WO2022074765A1 - Multiplex transmission system and resource control method for multiplex transmission system - Google Patents

Multiplex transmission system and resource control method for multiplex transmission system Download PDF

Info

Publication number
WO2022074765A1
WO2022074765A1 PCT/JP2020/038017 JP2020038017W WO2022074765A1 WO 2022074765 A1 WO2022074765 A1 WO 2022074765A1 JP 2020038017 W JP2020038017 W JP 2020038017W WO 2022074765 A1 WO2022074765 A1 WO 2022074765A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplex transmission
unit
transmission device
resource pool
failure
Prior art date
Application number
PCT/JP2020/038017
Other languages
French (fr)
Japanese (ja)
Inventor
紘子 野村
慶太 高橋
智也 秦野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/038017 priority Critical patent/WO2022074765A1/en
Priority to US18/028,744 priority patent/US20230336244A1/en
Priority to JP2022555030A priority patent/JPWO2022074765A1/ja
Publication of WO2022074765A1 publication Critical patent/WO2022074765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present disclosure relates to a multiplex transmission system and a resource control method for the multiplex transmission system.
  • Non-Patent Document 1 discloses a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between two points.
  • Non-Patent Document 1 specifically discloses one that multiplexes a plurality of signals by using wavelength division multiplexing (WDM: Wavelength Division Multiplex).
  • WDM Wavelength Division Multiplex
  • a multiplex transmission device that performs multiplex separation of wavelengths is installed at each of the two transmission points.
  • Non-Patent Document 2 describes a redundant technique for an access network.
  • a redundant technique as described in Non-Patent Document 2 is required. Become.
  • An object of the present disclosure is to provide a multiplex transmission system and a multiplex transmission system resource control method capable of realizing a redundant configuration for troubleshooting while reducing unnecessary resources.
  • the multiplex transmission system is provided in the first multiplex transmission device in a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between the first multiplex transmission device and the second multiplex transmission device, and has a plurality of functions. It is provided with a resource pool having resources capable of selectively constructing one or more of the functions, a monitor unit for monitoring information on the failure when a failure occurs, and a control unit for controlling the resource pool. It is a thing. When a failure occurs, the control unit causes the resource pool to build functions necessary for building a redundant configuration according to the content of the failure based on the monitoring result of the monitor unit.
  • the resource control method of the multiplex transmission system is provided in the first multiplex transmission device in the multiplex transmission system in which a plurality of signals are multiplexed and transmitted between the first multiplex transmission device and the second multiplex transmission device.
  • This resource control method is a resource to build a monitoring step that monitors the information of the failure when a failure occurs and a function to build a redundant configuration according to the content of the failure based on the result of the monitoring step. It has a function building step to control the pool.
  • the multiplex transmission system and the resource control method of the multiplex transmission system according to the present disclosure it is possible to realize a redundant configuration for troubleshooting while reducing unnecessary resources.
  • FIG. 1 shows typically an example of the whole structure of the multiplex transmission system which concerns on Embodiment 1.
  • FIG. 2 is a block diagram which shows the structure of the multiplex transmission apparatus provided in the multiplex transmission system which concerns on Embodiment 1.
  • FIG. It is a flow diagram which shows the flow of the resource control method of the multiplex transmission system which concerns on Embodiment 1.
  • FIG. It is a block diagram explaining the 1st operation example of the multiplex transmission system which concerns on Embodiment 1.
  • FIG. It is a block diagram explaining the 2nd operation example of the multiplex transmission system which concerns on Embodiment 1.
  • FIG. 1 is a diagram schematically showing an example of the overall configuration of the multiplex transmission system according to the first embodiment.
  • the multiplex transmission system according to the present embodiment includes a first multiplex transmission device 100 and a second multiplex transmission device 200.
  • the multiplex transmission system of the present embodiment is a system in which a plurality of signals are multiplexed and transmitted between the first multiplex transmission device 100 and the second multiplex transmission device 200.
  • the multiplex transmission system according to this disclosure can be applied to a system using various well-known signal multiplexing methods.
  • Specific signal multiplexing methods include frequency division multiplexing (WDM: Waveringth Division Multiplex), frequency division multiplexing (FDM: Frequency Division Multiplex), time division multiplexing (TDM: Time Division Multiplex), and code division multiplexing (TDM).
  • WDM Waveringth Division Multiplex
  • FDM Frequency Division Multiplex
  • TDM Time Division Multiplex
  • TDM Time Division Multiplex
  • CDM Code Division Multiplex
  • the first multiplex transmission device 100 and the second multiplex transmission device 200 are communicably connected by an optical fiber cable.
  • the multiplex transmission system by multiplexing a plurality of signals transmitted between two points, it is possible to reduce the number of optical fiber cables required for transmitting the plurality of signals between the two points.
  • the first multiplex transmission device 100 and the second multiplex transmission device 200 can be communicably connected by a single optical fiber cable.
  • One or more slave stations are connected to one of the first multiplex transmission device 100 and the second multiplex transmission device 200 so as to be able to communicate with each other.
  • One or more master stations are connected to the other of the first multiplex transmission device 100 and the second multiplex transmission device 200 so as to be able to communicate with each other.
  • the first slave station 11 and the second slave station 12 are connected to the first multiplex transmission device 100
  • the first master station 21 and the second master station 22 are connected to the second multiplex transmission device 200. There is.
  • the multiplex transmission system is applied to the mobile front hall.
  • the first master station 21 and the second master station 22 correspond to the CU (Central Unit) and / or the DU (Distributed Unit) of the base station.
  • the first slave station 11 and the second slave station 12 correspond to RU (Radio Unit).
  • the first slave station 11 and the first master station 21 are base stations of the first mobile carrier.
  • the second slave station 12 and the second master station 22 are base stations of the second mobile carrier.
  • the first mobile carrier and the second mobile carrier are different mobile carriers (mobile communication carriers).
  • An antenna is connected to each slave station. Each antenna outputs radio waves to individual areas to form a reception area.
  • Each master station may be formed as an individual device for each mobile carrier, or may be formed as an integrated device.
  • each slave station may be formed as an individual device for each mobile carrier, or may be formed as an integrated device.
  • FIG. 2 is a block diagram showing a configuration of a multiplex transmission device included in the multiplex transmission system according to the first embodiment.
  • the master station and the slave station connected to the first multiplex transmission device 100 and the second multiplex transmission device 200 are collectively referred to as a client device here.
  • Each of the first multiplex transmission device 100 and the second multiplex transmission device 200 is provided with a plurality of client ports to which a client device can be connected.
  • each of the first multiplex transmission device 100 and the second multiplex transmission device 200 is provided with two client ports.
  • the two client ports provided in the first multiplex transmission device 100 are referred to as a first client port and a second client port.
  • the two client ports provided in the second multiplex transmission device 200 are referred to as a third client port and a fourth client port.
  • “first” is indicated by “# 1”
  • “second” is indicated by “# 2”
  • "third” is indicated by “# 3”
  • "fourth” is indicated by "#”. 4 ”.
  • the first client port of the first multiplex transmission device 100 is provided with an O / E unit 121 on the first client side and an E / O unit 122 on the first client side.
  • the second client port of the first multiplex transmission device 100 is provided with a second client-side O / E unit 123 and a second client-side E / O unit 124.
  • the first multiplex transmission device 100 includes a first line side E / O unit 111, a first line side O / E unit 112, a second line side E / O unit 113, a second line side O / E unit 114, and A first wave section 101 is further provided.
  • the optical signal input to the first client port of the first multiplex transmission device 100 is converted into an electric signal in the first client side O / E unit 121 and output to the first line side E / O unit 111.
  • the first line side E / O unit 111 converts the input electric signal into an optical signal and outputs it to the first combine unit 101.
  • the optical signal input to the second client port of the first multiplex transmission device 100 is converted into an electric signal in the second client side O / E unit 123 and output to the second line side E / O unit 113. ..
  • the second line side E / O unit 113 converts the input electric signal into an optical signal and outputs it to the first combine unit 101.
