WO2022077306A1 - Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication - Google Patents

Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication Download PDF

Info

Publication number
WO2022077306A1
WO2022077306A1 PCT/CN2020/121030 CN2020121030W WO2022077306A1 WO 2022077306 A1 WO2022077306 A1 WO 2022077306A1 CN 2020121030 W CN2020121030 W CN 2020121030W WO 2022077306 A1 WO2022077306 A1 WO 2022077306A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
inter
data stream
oam
oam mode
Prior art date
Application number
PCT/CN2020/121030
Other languages
French (fr)
Inventor
Min Huang
Yu Zhang
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/121030 priority Critical patent/WO2022077306A1/en
Publication of WO2022077306A1 publication Critical patent/WO2022077306A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Figs. 3-5 are diagrams illustrating examples of multi-aperture orbital angular momentum (OAM) multiplexing based communication, in accordance with various aspects of the present disclosure.
  • OFAM orbital angular momentum
  • Fig. 6 is a diagram illustrating an example associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure.
  • Figs. 7 and 8 are diagrams illustrating example processes associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure.
  • Figs. 9 and 10 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
  • a method of wireless communication performed by a transmitter of orbital angular momentum (OAM) multiplexing based communication includes determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • OAM orbital angular momentum
  • a method of wireless communication performed by a receiver of OAM multiplexing based communication includes determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • a transmitter of OAM multiplexing based communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • a receiver of OAM multiplexing based communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • a non-transitory computer-readable medium storing a set of instructions for OAM multiplexing based communication includes one or more instructions that, when executed by one or more processors of a transmitter, cause the transmitter to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • a non-transitory computer-readable medium storing a set of instructions for OAM multiplexing based communication includes one or more instructions that, when executed by one or more processors of a receiver, cause the receiver to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • an apparatus for OAM multiplexing based communication includes means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and means for transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • an apparatus for OAM multiplexing based communication includes means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and means for receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, transmitter, receiver, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-7.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-7.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with spatially diverse transmission in multi-aperture orbital angular momentum (OAM) multiplexing based communication, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a transmitter of OAM multiplexing based communications may include means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs, means for transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • a receiver of OAM multiplexing based communication may include means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs, means for receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure.
  • a transmitter 305 and a receiver 310 may communicate with one another using OAM multiplexing based communication.
  • the transmitter 305 and/or the receiver 310 may be implemented in connection with one or more UEs (e.g., the UE 120 shown in Fig. 1, and/or the like) , one or more base stations (e.g., the base station 110 shown in Fig. 1, and/or the like) , one or more vehicles having one or more onboard UEs, and/or the like.
  • Communication based on OAM multiplexing may provide spatial multiplexing as a means to increasing high data rates.
  • An electromagnetic wave with a helical transverse phase of the form may be used to carry an OAM mode waveform, where is the azimuthal angle and l is an unbounded integer (referred as the “OAM mode order, ” or, in some aspects, the “OAM mode” ) .
  • Multiple OAM waves can be orthogonally transmitted using the same radio resources (time and/or frequency domains) ; thus, using OAM multiplexing can greatly improve communication spectrum efficiency.
  • multiple pairs of apertures may be applied in parallel.
  • one pair of transmitter and receiver apertures can have M spatially-multiplexed channels (OAM modes) , in which case N pairs of apertures can have MN spatially-multiplexed channels (OAM modes) .
  • the channels in one pair of apertures may be mutually orthogonal and have no or trivial mutual interference.
  • the channels in different pairs of apertures may be non-orthogonal and have mutual interference.
  • the outer bound (referred to herein as a radiation circle) 325, 330 of each beam mode expands.
  • the mutual interference is more severe among higher-order modes than among lower-order modes, and may cause a reduction in throughput, signal reliability, signal quality, and/or the like.
  • a higher-order mode (which also may be referred to as a “high mode, ” a “higher mode, ” and/or a “high-order mode” ) may refer to an OAM mode specified in a wireless communication specification as being a higher-order mode.
  • a higher order mode may refer to a mode of a certain order or order range (e.g., a mode having an order greater than 1, etc. ) .
  • a higher-order mode may refer to an OAM mode that is determined to be associated with a certain type of transmission, coding scheme, multiplexing scheme, and/or the like.
  • a higher-order mode may refer to an OAM mode associated with interference, spatial diversity transmissions, and/or the like.
  • a lower-order mode (which also may be referred to as a “low mode, ” a “lower mode, ” and/or a “low-order mode” ) may refer to an OAM mode specified in a wireless communication specification as being a lower-order mode.
  • a lower order mode may refer to a mode of a certain order or order range (e.g., a mode having an order less than 2, etc. ) .
  • a lower-order mode may refer to an OAM mode that is determined to be associated with a certain type of transmission, coding scheme, multiplexing scheme, and/or the like.
  • a lower-order mode may refer to an OAM mode associated with a lack of interference, spatial multiplexing transmissions, and/or the like.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure.
  • a transmitter 405 and a receiver 410 may communicate with one another using OAM multiplexing based communication.
  • the transmitter 405 and/or the receiver 410 may be implemented in connection with one or more UEs (e.g., the UE 120 shown in Fig. 1, and/or the like) , one or more base stations (e.g., the base station 110 shown in Fig. 1, and/or the like) , one or more vehicles having one or more onboard UEs, and/or the like.
  • the transmitter 405 may include a number of transmitter apertures 415 and a number of corresponding transmitter spiral phase plates (SPPs) 420.
  • the receiver 410 may include a number of receiver apertures 425 and a number of corresponding receiver SPPs 430.
  • Each wave may be modulated by a corresponding transmitter SPP 420 to create a spiral wave 435.
  • Each receiver aperture 425 may receive the wave 435 transmitted by a corresponding transmitter.
  • the wave 435 may be demodulated by a corresponding receiver SPP 430 to convert the spiral wave into a donut-shaped wave that is received by the corresponding receiver aperture 425. Due to mutual orthogonality among OAM modes, the wave 435 of one OAM mode may not be received by a receiver aperture 425 corresponding to the other OAM mode.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of multi-aperture OAM multiplexing based communication using uniform circular array (UCA) antennas, in accordance with various aspects of the present disclosure.
  • a transmitter 505 and a receiver 510 may communicate with one another using OAM multiplexing based communication.
  • the transmitter 505 and/or the receiver 510 may be implemented in connection with one or more UEs (e.g., the UE 120 shown in Fig. 1, and/or the like) , one or more base stations (e.g., the base station 110 shown in Fig. 1, and/or the like) , one or more vehicles having one or more onboard UEs, and/or the like.
  • the transmitter 505 includes a UCA 515 having a plurality of OAM antennas 520 configured in a circle (or an at least approximately circular shape) .
  • the receiver 510 includes a UCA 525 having a plurality of OAM antennas 530 equipped in a circle (or an at least approximately circular shape) .
  • the transmitter 505 may generate a signal port. If the weight of each antenna 520 is equal to where is the angle of antenna in the circle, l is the OAM mode order, then the beamformed port may be an equivalent OAM mode l.
  • the transmitter 505 may generate multiple OAM modes.
  • the beamformed channel matrix and any two columns of are orthogonal.
  • the beamformed ports have no crosstalk.
  • UCA OAM-based communication may realize high-level spatial multiplexing degree efficiently.
  • the precoding weights may be various, depending on the channel parameters (e.g., propagation distance, Tx/Rx aperture radius, carrier frequency) , and including flexibility to support various precoding weights may increase hardware complexity, compared with hardware needed to support fixed precoding weights. As a result, implementation complexities of a feedback-based approach may outweigh gains.
  • channel parameters e.g., propagation distance, Tx/Rx aperture radius, carrier frequency
  • the transmitter may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs.
  • the transmitter may identify low OAM modes and high OAM modes based at least in part on the inter-aperture orthogonality information, and may perform channel-irrelevant spatial-diversity transmission at high-order OAM modes and spatial-multiplexing transmission at low-order OAM modes.
  • the OAM receiver may send an indication to the OAM transmitter that indicates the inter-aperture orthogonality information.
  • the OAM receiver may indicate the OAM modes that are inter-aperture orthogonal (or that should be transmitted using spatial multiplexing) and the OAM modes that are inter-aperture non-orthogonal (or that should be transmitted using spatial diversity) .
  • aspects may facilitate reducing interference between antennas used for OAM multiplexing based communication.
  • aspects may facilitate increases in throughput, signal reliability, signal quality, and/or the like without unnecessary increases in system complexity.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure. As shown, a transmitter 605 of OAM multiplexing based communication and a receiver 610 of OAM multiplexing based communication may communicate with one another.
  • the transmitter 605 may be similar to the transmitter 305 depicted in Fig. 3 and/or the transmitter 405 depicted in Fig. 4, and the receiver 610 may be similar to the receiver 310 shown in Fig. 3 and/or the receiver 410 depicted in Fig. 4.
  • the transmitter 605 and/or the receiver 610 may be, be similar to, include, or be included in, a UE (e.g., UE 120 shown in Fig. 1) , a base station (e.g., base station 110 shown in Fig. 1) , and/or the like.
  • the transmitter 605 may transmit, and the receiver may receive, one or more reference signals.
  • the transmitter 605 may transmit a plurality of reference signals corresponding to the plurality of aperture pairs.
  • Each reference signal of the plurality of reference signals may correspond to an OAM mode of a corresponding aperture pair.
