formula F1.
  • TAO Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ...
  • Tset is the target temperature in the vehicle interior (vehicle interior set temperature) set by the temperature setting switch
  • Tr is the internal air temperature detected by the internal air temperature sensor 61
  • Tam is the outside air temperature detected by the outside air temperature sensor 62
  • Kset, Kr, Kam, and Ks are control gains
  • C is a correction constant.
  • the operation mode is switched to the cooling mode.
  • the target outlet temperature TAO is equal to or higher than the cooling reference temperature ⁇
  • the outside air temperature Tam is higher than the predetermined dehumidifying / heating reference temperature ⁇ . In that case, the operation mode is switched to the series dehumidification / heating mode.
  • the target outlet temperature TAO is equal to or higher than the cooling reference temperature ⁇
  • the outside air temperature Tam is equal to or lower than the dehumidifying / heating reference temperature ⁇ .
  • the operation mode is switched to the parallel dehumidification / heating mode.
  • the operation mode is switched to the heating mode.
  • the cooling mode is mainly executed when the outside temperature is relatively high, such as in summer.
  • the series dehumidifying and heating mode is mainly performed in spring or autumn.
  • the parallel dehumidifying and heating mode is mainly executed when it is necessary to heat the blown air with a higher heating capacity than the series dehumidifying and heating mode, such as in early spring or late autumn.
  • the heating mode is mainly performed during low outside temperatures in winter.
  • the detection signal and the operation signal are read, the operation mode is determined, and the operating state of various controlled devices is determined at each predetermined control cycle ⁇ until the operation of the vehicle air-conditioning device 1 is requested to be stopped.
  • the control routine such as output of control voltage and control signal to various controlled devices is repeated. The detailed operation in each operation mode will be described below.
  • (A) Cooling mode In the cooling mode, the air conditioning control device 50 puts the heating expansion valve 14a of the refrigeration cycle device 10 in a fully open state and puts the cooling expansion valve 14b in a throttle state that exerts a depressurizing action. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and closes the heating on-off valve 15b.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the fully opened heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling are used.
  • a steam compression type refrigeration cycle having a circuit configuration in which the refrigerant circulates in the order of the expansion valve 14b, the indoor evaporator 18, the accumulator 21, and the suction port of the compressor 11 is configured.
  • the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
  • the air conditioning control device 50 determines a control signal output to the compressor 11 so that the evaporator temperature Tefin detected by the evaporator temperature sensor 64f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 50.
  • the target evaporator temperature TEO rises as the target blowout temperature TAO rises. Further, the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation of the indoor evaporator 18 can be suppressed.
  • the air conditioning control device 50 determines a control signal output to the cooling expansion valve 14b so that the supercooling degree SC1 of the refrigerant flowing into the cooling expansion valve 14b approaches the target supercooling degree SCO1.
  • the target supercooling degree SCO1 is determined based on the outside air temperature Tam with reference to a control map stored in advance in the air conditioning control device 50.
  • the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the degree of supercooling SC1 is calculated using the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P2 detected by the second refrigerant pressure sensor 65b.
  • a steam compression type refrigerating cycle is configured in which the water-refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a condenser and the indoor evaporator 18 functions as an evaporator.
  • the heat medium is heated by the refrigerant dissipating heat to the heat medium.
  • the refrigerant absorbs heat from the blown air and evaporates, so that the blown air is cooled.
  • the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 so as to exert a predetermined water pressure feeding capacity. Therefore, in the heat medium circuit 30 in the cooling mode, the heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 32. Then, in the heater core 32, the heat medium dissipates heat to the blown air, so that the blown air is heated.
  • the air conditioning control device 50 outputs a control signal to the electric actuator 43d for the inside / outside air switching device so that the outside air flows into the air passage 40a except during the maximum cooling in which the target blowout temperature TAO is in the extremely low temperature range. To determine. That is, the shyness rate RF is set to 0% except during the maximum cooling. On the other hand, at the time of maximum cooling, the air conditioning control device 50 determines a control signal output to the electric actuator 43d for the inside / outside air switching device so that the inside air flows into the air passage 40a. That is, at the time of maximum cooling, the inside air rate RF is set to 100%.
  • the air conditioning control device 50 determines the blower voltage Vb to be output to the indoor blower 42 with reference to the control map stored in advance in the air conditioning control device 50 based on the target blowout temperature TAO.
  • the blower voltage is set so that the amount of air blown is maximized when the target blowing temperature TAO is in the extremely low temperature region (that is, at the maximum cooling) or the extremely high temperature region (that is, at the maximum heating). Determine Vb.
  • the blower voltage Vb is determined so as to reduce the amount of air blown as the target blowout temperature TAO moves from the extremely low temperature region or the extremely high temperature region to the intermediate temperature region.
  • the air conditioning control device 50 determines the air mix opening SW based on the target blowout temperature TAO, the evaporator temperature Tefin, and the heat medium temperature TWH detected by the heat medium temperature sensor 66. Then, the control signal output to the electric actuator 44a for the air mix door is determined so as to have the determined air mix opening SW.
  • the air mix opening SW is determined so that the temperature of the blown air blown into the vehicle interior approaches the target blowout temperature TAO.
  • the air conditioning control device 50 determines a control signal output to the electric actuator 48 for the outlet mode door with reference to the control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO. ..
  • the outlet mode is switched in the order of face mode, buy-level mode, and foot mode as the target outlet temperature TAO rises from the low temperature range to the high temperature range. Further, as the target outlet temperature TAO decreases from the high temperature region to the low temperature region, the outlet mode is switched in the order of foot mode, buy-level mode, and face mode. In the cooling mode, the face mode is mainly selected as the outlet mode.
  • the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18 and is cooled. Further, the blown air cooled by the indoor evaporator 18 flows through the heater core 32 side and the cold air bypass passage 45 according to the opening degree of the air mix door 44.
  • the blown air heated by the heater core 32 that is, hot air
  • the blown air that has passed through the cold air bypass passage 45 that is, cold air
  • TAO target blowing temperature
  • (B) Series dehumidifying and heating mode In the series dehumidifying and heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 in a throttled state and the cooling expansion valve 14b in a throttled state. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and closes the heating on-off valve 15b.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling expansion valve A steam compression type refrigeration cycle in which the refrigerant circulates in the order of 14b, the indoor evaporator 18, the accumulator 21, and the suction port of the compressor 11 is configured.
  • the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
  • the air conditioning control device 50 determines the control signal output to the compressor 11 as in the cooling mode.
  • the air conditioning control device 50 refers to a control map stored in advance in the air conditioning control device 50 based on the target blowout temperature TAO so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the control signal output to 14b and the heating expansion valve 14a is determined.
  • the control signal is determined so as to decrease the throttle opening of the heating expansion valve 14a and increase the throttle opening of the cooling expansion valve 14b as the target outlet temperature TAO rises. do.
  • a steam compression type refrigerating cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the indoor evaporator 18 functions as an evaporator. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam, the outdoor heat exchanger 16 functions as a condenser. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam, the outdoor heat exchanger 16 is made to function as an evaporator.
  • the heat medium is heated by the refrigerant dissipating heat to the heat medium in the water-refrigerant heat exchanger 12.
  • the blown air is cooled by the refrigerant absorbing heat from the blown air.
  • the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the cooling mode. Therefore, in the heat medium circuit 30 in the series dehumidifying and heating mode, the blown air is heated by the heater core 32 as in the cooling mode.
  • the air conditioner control device 50 includes an electric actuator 43d for the inside / outside air switching device of the indoor air conditioner unit 40, an indoor blower 42, an electric actuator 44a for the air mix door, and an electric actuator for the outlet mode door.
  • the control signal to be output to 48 etc. is determined.
  • the blown air flowing into the air passage 40a is cooled and dehumidified when passing through the indoor evaporator 18, as in the cooling mode.
  • a part of the blown air cooled and dehumidified by the indoor evaporator 18 is reheated by the heater core 32.
  • the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior.
  • the throttle opening of the heating expansion valve 14a is reduced and the throttle opening of the cooling expansion valve 14b is increased as the target outlet temperature TAO rises. .. According to this, as the target blowing temperature TAO rises, the heating capacity of the blown air in the heater core 32 can be improved.
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is increased as the target outlet temperature TAO rises. It can be lowered to reduce the temperature difference from the outside air temperature Tam. According to this, it is possible to reduce the amount of heat dissipated from the refrigerant in the outdoor heat exchanger 16 and increase the amount of heat dissipated from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12.
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lowered as the target outlet temperature TAO rises. Therefore, the temperature difference from the outside air temperature Tam can be widened. According to this, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 can be increased, and the amount of heat dissipated from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 can be increased.
  • the heating capacity of the blown air in the heater core 32 forming the heating portion can be improved as the target blowing temperature TAO rises.
  • (C) Parallel dehumidifying / heating mode In the parallel dehumidifying / heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 in a throttled state and the cooling expansion valve 14b in a throttled state. Further, the air conditioning control device 50 opens the dehumidifying on-off valve 15a and opens the heating on-off valve 15b.
  • the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compression Refrigerant circulates in the order of the suction port of the machine 11, and the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the bypass passage 22a, the expansion valve for cooling 14b, the indoor evaporator 18, the accumulator 21, and the compressor 11
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the suction port is configured. That is, a cycle is configured in which the outdoor heat exchanger 16 and the indoor evaporator 18 are connected in parallel with respect to the refrigerant flow.
  • the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
  • the air conditioning control device 50 determines a control signal output to the compressor 11 so that the pressure P1 detected by the first refrigerant pressure sensor 65a approaches the target condensed pressure PDO.
  • the target condensation pressure PDO is determined so that the heat medium temperature TWH becomes a predetermined target water temperature TWO.
  • the air conditioning control device 50 refers to a control map stored in advance in the air conditioning control device 50 based on the target blowout temperature TAO so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the control signal output to 14b and the heating expansion valve 14a is determined.
  • the control signal is determined so as to decrease the throttle opening of the heating expansion valve 14a and increase the throttle opening of the cooling expansion valve 14b as the target outlet temperature TAO rises. do.
  • a steam compression type refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 and the indoor evaporator 18 function as an evaporator is provided. It is composed. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium. In the indoor evaporator 18, the blown air is cooled by the refrigerant absorbing heat from the blown air.
  • the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the cooling mode. Therefore, in the heat medium circuit 30 in the parallel dehumidifying / heating mode, the blown air is heated by the heater core 32 as in the cooling mode.
  • the air conditioner control device 50 includes an electric actuator 43d for the inside / outside air switching device of the indoor air conditioner unit 40, an indoor blower 42, an electric actuator 44a for the air mix door, and an electric actuator for the outlet mode door.
  • the control signal to be output to 48 etc. is determined.
  • the blown air flowing into the air passage 40a is cooled and dehumidified when passing through the indoor evaporator 18, as in the cooling mode.
  • a part of the blown air cooled and dehumidified by the indoor evaporator 18 is reheated by the heater core 32.
  • the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior.
  • the refrigerant evaporation temperature in the outdoor heat exchanger 16 can be lowered to a temperature lower than the refrigerant evaporation temperature in the indoor evaporator 18. According to this, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 can be increased as compared with the series dehumidifying and heating mode, and the amount of heat dissipated from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 can be increased.
  • the heating capacity of the blown air in the heater core 32 can be improved as compared with the series dehumidifying / heating mode.
  • the normal heating mode, the power saving heating mode, the power saving anti-fog heating mode, and the power saving low noise heating mode can be switched as the heating mode.
  • the power-saving anti-fog heating mode and the power-saving low-noise heating mode are included in the power-saving heating mode in a broad sense because they are operation modes in which the heating capacity of the refrigeration cycle device 10 is reduced as compared with the normal heating mode.
  • Switching of each operation mode in the heating mode is performed by executing the control flow shown in FIG.
  • the control flow shown in FIG. 3 is executed as a subroutine of the main routine of the air conditioning control program.
  • the control flow shown in FIG. 3 is executed when the heating mode is selected in the main routine.
  • step S1 of FIG. 3 the detection signal of the sensor group for air conditioning control connected to the input side of the air conditioning control device 50 and the operation signal from the air conditioning operation switch are read.
  • step S2 as shown in FIG. 4, the values of the first flag FLG1 and the second flag FLG2 are determined.
  • the first flag FLG1 and the second flag FLG2 are flags used for determining whether or not to operate in the power saving heating mode.
  • step S21 of FIG. 4 as shown in the control characteristic diagram shown in FIG. 4, the value of the first flag FLG1 is determined based on the temperature difference (Tr-Tset) obtained by subtracting the target temperature Tset from the internal air temperature Tr. do.
  • the first The flag FLG1 is set to 1.
  • the first flag FLG1 is set to 0 when the temperature difference (Tr-Tset) becomes equal to or less than the second determination value (-1 ° C. in this embodiment).
  • the difference between the first determination value and the second determination value is the hysteresis width for preventing control hunting.
  • the first flag FLG1 is a flag indicating that the internal air temperature Tr has risen to the extent that the heating feeling of the occupant is not deteriorated even if the power saving heating mode is executed.
  • step S22 the second flag FLG2 is set to 1 when the economy switch 70a is turned on (ON). When the economy switch 70a is turned off (OFF), the second flag FLG2 is set to 0.
  • step S23 whether or not the amount of decrease in the internal temperature Tr per predetermined reference time ⁇ T (value obtained by subtracting the current internal temperature Trn from the previous internal temperature Trn-1) is equal to or greater than the reference temperature decrease amount K ⁇ T. Is determined. If it is determined in step S23 that the decrease amount ⁇ T is equal to or greater than the reference temperature decrease amount K ⁇ T, the process proceeds to step S24, the second flag FLG2 is set to 0, and the process proceeds to step S25.
  • step S25 whether or not the increase amount ⁇ H of the inside air humidity Rh per predetermined reference time (value obtained by subtracting the previous inside air humidity Rhn-1 from the current inside air humidity Rhn) is equal to or more than the reference humidity increase amount K ⁇ H. Is determined. If it is determined in step S25 that the increase amount ⁇ H is equal to or greater than the reference humidity increase amount K ⁇ H, the process proceeds to step S26, the second flag FLG2 is set to 0, and the process proceeds to step S27.
  • step S27 it is determined whether or not the seat heater switch 70b is turned on, that is, whether or not the seat heater 90 is operating. If it is determined in step S27 that the seat heater 90 is operating, the process proceeds to step S28, and the second flag FLG2 is set to 1 to return to the main routine.
  • the second flag FLG2 is a flag indicating that the occupant manually requests the switch to the power saving heating mode, or the air conditioning control device 50 automatically switches to the power saving heating mode.
  • step S3 of FIG. 3 it is determined whether or not the first flag FLG1 is 1 and the second flag FLG2 is 1.
  • step S3 If it is determined in step S3 that at least one of the first flag FLG1 and the second flag FLG2 is 0, the process proceeds to step S6. In step S6, the operation mode is switched to the normal heating mode, and the process returns to the main routine. If it is determined in step S3 that the first flag FLG1 is 1 and the second flag FLG2 is 1, the process proceeds to step S4.
  • step S4 it is determined whether or not the anti-fog determination flag FLG3 is 1.
  • the anti-fog determination flag FLG3 is a flag indicating that the vehicle window glass FW needs to be anti-fog. Therefore, step S4 is an anti-fog determination unit for determining whether or not anti-fog is required for the vehicle window glass FW.
  • the anti-fog determination flag FLG3 is set to 1 when the inside air humidity Rh is in the process of rising and when the inside air humidity Rh becomes 1 or more than the first reference inside air humidity KRh1. Further, the anti-fog determination flag FLG3 becomes 0 when the inside air humidity Rh is in the descending process and when the inside air humidity Rh becomes equal to or less than the second reference inside air humidity KRh2.
  • the first standard internal air humidity KRh1 is a higher value than the second standard internal air humidity KRh2.
  • the difference between the first reference internal air humidity KRh1 and the second reference internal air humidity KRh2 is a hysteresis width for preventing control hunting.
  • step S4 If it is determined in step S4 that the anti-fog determination flag FLG3 is 1, it is determined that anti-fog of the vehicle window glass FW is necessary, and the process proceeds to step S9. In step S9, the mode is switched to the power-saving anti-fog heating mode, and the process returns to the main routine. If it is determined in step S4 that the anti-fog determination flag FLG3 is 0, it is determined that the anti-fog of the vehicle window glass FW is not necessary, and the process proceeds to step S5.
  • step S5 it is determined whether or not the low noise determination flag FLG4 is 1.
  • the low noise determination flag FLG4 is a flag indicating that the occupant is requesting low noise in the vehicle interior. Therefore, step S5 is a noise reduction request determination unit that determines whether or not the occupant requests noise reduction in the vehicle interior.
  • the low noise determination flag FLG4 is basically 0, but when the occupant is having a conversation in the vehicle interior, when the occupant turns on the audio switch, or when the car navigation system is voice-guided. It becomes 1 when you are there.
  • step S5 If it is determined in step S5 that the low noise determination flag FLG4 is 1, it is determined that the occupant is requesting low noise, and the process proceeds to step S8.
  • step S8 the mode is switched to the power saving and low noise heating mode, and the process returns to the main routine.
  • step S5 If it is determined in step S5 that the low noise determination flag FLG4 is 0, it is determined that the occupant has not requested low noise, and the process proceeds to step S7.
  • step S7 the mode is switched to the power saving heating mode, and the process returns to the main routine. The detailed operation in each operation mode provided as the heating mode will be described below.
  • (D-1) Normal heating mode In the normal heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 in a throttled state and the cooling expansion valve 14b in a fully closed state. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the suction ports of 11 is configured.
  • the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
  • the air conditioning control device 50 determines the control signal output to the compressor 11 as in the parallel dehumidifying / heating mode.
  • the air conditioning control device 50 determines a control signal output to the heating expansion valve 14a so that the supercooling degree SC2 of the refrigerant flowing into the heating expansion valve 14a approaches the target supercooling degree SCO2.
  • the target supercooling degree SCO2 is determined based on the heat medium temperature TWH with reference to the control map for the heating mode stored in advance in the air conditioning control device 50.
  • the target supercooling degree SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the degree of supercooling SC2 is calculated using the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • a steam compression type refrigerating cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 functions as an evaporator. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium.
  • the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the cooling mode. Therefore, in the heat medium circuit 30 in the normal heating mode, the blown air is heated by the heater core 32 as in the cooling mode.
  • the air conditioner control device 50 includes an electric actuator 43d for the inside / outside air switching device of the indoor air conditioner unit 40, an indoor blower 42, an electric actuator 44a for the air mix door, and an electric actuator for the outlet mode door.
  • the control signal to be output to 48 etc. is determined.
  • the inside air rate in the normal heating mode is RF1.
  • the blower voltage in the normal heating mode is Vb1.
  • the air mix opening degree in the normal heating mode is set to SW1.
  • the foot mode is mainly selected as the outlet mode regardless of the operation mode.
  • the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18. Then, at least a part of the blown air that has passed through the indoor evaporator 18 is heated by the heater core 32. Further, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • (D-2) Power-saving heating mode In the power-saving heating mode, the air-conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 to a throttled state and all the cooling expansion valves 14b, as in the normal heating mode. Closed. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. Therefore, in the refrigerating cycle device 10 in the power-saving heating mode, a steam compression type refrigerating cycle in which the refrigerant circulates is configured in exactly the same manner as in the normal heating mode.
  • the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
  • the second target water temperature TWO2 and the second target outlet temperature TAO2 are used when determining the control signal and the like.
  • the second target water temperature TWO2 is a value obtained by subtracting a predetermined predetermined temperature a2 from the target water temperature TWO, and is a value lower than the target water temperature TWO.
  • the second target outlet temperature TAO2 is a value obtained by subtracting a predetermined predetermined temperature b2 from the target outlet temperature TAO, and is a value lower than the target outlet temperature TAO.
  • the air conditioning control device 50 determines the control signal output to the compressor 11 as in the normal heating mode. Since the second target water temperature TWO2 is adopted in the power saving heating mode, the target condensation pressure PDO is also lower than that in the normal heating mode. Therefore, in the power-saving heating mode, the rotation speed of the compressor 11 is reduced as compared with the normal heating mode. That is, in the power-saving heating mode, the heating capacity of the heating unit is reduced as compared with the normal heating mode.
  • the air conditioning control device 50 determines the control signal output to the heating expansion valve 14a so that the coefficient of performance (COP) of the cycle approaches the maximum value, as in the normal heating mode.
  • the steam compression type refrigeration in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 functions as an evaporator, as in the normal heating mode.
  • the cycle is configured. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium.
  • the temperature of the heat medium heated by the water-refrigerant heat exchanger 12 is lower than that in the normal heating mode.
  • the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the normal heating mode. Therefore, in the heat medium circuit 30 in the heating mode, the blown air is heated by the heater core 32 as in the normal heating mode. In the power saving heating mode, the temperature of the blown air heated by the heater core 32 is lower than that in the normal heating mode.
  • the air conditioning control device 50 determines a control signal output to the electric actuator 43d for the inside / outside air switching device so that the inside air rate is RF2.
  • the shyness rate RF2 is set to a value equal to or higher than the shyness rate RF1 in the normal heating mode. Therefore, in the power saving heating mode, the inside air rate RF can be maintained or increased as compared with the normal heating mode.
  • the blower voltage output to the indoor blower 42 is Vb2.
  • the blower voltage Vb2 is higher than the blower voltage Vb1 output in the normal heating mode.
  • the value obtained by adding a predetermined voltage c2 to the blower voltage Vb1 is defined as the blower voltage Vb2 in the power saving heating mode. Therefore, in the power-saving heating mode, the amount of air blown is increased as compared with the normal heating mode.
  • the predetermined voltage c2 will be described.
  • Af1 the amount of air blown by the indoor blower 42 in the normal heating mode
  • Af2 the amount of air blown by the indoor blower 42 in the power-saving heating mode
  • ⁇ Hr1 the amount of heat radiated from the heat medium in the heater core 32 in the normal heating mode to the blown air per unit air volume
  • ⁇ Hr2 the amount of heat radiated from the heat medium in the heater core 32 in the normal heating mode to the blown air per unit air volume
  • ⁇ Hr2 the amount of heat radiated from the heat medium in the heater core 32 in the normal heating mode to the blown air per unit air volume
  • ⁇ Hr2 the amount of heat radiated from the heat medium in the heater core 32 in the normal heating mode to the blown air per unit air volume
  • ⁇ Hr2 the amount of heat radiated from the heat medium in the heater core 32 in the normal heating mode to the blown air per unit air volume
  • ⁇ Hr2 the amount of heat
  • the predetermined voltage c2 is determined so as to satisfy the following mathematical formula F2.
  • Af1 ⁇ ⁇ Hr1 Af2 ⁇ ⁇ Hr2 ... (F2)
  • the second target water temperature TWO2 is adopted. Therefore, the temperature of the heat medium flowing into the heater core 32 is lower than that in the normal heating mode. Therefore, the heat dissipation amount ⁇ Hr2 in the power saving heating mode is smaller than the heat dissipation amount ⁇ Hr1 in the normal heating mode.
  • the total heat absorption amount that the blown air absorbs heat from the heat medium in the normal heating mode and the blown air from the heat medium in the power saving heating mode can be equal to the total amount of heat absorbed.
  • the air conditioning control device 50 determines a control signal output to the electric actuator 44a for the air mix door so as to have the air mix opening degree SW2.
  • the air mix opening SW2 is set to a value equal to or higher than the air mix opening SW1 in the normal heating mode. Therefore, in the power saving heating mode, the ratio of the heated air volume to the normal heating mode can be maintained or increased.
  • the control signal output to the electric actuator 44a for the air mix door may be determined so that the air mix opening degree SW2 becomes 100%.
  • the air conditioning control device 50 determines a control signal output to the electric actuator 48 or the like for the outlet mode door, as in the normal heating mode.
  • the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18. Then, a part or all of the blown air that has passed through the indoor evaporator 18 is heated by the heater core 32. Further, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • (D-3) Power-saving anti-fog heating mode In the power-saving anti-fog heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 to a throttled state and expands for cooling, as in the normal heating mode. The valve 14b is fully closed. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. Therefore, in the refrigerating cycle device 10 in the power-saving anti-fog heating mode, a steam compression type refrigerating cycle in which the refrigerant circulates is configured in exactly the same manner as in the normal heating mode.
  • the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
  • the third target water temperature TWO3 and the third target outlet temperature TAO3 are used when determining the control signal and the like.
  • the third target water temperature TWO3 is a value obtained by subtracting a predetermined temperature a3 from the target water temperature TWO.
  • the third target water temperature TWO3 is a value lower than the target water temperature TWO and a value higher than the second target water temperature TWO2.
  • the third target outlet temperature TAO3 is a value obtained by subtracting a predetermined predetermined temperature b3 from the target outlet temperature TAO. It is a value lower than the target blowout temperature TAO and higher than the second target blowout temperature TAO2.
  • the air conditioning control device 50 determines the control signal output to the compressor 11 as in the normal heating mode.
  • the third target water temperature TWO3 is adopted, so that the target condensation pressure PDO is a lower value than in the normal heating mode and a higher value than in the power-saving heating mode. Become.
  • the rotation speed of the compressor 11 in the power-saving anti-fog heating mode is lower than that in the normal heating mode and higher than that in the power-saving heating mode. That is, in the power-saving anti-fog heating mode, the heating capacity of the heating unit is reduced as compared with the normal heating mode, and the heating capacity of the heating unit is improved as compared with the power-saving heating mode.
  • the air conditioning control device 50 determines the control signal output to the heating expansion valve 14a so that the coefficient of performance (COP) of the cycle approaches the maximum value, as in the normal heating mode.