  • the first wave section 101 multiplexes the optical signals input from the first line side E / O section 111 and the second line side E / O section 113.
  • the optical signal multiplexed in the first combiner section 101 is transmitted from the first multiplex transmission device 100 to the second multiplex transmission device 200.
  • the multiplexed optical signal transmitted from the second multiplex transmission device 200 to the first multiplex transmission device 100 is input to the first combine unit 101.
  • the first combiner section 101 separates the multiplexed signal input from the second multiplex transmission device 200 and outputs it to each of the first line side O / E section 112 and the second line side O / E section 114. do.
  • the first line side O / E unit 112 converts the optical signal input from the first combine unit 101 into an electric signal and outputs it to the first client side E / O unit 122.
  • the first client-side E / O unit 122 converts the input electric signal into an optical signal and outputs it to the first client port of the first multiplex transmission device 100.
  • the second line side O / E unit 114 converts the optical signal input from the first combine unit 101 into an electric signal and outputs it to the second client side E / O unit 124.
  • the second client-side E / O unit 124 converts the input electric signal into an optical signal and outputs it to the second client port of the first multiplex transmission device 100.
  • the first line side E / O unit 111, the first line side O / E unit 112, the first client side O / E unit 121, and the first client side E / O unit 122 are the first multiplex transmission device. It corresponds to 100 first client ports.
  • the second line side E / O unit 113, the second line side O / E unit 114, the second client side O / E unit 123, and the second client side E / O unit 124 are the first multiplex transmission device 100. It corresponds to the second client port.
  • the second multiplex transmission device 200 is configured in the same manner as the first multiplex transmission device 100.
  • the internal configuration of the second multiplex transmission device 200 is not shown.
  • the second multiplex transmission device 200 is provided with a third client port and a fourth client port.
  • the second multiplex transmission device 200 includes a client-side O / E unit and an E / O unit corresponding to each client port.
  • the second multiplex transmission device 200 includes an O / E unit and an E / O unit on the line side corresponding to each client port.
  • the second multiplex transmission device 200 includes a second combiner that functions in the same manner as the first combiner 101.
  • the line-side O / E section and E / O section of each multiplex transmission device are composed of an optical module that emits light at a fixed wavelength.
  • the line-side O / E section and E / O section included in the first multiplex transmission device 100 have the same wavelength as the line-side O / E section and E / O section of the second multiplex transmission device 200. Communication can only be performed with an optical module that emits light.
  • each slave station and the first multiplex transmission device 100 may be connected via a coupler (not shown) in order to construct a redundant configuration of a transmission line.
  • each master station and the second multiplex transmission device 200 may be connected via a coupler for constructing a redundant configuration of a transmission line.
  • a switch capable of switching the transmission line provided inside each multiplex transmission device may be used to construct a redundant configuration of the transmission line between the base station and each multiplex transmission device.
  • the first multiplex transmission device 100 includes a first line switching unit 102 in order to construct a redundant configuration of transmission lines between the multiplex transmission devices.
  • the second multiplex transmission device 200 includes a second line switching unit that functions in the same manner as the first line switching unit 102.
  • the line switching unit is for constructing a redundant configuration of transmission lines between multiplex transmission devices.
  • the line switching portions are connected by a plurality of paths (optical fiber cables). In the illustrated configuration example, the line switching portions are connected by two paths.
  • a signal from the combine section is input to the line switching section.
  • the line switching unit selects an arbitrary route from a plurality of routes connecting the line switching units, and outputs a signal from the combine unit to the selected line.
  • the line switching unit may be provided outside the multiplex transmission device.
  • the first multiplex transmission device 100 and the second multiplex transmission device 200 are connected by a plurality of switchable transmission paths.
  • the first multiplex transmission device 100 includes a resource pool 130.
  • the resource pool 130 has resources capable of selectively constructing one or more functions among a plurality of functions.
  • the resource pool 130 is composed of, for example, a rewritable FPGA.
  • Various electrical functions can be flexibly added to and removed from the resource pool 130.
  • the resource pool 130 partially or completely rewrites as necessary to build the necessary functions.
  • the resource pool 130 constructs a function for realizing a redundant configuration for dealing with a failure when a failure occurs.
  • a redundant configuration is constructed using the resource pool 130. This makes it possible to utilize resources more effectively than in the past. According to the present disclosure, it is possible to realize a redundant configuration for troubleshooting while reducing unnecessary resources.
  • the resource pool 130 may also be provided in the second multiplex transmission device 200.
  • the resource pool 130 may be provided in at least one of the first multiplex transmission device 100 and the second multiplex transmission device 200.
  • the functional units that can be constructed in the resources of the resource pool 130 are, for example, the SW unit 131, the error correction processing unit 132, the modulation unit 133, the filter unit 134, and the like.
  • the SW unit 131 has a switching function.
  • the SW unit 131 constructs a redundant path, for example, when a failure occurs in each O / E unit, each E / O unit, or other transmission / reception unit in the first multiplex transmission device 100.
  • the error correction processing unit 132 has a function of correcting the bit error rate due to signal deterioration occurring in the transmission line.
  • the error correction processing unit 132 detects and corrects an error on the receiving side based on the error correction code added to the data on the transmitting side.
  • the error correction code for example, an arbitrary code such as a Reed-Solomon code or an LDPC code is paid out.
  • the error correction processing unit 132 is constructed in the resource of the resource pool 130, for example, when the switching destination route becomes a long distance in the event of a line failure.
  • the modulation unit 133 has a function of multiplying the signal from the client port.
  • the modulation unit 133 generates, for example, a PAM4 signal.
  • the bit rate can be increased while maintaining the baud rate.
  • the modulation unit 133 for example, the cost of the O / E unit and the E / O unit can be reduced.
  • the filter unit 134 is for reducing the transmission speed, and has a function of filtering and discarding a part of the main signal.
  • the multiplex transmission system includes a management control unit 140.
  • the management control unit 140 includes, for example, a resource pool side monitor unit 141, a line side monitor unit 142, and a resource calculation unit 143.
  • the management control unit 140 is provided outside the first multiplex transmission device 100 in the illustrated configuration example, at least a part of the functions of the management control unit 140 is provided in the first multiplex transmission device 100. May be good. Further, at least a part of the functions of the management control unit 140 may be provided in the second multiplex transmission device 200.
  • the resource pool side monitor unit 141 monitors the current state of the resource pool 130.
  • the monitoring information by the resource pool side monitoring unit 141 is sent to the resource calculation unit 143.
  • the line side monitor unit 142 monitors the states of the first line side E / O unit 111, the first line side O / E unit 112, the second line side E / O unit 113, and the second line side O / E unit 114. do.
  • the monitoring information by the line side monitor unit 142 is sent to the resource calculation unit 143.
  • the line The side monitor unit 142 notifies the resource calculation unit 143 of the failure.
  • the resource calculation unit 143 performs a calculation process for constructing each functional unit in the resource in the resource pool 130.
  • the resource calculation unit 143 performs calculation processing based on the monitoring information sent from the resource pool side monitor unit 141 and the line side monitor unit 142. Then, the resource calculation unit 143 issues an instruction to the resource pool 130 to construct a necessary functional unit based on the calculation processing result.
  • the management control unit 140 may be configured by a computer equipped with a processor and a memory as hardware.
  • the processor is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • Examples of the memory include non-volatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM and EEPROM, or magnetic disks, flexible disks, optical disks, compact disks, mini disks and DVDs.
  • the program as software is stored in the memory of the management control unit 140.
  • the management control unit 140 executes preset processing by executing a program stored in the memory by the processor, and realizes each function as a result of the cooperation between the hardware and the software.
  • the line-side monitor unit 142 in the present embodiment functions as a monitor unit for monitoring information on the failure when a failure occurs.
  • the resource calculation unit 143 in the present embodiment serves as a control unit for causing the resource pool 130 to construct the functions necessary for constructing the redundant configuration according to the content of the failure based on the monitoring result by the monitor unit. Function.