  • the receiver 610 may determine inter-aperture interference information based at least in part on the reference signals.
  • the receiver 610 may use the reference signals to determine one or more measured channel statuses.
  • the measured channel statuses may include an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
  • the receiver 610 may determine the interference from an OAM mode of a first aperture pair to an OAM mode of a second aperture pair.
  • the transmitting OAM mode of the transmitting aperture may be determined to be orthogonal to the receiving OAM mode of the receiving aperture. If the interference is higher than the specified threshold, the transmitting OAM mode of the transmitting aperture may be determined to be non-orthogonal to the receiving OAM mode of the receiving aperture.
  • the receiver 610 may transmit, and the transmitter 605 may receive, a report.
  • the report may include one or more indexes that indicate at least one of: an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
  • the receiver 610 may determine an order threshold and the report may include the order threshold.
  • the order threshold may be a threshold that may be used, by the transmitter 605, to determine which OAM modes are non-orthogonal and which OAM modes are orthogonal. For example, in some aspects, OAM modes of different aperture pairs whose orders are higher than the order threshold may be non-orthogonal, and OAM modes of different aperture pairs whose orders are lower than the order threshold may be orthogonal.
  • the transmitter 605 may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs.
  • Inter-aperture orthogonality information may include information indicating which OAM modes are non-orthogonal and which OAM modes are orthogonal, which OAM modes should be transmitted using spatial diversity and which modes should be transmitted using spatial multiplexing, inter-aperture interference, thresholds, and/or the like.
  • the transmitter 605 may determine inter-aperture orthogonality information based at least in part on the report described above.
  • the transmitter 605 may determine inter-aperture orthogonality information based at least in part on a set of indexes reported by the receiver 610.
  • the report comprises an order threshold and the transmitter 605 may determine an inter-aperture orthogonality corresponding to an aperture pair of a plurality of aperture pairs by comparing an OAM mode corresponding to the aperture pair to the order threshold. The transmitter may repeat this operation for each pair of a plurality of aperture pairs.
  • the transmitter 605 may determine inter-aperture orthogonality information based at least in part on calculating an estimated channel response strength associated with an aperture pair of the plurality of aperture pairs and an OAM mode corresponding to the aperture pair.
  • the transmitter 605 may determine the inter-aperture orthogonality information based at least in part on the estimated channel response strength.
  • the estimated channel response strength may be based at least in part on one or more system parameters.
  • the one or more system parameters may indicate at least one of a communication distance, z, a transmitter aperture radius, r tx , a receiver aperture radius, r rx , or a wavelength, ⁇ , of a transmission.
  • the estimated channel response strength of OAM mode l i at a receiver antenna n may be:
  • the transmitter 605 may calculate the inter-aperture interference strength by substituting d inter-apterture for r rx in the above formula.
  • the transmitter 605 may determine an inter-aperture orthogonality corresponding to the aperture pair by comparing the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
  • the transmitter 605 may determine the inter-aperture orthogonality corresponding to the aperture pair by determining at least one of: an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
  • the transmitter 605 may transmit, and the receiver 610 may receive, spatially diverse data streams.
  • the transmitter 605 may transmit, and the receiver 610 may receive, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, where the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • the received signal of two low-order OAM modes within one aperture pair may be orthogonal, but due to energy divergence, the received signals of high-order OAM modes between two adjacent aperture pairs may be mutually interfering (non-orthogonal) .
  • the at least one OAM mode may include a high-order OAM mode, and transmitting the at least one data stream comprises transmitting the data stream using a spatial diversity scheme.
  • the spatial diversity scheme may include at least one of: space-time block coding (STBC) or space-frequency block coding (SFBC) .
  • transmitting the at least one data stream comprises transmitting a channel-irrelevant transmission.
  • the at least one OAM mode may include a low-order OAM mode
  • the transmitter 605 may transmit the at least one data stream using a spatial multiplexing technique.
  • the transmitter 605 may transmit the at least one data stream by transmitting at least one independent signal using at least one inter-aperture orthogonal OAM mode.
  • the transmitter 605 may transmit the at least one independent signal using spatial multiplexing.
  • the transmitter 605 may transmit a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture.
  • the first independent signal may be associated with a first data stream.
  • the transmitter 605 may transmit a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture.
  • the second independent signal may be associated with a second data stream that is different than the first data stream.
  • the transmitter 605 may transmit the first independent signal using a first spatial multiplexing transmission and the second independent signal using a second spatial multiplexing transmission. In some aspects, the transmitter 605 may transmit at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode. The transmitter 605 may transmit the at least one dependent signal using a spatial diversity scheme (e.g., STBC, SFBC, and/or the like) . In some aspects, the transmitter 605 may perform a channel-irrelevant channel coding at the OAM channels of multiple transmitter apertures (e.g., channels 2, 4, 6, 8 shown in Fig. 3) .
  • a spatial diversity scheme e.g., STBC, SFBC, and/or the like
  • the transmitter 605 may perform a channel-irrelevant channel coding at the OAM channels of multiple transmitter apertures (e.g., channels 2, 4, 6, 8 shown in Fig. 3) .
  • the symbols s 1 and s 2 may be transmitted at a time instance 1 and/or frequency tune 1, and the symbols and may be transmitted at a time instance 2 and/or frequency tune 2.
  • the use of channel-irrelevant channel coding may enable spatially diverse transmission without requiring receiving feedback on precoding weights from the receiver 610 and/or without having to use channel-relevant precoding weights at the transmitter 605. In this way, aspects may reduce transmitter/receiver complexity and obtain spatial diversity gain.
  • the transmitter 605 may transmit a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture.
  • the first dependent signal may be associated with a data stream.
  • the transmitter 605 may transmit a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture.
  • the second dependent signal may be associated with the data stream.
  • the transmitter 605 may perform spatial-multiplexing transmission independently using each OAM mode. However, in some aspects, if there are multiple inter-aperture non-orthogonal OAM modes (e.g., mode 3 and mode 4) , these modes also may cause inter-mode inter-aperture interference -the interference from a first mode (e.g., mode 3 or mode 4) of a first Tx aperture to a second mode (e.g., mode 3 or mode 4) of a second aperture. In this case, the transmitter 605 may transmit a common spatial-diversity data stream using the inter-aperture non-orthogonal OAM modes of all mutual-interfered apertures.
  • the transmitter 605 may determine an occurrence of inter-aperture interference between a first transmitter aperture and a second transmitter aperture.
  • the transmitter 605 may transmit the at least one data stream based at least in part on determining the occurrence of the inter-aperture interference.
  • the transmitter 605 may transmit the first dependent signal using a spatial-diversity data stream and the second dependent signal using the spatial-diversity data stream.
  • the transmitter 605 may transmit, and the receiver 610 may receive, a control channel transmission that comprises a spatial management indication.
  • the spatial management indication may indicate at least one of: an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
  • the receiver 610 may perform OAM reception of the two types of OAM modes at receiver apertures accordingly.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the transmitter (e.g., transmitter 605) performs operations associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication.
  • process 700 may include determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs (block 710) .
  • the transmitter e.g., using communication manager 908, depicted in Fig. 9
  • process 700 may include transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information (block 720) .
  • the transmitter e.g., using transmission component 904, depicted in Fig.
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the at least one OAM mode comprises a high-order OAM mode, wherein transmitting the at least one data stream comprises transmitting the data stream using a spatial diversity scheme.
  • the spatial diversity scheme comprises at least one of STBC or SFBC.
  • transmitting the at least one data stream comprises transmitting a channel-irrelevant transmission.
  • the at least one OAM mode comprises a low-order OAM mode, wherein transmitting the at least one data stream comprises transmitting the data stream using a spatial multiplexing technique.
  • process 700 includes receiving a report from the receiver, wherein determining inter-aperture orthogonality information comprises determining the inter-aperture orthogonality information based at least in part on the report.
  • process 700 includes transmitting, to the receiver, a plurality of reference signals corresponding to the plurality of aperture pairs, wherein a reference signal of the plurality of reference signals corresponds to an OAM mode of a corresponding aperture pair, and wherein the report is based at least in part on a plurality of measured channel statuses corresponding to the plurality of reference signals.
  • the plurality of measured channel statuses comprise an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
  • the report comprises one or more indexes that indicate at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
  • the report comprises an order threshold.
  • process 700 includes determining an inter-aperture orthogonality corresponding to an aperture pair of the plurality of aperture pairs by comparing an OAM mode corresponding to the aperture pair to the order threshold.
  • process 700 includes calculating an estimated channel response strength associated with an aperture pair of the plurality of aperture pairs and an OAM mode corresponding to the aperture pair, wherein determining the inter-aperture orthogonality information comprises determining the inter-aperture orthogonality information based at least in part on the estimated channel response strength.
  • the estimated channel response strength is based at least in part on one or more system parameters, wherein the one or more system parameters indicate at least one of a communication distance, a transmitter aperture radius, a receiver aperture radius, or a wavelength of a transmission.