  • the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 functions as an evaporator, as in the normal heating mode. Refrigeration cycle is configured. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium. In the power-saving anti-fog heating mode, the temperature of the heat medium heated by the water-refrigerant heat exchanger 12 is lower than that in the normal heating mode and higher than that in the power-saving heating mode.
  • the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the normal heating mode. Therefore, in the heat medium circuit 30 in the heating mode, the blown air is heated by the heater core 32 as in the normal heating mode. In the power-saving anti-fog heating mode, the temperature of the blown air heated by the heater core 32 is lower than that in the normal heating mode and higher than that in the power-saving heating mode.
  • the air conditioning control device 50 determines a control signal output to the electric actuator 43d for the inside / outside air switching device so that the inside air rate is RF3.
  • the inside air rate RF3 is set to a value of the inside air rate RF1 or more in the normal heating mode and a value of the inside air rate RF2 or less in the power saving heating mode.
  • the inside air rate RF can be maintained or increased with respect to the normal heating mode, and the inside air rate RF can be maintained or decreased with respect to the power-saving heating mode.
  • the blower voltage output to the indoor blower 42 is Vb3.
  • the blower voltage Vb3 is a higher value than the blower voltage Vb1 output in the normal heating mode, and is lower than the blower voltage Vb2 output in the power saving heating mode.
  • the value obtained by adding a predetermined voltage c3 to the blower voltage Vb output in the normal heating mode is defined as the blower voltage Vb in the power saving heating mode.
  • the amount of air blown is increased as compared with the normal heating mode, and the amount of air blown is decreased as compared with the power-saving heating mode.
  • the predetermined voltage c3 is the total amount of heat absorbed by the blown air from the heat medium in the normal heating mode and the total amount of heat absorbed by the blown air from the heat medium in the power-saving anti-fog heating mode, similarly to the predetermined voltage c2 in the power-saving heating mode. It is determined so that the amount of heat absorption can be made equivalent. Therefore, a value smaller than the predetermined voltage c2 is adopted as the predetermined voltage c3.
  • the air conditioning control device 50 determines a control signal output to the electric actuator 44a for the air mix door so as to have the air mix opening degree SW3.
  • the air mix opening SW3 is set to a value equal to or higher than the air mix opening SW1 in the normal heating mode, and is set to a value equal to or lower than the air mix opening SW2 in the power saving heating mode.
  • the ratio of the heated air volume can be maintained or increased with respect to the normal heating mode, and the ratio of the heated air volume can be maintained or decreased with respect to the power-saving heating mode.
  • the air conditioning control device 50 determines the control signal output to the electric actuator 48 or the like for the outlet mode door, as in the normal heating mode.
  • the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18. Then, a part of the blown air that has passed through the indoor evaporator 18 is heated by the heater core 32. Further, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
  • the air conditioning control device 50 sets the blower voltage output to the indoor blower 42 to Vb4.
  • the blower voltage Vb4 is lower than the blower voltage Vb2 output in the power saving heating mode.
  • the value obtained by subtracting a predetermined predetermined voltage c4 from the blower voltage Vb2 output in the power saving heating mode is defined as the blower voltage Vb4 in the power saving low noise heating mode. Therefore, in the power-saving heating mode, the amount of air blown is reduced as compared with the power-saving heating mode.
  • the predetermined voltage c4 is determined so as to reduce the noise of the indoor blower 42.
  • the heating feeling is lowered by reducing the amount of air blown by the indoor blower 42 as compared with the power-saving heating mode, but the interior of the vehicle is heated in the same manner as in the power-saving heating mode. be able to.
  • comfortable air conditioning in the vehicle interior can be realized by switching the operation mode.
  • the blown air is heated by the refrigerating cycle device 10 forming the heating portion and the heat medium circuit 30 in the heating mode to produce warm air. Then, in the normal heating mode, the warm air created by the heating unit and the outside air introduced via the inside / outside air switching device 43 are mixed to appropriately adjust the temperature of the blown air blown into the vehicle interior.
  • the outside air having a lower temperature and lower humidity than the inside air is introduced into the air passage 40a of the indoor air conditioning unit 40. Then, the low temperature and low humidity outside air is reheated to a temperature desired by the occupant and blown into the vehicle interior. Therefore, the temperature inside the vehicle interior can be sufficiently raised, and comfortable heating with excellent anti-fog property of the vehicle window glass FW can be realized.
  • the power saving heating mode (including the power saving anti-fog heating mode and the power saving low noise heating mode) that reduces the heating capacity of the heating unit as compared with the normal heating mode). Can be executed. Therefore, in the power saving heating mode, the power consumption of the heating unit can be reduced.
  • the amount of air blown by the indoor blower 42 is increased in the power-saving heating mode as compared with the normal heating mode, it is possible to suppress a decrease in the total amount of heat absorbed by the blown air from the heating portion in the normal heating mode. .. In other words, it is possible to prevent the total amount of heat supplied to the vehicle interior in the power-saving heating mode from being lower than the total amount of heat supplied to the vehicle interior in the normal heating mode.
  • the inside air ratio RF of the inside / outside air switching device 43 is increased as compared with the normal heating mode, and the introduction ratio of the inside air having a higher temperature than the outside air is increased. Therefore, the temperature of the blown air introduced into the air passage 40a can be raised more than in the normal heating mode. As a result, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
  • the air mix opening SW is increased as compared with the normal heating mode to increase the ratio of the heated air volume. Therefore, it is possible to increase the air volume of the blown air heated by the heater core 32 forming the heating portion as compared with the normal heating mode. As a result, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
  • the vehicle air conditioner 1 of the present embodiment it is possible to reduce the power consumption while suppressing the deterioration of the heating feeling.
  • the control to increase the amount of air blown by the indoor blower 42 as compared with the normal heating mode the control to increase the internal air coefficient RF as compared with the normal heating mode, and the ratio of the heated air amount to be increased.
  • Any control to displace the air mix door 44 can be performed independently.
  • the vehicle air conditioner 1 of the present embodiment is provided with an anti-fog determination unit. Then, when the anti-fog determination unit determines that anti-fog of the vehicle window glass FW is necessary, the power-saving anti-fog heating mode is executed. According to this, it is possible to suppress the occurrence of window fogging by executing the power saving heating mode.
  • the heating capacity of the heating unit is improved as compared with the power-saving heating mode, and the heating capacity is closer to that of the normal heating mode.
  • the amount of air blown by the indoor blower 42 is reduced as compared with the power-saving heating mode to bring it closer to the amount of air blown in the normal heating mode. That is, in the power-saving anti-fog heating mode, the control state of the heating unit and the indoor blower 42 is returned from the power-saving heating mode to the normal heating mode.
  • the inside air rate is lowered as compared with the power-saving heating mode, and the inside air rate is closer to that of the normal heating mode.
  • the ratio of the heated air volume is reduced as compared with the power-saving heating mode to approach the ratio of the heated air volume in the normal heating mode. According to this, the anti-fog property of the vehicle window glass FW can be further improved.
  • both the control for lowering the internal air rate and the control for displacing the air mix door 44 for reducing the ratio of the heated air volume can be independently executed as compared with the power saving heating mode described above. Therefore, the anti-fog property can be improved by executing at least one control in the power-saving anti-fog heating mode.
  • the vehicle air conditioner 1 of the present embodiment is provided with a noise reduction requirement determination unit. Then, when it is determined by the noise reduction request determination unit that the occupant is requesting noise reduction, the power saving low noise heating mode is executed. According to this, even if the amount of air blown by the indoor blower 42 is increased as compared with the normal heating mode by executing the power-saving heating mode, it is possible to suppress that the occupant's ears are disturbed.
  • the vehicle air conditioner 1 of the present embodiment is provided with an economy switch 70a. According to this, it is possible to switch between the normal heating mode and the power saving heating mode by the operation of the occupant.
  • the air conditioning control device 50 can automatically switch between the normal heating mode and the power saving heating mode without requiring the operation of the occupant.
  • the vehicle air conditioner 1 of the present embodiment includes an internal air temperature sensor 61 that detects the internal air temperature Tr. Then, when the decrease amount ⁇ T of the internal air temperature Tr per reference time becomes equal to or more than the predetermined reference temperature decrease amount K ⁇ T, the mode is switched to the normal heating mode even if the power saving heating mode is set. According to this, when the door of the vehicle is opened by getting on and off the occupant, it is possible to switch to the normal heating mode without requiring the operation of the occupant.
  • the vehicle air conditioner 1 of the present embodiment includes a humidity sensor 68 that detects the inside air humidity Rh. Then, when the increase amount ⁇ H of the inside air humidity Rh per reference time becomes equal to or more than the predetermined reference humidity increase amount K ⁇ H, the mode is switched to the normal heating mode even if the power saving heating mode is set. According to this, when the inside air humidity Rh rises due to getting on and off the occupant in rainy weather or the like, it is possible to switch to the normal heating mode without requiring the operation of the occupant.
  • the mode is switched to the power saving heating mode even if the normal heating mode is set. According to this, it is possible to switch to the power saving heating mode without requiring the operation of the occupant.
  • the vehicle air conditioner 1 in which the configuration of the indoor air conditioner unit 40 is changed with respect to the first embodiment will be described.
  • the foot opening hole 47c of the indoor air conditioning unit 40 of the present embodiment is connected to the first foot outlet 41c and the second foot outlet 41d via the foot duct 41b forming an air passage. ing.
  • the first foot outlet 41c and the second foot outlet 41d are both outlets that blow out the second blown air toward the feet of the occupants.
  • the second foot outlet 41d is open so as to blow out the second blown air in a direction away from the occupant than the first foot outlet 41c. Therefore, the air volume of the second blown air blown to the occupant from the second foot outlet 41d is smaller than the air volume of the second blown air blown to the occupant from the first foot outlet 41c.
  • a foot switching door 48e is arranged inside the foot duct 41b.
  • the foot switching door 48e switches between an air passage that flows into the foot duct 41b from the foot opening hole 47c and blows out air from the first foot outlet 41c and an air passage that blows out from the second foot outlet 41d.
  • the foot switching door 48e is included in the outlet mode switching unit together with the defroster door 48a, the face door 48b, and the foot door 48c.
  • the foot switching door 48e is rotated and operated in conjunction with the defroster door 48a, the face door 48b, and the foot door 48c by the electric actuator 48 for the outlet mode door.
  • the first foot mode and the second foot mode are included. be.
  • the first foot mode is an outlet mode in which both the defroster opening hole 47a and the foot opening hole 47c are opened to blow out air-conditioned air from the defroster outlet and blow out air-conditioned air from the first foot outlet 41c. Therefore, the first foot mode is substantially the same as the foot mode described in the first embodiment.
  • the second foot mode is an outlet mode in which both the defroster opening hole 47a and the foot opening hole 47c are opened to blow out the conditioned air from the defroster outlet and also to blow out the conditioned air from the second foot outlet 41d.
  • Other configurations are the same as those of the first embodiment.
  • the operation of the vehicle air conditioner 1 of the present embodiment is basically the same as that of the first embodiment. Therefore, the operation mode can be switched as in the first embodiment.
  • the air conditioning control device 50 raises the outlet mode and the target outlet temperature TAO rises from the low temperature range to the high temperature range.
  • the face mode, the bi-level mode, and the first foot mode are switched in this order.
  • the air conditioning control device 50 switches the outlet mode to the first foot mode. Further, in the (d-2) power-saving heating mode, (d-3) power-saving anti-fog heating mode, and (d-4) power-saving low noise heating mode, the air conditioning control device 50 sets the outlet mode to the second. Switch to foot mode. Other operations are the same as in the first embodiment.
  • the same effect as that of the first embodiment can be obtained in the vehicle air conditioner 1 of the present embodiment. That is, in the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be realized by switching the operation mode. Further, according to the vehicle air conditioner 1 of the present embodiment, it is possible to reduce the power consumption while suppressing the deterioration of the heating feeling.
  • the outlet mode switching unit of the present embodiment switches to the first foot mode in the normal heating mode and to the second foot mode in the power saving heating mode. According to this, it is possible to reduce the air volume of the blown air blown directly to the occupant in the power saving heating mode in which the temperature of the blown air blown into the vehicle interior is lower than that in the normal heating mode. Therefore, it is possible to suppress deterioration of the heating feeling due to a decrease in the temperature of the blown air blown into the vehicle interior.
  • the vehicle air conditioner 1 is applied to a vehicle or the like in which it is difficult to use the exhaust heat of the driving drive source as a heat source for heating, for example, the amount of heat generated by the driving drive source for traveling is smaller than that of a normal engine vehicle. It is valid.
  • the vehicle air conditioner 1 may be applied to a hybrid vehicle in which a driving force for traveling is obtained from an internal combustion engine and an electric motor.
  • the vehicle air-conditioning device 1 capable of switching to various operation modes has been described, but at least if the normal heating mode and the power-saving heating mode are configured to be executable, the above-mentioned effects can be obtained. Can be done. That is, it is possible to reduce the power consumption while suppressing the deterioration of the feeling of heating.
  • the configuration of the vehicle air conditioner 1 is not limited to the configuration disclosed in the above-described embodiment.
  • the heat medium circuit 30 may be abolished and the heating unit may be formed by a refrigeration cycle device 10 having an indoor condenser instead of the water-refrigerant heat exchanger 12.
  • the indoor condenser is a heat exchanger for heating blown air that heats blown air by exchanging heat between the blown refrigerant discharged from the compressor 11 and blown air.
  • the indoor condenser may be arranged in the air passage 40a of the indoor air conditioning unit 40 in the same manner as the heater core 32.
  • the heating portion may be formed by an electric heater that generates heat by being supplied with electric power.
  • the auxiliary heating device is not limited to this.
  • a steering heater, a seat blower, and a radiant heater may be adopted as the auxiliary heating device.
  • the steering heater is an auxiliary heating device that heats the steering with an electric heater.
  • the seat blower is an auxiliary heating device that blows warm air heated by an electric heater from the inside of the seat toward the occupants.
  • the radiant heater is an auxiliary heating device that irradiates the occupant with the heat source light.
  • the second foot outlet 41d adopts an outlet that blows out the second blown air in a direction farther from the occupant than the first foot outlet 41c, but the present invention is not limited to this.
  • the outlet for blowing the second air blown toward the feet of the occupant on the front seat side is the first foot outlet 41c
  • the outlet for blowing out the second air blown toward the feet of the occupant on the rear seat side is the second outlet.
  • the foot outlet 41d may be used.
  • the window fogging detection unit is not limited to this.
  • a dew condensation sensor, an optical fogging sensor, or the like may be adopted.
  • the dew condensation sensor has a pair of electrodes arranged on the surface of the vehicle window glass FW, and detects the electric resistance value between the electrodes. Then, in the anti-fog determination unit described in step S4 of FIG. 3, when the electric resistance value between the electrodes becomes equal to or less than the predetermined reference resistance value due to dew condensation on the surface of the vehicle window glass FW, the vehicle window glass FW It may be determined that anti-fog is necessary.
  • the optical fogging sensor has a light emitting element and a light receiving element, reflects the light generated by the light emitting element on the surface of the vehicle window glass FW, and detects the intensity of the reflected light by the light receiving element. Then, the anti-fog determination unit may determine that anti-fog of the vehicle window glass FW is necessary when the reflection intensity becomes equal to or less than a predetermined reference intensity due to dew condensation on the surface of the vehicle window glass FW.
  • R1234yf is adopted as the refrigerant of the refrigeration cycle device 10
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted.
  • a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted.
  • an ethylene glycol aqueous solution is used as the heat medium of the heat medium circuit 30
  • the present invention is not limited to this.
  • the heat medium dimethylpolysiloxane, a solution containing nanofluid or the like, an antifreeze liquid, an aqueous liquid refrigerant containing alcohol or the like, a liquid medium containing oil or the like may be adopted.
  • the control mode of the vehicle air conditioner 1 is not limited to the control mode disclosed in the above-described embodiment.
  • step S2 of FIG. 3 the decrease amount ⁇ T of the internal air temperature Tr per reference time, the increase amount ⁇ H of the internal air humidity Rh per reference time, and whether the auxiliary heating device is operating.
  • the second flag FLG2 is changed based on whether or not. That is, the air-conditioning control device 50 automatically controls switching between the normal heating mode and the power-saving heating mode regardless of the request of the occupant.
  • the decrease amount ⁇ T of the internal air temperature Tr per reference time becomes the reference temperature decrease amount K ⁇ T or more
  • the increase amount ⁇ H of the internal air humidity Rh per reference time is the reference humidity increase amount K ⁇ H or more.
  • the second flag FLG2 may be set to 1.
  • learning control that stores the outside air temperature Tam, the inside air temperature Tr, the inside air humidity Rh, etc. when the occupant operates the economy switch 70a, and switches between the normal heating mode and the power saving heating mode based on the stored information. May be adopted.
  • automatic control may be adopted to switch to the normal heating mode when it is necessary to quickly raise the internal air temperature Tr, such as when the operation of the heating mode is started, and to switch to the power saving heating mode at the time of other heating.
  • the automatic control may be abolished and the normal heating mode and the power saving heating mode may be switched only by operating the occupant's economy switch 70a.
  • step S5 of FIG. 3 an example of determining that the occupant is requesting the reduction of noise in the vehicle interior when the occupant is having a conversation in the vehicle interior will be described.
  • a noise reduction requesting unit that requires the execution of the power saving and noise saving heating mode by the operation of the occupant may be provided.
  • the noise reduction request determination unit may determine that the occupant is requesting noise reduction in the vehicle interior when the noise reduction request unit is operated.
  • the present invention is limited to this. Not done.
  • the first flag FLG1 a flag indicating that the heat medium temperature TWH has risen to such an extent that the heating feeling of the occupant is not deteriorated even when the power saving heating mode is executed may be adopted.
  • the first flag FLG1 when the heat medium temperature TWH is in the process of rising, the first flag FLG1 is set when the heat medium temperature TWH becomes equal to or higher than the first determination value. Let it be 1. When the heat medium temperature TWH is in the descending process, the first flag FLG1 may be set to 0 when the heat medium temperature TWH becomes equal to or less than the second determination value.
  • the operation of the economy switch 70a may be prohibited until the first flag FLG1 becomes 1. Further, when the first flag FLG1 becomes 1, a notification unit may be provided to notify the occupant that the operation of the economy switch 70a has become effective. The notification unit may be displayed on the display of the operation panel 70, or may be issued by the economy switch 70a.
  • the heating capacity of the heating unit is increased from that in the normal heating mode. Also, the heating capacity of the heating unit is improved compared to the power-saving heating mode. On the other hand, when giving priority to the anti-fog property of the vehicle window glass FW, the heating capacity may be improved as compared with the normal heating mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A vehicle air conditioning device comprises: an air blowing unit (42); an indoor air rate adjustment unit (43); a heating air volume adjustment unit (44); and heating units (10, 30). In the vehicle air conditioning device, a normal heating mode and a power-saving heating mode are provided as heating modes for heating a vehicle cabin. The power-saving heating mode reduces the heating capacity of the heating units compared with the normal heating mode. In the power-saving heating mode, at least one of the following is executed: control to increase the airflow rate of the air blowing unit (42), as compared to the normal heating mode; control to increase the indoor air rate using the indoor air rate adjustment unit (43), as compared to the normal heating mode; and control to increase the ratio of heating air volume using the heating air volume adjustment unit (44), as compared to the normal heating mode.

Description

車両用空調装置Vehicle air conditioner 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年10月16日に出願された日本特許出願2020-174559号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-174559 filed on October 16, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、車室内の暖房を行う車両用空調装置に関する。 This disclosure relates to a vehicle air conditioner that heats the interior of a vehicle.
 従来、特許文献1に、ハイブリッド車両に適用された車両用空調装置が開示されている。ハイブリッド車両は、走行用の駆動力を内燃機関(すなわち、エンジン)および電動モータから得る車両である。ハイブリッド車両では、燃費向上のために、車両走行中であってもエンジンを停止させることがある。このため、エンジン冷却水の温度が、暖房用の熱源として利用可能な温度に上昇しないことがある。 Conventionally, Patent Document 1 discloses a vehicle air conditioner applied to a hybrid vehicle. A hybrid vehicle is a vehicle that obtains driving force for traveling from an internal combustion engine (that is, an engine) and an electric motor. In a hybrid vehicle, the engine may be stopped even while the vehicle is running in order to improve fuel efficiency. Therefore, the temperature of the engine cooling water may not rise to a temperature that can be used as a heat source for heating.
 これに対して、特許文献1の車両用空調装置では、エンジン冷却水を熱源とするだけでなく、電動圧縮機を有する冷凍サイクル装置によって温風を作り出せるようになっている。さらに、特許文献1の車両用空調装置では、暖房運転時に乗員が快適な暖房感を得られるように、作り出した温風と外気等の冷風とを混合させて、車室内へ吹き出される送風空気の温度を調整している。 On the other hand, in the vehicle air conditioner of Patent Document 1, not only the engine cooling water is used as a heat source, but also a refrigerating cycle device having an electric compressor can generate warm air. Further, in the vehicle air conditioner of Patent Document 1, the created hot air and cold air such as outside air are mixed and blown air blown into the vehicle interior so that the occupant can obtain a comfortable heating feeling during heating operation. The temperature of the car is adjusted.
特開2013-166413号公報Japanese Unexamined Patent Publication No. 2013-166413
 しかし、特許文献1のように、暖房運転時に温風と冷風とを混合させて送風空気の温度を調整する車両用空調装置では、車室内へ吹き出される送風空気よりも高温の温風を作り出さなければならない。このため、特許文献1の車両用空調装置では、エンジン冷却水の温度が低くなっている場合等には、冷凍サイクル装置の消費電力が増加してしまう。 However, as in Patent Document 1, in a vehicle air conditioner that adjusts the temperature of the blown air by mixing hot air and cold air during heating operation, hot air having a higher temperature than the blown air blown into the vehicle interior is produced. There must be. Therefore, in the vehicle air conditioner of Patent Document 1, the power consumption of the refrigeration cycle device increases when the temperature of the engine cooling water is low or the like.
 本開示は、上記点に鑑み、暖房感の悪化を抑制しつつ、消費電力を低減可能な車両用空調装置を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide an air conditioner for vehicles capable of reducing power consumption while suppressing deterioration of a feeling of heating.
 上記目的を達成するため、本開示の一態様の車両用空調装置は、空気通路形成部と、送風部と、内気率調整部と、加熱部と、加熱風量調整部と、を備える。 In order to achieve the above object, the vehicle air conditioner according to one aspect of the present disclosure includes an air passage forming section, a blowing section, an inside air rate adjusting section, a heating section, and a heated air volume adjusting section.
 空気通路形成部は、車室内へ送風される送風空気を流通させる空気通路を形成する。送風部は、送風空気を送風する。内気率調整部は、空気通路へ導入される送風空気における車室内の空気の割合である内気率を調整する。加熱部は、電力を用いて送風空気を加熱する。加熱風量調整部は、送風空気のうち加熱部にて加熱される加熱風量の割合を調整する。 The air passage forming portion forms an air passage through which the blown air blown into the vehicle interior is circulated. The blower unit blows the blown air. The inside air ratio adjusting unit adjusts the inside air ratio, which is the ratio of the air in the vehicle interior to the blown air introduced into the air passage. The heating unit uses electric power to heat the blown air. The heated air volume adjusting unit adjusts the ratio of the heated air volume heated by the heating unit to the blown air.
 車室内の暖房を行う運転モードとして、通常暖房モードおよび省電力暖房モードが設けられており、省電力暖房モードは、通常暖房モードよりも加熱部の加熱能力を低減させる運転モードである。 As an operation mode for heating the interior of the vehicle, a normal heating mode and a power saving heating mode are provided, and the power saving heating mode is an operation mode in which the heating capacity of the heating unit is reduced as compared with the normal heating mode.
 さらに、省電力暖房モードでは、通常暖房モードよりも送風部の送風量を増加させる制御、通常暖房モードよりも内気率を上昇させる制御、および通常暖房モードよりも加熱風量の割合を増加させる制御のうち、少なくとも1つを実行する。 Furthermore, in the power-saving heating mode, control is performed to increase the amount of air blown by the blower unit compared to the normal heating mode, control to increase the internal air rate compared to the normal heating mode, and control to increase the ratio of the heated air volume compared to the normal heating mode. At least one of them is executed.
 これによれば、省電力暖房モードでは、通常暖房モードよりも加熱部の加熱能力を低減させるので、加熱部の消費電力を低減させることができる。 According to this, in the power-saving heating mode, the heating capacity of the heating unit is reduced as compared with the normal heating mode, so that the power consumption of the heating unit can be reduced.
 さらに、省電力暖房モード時に、通常暖房モードよりも送風部の送風量を増加させる制御を実行することによって、通常暖房モードに対して、送風空気が加熱部から吸熱する総吸熱量の低下を抑制することができる。従って、省電力暖房モード時に車室内へ供給される総熱量が、通常暖房モード時に車室内へ供給される総熱量よりも低減してしまうことを抑制することができる。 Furthermore, by executing control to increase the amount of air blown by the blower unit in the power-saving heating mode as compared to the normal heating mode, it is possible to suppress a decrease in the total amount of heat absorbed by the blown air from the heating unit in the normal heating mode. can do. Therefore, it is possible to prevent the total amount of heat supplied to the vehicle interior in the power-saving heating mode from being lower than the total amount of heat supplied to the vehicle interior in the normal heating mode.