  • FIG. 3 is a flow chart showing the flow of the resource control method of the multiplex transmission system according to the first embodiment.
  • FIG. 3 illustrates the operation when a failure occurs.
  • step S11 information on the failure is monitored.
  • the process of step S11 is also referred to as a monitoring step in the present disclosure.
  • step S12 based on the result of the monitoring step, the resource pool is made to construct a function for constructing a redundant configuration according to the content of the failure.
  • the process of step S12 will also be referred to as a function construction step.
  • the monitoring step and the function building step are carried out by the management control unit 140 and the resource pool 130.
  • the resource control method as shown in FIG. 3 and the multiplex transmission system configured to be able to execute the resource control method, it is possible to deal with various failures while reducing wasteful resources.
  • the line side monitor unit 142 notifies the resource calculation unit 143 of the information of the failure.
  • the resource calculation unit 143 installs a function for constructing a new transmission path avoiding the transmission path including the failure location in the resource pool 130. To execute.
  • FIG. 4 is a block diagram illustrating a first operation example of the multiplex transmission system according to the first embodiment.
  • FIG. 4 shows an operation example when the second line side E / O unit 113 or the second line side O / E unit 114 fails. If the second line side E / O unit 113 or the second line side O / E unit 114 fails, the signal transmission of the second slave station 12 cannot be performed. In this case, it is necessary to transmit the signal of the second slave station 12 by using the transmission system of the first client port. Therefore, the resource calculation unit 143 causes the resource pool 130 to execute the construction of the SW unit 131 and the modulation unit 133. As a result, as shown in FIG. 4, a transmission path avoiding the second line side E / O unit 113 and the second line side O / E unit 114 is constructed.
  • FIG. 5 is a block diagram illustrating a fifth operation example of the multiplex transmission system according to the first embodiment.
  • FIG. 5 shows an operation example when the line is switched from the active system to the standby system when the line is disconnected due to a failure in the optical fiber cable connecting the first multiplex transmission device 100 and the second multiplex transmission device 200. Is shown.
  • the line-side monitor unit 142 When a failure occurs in the transmission path connecting the first multiplex transmission device 100 and the second multiplex transmission device 200, the line-side monitor unit 142 notifies the resource calculation unit 143 of the failure information.
  • LOS Loss of signal
  • the resource calculation unit 143 causes the resource pool 130 to execute the construction of the error correction processing unit 132. As a result, signal transmission can be performed without error even when the transmission line after switching at the time of failure occurs over a long distance.
  • the operation of the multiplex transmission system according to the present disclosure is not limited to the examples shown in FIGS. 4 and 5.
  • a filter unit for lowering the transmission speed may be constructed.
  • various failures such as a failure in a transmission path and a failure in a transmission / reception unit can be dealt with by a common resource pool 130.
  • the multiplex transmission device constituting the multiplex transmission system and the resource control method of the multiplex transmission system according to the present disclosure are hardware in which preset processing is performed by the processor executing a program stored in the memory. It can also be achieved by linking hardware and software.
  • the program for realizing the apparatus and method according to the present disclosure can be recorded in an information recording medium.
  • the program for realizing the apparatus and method according to the present disclosure can also be provided through a communication network.
  • the present disclosure can be used for a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between a first multiplex transmission device and a second multiplex transmission device, and resource control of the multiplex transmission system.

Abstract

Provided is a multiplex transmission system in which a redundant configuration for coping with a failure can be realized while reducing unnecessary resources. The multiplex transmission system is equipped with: a resource pool 130 which is provided in a first multiplex transmission device 100, and has resources capable of selectively constructing one or more among a plurality of functions; a monitor unit which monitors information on a failure when the failure occurs; and a control unit which controls the resource pool. When the failure occurs, the control unit causes, on the basis of the monitoring result by the monitor unit, the resource pool 130 to construct a function necessary for constructing a redundant configuration according to the content of the failure.

Description

多重伝送システムおよび多重伝送システムのリソース制御方法Resource control method for multiplex transmission system and multiplex transmission system
 本開示は、多重伝送システムおよび多重伝送システムのリソース制御方法に関するものである。 The present disclosure relates to a multiplex transmission system and a resource control method for the multiplex transmission system.
 非特許文献1には、2地点間において複数の信号を多重化して伝送する多重伝送システムが開示されている。非特許文献1には、具体的には、波長分割多重化(WDM:Wavelength Division Multiplex)を用いて、複数の信号を多重化するものが開示されている。伝送する2つの地点のそれぞれには、波長の多重分離を行う多重伝送装置が設置される。 Non-Patent Document 1 discloses a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between two points. Non-Patent Document 1 specifically discloses one that multiplexes a plurality of signals by using wavelength division multiplexing (WDM: Wavelength Division Multiplex). A multiplex transmission device that performs multiplex separation of wavelengths is installed at each of the two transmission points.
 また、非特許文献2には、アクセス網の冗長技術が記載されている。多重伝送装置をつなぐ光ファイバーケーブルの断線または多重伝送装置内の送受信部(TRx)の故障等の各種の障害に対応するためには、非特許文献2に記載されているような冗長技術が必要となる。 In addition, Non-Patent Document 2 describes a redundant technique for an access network. In order to deal with various failures such as disconnection of the optical fiber cable connecting the multiplex transmission device or failure of the transmission / reception unit (TRx) in the multiplex transmission device, a redundant technique as described in Non-Patent Document 2 is required. Become.
 非特許文献2に記載されているような従来の冗長技術においては、障害に備えて、多重伝送システムの導入の段階から予備系のリソースを予め準備しておく必要がある。従来の冗長技術において必要となる予備系のリソースは、障害が発生していない通常時においては、無駄なリソースとなってしまう。 In the conventional redundant technology as described in Non-Patent Document 2, it is necessary to prepare spare system resources in advance from the stage of introducing the multiplex transmission system in case of a failure. The spare system resources required in the conventional redundant technology become useless resources in the normal time when no failure occurs.
 本開示は、このような課題を解決するためになされたものである。本開示の目的は、無駄なリソースを削減しつつ障害対応用の冗長構成を実現可能な多重伝送システムおよび多重伝送システムリソース制御方法を提供することにある。 This disclosure is made to solve such problems. An object of the present disclosure is to provide a multiplex transmission system and a multiplex transmission system resource control method capable of realizing a redundant configuration for troubleshooting while reducing unnecessary resources.
 本開示に係る多重伝送システムは、第1多重伝送装置と第2多重伝送装置との間で複数の信号を多重化して伝送する多重伝送システムにおいて、第1多重伝送装置に設けられ、複数の機能のうちの1つ以上の機能を選択的に構築可能なリソースを有するリソースプールと、障害の発生時に、当該障害の情報をモニタリングするモニタ部と、リソースプールの制御を行う制御部と、を備えるものである。制御部は、障害の発生時に、モニタ部によるモニタリング結果に基づいて、当該障害の内容に応じた冗長構成を構築するために必要な機能の構築を、リソースプールに実行させる。 The multiplex transmission system according to the present disclosure is provided in the first multiplex transmission device in a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between the first multiplex transmission device and the second multiplex transmission device, and has a plurality of functions. It is provided with a resource pool having resources capable of selectively constructing one or more of the functions, a monitor unit for monitoring information on the failure when a failure occurs, and a control unit for controlling the resource pool. It is a thing. When a failure occurs, the control unit causes the resource pool to build functions necessary for building a redundant configuration according to the content of the failure based on the monitoring result of the monitor unit.
 本開示に係る多重伝送システムのリソース制御方法は、第1多重伝送装置と第2多重伝送装置との間で複数の信号を多重化して伝送する多重伝送システムにおいて、第1多重伝送装置に設けられ、複数の機能のうちの1つ以上の機能を選択的に構築可能なリソースを有するリソースプールを制御する方法である。このリソース制御方法は、障害の発生時に、当該障害の情報をモニタリングするモニタリングステップと、モニタリングステップの結果に基づいて、障害の内容に応じた冗長構成を構築するための機能を構築するようにリソースプールを制御する機能構築ステップと、を備える。 The resource control method of the multiplex transmission system according to the present disclosure is provided in the first multiplex transmission device in the multiplex transmission system in which a plurality of signals are multiplexed and transmitted between the first multiplex transmission device and the second multiplex transmission device. , A method of controlling a resource pool having resources capable of selectively constructing one or more of a plurality of functions. This resource control method is a resource to build a monitoring step that monitors the information of the failure when a failure occurs and a function to build a redundant configuration according to the content of the failure based on the result of the monitoring step. It has a function building step to control the pool.