  • process 700 includes determining an inter-aperture interference strength associated with the aperture pair based at least in part on the estimated channel response strength and an inter-aperture pair distance corresponding to the aperture pair.
  • process 700 includes determining an inter-aperture orthogonality corresponding to the aperture pair by comparing the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
  • determining the inter-aperture orthogonality corresponding to the aperture pair comprises determining at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
  • transmitting the at least one data stream comprises transmitting at least one independent signal using at least one inter-aperture orthogonal OAM mode.
  • transmitting the at least one independent signal comprises transmitting the at least one independent signal using spatial multiplexing.
  • transmitting the at least one data stream comprises transmitting a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture, wherein the first independent signal is associated with a first data stream, and transmitting a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture, wherein the second independent signal is associated with a second data stream that is different than the first data stream.
  • transmitting the at least one data stream comprises transmitting the first independent signal using a first spatial multiplexing transmission, and transmitting the second independent signal using a second spatial multiplexing transmission.
  • transmitting the at least one data stream comprises transmitting at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode.
  • transmitting the at least one dependent signal comprises transmitting the at least one dependent signal using a spatial diversity scheme.
  • the spatial diversity scheme comprises at least one of STBC or SFBC.
  • process 700 includes encoding the at least one dependent signal using a channel-irrelevant channel coding operation.
  • transmitting the at least one data stream comprises transmitting a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture, wherein the first dependent signal is associated with a data stream, and transmitting a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture, wherein the second dependent signal is associated with the data stream.
  • process 700 includes determining an occurrence of inter-aperture interference between the first transmitter aperture and the second transmitter aperture, wherein transmitting the at least one data stream comprises transmitting, based at least in part on determining the occurrence of the inter-aperture interference the first dependent signal using a spatial-diversity data stream, and the second dependent signal using the spatial-diversity data stream.
  • process 700 includes transmitting a control channel transmission that comprises a spatial management indication, wherein the spatial management indication indicates at least one of an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a receiver, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the receiver (e.g., receiver 610) performs operations associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication.
  • process 800 may include determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs (block 810) .
  • the receiver e.g., using communication manager 1008, depicted in Fig. 10) may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs, as described above.
  • process 800 may include receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information (block 820) .
  • the receiver e.g., using reception component 1002, depicted in Fig.
  • the at least one OAM mode is based at least in part on the inter-aperture orthogonality information, as described above.
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the at least one OAM mode comprises a high-order OAM mode, wherein receiving the at least one data stream comprises receiving the data stream based at least in part on a spatial diversity scheme.
  • the spatial diversity scheme comprises at least one of STBC or SFBC.
  • receiving the at least one data stream comprises receiving a channel-irrelevant transmission.
  • the at least one OAM mode comprises a low-order OAM mode, wherein receiving the at least one data stream comprises receiving the data stream based at least in part on a spatial multiplexing technique.
  • process 800 includes transmitting a report to the transmitter, wherein a determination of the inter-aperture orthogonality information is based at least in part on the report.
  • process 800 includes receiving, from the transmitter, a plurality of reference signals corresponding to the plurality of aperture pairs, wherein a reference signal of the plurality of reference signals corresponds to an OAM mode of a corresponding aperture pair, and wherein the report is based at least in part on a plurality of measured channel statuses corresponding to the plurality of reference signals.
  • the plurality of measured channel statuses comprise an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
  • the report comprises one or more indexes that indicate at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
  • the report comprises an order threshold.
  • a determination of an inter-aperture orthogonality corresponding to an aperture pair of the plurality of aperture pairs is based at least in part on a comparison of an OAM mode corresponding to the aperture pair to the order threshold.
  • the inter-aperture orthogonality information is based at least in part on an estimated channel response strength.
  • the estimated channel response strength is based at least in part on one or more system parameters, wherein the one or more system parameters indicate at least one of a communication distance, a transmitter aperture radius, a receiver aperture radius, or a wavelength of a transmission.
  • an inter-aperture interference strength associated with the aperture pair is based at least in part on the estimated channel response strength and an inter-aperture pair distance corresponding to the aperture pair.
  • an inter-aperture orthogonality corresponding to the aperture pair is based at least in part on a comparison of the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
  • the inter-aperture orthogonality corresponding to the aperture pair is based at least in part on a determination of at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
  • receiving the at least one data stream comprises receiving at least one independent signal using at least one inter-aperture orthogonal OAM mode.
  • receiving the at least one independent signal comprises receiving the at least one independent signal based at least in part on a spatial multiplexing.
  • receiving the at least one data stream comprises receiving a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture, wherein the first independent signal is associated with a first data stream, and receiving a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture, wherein the second independent signal is associated with a second data stream that is different than the first data stream.
  • receiving the at least one data stream comprises receiving the first independent signal by receiving a first spatial multiplexing transmission, and receiving the second independent signal by receiving second spatial multiplexing transmission.
  • receiving the at least one data stream comprises receiving at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode.
  • receiving the at least one dependent signal comprises receiving the at least one dependent signal based at least in part on a spatial diversity scheme.
  • the spatial diversity scheme comprises at least one of space-time block coding, or space-frequency block coding.
  • the at least one dependent signal is encoded based at least in part on a channel-irrelevant channel coding operation.
  • receiving the at least one data stream comprises receiving a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture, wherein the first dependent signal is associated with a data stream, and receiving a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture, wherein the second dependent signal is associated with the data stream.
  • receiving the at least one data stream comprises receiving the at least one data stream based at least in part on a determination of an occurrence of inter-aperture interference between the first transmitter aperture and the second transmitter aperture, and receiving the at least one data stream comprises receiving the first dependent signal using a spatial-diversity data stream, and the second dependent signal using the spatial-diversity data stream.
  • process 800 includes receiving a control channel transmission that comprises a spatial management indication, wherein the spatial management indication indicates at least one of an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a block diagram of an example apparatus 900 for wireless communication.
  • the apparatus 900 may be a transmitter (e.g., a UE 120 shown in Fig. 1, a base station 110 shown in Fig. 1, etc. ) , or a transmitter may include the apparatus 900.
  • the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904.
  • the apparatus 900 may include a communication manager 908.
  • the apparatus 900 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7.
  • the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the transmitter described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906.
  • the reception component 902 may provide received communications to one or more other components of the apparatus 900.
  • the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 906.
  • the reception component 902 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2.
  • the transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906.
  • one or more other components of the apparatus 906 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906.
  • the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906.
  • the transmission component 904 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
  • the communication manager 908 may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs.
  • the communication manager 908 may include a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2.
  • the transmission component 904 may transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • Fig. 9 The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
  • Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a receiver (e.g., a UE 120 shown in Fig. 1, a base station 110 shown in Fig. 1, etc. ) , or a receiver may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include a communication manager 1008.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the receiver described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory.
  • a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006.
  • the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the receiver described above in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the receiver described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the communication manager 1008 may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs. In some aspects, the communication manager 1008 may determine channel status measurements associated with reference signals received from the transmitter, and may determine inter-aperture orthogonality information based at least in part on the channel status measurements. In some aspects, the communication manager 1008 may include a controller/processor, a memory, or a combination thereof, of the receiver described above in connection with Fig. 2. The reception component 1002 may receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a transmitter may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs. The transmitter may transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information. Numerous other aspects are provided.