 また、省電力暖房モード時に、通常暖房モードよりも内気率を上昇させる制御を実行することによって、通常暖房モードよりも空気通路へ導入される送風空気の温度を上昇させることができる。従って、省電力暖房モード時に車室内へ吹き出される送風空気の温度が、通常暖房モード時よりも低下してしまうことを抑制することができる。 Further, in the power saving heating mode, the temperature of the blown air introduced into the air passage can be raised more than in the normal heating mode by executing the control to raise the inside air rate more than in the normal heating mode. Therefore, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
 また、省電力暖房モード時に、通常暖房モードよりも加熱風量の割合を増加させる制御を実行することによって、通常暖房モードよりも加熱部にて加熱される送風空気の風量を増加させることができる。従って、省電力暖房モード時に車室内へ吹き出される送風空気の温度が、通常暖房モード時よりも低下してしまうことを抑制することができる。 Further, in the power saving heating mode, by executing the control to increase the ratio of the heated air volume as compared with the normal heating mode, the air volume of the blown air heated in the heating unit can be increased as compared with the normal heating mode. Therefore, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
 従って、省電力暖房モード時に、上記の制御のうち、少なくとも1つを実行することによって、通常暖房モードよりも暖房感が悪化してしまうことを抑制することができる。すなわち、本開示の一態様の車両用空調装置によれば、暖房感の悪化を抑制しつつ、消費電力を低減することができる。 Therefore, by executing at least one of the above controls in the power-saving heating mode, it is possible to prevent the heating feeling from becoming worse than in the normal heating mode. That is, according to the vehicle air conditioner of one aspect of the present disclosure, it is possible to reduce the power consumption while suppressing the deterioration of the heating feeling.
第1実施形態の車両用空調装置の模式的な全体構成図である。It is a schematic whole block diagram of the air conditioner for a vehicle of 1st Embodiment. 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the air-conditioning apparatus for a vehicle of 1st Embodiment. 第1実施形態の車両用空調装置の暖房モード時の制御処理を示すフローチャートである。It is a flowchart which shows the control process in the heating mode of the vehicle air-conditioning apparatus of 1st Embodiment. 第1実施形態の車両用空調装置の暖房モード時の制御処理の一部を示すフローチャートである。It is a flowchart which shows a part of the control process in the heating mode of the vehicle air-conditioning apparatus of 1st Embodiment. 第2実施形態の車両用空調装置の模式的な全体構成図である。It is a schematic whole block diagram of the air conditioner for a vehicle of 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate explanations may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.
 (第1実施形態)
 図1~図4を用いて、本開示に係る車両用空調装置1の第1実施形態を説明する。車両用空調装置1は、車両走行用の駆動力を走行用の電動モータから得る電気自動車に適用されている。車両用空調装置1は、電気自動車において、空調対象空間である車室内の空調を行う。
(First Embodiment)
A first embodiment of the vehicle air conditioner 1 according to the present disclosure will be described with reference to FIGS. 1 to 4. The vehicle air conditioner 1 is applied to an electric vehicle in which a driving force for traveling a vehicle is obtained from an electric motor for traveling. The vehicle air-conditioning device 1 air-conditions the interior of an electric vehicle, which is a space to be air-conditioned.
 車両用空調装置1は、車室内の空調を行うために、運転モードを切り替えることができる。車両用空調装置1の運転モードには、冷房モード、直列除湿暖房モード、並列除湿暖房モード、および暖房モードがある。 The vehicle air conditioner 1 can switch the operation mode in order to perform air conditioning in the vehicle interior. The operation mode of the vehicle air conditioner 1 includes a cooling mode, a series dehumidifying / heating mode, a parallel dehumidifying / heating mode, and a heating mode.
 冷房モードは、送風空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。直列除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。並列除湿暖房モードは、冷却されて除湿された送風空気を直列除湿暖房モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。 The cooling mode is an operation mode in which the inside of the vehicle is cooled by cooling the blown air and blowing it into the vehicle interior. The series dehumidifying / heating mode is an operation mode in which dehumidifying / heating the interior of the vehicle is performed by reheating the cooled and dehumidified blown air and blowing it into the vehicle interior. The parallel dehumidifying and heating mode is an operation mode in which the dehumidified and heated air inside the vehicle is dehumidified and heated by reheating the cooled and dehumidified blown air with a heating capacity higher than that of the series dehumidifying and heating mode and blowing it into the vehicle interior.
 暖房モードは、送風空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。さらに、本実施形態の車両用空調装置1では、暖房モードとして、通常暖房モード、省電力暖房モード、省電力防曇暖房モード、および省電力低騒音暖房モードが設けられている。 The heating mode is an operation mode in which the interior of the vehicle is heated by heating the blown air and blowing it into the interior of the vehicle. Further, in the vehicle air conditioner 1 of the present embodiment, as the heating mode, a normal heating mode, a power saving heating mode, a power saving anti-fog heating mode, and a power saving low noise heating mode are provided.
 省電力暖房モード、省電力防曇暖房モード、および省電力低騒音暖房モードは、加熱部を形成する冷凍サイクル装置10の消費電力を低減させるために、通常暖房モードよりも冷凍サイクル装置10の加熱能力を低減させる運転モードである。 The power-saving heating mode, the power-saving anti-fog heating mode, and the power-saving low-noise heating mode heat the refrigerating cycle device 10 more than the normal heating mode in order to reduce the power consumption of the refrigerating cycle device 10 forming the heating unit. This is an operation mode that reduces the capacity.
 車両用空調装置1は、図1に示すように、冷凍サイクル装置10、熱媒体回路30、室内空調ユニット40、および図2に示す空調制御装置50等を備えている。 As shown in FIG. 1, the vehicle air conditioner 1 includes a refrigeration cycle device 10, a heat medium circuit 30, an indoor air conditioner unit 40, an air conditioner control device 50 shown in FIG. 2, and the like.
 冷凍サイクル装置10は、車両用空調装置1において、車室内へ送風される送風空気の温度を調整する。冷凍サイクル装置10は、車両用空調装置1の運転モードに応じて冷媒回路を切り替えることができる。具体的には、冷凍サイクル装置10は、冷房モードの冷媒回路、直列除湿暖房モードの冷媒回路、並列除湿暖房モードの冷媒回路、および暖房モードの冷媒回路に切り替えることができる。 The refrigeration cycle device 10 adjusts the temperature of the blown air blown into the vehicle interior in the vehicle air conditioner 1. The refrigerating cycle device 10 can switch the refrigerant circuit according to the operation mode of the vehicle air conditioner 1. Specifically, the refrigerating cycle device 10 can be switched to a cooling mode refrigerant circuit, a series dehumidifying / heating mode refrigerant circuit, a parallel dehumidifying / heating mode refrigerant circuit, and a heating mode refrigerant circuit.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)が採用されている。冷凍サイクル装置10は、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷凍サイクル装置10の冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 In the refrigerating cycle device 10, an HFO-based refrigerant (specifically, R1234yf) is used as the refrigerant. The refrigeration cycle device 10 constitutes a steam compression type subcritical refrigeration cycle in which the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant of the refrigeration cycle device 10. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、車両の前方側の駆動装置室に配置されている。駆動装置室は、車両走行用の駆動力を発生させるための機器(例えば、電動モータ)の少なくとも一部が配置される空間を形成している。 Among the constituent devices of the refrigerating cycle device 10, the compressor 11 sucks the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in the drive unit room on the front side of the vehicle. The drive unit room forms a space in which at least a part of a device (for example, an electric motor) for generating a driving force for traveling a vehicle is arranged.
 圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、空調制御装置50から出力された制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 is an electric compressor in which a fixed capacity type compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor. The rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by the control signal output from the air conditioning control device 50.
 圧縮機11の吐出口には、水-冷媒熱交換器12の冷媒通路の入口側が接続されている。水-冷媒熱交換器12は、圧縮機11から吐出された吐出冷媒を流通させる冷媒通路と、熱媒体回路30を循環する熱媒体を流通させる水通路とを有している。水-冷媒熱交換器12は、冷媒通路を流通する吐出冷媒と水通路を流通する熱媒体とを熱交換させて、熱媒体を加熱する熱媒体加熱用の熱交換器である。 The inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11. The water-refrigerant heat exchanger 12 has a refrigerant passage for circulating the discharged refrigerant discharged from the compressor 11 and a water passage for circulating the heat medium circulating in the heat medium circuit 30. The water-refrigerant heat exchanger 12 is a heat exchanger for heating a heat medium that heats the heat medium by exchanging heat between the discharged refrigerant flowing through the refrigerant passage and the heat medium flowing through the water passage.
 水-冷媒熱交換器12の冷媒通路の出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet side of the first three-way joint 13a having three inflow outlets communicating with each other is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 さらに、冷凍サイクル装置10は、後述するように、第2三方継手13b~第4三方継手13dを備えている。第2三方継手13b~第4三方継手13dの基本的構成は、第1三方継手13aと同様である。 Further, the refrigeration cycle device 10 includes a second three-way joint 13b to a fourth three-way joint 13d, as will be described later. The basic configuration of the second three-way joint 13b to the fourth three-way joint 13d is the same as that of the first three-way joint 13a.
 第1三方継手13a~第4三方継手13dは、3つの流入出口のうち1つを流入口として用い、2つを流出口として用いた場合は、冷媒の流れを分岐する分岐部となる。また、3つの流入出口のうち2つを流入口として用い、1つを流出口として用いた場合は、冷媒の流れを合流させる合流部となる。 The first three-way joint 13a to the fourth three-way joint 13d are branch portions for branching the flow of the refrigerant when one of the three inflow outlets is used as the inlet and two are used as the outlets. Further, when two of the three inflow ports are used as the inflow port and one is used as the outflow port, it becomes a merging portion where the flow of the refrigerant is merged.
 第1三方継手13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。第1三方継手13aの他方の流出口には、バイパス通路22aを介して、第2三方継手13bの一方の流入口側が接続されている。バイパス通路22aには、除湿用開閉弁15aが配置されている。 The inlet side of the heating expansion valve 14a is connected to one of the outlets of the first three-way joint 13a. One inflow port side of the second three-way joint 13b is connected to the other outflow port of the first three-way joint 13a via a bypass passage 22a. A dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
 暖房用膨張弁14aは、暖房モード時等に、水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒を減圧させる暖房用減圧部である。さらに、暖房用膨張弁14aは、暖房モード時等に、下流側へ流出させる冷媒の流量(質量流量)を調整する暖房用流量調整部である。 The heating expansion valve 14a is a heating decompression unit that reduces the pressure of the high-pressure refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12 in the heating mode or the like. Further, the heating expansion valve 14a is a heating flow rate adjusting unit that adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side in the heating mode or the like.
 暖房用膨張弁14aは、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。暖房用膨張弁14aは、空調制御装置50から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される。 The heating expansion valve 14a is an electric variable throttle mechanism having a valve body configured to change the throttle opening and an electric actuator for changing the opening of the valve body. The operation of the heating expansion valve 14a is controlled by a control signal (specifically, a control pulse) output from the air conditioning control device 50.
 さらに、冷凍サイクル装置10は、後述するように、冷房用膨張弁14bを備えている。冷房用膨張弁14bの基本的構成は、暖房用膨張弁14aと同様である。 Further, the refrigeration cycle device 10 is provided with a cooling expansion valve 14b, as will be described later. The basic configuration of the cooling expansion valve 14b is the same as that of the heating expansion valve 14a.
 暖房用膨張弁14aおよび冷房用膨張弁14bは、弁開度を全開にすることによって冷媒減圧作用および流量調整作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。さらに、暖房用膨張弁14aおよび冷房用膨張弁14bは、弁開度を全閉にすることによって冷媒通路を閉塞する全閉機能を有している。 The expansion valve 14a for heating and the expansion valve 14b for cooling have a fully open function that functions as a mere refrigerant passage without exerting a refrigerant depressurizing action and a flow rate adjusting action by fully opening the valve opening. Further, the heating expansion valve 14a and the cooling expansion valve 14b have a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
 暖房用膨張弁14aおよび冷房用膨張弁14bは、全閉機能を発揮することによって、冷凍サイクル装置10の冷媒回路を切り替えることができる。従って、暖房用膨張弁14aおよび冷房用膨張弁14bは、冷媒回路を切り替える冷媒回路切替部としての機能を兼ね備えている。 The expansion valve 14a for heating and the expansion valve 14b for cooling can switch the refrigerant circuit of the refrigeration cycle device 10 by exerting the fully closed function. Therefore, the heating expansion valve 14a and the cooling expansion valve 14b also have a function as a refrigerant circuit switching unit for switching the refrigerant circuit.
 もちろん、暖房用膨張弁14aおよび冷房用膨張弁14bを、全閉機能を有していない可変絞り機構と開閉弁とを組み合わせて形成してもよい。この場合は、開閉弁が冷媒回路切替部となる。また、本実施形態の冷凍サイクル装置10では、暖房用膨張弁14aは、全閉機能を有していなくてもよい。 Of course, the expansion valve 14a for heating and the expansion valve 14b for cooling may be formed by combining a variable throttle mechanism having no fully closed function and an on-off valve. In this case, the on-off valve serves as the refrigerant circuit switching unit. Further, in the refrigerating cycle device 10 of the present embodiment, the heating expansion valve 14a may not have a fully closed function.
 暖房用膨張弁14aの出口には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、暖房用膨張弁14aから流出した冷媒と外気ファン16aにより送風された外気とを熱交換させる熱交換器である。室外熱交換器16は、駆動装置室の前方側に配置されている。このため、車両走行時には、グリルを介して駆動装置室へ流入した走行風を室外熱交換器16に当てることができる。 The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a. The outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown by the outside air fan 16a. The outdoor heat exchanger 16 is arranged on the front side of the drive unit room. Therefore, when the vehicle is running, the running wind that has flowed into the drive unit room through the grill can be applied to the outdoor heat exchanger 16.
 外気ファン16aは、空調制御装置50から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される電動送風機である。 The outside air fan 16a is an electric blower whose rotation speed (that is, blowing capacity) is controlled by a control voltage output from the air conditioning control device 50.
 室外熱交換器16の冷媒出口には、第3三方継手13cの流入口側が接続されている。第3三方継手13cの一方の流出口には、暖房用通路22bを介して、第4三方継手13dの一方の流入口側が接続されている。暖房用通路22bには、暖房用開閉弁15bが配置されている。 The inlet side of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 16. One inflow port side of the fourth three-way joint 13d is connected to one outflow port of the third three-way joint 13c via a heating passage 22b. A heating on-off valve 15b is arranged in the heating passage 22b.
 暖房用開閉弁15bは、暖房用通路22bを開閉する電磁弁である。また、前述した除湿用開閉弁15aは、バイパス通路22aを開閉する電磁弁である。除湿用開閉弁15aおよび暖房用開閉弁15bの基本的構成は、同じである。除湿用開閉弁15aおよび暖房用開閉弁15bは、空調制御装置50から出力される制御電圧によって、開閉作動が制御される。 The heating on-off valve 15b is a solenoid valve that opens and closes the heating passage 22b. The dehumidifying on-off valve 15a described above is a solenoid valve that opens and closes the bypass passage 22a. The basic configurations of the dehumidifying on-off valve 15a and the heating on-off valve 15b are the same. The opening / closing operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b is controlled by the control voltage output from the air conditioning control device 50.
 除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。従って、除湿用開閉弁15aおよび暖房用開閉弁15bは、暖房用膨張弁14aおよび冷房用膨張弁14bとともに、冷媒回路を切り替える冷媒回路切替部である。 The dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage. Therefore, the dehumidifying on-off valve 15a and the heating on-off valve 15b, together with the heating expansion valve 14a and the cooling expansion valve 14b, are refrigerant circuit switching units that switch the refrigerant circuit.
 第3三方継手13cの他方の流出口には、第2三方継手13bの他方の流入口側が接続されている。第3三方継手13cの他方の流出口側と第2三方継手13bの他方の流入口側とを接続する冷媒通路には、逆止弁17が配置されている。逆止弁17は、第3三方継手13c側から第2三方継手13b側へ冷媒が流れることを許容し、第2三方継手13b側から第3三方継手13c側へ冷媒が流れることを禁止する。 The other inlet side of the second three-way joint 13b is connected to the other outlet of the third three-way joint 13c. A check valve 17 is arranged in the refrigerant passage connecting the other outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b. The check valve 17 allows the refrigerant to flow from the third three-way joint 13c side to the second three-way joint 13b side, and prohibits the refrigerant from flowing from the second three-way joint 13b side to the third three-way joint 13c side.
 第2三方継手13bの流出口には、冷房用膨張弁14bの入口側が接続されている。冷房用膨張弁14bは、冷房モード時等に、室外熱交換器16から流出した冷媒を減圧させる冷房用減圧部である。さらに、冷房用膨張弁14bは、冷房モード時等に、下流側へ流出させる冷媒の流量(質量流量)を調整する冷房用流量調整部である。 The inlet side of the cooling expansion valve 14b is connected to the outlet of the second three-way joint 13b. The cooling expansion valve 14b is a cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 in the cooling mode or the like. Further, the cooling expansion valve 14b is a cooling flow rate adjusting unit that adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side in the cooling mode or the like.
 冷房用膨張弁14bの出口には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、後述する室内空調ユニット40の空調ケース41内に配置されている。室内蒸発器18は、冷房用膨張弁14bにて減圧された低圧冷媒と送風空気とを熱交換させ、低圧冷媒を蒸発させることによって、送風空気を冷却する送風空気冷却用の熱交換器である。 The refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b. The indoor evaporator 18 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40, which will be described later. The indoor evaporator 18 is a heat exchanger for cooling the blown air that cools the blown air by exchanging heat between the low pressure refrigerant decompressed by the cooling expansion valve 14b and the blown air and evaporating the low pressure refrigerant. ..
 室内蒸発器18の冷媒出口には、第4三方継手13dの他方の流入口側が接続されている。第4三方継手13dの流出口には、アキュムレータ21の冷媒入口側が接続されている。アキュムレータ21は、蒸発器として機能する熱交換器から流出した冷媒の気液を分離して、分離された液相冷媒をサイクル内の余剰冷媒として貯える貯液部である。アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The other inlet side of the fourth three-way joint 13d is connected to the refrigerant outlet of the indoor evaporator 18. The refrigerant inlet side of the accumulator 21 is connected to the outlet of the fourth three-way joint 13d. The accumulator 21 is a liquid storage unit that separates the gas and liquid of the refrigerant flowing out from the heat exchanger functioning as an evaporator and stores the separated liquid phase refrigerant as a surplus refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
 次に、熱媒体回路30について説明する。熱媒体回路30は、熱媒体を循環させる熱媒体循環回路である。熱媒体回路30では、熱媒体としてエチレングリコール水溶液を採用している。熱媒体回路30には、水-冷媒熱交換器12の水通路、熱媒体ポンプ31、ヒータコア32等が配置されている。 Next, the heat medium circuit 30 will be described. The heat medium circuit 30 is a heat medium circulation circuit that circulates a heat medium. In the heat medium circuit 30, an ethylene glycol aqueous solution is used as the heat medium. In the heat medium circuit 30, a water passage of the water-refrigerant heat exchanger 12, a heat medium pump 31, a heater core 32, and the like are arranged.
 熱媒体ポンプ31は、熱媒体を水-冷媒熱交換器12の水通路の入口側へ圧送する水ポンプである。熱媒体ポンプ31は、羽根車(すなわち、インペラ)を電動モータにて回転駆動する電動ポンプである。熱媒体ポンプ31は、空調制御装置50から出力された制御電圧によって、回転数(すなわち、水圧送能力)が制御される。 The heat medium pump 31 is a water pump that pumps a heat medium to the inlet side of the water passage of the water-refrigerant heat exchanger 12. The heat medium pump 31 is an electric pump that rotationally drives an impeller (that is, an impeller) with an electric motor. The rotation speed (that is, the water pressure feeding capacity) of the heat medium pump 31 is controlled by the control voltage output from the air conditioning control device 50.
 水-冷媒熱交換器12の水通路の出口には、ヒータコア32の熱媒体入口側が接続されている。ヒータコア32は、室内空調ユニット40の空調ケース41内に配置されている。ヒータコア32は、水-冷媒熱交換器12にて加熱された熱媒体と室内蒸発器18を通過した送風空気とを熱交換させて、送風空気を加熱する送風空気加熱用の熱交換器である。 The heat medium inlet side of the heater core 32 is connected to the outlet of the water passage of the water-refrigerant heat exchanger 12. The heater core 32 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40. The heater core 32 is a heat exchanger for heating blown air that heats the blown air by exchanging heat between the heat medium heated by the water-refrigerator heat exchanger 12 and the blown air that has passed through the indoor evaporator 18. ..
 以上の説明から明らかなように、本実施形態では、冷凍サイクル装置10および熱媒体回路30に配置された各構成機器によって、電力を用いて送風空気を加熱する加熱部が形成される。 As is clear from the above description, in the present embodiment, the heating unit for heating the blown air by using electric power is formed by each component device arranged in the refrigerating cycle device 10 and the heat medium circuit 30.
 より詳細には、冷凍サイクル装置10では、圧縮機11が電力を用いて高温高圧の吐出冷媒を吐出する。圧縮機11から吐出された吐出冷媒は、水-冷媒熱交換器12にて、熱媒体に放熱する。水-冷媒熱交換器12にて加熱された熱媒体は、ヒータコア32にて、送風空気に放熱する。これにより、送風空気が加熱される。 More specifically, in the refrigerating cycle device 10, the compressor 11 discharges high-temperature and high-pressure discharged refrigerant using electric power. The discharged refrigerant discharged from the compressor 11 dissipates heat to the heat medium in the water-refrigerant heat exchanger 12. The heat medium heated by the water-refrigerant heat exchanger 12 dissipates heat to the blown air at the heater core 32. As a result, the blown air is heated.
 さらに、本実施形態の加熱部では、圧縮機11の冷媒吐出能力を増加させることによって、吐出冷媒および熱媒体の温度を上昇させて、送風空気の加熱能力を増加させることができる。また、圧縮機11の冷媒吐出能力を低減させることによって、吐出冷媒および熱媒体の温度を低下させて、送風空気の加熱能力を低減させることができる。 Further, in the heating unit of the present embodiment, the temperature of the discharged refrigerant and the heat medium can be increased by increasing the refrigerant discharge capacity of the compressor 11, and the heating capacity of the blown air can be increased. Further, by reducing the refrigerant discharge capacity of the compressor 11, the temperatures of the discharged refrigerant and the heat medium can be lowered, and the heating capacity of the blown air can be reduced.
 次に、室内空調ユニット40について説明する。室内空調ユニット40は、車両用空調装置1において、適切に温度調整された送風空気を車室内の適切な箇所へ吹き出すために各種構成機器を一体化させたユニットである。室内空調ユニット40は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 40 will be described. The indoor air-conditioning unit 40 is a unit in which various components are integrated in the vehicle air-conditioning device 1 in order to blow out appropriately temperature-controlled blown air to an appropriate place in the vehicle interior. The indoor air conditioning unit 40 is arranged inside the instrument panel (that is, the instrument panel) at the front of the vehicle interior.
 室内空調ユニット40は、空調ケース41内に、室内送風機42、室内蒸発器18、ヒータコア32等を収容して形成されている。空調ケース41は、室内空調ユニット40の外殻を形成するとともに、内部に車室内へ送風される送風空気を流通させる空気通路40aを形成する空気通路形成部である。空調ケース41は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 The indoor air conditioning unit 40 is formed by accommodating an indoor blower 42, an indoor evaporator 18, a heater core 32, etc. in an air conditioning case 41. The air-conditioning case 41 is an air passage forming portion that forms the outer shell of the indoor air-conditioning unit 40 and also forms the air passage 40a that allows the blown air blown into the vehicle interior to flow inside. The air-conditioning case 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 空調ケース41の送風空気流れ最上流部には、内外気切替装置43が配置されている。内外気切替装置43は、空気通路40aへ導入される送風空気における内気(すなわち、車室内の空気)と外気(すなわち、車室外の空気)との割合を調整する。従って、内外気切替装置43は、空気通路40aへ導入される送風空気における内気の割合である内気率RFを調整する内気率調整部である。 An inside / outside air switching device 43 is arranged at the most upstream part of the blast air flow of the air conditioning case 41. The inside / outside air switching device 43 adjusts the ratio of the inside air (that is, the air inside the vehicle interior) and the outside air (that is, the air outside the vehicle interior) in the blown air introduced into the air passage 40a. Therefore, the inside / outside air switching device 43 is an inside air ratio adjusting unit that adjusts the inside air ratio RF, which is the ratio of the inside air in the blown air introduced into the air passage 40a.
 より具体的には、空調ケース41の内外気切替装置43を形成する部位には、内気導入口43aおよび外気導入口43bが形成されている。内気導入口43aは、空気通路40aへ内気を導入するための開口部である。外気導入口43bは、空気通路40aへ外気を導入するための開口部である。 More specifically, an inside air introduction port 43a and an outside air introduction port 43b are formed at a portion of the air conditioning case 41 that forms the inside / outside air switching device 43. The inside air introduction port 43a is an opening for introducing inside air into the air passage 40a. The outside air introduction port 43b is an opening for introducing outside air into the air passage 40a.
 さらに、内外気切替装置43の内部には、内外気切替ドア43cが配置されている。内外気切替ドア43cは、内気導入口43aの開度と外気導入口43bの開度との開度比を連続的に変化させる板ドアである。内外気切替ドア43cは、内外気切替装置の電動アクチュエータ43dによって駆動される。内外気切替装置の電動アクチュエータ43dは、空調制御装置50から出力される制御信号によって、その作動が制御される。 Further, an inside / outside air switching door 43c is arranged inside the inside / outside air switching device 43. The inside / outside air switching door 43c is a plate door that continuously changes the opening ratio between the opening degree of the inside air introduction port 43a and the opening degree of the outside air introduction port 43b. The inside / outside air switching door 43c is driven by an electric actuator 43d of the inside / outside air switching device. The operation of the electric actuator 43d of the inside / outside air switching device is controlled by a control signal output from the air conditioning control device 50.