 本開示に係る多重伝送システムおよび多重伝送システムのリソース制御方法によれば、無駄なリソースを削減しつつ障害対応用の冗長構成を実現することができる。 According to the multiplex transmission system and the resource control method of the multiplex transmission system according to the present disclosure, it is possible to realize a redundant configuration for troubleshooting while reducing unnecessary resources.
実施の形態1に係る多重伝送システムの全体構成の一例を模式的に示す図である。It is a figure which shows typically an example of the whole structure of the multiplex transmission system which concerns on Embodiment 1. FIG. 実施の形態1に係る多重伝送システムが備える多重伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the multiplex transmission apparatus provided in the multiplex transmission system which concerns on Embodiment 1. FIG. 実施の形態1に係る多重伝送システムのリソース制御方法の流れを示すフロー図である。It is a flow diagram which shows the flow of the resource control method of the multiplex transmission system which concerns on Embodiment 1. FIG. 実施の形態1に係る多重伝送システムの第1の動作例を説明するブロック図である。It is a block diagram explaining the 1st operation example of the multiplex transmission system which concerns on Embodiment 1. FIG. 実施の形態1に係る多重伝送システムの第2の動作例を説明するブロック図である。It is a block diagram explaining the 2nd operation example of the multiplex transmission system which concerns on Embodiment 1. FIG.
 本開示に係る多重伝送システムおよび多重伝送システムのリソース制御方法を実施するための形態について、添付の図面を参照しながら説明する。各図において、同一又は相当する部分には同一の符号を付して、重複する説明は適宜に簡略化又は省略する。なお、本開示は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態によって開示される任意の構成要素の変形または省略が可能である。 The mode for implementing the multiplex transmission system and the resource control method of the multiplex transmission system according to the present disclosure will be described with reference to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and duplicate explanations are appropriately simplified or omitted. The present disclosure is not limited to the following embodiments, and any component disclosed by the embodiments can be modified or omitted without departing from the spirit of the present disclosure.
実施の形態1.
 図1は、実施の形態1に係る多重伝送システムの全体構成の一例を模式的に示す図である。本実施の形態に係る多重伝送システムは、図1に示すように、第1多重伝送装置100および第2多重伝送装置200を備えている。本実施の形態の多重伝送システムは、第1多重伝送装置100と第2多重伝送装置200との間で複数の信号を多重化して伝送するシステムである。この開示に係る多重伝送システムは、周知である各種の信号多重化方法を使用したシステムに適用可能である。具体的な信号多重化方法としては、波長分割多重化(WDM:Wavelength Division Multiplex)、周波数分割多重化(FDM:Frequency Division Multiplex)、時分割多重化(TDM:Time Division Multiplex)、符号分割多重化(CDM:Code Division Multiplex)等を挙げることができる。ここでは、波長分割多重化(WDM)を使用した場合の例について説明する。
Embodiment 1.
FIG. 1 is a diagram schematically showing an example of the overall configuration of the multiplex transmission system according to the first embodiment. As shown in FIG. 1, the multiplex transmission system according to the present embodiment includes a first multiplex transmission device 100 and a second multiplex transmission device 200. The multiplex transmission system of the present embodiment is a system in which a plurality of signals are multiplexed and transmitted between the first multiplex transmission device 100 and the second multiplex transmission device 200. The multiplex transmission system according to this disclosure can be applied to a system using various well-known signal multiplexing methods. Specific signal multiplexing methods include frequency division multiplexing (WDM: Waveringth Division Multiplex), frequency division multiplexing (FDM: Frequency Division Multiplex), time division multiplexing (TDM: Time Division Multiplex), and code division multiplexing (TDM). (CDM: Code Division Multiplex) and the like can be mentioned. Here, an example in the case of using wavelength division multiplexing (WDM) will be described.
 第1多重伝送装置100と第2多重伝送装置200とは、光ファイバーケーブルにより通信可能に接続されている。多重伝送システムによれば、2点間で伝送される複数の信号を多重化することで、複数の信号を2点間で伝送するための必要な光ファイバーケーブルの本数を削減することができる。例えば、第1多重伝送装置100と第2多重伝送装置200とは、1本の光ファイバーケーブルによって通信可能に接続することができる。 The first multiplex transmission device 100 and the second multiplex transmission device 200 are communicably connected by an optical fiber cable. According to the multiplex transmission system, by multiplexing a plurality of signals transmitted between two points, it is possible to reduce the number of optical fiber cables required for transmitting the plurality of signals between the two points. For example, the first multiplex transmission device 100 and the second multiplex transmission device 200 can be communicably connected by a single optical fiber cable.
 第1多重伝送装置100および第2多重伝送装置200の一方には、1つ以上の子局が、通信可能なように接続される。第1多重伝送装置100および第2多重伝送装置200の他方には、1つ以上の親局が、通信可能なように接続される。図示の構成例では、第1多重伝送装置100に第1子局11および第2子局12が接続され、第2多重伝送装置200に第1親局21および第2親局22が接続されている。 One or more slave stations are connected to one of the first multiplex transmission device 100 and the second multiplex transmission device 200 so as to be able to communicate with each other. One or more master stations are connected to the other of the first multiplex transmission device 100 and the second multiplex transmission device 200 so as to be able to communicate with each other. In the illustrated configuration example, the first slave station 11 and the second slave station 12 are connected to the first multiplex transmission device 100, and the first master station 21 and the second master station 22 are connected to the second multiplex transmission device 200. There is.
 本実施の形態において、多重伝送システムは、モバイルフロントホールに適用されているとする。この場合、第1親局21および第2親局22は、基地局のCU(Central Unit)および/またはDU(Distributed Unit)にあたる。また、この場合、第1子局11および第2子局12はRU(Radio Unit)にあたる。第1子局11および第1親局21は、第1モバイルキャリアの基地局である。第2子局12および第2親局22は、第2モバイルキャリアの基地局である。第1モバイルキャリアと第2モバイルキャリアとは、異なるモバイルキャリア(移動体通信事業者)である。各子局には、アンテナが接続されている。各アンテナは、個別のエリアに対して電波を出力して、受信エリアを形成する。なお、各親局は、モバイルキャリア毎に個別の装置として形成されていてもよいし、一体化された装置として形成されてもよい。同様に、各子局も、モバイルキャリア毎に個別の装置として形成されていてもよいし、一体化された装置として形成されてもよい。 In this embodiment, it is assumed that the multiplex transmission system is applied to the mobile front hall. In this case, the first master station 21 and the second master station 22 correspond to the CU (Central Unit) and / or the DU (Distributed Unit) of the base station. Further, in this case, the first slave station 11 and the second slave station 12 correspond to RU (Radio Unit). The first slave station 11 and the first master station 21 are base stations of the first mobile carrier. The second slave station 12 and the second master station 22 are base stations of the second mobile carrier. The first mobile carrier and the second mobile carrier are different mobile carriers (mobile communication carriers). An antenna is connected to each slave station. Each antenna outputs radio waves to individual areas to form a reception area. Each master station may be formed as an individual device for each mobile carrier, or may be formed as an integrated device. Similarly, each slave station may be formed as an individual device for each mobile carrier, or may be formed as an integrated device.