Description

SPATIALLY DIVERSE TRANSMISSION IN MULTI-APERTURE ORBITAL ANGULAR MOMENTUM MULTIPLEXING BASED COMMUNICATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Figs. 3-5 are diagrams illustrating examples of multi-aperture orbital angular momentum (OAM) multiplexing based communication, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure.
Figs. 7 and 8 are diagrams illustrating example processes associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure.
Figs. 9 and 10 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure.
SUMMARY
In some aspects, a method of wireless communication performed by a transmitter of orbital angular momentum (OAM) multiplexing based communication includes determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, a method of wireless communication performed by a receiver of OAM multiplexing based communication includes determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, a transmitter of OAM multiplexing based communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, a receiver of OAM multiplexing based communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and receive,  from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for OAM multiplexing based communication includes one or more instructions that, when executed by one or more processors of a transmitter, cause the transmitter to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for OAM multiplexing based communication includes one or more instructions that, when executed by one or more processors of a receiver, cause the receiver to: determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, an apparatus for OAM multiplexing based communication includes means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and means for transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
In some aspects, an apparatus for OAM multiplexing based communication includes means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and means for receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station,  wireless communication device, transmitter, receiver, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will  be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three)  cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing,  smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may  perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit  processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for  example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-7.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 5-7.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with spatially diverse transmission in multi-aperture orbital angular momentum (OAM) multiplexing based communication, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110,  controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, a transmitter of OAM multiplexing based communications (e.g., UE 120 and/or base station 110) may include means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs, means for transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, a receiver of OAM multiplexing based communication (e.g., UE 120 and/or base station 110) may include means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs, means for receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part  on the inter-aperture orthogonality information, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure. As shown, a transmitter 305 and a receiver 310 may communicate with one another using OAM multiplexing based communication. According to various aspects, the transmitter 305 and/or the receiver 310 may be implemented in connection with one or more UEs (e.g., the UE 120 shown in Fig. 1, and/or the like) , one or more base stations (e.g., the base station 110 shown in Fig. 1, and/or the like) , one or more vehicles having one or more onboard UEs, and/or the like.
Communication based on OAM multiplexing may provide spatial multiplexing as a means to increasing high data rates. In OAM multiplexing based communication, the transmitter 305 may radiate multiple coaxially propagating, spatially-overlapping waves (OAM mode l = …, -2, -1, 0, 1, 2, …) , each carrying a data stream through a transmitter aperture 315 to a receiver aperture 320. An electromagnetic wave with a helical transverse phase of the form
Figure PCTCN2020121030-appb-000001
may be used to carry an OAM mode waveform, where
Figure PCTCN2020121030-appb-000002
is the azimuthal angle and l is an unbounded integer (referred as the “OAM mode order, ” or, in some aspects, the “OAM mode” ) . Multiple OAM waves can be orthogonally transmitted using the same radio resources (time and/or frequency  domains) ; thus, using OAM multiplexing can greatly improve communication spectrum efficiency.
To further increase the communication throughput, as shown in Fig. 3, multiple pairs of apertures (where each pair includes a transmitter aperture 315 and a corresponding receiver aperture 320) may be applied in parallel. In some cases, one pair of transmitter and receiver apertures can have M spatially-multiplexed channels (OAM modes) , in which case N pairs of apertures can have MN spatially-multiplexed channels (OAM modes) . The channels in one pair of apertures may be mutually orthogonal and have no or trivial mutual interference. However, the channels in different pairs of apertures may be non-orthogonal and have mutual interference.
For example, as shown in Fig. 3, as a beam travels from the transmitter aperture 315 to the corresponding receiver aperture 320, the outer bound (referred to herein as a radiation circle) 325, 330 of each beam mode expands. As shown, radiation circles 325 associated with waves with higher-order modes (e.g., l = 3) expand faster than radiation circles 330 associated with waves with lower-order modes (e.g., l = 1) . As a result, the mutual interference is more severe among higher-order modes than among lower-order modes, and may cause a reduction in throughput, signal reliability, signal quality, and/or the like.
In some aspects, a higher-order mode (which also may be referred to as a “high mode, ” a “higher mode, ” and/or a “high-order mode” ) may refer to an OAM mode specified in a wireless communication specification as being a higher-order mode. In some aspects, a higher order mode may refer to a mode of a certain order or order range (e.g., a mode having an order greater than 1, etc. ) . In some aspects, a higher-order mode may refer to an OAM mode that is determined to be associated with a certain type of transmission, coding scheme, multiplexing scheme, and/or the like. For example, a higher-order mode may refer to an OAM mode associated with interference, spatial diversity transmissions, and/or the like.
Similarly, a lower-order mode (which also may be referred to as a “low mode, ” a “lower mode, ” and/or a “low-order mode” ) may refer to an OAM mode specified in a wireless communication specification as being a lower-order mode. In some aspects, a lower order mode may refer to a mode of a certain order or order range (e.g., a mode having an order less than 2, etc. ) . In some aspects, a lower-order mode may refer to an OAM mode that is determined to be associated with a certain type of transmission, coding scheme, multiplexing scheme, and/or the like. For example, a  lower-order mode may refer to an OAM mode associated with a lack of interference, spatial multiplexing transmissions, and/or the like.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure. As shown, a transmitter 405 and a receiver 410 may communicate with one another using OAM multiplexing based communication. According to various aspects, the transmitter 405 and/or the receiver 410 may be implemented in connection with one or more UEs (e.g., the UE 120 shown in Fig. 1, and/or the like) , one or more base stations (e.g., the base station 110 shown in Fig. 1, and/or the like) , one or more vehicles having one or more onboard UEs, and/or the like.
As shown, the transmitter 405 may include a number of transmitter apertures 415 and a number of corresponding transmitter spiral phase plates (SPPs) 420. The receiver 410 may include a number of receiver apertures 425 and a number of corresponding receiver SPPs 430. Each transmitter aperture 415 may transmit a wave of one OAM mode (shown as, e.g., l = -1 and l = 1) . Each wave may be modulated by a corresponding transmitter SPP 420 to create a spiral wave 435.
Each receiver aperture 425 may receive the wave 435 transmitted by a corresponding transmitter. The wave 435 may be demodulated by a corresponding receiver SPP 430 to convert the spiral wave into a donut-shaped wave that is received by the corresponding receiver aperture 425. Due to mutual orthogonality among OAM modes, the wave 435 of one OAM mode may not be received by a receiver aperture 425 corresponding to the other OAM mode.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 of multi-aperture OAM multiplexing based communication using uniform circular array (UCA) antennas, in accordance with various aspects of the present disclosure. As shown, a transmitter 505 and a receiver 510 may communicate with one another using OAM multiplexing based communication. According to various aspects, the transmitter 505 and/or the receiver 510 may be implemented in connection with one or more UEs (e.g., the UE 120 shown in Fig. 1, and/or the like) , one or more base stations (e.g., the base station 110 shown in  Fig. 1, and/or the like) , one or more vehicles having one or more onboard UEs, and/or the like.
As shown, the transmitter 505 includes a UCA 515 having a plurality of OAM antennas 520 configured in a circle (or an at least approximately circular shape) . Similarly, the receiver 510 includes a UCA 525 having a plurality of OAM antennas 530 equipped in a circle (or an at least approximately circular shape) . By multiplying respective beamforming weights w 1= [w 1, 1, w 1, 2, …, w 1, 8T onto each antenna, the transmitter 505 may generate a signal port. If the weight of each antenna 520 is equal to 
Figure PCTCN2020121030-appb-000003
where
Figure PCTCN2020121030-appb-000004
is the angle of antenna in the circle, l is the OAM mode order, then the beamformed port may be an equivalent OAM mode l. By using different beamforming weights
Figure PCTCN2020121030-appb-000005
where l′≠l, the transmitter 505 may generate multiple OAM modes.
For a channel matrix, H, from each transmit antenna 520 to each receive antenna 530, the beamformed channel matrix
Figure PCTCN2020121030-appb-000006
and any two columns of
Figure PCTCN2020121030-appb-000007
are orthogonal. Thus, the beamformed ports have no crosstalk. As a result, UCA OAM-based communication may realize high-level spatial multiplexing degree efficiently.
However, due to the mutual interference among the OAM modes of different aperture pairs, traditional transmission schemes based on inter-mode orthogonality may not be feasible. In some cases, mutually-interfered OAM modes in different aperture pairs may be precoded at the transmitter based on weights reported by the receiver. Though the feedback-based approach may achieve high channel gain when the reported precoding weights align with the channel eigenvectors, the approach may have disadvantages. For example, the approach relies on an OAM receiver’s feedback on a precoding weight, which may increase system complexity and may be challenging when the carrier frequency is high (e.g., 0.1~1.0 THz) . The precoding weights may be various, depending on the channel parameters (e.g., propagation distance, Tx/Rx aperture radius, carrier frequency) , and including flexibility to support various precoding weights may increase hardware complexity, compared with hardware needed to support fixed precoding weights. As a result, implementation complexities of a feedback-based approach may outweigh gains.
Aspects of the techniques and apparatuses described herein may provide an approach that is not based on feedback, but rather involves spatially diverse  transmissions. In some aspects, the transmitter may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs. The transmitter may identify low OAM modes and high OAM modes based at least in part on the inter-aperture orthogonality information, and may perform channel-irrelevant spatial-diversity transmission at high-order OAM modes and spatial-multiplexing transmission at low-order OAM modes. The OAM receiver may send an indication to the OAM transmitter that indicates the inter-aperture orthogonality information. For example, the OAM receiver may indicate the OAM modes that are inter-aperture orthogonal (or that should be transmitted using spatial multiplexing) and the OAM modes that are inter-aperture non-orthogonal (or that should be transmitted using spatial diversity) . In this way, aspects may facilitate reducing interference between antennas used for OAM multiplexing based communication. As a result, aspects may facilitate increases in throughput, signal reliability, signal quality, and/or the like without unnecessary increases in system complexity.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication, in accordance with various aspects of the present disclosure. As shown, a transmitter 605 of OAM multiplexing based communication and a receiver 610 of OAM multiplexing based communication may communicate with one another.
In some aspects, the transmitter 605 may be similar to the transmitter 305 depicted in Fig. 3 and/or the transmitter 405 depicted in Fig. 4, and the receiver 610 may be similar to the receiver 310 shown in Fig. 3 and/or the receiver 410 depicted in Fig. 4. In some aspects, the transmitter 605 and/or the receiver 610 may be, be similar to, include, or be included in, a UE (e.g., UE 120 shown in Fig. 1) , a base station (e.g., base station 110 shown in Fig. 1) , and/or the like.
As shown by reference number 615, the transmitter 605 may transmit, and the receiver may receive, one or more reference signals. In some aspects, the transmitter 605 may transmit a plurality of reference signals corresponding to the plurality of aperture pairs. Each reference signal of the plurality of reference signals may correspond to an OAM mode of a corresponding aperture pair. As shown by reference number 620, the receiver 610 may determine inter-aperture interference information based at least in part on the reference signals.