 内外気切替装置43の送風空気流れ下流側には、室内送風機42が配置されている。室内送風機42は、内外気切替装置43を介して吸入した送風空気を車室内へ向けて送風する送風部である。室内送風機42は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機42は、空調制御装置50から出力される制御電圧(以下、ブロワ電圧Vbと記載する。)によって、回転数(すなわち、送風能力)が制御される。 An indoor blower 42 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 43. The indoor blower 42 is a blower unit that blows the blown air sucked through the inside / outside air switching device 43 toward the vehicle interior. The indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the indoor blower 42 is controlled by a control voltage (hereinafter, referred to as a blower voltage Vb) output from the air conditioning control device 50.
 室内送風機42の送風空気流れ下流側には、室内蒸発器18およびヒータコア32が、配置されている。室内蒸発器18は、ヒータコア32に対して、送風空気流れ上流側に配置されている。また、空調ケース41内には、室内蒸発器18を通過した送風空気を、ヒータコア32を迂回させて下流側へ流す冷風バイパス通路45が形成されている。 The indoor evaporator 18 and the heater core 32 are arranged on the downstream side of the blower air flow of the indoor blower 42. The indoor evaporator 18 is arranged on the upstream side of the blown air flow with respect to the heater core 32. Further, in the air conditioning case 41, a cold air bypass passage 45 is formed in which the blown air that has passed through the indoor evaporator 18 is bypassed by the heater core 32 and flows to the downstream side.
 室内蒸発器18の送風空気流れ下流側であって、かつ、ヒータコア32の送風空気流れ上流側には、エアミックスドア44が配置されている。 The air mix door 44 is arranged on the downstream side of the blown air flow of the indoor evaporator 18 and on the upstream side of the blown air flow of the heater core 32.
 エアミックスドア44は、室内蒸発器18通過後の送風空気のうち、ヒータコア32を通過させる風量と冷風バイパス通路45を通過させる風量との風量割合を調整する。従って、エアミックスドア44は、室内蒸発器18通過後の送風空気のうち加熱部を形成するヒータコア32にて加熱される送風空気の風量(すなわち、加熱風量)の割合を調整する加熱風量調整部である。 The air mix door 44 adjusts the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45 in the air blown air after passing through the indoor evaporator 18. Therefore, the air mix door 44 is a heated air volume adjusting unit that adjusts the ratio of the air volume (that is, the heated air volume) of the air blown air heated by the heater core 32 forming the heating unit to the air blown air after passing through the indoor evaporator 18. Is.
 ここで、エアミックスドア44の位置は、エアミックス開度SWで表すことができる。エアミックス開度SW=0%では、エアミックスドア44が、ヒータコア32側の空気通路を全閉とし、冷風バイパス通路45を全開とする、いわゆるマックスクールの位置に変位している。 Here, the position of the air mix door 44 can be represented by the air mix opening SW. When the air mix opening degree SW = 0%, the air mix door 44 is displaced to the so-called Max Cool position where the air passage on the heater core 32 side is fully closed and the cold air bypass passage 45 is fully opened.
 そして、エアミックスドア44は、エアミックス開度SWが増加するに伴って、ヒータコア32側の空気通路の開度を増加させ、冷風バイパス通路45の開度を減少させるように変位する。さらに、エアミックス開度SW=100%では、エアミックスドア44が、ヒータコア32側の空気通路を全開とし、冷風バイパス通路45を全閉とする、いわゆるマックスホットの位置に変位している。 Then, the air mix door 44 is displaced so as to increase the opening degree of the air passage on the heater core 32 side and decrease the opening degree of the cold air bypass passage 45 as the air mix opening degree SW increases. Further, when the air mix opening degree SW = 100%, the air mix door 44 is displaced to the so-called max hot position where the air passage on the heater core 32 side is fully opened and the cold air bypass passage 45 is fully closed.
 空気通路40aのヒータコア32の送風空気流れ下流側には、ヒータコア32にて加熱された送風空気と冷風バイパス通路45を通過してヒータコア32にて加熱されていない送風空気とを混合させる混合空間46が形成されている。従って、エアミックスドア44が、ヒータコア32を通過させる風量と冷風バイパス通路45を通過させる風量との風量割合を調整することによって、混合空間46にて混合された空調風の温度が調整される。 On the downstream side of the blown air flow of the heater core 32 of the air passage 40a, a mixing space 46 that mixes the blown air heated by the heater core 32 and the blown air that has passed through the cold air bypass passage 45 and is not heated by the heater core 32. Is formed. Therefore, the temperature of the conditioned air mixed in the mixing space 46 is adjusted by adjusting the air volume ratio between the air volume passing through the heater core 32 and the air volume passing through the cold air bypass passage 45 by the air mix door 44.
 空調ケース41の送風空気流れ最下流部には、混合空間46にて混合されて温度調整された送風空気を、車室内へ吹き出すための開口穴が配置されている。具体的には、デフロスタ開口穴47a、フェイス開口穴47b、フット開口穴47cが設けられている。 At the most downstream part of the blast air flow of the air conditioning case 41, an opening hole is arranged for blowing the blast air mixed in the mixing space 46 and adjusting the temperature into the vehicle interior. Specifically, a defroster opening hole 47a, a face opening hole 47b, and a foot opening hole 47c are provided.
 デフロスタ開口穴47aは、車両窓ガラスFWに向けて空調風を吹き出すための開口穴である。フェイス開口穴47bは、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴47cは、乗員の足元に向けて空調風を吹き出すための開口穴である。 The defroster opening hole 47a is an opening hole for blowing air conditioning air toward the vehicle window glass FW. The face opening hole 47b is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior. The foot opening hole 47c is an opening hole for blowing air-conditioned air toward the feet of the occupant.
 デフロスタ開口穴47a、フェイス開口穴47b、およびフット開口穴47cは、専用のダクトを介して、それぞれ車室内に設けられたデフロスタ吹出口、フェイス吹出口、およびフット吹出口に接続されている。 The defroster opening hole 47a, the face opening hole 47b, and the foot opening hole 47c are connected to the defroster outlet, the face outlet, and the foot outlet provided in the vehicle interior, respectively, via a dedicated duct.
 デフロスタ開口穴47a、フェイス開口穴47b、およびフット開口穴47cの送風空気流れ上流側には、それぞれデフロスタドア48a、フェイスドア48b、およびフットドア48cが配置されている。デフロスタドア48aは、デフロスタ開口穴47aの開口面積を調整する。フェイスドア48bは、フェイス開口穴47bの開口面積を調整する。フットドア48cは、フット開口穴47cの開口面積を調整する。 The defroster door 48a, the face door 48b, and the foot door 48c are arranged on the upstream side of the blast air flow of the defroster opening hole 47a, the face opening hole 47b, and the foot opening hole 47c, respectively. The defroster door 48a adjusts the opening area of the defroster opening hole 47a. The face door 48b adjusts the opening area of the face opening hole 47b. The foot door 48c adjusts the opening area of the foot opening hole 47c.
 デフロスタドア48a、フェイスドア48b、およびフットドア48cは、吹出口モードを切り替える吹出口モード切替部である。デフロスタドア48a、フェイスドア48b、およびフットドア48cは、リンク機構等を介して、吹出口モードドア用の電動アクチュエータ48によって連動して回転操作される。吹出口モードドア用の電動アクチュエータ48は、空調制御装置50から出力される制御信号によって、その作動が制御される。 The defroster door 48a, face door 48b, and foot door 48c are outlet mode switching units for switching the outlet mode. The defroster door 48a, the face door 48b, and the foot door 48c are rotationally operated in conjunction with each other by the electric actuator 48 for the outlet mode door via a link mechanism or the like. The operation of the electric actuator 48 for the air outlet mode door is controlled by a control signal output from the air conditioning control device 50.
 吹出口モード切替部によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode that can be switched by the outlet mode switching unit include face mode, bi-level mode, and foot mode.
 フェイスモードは、フェイス開口穴47bを全開としてフェイス吹出口から空調風を吹き出す吹出口モードである。バイレベルモードは、フェイス開口穴47bおよびフット開口穴47cの両方を開口させて、フェイス吹出口から空調風を吹き出すとともに、フット吹出口から空調風を吹き出す吹出口モードである。フットモードは、デフロスタ開口穴47aおよびフット開口穴47cの双方を開口させて、デフロスタ吹出口から空調風を吹き出すとともに、フット吹出口から空調風を吹き出す吹出口モードである。 The face mode is an outlet mode in which the air conditioning air is blown out from the face outlet with the face opening hole 47b fully opened. The bi-level mode is an outlet mode in which both the face opening hole 47b and the foot opening hole 47c are opened to blow out the conditioned air from the face outlet and also to blow out the conditioned air from the foot outlet. The foot mode is an outlet mode in which both the defroster opening hole 47a and the foot opening hole 47c are opened to blow out the conditioned air from the defroster outlet and also to blow out the conditioned air from the foot outlet.
 さらに、乗員が操作パネル70に設けられた吹出口モード切替スイッチをマニュアル操作することによって、デフロスタモードに切り替えることもできる。デフロスタモードは、デフロスタ開口穴47aを全開としてデフロスタ吹出口から空調風を吹き出す吹出口モードである。 Further, the occupant can manually operate the outlet mode changeover switch provided on the operation panel 70 to switch to the defroster mode. The defroster mode is an outlet mode in which the defroster opening hole 47a is fully opened and the air-conditioned air is blown out from the defroster outlet.
 また、本実施形態の車両用空調装置1では、シートヒータ90を備えている。シートヒータ90は、電気ヒータで乗員が着座する座席の表面を加熱するシート加熱装置である。シートヒータ90は、乗員の暖房感を向上させる補助暖房装置である。シートヒータ90は、空調制御装置50から出力される制御信号によって、その作動が制御される。 Further, the vehicle air conditioner 1 of the present embodiment includes a seat heater 90. The seat heater 90 is a seat heating device that heats the surface of the seat on which the occupant sits with an electric heater. The seat heater 90 is an auxiliary heating device that improves the heating feeling of the occupant. The operation of the seat heater 90 is controlled by a control signal output from the air conditioning control device 50.
 次に、図2を用いて、車両用空調装置10の電気制御部の概要について説明する。空調制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。空調制御装置50は、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された11、14a、14b、15a、15b、16a、31、42、43d、44a、48、90等の作動を制御する。 Next, the outline of the electric control unit of the vehicle air conditioner 10 will be described with reference to FIG. The air conditioning control device 50 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. The air conditioning control device 50 performs various calculations and processes based on the air conditioning control program stored in the ROM, and is connected to the output side of 11, 14a, 14b, 15a, 15b, 16a, 31, 42, 43d, 44a. , 48, 90, etc. are controlled.
 空調制御装置50の入力側には、内気温センサ61、外気温センサ62、日射センサ63、第1冷媒温度センサ64a~第3冷媒温度センサ64c、蒸発器温度センサ64f、第1冷媒圧力センサ65a、第2冷媒圧力センサ65b、熱媒体温度センサ66、湿度センサ68、空調風温度センサ69等の空調制御用のセンサ群が接続されている。空調制御装置50には、これらのセンサ群の検出信号が入力される。 On the input side of the air conditioning control device 50, there are an inside temperature sensor 61, an outside temperature sensor 62, a solar radiation sensor 63, a first refrigerant temperature sensor 64a to a third refrigerant temperature sensor 64c, an evaporator temperature sensor 64f, and a first refrigerant pressure sensor 65a. , Second refrigerant pressure sensor 65b, heat medium temperature sensor 66, humidity sensor 68, air conditioning air temperature sensor 69, and other sensor groups for air conditioning control are connected. The detection signals of these sensors are input to the air conditioning control device 50.
 内気温センサ61は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Asを検出する日射量検出部である。 The internal air temperature sensor 61 is an internal air temperature detection unit that detects the vehicle interior temperature (internal air temperature) Tr. The outside air temperature sensor 62 is an outside air temperature detection unit that detects the outside air temperature (outside air temperature) Tam. The solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
 第1冷媒温度センサ64aは、圧縮機11から吐出された吐出冷媒の温度T1を検出する吐出冷媒温度検出部である。第2冷媒温度センサ64bは、水-冷媒熱交換器12の冷媒通路から流出した冷媒の温度T2を検出する第2冷媒温度検出部である。第3冷媒温度センサ64cは、室外熱交換器16から流出した冷媒の温度T3を検出する第3冷媒温度検出部である。 The first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the discharge refrigerant discharged from the compressor 11. The second refrigerant temperature sensor 64b is a second refrigerant temperature detecting unit that detects the temperature T2 of the refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12. The third refrigerant temperature sensor 64c is a third refrigerant temperature detecting unit that detects the temperature T3 of the refrigerant flowing out from the outdoor heat exchanger 16.
 蒸発器温度センサ64fは、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64fは、具体的に、室内蒸発器18の熱交換フィンの温度を検出している。 The evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18. The evaporator temperature sensor 64f of the present embodiment specifically detects the temperature of the heat exchange fins of the indoor evaporator 18.
 第1冷媒圧力センサ65aは、水-冷媒熱交換器12の冷媒通路から流出した冷媒の圧力P1を検出する第1冷媒圧力検出部である。第2冷媒圧力センサ65bは、室外熱交換器16から流出した冷媒の圧力P2を検出する第2冷媒圧力検出部である。 The first refrigerant pressure sensor 65a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out from the refrigerant passage of the water-refrigerant heat exchanger 12. The second refrigerant pressure sensor 65b is a second refrigerant pressure detecting unit that detects the pressure P2 of the refrigerant flowing out from the outdoor heat exchanger 16.
 熱媒体温度センサ66は、水-冷媒熱交換器12の水通路から流出してヒータコア32へ流入する熱媒体の温度である熱媒体温度TWHを検出する熱媒体温度検出部である。 The heat medium temperature sensor 66 is a heat medium temperature detecting unit that detects the heat medium temperature TWH, which is the temperature of the heat medium flowing out of the water passage of the water-refrigerant heat exchanger 12 and flowing into the heater core 32.
 湿度センサ68は、車室内の車両窓ガラスFW近傍の内気湿度Rh(相対湿度)を検出する内気湿度検出部である。車両窓ガラスFW近傍の内気湿度Rhは、車両窓ガラスFWの曇り易さに相関する物理量である。内気湿度Rhは、車両窓ガラスFWの防曇が必要であるか否かを判定するために用いることができる。従って、湿度センサ68は、窓曇り検出部としての機能を兼ね備えている。 The humidity sensor 68 is an inside air humidity detection unit that detects the inside air humidity Rh (relative humidity) in the vicinity of the vehicle window glass FW in the vehicle interior. The internal air humidity Rh in the vicinity of the vehicle window glass FW is a physical quantity that correlates with the susceptibility to fogging of the vehicle window glass FW. The inside air humidity Rh can be used to determine whether or not the vehicle window glass FW needs to be anti-fog. Therefore, the humidity sensor 68 also has a function as a window fogging detection unit.
 空調風温度センサ69は、混合空間から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The conditioned air temperature sensor 69 is an conditioned air temperature detecting unit that detects the blast air temperature TAV blown from the mixed space to the vehicle interior.
 さらに、空調制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル70が接続されている。空調制御装置50には、操作パネル70に設けられた各種操作スイッチの操作信号が入力される。 Further, an operation panel 70 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 50. The operation signals of various operation switches provided on the operation panel 70 are input to the air conditioning control device 50.
 操作パネル70に設けられた各種操作スイッチとしては、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、吹出口モード切替スイッチ、エコノミースイッチ70a、シートヒータスイッチ70b等がある。 Various operation switches provided on the operation panel 70 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, an outlet mode changeover switch, an economy switch 70a, a seat heater switch 70b, and the like.
 オートスイッチは、乗員の操作によって車両用空調装置1の自動空調制御を設定あるいは解除する空調制御設定部である。エアコンスイッチは、乗員の操作によって室内蒸発器18にて送風空気の冷却を行うことを要求する空調用冷却要求部である。 The auto switch is an air conditioning control setting unit that sets or cancels the automatic air conditioning control of the vehicle air conditioning device 1 by the operation of the occupant. The air conditioner switch is a cooling request unit for air conditioning that requires the indoor evaporator 18 to cool the blown air by the operation of an occupant.
 風量設定スイッチは、乗員の操作によって室内送風機42の送風量を手動設定するための風量設定部である。温度設定スイッチは、乗員の操作によって車室内の目標温度Tsetを設定する目標温度設定部である。吹出口モード切替スイッチは、乗員の操作によって吹出口モードを設定する吹出口モード設定部である。 The air volume setting switch is an air volume setting unit for manually setting the air volume of the indoor blower 42 by the operation of the occupant. The temperature setting switch is a target temperature setting unit that sets the target temperature Tset in the vehicle interior by the operation of the occupant. The outlet mode changeover switch is an outlet mode setting unit that sets the outlet mode by the operation of the occupant.
 エコノミースイッチ70aは、乗員の操作によって、通常暖房モードと省電力暖房モードとを切り替えることを要求する暖房モード切替要求部である。シートヒータスイッチ70bは、乗員の操作によって、補助暖房装置であるシートヒータ90へ電力を供給して発熱させることを要求する補助暖房要求部である。 The economy switch 70a is a heating mode switching requesting unit that requires switching between the normal heating mode and the power saving heating mode by the operation of the occupant. The seat heater switch 70b is an auxiliary heating requesting unit that requires the seat heater 90, which is an auxiliary heating device, to be supplied with electric power to generate heat by the operation of an occupant.
 ここで、空調制御装置50は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。従って、空調制御装置50において、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)は、それぞれの制御対象機器の作動を制御する制御部を構成している。 Here, the air conditioning control device 50 is integrally configured with a control unit that controls various controlled devices connected to the output side of the air conditioning control device 50. Therefore, in the air conditioning control device 50, the configuration (hardware and software) that controls the operation of each controlled target device constitutes a control unit that controls the operation of each controlled target device.
 例えば、空調制御装置50のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、吐出能力制御部50aを構成している。室内送風機42の送風能力(具体的には、室内送風機42の回転数)を制御する構成は、送風能力制御部50bを構成している。 For example, among the air conditioning control devices 50, the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) constitutes the discharge capacity control unit 50a. The configuration for controlling the ventilation capacity of the indoor blower 42 (specifically, the rotation speed of the indoor blower 42) constitutes the ventilation capacity control unit 50b.
 内外気切替装置43(具体的には、内外気切替装置用の電動アクチュエータ43d)の作動を制御する構成は、内外気割合制御部50cを構成している。エアミックスドア44(具体的には、エアミックスドア用の電動アクチュエータ44a)の作動を制御する構成は、加熱風量制御部50dを構成している。 The configuration for controlling the operation of the inside / outside air switching device 43 (specifically, the electric actuator 43d for the inside / outside air switching device) constitutes the inside / outside air ratio control unit 50c. The configuration for controlling the operation of the air mix door 44 (specifically, the electric actuator 44a for the air mix door) constitutes the heated air volume control unit 50d.
 次に、上記構成における本実施形態の作動について説明する。車両用空調装置1では、車室内の適切な空調を実現するために、運転モードを切り替える。運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル70のオートスイッチが投入(ON)されて、自動制御運転が設定された際に実行される。 Next, the operation of the present embodiment in the above configuration will be described. In the vehicle air conditioner 1, the operation mode is switched in order to realize appropriate air conditioning in the vehicle interior. The operation mode is switched by executing the air conditioning control program. The air conditioning control program is executed when the auto switch of the operation panel 70 is turned on (ON) and the automatic control operation is set.
 空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを算出する。 In the main routine of the air conditioning control program, the detection signal of the sensor group for air conditioning control described above and the operation signal from various air conditioning operation switches are read. Then, based on the values of the read detection signal and the operation signal, the target blowing temperature TAO, which is the target temperature of the blowing air blown into the vehicle interior, is calculated.
 具体的には、目標吹出温度TAOは、以下数式F1を用いて算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内の目標温度(車室内設定温度)、Trは内気温センサ61によって検出された内気温、Tamは外気温センサ62によって検出された外気温、Asは日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Specifically, the target blowout temperature TAO is calculated using the following mathematical formula F1.
TAO = Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ... (F1)
In addition, Tset is the target temperature in the vehicle interior (vehicle interior set temperature) set by the temperature setting switch, Tr is the internal air temperature detected by the internal air temperature sensor 61, Tam is the outside air temperature detected by the outside air temperature sensor 62, and As. Is the amount of solar radiation detected by the solar radiation sensor 63. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 そして、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、運転モードが冷房モードに切り替えられる。 Then, when the target blowing temperature TAO is lower than the predetermined cooling reference temperature α with the air conditioner switch of the operation panel 70 turned on, the operation mode is switched to the cooling mode.
 また、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、運転モードが直列除湿暖房モードに切り替えられる。 Further, with the air conditioner switch of the operation panel 70 turned on, the target outlet temperature TAO is equal to or higher than the cooling reference temperature α, and the outside air temperature Tam is higher than the predetermined dehumidifying / heating reference temperature β. In that case, the operation mode is switched to the series dehumidification / heating mode.
 また、操作パネル70のエアコンスイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、運転モードが並列除湿暖房モードに切り替えられる。 Further, when the air conditioner switch of the operation panel 70 is turned on, the target outlet temperature TAO is equal to or higher than the cooling reference temperature α, and the outside air temperature Tam is equal to or lower than the dehumidifying / heating reference temperature β. The operation mode is switched to the parallel dehumidification / heating mode.
 また、エアコンスイッチの冷房スイッチが投入されていない場合には、運転モードが暖房モードに切り替えられる。 Also, if the cooling switch of the air conditioner switch is not turned on, the operation mode is switched to the heating mode.
 このため、冷房モードは、主に夏季のように比較的外気温が高い場合に実行される。直列除湿暖房モードは、主に春季あるいは秋季に実行される。並列除湿暖房モードは、主に早春季あるいは晩秋季のように直列除湿暖房モードよりも高い加熱能力で送風空気を加熱する必要のある場合に実行される。暖房モードは、主に冬季の低外気温時に実行される。 For this reason, the cooling mode is mainly executed when the outside temperature is relatively high, such as in summer. The series dehumidifying and heating mode is mainly performed in spring or autumn. The parallel dehumidifying and heating mode is mainly executed when it is necessary to heat the blown air with a higher heating capacity than the series dehumidifying and heating mode, such as in early spring or late autumn. The heating mode is mainly performed during low outside temperatures in winter.
 空調制御プログラムでは、車両用空調装置1の作動停止が要求されるまで、所定の制御周期τ毎に、検出信号および操作信号の読み込み、運転モードの決定、各種制御対象機器の作動状態の決定、各種制御対象機器への制御電圧および制御信号の出力といった制御ルーチンを繰り返す。以下に、各運転モードにおける詳細作動について説明する。 In the air-conditioning control program, the detection signal and the operation signal are read, the operation mode is determined, and the operating state of various controlled devices is determined at each predetermined control cycle τ until the operation of the vehicle air-conditioning device 1 is requested to be stopped. The control routine such as output of control voltage and control signal to various controlled devices is repeated. The detailed operation in each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、空調制御装置50が、冷凍サイクル装置10の暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを減圧作用を発揮する絞り状態とする。また、空調制御装置50は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
(A) Cooling mode In the cooling mode, the air conditioning control device 50 puts the heating expansion valve 14a of the refrigeration cycle device 10 in a fully open state and puts the cooling expansion valve 14b in a throttle state that exerts a depressurizing action. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and closes the heating on-off valve 15b.
 このため、冷房モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、全開となっている暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する回路構成の蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the cooling mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the fully opened heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling are used. A steam compression type refrigeration cycle having a circuit configuration in which the refrigerant circulates in the order of the expansion valve 14b, the indoor evaporator 18, the accumulator 21, and the suction port of the compressor 11 is configured.
 そして、上記の回路構成で、空調制御装置50は、各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 Then, in the above circuit configuration, the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
 例えば、空調制御装置50は、蒸発器温度センサ64fによって検出された蒸発器温度Tefinが目標蒸発器温度TEOに近づくように、圧縮機11へ出力される制御信号を決定する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定される。 For example, the air conditioning control device 50 determines a control signal output to the compressor 11 so that the evaporator temperature Tefin detected by the evaporator temperature sensor 64f approaches the target evaporator temperature TEO. The target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the air conditioning control device 50.
 冷房モードの制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。さらに、目標蒸発器温度TEOは、室内蒸発器18の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。 In the control map of the cooling mode, it is determined that the target evaporator temperature TEO rises as the target blowout temperature TAO rises. Further, the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation of the indoor evaporator 18 can be suppressed.
 また、空調制御装置50は、冷房用膨張弁14bへ流入する冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように、冷房用膨張弁14bへ出力される制御信号を決定する。目標過冷却度SCO1は、外気温Tamに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定される。 Further, the air conditioning control device 50 determines a control signal output to the cooling expansion valve 14b so that the supercooling degree SC1 of the refrigerant flowing into the cooling expansion valve 14b approaches the target supercooling degree SCO1. The target supercooling degree SCO1 is determined based on the outside air temperature Tam with reference to a control map stored in advance in the air conditioning control device 50.
 冷房モードの制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1が決定される。過冷却度SC1は、第3冷媒温度センサ64cによって検出された温度T3および第2冷媒圧力センサ65bによって検出された圧力P2を用いて算定される。 In the cooling mode control map, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value. The degree of supercooling SC1 is calculated using the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P2 detected by the second refrigerant pressure sensor 65b.