 図2は、実施の形態1に係る多重伝送システムが備える多重伝送装置の構成を示すブロック図である。第1多重伝送装置100および第2多重伝送装置200に接続される親局および子局を総称して、ここではクライアント装置と呼ぶ。第1多重伝送装置100および第2多重伝送装置200のそれぞれは、クライアント装置を接続可能な複数のクライアントポートが設けられている。図示の構成例では、第1多重伝送装置100および第2多重伝送装置200それぞれには、2つずつクライアントポートが設けられている。区別を容易にするため、第1多重伝送装置100に設けられている2つのクライアントポートを第1クライアントポートおよび第2クライアントポートと呼ぶ。また、第2多重伝送装置200に設けられている2つのクライアントポートを第3クライアントポートおよび第4クライアントポートと呼ぶ。なお、各図においては、「第1」を「#1」で示し、「第2」を「#2」で示し、「第3」を「#3」で示し、「第4」を「#4」で示している。 FIG. 2 is a block diagram showing a configuration of a multiplex transmission device included in the multiplex transmission system according to the first embodiment. The master station and the slave station connected to the first multiplex transmission device 100 and the second multiplex transmission device 200 are collectively referred to as a client device here. Each of the first multiplex transmission device 100 and the second multiplex transmission device 200 is provided with a plurality of client ports to which a client device can be connected. In the illustrated configuration example, each of the first multiplex transmission device 100 and the second multiplex transmission device 200 is provided with two client ports. For easy distinction, the two client ports provided in the first multiplex transmission device 100 are referred to as a first client port and a second client port. Further, the two client ports provided in the second multiplex transmission device 200 are referred to as a third client port and a fourth client port. In each figure, "first" is indicated by "# 1", "second" is indicated by "# 2", "third" is indicated by "# 3", and "fourth" is indicated by "#". 4 ”.
 第1多重伝送装置100の第1クライアントポートには、第1クライアント側O/E部121および第1クライアント側E/O部122が設けられている。第1多重伝送装置100の第2クライアントポートには、第2クライアント側O/E部123および第2クライアント側E/O部124が設けられている。第1多重伝送装置100は、第1ライン側E/O部111、第1ライン側O/E部112、第2ライン側E/O部113および第2ライン側O/E部114、並びに、第1合波部101をさらに備えている。 The first client port of the first multiplex transmission device 100 is provided with an O / E unit 121 on the first client side and an E / O unit 122 on the first client side. The second client port of the first multiplex transmission device 100 is provided with a second client-side O / E unit 123 and a second client-side E / O unit 124. The first multiplex transmission device 100 includes a first line side E / O unit 111, a first line side O / E unit 112, a second line side E / O unit 113, a second line side O / E unit 114, and A first wave section 101 is further provided.
 第1多重伝送装置100の第1クライアントポートに入力された光信号は、第1クライアント側O/E部121において電気信号に変換され、第1ライン側E/O部111に出力される。第1ライン側E/O部111は、入力された電気信号を光信号に変換して第1合波部101に出力する。また、第1多重伝送装置100の第2クライアントポートに入力された光信号は、第2クライアント側O/E部123において電気信号に変換され、第2ライン側E/O部113に出力される。第2ライン側E/O部113は、入力された電気信号を光信号に変換して第1合波部101に出力する。 The optical signal input to the first client port of the first multiplex transmission device 100 is converted into an electric signal in the first client side O / E unit 121 and output to the first line side E / O unit 111. The first line side E / O unit 111 converts the input electric signal into an optical signal and outputs it to the first combine unit 101. Further, the optical signal input to the second client port of the first multiplex transmission device 100 is converted into an electric signal in the second client side O / E unit 123 and output to the second line side E / O unit 113. .. The second line side E / O unit 113 converts the input electric signal into an optical signal and outputs it to the first combine unit 101.
 第1合波部101は、第1ライン側E/O部111および第2ライン側E/O部113から入力された光信号を多重化する。第1合波部101において多重化された光信号は、第1多重伝送装置100から第2多重伝送装置200に送信される。 The first wave section 101 multiplexes the optical signals input from the first line side E / O section 111 and the second line side E / O section 113. The optical signal multiplexed in the first combiner section 101 is transmitted from the first multiplex transmission device 100 to the second multiplex transmission device 200.
 また、第2多重伝送装置200から第1多重伝送装置100に送信される多重化された光信号は、第1合波部101に入力される。第1合波部101は、第2多重伝送装置200から入力された多重化された信号を分離し、第1ライン側O/E部112および第2ライン側O/E部114のそれぞれに出力する。 Further, the multiplexed optical signal transmitted from the second multiplex transmission device 200 to the first multiplex transmission device 100 is input to the first combine unit 101. The first combiner section 101 separates the multiplexed signal input from the second multiplex transmission device 200 and outputs it to each of the first line side O / E section 112 and the second line side O / E section 114. do.
 第1ライン側O/E部112は、第1合波部101から入力された光信号を電気信号に変換して第1クライアント側E/O部122に出力する。第1クライアント側E/O部122は、入力された電気信号を光信号に変換して第1多重伝送装置100の第1クライアントポートに出力する。第2ライン側O/E部114は、第1合波部101から入力された光信号を電気信号に変換して第2クライアント側E/O部124に出力する。第2クライアント側E/O部124は、入力された電気信号を光信号に変換して第1多重伝送装置100の第2クライアントポートに出力する。 The first line side O / E unit 112 converts the optical signal input from the first combine unit 101 into an electric signal and outputs it to the first client side E / O unit 122. The first client-side E / O unit 122 converts the input electric signal into an optical signal and outputs it to the first client port of the first multiplex transmission device 100. The second line side O / E unit 114 converts the optical signal input from the first combine unit 101 into an electric signal and outputs it to the second client side E / O unit 124. The second client-side E / O unit 124 converts the input electric signal into an optical signal and outputs it to the second client port of the first multiplex transmission device 100.
 このように、第1ライン側E/O部111、第1ライン側O/E部112、第1クライアント側O/E部121および第1クライアント側E/O部122は、第1多重伝送装置100の第1クライアントポートに対応している。また、第2ライン側E/O部113、第2ライン側O/E部114、第2クライアント側O/E部123および第2クライアント側E/O部124は、第1多重伝送装置100の第2クライアントポートに対応している。 As described above, the first line side E / O unit 111, the first line side O / E unit 112, the first client side O / E unit 121, and the first client side E / O unit 122 are the first multiplex transmission device. It corresponds to 100 first client ports. Further, the second line side E / O unit 113, the second line side O / E unit 114, the second client side O / E unit 123, and the second client side E / O unit 124 are the first multiplex transmission device 100. It corresponds to the second client port.
 第2多重伝送装置200は、第1多重伝送装置100と同様に構成される。第2多重伝送装置200の内部構成については図示を省略する。上述したように、第2多重伝送装置200には、第3クライアントポートおよび第4クライアントポートが設けられている。第2多重伝送装置200は、各クライアントポートに対応するクライアント側のO/E部およびE/O部を備える。第2多重伝送装置200は、各クライアントポートに対応するライン側のO/E部およびE/O部を備える。また、第2多重伝送装置200は、第1合波部101と同様に機能する第2合波部を備える。 The second multiplex transmission device 200 is configured in the same manner as the first multiplex transmission device 100. The internal configuration of the second multiplex transmission device 200 is not shown. As described above, the second multiplex transmission device 200 is provided with a third client port and a fourth client port. The second multiplex transmission device 200 includes a client-side O / E unit and an E / O unit corresponding to each client port. The second multiplex transmission device 200 includes an O / E unit and an E / O unit on the line side corresponding to each client port. Further, the second multiplex transmission device 200 includes a second combiner that functions in the same manner as the first combiner 101.
 各多重伝送装置が備えるライン側のO/E部およびE/O部は、固定の波長で発光する光モジュールで構成される。第1多重伝送装置100が備えるライン側のO/E部およびE/O部は、第2多重伝送装置200が備えるライン側のO/E部およびE/O部のうち、自身と同じ波長で発光する光モジュールとの間でのみ通信を行うことができる。 The line-side O / E section and E / O section of each multiplex transmission device are composed of an optical module that emits light at a fixed wavelength. The line-side O / E section and E / O section included in the first multiplex transmission device 100 have the same wavelength as the line-side O / E section and E / O section of the second multiplex transmission device 200. Communication can only be performed with an optical module that emits light.