For example, in some aspects, the receiver 610 may use the reference signals to determine one or more measured channel statuses. The measured channel statuses may include an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs. For example, the receiver 610 may determine the interference from an OAM mode of a first aperture pair to an OAM mode of a second aperture pair. In some aspects, if an inter-aperture interference is not higher than a specified threshold, the transmitting OAM mode of the transmitting aperture may be determined to be orthogonal to the receiving OAM mode of the receiving aperture. If the interference is higher than the specified threshold, the transmitting OAM mode of the transmitting aperture may be determined to be non-orthogonal to the receiving OAM mode of the receiving aperture.
As shown by reference number 625, the receiver 610 may transmit, and the transmitter 605 may receive, a report. The report may include one or more indexes that indicate at least one of: an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver. In some aspects, the receiver 610 may determine an order threshold and the report may include the order threshold. The order threshold may be a threshold that may be used, by the transmitter 605, to determine which OAM modes are non-orthogonal and which OAM modes are orthogonal. For example, in some aspects, OAM modes of different aperture pairs whose orders are higher than the order threshold may be non-orthogonal, and OAM modes of different aperture pairs whose orders are lower than the order threshold may be orthogonal.
As shown by reference number 630, the transmitter 605 may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs. Inter-aperture orthogonality information may include information indicating which OAM modes are non-orthogonal and which OAM modes are orthogonal, which OAM modes should be transmitted using spatial diversity and which modes should be transmitted using spatial multiplexing, inter-aperture interference, thresholds, and/or the like. In some aspects, the transmitter 605 may determine inter-aperture orthogonality information based at least in part on the report described above.
For example, as indicated above, the transmitter 605 may determine inter-aperture orthogonality information based at least in part on a set of indexes reported by the receiver 610. In some aspects, the report comprises an order threshold and the transmitter 605 may determine an inter-aperture orthogonality corresponding to an  aperture pair of a plurality of aperture pairs by comparing an OAM mode corresponding to the aperture pair to the order threshold. The transmitter may repeat this operation for each pair of a plurality of aperture pairs.
In some aspects, the transmitter 605 may determine inter-aperture orthogonality information based at least in part on calculating an estimated channel response strength associated with an aperture pair of the plurality of aperture pairs and an OAM mode corresponding to the aperture pair. The transmitter 605 may determine the inter-aperture orthogonality information based at least in part on the estimated channel response strength. In some aspects, the estimated channel response strength may be based at least in part on one or more system parameters. The one or more system parameters may indicate at least one of a communication distance, z, a transmitter aperture radius, r tx, a receiver aperture radius, r rx, or a wavelength, λ, of a transmission.
For example, in a UCA-based OAM communication system (e.g., as shown in Fig. 4) , the estimated channel response strength of OAM mode l i at a receiver antenna n may be:
Figure PCTCN2020121030-appb-000008
where
Figure PCTCN2020121030-appb-000009
and θ m and θ n are the angles of the transmitter antenna and the receiver antenna, respectively. Based at least in part on the inter-aperture pair distance d inter-aperture at the OAM receiver, the transmitter 605 may calculate the inter-aperture interference strength by substituting d inter-apterture for r rx in the above formula. Thus, in some aspects, the transmitter 605 may determine an inter-aperture orthogonality corresponding to the aperture pair by comparing the inter-aperture interference strength corresponding to the aperture pair to an interference threshold. In some aspects, the transmitter 605 may determine the inter-aperture orthogonality corresponding to the aperture pair by determining at least one of: an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
As shown by reference number 635, the transmitter 605 may transmit, and the receiver 610 may receive, spatially diverse data streams. In some aspects, for example, the transmitter 605 may transmit, and the receiver 610 may receive, at least one data  stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, where the at least one OAM mode is based at least in part on the inter-aperture orthogonality information. As an example, the transmitter 605 may include four aperture pairs, as shown in Fig. 3. Each aperture pair may be used for transmitting two channels with one low-order OAM mode (l=1) and one high-order OAM mode (l=3) . Thus, there may be eight channels in parallel. The received signal of two low-order OAM modes within one aperture pair may be orthogonal, but due to energy divergence, the received signals of high-order OAM modes between two adjacent aperture pairs may be mutually interfering (non-orthogonal) .
In some aspects, the at least one OAM mode may include a high-order OAM mode, and transmitting the at least one data stream comprises transmitting the data stream using a spatial diversity scheme. The spatial diversity scheme may include at least one of: space-time block coding (STBC) or space-frequency block coding (SFBC) . In some aspects, transmitting the at least one data stream comprises transmitting a channel-irrelevant transmission.
In some aspects, the at least one OAM mode may include a low-order OAM mode, and the transmitter 605 may transmit the at least one data stream using a spatial multiplexing technique. The transmitter 605 may transmit the at least one data stream by transmitting at least one independent signal using at least one inter-aperture orthogonal OAM mode. The transmitter 605 may transmit the at least one independent signal using spatial multiplexing. For example, the transmitter 605 may transmit a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture. The first independent signal may be associated with a first data stream. The transmitter 605 may transmit a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture. The second independent signal may be associated with a second data stream that is different than the first data stream.
In some aspects, the transmitter 605 may transmit the first independent signal using a first spatial multiplexing transmission and the second independent signal using a second spatial multiplexing transmission. In some aspects, the transmitter 605 may transmit at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode. The transmitter 605 may transmit the at least one dependent signal using a spatial diversity scheme (e.g., STBC, SFBC, and/or the like) . In some aspects, the transmitter 605 may perform a channel-irrelevant channel coding at the OAM channels  of multiple transmitter apertures (e.g.,  channels  2, 4, 6, 8 shown in Fig. 3) . For example, if STBC or SFBC is used at  channels  2 and 4, or at  channels  6 and 8 for mode 3, (shown in Fig. 3) , the symbols s 1 and s 2 may be transmitted at a time instance 1 and/or frequency tune 1, and the symbols
Figure PCTCN2020121030-appb-000010
and
Figure PCTCN2020121030-appb-000011
may be transmitted at a time instance 2 and/or frequency tune 2. The use of channel-irrelevant channel coding may enable spatially diverse transmission without requiring receiving feedback on precoding weights from the receiver 610 and/or without having to use channel-relevant precoding weights at the transmitter 605. In this way, aspects may reduce transmitter/receiver complexity and obtain spatial diversity gain.
In some aspects, the transmitter 605 may transmit a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture. The first dependent signal may be associated with a data stream. The transmitter 605 may transmit a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture. The second dependent signal may be associated with the data stream.
If there are multiple inter-aperture orthogonal OAM modes (e.g., mode 1 and mode 2) , the transmitter 605 may perform spatial-multiplexing transmission independently using each OAM mode. However, in some aspects, if there are multiple inter-aperture non-orthogonal OAM modes (e.g., mode 3 and mode 4) , these modes also may cause inter-mode inter-aperture interference -the interference from a first mode (e.g., mode 3 or mode 4) of a first Tx aperture to a second mode (e.g., mode 3 or mode 4) of a second aperture. In this case, the transmitter 605 may transmit a common spatial-diversity data stream using the inter-aperture non-orthogonal OAM modes of all mutual-interfered apertures.
For example, in some aspects, the transmitter 605 may determine an occurrence of inter-aperture interference between a first transmitter aperture and a second transmitter aperture. The transmitter 605 may transmit the at least one data stream based at least in part on determining the occurrence of the inter-aperture interference. For example, the transmitter 605 may transmit the first dependent signal using a spatial-diversity data stream and the second dependent signal using the spatial-diversity data stream.
In some aspects, the transmitter 605 may transmit, and the receiver 610 may receive, a control channel transmission that comprises a spatial management indication. The spatial management indication may indicate at least one of: an identification of an  OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity. With this indicated information, the receiver 610 may perform OAM reception of the two types of OAM modes at receiver apertures accordingly.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure. Example process 700 is an example where the transmitter (e.g., transmitter 605) performs operations associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication.
As shown in Fig. 7, in some aspects, process 700 may include determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs (block 710) . For example, the transmitter (e.g., using communication manager 908, depicted in Fig. 9) may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information (block 720) . For example, the transmitter (e.g., using transmission component 904, depicted in Fig. 9) may transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the at least one OAM mode comprises a high-order OAM mode, wherein transmitting the at least one data stream comprises transmitting the data stream using a spatial diversity scheme.
In a second aspect, alone or in combination with the first aspect, the spatial diversity scheme comprises at least one of STBC or SFBC.
In a third aspect, alone or in combination with one or more of the first and second aspects, transmitting the at least one data stream comprises transmitting a channel-irrelevant transmission.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the at least one OAM mode comprises a low-order OAM mode, wherein transmitting the at least one data stream comprises transmitting the data stream using a spatial multiplexing technique.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 700 includes receiving a report from the receiver, wherein determining inter-aperture orthogonality information comprises determining the inter-aperture orthogonality information based at least in part on the report.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 700 includes transmitting, to the receiver, a plurality of reference signals corresponding to the plurality of aperture pairs, wherein a reference signal of the plurality of reference signals corresponds to an OAM mode of a corresponding aperture pair, and wherein the report is based at least in part on a plurality of measured channel statuses corresponding to the plurality of reference signals.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the plurality of measured channel statuses comprise an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the report comprises one or more indexes that indicate at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the report comprises an order threshold.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 700 includes determining an inter-aperture orthogonality corresponding to an aperture pair of the plurality of aperture pairs by comparing an OAM mode corresponding to the aperture pair to the order threshold.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 700 includes calculating an estimated channel response strength associated with an aperture pair of the plurality of aperture pairs and an OAM  mode corresponding to the aperture pair, wherein determining the inter-aperture orthogonality information comprises determining the inter-aperture orthogonality information based at least in part on the estimated channel response strength.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the estimated channel response strength is based at least in part on one or more system parameters, wherein the one or more system parameters indicate at least one of a communication distance, a transmitter aperture radius, a receiver aperture radius, or a wavelength of a transmission.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, process 700 includes determining an inter-aperture interference strength associated with the aperture pair based at least in part on the estimated channel response strength and an inter-aperture pair distance corresponding to the aperture pair.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, process 700 includes determining an inter-aperture orthogonality corresponding to the aperture pair by comparing the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, determining the inter-aperture orthogonality corresponding to the aperture pair comprises determining at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, transmitting the at least one data stream comprises transmitting at least one independent signal using at least one inter-aperture orthogonal OAM mode.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, transmitting the at least one independent signal comprises transmitting the at least one independent signal using spatial multiplexing.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, transmitting the at least one data stream comprises transmitting a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture, wherein the first independent signal is associated with a first data stream, and transmitting a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture, wherein the  second independent signal is associated with a second data stream that is different than the first data stream.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, transmitting the at least one data stream comprises transmitting the first independent signal using a first spatial multiplexing transmission, and transmitting the second independent signal using a second spatial multiplexing transmission.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, transmitting the at least one data stream comprises transmitting at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, transmitting the at least one dependent signal comprises transmitting the at least one dependent signal using a spatial diversity scheme.