 従って、冷房モードの冷凍サイクル装置10では、水-冷媒熱交換器12および室外熱交換器16を凝縮器として機能させ、室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、水-冷媒熱交換器12にて、冷媒が熱媒体に放熱することによって、熱媒体が加熱される。室外蒸発器18にて、冷媒が送風空気から吸熱して蒸発することによって、送風空気が冷却される。 Therefore, in the refrigerating cycle device 10 in the cooling mode, a steam compression type refrigerating cycle is configured in which the water-refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a condenser and the indoor evaporator 18 functions as an evaporator. To. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium. In the outdoor evaporator 18, the refrigerant absorbs heat from the blown air and evaporates, so that the blown air is cooled.
 また、空調制御装置50は、予め定めた水圧送能力を発揮するように、熱媒体回路30の熱媒体ポンプ31へ出力される制御電圧を決定する。従って、冷房モードの熱媒体回路30では、水-冷媒熱交換器12にて加熱された熱媒体がヒータコア32へ供給される。そして、ヒータコア32にて、熱媒体が送風空気へ放熱することによって、送風空気が加熱される。 Further, the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 so as to exert a predetermined water pressure feeding capacity. Therefore, in the heat medium circuit 30 in the cooling mode, the heat medium heated by the water-refrigerant heat exchanger 12 is supplied to the heater core 32. Then, in the heater core 32, the heat medium dissipates heat to the blown air, so that the blown air is heated.
 また、空調制御装置50は、目標吹出温度TAOが極低温域となる最大冷房時以外は、空気通路40aへ外気が流入するように、内外気切替装置用の電動アクチュエータ43dへ出力される制御信号を決定する。つまり、最大冷房時以外は、内気率RFを0%とする。一方、最大冷房時には、空調制御装置50は、空気通路40aへ内気が流入するように、内外気切替装置用の電動アクチュエータ43dへ出力される制御信号を決定する。つまり、最大冷房時には、内気率RFを100%とする。 Further, the air conditioning control device 50 outputs a control signal to the electric actuator 43d for the inside / outside air switching device so that the outside air flows into the air passage 40a except during the maximum cooling in which the target blowout temperature TAO is in the extremely low temperature range. To determine. That is, the shyness rate RF is set to 0% except during the maximum cooling. On the other hand, at the time of maximum cooling, the air conditioning control device 50 determines a control signal output to the electric actuator 43d for the inside / outside air switching device so that the inside air flows into the air passage 40a. That is, at the time of maximum cooling, the inside air rate RF is set to 100%.
 また、空調制御装置50は、目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して、室内送風機42へ出力されるブロワ電圧Vbを決定する。冷房モードの制御マップでは、目標吹出温度TAOの極低温域(すなわち、最大冷房時)あるいは極高温域(すなわち、最大暖房時)となっている際に、送風量が最大となるようにブロワ電圧Vbを決定する。さらに、目標吹出温度TAOが、極低温域あるいは極高温域から中間温度域に向かうに伴って、送風量を減少させるようにブロワ電圧Vbを決定する。 Further, the air conditioning control device 50 determines the blower voltage Vb to be output to the indoor blower 42 with reference to the control map stored in advance in the air conditioning control device 50 based on the target blowout temperature TAO. In the control map of the cooling mode, the blower voltage is set so that the amount of air blown is maximized when the target blowing temperature TAO is in the extremely low temperature region (that is, at the maximum cooling) or the extremely high temperature region (that is, at the maximum heating). Determine Vb. Further, the blower voltage Vb is determined so as to reduce the amount of air blown as the target blowout temperature TAO moves from the extremely low temperature region or the extremely high temperature region to the intermediate temperature region.
 また、空調制御装置50は、目標吹出温度TAO、蒸発器温度Tefin、熱媒体温度センサ66によって検出された熱媒体温度TWHに基づいて、エアミックス開度SWを決定する。そして、決定されたエアミックス開度SWとなるように、エアミックスドア用の電動アクチュエータ44aへ出力される制御信号を決定する。エアミックス開度SWは、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくように決定される。 Further, the air conditioning control device 50 determines the air mix opening SW based on the target blowout temperature TAO, the evaporator temperature Tefin, and the heat medium temperature TWH detected by the heat medium temperature sensor 66. Then, the control signal output to the electric actuator 44a for the air mix door is determined so as to have the determined air mix opening SW. The air mix opening SW is determined so that the temperature of the blown air blown into the vehicle interior approaches the target blowout temperature TAO.
 また、空調制御装置50は、目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して、吹出口モードドア用の電動アクチュエータ48へ出力される制御信号を決定する。 Further, the air conditioning control device 50 determines a control signal output to the electric actuator 48 for the outlet mode door with reference to the control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO. ..
 冷房モードの制御マップでは、目標吹出温度TAOが低温域から高温域へと上昇するに伴って、吹出口モードを、フェイスモード、バイレベルモード、フットモードの順に切り替える。また、目標吹出温度TAOが高温域から低温域へと下降するに伴って、吹出口モードを、フットモード、バイレベルモード、フェイスモードの順に切り替える。冷房モードでは、吹出口モードとして、主にフェイスモードが選択される。 In the cooling mode control map, the outlet mode is switched in the order of face mode, buy-level mode, and foot mode as the target outlet temperature TAO rises from the low temperature range to the high temperature range. Further, as the target outlet temperature TAO decreases from the high temperature region to the low temperature region, the outlet mode is switched in the order of foot mode, buy-level mode, and face mode. In the cooling mode, the face mode is mainly selected as the outlet mode.
 従って、冷房モードの室内空調ユニット40では、内外気切替装置43を介して空気通路40aへ流入した送風空気が、室内蒸発器18を通過して冷却される。さらに、室内蒸発器18にて冷却された送風空気は、エアミックスドア44の開度に応じて、ヒータコア32側および冷風バイパス通路45を流れる。 Therefore, in the indoor air conditioning unit 40 in the cooling mode, the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18 and is cooled. Further, the blown air cooled by the indoor evaporator 18 flows through the heater core 32 side and the cold air bypass passage 45 according to the opening degree of the air mix door 44.
 ヒータコア32にて加熱された送風空気(すなわち、温風)と冷風バイパス通路45を通過した送風空気(すなわち、冷風)は、混合空間46にて混合されて目標吹出温度TAOに近づく。そして、混合空間46にて温度調整された送風空気が、車室内へ吹き出される。これにより、車室内の冷房が実現される。 The blown air heated by the heater core 32 (that is, hot air) and the blown air that has passed through the cold air bypass passage 45 (that is, cold air) are mixed in the mixing space 46 and approach the target blowing temperature TAO. Then, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
 (b)直列除湿暖房モード
 直列除湿暖房モードでは、空調制御装置50が、冷凍サイクル装置10の暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とする。また、空調制御装置50は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
(B) Series dehumidifying and heating mode In the series dehumidifying and heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 in a throttled state and the cooling expansion valve 14b in a throttled state. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and closes the heating on-off valve 15b.
 このため、直列除湿暖房モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the series dehumidifying / heating mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling expansion valve A steam compression type refrigeration cycle in which the refrigerant circulates in the order of 14b, the indoor evaporator 18, the accumulator 21, and the suction port of the compressor 11 is configured.
 そして、上記の回路構成で、空調制御装置50は、各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 Then, in the above circuit configuration, the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
 例えば、空調制御装置50は、冷房モードと同様に、圧縮機11へ出力される制御信号を決定する。 For example, the air conditioning control device 50 determines the control signal output to the compressor 11 as in the cooling mode.
 また、空調制御装置50は、目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照してサイクルの成績係数(COP)が極大値に近づくように、冷房用膨張弁14bおよび暖房用膨張弁14aへ出力される制御信号を決定する。直列除湿暖房モードの制御マップでは、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度を減少させ、冷房用膨張弁14bの絞り開度を増加させるように制御信号を決定する。 Further, the air conditioning control device 50 refers to a control map stored in advance in the air conditioning control device 50 based on the target blowout temperature TAO so that the coefficient of performance (COP) of the cycle approaches the maximum value. The control signal output to 14b and the heating expansion valve 14a is determined. In the control map of the series dehumidifying and heating mode, the control signal is determined so as to decrease the throttle opening of the heating expansion valve 14a and increase the throttle opening of the cooling expansion valve 14b as the target outlet temperature TAO rises. do.
 従って、直列除湿暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12を凝縮器として機能させ、室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。さらに、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器16を凝縮器として機能させる。また、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器16を蒸発器として機能させる。 Therefore, in the refrigerating cycle device 10 in the series dehumidifying / heating mode, a steam compression type refrigerating cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the indoor evaporator 18 functions as an evaporator. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam, the outdoor heat exchanger 16 functions as a condenser. Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam, the outdoor heat exchanger 16 is made to function as an evaporator.
 そして、直列除湿暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12にて、冷媒が熱媒体に放熱することによって、熱媒体が加熱される。室内蒸発器18にて、冷媒が送風空気から吸熱することによって、送風空気が冷却される。 Then, in the refrigeration cycle device 10 in the series dehumidifying / heating mode, the heat medium is heated by the refrigerant dissipating heat to the heat medium in the water-refrigerant heat exchanger 12. In the indoor evaporator 18, the blown air is cooled by the refrigerant absorbing heat from the blown air.
 また、空調制御装置50は、冷房モードと同様に、熱媒体回路30の熱媒体ポンプ31へ出力される制御電圧を決定する。従って、直列除湿暖房モードの熱媒体回路30では、冷房モードと同様に、ヒータコア32にて、送風空気が加熱される。 Further, the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the cooling mode. Therefore, in the heat medium circuit 30 in the series dehumidifying and heating mode, the blown air is heated by the heater core 32 as in the cooling mode.
 また、空調制御装置50は、冷房モードと同様に、室内空調ユニット40の内外気切替装置用の電動アクチュエータ43d、室内送風機42、エアミックスドア用の電動アクチュエータ44a、吹出口モードドア用の電動アクチュエータ48等へ出力される制御信号を決定する。 Further, as in the cooling mode, the air conditioner control device 50 includes an electric actuator 43d for the inside / outside air switching device of the indoor air conditioner unit 40, an indoor blower 42, an electric actuator 44a for the air mix door, and an electric actuator for the outlet mode door. The control signal to be output to 48 etc. is determined.
 従って、直列除湿暖房モードの室内空調ユニット40では、冷房モードと同様に、空気通路40aへ流入した送風空気が、室内蒸発器18を通過する際に冷却されて除湿される。室内蒸発器18にて冷却されて除湿された送風空気の一部は、ヒータコア32にて再加熱される。そして、混合空間46にて温度調整された送風空気が、車室内へ吹き出される。これにより、車室内の除湿暖房が実現される。 Therefore, in the indoor air conditioning unit 40 in the series dehumidifying and heating mode, the blown air flowing into the air passage 40a is cooled and dehumidified when passing through the indoor evaporator 18, as in the cooling mode. A part of the blown air cooled and dehumidified by the indoor evaporator 18 is reheated by the heater core 32. Then, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, dehumidifying and heating of the vehicle interior is realized.
 さらに、直列除湿暖房モードの冷凍サイクル装置10では、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度を減少させ、冷房用膨張弁14bの絞り開度を増加させている。これによれば、目標吹出温度TAOの上昇に伴って、ヒータコア32における送風空気の加熱能力を向上させることができる。 Further, in the refrigerating cycle device 10 in the series dehumidifying and heating mode, the throttle opening of the heating expansion valve 14a is reduced and the throttle opening of the cooling expansion valve 14b is increased as the target outlet temperature TAO rises. .. According to this, as the target blowing temperature TAO rises, the heating capacity of the blown air in the heater core 32 can be improved.
 より詳細には、室外熱交換器16における冷媒の飽和温度が外気温Tamよりも高くなっている際には、目標吹出温度TAOの上昇に伴って、室外熱交換器16における冷媒の飽和温度を低下させて、外気温Tamとの温度差を縮小させることができる。これによれば、室外熱交換器16における冷媒の放熱量を減少させて、水-冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。 More specifically, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam, the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is increased as the target outlet temperature TAO rises. It can be lowered to reduce the temperature difference from the outside air temperature Tam. According to this, it is possible to reduce the amount of heat dissipated from the refrigerant in the outdoor heat exchanger 16 and increase the amount of heat dissipated from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12.
 また、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、目標吹出温度TAOの上昇に伴って、室外熱交換器16における冷媒の飽和温度を低下させて、外気温Tamとの温度差を拡大させることができる。これによれば、室外熱交換器16における冷媒の吸熱量を増加させて、水-冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。 Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam, the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lowered as the target outlet temperature TAO rises. Therefore, the temperature difference from the outside air temperature Tam can be widened. According to this, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 can be increased, and the amount of heat dissipated from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 can be increased.
 従って、直列除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、加熱部を形成するヒータコア32における送風空気の加熱能力を向上させることができる。 Therefore, in the series dehumidifying and heating mode, the heating capacity of the blown air in the heater core 32 forming the heating portion can be improved as the target blowing temperature TAO rises.
 (c)並列除湿暖房モード
 並列除湿暖房モードでは、空調制御装置50が、冷凍サイクル装置10の暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とする。また、空調制御装置50は、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
(C) Parallel dehumidifying / heating mode In the parallel dehumidifying / heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 in a throttled state and the cooling expansion valve 14b in a throttled state. Further, the air conditioning control device 50 opens the dehumidifying on-off valve 15a and opens the heating on-off valve 15b.
 このため、並列除湿暖房モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環するとともに、圧縮機11の吐出口、水-冷媒熱交換器12、バイパス通路22a、冷房用膨張弁14b、室内蒸発器18、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、室外熱交換器16と室内蒸発器18が冷媒流れに対して並列的に接続されるサイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the parallel dehumidifying / heating mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compression Refrigerant circulates in the order of the suction port of the machine 11, and the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the bypass passage 22a, the expansion valve for cooling 14b, the indoor evaporator 18, the accumulator 21, and the compressor 11 A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the suction port is configured. That is, a cycle is configured in which the outdoor heat exchanger 16 and the indoor evaporator 18 are connected in parallel with respect to the refrigerant flow.
 そして、上記の回路構成で、空調制御装置50は、各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 Then, with the above circuit configuration, the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
 例えば、空調制御装置50は、第1冷媒圧力センサ65aによって検出された圧力P1が、目標凝縮圧力PDOに近づくように、圧縮機11へ出力される制御信号を決定する。目標凝縮圧力PDOは、熱媒体温度TWHが予め定めた目標水温TWOとなるように決定されている。 For example, the air conditioning control device 50 determines a control signal output to the compressor 11 so that the pressure P1 detected by the first refrigerant pressure sensor 65a approaches the target condensed pressure PDO. The target condensation pressure PDO is determined so that the heat medium temperature TWH becomes a predetermined target water temperature TWO.
 また、空調制御装置50は、目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照してサイクルの成績係数(COP)が極大値に近づくように、冷房用膨張弁14bおよび暖房用膨張弁14aへ出力される制御信号を決定する。並列除湿暖房モードの制御マップでは、目標吹出温度TAOの上昇に伴って、暖房用膨張弁14aの絞り開度を減少させ、冷房用膨張弁14bの絞り開度を増加させるように制御信号を決定する。 Further, the air conditioning control device 50 refers to a control map stored in advance in the air conditioning control device 50 based on the target blowout temperature TAO so that the coefficient of performance (COP) of the cycle approaches the maximum value. The control signal output to 14b and the heating expansion valve 14a is determined. In the control map of the parallel dehumidifying and heating mode, the control signal is determined so as to decrease the throttle opening of the heating expansion valve 14a and increase the throttle opening of the cooling expansion valve 14b as the target outlet temperature TAO rises. do.
 従って、並列除湿暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16および室内蒸発器18を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、水-冷媒熱交換器12にて、冷媒が熱媒体に放熱することによって、熱媒体が加熱される。室内蒸発器18にて、冷媒が送風空気から吸熱することによって、送風空気が冷却される。 Therefore, in the refrigeration cycle device 10 in the parallel dehumidification / heating mode, a steam compression type refrigeration cycle in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 and the indoor evaporator 18 function as an evaporator is provided. It is composed. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium. In the indoor evaporator 18, the blown air is cooled by the refrigerant absorbing heat from the blown air.
 また、空調制御装置50は、冷房モードと同様に、熱媒体回路30の熱媒体ポンプ31へ出力される制御電圧を決定する。従って、並列除湿暖房モードの熱媒体回路30では、冷房モードと同様に、ヒータコア32にて、送風空気が加熱される。 Further, the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the cooling mode. Therefore, in the heat medium circuit 30 in the parallel dehumidifying / heating mode, the blown air is heated by the heater core 32 as in the cooling mode.
 また、空調制御装置50は、冷房モードと同様に、室内空調ユニット40の内外気切替装置用の電動アクチュエータ43d、室内送風機42、エアミックスドア用の電動アクチュエータ44a、吹出口モードドア用の電動アクチュエータ48等へ出力される制御信号を決定する。 Further, as in the cooling mode, the air conditioner control device 50 includes an electric actuator 43d for the inside / outside air switching device of the indoor air conditioner unit 40, an indoor blower 42, an electric actuator 44a for the air mix door, and an electric actuator for the outlet mode door. The control signal to be output to 48 etc. is determined.
 従って、並列除湿暖房モードの室内空調ユニット40では、冷房モードと同様に、空気通路40aへ流入した送風空気が、室内蒸発器18を通過する際に冷却されて除湿される。室内蒸発器18にて冷却されて除湿された送風空気の一部は、ヒータコア32にて再加熱される。そして、混合空間46にて温度調整された送風空気が、車室内へ吹き出される。これにより、車室内の除湿暖房が実現される。 Therefore, in the indoor air conditioning unit 40 in the parallel dehumidifying / heating mode, the blown air flowing into the air passage 40a is cooled and dehumidified when passing through the indoor evaporator 18, as in the cooling mode. A part of the blown air cooled and dehumidified by the indoor evaporator 18 is reheated by the heater core 32. Then, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, dehumidifying and heating the interior of the vehicle is realized.
 さらに、並列除湿暖房モードの冷凍サイクル装置10では、室外熱交換器16における冷媒蒸発温度を、室内蒸発器18における冷媒蒸発温度よりも低い温度に低下させることができる。これによれば、直列除湿暖房モードよりも室外熱交換器16における冷媒の吸熱量を増加させて、水-冷媒熱交換器12における冷媒から熱媒体への放熱量を増加させることができる。 Further, in the refrigerating cycle device 10 in the parallel dehumidifying / heating mode, the refrigerant evaporation temperature in the outdoor heat exchanger 16 can be lowered to a temperature lower than the refrigerant evaporation temperature in the indoor evaporator 18. According to this, the amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 can be increased as compared with the series dehumidifying and heating mode, and the amount of heat dissipated from the refrigerant to the heat medium in the water-refrigerant heat exchanger 12 can be increased.
 従って、並列除湿暖房モードでは、直列除湿暖房モードよりもヒータコア32における送風空気の加熱能力を向上させることができる。 Therefore, in the parallel dehumidifying / heating mode, the heating capacity of the blown air in the heater core 32 can be improved as compared with the series dehumidifying / heating mode.
 (d)暖房モード
 本実施形態の車両用空調装置1では、暖房モードとして、通常暖房モード、省電力暖房モード、省電力防曇暖房モード、および省電力低騒音暖房モードを切り替えることができる。ここで、省電力防曇暖房モードおよび省電力低騒音暖房モードは、通常暖房モードよりも冷凍サイクル装置10の加熱能力を低減させる運転モードなので、広義の省電力暖房モードに含まれる。
(D) Heating mode In the vehicle air conditioner 1 of the present embodiment, the normal heating mode, the power saving heating mode, the power saving anti-fog heating mode, and the power saving low noise heating mode can be switched as the heating mode. Here, the power-saving anti-fog heating mode and the power-saving low-noise heating mode are included in the power-saving heating mode in a broad sense because they are operation modes in which the heating capacity of the refrigeration cycle device 10 is reduced as compared with the normal heating mode.
 暖房モードにおける各運転モードの切り替えは、図3に示す制御フローが実行されることによって行われる。図3に示す制御フローは、空調制御プログラムのメインルーチンのサブルーチンとして実行される。図3に示す制御フローは、メインルーチンにて、暖房モードが選択された際に実行される。 Switching of each operation mode in the heating mode is performed by executing the control flow shown in FIG. The control flow shown in FIG. 3 is executed as a subroutine of the main routine of the air conditioning control program. The control flow shown in FIG. 3 is executed when the heating mode is selected in the main routine.
 図3のステップS1では、空調制御装置50の入力側に接続された空調制御用のセンサ群の検出信号および空調操作スイッチからの操作信号を読み込む。ステップS2では、図4に示すように、第1フラグFLG1および第2フラグFLG2の値を決定する。第1フラグFLG1および第2フラグFLG2は、省電力暖房モードでの運転を行うか否かを判定するために用いられるフラグである。 In step S1 of FIG. 3, the detection signal of the sensor group for air conditioning control connected to the input side of the air conditioning control device 50 and the operation signal from the air conditioning operation switch are read. In step S2, as shown in FIG. 4, the values of the first flag FLG1 and the second flag FLG2 are determined. The first flag FLG1 and the second flag FLG2 are flags used for determining whether or not to operate in the power saving heating mode.
 図4のステップS21では、図4に記載された制御特性図に示すように、内気温Trから目標温度Tsetを減算した温度差(Tr-Tset)に基づいて、第1フラグFLG1の値を決定する。 In step S21 of FIG. 4, as shown in the control characteristic diagram shown in FIG. 4, the value of the first flag FLG1 is determined based on the temperature difference (Tr-Tset) obtained by subtracting the target temperature Tset from the internal air temperature Tr. do.
 具体的には、温度差(Tr-Tset)が増加過程にある時は、温度差(Tr-Tset)が第1判定値(本実施形態では、1℃)以上となった際に、第1フラグFLG1を1とする。温度差(Tr-Tset)が減少過程にある時は、温度差(Tr-Tset)が第2判定値(本実施形態では、-1℃)以下となった際に、第1フラグFLG1を0とする。なお、第1判定値と第2判定値との差は、制御ハンチングを防止するためのヒステリシス幅である。 Specifically, when the temperature difference (Tr-Tset) is in the process of increasing, when the temperature difference (Tr-Tset) becomes the first determination value (1 ° C. in the present embodiment) or more, the first The flag FLG1 is set to 1. When the temperature difference (Tr-Tset) is in the process of decreasing, the first flag FLG1 is set to 0 when the temperature difference (Tr-Tset) becomes equal to or less than the second determination value (-1 ° C. in this embodiment). And. The difference between the first determination value and the second determination value is the hysteresis width for preventing control hunting.
 従って、第1フラグFLG1は、省電力暖房モードを実行しても乗員の暖房感を悪化させない程度に内気温Trが上昇していることを示すフラグである。 Therefore, the first flag FLG1 is a flag indicating that the internal air temperature Tr has risen to the extent that the heating feeling of the occupant is not deteriorated even if the power saving heating mode is executed.
 ステップS22では、エコノミースイッチ70aが投入(ON)にされた際に、第2フラグFLG2を1とする。エコノミースイッチ70aが非投入(OFF)にされた際に、第2フラグFLG2を0とする。 In step S22, the second flag FLG2 is set to 1 when the economy switch 70a is turned on (ON). When the economy switch 70a is turned off (OFF), the second flag FLG2 is set to 0.
 ステップS23では、予め定めた基準時間あたりの内気温Trの低下量ΔT(前回の内気温Trn-1から今回の内気温Trnを減算した値)が基準温度低下量KΔT以上になっているか否かが判定される。ステップS23にて、低下量ΔTが基準温度低下量KΔT以上になっていると判定された場合は、ステップS24へ進み、第2フラグFLG2を0としてステップS25へ進む。 In step S23, whether or not the amount of decrease in the internal temperature Tr per predetermined reference time ΔT (value obtained by subtracting the current internal temperature Trn from the previous internal temperature Trn-1) is equal to or greater than the reference temperature decrease amount KΔT. Is determined. If it is determined in step S23 that the decrease amount ΔT is equal to or greater than the reference temperature decrease amount KΔT, the process proceeds to step S24, the second flag FLG2 is set to 0, and the process proceeds to step S25.
 ステップS25では、予め定めた基準時間あたりの内気湿度Rhの増加量ΔH(今回の内気湿度Rhnから前回の内気湿度Rhn-1を減算した値)が基準湿度増加量KΔH以上になっているか否かが判定される。ステップS25にて、増加量ΔHが基準湿度増加量KΔH以上になっていると判定された場合は、ステップS26へ進み、第2フラグFLG2を0としてステップS27へ進む。 In step S25, whether or not the increase amount ΔH of the inside air humidity Rh per predetermined reference time (value obtained by subtracting the previous inside air humidity Rhn-1 from the current inside air humidity Rhn) is equal to or more than the reference humidity increase amount KΔH. Is determined. If it is determined in step S25 that the increase amount ΔH is equal to or greater than the reference humidity increase amount KΔH, the process proceeds to step S26, the second flag FLG2 is set to 0, and the process proceeds to step S27.
 ステップS27では、シートヒータスイッチ70bが投入されているか否か、すなわち、シートヒータ90が作動しているか否かが判定される。ステップS27にて、シートヒータ90が作動していると判定された場合は、ステップS28へ進み、第2フラグFLG2を1としてメインルーチンへ戻る。 In step S27, it is determined whether or not the seat heater switch 70b is turned on, that is, whether or not the seat heater 90 is operating. If it is determined in step S27 that the seat heater 90 is operating, the process proceeds to step S28, and the second flag FLG2 is set to 1 to return to the main routine.
 従って、第2フラグFLG2は、乗員が手動で省電力暖房モードへの切り替えを要求していること、あるいは、空調制御装置50が自動で省電力暖房モードへ切り替えることを示すフラグである。 Therefore, the second flag FLG2 is a flag indicating that the occupant manually requests the switch to the power saving heating mode, or the air conditioning control device 50 automatically switches to the power saving heating mode.