 なお、各子局と第1多重伝送装置100とは、伝送路の冗長構成を構築するため、図示しないカプラを介して接続されていてもよい。同様に、各親局と第2多重伝送装置200とは、伝送路の冗長構成を構築するためのカプラを介して接続されていてもよい。また、カプラの代わりに、各多重伝送装置の内部に設けられた伝送路を切り替え可能なスイッチを用いて、基地局と各多重伝送装置との伝送路の冗長構成を構築してもよい。 Note that each slave station and the first multiplex transmission device 100 may be connected via a coupler (not shown) in order to construct a redundant configuration of a transmission line. Similarly, each master station and the second multiplex transmission device 200 may be connected via a coupler for constructing a redundant configuration of a transmission line. Further, instead of the coupler, a switch capable of switching the transmission line provided inside each multiplex transmission device may be used to construct a redundant configuration of the transmission line between the base station and each multiplex transmission device.
 図示の構成例では、第1多重伝送装置100は、多重伝送装置間の伝送路の冗長構成を構築するため、第1線路切替部102を備えている。図示を省略するが、第2多重伝送装置200は、第1線路切替部102と同様に機能する第2線路切替部を備える。線路切替部は、多重伝送装置間の伝送路の冗長構成を構築するためのものである。線路切替部同士は、複数の経路(光ファイバーケーブル)によって接続される。図示の構成例において、線路切替部同士は、2つの経路によって繋がれている。線路切替部には、合波部からの信号が入力される。線路切替部は、線路切替部同士を繋ぐ複数の経路のうちの任意の経路を選択し、選択した線路に対して合波部からの信号を出力する。なお、線路切替部は、多重伝送装置の外部に設けられていてもよい。このように、本実施の形態において、第1多重伝送装置100と第2多重伝送装置200とは、切り替え可能な複数の伝送経路によって接続されている。 In the illustrated configuration example, the first multiplex transmission device 100 includes a first line switching unit 102 in order to construct a redundant configuration of transmission lines between the multiplex transmission devices. Although not shown, the second multiplex transmission device 200 includes a second line switching unit that functions in the same manner as the first line switching unit 102. The line switching unit is for constructing a redundant configuration of transmission lines between multiplex transmission devices. The line switching portions are connected by a plurality of paths (optical fiber cables). In the illustrated configuration example, the line switching portions are connected by two paths. A signal from the combine section is input to the line switching section. The line switching unit selects an arbitrary route from a plurality of routes connecting the line switching units, and outputs a signal from the combine unit to the selected line. The line switching unit may be provided outside the multiplex transmission device. As described above, in the present embodiment, the first multiplex transmission device 100 and the second multiplex transmission device 200 are connected by a plurality of switchable transmission paths.
 また、図2に示すように、本実施の形態において、第1多重伝送装置100は、リソースプール130を備える。リソースプール130は、複数の機能のうちの1つ以上の機能を選択的に構築可能なリソースを有する。リソースプール130は、例えば、書き換え可能なFPGAから構成される。リソースプール130には、各種の電気的機能を、柔軟に追加および削除することができる。リソースプール130は、必要に応じて、部分的もしくはその全部を書き換えて、必要な機能を構築する。リソースプール130は、障害発生時に、障害対応用の冗長構成を実現するための機能を構築する。 Further, as shown in FIG. 2, in the present embodiment, the first multiplex transmission device 100 includes a resource pool 130. The resource pool 130 has resources capable of selectively constructing one or more functions among a plurality of functions. The resource pool 130 is composed of, for example, a rewritable FPGA. Various electrical functions can be flexibly added to and removed from the resource pool 130. The resource pool 130 partially or completely rewrites as necessary to build the necessary functions. The resource pool 130 constructs a function for realizing a redundant configuration for dealing with a failure when a failure occurs.
 本開示では、リソースプール130を用いて冗長構成を構築する。これにより、従来に比べて有効にリソースを活用することが可能となる。本開示によれば、無駄なリソースを削減しつつ障害対応用の冗長構成を実現することができる。 In this disclosure, a redundant configuration is constructed using the resource pool 130. This makes it possible to utilize resources more effectively than in the past. According to the present disclosure, it is possible to realize a redundant configuration for troubleshooting while reducing unnecessary resources.
 なお、リソースプール130は、第2多重伝送装置200にも備えられていてもよい。本開示において、リソースプール130は、第1多重伝送装置100および第2多重伝送装置200の少なくとも一方に備えられていればよい。 The resource pool 130 may also be provided in the second multiplex transmission device 200. In the present disclosure, the resource pool 130 may be provided in at least one of the first multiplex transmission device 100 and the second multiplex transmission device 200.
 リソースプール130のリソースに構築可能な機能部は、例えば、SW部131、誤り訂正処理部132、変調部133およびフィルタ部134等である。SW部131は、スイッチング機能を有するものである。SW部131は、例えば、第1多重伝送装置100内の各O/E部および各E/O部等の送受信部に障害が生じた場合において、冗長経路を構築する。 The functional units that can be constructed in the resources of the resource pool 130 are, for example, the SW unit 131, the error correction processing unit 132, the modulation unit 133, the filter unit 134, and the like. The SW unit 131 has a switching function. The SW unit 131 constructs a redundant path, for example, when a failure occurs in each O / E unit, each E / O unit, or other transmission / reception unit in the first multiplex transmission device 100.
 誤り訂正処理部132は、伝送路で発生する信号劣化によるビット誤り率を訂正する機能を有するものである。誤り訂正処理部132は、送信側でデータに付加された誤り訂正符号を基に、受信側で誤りを検出して訂正する。誤り訂正符号には、例えば、リードソロモン符号またはLDPC符号等の任意の符号が配当する。誤り訂正処理部132は、例えば、線路故障の際、切替先の経路が長距離となる場合に、リソースプール130のリソースに構築される。 The error correction processing unit 132 has a function of correcting the bit error rate due to signal deterioration occurring in the transmission line. The error correction processing unit 132 detects and corrects an error on the receiving side based on the error correction code added to the data on the transmitting side. For the error correction code, for example, an arbitrary code such as a Reed-Solomon code or an LDPC code is paid out. The error correction processing unit 132 is constructed in the resource of the resource pool 130, for example, when the switching destination route becomes a long distance in the event of a line failure.
 変調部133は、クライアントポートからの信号を多値化する機能を有するものである。変調部133は、例えば、PAM4信号を生成する。変調部133によれば、ボーレートを維持しつつ、ビットレートを高速化することができる。変調部133によれば、例えば、O/E部およびE/O部のコストを低減することができる。 The modulation unit 133 has a function of multiplying the signal from the client port. The modulation unit 133 generates, for example, a PAM4 signal. According to the modulation unit 133, the bit rate can be increased while maintaining the baud rate. According to the modulation unit 133, for example, the cost of the O / E unit and the E / O unit can be reduced.
 フィルタ部134は、伝送速度を下げるためのものであり、主信号の一部をフィルタリングして廃棄する機能を有するものである。 The filter unit 134 is for reducing the transmission speed, and has a function of filtering and discarding a part of the main signal.
 また、本実施の形態に係る多重伝送システムは、管理制御部140を備える。管理制御部140は、例えば、リソースプール側モニタ部141、ライン側モニタ部142およびリソース計算部143を備える。なお、図示の構成例において管理制御部140は第1多重伝送装置100の外に設けられているが、管理制御部140の少なくとも一部の機能が第1多重伝送装置100内に備えられていてもよい。また、管理制御部140の少なくとも一部の機能は、第2多重伝送装置200内に備えられていてもよい。 Further, the multiplex transmission system according to the present embodiment includes a management control unit 140. The management control unit 140 includes, for example, a resource pool side monitor unit 141, a line side monitor unit 142, and a resource calculation unit 143. Although the management control unit 140 is provided outside the first multiplex transmission device 100 in the illustrated configuration example, at least a part of the functions of the management control unit 140 is provided in the first multiplex transmission device 100. May be good. Further, at least a part of the functions of the management control unit 140 may be provided in the second multiplex transmission device 200.