In a twenty-second aspect, alone or in combination with one or more of the first through twenty-first aspects, the spatial diversity scheme comprises at least one of STBC or SFBC.
In a twenty-third aspect, alone or in combination with one or more of the first through twenty-second aspects, process 700 includes encoding the at least one dependent signal using a channel-irrelevant channel coding operation.
In a twenty-fourth aspect, alone or in combination with one or more of the first through twenty-third aspects, transmitting the at least one data stream comprises transmitting a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture, wherein the first dependent signal is associated with a data stream, and transmitting a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture, wherein the second dependent signal is associated with the data stream.
In a twenty-fifth aspect, alone or in combination with one or more of the first through twenty-fourth aspects, process 700 includes determining an occurrence of inter-aperture interference between the first transmitter aperture and the second transmitter aperture, wherein transmitting the at least one data stream comprises transmitting, based at least in part on determining the occurrence of the inter-aperture interference the first dependent signal using a spatial-diversity data stream, and the second dependent signal using the spatial-diversity data stream.
In a twenty-sixth aspect, alone or in combination with one or more of the first through twenty-fifth aspects, process 700 includes transmitting a control channel transmission that comprises a spatial management indication, wherein the spatial management indication indicates at least one of an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a receiver, in accordance with various aspects of the present disclosure. Example process 800 is an example where the receiver (e.g., receiver 610) performs operations associated with spatially diverse transmission in multi-aperture OAM multiplexing based communication.
As shown in Fig. 8, in some aspects, process 800 may include determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs (block 810) . For example, the receiver (e.g., using communication manager 1008, depicted in Fig. 10) may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information (block 820) . For example, the receiver (e.g., using reception component 1002, depicted in Fig. 10) may receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the at least one OAM mode comprises a high-order OAM mode, wherein receiving the at least one data stream comprises receiving the data stream based at least in part on a spatial diversity scheme.
In a second aspect, alone or in combination with the first aspect, the spatial diversity scheme comprises at least one of STBC or SFBC.
In a third aspect, alone or in combination with one or more of the first and second aspects, receiving the at least one data stream comprises receiving a channel-irrelevant transmission.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the at least one OAM mode comprises a low-order OAM mode, wherein receiving the at least one data stream comprises receiving the data stream based at least in part on a spatial multiplexing technique.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 800 includes transmitting a report to the transmitter, wherein a determination of the inter-aperture orthogonality information is based at least in part on the report.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 800 includes receiving, from the transmitter, a plurality of reference signals corresponding to the plurality of aperture pairs, wherein a reference signal of the plurality of reference signals corresponds to an OAM mode of a corresponding aperture pair, and wherein the report is based at least in part on a plurality of measured channel statuses corresponding to the plurality of reference signals.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the plurality of measured channel statuses comprise an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the report comprises one or more indexes that indicate at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the report comprises an order threshold.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, a determination of an inter-aperture orthogonality corresponding to an aperture pair of the plurality of aperture pairs is based at least in part on a comparison of an OAM mode corresponding to the aperture pair to the order threshold.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the inter-aperture orthogonality information is based at least in part on an estimated channel response strength.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the estimated channel response strength is based at least in part on one or more system parameters, wherein the one or more system parameters indicate at least one of a communication distance, a transmitter aperture radius, a receiver aperture radius, or a wavelength of a transmission.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, an inter-aperture interference strength associated with the aperture pair is based at least in part on the estimated channel response strength and an inter-aperture pair distance corresponding to the aperture pair.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, an inter-aperture orthogonality corresponding to the aperture pair is based at least in part on a comparison of the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the inter-aperture orthogonality corresponding to the aperture pair is based at least in part on a determination of at least one of an OAM mode that is inter-aperture orthogonal at the receiver, or an OAM mode that is inter-aperture non-orthogonal at the receiver.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, receiving the at least one data stream comprises receiving at least one independent signal using at least one inter-aperture orthogonal OAM mode.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, receiving the at least one independent signal comprises receiving the at least one independent signal based at least in part on a spatial multiplexing.
In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, receiving the at least one data stream comprises receiving  a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture, wherein the first independent signal is associated with a first data stream, and receiving a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture, wherein the second independent signal is associated with a second data stream that is different than the first data stream.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, receiving the at least one data stream comprises receiving the first independent signal by receiving a first spatial multiplexing transmission, and receiving the second independent signal by receiving second spatial multiplexing transmission.
In a twentieth aspect, alone or in combination with one or more of the first through nineteenth aspects, receiving the at least one data stream comprises receiving at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode.
In a twenty-first aspect, alone or in combination with one or more of the first through twentieth aspects, receiving the at least one dependent signal comprises receiving the at least one dependent signal based at least in part on a spatial diversity scheme.
In a twenty-second aspect, alone or in combination with one or more of the first through twenty-first aspects, the spatial diversity scheme comprises at least one of space-time block coding, or space-frequency block coding.
In a twenty-third aspect, alone or in combination with one or more of the first through twenty-second aspects, the at least one dependent signal is encoded based at least in part on a channel-irrelevant channel coding operation.
In a twenty-fourth aspect, alone or in combination with one or more of the first through twenty-third aspects, receiving the at least one data stream comprises receiving a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture, wherein the first dependent signal is associated with a data stream, and receiving a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture, wherein the second dependent signal is associated with the data stream.
In a twenty-fifth aspect, alone or in combination with one or more of the first through twenty-fourth aspects, receiving the at least one data stream comprises receiving the at least one data stream based at least in part on a determination of an  occurrence of inter-aperture interference between the first transmitter aperture and the second transmitter aperture, and receiving the at least one data stream comprises receiving the first dependent signal using a spatial-diversity data stream, and the second dependent signal using the spatial-diversity data stream.
In a twenty-sixth aspect, alone or in combination with one or more of the first through twenty-fifth aspects, process 800 includes receiving a control channel transmission that comprises a spatial management indication, wherein the spatial management indication indicates at least one of an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a block diagram of an example apparatus 900 for wireless communication. The apparatus 900 may be a transmitter (e.g., a UE 120 shown in Fig. 1, a base station 110 shown in Fig. 1, etc. ) , or a transmitter may include the apparatus 900. In some aspects, the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904. As further shown, the apparatus 900 may include a communication manager 908.
In some aspects, the apparatus 900 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7. In some aspects, the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the transmitter described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software  stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906. The reception component 902 may provide received communications to one or more other components of the apparatus 900. In some aspects, the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 906. In some aspects, the reception component 902 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2.
The transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906. In some aspects, one or more other components of the apparatus 906 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906. In some aspects, the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 906. In some aspects, the transmission component 904 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
The communication manager 908 may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs. In some aspects, the communication manager 908 may include a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2. The  transmission component 904 may transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
Fig. 10 is a block diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a receiver (e.g., a UE 120 shown in Fig. 1, a base station 110 shown in Fig. 1, etc. ) , or a receiver may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004. As further shown, the apparatus 1000 may include a communication manager 1008.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the receiver described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory  computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1006. In some aspects, the reception component 1002 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the receiver described above in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1006 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the receiver described above in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
The communication manager 1008 may determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs. In some aspects, the communication manager 1008 may determine channel status measurements associated with reference signals received from the transmitter, and may determine inter-aperture orthogonality information based at least in part on the channel status measurements. In some aspects, the communication manager 1008 may include a controller/processor, a  memory, or a combination thereof, of the receiver described above in connection with Fig. 2. The reception component 1002 may receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the  disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (61)