 次に、図3のステップS3では、第1フラグFLG1が1であり、かつ、第2フラグFLG2が1であるか否かを判定する。 Next, in step S3 of FIG. 3, it is determined whether or not the first flag FLG1 is 1 and the second flag FLG2 is 1.
 ステップS3にて、第1フラグFLG1および第2フラグFLG2の少なくとも一方が0になっていると判定された場合は、ステップS6へ進む。ステップS6では、運転モードを通常暖房モードに切り替えて、メインルーチンへ戻る。ステップS3にて、第1フラグFLG1が1であり、かつ、第2フラグFLG2が1であると判定された場合は、ステップS4へ進む。 If it is determined in step S3 that at least one of the first flag FLG1 and the second flag FLG2 is 0, the process proceeds to step S6. In step S6, the operation mode is switched to the normal heating mode, and the process returns to the main routine. If it is determined in step S3 that the first flag FLG1 is 1 and the second flag FLG2 is 1, the process proceeds to step S4.
 ステップS4では、防曇判定フラグFLG3が1であるか否かが判定される。防曇判定フラグFLG3は、車両窓ガラスFWの防曇が必要であることを示すフラグである。従って、ステップS4は、車両窓ガラスFWの防曇が必要であるか否かを判定する防曇判定部である。 In step S4, it is determined whether or not the anti-fog determination flag FLG3 is 1. The anti-fog determination flag FLG3 is a flag indicating that the vehicle window glass FW needs to be anti-fog. Therefore, step S4 is an anti-fog determination unit for determining whether or not anti-fog is required for the vehicle window glass FW.
 防曇判定フラグFLG3は、内気湿度Rhが上昇過程にある時は、内気湿度Rhが第1基準内気湿度KRh1以上となった際に1となる。また、防曇判定フラグFLG3は、内気湿度Rhが下降過程にある時は、内気湿度Rhが第2基準内気湿度KRh2以下となった際に0となる。 The anti-fog determination flag FLG3 is set to 1 when the inside air humidity Rh is in the process of rising and when the inside air humidity Rh becomes 1 or more than the first reference inside air humidity KRh1. Further, the anti-fog determination flag FLG3 becomes 0 when the inside air humidity Rh is in the descending process and when the inside air humidity Rh becomes equal to or less than the second reference inside air humidity KRh2.
 第1基準内気湿度KRh1は、第2基準内気湿度KRh2よりも高い値である。第1基準内気湿度KRh1と第2基準内気湿度KRh2との差は、制御ハンチングを防止するためのヒステリシス幅である。 The first standard internal air humidity KRh1 is a higher value than the second standard internal air humidity KRh2. The difference between the first reference internal air humidity KRh1 and the second reference internal air humidity KRh2 is a hysteresis width for preventing control hunting.
 ステップS4にて、防曇判定フラグFLG3が1であると判定された場合は、車両窓ガラスFWの防曇が必要であると判定して、ステップS9へ進む。ステップS9では、省電力防曇暖房モードに切り替えて、メインルーチンへ戻る。ステップS4にて、防曇判定フラグFLG3が0であると判定された場合は、車両窓ガラスFWの防曇が必要ないと判定して、ステップS5へ進む。 If it is determined in step S4 that the anti-fog determination flag FLG3 is 1, it is determined that anti-fog of the vehicle window glass FW is necessary, and the process proceeds to step S9. In step S9, the mode is switched to the power-saving anti-fog heating mode, and the process returns to the main routine. If it is determined in step S4 that the anti-fog determination flag FLG3 is 0, it is determined that the anti-fog of the vehicle window glass FW is not necessary, and the process proceeds to step S5.
 ステップS5では、低騒音判定フラグFLG4が1であるか否かが判定される。低騒音判定フラグFLG4は、乗員が車室内の低騒音化を要求していることを示すフラグである。従って、ステップS5は、乗員が車室内の低騒音化を要求しているか否かを判定する低騒音化要求判定部である。 In step S5, it is determined whether or not the low noise determination flag FLG4 is 1. The low noise determination flag FLG4 is a flag indicating that the occupant is requesting low noise in the vehicle interior. Therefore, step S5 is a noise reduction request determination unit that determines whether or not the occupant requests noise reduction in the vehicle interior.
 低騒音判定フラグFLG4は、基本的に0となっているが、乗員が車室内で会話をしている際、乗員がオーディオスイッチをONした際、あるいは、カーナビゲーションシステムの音声案内が行われている際に1となる。 The low noise determination flag FLG4 is basically 0, but when the occupant is having a conversation in the vehicle interior, when the occupant turns on the audio switch, or when the car navigation system is voice-guided. It becomes 1 when you are there.
 ステップS5にて、低騒音判定フラグFLG4が1であると判定された場合は、乗員が低騒音化を要求していると判定して、ステップS8へ進む。ステップS8では、省電力低騒音暖房モードに切り替えて、メインルーチンへ戻る。 If it is determined in step S5 that the low noise determination flag FLG4 is 1, it is determined that the occupant is requesting low noise, and the process proceeds to step S8. In step S8, the mode is switched to the power saving and low noise heating mode, and the process returns to the main routine.
 ステップS5にて、低騒音判定フラグFLG4が0であると判定された場合は、乗員が低騒音化を要求していないと判定して、ステップS7へ進む。ステップS7では、省電力暖房モードへ切り替えて、メインルーチンへ戻る。以下に、暖房モードとして設けられた各運転モードにおける詳細作動について説明する。 If it is determined in step S5 that the low noise determination flag FLG4 is 0, it is determined that the occupant has not requested low noise, and the process proceeds to step S7. In step S7, the mode is switched to the power saving heating mode, and the process returns to the main routine. The detailed operation in each operation mode provided as the heating mode will be described below.
 (d-1)通常暖房モード
 通常暖房モードでは、空調制御装置50が、冷凍サイクル装置10の暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置50は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。
(D-1) Normal heating mode In the normal heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 in a throttled state and the cooling expansion valve 14b in a fully closed state. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b.
 このため、通常暖房モードの冷凍サイクル装置10では、圧縮機11の吐出口、水-冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the normal heating mode, the discharge port of the compressor 11, the water-refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, the compressor. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the suction ports of 11 is configured.
 そして、上記の回路構成で、空調制御装置50は、各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 Then, in the above circuit configuration, the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
 例えば、空調制御装置50は、並列除湿暖房モードと同様に、圧縮機11へ出力される制御信号を決定する。 For example, the air conditioning control device 50 determines the control signal output to the compressor 11 as in the parallel dehumidifying / heating mode.
 また、空調制御装置50は、暖房用膨張弁14aへ流入する冷媒の過冷却度SC2が目標過冷却度SCO2に近づくように、暖房用膨張弁14aへ出力される制御信号を決定する。目標過冷却度SCO2は、熱媒体温度TWHに基づいて、予め空調制御装置50に記憶された暖房モード用の制御マップを参照して決定される。 Further, the air conditioning control device 50 determines a control signal output to the heating expansion valve 14a so that the supercooling degree SC2 of the refrigerant flowing into the heating expansion valve 14a approaches the target supercooling degree SCO2. The target supercooling degree SCO2 is determined based on the heat medium temperature TWH with reference to the control map for the heating mode stored in advance in the air conditioning control device 50.
 通常暖房モードの制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO2が決定される。過冷却度SC2は、第2冷媒温度センサ64bによって検出された温度T2および第1冷媒圧力センサ65aによって検出された圧力P1を用いて算定される。 In the control map of the normal heating mode, the target supercooling degree SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value. The degree of supercooling SC2 is calculated using the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
 従って、通常暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、水-冷媒熱交換器12にて、冷媒が熱媒体に放熱することによって、熱媒体が加熱される。 Therefore, in the refrigerating cycle device 10 in the normal heating mode, a steam compression type refrigerating cycle is configured in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 functions as an evaporator. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium.
 また、空調制御装置50は、冷房モードと同様に、熱媒体回路30の熱媒体ポンプ31へ出力される制御電圧を決定する。従って、通常暖房モードの熱媒体回路30では、冷房モードと同様に、ヒータコア32にて、送風空気が加熱される。 Further, the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the cooling mode. Therefore, in the heat medium circuit 30 in the normal heating mode, the blown air is heated by the heater core 32 as in the cooling mode.
 また、空調制御装置50は、冷房モードと同様に、室内空調ユニット40の内外気切替装置用の電動アクチュエータ43d、室内送風機42、エアミックスドア用の電動アクチュエータ44a、吹出口モードドア用の電動アクチュエータ48等へ出力される制御信号を決定する。 Further, as in the cooling mode, the air conditioner control device 50 includes an electric actuator 43d for the inside / outside air switching device of the indoor air conditioner unit 40, an indoor blower 42, an electric actuator 44a for the air mix door, and an electric actuator for the outlet mode door. The control signal to be output to 48 etc. is determined.
 ここで、通常暖房モードにおける内気率をRF1とする。また、通常暖房モードにおけるブロワ電圧をVb1とする。また、通常暖房モードにおけるエアミックス開度をSW1とする。また、暖房モードでは、いずれの運転モードであっても吹出口モードとして、主にフットモードが選択される。 Here, the inside air rate in the normal heating mode is RF1. Further, the blower voltage in the normal heating mode is Vb1. Further, the air mix opening degree in the normal heating mode is set to SW1. Further, in the heating mode, the foot mode is mainly selected as the outlet mode regardless of the operation mode.
 従って、通常暖房モードの室内空調ユニット40では、内外気切替装置43を介して空気通路40aへ流入した送風空気が、室内蒸発器18を通過する。そして、室内蒸発器18を通過した送風空気の少なくとも一部が、ヒータコア32にて加熱される。さらに、混合空間46にて温度調整された送風空気が、車室内へ吹き出される。これにより、車室内の暖房が実現される。 Therefore, in the indoor air conditioning unit 40 in the normal heating mode, the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18. Then, at least a part of the blown air that has passed through the indoor evaporator 18 is heated by the heater core 32. Further, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 (d-2)省電力暖房モード
 省電力暖房モードでは、空調制御装置50が、通常暖房モードと同様に、冷凍サイクル装置10の暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置50は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。このため、省電力暖房モードの冷凍サイクル装置10では、通常暖房モードと全く同様に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
(D-2) Power-saving heating mode In the power-saving heating mode, the air-conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 to a throttled state and all the cooling expansion valves 14b, as in the normal heating mode. Closed. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. Therefore, in the refrigerating cycle device 10 in the power-saving heating mode, a steam compression type refrigerating cycle in which the refrigerant circulates is configured in exactly the same manner as in the normal heating mode.
 そして、上記の回路構成で、空調制御装置50は、各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 Then, in the above circuit configuration, the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
 ここで、省電力暖房モードでは、制御信号等を決定する際に、第2目標水温TWO2および第2目標吹出温度TAO2を用いる。第2目標水温TWO2は、目標水温TWOから予め定めた所定温度a2を減算した値であって、目標水温TWOよりも低い値である。第2目標吹出温度TAO2は、目標吹出温度TAOから予め定めた所定温度b2を減算した値であって、目標吹出温度TAOよりも低い値である。 Here, in the power saving heating mode, the second target water temperature TWO2 and the second target outlet temperature TAO2 are used when determining the control signal and the like. The second target water temperature TWO2 is a value obtained by subtracting a predetermined predetermined temperature a2 from the target water temperature TWO, and is a value lower than the target water temperature TWO. The second target outlet temperature TAO2 is a value obtained by subtracting a predetermined predetermined temperature b2 from the target outlet temperature TAO, and is a value lower than the target outlet temperature TAO.
 空調制御装置50は、通常暖房モードと同様に、圧縮機11へ出力される制御信号を決定する。省電力暖房モードでは、第2目標水温TWO2が採用されているので、目標凝縮圧力PDOも、通常暖房モードよりも低い値となる。従って、省電力暖房モードでは、通常暖房モードよりも圧縮機11の回転数を低減させる。つまり、省電力暖房モードでは、通常暖房モードよりも加熱部の加熱能力を低減させる。 The air conditioning control device 50 determines the control signal output to the compressor 11 as in the normal heating mode. Since the second target water temperature TWO2 is adopted in the power saving heating mode, the target condensation pressure PDO is also lower than that in the normal heating mode. Therefore, in the power-saving heating mode, the rotation speed of the compressor 11 is reduced as compared with the normal heating mode. That is, in the power-saving heating mode, the heating capacity of the heating unit is reduced as compared with the normal heating mode.
 また、空調制御装置50は、通常暖房モードと同様に、サイクルの成績係数(COP)が極大値に近づくように、暖房用膨張弁14aへ出力される制御信号を決定する。 Further, the air conditioning control device 50 determines the control signal output to the heating expansion valve 14a so that the coefficient of performance (COP) of the cycle approaches the maximum value, as in the normal heating mode.
 従って、省電力暖房モードの冷凍サイクル装置10では、通常暖房モードと同様に、水-冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、水-冷媒熱交換器12にて、冷媒が熱媒体に放熱することによって、熱媒体が加熱される。省電力暖房モードでは、水-冷媒熱交換器12にて加熱された熱媒体の温度が、通常暖房モードよりも低くなる。 Therefore, in the refrigeration cycle device 10 in the power-saving heating mode, the steam compression type refrigeration in which the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 functions as an evaporator, as in the normal heating mode. The cycle is configured. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium. In the power-saving heating mode, the temperature of the heat medium heated by the water-refrigerant heat exchanger 12 is lower than that in the normal heating mode.
 また、空調制御装置50は、通常暖房モードと同様に、熱媒体回路30の熱媒体ポンプ31へ出力される制御電圧を決定する。従って、暖房モードの熱媒体回路30では、通常暖房モードと同様に、ヒータコア32にて、送風空気が加熱される。省電力暖房モードでは、ヒータコア32にて加熱された送風空気の温度が、通常暖房モードよりも低くなる。 Further, the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the normal heating mode. Therefore, in the heat medium circuit 30 in the heating mode, the blown air is heated by the heater core 32 as in the normal heating mode. In the power saving heating mode, the temperature of the blown air heated by the heater core 32 is lower than that in the normal heating mode.
 また、空調制御装置50は、内気率RF2となるように、内外気切替装置用の電動アクチュエータ43dへ出力される制御信号を決定する。内気率RF2は、通常暖房モード時の内気率RF1以上の値に設定されている。従って、省電力暖房モードでは、通常暖房モードに対して内気率RFを維持または上昇させることができる。 Further, the air conditioning control device 50 determines a control signal output to the electric actuator 43d for the inside / outside air switching device so that the inside air rate is RF2. The shyness rate RF2 is set to a value equal to or higher than the shyness rate RF1 in the normal heating mode. Therefore, in the power saving heating mode, the inside air rate RF can be maintained or increased as compared with the normal heating mode.
 また、空調制御装置50は、室内送風機42へ出力されるブロワ電圧をVb2とする。ブロワ電圧Vb2は、通常暖房モード時に出力されるブロワ電圧Vb1よりも高い値となる。具体的には、ブロワ電圧Vb1に対して予め定めた所定電圧c2を加算した値を、省電力暖房モードのブロワ電圧Vb2としている。従って、省電力暖房モードでは、通常暖房モードよりも、送風量を増加させる。 Further, in the air conditioning control device 50, the blower voltage output to the indoor blower 42 is Vb2. The blower voltage Vb2 is higher than the blower voltage Vb1 output in the normal heating mode. Specifically, the value obtained by adding a predetermined voltage c2 to the blower voltage Vb1 is defined as the blower voltage Vb2 in the power saving heating mode. Therefore, in the power-saving heating mode, the amount of air blown is increased as compared with the normal heating mode.
 ここで、所定電圧c2について説明する。まず、通常暖房モードにおける室内送風機42の送風量をAf1と定義し、省電力暖房モードにおける室内送風機42の送風量をAf2と定義する。また、通常暖房モード時のヒータコア32における熱媒体から単位風量あたりの送風空気への放熱量をΔHr1と定義し、省電力暖房モード時のヒータコア32における熱媒体から単位風量あたりの送風空気への放熱量をΔHr2と定義する。 Here, the predetermined voltage c2 will be described. First, the amount of air blown by the indoor blower 42 in the normal heating mode is defined as Af1, and the amount of air blown by the indoor blower 42 in the power-saving heating mode is defined as Af2. Further, the amount of heat radiated from the heat medium in the heater core 32 in the normal heating mode to the blown air per unit air volume is defined as ΔHr1, and the heat medium in the heater core 32 in the power saving heating mode is released to the blown air per unit air volume. The amount of heat is defined as ΔHr2.
 この際、所定電圧c2は、以下数式F2を満足するように決定されている。
Af1×ΔHr1=Af2×ΔHr2…(F2)
 前述の如く、省電力暖房モードでは、第2目標水温TWO2が採用されている。このため、ヒータコア32へ流入する熱媒体の温度が通常暖房モードよりも低くなる。従って、省電力暖房モード時の放熱量ΔHr2は、通常暖房モード時の放熱量ΔHr1よりも少なくなる。
At this time, the predetermined voltage c2 is determined so as to satisfy the following mathematical formula F2.
Af1 × ΔHr1 = Af2 × ΔHr2 ... (F2)
As described above, in the power saving heating mode, the second target water temperature TWO2 is adopted. Therefore, the temperature of the heat medium flowing into the heater core 32 is lower than that in the normal heating mode. Therefore, the heat dissipation amount ΔHr2 in the power saving heating mode is smaller than the heat dissipation amount ΔHr1 in the normal heating mode.
 これに対して、数式F2を満足するように、所定電圧c2を決定することで、通常暖房モード時に送風空気が熱媒体から吸熱する総吸熱量と、省電力暖房モード時に送風空気が熱媒体から吸熱する総吸熱量とを同等とすることができる。 On the other hand, by determining the predetermined voltage c2 so as to satisfy the formula F2, the total heat absorption amount that the blown air absorbs heat from the heat medium in the normal heating mode and the blown air from the heat medium in the power saving heating mode. The total amount of heat absorbed can be equal to the total amount of heat absorbed.
 また、空調制御装置50は、エアミックス開度SW2となるように、エアミックスドア用の電動アクチュエータ44aへ出力される制御信号を決定する。エアミックス開度SW2は、通常暖房モード時のエアミックス開度SW1以上の値に設定されている。従って、省電力暖房モードでは、通常暖房モードに対して加熱風量の割合を維持または増加させることができる。省電力電動モードでは、エアミックス開度SW2が100%となるように、エアミックスドア用の電動アクチュエータ44aへ出力される制御信号を決定してもよい。 Further, the air conditioning control device 50 determines a control signal output to the electric actuator 44a for the air mix door so as to have the air mix opening degree SW2. The air mix opening SW2 is set to a value equal to or higher than the air mix opening SW1 in the normal heating mode. Therefore, in the power saving heating mode, the ratio of the heated air volume to the normal heating mode can be maintained or increased. In the power saving electric mode, the control signal output to the electric actuator 44a for the air mix door may be determined so that the air mix opening degree SW2 becomes 100%.
 また、空調制御装置50は、通常暖房モードと同様に、吹出口モードドア用の電動アクチュエータ48等へ出力される制御信号を決定する。 Further, the air conditioning control device 50 determines a control signal output to the electric actuator 48 or the like for the outlet mode door, as in the normal heating mode.
 従って、省電力暖房モードの室内空調ユニット40では、内外気切替装置43を介して空気通路40aへ流入した送風空気が、室内蒸発器18を通過する。そして、室内蒸発器18を通過した送風空気の一部あるいは全部が、ヒータコア32にて加熱される。さらに、混合空間46にて温度調整された送風空気が、車室内へ吹き出される。これにより、車室内の暖房が実現される。 Therefore, in the indoor air conditioning unit 40 in the power saving heating mode, the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18. Then, a part or all of the blown air that has passed through the indoor evaporator 18 is heated by the heater core 32. Further, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 (d-3)省電力防曇暖房モード
 省電力防曇暖房モードでは、空調制御装置50が、通常暖房モードと同様に、冷凍サイクル装置10の暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とする。また、空調制御装置50は、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。このため、省電力防曇暖房モードの冷凍サイクル装置10では、通常暖房モードと全く同様に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
(D-3) Power-saving anti-fog heating mode In the power-saving anti-fog heating mode, the air conditioning control device 50 sets the heating expansion valve 14a of the refrigeration cycle device 10 to a throttled state and expands for cooling, as in the normal heating mode. The valve 14b is fully closed. Further, the air conditioning control device 50 closes the dehumidifying on-off valve 15a and opens the heating on-off valve 15b. Therefore, in the refrigerating cycle device 10 in the power-saving anti-fog heating mode, a steam compression type refrigerating cycle in which the refrigerant circulates is configured in exactly the same manner as in the normal heating mode.
 そして、上記の回路構成で、空調制御装置50は、各種制御対象機器へ出力される制御信号等を適宜決定し、決定された制御信号等を各種制御対象機器へ出力する。 Then, in the above circuit configuration, the air conditioning control device 50 appropriately determines the control signals and the like to be output to the various control target devices, and outputs the determined control signals and the like to the various control target devices.
 ここで、省電力防曇暖房モードでは、制御信号等を決定する際に、第3目標水温TWO3および第3目標吹出温度TAO3を用いる。 Here, in the power-saving anti-fog heating mode, the third target water temperature TWO3 and the third target outlet temperature TAO3 are used when determining the control signal and the like.
 第3目標水温TWO3は、目標水温TWOから予め定めた所定温度a3を減算した値である。第3目標水温TWO3は、目標水温TWOよりも低い値であって、第2目標水温TWO2よりも高い値である。第3目標吹出温度TAO3は、目標吹出温度TAOから予め定めた所定温度b3を減算した値である。目標吹出温度TAOよりも低い値であって、第2目標吹出温度TAO2よりも高い値である。 The third target water temperature TWO3 is a value obtained by subtracting a predetermined temperature a3 from the target water temperature TWO. The third target water temperature TWO3 is a value lower than the target water temperature TWO and a value higher than the second target water temperature TWO2. The third target outlet temperature TAO3 is a value obtained by subtracting a predetermined predetermined temperature b3 from the target outlet temperature TAO. It is a value lower than the target blowout temperature TAO and higher than the second target blowout temperature TAO2.
 空調制御装置50は、通常暖房モードと同様に、圧縮機11へ出力される制御信号を決定する。省電力防曇暖房モードでは、第3目標水温TWO3が採用されているので、目標凝縮圧力PDOが、通常暖房モード時よりも低い値であって、かつ、省電力暖房モード時よりも高い値となる。 The air conditioning control device 50 determines the control signal output to the compressor 11 as in the normal heating mode. In the power-saving anti-fog heating mode, the third target water temperature TWO3 is adopted, so that the target condensation pressure PDO is a lower value than in the normal heating mode and a higher value than in the power-saving heating mode. Become.
 従って、省電力防曇暖房モードの圧縮機11の回転数は、通常暖房モード時よりも低い値であって、省電力暖房モード時よりも高い値となる。つまり、省電力防曇暖房モードでは、通常暖房モードよりも加熱部の加熱能力を低減させるとともに、省電力暖房モードよりも加熱部の加熱能力を向上させる。 Therefore, the rotation speed of the compressor 11 in the power-saving anti-fog heating mode is lower than that in the normal heating mode and higher than that in the power-saving heating mode. That is, in the power-saving anti-fog heating mode, the heating capacity of the heating unit is reduced as compared with the normal heating mode, and the heating capacity of the heating unit is improved as compared with the power-saving heating mode.
 また、空調制御装置50は、通常暖房モードと同様に、サイクルの成績係数(COP)が極大値に近づくように、暖房用膨張弁14aへ出力される制御信号を決定する。 Further, the air conditioning control device 50 determines the control signal output to the heating expansion valve 14a so that the coefficient of performance (COP) of the cycle approaches the maximum value, as in the normal heating mode.
 従って、省電力防曇暖房モードの冷凍サイクル装置10では、通常暖房モードと同様に、水-冷媒熱交換器12を凝縮器として機能させ、室外熱交換器16を蒸発器として機能させる蒸気圧縮式の冷凍サイクルが構成される。そして、水-冷媒熱交換器12にて、冷媒が熱媒体に放熱することによって、熱媒体が加熱される。省電力防曇暖房モードでは、水-冷媒熱交換器12にて加熱された熱媒体の温度が、通常暖房モードよりも低くなるとともに、省電力暖房モードよりも高くなる。 Therefore, in the refrigerating cycle device 10 in the power-saving anti-fog heating mode, the water-refrigerant heat exchanger 12 functions as a condenser and the outdoor heat exchanger 16 functions as an evaporator, as in the normal heating mode. Refrigeration cycle is configured. Then, in the water-refrigerant heat exchanger 12, the heat medium is heated by the refrigerant dissipating heat to the heat medium. In the power-saving anti-fog heating mode, the temperature of the heat medium heated by the water-refrigerant heat exchanger 12 is lower than that in the normal heating mode and higher than that in the power-saving heating mode.
 また、空調制御装置50は、通常暖房モードと同様に、熱媒体回路30の熱媒体ポンプ31へ出力される制御電圧を決定する。従って、暖房モードの熱媒体回路30では、通常暖房モードと同様に、ヒータコア32にて、送風空気が加熱される。省電力防曇暖房モードでは、ヒータコア32にて加熱された送風空気の温度が、通常暖房モードよりも低くなるとともに、省電力暖房モードよりも高くなる。 Further, the air conditioning control device 50 determines the control voltage output to the heat medium pump 31 of the heat medium circuit 30 as in the normal heating mode. Therefore, in the heat medium circuit 30 in the heating mode, the blown air is heated by the heater core 32 as in the normal heating mode. In the power-saving anti-fog heating mode, the temperature of the blown air heated by the heater core 32 is lower than that in the normal heating mode and higher than that in the power-saving heating mode.