 リソースプール側モニタ部141は、リソースプール130の現在の状態をモニタリングする。リソースプール側モニタ部141によるモニタリング情報は、リソース計算部143へ送られる。ライン側モニタ部142は、第1ライン側E/O部111、第1ライン側O/E部112、第2ライン側E/O部113および第2ライン側O/E部114の状態をモニタリングする。ライン側モニタ部142によるモニタリング情報は、リソース計算部143へ送られる。例えば、第1ライン側E/O部111、第1ライン側O/E部112、第2ライン側E/O部113および第2ライン側O/E部114の何れかが故障した場合、ライン側モニタ部142はリソース計算部143に対して故障通知を行う。リソース計算部143は、リソースプール130内のリソースに各機能部を構築するための計算処理を行う。リソース計算部143は、リソースプール側モニタ部141およびライン側モニタ部142から送られるモニタリング情報に基づいて、計算処理を行う。そして、リソース計算部143は、計算処理結果に基づいて、必要な機能部を構築するようにリソースプール130に指示を出す。 The resource pool side monitor unit 141 monitors the current state of the resource pool 130. The monitoring information by the resource pool side monitoring unit 141 is sent to the resource calculation unit 143. The line side monitor unit 142 monitors the states of the first line side E / O unit 111, the first line side O / E unit 112, the second line side E / O unit 113, and the second line side O / E unit 114. do. The monitoring information by the line side monitor unit 142 is sent to the resource calculation unit 143. For example, if any of the first line side E / O section 111, the first line side O / E section 112, the second line side E / O section 113, and the second line side O / E section 114 fails, the line The side monitor unit 142 notifies the resource calculation unit 143 of the failure. The resource calculation unit 143 performs a calculation process for constructing each functional unit in the resource in the resource pool 130. The resource calculation unit 143 performs calculation processing based on the monitoring information sent from the resource pool side monitor unit 141 and the line side monitor unit 142. Then, the resource calculation unit 143 issues an instruction to the resource pool 130 to construct a necessary functional unit based on the calculation processing result.
 管理制御部140は、ハードウェアとして、プロセッサおよびメモリを備えたコンピュータにより構成してもよい。プロセッサは、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータあるいはDSPともいう。メモリには、例えば、RAM、ROM、フラッシュメモリー、EPROMおよびEEPROM等の不揮発性または揮発性の半導体メモリ、又は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクおよびDVD等が該当する。 The management control unit 140 may be configured by a computer equipped with a processor and a memory as hardware. The processor is also referred to as a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. Examples of the memory include non-volatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM and EEPROM, or magnetic disks, flexible disks, optical disks, compact disks, mini disks and DVDs.
 管理制御部140のメモリには、ソフトウェアとしてのプログラムが記憶される。管理制御部140は、メモリに記憶されたプログラムをプロセッサが実行することによって予め設定された処理を実施し、ハードウェアとソフトウェアとが協働した結果として、各機能を実現する。 The program as software is stored in the memory of the management control unit 140. The management control unit 140 executes preset processing by executing a program stored in the memory by the processor, and realizes each function as a result of the cooperation between the hardware and the software.
 本実施の形態におけるライン側モニタ部142は、障害の発生時において当該障害の情報をモニタリングするモニタ部として機能する。また、本実施の形態におけるリソース計算部143は、モニタ部によるモニタリング結果に基づいて、障害の内容に応じた冗長構成を構築するために必要な機能の構築をリソースプール130に実行させる制御部として機能する。 The line-side monitor unit 142 in the present embodiment functions as a monitor unit for monitoring information on the failure when a failure occurs. Further, the resource calculation unit 143 in the present embodiment serves as a control unit for causing the resource pool 130 to construct the functions necessary for constructing the redundant configuration according to the content of the failure based on the monitoring result by the monitor unit. Function.
 次に、以上のように構成された多重伝送システムの動作の流れについて説明する。図3は、実施の形態1に係る多重伝送システムのリソース制御方法の流れを示すフロー図である。図3は、障害の発生時における動作を説明するものである。障害が発生すると、まず、ステップS11において、当該障害の情報をモニタリングする。このステップS11の処理を、本開示では、モニタリングステップとも称することとする。 Next, the operation flow of the multiplex transmission system configured as described above will be explained. FIG. 3 is a flow chart showing the flow of the resource control method of the multiplex transmission system according to the first embodiment. FIG. 3 illustrates the operation when a failure occurs. When a failure occurs, first, in step S11, information on the failure is monitored. The process of step S11 is also referred to as a monitoring step in the present disclosure.
 続くステップS12において、モニタリングステップの結果に基づいて、障害の内容に応じた冗長構成を構築するための機能の構築を、前記リソースプールに実行させる。このステップS12の処理を、本開示では、機能構築ステップとも称することとする。モニタリングステップおよび機能構築ステップは、管理制御部140およびリソースプール130によって実施される。 In the following step S12, based on the result of the monitoring step, the resource pool is made to construct a function for constructing a redundant configuration according to the content of the failure. In the present disclosure, the process of step S12 will also be referred to as a function construction step. The monitoring step and the function building step are carried out by the management control unit 140 and the resource pool 130.
 図3に示すようなリソース制御方法および当該リソース制御方法を実行可能に構成された多重伝送システムによれば、無駄なリソースを削減しつつ、各種の障害に対応することができる。 According to the resource control method as shown in FIG. 3 and the multiplex transmission system configured to be able to execute the resource control method, it is possible to deal with various failures while reducing wasteful resources.
 例えば、第1多重伝送装置100内の送受信部に障害が発生した場合、ライン側モニタ部142は、当該障害の情報をリソース計算部143へ通知する。第1多重伝送装置100内の送受信部に障害が発生した場合、リソース計算部143は、当該障害箇所を含む伝送経路を避けた新たな伝送経路を構築するための機能構築を、前記リソースプール130に実行させる。 For example, when a failure occurs in the transmission / reception unit in the first multiplex transmission device 100, the line side monitor unit 142 notifies the resource calculation unit 143 of the information of the failure. When a failure occurs in the transmission / reception unit in the first multiplex transmission device 100, the resource calculation unit 143 installs a function for constructing a new transmission path avoiding the transmission path including the failure location in the resource pool 130. To execute.
 図4は、実施の形態1に係る多重伝送システムの第1の動作例を説明するブロック図である。図4は、第2ライン側E/O部113もしくは第2ライン側O/E部114が故障した場合の動作例を示している。第2ライン側E/O部113もしくは第2ライン側O/E部114が故障すると、第2子局12の信号伝送ができなくなってしまう。この場合には、第1クライアントポートの伝送系統を用いて、第2子局12の信号伝送を行う必要がある。そこで、リソース計算部143は、SW部131および変調部133の構築を、リソースプール130に実行させる。これにより、図4に示すように、第2ライン側E/O部113および第2ライン側O/E部114を避けた伝送経路が構築される。 FIG. 4 is a block diagram illustrating a first operation example of the multiplex transmission system according to the first embodiment. FIG. 4 shows an operation example when the second line side E / O unit 113 or the second line side O / E unit 114 fails. If the second line side E / O unit 113 or the second line side O / E unit 114 fails, the signal transmission of the second slave station 12 cannot be performed. In this case, it is necessary to transmit the signal of the second slave station 12 by using the transmission system of the first client port. Therefore, the resource calculation unit 143 causes the resource pool 130 to execute the construction of the SW unit 131 and the modulation unit 133. As a result, as shown in FIG. 4, a transmission path avoiding the second line side E / O unit 113 and the second line side O / E unit 114 is constructed.