  1. A method of wireless communication performed by a transmitter of orbital angular momentum (OAM) multiplexing based communication, comprising:
    determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  2. The method of claim 1, wherein the at least one OAM mode comprises a high-order OAM mode,
    wherein transmitting the at least one data stream comprises transmitting the data stream using a spatial diversity scheme.
  3. The method of claim 2, wherein the spatial diversity scheme comprises at least one of:
    space-time block coding, or
    space-frequency block coding.
  4. The method of any of claims 1-3, wherein transmitting the at least one data stream comprises transmitting a channel-irrelevant transmission.
  5. The method of any of claims 1-4, wherein the at least one OAM mode comprises a low-order OAM mode,
    wherein transmitting the at least one data stream comprises transmitting the data stream using a spatial multiplexing technique.
  6. The method of any of claims 1-5, further comprising receiving a report from the receiver,
    wherein determining inter-aperture orthogonality information comprises determining the inter-aperture orthogonality information based at least in part on the report.
  7. The method of claim 6, further comprising transmitting, to the receiver, a plurality of reference signals corresponding to the plurality of aperture pairs, wherein a reference signal of the plurality of reference signals corresponds to an OAM mode of a corresponding aperture pair, and
    wherein the report is based at least in part on a plurality of measured channel statuses corresponding to the plurality of reference signals.
  8. The method of claim 7, wherein the plurality of measured channel statuses comprise an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
  9. The method of any of claims 6-8, wherein the report comprises one or more indexes that indicate at least one of:
    an OAM mode that is inter-aperture orthogonal at the receiver, or
    an OAM mode that is inter-aperture non-orthogonal at the receiver.
  10. The method of any of claims 6-9, wherein the report comprises an order threshold.
  11. The method of claim 10, further comprising determining an inter-aperture orthogonality corresponding to an aperture pair of the plurality of aperture pairs by comparing an OAM mode corresponding to the aperture pair to the order threshold.
  12. The method of any of claims 1-11, further comprising calculating an estimated channel response strength associated with an aperture pair of the plurality of aperture pairs and an OAM mode corresponding to the aperture pair,
    wherein determining the inter-aperture orthogonality information comprises determining the inter-aperture orthogonality information based at least in part on the estimated channel response strength.
  13. The method of claim 12, wherein the estimated channel response strength is based at least in part on one or more system parameters, wherein the one or more system parameters indicate at least one of:
    a communication distance,
    a transmitter aperture radius,
    a receiver aperture radius, or
    a wavelength of a transmission.
  14. The method of either of claims 12 or 13, further comprising determining an inter-aperture interference strength associated with the aperture pair based at least in part on the estimated channel response strength and an inter-aperture pair distance corresponding to the aperture pair.
  15. The method of claim 14, further comprising determining an inter-aperture orthogonality corresponding to the aperture pair by comparing the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
  16. The method of claim 15, wherein determining the inter-aperture orthogonality corresponding to the aperture pair comprises determining at least one of:
    an OAM mode that is inter-aperture orthogonal at the receiver, or
    an OAM mode that is inter-aperture non-orthogonal at the receiver.
  17. The method of any of claims 1-16, wherein transmitting the at least one data stream comprises transmitting at least one independent signal using at least one inter-aperture orthogonal OAM mode.
  18. The method of claim 17, wherein transmitting the at least one independent signal comprises transmitting the at least one independent signal using spatial multiplexing.
  19. The method of any of claims 1-18, wherein transmitting the at least one data stream comprises:
    transmitting a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture, wherein the first independent signal is associated with a first data stream; and
    transmitting a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture, wherein the second  independent signal is associated with a second data stream that is different than the first data stream.
  20. The method of claim 19, wherein transmitting the at least one data stream comprises:
    transmitting the first independent signal using a first spatial multiplexing transmission; and
    transmitting the second independent signal using a second spatial multiplexing transmission.
  21. The method of any of claims 1-20, wherein transmitting the at least one data stream comprises transmitting at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode.
  22. The method of claim 21, wherein transmitting the at least one dependent signal comprises transmitting the at least one dependent signal using a spatial diversity scheme.
  23. The method of claim 22, wherein the spatial diversity scheme comprises at least one of:
    space-time block coding, or
    space-frequency block coding.
  24. The method of any of claims 21-23, further comprising encoding the at least one dependent signal using a channel-irrelevant channel coding operation.
  25. The method of any of claims 1-24, wherein transmitting the at least one data stream comprises:
    transmitting a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture, wherein the first dependent signal is associated with a data stream; and
    transmitting a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture, wherein the second dependent signal is associated with the data stream.
  26. The method of claim 25, further comprising determining an occurrence of inter-aperture interference between the first transmitter aperture and the second transmitter aperture,
    wherein transmitting the at least one data stream comprises transmitting, based at least in part on determining the occurrence of the inter-aperture interference:
    the first dependent signal using a spatial-diversity data stream; and
    the second dependent signal using the spatial-diversity data stream.
  27. The method of any of claims 1-26, further comprising transmitting a control channel transmission that comprises a spatial management indication, wherein the spatial management indication indicates at least one of:
    an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or
    an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
  28. A method of wireless communication performed by a receiver of orbital angular momentum (OAM) multiplexing based communication, comprising:
    determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  29. The method of claim 28, wherein the at least one OAM mode comprises a high-order OAM mode,
    wherein receiving the at least one data stream comprises receiving the data stream based at least in part on a spatial diversity scheme.
  30. The method of claim 29, wherein the spatial diversity scheme comprises at least one of:
    space-time block coding, or
    space-frequency block coding.
  31. The method of any of claims 28-30, wherein receiving the at least one data stream comprises receiving a channel-irrelevant transmission.
  32. The method of any of claims 28-31, wherein the at least one OAM mode comprises a low-order OAM mode,
    wherein receiving the at least one data stream comprises receiving the data stream based at least in part on a spatial multiplexing technique.
  33. The method of any of claims 28-32, further comprising transmitting a report to the transmitter,
    wherein a determination of the inter-aperture orthogonality information is based at least in part on the report.
  34. The method of claim 33, further comprising receiving, from the transmitter, a plurality of reference signals corresponding to the plurality of aperture pairs, wherein a reference signal of the plurality of reference signals corresponds to an OAM mode of a corresponding aperture pair, and
    wherein the report is based at least in part on a plurality of measured channel statuses corresponding to the plurality of reference signals.
  35. The method of claim 34, wherein the plurality of measured channel statuses comprise an inter-aperture interference associated with two or more aperture pairs of the plurality of aperture pairs.
  36. The method of any of claims 33-35, wherein the report comprises one or more indexes that indicate at least one of:
    an OAM mode that is inter-aperture orthogonal at the receiver, or
    an OAM mode that is inter-aperture non-orthogonal at the receiver.
  37. The method of any of claims 33-36, wherein the report comprises an order threshold.
  38. The method of claim 37, wherein a determination of an inter-aperture orthogonality corresponding to an aperture pair of the plurality of aperture pairs is based at least in part on a comparison of an OAM mode corresponding to the aperture pair to the order threshold.
  39. The method of any of claims 28-38, wherein the inter-aperture orthogonality information is based at least in part on an estimated channel response strength.
  40. The method of claim 39, wherein the estimated channel response strength is based at least in part on one or more system parameters, wherein the one or more system parameters indicate at least one of:
    a communication distance,
    a transmitter aperture radius,
    a receiver aperture radius, or
    a wavelength of a transmission.
  41. The method of either of claims 39 or 40, wherein an inter-aperture interference strength associated with the aperture pair is based at least in part on the estimated channel response strength and an inter-aperture pair distance corresponding to the aperture pair.
  42. The method of claim 41, wherein an inter-aperture orthogonality corresponding to the aperture pair is based at least in part on a comparison of the inter-aperture interference strength corresponding to the aperture pair to an interference threshold.
  43. The method of claim 42, wherein the inter-aperture orthogonality corresponding to the aperture pair is based at least in part on a determination of at least one of:
    an OAM mode that is inter-aperture orthogonal at the receiver, or
    an OAM mode that is inter-aperture non-orthogonal at the receiver.
  44. The method of any of claims 28-43, wherein receiving the at least one data stream comprises receiving at least one independent signal using at least one inter-aperture orthogonal OAM mode.
  45. The method of claim 44, wherein receiving the at least one independent signal comprises receiving the at least one independent signal based at least in part on a spatial multiplexing.
  46. The method of any of claims 28-45, wherein receiving the at least one data stream comprises:
    receiving a first independent signal using a first inter-aperture orthogonal OAM mode of a first transmitter aperture, wherein the first independent signal is associated with a first data stream; and
    receiving a second independent signal using a second inter-aperture orthogonal OAM mode of a second transmitter aperture, wherein the second independent signal is associated with a second data stream that is different than the first data stream.
  47. The method of claim 46, wherein receiving the at least one data stream comprises:
    receiving the first independent signal by receiving a first spatial multiplexing transmission; and
    receiving the second independent signal by receiving second spatial multiplexing transmission.
  48. The method of any of claims 28-47, wherein receiving the at least one data stream comprises receiving at least one dependent signal using at least one inter-aperture non-orthogonal OAM mode.
  49. The method of claim 48, wherein receiving the at least one dependent signal comprises receiving the at least one dependent signal based at least in part on a spatial diversity scheme.
  50. The method of claim 49, wherein the spatial diversity scheme comprises at least one of:
    space-time block coding, or
    space-frequency block coding.
  51. The method of any of claims 48-50, wherein the at least one dependent signal is encoded based at least in part on a channel-irrelevant channel coding operation.
  52. The method of any of claims 28-51, wherein receiving the at least one data stream comprises:
    receiving a first dependent signal using a first inter-aperture non-orthogonal OAM mode of a first transmitter aperture, wherein the first dependent signal is associated with a data stream; and
    receiving a second dependent signal using a second inter-aperture non-orthogonal OAM mode of a second transmitter aperture, wherein the second dependent signal is associated with the data stream.
  53. The method of claim 52, wherein receiving the at least one data stream comprises receiving the at least one data stream based at least in part on a determination of an occurrence of inter-aperture interference between the first transmitter aperture and the second transmitter aperture, and
    wherein receiving the at least one data stream comprises receiving:
    the first dependent signal using a spatial-diversity data stream; and
    the second dependent signal using the spatial-diversity data stream.
  54. The method of any of claims 28-53, further comprising receiving a control channel transmission that comprises a spatial management indication, wherein the spatial management indication indicates at least one of:
    an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial multiplexing, or
    an identification of an OAM mode of the at least one OAM mode that is transmitted with spatial diversity.
  55. A transmitter of orbital angular momentum (OAM) multiplexing based communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  56. A receiver of orbital angular momentum (OAM) multiplexing based communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  57. A non-transitory computer-readable medium storing a set of instructions for orbital angular momentum (OAM) multiplexing based communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a transmitter, cause the transmitter to:
    determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    transmit, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  58. A non-transitory computer-readable medium storing a set of instructions for orbital angular momentum (OAM) multiplexing based communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a receiver, cause the receiver to:
    determine inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    receive, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  59. An apparatus for orbital angular momentum (OAM) multiplexing based communication, comprising:
    means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    means for transmitting, to a receiver of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  60. An apparatus for orbital angular momentum (OAM) multiplexing based communication, comprising:
    means for determining inter-aperture orthogonality information corresponding to a plurality of aperture pairs; and
    means for receiving, from a transmitter of the OAM multiplexing based communication, at least one data stream using at least one OAM mode of at least one aperture pair of the plurality of aperture pairs, wherein the at least one OAM mode is based at least in part on the inter-aperture orthogonality information.
  61. A method, device, apparatus, computer program product, non-transitory computer-readable medium, user equipment, base station, node, wireless communication device, transmitter, receiver, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
PCT/CN2020/121030 2020-10-15 2020-10-15 Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication WO2022077306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121030 WO2022077306A1 (en) 2020-10-15 2020-10-15 Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121030 WO2022077306A1 (en) 2020-10-15 2020-10-15 Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication

Publications (1)

Publication Number Publication Date
WO2022077306A1 true WO2022077306A1 (en) 2022-04-21

Family

ID=81207566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121030 WO2022077306A1 (en) 2020-10-15 2020-10-15 Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication

Country Status (1)

Country Link
WO (1) WO2022077306A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084039A1 (en) * 2010-12-22 2012-06-28 Telefonaktiebolaget Lm Ericsson (Publ) An antenna arrangement
CN104601214A (en) * 2014-12-30 2015-05-06 浙江大学 Sampling receiving method for demultiplexing RF track angular momentum mode
US20160043794A1 (en) * 2014-08-08 2016-02-11 Solyman Ashrafi Systems and methods for focusing beams with mode division multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084039A1 (en) * 2010-12-22 2012-06-28 Telefonaktiebolaget Lm Ericsson (Publ) An antenna arrangement
US20160043794A1 (en) * 2014-08-08 2016-02-11 Solyman Ashrafi Systems and methods for focusing beams with mode division multiplexing
CN104601214A (en) * 2014-12-30 2015-05-06 浙江大学 Sampling receiving method for demultiplexing RF track angular momentum mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG SHILIE, HUI XIAONAN, ZHU JIANGBO, CHI HAO, JIN XIAOFENG, YU SIYUAN, ZHANG XIANMIN: "Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture", OPTICS EXPRESS, vol. 23, no. 9, 4 May 2015 (2015-05-04), pages 12251, XP055922203, DOI: 10.1364/OE.23.012251 *

Similar Documents

Publication Publication Date Title
WO2022002195A1 (en) Mode determination for orbital angular momentum communication system
WO2022241362A1 (en) Techniques for selecting a beam pair using single layer measurements
WO2021225959A1 (en) Resource identification for uplink scheduled transmission after cancellation indication receipt
WO2022000357A1 (en) Beamforming for multi-aperture orbital angular momentum multiplexing based communication
US11558221B2 (en) Sounding reference signal resource indicator group indication
CN116918271A (en) Transmitting configuration indicator state set indications
WO2022077306A1 (en) Spatially diverse transmission in multi-aperture orbital angular momentum multiplexing based communication
WO2022120513A1 (en) Spatial diversity in co-axial multi-circle orbital angular momentum multiplexing based communication
WO2023283799A1 (en) Open-loop transmission with transmit diversity in orbital angular momentum multiplexing based communications
WO2022193044A1 (en) Orbital angular momentum mode determination with partial receive circle
US12003296B2 (en) Beamforming for multi-aperture orbital angular momentum multiplexing based communication
WO2023060502A1 (en) Azimuth mode configurations for orbital angular momentum multiplexing based communication
US11678317B2 (en) Subband-based measurement reporting
WO2022178705A1 (en) Mode division duplex for orbital angular momentum communications
WO2022227045A1 (en) Beam failure detection for a physical downlink control channel monitoring operation corresponding to at least two transmission configuration indicator states
WO2022151356A1 (en) Maximum permissible exposure reporting
US11665683B2 (en) User equipment reporting for full duplex multi-beam selection
WO2022246676A1 (en) Partial sounding for line of sight multiple input multiple output multiplexing
WO2022147676A1 (en) Uplink mode switching
WO2023077401A1 (en) Techniques for transmitting two-part uplink control information for group-based beam reporting
EP4348862A1 (en) Indicating blockage events as a cause for changes in rank information or channel quality information
WO2022241372A1 (en) Beam group based channel state information reporting
KR20240058840A (en) Physical downlink control channel monitoring application selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957086

Country of ref document: EP

Kind code of ref document: A1