 また、空調制御装置50は、内気率RF3となるように、内外気切替装置用の電動アクチュエータ43dへ出力される制御信号を決定する。内気率RF3は、通常暖房モード時の内気率RF1以上の値であって、かつ、省電力暖房モードの内気率RF2以下の値に設定されている。 Further, the air conditioning control device 50 determines a control signal output to the electric actuator 43d for the inside / outside air switching device so that the inside air rate is RF3. The inside air rate RF3 is set to a value of the inside air rate RF1 or more in the normal heating mode and a value of the inside air rate RF2 or less in the power saving heating mode.
 従って、省電力防曇暖房モードでは、通常暖房モードに対して内気率RFを維持または上昇させるとともに、省電力暖房モードに対して内気率RFを維持または低下させることができる。 Therefore, in the power-saving anti-fog heating mode, the inside air rate RF can be maintained or increased with respect to the normal heating mode, and the inside air rate RF can be maintained or decreased with respect to the power-saving heating mode.
 また、空調制御装置50は、室内送風機42へ出力されるブロワ電圧をVb3とする。ブロワ電圧Vb3は、通常暖房モード時に出力されるブロワ電圧Vb1よりも高い値であり、省電力暖房モード時に出力されるブロワ電圧Vb2よりも低い値となる。具体的には、通常暖房モード時に出力されるブロワ電圧Vbに対して予め定めた所定電圧c3を加算した値を、省電力暖房モードのブロワ電圧Vbとしている。 Further, in the air conditioning control device 50, the blower voltage output to the indoor blower 42 is Vb3. The blower voltage Vb3 is a higher value than the blower voltage Vb1 output in the normal heating mode, and is lower than the blower voltage Vb2 output in the power saving heating mode. Specifically, the value obtained by adding a predetermined voltage c3 to the blower voltage Vb output in the normal heating mode is defined as the blower voltage Vb in the power saving heating mode.
 従って、省電力防曇暖房モードでは、通常暖房モードよりも送風量を増加させるとともに、省電力暖房モードよりも送風量を減少させる。 Therefore, in the power-saving anti-fog heating mode, the amount of air blown is increased as compared with the normal heating mode, and the amount of air blown is decreased as compared with the power-saving heating mode.
 所定電圧c3は、省電力暖房モードの所定電圧c2と同様に、通常暖房モード時に送風空気が熱媒体から吸熱する総吸熱量と、省電力防曇暖房モード時に送風空気が熱媒体から吸熱する総吸熱量とを同等とすることができるように決定されている。このため、所定電圧c3として、所定電圧c2よりも小さい値が採用されている。 The predetermined voltage c3 is the total amount of heat absorbed by the blown air from the heat medium in the normal heating mode and the total amount of heat absorbed by the blown air from the heat medium in the power-saving anti-fog heating mode, similarly to the predetermined voltage c2 in the power-saving heating mode. It is determined so that the amount of heat absorption can be made equivalent. Therefore, a value smaller than the predetermined voltage c2 is adopted as the predetermined voltage c3.
 また、空調制御装置50は、エアミックス開度SW3となるように、エアミックスドア用の電動アクチュエータ44aへ出力される制御信号を決定する。エアミックス開度SW3は、通常暖房モード時のエアミックス開度SW1以上の値に設定されているとともに、省電力暖房モード時のエアミックス開度SW2以下の値に設定されている。 Further, the air conditioning control device 50 determines a control signal output to the electric actuator 44a for the air mix door so as to have the air mix opening degree SW3. The air mix opening SW3 is set to a value equal to or higher than the air mix opening SW1 in the normal heating mode, and is set to a value equal to or lower than the air mix opening SW2 in the power saving heating mode.
 従って、省電力暖房モードでは、通常暖房モードに対して加熱風量の割合を維持または増加させるとともに、省電力暖房モードに対して加熱風量の割合を維持または低減させることができる。 Therefore, in the power-saving heating mode, the ratio of the heated air volume can be maintained or increased with respect to the normal heating mode, and the ratio of the heated air volume can be maintained or decreased with respect to the power-saving heating mode.
 また、空調制御装置50は、通常暖房モードと同様に、吹出口モードドア用の電動アクチュエータ48等へ出力される制御信号を決定する。 Further, the air conditioning control device 50 determines the control signal output to the electric actuator 48 or the like for the outlet mode door, as in the normal heating mode.
 従って、省電力防曇暖房モードの室内空調ユニット40では、内外気切替装置43を介して空気通路40aへ流入した送風空気が、室内蒸発器18を通過する。そして、室内蒸発器18を通過した送風空気の一部が、ヒータコア32にて加熱される。さらに、混合空間46にて温度調整された送風空気が、車室内へ吹き出される。これにより、車室内の暖房が実現される。 Therefore, in the indoor air-conditioning unit 40 in the power-saving anti-fog heating mode, the blown air that has flowed into the air passage 40a via the inside / outside air switching device 43 passes through the indoor evaporator 18. Then, a part of the blown air that has passed through the indoor evaporator 18 is heated by the heater core 32. Further, the blown air whose temperature has been adjusted in the mixing space 46 is blown into the vehicle interior. As a result, heating of the vehicle interior is realized.
 (d-4)省電力低騒音暖房モード
 省電力低騒音暖房モードでは、空調制御装置50は、室内送風機42へ出力されるブロワ電圧をVb4とする。ブロワ電圧Vb4は、省電力暖房モード時に出力されるブロワ電圧Vb2よりも低い値となる。
(D-4) Power Saving Low Noise Heating Mode In the power saving low noise heating mode, the air conditioning control device 50 sets the blower voltage output to the indoor blower 42 to Vb4. The blower voltage Vb4 is lower than the blower voltage Vb2 output in the power saving heating mode.
 具体的には、省電力暖房モード時に出力されるブロワ電圧Vb2から予め定めた所定電圧c4を減算した値を、省電力低騒音暖房モードのブロワ電圧Vb4としている。従って、省電力暖房モードでは、省電力暖房モードよりも、送風量を減少させる。所定電圧c4は、室内送風機42の騒音を低減できるように決定されている。 Specifically, the value obtained by subtracting a predetermined predetermined voltage c4 from the blower voltage Vb2 output in the power saving heating mode is defined as the blower voltage Vb4 in the power saving low noise heating mode. Therefore, in the power-saving heating mode, the amount of air blown is reduced as compared with the power-saving heating mode. The predetermined voltage c4 is determined so as to reduce the noise of the indoor blower 42.
 その他の作動は、省電力暖房モードと同様である。従って、省電力低騒音暖房モードでは、省電力暖房モードよりも室内送風機42の送風量を低下させたことにより、暖房感が低下するものの、省電力暖房モードと同様に、車室内の暖房を行うことができる。 Other operations are the same as in the power saving heating mode. Therefore, in the power-saving and low-noise heating mode, the heating feeling is lowered by reducing the amount of air blown by the indoor blower 42 as compared with the power-saving heating mode, but the interior of the vehicle is heated in the same manner as in the power-saving heating mode. be able to.
 以上の如く、本実施形態の車両用空調装置1では、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。 As described above, in the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be realized by switching the operation mode.
 ところで、本実施形態の車両用空調装置1では、暖房モード時に、加熱部を形成する冷凍サイクル装置10および熱媒体回路30にて送風空気を加熱して温風を作り出している。そして、通常暖房モードでは、加熱部によって作り出した温風と内外気切替装置43を介して導入した外気とを混合させて、車室内へ送風される送風空気の温度を適切に調整している。 By the way, in the vehicle air conditioner 1 of the present embodiment, the blown air is heated by the refrigerating cycle device 10 forming the heating portion and the heat medium circuit 30 in the heating mode to produce warm air. Then, in the normal heating mode, the warm air created by the heating unit and the outside air introduced via the inside / outside air switching device 43 are mixed to appropriately adjust the temperature of the blown air blown into the vehicle interior.
 より詳細には、通常暖房モードでは、室内空調ユニット40の空気通路40aへ内気よりも低温低湿度の外気を導入している。そして、低温低湿度の外気を乗員の所望の温度となるように再加熱して車室内へ吹き出している。従って、車室内の温度を充分に上昇させることができるとともに、車両窓ガラスFWの防曇性に優れる快適な暖房を実現することができる。 More specifically, in the normal heating mode, the outside air having a lower temperature and lower humidity than the inside air is introduced into the air passage 40a of the indoor air conditioning unit 40. Then, the low temperature and low humidity outside air is reheated to a temperature desired by the occupant and blown into the vehicle interior. Therefore, the temperature inside the vehicle interior can be sufficiently raised, and comfortable heating with excellent anti-fog property of the vehicle window glass FW can be realized.
 ところが、通常暖房モードのように、加熱部によって作り出した温風と外気とを混合させて、送風空気の温度を調整するためには、送風空気よりも高温の温風を作り出さなければならない。このため、通常暖房モードでは、冷凍サイクル装置10の消費電力が増加しやすい。 However, in order to adjust the temperature of the blown air by mixing the warm air created by the heating part and the outside air as in the normal heating mode, it is necessary to create hot air that is hotter than the blown air. Therefore, in the normal heating mode, the power consumption of the refrigeration cycle device 10 tends to increase.
 これに対して、本実施形態の車両用空調装置1では、通常暖房モードよりも加熱部の加熱能力を低減させる省電力暖房モード(省電力防曇暖房モードおよび省電力低騒音暖房モードを含む)を実行することができる。従って、省電力暖房モードでは、加熱部の消費電力を低減させることができる。 On the other hand, in the vehicle air conditioner 1 of the present embodiment, the power saving heating mode (including the power saving anti-fog heating mode and the power saving low noise heating mode) that reduces the heating capacity of the heating unit as compared with the normal heating mode). Can be executed. Therefore, in the power saving heating mode, the power consumption of the heating unit can be reduced.
 さらに、省電力暖房モード時に、通常暖房モードよりも室内送風機42の送風量を増加させるので、通常暖房モードに対して、送風空気が加熱部から吸熱する総吸熱量の低下を抑制することができる。換言すると、省電力暖房モード時に車室内へ供給される総熱量が、通常暖房モード時に車室内へ供給される総熱量よりも低減してしまうことを抑制することができる。 Further, since the amount of air blown by the indoor blower 42 is increased in the power-saving heating mode as compared with the normal heating mode, it is possible to suppress a decrease in the total amount of heat absorbed by the blown air from the heating portion in the normal heating mode. .. In other words, it is possible to prevent the total amount of heat supplied to the vehicle interior in the power-saving heating mode from being lower than the total amount of heat supplied to the vehicle interior in the normal heating mode.
 これに加えて、省電力暖房モード時に、通常暖房モードよりも内外気切替装置43の内気率RFを上昇させて、外気よりも温度の高い内気の導入割合を増加させる。従って、通常暖房モードよりも空気通路40aへ導入される送風空気の温度を上昇させることができる。これにより、省電力暖房モード時に車室内へ吹き出される送風空気の温度が、通常暖房モード時よりも低下してしまうことを抑制することができる。 In addition to this, in the power saving heating mode, the inside air ratio RF of the inside / outside air switching device 43 is increased as compared with the normal heating mode, and the introduction ratio of the inside air having a higher temperature than the outside air is increased. Therefore, the temperature of the blown air introduced into the air passage 40a can be raised more than in the normal heating mode. As a result, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
 これに加えて、省電力暖房モード時に、通常暖房モードよりもエアミックス開度SWを増加させて、加熱風量の割合を増加させる。従って、通常暖房モードよりも加熱部を形成するヒータコア32にて加熱される送風空気の風量を増加させることができる。これにより、省電力暖房モード時に車室内へ吹き出される送風空気の温度が、通常暖房モード時よりも低下してしまうことを抑制することができる。 In addition to this, in the power saving heating mode, the air mix opening SW is increased as compared with the normal heating mode to increase the ratio of the heated air volume. Therefore, it is possible to increase the air volume of the blown air heated by the heater core 32 forming the heating portion as compared with the normal heating mode. As a result, it is possible to prevent the temperature of the blown air blown into the vehicle interior in the power-saving heating mode from being lower than in the normal heating mode.
 その結果、省電力暖房モード時に、通常暖房モードよりも暖房感が悪化してしまうことを抑制することができる。すなわち、本実施形態の車両用空調装置1によれば、暖房感の悪化を抑制しつつ、消費電力を低減することができる。 As a result, it is possible to prevent the feeling of heating from becoming worse in the power-saving heating mode than in the normal heating mode. That is, according to the vehicle air conditioner 1 of the present embodiment, it is possible to reduce the power consumption while suppressing the deterioration of the heating feeling.
 ここで、上述した省電力暖房モード時に、通常暖房モードよりも室内送風機42の送風量を増加させる制御、通常暖房モードよりも内気率RFを上昇させる制御、および加熱風量の割合を増加させるようにエアミックスドア44を変位させる制御は、いずれも独立して実行することができる。 Here, in the power-saving heating mode described above, the control to increase the amount of air blown by the indoor blower 42 as compared with the normal heating mode, the control to increase the internal air coefficient RF as compared with the normal heating mode, and the ratio of the heated air amount to be increased. Any control to displace the air mix door 44 can be performed independently.
 従って、省電力暖房モード時に、少なくとも1つの制御を実行することで、暖房感の悪化を抑制することができる。もちろん、2つ以上の制御を実行することで、効果的に暖房感の悪化を抑制することができる。 Therefore, it is possible to suppress the deterioration of the heating feeling by executing at least one control in the power saving heating mode. Of course, by executing two or more controls, it is possible to effectively suppress the deterioration of the heating feeling.
 また、本実施形態の車両用空調装置1では、防曇判定部を備えている。そして、防曇判定部によって車両窓ガラスFWの防曇が必要とであると判定された際に、省電力防曇暖房モードを実行する。これによれば、省電力暖房モードを実行することによって窓曇りが発生してしまうことを抑制することができる。 Further, the vehicle air conditioner 1 of the present embodiment is provided with an anti-fog determination unit. Then, when the anti-fog determination unit determines that anti-fog of the vehicle window glass FW is necessary, the power-saving anti-fog heating mode is executed. According to this, it is possible to suppress the occurrence of window fogging by executing the power saving heating mode.
 さらに、省電力防曇暖房モードでは、省電力暖房モードよりも加熱部の加熱能力を向上させて、通常暖房モードの加熱能力に近づけている。また、省電力暖房モードよりも室内送風機42の送風量を減少させて、通常暖房モードの送風量に近づけている。つまり、省電力防曇暖房モードでは、加熱部および室内送風機42の制御状態を、省電力暖房モードから通常暖房モードへ戻すようにしている。 Furthermore, in the power-saving anti-fog heating mode, the heating capacity of the heating unit is improved as compared with the power-saving heating mode, and the heating capacity is closer to that of the normal heating mode. In addition, the amount of air blown by the indoor blower 42 is reduced as compared with the power-saving heating mode to bring it closer to the amount of air blown in the normal heating mode. That is, in the power-saving anti-fog heating mode, the control state of the heating unit and the indoor blower 42 is returned from the power-saving heating mode to the normal heating mode.
 従って、車両窓ガラスFWの防曇のために、例えば、低湿高温の送風空気を作り出して、車両窓ガラスFWへ向けて吹き出される送風空気の送風量を増加させるといった、専用制御を実施する必要がない。 Therefore, in order to prevent fogging of the vehicle window glass FW, for example, it is necessary to carry out dedicated control such as creating low-humidity and high-temperature blown air to increase the amount of blown air blown toward the vehicle window glass FW. There is no.
 さらに、省電力防曇暖房モードでは、省電力暖房モードよりも内気率を低下させて、通常暖房モードの内気率に近づけている。これに加えて、省電力防曇暖房モードでは、省電力暖房モードよりも加熱風量の割合を減少させて、通常暖房モードの加熱風量の割合に近づけている。これによれば、より一層、車両窓ガラスFWの防曇性を向上させることができる。 Furthermore, in the power-saving anti-fog heating mode, the inside air rate is lowered as compared with the power-saving heating mode, and the inside air rate is closer to that of the normal heating mode. In addition to this, in the power-saving anti-fog heating mode, the ratio of the heated air volume is reduced as compared with the power-saving heating mode to approach the ratio of the heated air volume in the normal heating mode. According to this, the anti-fog property of the vehicle window glass FW can be further improved.
 ここで、上述した省電力暖房モードよりも内気率を低下させる制御、および加熱風量の割合を減少させるエアミックスドア44を変位させる制御は、いずれも独立して実行することができる。従って、省電力防曇暖房モード時に、少なくとも1つの制御を実行することで、防曇性を向上させることができる。 Here, both the control for lowering the internal air rate and the control for displacing the air mix door 44 for reducing the ratio of the heated air volume can be independently executed as compared with the power saving heating mode described above. Therefore, the anti-fog property can be improved by executing at least one control in the power-saving anti-fog heating mode.
 また、本実施形態の車両用空調装置1では、低騒音化要求判定部を備えている。そして、低騒音化要求判定部によって乗員が低騒音化を要求していると判定された際に、省電力低騒音暖房モードを実行する。これによれば、省電力暖房モードを実行することによって通常暖房モードよりも室内送風機42の送風量が増加しても、乗員の耳障りになってしまうことを抑制することができる。 Further, the vehicle air conditioner 1 of the present embodiment is provided with a noise reduction requirement determination unit. Then, when it is determined by the noise reduction request determination unit that the occupant is requesting noise reduction, the power saving low noise heating mode is executed. According to this, even if the amount of air blown by the indoor blower 42 is increased as compared with the normal heating mode by executing the power-saving heating mode, it is possible to suppress that the occupant's ears are disturbed.
 また、本実施形態の車両用空調装置1では、エコノミースイッチ70aを備えている。これによれば、乗員の操作によって、通常暖房モードと省電力暖房モードとを切り替えることができる。 Further, the vehicle air conditioner 1 of the present embodiment is provided with an economy switch 70a. According to this, it is possible to switch between the normal heating mode and the power saving heating mode by the operation of the occupant.
 さらに、本実施形態では、乗員の操作を必要とすることなく、空調制御装置50が自動で通常暖房モードと省電力暖房モードとを切り替えることができる。 Further, in the present embodiment, the air conditioning control device 50 can automatically switch between the normal heating mode and the power saving heating mode without requiring the operation of the occupant.
 具体的には、本実施形態の車両用空調装置1では、内気温Trを検出する内気温センサ61を備えている。そして、基準時間あたりの内気温Trの低下量ΔTが予め定めた基準温度低下量KΔT以上になった際に、省電力暖房モードになっていても通常暖房モードへ切り替える。これによれば、乗員の乗降によって車両のドアが開放された場合等に、乗員の操作を必要とすることなく通常暖房モードへ切り替えることができる。 Specifically, the vehicle air conditioner 1 of the present embodiment includes an internal air temperature sensor 61 that detects the internal air temperature Tr. Then, when the decrease amount ΔT of the internal air temperature Tr per reference time becomes equal to or more than the predetermined reference temperature decrease amount KΔT, the mode is switched to the normal heating mode even if the power saving heating mode is set. According to this, when the door of the vehicle is opened by getting on and off the occupant, it is possible to switch to the normal heating mode without requiring the operation of the occupant.
 また、本実施形態の車両用空調装置1では、内気湿度Rhを検出する湿度センサ68を備えている。そして、基準時間あたりの内気湿度Rhの増加量ΔHが予め定めた基準湿度増加量KΔH以上になった際に、省電力暖房モードになっていても通常暖房モードへ切り替える。これによれば、雨天時等の乗員の乗降によって内気湿度Rhが上昇した場合等に、乗員の操作を必要とすることなく通常暖房モードへ切り替えることができる。 Further, the vehicle air conditioner 1 of the present embodiment includes a humidity sensor 68 that detects the inside air humidity Rh. Then, when the increase amount ΔH of the inside air humidity Rh per reference time becomes equal to or more than the predetermined reference humidity increase amount KΔH, the mode is switched to the normal heating mode even if the power saving heating mode is set. According to this, when the inside air humidity Rh rises due to getting on and off the occupant in rainy weather or the like, it is possible to switch to the normal heating mode without requiring the operation of the occupant.
 また、本実施形態の車両用空調装置1では、シートヒータ90が作動した際に、通常暖房モードになっていても省電力暖房モードへ切り替える。これによれば、乗員の操作を必要とすることなく省電力暖房モードへ切り替えることができる。 Further, in the vehicle air conditioner 1 of the present embodiment, when the seat heater 90 is activated, the mode is switched to the power saving heating mode even if the normal heating mode is set. According to this, it is possible to switch to the power saving heating mode without requiring the operation of the occupant.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、室内空調ユニット40の構成を変更した車両用空調装置1について説明する。本実施形態の室内空調ユニット40のフット開口穴47cは、図5に示すように、空気通路を形成するフットダクト41bを介して、第1フット吹出口41cおよび第2フット吹出口41dに接続されている。
(Second Embodiment)
In the present embodiment, the vehicle air conditioner 1 in which the configuration of the indoor air conditioner unit 40 is changed with respect to the first embodiment will be described. As shown in FIG. 5, the foot opening hole 47c of the indoor air conditioning unit 40 of the present embodiment is connected to the first foot outlet 41c and the second foot outlet 41d via the foot duct 41b forming an air passage. ing.
 第1フット吹出口41cおよび第2フット吹出口41dは、いずれも乗員の足元に向けて第2送風空気を吹き出す吹出口である。但し、第2フット吹出口41dは、第1フット吹出口41cよりも乗員から離れた方向に第2送風空気を吹き出すように開口している。従って、第2フット吹出口41dから乗員に吹き付けられる第2送風空気の風量は、第1フット吹出口41cから乗員に吹き付けられる第2送風空気の風量よりも少なくなる。 The first foot outlet 41c and the second foot outlet 41d are both outlets that blow out the second blown air toward the feet of the occupants. However, the second foot outlet 41d is open so as to blow out the second blown air in a direction away from the occupant than the first foot outlet 41c. Therefore, the air volume of the second blown air blown to the occupant from the second foot outlet 41d is smaller than the air volume of the second blown air blown to the occupant from the first foot outlet 41c.
 フットダクト41bの内部には、フット切替ドア48eが配置されている。フット切替ドア48eは、フット開口穴47cからフットダクト41bへ流入し送風空気を第1フット吹出口41cから吹き出す空気通路と、第2フット吹出口41dから吹き出す空気通路とを切り替える。 A foot switching door 48e is arranged inside the foot duct 41b. The foot switching door 48e switches between an air passage that flows into the foot duct 41b from the foot opening hole 47c and blows out air from the first foot outlet 41c and an air passage that blows out from the second foot outlet 41d.
 フット切替ドア48eは、デフロスタドア48a、フェイスドア48b、およびフットドア48cとともに、吹出口モード切替部に含まれる。フット切替ドア48eは、デフロスタドア48a、フェイスドア48b、およびフットドア48cとともに、吹出口モードドア用の電動アクチュエータ48によって連動して回転操作される。 The foot switching door 48e is included in the outlet mode switching unit together with the defroster door 48a, the face door 48b, and the foot door 48c. The foot switching door 48e is rotated and operated in conjunction with the defroster door 48a, the face door 48b, and the foot door 48c by the electric actuator 48 for the outlet mode door.
 本実施形態の吹出口モード切替部によって切り替えられる吹出口モードとしては、第1実施形態で説明したフェイスモード、バイレベルモード、およびデフロスタモードに加えて、第1フットモード、および第2フットモードがある。 As the outlet mode switched by the outlet mode switching unit of the present embodiment, in addition to the face mode, the bi-level mode, and the defroster mode described in the first embodiment, the first foot mode and the second foot mode are included. be.
 第1フットモードは、デフロスタ開口穴47aおよびフット開口穴47cの双方を開口させて、デフロスタ吹出口から空調風を吹き出すとともに、第1フット吹出口41cから空調風を吹き出す吹出口モードである。従って、第1フットモードは、実質的に、第1実施形態で説明したフットモードと同様である。 The first foot mode is an outlet mode in which both the defroster opening hole 47a and the foot opening hole 47c are opened to blow out air-conditioned air from the defroster outlet and blow out air-conditioned air from the first foot outlet 41c. Therefore, the first foot mode is substantially the same as the foot mode described in the first embodiment.
 第2フットモードは、デフロスタ開口穴47aおよびフット開口穴47cの双方を開口させて、デフロスタ吹出口から空調風を吹き出すとともに、第2フット吹出口41dから空調風を吹き出す吹出口モードである。その他の構成は、第1実施形態と同様である。 The second foot mode is an outlet mode in which both the defroster opening hole 47a and the foot opening hole 47c are opened to blow out the conditioned air from the defroster outlet and also to blow out the conditioned air from the second foot outlet 41d. Other configurations are the same as those of the first embodiment.
 次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置1の作動は、基本的に第1実施形態と同様である。従って、第1実施形態と同様に運転モードが切り替えられる。 Next, the operation of the present embodiment in the above configuration will be described. The operation of the vehicle air conditioner 1 of the present embodiment is basically the same as that of the first embodiment. Therefore, the operation mode can be switched as in the first embodiment.
 そして、(a)冷房モード、(b)直列除湿暖房モード、および(c)並列除湿暖房モードでは、空調制御装置50が、吹出口モードを、目標吹出温度TAOが低温域から高温域へと上昇するに伴って、フェイスモード、バイレベルモード、第1フットモードの順に切り替える。 Then, in (a) cooling mode, (b) series dehumidification / heating mode, and (c) parallel dehumidification / heating mode, the air conditioning control device 50 raises the outlet mode and the target outlet temperature TAO rises from the low temperature range to the high temperature range. As a result, the face mode, the bi-level mode, and the first foot mode are switched in this order.
 また、(d-1)通常暖房モードでは、空調制御装置50が、吹出口モードを、第1フットモードに切り替える。さらに、(d-2)省電力暖房モード、(d-3)省電力防曇暖房モード、(d-4)省電力低騒音暖房モードでは、空調制御装置50が、吹出口モードを、第2フットモードに切り替える。その他の作動は、第1実施形態と同様である。 Further, in the (d-1) normal heating mode, the air conditioning control device 50 switches the outlet mode to the first foot mode. Further, in the (d-2) power-saving heating mode, (d-3) power-saving anti-fog heating mode, and (d-4) power-saving low noise heating mode, the air conditioning control device 50 sets the outlet mode to the second. Switch to foot mode. Other operations are the same as in the first embodiment.
 従って、本実施形態の車両用空調装置1においても、第1実施形態と同様の効果を得ることができる。すなわち、本実施形態の車両用空調装置1では、運転モードを切り替えることによって、車室内の快適な空調を実現することができる。さらに、本実施形態の車両用空調装置1によれば、暖房感の悪化を抑制しつつ、消費電力を低減することができる。 Therefore, the same effect as that of the first embodiment can be obtained in the vehicle air conditioner 1 of the present embodiment. That is, in the vehicle air conditioner 1 of the present embodiment, comfortable air conditioning in the vehicle interior can be realized by switching the operation mode. Further, according to the vehicle air conditioner 1 of the present embodiment, it is possible to reduce the power consumption while suppressing the deterioration of the heating feeling.
 また、本実施形態の吹出口モード切替部は、通常暖房モードでは第1フットモードに切り替え、省電力暖房モードでは第2フットモードに切り替える。これによれば、通常暖房モードよりも車室内へ吹き出される送風空気の温度が低下する省電力暖房モード時に、乗員に直接吹き付けられる送風空気の風量を低下させることができる。従って、車室内へ吹き出される送風空気の温度低下による暖房感の悪化を抑制することができる。 Further, the outlet mode switching unit of the present embodiment switches to the first foot mode in the normal heating mode and to the second foot mode in the power saving heating mode. According to this, it is possible to reduce the air volume of the blown air blown directly to the occupant in the power saving heating mode in which the temperature of the blown air blown into the vehicle interior is lower than that in the normal heating mode. Therefore, it is possible to suppress deterioration of the heating feeling due to a decrease in the temperature of the blown air blown into the vehicle interior.
 本開示は、上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係る車両用空調装置1を、電気自動車に適用した例を説明したが、車両用空調装置1の適用はこれに限定されない。 In the above-described embodiment, an example in which the vehicle air conditioner 1 according to the present disclosure is applied to an electric vehicle has been described, but the application of the vehicle air conditioner 1 is not limited to this.
 車両用空調装置1は、通常のエンジン車両と比較して走行用の駆動源の発熱量が少ない等、走行用の駆動源の排熱を暖房用の熱源として利用しにくい車両等に適用して有効である。例えば、車両用空調装置1を、走行用の駆動力を内燃機関および電動モータから得るハイブリッド車両に適用してもよい。 The vehicle air conditioner 1 is applied to a vehicle or the like in which it is difficult to use the exhaust heat of the driving drive source as a heat source for heating, for example, the amount of heat generated by the driving drive source for traveling is smaller than that of a normal engine vehicle. It is valid. For example, the vehicle air conditioner 1 may be applied to a hybrid vehicle in which a driving force for traveling is obtained from an internal combustion engine and an electric motor.
 上述の実施形態では、種々の運転モードに切替可能な車両用空調装置1について説明したが、少なくとも通常暖房モードと省電力暖房モードとを実行可能に構成されていれば、上述した効果を得ることができる。すなわち、暖房感の悪化を抑制しつつ、消費電力を低減することができる。 In the above-described embodiment, the vehicle air-conditioning device 1 capable of switching to various operation modes has been described, but at least if the normal heating mode and the power-saving heating mode are configured to be executable, the above-mentioned effects can be obtained. Can be done. That is, it is possible to reduce the power consumption while suppressing the deterioration of the feeling of heating.
 車両用空調装置1の構成は、上述の実施形態に開示された構成に限定されない。 The configuration of the vehicle air conditioner 1 is not limited to the configuration disclosed in the above-described embodiment.
 上述の実施形態では、冷凍サイクル装置10および熱媒体回路30によって加熱部を形成した例を説明したが、これに限定されない。 In the above-described embodiment, an example in which the heating portion is formed by the refrigeration cycle device 10 and the heat medium circuit 30 has been described, but the present invention is not limited thereto.
 例えば、熱媒体回路30を廃止し、水-冷媒熱交換器12に代えて室内凝縮器を有する冷凍サイクル装置10によって加熱部を形成してもよい。室内凝縮器は、圧縮機11から吐出された吐出冷媒と送風空気とを熱交換させて、送風空気を加熱する送風空気加熱用の熱交換器である。室内凝縮器は、室内空調ユニット40の空気通路40a内に、ヒータコア32と同様に配置すればよい。また、電力を供給されることによって発熱する電気ヒータによって加熱部を形成してもよい。 For example, the heat medium circuit 30 may be abolished and the heating unit may be formed by a refrigeration cycle device 10 having an indoor condenser instead of the water-refrigerant heat exchanger 12. The indoor condenser is a heat exchanger for heating blown air that heats blown air by exchanging heat between the blown refrigerant discharged from the compressor 11 and blown air. The indoor condenser may be arranged in the air passage 40a of the indoor air conditioning unit 40 in the same manner as the heater core 32. Further, the heating portion may be formed by an electric heater that generates heat by being supplied with electric power.
 上述の実施形態では、補助暖房装置として、シートヒータ90を採用した例を説明したが、補助暖房装置は、これに限定されない。例えば、補助暖房装置として、ステアリングヒータ、シート送風装置、輻射ヒータを採用してもよい。 In the above-described embodiment, an example in which the seat heater 90 is adopted as the auxiliary heating device has been described, but the auxiliary heating device is not limited to this. For example, a steering heater, a seat blower, and a radiant heater may be adopted as the auxiliary heating device.
 ステアリングヒータは、電気ヒータでステアリングを加熱する補助暖房装置である。シート送風装置は、座席の内側から乗員に向けて電気ヒータで加熱した温風を送風する補助暖房装置である。輻射ヒータは、熱源光を乗員に向けて照射する補助暖房装置である。 The steering heater is an auxiliary heating device that heats the steering with an electric heater. The seat blower is an auxiliary heating device that blows warm air heated by an electric heater from the inside of the seat toward the occupants. The radiant heater is an auxiliary heating device that irradiates the occupant with the heat source light.
 上述の実施形態では、第2フット吹出口41dとして、第1フット吹出口41cよりも乗員から離れた方向に第2送風空気を吹き出す吹出口を採用した例を説明したが、これに限定されない。例えば、前席側の乗員の足元に向けて第2送風空気を吹き出す吹出口を第1フット吹出口41cとして、後席側の乗員の足元に向けて第2送風空気を吹き出す吹出口を第2フット吹出口41dとしてもよい。 In the above-described embodiment, an example is described in which the second foot outlet 41d adopts an outlet that blows out the second blown air in a direction farther from the occupant than the first foot outlet 41c, but the present invention is not limited to this. For example, the outlet for blowing the second air blown toward the feet of the occupant on the front seat side is the first foot outlet 41c, and the outlet for blowing out the second air blown toward the feet of the occupant on the rear seat side is the second outlet. The foot outlet 41d may be used.
 上述の実施形態では、窓曇り検出部として湿度センサ68を採用した例を説明したが、窓曇り検出部は、これに限定されない。例えば、結露センサ、光学式曇りセンサなどを採用してもよい。 In the above-described embodiment, an example in which the humidity sensor 68 is used as the window fogging detection unit has been described, but the window fogging detection unit is not limited to this. For example, a dew condensation sensor, an optical fogging sensor, or the like may be adopted.
 結露センサは、車両窓ガラスFW表面に配置された一対の電極を有し、電極間の電気抵抗値を検出する。そして、図3のステップS4で説明した防曇判定部では、車両窓ガラスFW表面が結露することによって電極間の電気抵抗値が予め定めた基準抵抗値以下となった際に、車両窓ガラスFWの防曇が必要であると判定すればよい。 The dew condensation sensor has a pair of electrodes arranged on the surface of the vehicle window glass FW, and detects the electric resistance value between the electrodes. Then, in the anti-fog determination unit described in step S4 of FIG. 3, when the electric resistance value between the electrodes becomes equal to or less than the predetermined reference resistance value due to dew condensation on the surface of the vehicle window glass FW, the vehicle window glass FW It may be determined that anti-fog is necessary.
 光学式曇りセンサは、発光素子と受光素子とを有し、発光素子が発生させた光を車両窓ガラスFW表面で反射させ、反射光の強度を受光素子で検出する。そして、防曇判定部では、車両窓ガラスFW表面が結露することによって反射強度が予め定めた基準強度以下となった際に、車両窓ガラスFWの防曇が必要であると判定すればよい。 The optical fogging sensor has a light emitting element and a light receiving element, reflects the light generated by the light emitting element on the surface of the vehicle window glass FW, and detects the intensity of the reflected light by the light receiving element. Then, the anti-fog determination unit may determine that anti-fog of the vehicle window glass FW is necessary when the reflection intensity becomes equal to or less than a predetermined reference intensity due to dew condensation on the surface of the vehicle window glass FW.
 また、上述の実施形態では、冷凍サイクル装置10の冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 Further, in the above-described embodiment, an example in which R1234yf is adopted as the refrigerant of the refrigeration cycle device 10 has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted. Alternatively, a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted.
 また、上述の実施形態では、熱媒体回路30の熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。熱媒体として、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液冷媒、オイル等を含む液媒体等を採用してもよい。 Further, in the above-described embodiment, an example in which an ethylene glycol aqueous solution is used as the heat medium of the heat medium circuit 30 has been described, but the present invention is not limited to this. As the heat medium, dimethylpolysiloxane, a solution containing nanofluid or the like, an antifreeze liquid, an aqueous liquid refrigerant containing alcohol or the like, a liquid medium containing oil or the like may be adopted.
 車両用空調装置1の制御態様は、上述の実施形態に開示された制御態様に限定されない。 The control mode of the vehicle air conditioner 1 is not limited to the control mode disclosed in the above-described embodiment.
 上述の実施形態では、図3のステップS2で説明したように、基準時間あたりの内気温Trの低下量ΔT、基準時間あたりの内気湿度Rhの増加量ΔH、および補助暖房装置が作動しているか否かに基づいて、第2フラグFLG2を変化させている。つまり、乗員の要求によらず、空調制御装置50が、通常暖房モードと省電力暖房モードとを切り替える自動制御を行っている。 In the above embodiment, as described in step S2 of FIG. 3, the decrease amount ΔT of the internal air temperature Tr per reference time, the increase amount ΔH of the internal air humidity Rh per reference time, and whether the auxiliary heating device is operating. The second flag FLG2 is changed based on whether or not. That is, the air-conditioning control device 50 automatically controls switching between the normal heating mode and the power-saving heating mode regardless of the request of the occupant.
 このような自動制御として、例えば、基準時間あたりの内気温Trの低下量ΔTが基準温度低下量KΔT以上になり、かつ、基準時間あたりの内気湿度Rhの増加量ΔHが基準湿度増加量KΔH以上になった際に、第2フラグFLG2を1としてもよい。 As such automatic control, for example, the decrease amount ΔT of the internal air temperature Tr per reference time becomes the reference temperature decrease amount KΔT or more, and the increase amount ΔH of the internal air humidity Rh per reference time is the reference humidity increase amount KΔH or more. When becomes, the second flag FLG2 may be set to 1.
 また、乗員がエコノミースイッチ70aを操作した際の外気温Tam、内気温Tr、内気湿度Rh等を記憶して、記憶された情報に基づいて、通常暖房モードと省電力暖房モードとを切り替える学習制御を採用してもよい。 Further, learning control that stores the outside air temperature Tam, the inside air temperature Tr, the inside air humidity Rh, etc. when the occupant operates the economy switch 70a, and switches between the normal heating mode and the power saving heating mode based on the stored information. May be adopted.
 また、暖房モードの運転開始時のように速やかに内気温Trを上昇させる必要のある際に通常暖房モードに切り替え、その他の暖房時には省電力暖房モードに切り替える自動制御を採用してもよい。 In addition, automatic control may be adopted to switch to the normal heating mode when it is necessary to quickly raise the internal air temperature Tr, such as when the operation of the heating mode is started, and to switch to the power saving heating mode at the time of other heating.
 さらに、自動制御を廃止して、乗員のエコノミースイッチ70aの操作のみで、通常暖房モードと省電力暖房モードとを切り替えるようにしてもよい。 Further, the automatic control may be abolished and the normal heating mode and the power saving heating mode may be switched only by operating the occupant's economy switch 70a.
 上述の実施形態では、図3のステップS5で説明したように、乗員が車室内で会話をしている際等に、乗員が車室内の低騒音化を要求していると判定する例を説明したが、これに限定されない。例えば、乗員の操作によって省電力低騒音暖房モードを実行することを要求する低騒音化要求部を設けてもよい。そして、低騒音化要求判定部では、低騒音化要求部が操作された際に、乗員が車室内の低騒音化を要求していると判定すればよい。 In the above-described embodiment, as described in step S5 of FIG. 3, an example of determining that the occupant is requesting the reduction of noise in the vehicle interior when the occupant is having a conversation in the vehicle interior will be described. However, it is not limited to this. For example, a noise reduction requesting unit that requires the execution of the power saving and noise saving heating mode by the operation of the occupant may be provided. Then, the noise reduction request determination unit may determine that the occupant is requesting noise reduction in the vehicle interior when the noise reduction request unit is operated.
 上述の実施形態では、第1フラグFLG1として、省電力暖房モードを実行しても乗員の暖房感を悪化させない程度に内気温Trが上昇していることを示すフラグを採用したが、これに限定されない。 In the above-described embodiment, as the first flag FLG1, a flag indicating that the internal air temperature Tr has risen to such an extent that the heating feeling of the occupant is not deteriorated even when the power saving heating mode is executed is adopted, but the present invention is limited to this. Not done.
 例えば、第1フラグFLG1として、省電力暖房モードを実行しても乗員の暖房感を悪化させない程度に熱媒体温度TWHが上昇していることを示すフラグを採用してもよい。 For example, as the first flag FLG1, a flag indicating that the heat medium temperature TWH has risen to such an extent that the heating feeling of the occupant is not deteriorated even when the power saving heating mode is executed may be adopted.
 この場合は、例えば、温度差(Tr-Tset)と同様に、熱媒体温度TWHが上昇過程にある時は、熱媒体温度TWHが第1判定値以上となった際に、第1フラグFLG1を1とする。熱媒体温度TWHが下降過程にある時は、熱媒体温度TWHが第2判定値以下となった際に、第1フラグFLG1を0とすればよい。 In this case, for example, similar to the temperature difference (Tr-Tset), when the heat medium temperature TWH is in the process of rising, the first flag FLG1 is set when the heat medium temperature TWH becomes equal to or higher than the first determination value. Let it be 1. When the heat medium temperature TWH is in the descending process, the first flag FLG1 may be set to 0 when the heat medium temperature TWH becomes equal to or less than the second determination value.
 さらに、第1フラグFLG1が1となるまで、エコノミースイッチ70aの操作を禁止するようにしてもよい。また、第1フラグFLG1が1となった際に、エコノミースイッチ70aの操作が有効になったことを乗員に報知する報知部を設けてもよい。報知部は、操作パネル70のディスプレイに表示してもよいし、エコノミースイッチ70aが発行するようになっていてもよい。 Further, the operation of the economy switch 70a may be prohibited until the first flag FLG1 becomes 1. Further, when the first flag FLG1 becomes 1, a notification unit may be provided to notify the occupant that the operation of the economy switch 70a has become effective. The notification unit may be displayed on the display of the operation panel 70, or may be issued by the economy switch 70a.
 上述の実施形態では、省電力防曇暖房モード時に、車両用空調装置1の省電力化と車両窓ガラスFWの防曇性を両立させるために、加熱部の加熱能力を、通常暖房モード時よりも低下させるとともに、省電力暖房モードよりも加熱部の加熱能力を向上させている。これに対して、車両窓ガラスFWの防曇性を優先させる場合には、通常暖房モード時よりも加熱能力を向上させてもよい。 In the above-described embodiment, in order to achieve both power saving of the vehicle air conditioner 1 and antifogging property of the vehicle window glass FW in the power-saving anti-fog heating mode, the heating capacity of the heating unit is increased from that in the normal heating mode. Also, the heating capacity of the heating unit is improved compared to the power-saving heating mode. On the other hand, when giving priority to the anti-fog property of the vehicle window glass FW, the heating capacity may be improved as compared with the normal heating mode.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (8)

  1.  車室内へ送風される送風空気を流通させる空気通路(40a)を形成する空気通路形成部(41)と、
     前記送風空気を送風する送風部(42)と、
     前記空気通路へ導入される前記送風空気における前記車室内の空気の割合である内気率(RF)を調整する内気率調整部(43)と、
     電力を用いて前記送風空気を加熱する加熱部(10、30)と、
     前記送風空気のうち前記加熱部にて加熱される加熱風量の割合を調整する加熱風量調整部(44)と、を備え、
     前記車室内の暖房を行う運転モードとして、通常暖房モードおよび省電力暖房モードが設けられており、
     前記省電力暖房モードは、前記通常暖房モードよりも前記加熱部の加熱能力を低減させる運転モードであって、
     さらに、前記省電力暖房モードでは、前記通常暖房モードよりも前記送風部の送風量を増加させる制御、前記通常暖房モードよりも前記内気率を上昇させる制御、および前記通常暖房モードよりも前記加熱風量の割合を増加させる制御のうち、少なくとも1つを実行する車両用空調装置。
    An air passage forming portion (41) forming an air passage (40a) for circulating blown air blown into the vehicle interior, and an air passage forming portion (41).
    The blower unit (42) that blows the blown air and
    The inside air ratio adjusting unit (43) for adjusting the inside air ratio (RF), which is the ratio of the air in the vehicle interior to the blown air introduced into the air passage, and the inside air ratio adjusting unit (43).
    The heating unit (10, 30) that heats the blown air using electric power,
    A heated air volume adjusting unit (44) for adjusting the ratio of the heated air volume heated by the heating unit to the blown air is provided.
    As an operation mode for heating the interior of the vehicle, a normal heating mode and a power saving heating mode are provided.
    The power-saving heating mode is an operation mode in which the heating capacity of the heating unit is reduced as compared with the normal heating mode.
    Further, in the power-saving heating mode, a control for increasing the amount of air blown by the blower unit as compared with the normal heating mode, a control for increasing the internal air ratio as compared with the normal heating mode, and the heating air amount as compared with the normal heating mode. A vehicle air conditioner that performs at least one of the controls that increase the proportion of.
  2.  車両窓ガラス(FW)の防曇が必要であるか否かを判定する防曇判定部(S4)を備え、
     前記省電力暖房モードの実行中に、前記防曇判定部によって前記車両窓ガラスの防曇が必要とであると判定された際には、前記省電力暖房モードよりも前記加熱能力を向上させるとともに、前記省電力暖房モードよりも前記送風量を減少させる省電力防曇暖房モードを実行する請求項1に記載の車両用空調装置。
    It is equipped with an anti-fog determination unit (S4) that determines whether or not anti-fog is required for the vehicle window glass (FW).
    When it is determined by the antifogging determination unit that antifogging of the vehicle window glass is necessary during the execution of the power saving heating mode, the heating capacity is improved as compared with the power saving heating mode. The vehicle air conditioner according to claim 1, wherein the power-saving anti-fog heating mode that reduces the amount of air blown is smaller than the power-saving heating mode.
  3.  さらに、前記省電力防曇暖房モードでは、前記省電力暖房モードよりも前記内気率を低下させる制御、および前記省電力暖房モードよりも前記加熱風量の割合を低減させる制御のうち、少なくとも1つを実行する請求項2に記載の車両用空調装置。 Further, in the power-saving anti-fog heating mode, at least one of a control for lowering the internal air ratio as compared with the power-saving heating mode and a control for reducing the ratio of the heated air volume as compared with the power-saving heating mode is performed. The vehicle air conditioner according to claim 2 to be executed.
  4.  乗員が低騒音化を要求しているか否かを判定する低騒音化要求判定部(S5)を備え、
     前記省電力暖房モードの実行中に、前記低騒音化要求判定部によって乗員が低騒音化を要求していると判定された際には、前記省電力暖房モードよりも前記送風量を減少させる省電力低騒音暖房モードを実行する請求項1ないし3のいずれか1つに記載の車両用空調装置。
    It is equipped with a noise reduction request determination unit (S5) that determines whether or not the occupant is requesting noise reduction.
    When it is determined by the noise reduction request determination unit that the occupant is requesting noise reduction during the execution of the power saving heating mode, the amount of air blown is reduced as compared with the power saving heating mode. The vehicle air conditioner according to any one of claims 1 to 3, which executes a power low noise heating mode.
  5.  乗員の操作によって前記通常暖房モードと前記省電力暖房モードとを切り替える暖房モード切替要求部(70a)を備える請求項1ないし4のいずれか1つに記載の車両用空調装置。 The vehicle air conditioner according to any one of claims 1 to 4, further comprising a heating mode switching request unit (70a) for switching between the normal heating mode and the power saving heating mode by an operation of an occupant.
  6.  前記車室内の内気温(Tr)を検出する内気温検出部(61)を備え、
     予め定めた基準時間あたりの前記内気温の低下量(ΔT)が予め定めた基準温度低下量(KΔT)以上になった際には、前記通常暖房モードへ切り替える請求項1ないし5のいずれか1つに記載の車両用空調装置。
    The vehicle is provided with an internal air temperature detection unit (61) that detects the internal air temperature (Tr) in the vehicle interior.
    Any one of claims 1 to 5 for switching to the normal heating mode when the amount of decrease in the internal temperature (ΔT) per predetermined reference time becomes equal to or greater than the amount of decrease in the predetermined reference temperature (KΔT). The vehicle air conditioner described in 1.
  7.  前記車室内の内気湿度(Rh)を検出する内気湿度検出部(68)を備え、
     予め定めた基準時間あたりの前記内気湿度の増加量(ΔH)が予め定めた基準湿度増加量(KΔH)以上になった際には、前記通常暖房モードへ切り替える請求項1ないし6のいずれか1つに記載の車両用空調装置。
    The vehicle is provided with an inside air humidity detection unit (68) for detecting the inside air humidity (Rh) in the vehicle interior.
    Any one of claims 1 to 6 for switching to the normal heating mode when the increase amount (ΔH) of the inside air humidity per predetermined reference time becomes equal to or more than the predetermined reference humidity increase amount (KΔH). The vehicle air conditioner described in 1.
  8.  乗員の暖房感を向上させる補助暖房装置(90)と備え、
     前記通常暖房モードの実行中に、前記補助暖房装置が作動した際に、前記省電力暖房モードへ切り替える請求項1ないし7のいずれか1つに記載の車両用空調装置。
    Equipped with an auxiliary heating device (90) that improves the feeling of heating of the occupants
    The vehicle air conditioner according to any one of claims 1 to 7, wherein the auxiliary heating device is switched to the power saving heating mode when the auxiliary heating device is activated during the execution of the normal heating mode.
PCT/JP2021/033464 2020-10-16 2021-09-13 Vehicle air conditioning device WO2022080053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174559 2020-10-16
JP2020174559A JP2022065827A (en) 2020-10-16 2020-10-16 Vehicular air conditioner

Publications (1)

Publication Number Publication Date
WO2022080053A1 true WO2022080053A1 (en) 2022-04-21

Family

ID=81208325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033464 WO2022080053A1 (en) 2020-10-16 2021-09-13 Vehicle air conditioning device

Country Status (2)

Country Link
JP (1) JP2022065827A (en)
WO (1) WO2022080053A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176659A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
WO2018043060A1 (en) * 2016-09-02 2018-03-08 株式会社デンソー Refrigeration cycle device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176659A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
WO2018043060A1 (en) * 2016-09-02 2018-03-08 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2022065827A (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP5663849B2 (en) Air conditioner for vehicles
JP3841039B2 (en) Air conditioner for vehicles
JP5287578B2 (en) Air conditioner for vehicles
US10427497B2 (en) Air conditioner for vehicle
JP5482728B2 (en) Refrigeration cycle equipment
JP2011005982A (en) Air conditioner for vehicle
JP2019209938A (en) Refrigeration cycle device for vehicle
JP6702146B2 (en) Vehicle refrigeration cycle device
CN112236322B (en) Air conditioner
JP5626327B2 (en) Air conditioner for vehicles
US11117445B2 (en) Vehicle air conditioning device
JP2018091536A (en) Refrigeration cycle device
WO2019194027A1 (en) Battery cooling device
JP7159712B2 (en) refrigeration cycle equipment
JP5316264B2 (en) Air conditioner for vehicles
JP6874664B2 (en) Vehicle heating system
WO2018221137A1 (en) Vehicular air conditioning device
JP6958317B2 (en) Vehicle air conditioner
WO2022080053A1 (en) Vehicle air conditioning device
JP7302394B2 (en) vehicle air conditioner
WO2022230696A1 (en) Vehicular air conditioner
JP7211309B2 (en) vehicle air conditioner
JP3726552B2 (en) Air conditioner for vehicles
WO2024101062A1 (en) Vehicular heat pump cycle device
JP6583222B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879795

Country of ref document: EP

Kind code of ref document: A1