 図5は、実施の形態1に係る多重伝送システムの第5の動作例を説明するブロック図である。図5は、第1多重伝送装置100と第2多重伝送装置200とを繋ぐ光ファイバーケーブルに障害が発生して回線が切断された場合に、回線を現用系から予備系に切り替えた場合の動作例を示している。第1多重伝送装置100と第2多重伝送装置200とを繋ぐ伝送経路に障害が生じた場合、この障害の情報の通知が、ライン側モニタ部142からリソース計算部143へ実施される。なお、通知方法としては、各ライン側のO/E部のLOS(Loss of signal)を利用してもよい。 FIG. 5 is a block diagram illustrating a fifth operation example of the multiplex transmission system according to the first embodiment. FIG. 5 shows an operation example when the line is switched from the active system to the standby system when the line is disconnected due to a failure in the optical fiber cable connecting the first multiplex transmission device 100 and the second multiplex transmission device 200. Is shown. When a failure occurs in the transmission path connecting the first multiplex transmission device 100 and the second multiplex transmission device 200, the line-side monitor unit 142 notifies the resource calculation unit 143 of the failure information. As the notification method, LOS (Loss of signal) of the O / E unit on each line side may be used.
 例えば、予備系の伝送経路が切り替え前の現用系よりも長い場合、第1多重伝送装置100と第2多重伝送装置200との間での信号劣化によるビット誤り率が高くなってしまう。そこで、リソース計算部143は、誤り訂正処理部132の構築を、リソースプール130に実行させる。これにより、障害発生時における切り替え後の伝送路が長距離となる場合においても、信号伝送を誤りなく行うことができる。 For example, if the transmission path of the backup system is longer than that of the active system before switching, the bit error rate due to signal deterioration between the first multiplex transmission device 100 and the second multiplex transmission device 200 becomes high. Therefore, the resource calculation unit 143 causes the resource pool 130 to execute the construction of the error correction processing unit 132. As a result, signal transmission can be performed without error even when the transmission line after switching at the time of failure occurs over a long distance.
 なお、本開示に係る多重伝送システムの動作は、図4および図5に示す例に限定されるものではない。例えば、障害の内容に依っては、伝送速度の下げるためのフィルタ部の構築を行ってもよい。本開示によれば、伝送経路における障害および送受信部における障害等の各種の障害に対して、共通のリソースプール130で対応をすることができる。本開示によれば、無駄なリソースを削減しつつ障害対応用の冗長構成を実現可能な多重伝送システムおよび多重伝送システムリソース制御方法を提供することができる。 The operation of the multiplex transmission system according to the present disclosure is not limited to the examples shown in FIGS. 4 and 5. For example, depending on the content of the failure, a filter unit for lowering the transmission speed may be constructed. According to the present disclosure, various failures such as a failure in a transmission path and a failure in a transmission / reception unit can be dealt with by a common resource pool 130. According to the present disclosure, it is possible to provide a multiplex transmission system and a multiplex transmission system resource control method capable of realizing a redundant configuration for troubleshooting while reducing unnecessary resources.
 また、本開示に係る多重伝送システムを構成する多重伝送装置、および、多重伝送システムのリソース制御方法は、メモリに記憶されたプログラムをプロセッサが実行することによって予め設定された処理を実施し、ハードウェアとソフトウェアとを協働させることでも実現できる。そして、本開示に係る装置および方法を実現するためのプログラムは情報記録媒体に記録しておくことが可能である。また、本開示に係る装置および方法を実現するためのプログラムは、通信ネットワークを通して提供することも可能である。 Further, the multiplex transmission device constituting the multiplex transmission system and the resource control method of the multiplex transmission system according to the present disclosure are hardware in which preset processing is performed by the processor executing a program stored in the memory. It can also be achieved by linking hardware and software. The program for realizing the apparatus and method according to the present disclosure can be recorded in an information recording medium. In addition, the program for realizing the apparatus and method according to the present disclosure can also be provided through a communication network.
 本開示は、第1多重伝送装置と第2多重伝送装置との間で複数の信号を多重化して伝送する多重伝送システムおよび当該多重伝送システムのリソース制御に利用できる。 The present disclosure can be used for a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between a first multiplex transmission device and a second multiplex transmission device, and resource control of the multiplex transmission system.
 11  第1子局
 12  第2子局
 21  第1親局
 22  第2親局
100  第1多重伝送装置
101  第1合波部
102  第1線路切替部
111  第1ライン側E/O部
112  第1ライン側O/E部
113  第2ライン側E/O部
114  第2ライン側O/E部
121  第1クライアント側O/E部
122  第1クライアント側E/O部
123  第2クライアント側O/E部
124  第2クライアント側E/O部
130  リソースプール
131  SW部
132  誤り訂正処理部
133  変調部
134  フィルタ部
140  管理制御部
141  リソースプール側モニタ部
142  ライン側モニタ部
143  リソース計算部
200  第2多重伝送装置
11 1st slave station 12 2nd slave station 21 1st master station 22 2nd master station 100 1st multiplex transmission device 101 1st combiner 102 1st line switching section 111 1st line side E / O section 112 1st Line side O / E section 113 2nd line side E / O section 114 2nd line side O / E section 121 1st client side O / E section 122 1st client side E / O section 123 2nd client side O / E Unit 124 2nd client side E / O unit 130 Resource pool 131 SW unit 132 Error correction processing unit 133 Modulation unit 134 Filter unit 140 Management control unit 141 Resource pool side monitor unit 142 Line side monitor unit 143 Resource calculation unit 200 2nd multiplexing Transmission device

Claims (4)

  1.  第1多重伝送装置と第2多重伝送装置との間で複数の信号を多重化して伝送する多重伝送システムにおいて、
     前記第1多重伝送装置に設けられ、複数の機能のうちの1つ以上の機能を選択的に構築可能なリソースを有するリソースプールと、
     障害の発生時に、当該障害の情報をモニタリングするモニタ部と、
     前記リソースプールの制御を行う制御部と、
     を備え、
     前記制御部は、障害の発生時に、前記モニタ部によるモニタリング結果に基づいて、当該障害の内容に応じた冗長構成を構築するために必要な機能の構築を、前記リソースプールに実行させる多重伝送システム。
    In a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between a first multiplex transmission device and a second multiplex transmission device.
    A resource pool provided in the first multiplex transmission device and having resources capable of selectively constructing one or more of a plurality of functions, and a resource pool.
    When a failure occurs, a monitor unit that monitors the information of the failure and
    A control unit that controls the resource pool and
    Equipped with
    When a failure occurs, the control unit causes the resource pool to execute the construction of functions necessary for constructing a redundant configuration according to the content of the failure based on the monitoring result by the monitor unit. ..
  2.  前記第1多重伝送装置内の送受信部に障害が発生した場合、前記制御部は、当該障害箇所を含む伝送経路を避けた新たな伝送経路を構築するための機能構築を、前記リソースプールに実行させる請求項1に記載の多重伝送システム。 When a failure occurs in the transmission / reception unit in the first multiplex transmission device, the control unit executes function construction in the resource pool to construct a new transmission path avoiding the transmission path including the failure location. The multiplex transmission system according to claim 1.
  3.  前記第1多重伝送装置と前記第2多重伝送装置とは、切り替え可能な複数の伝送経路によって接続され、
     前記伝送経路に障害が発生して前記伝送経路の切り替えが行われた場合、前記制御部は、誤り訂正処理部の構築を前記リソースプールに実行させる請求項1または請求項2に記載の多重伝送システム。
    The first multiplex transmission device and the second multiplex transmission device are connected by a plurality of switchable transmission paths.
    The multiplex transmission according to claim 1 or 2, wherein when a failure occurs in the transmission path and the transmission path is switched, the control unit causes the resource pool to construct an error correction processing unit. system.
  4.  第1多重伝送装置と第2多重伝送装置との間で複数の信号を多重化して伝送する多重伝送システムにおいて、前記第1多重伝送装置に設けられ、複数の機能のうちの1つ以上の機能を選択的に構築可能なリソースを有するリソースプールを制御する方法であって、
     障害の発生時に、当該障害の情報をモニタリングするモニタリングステップと、
     前記モニタリングステップの結果に基づいて、障害の内容に応じた冗長構成を構築するための機能の構築を、前記リソースプールに実行させる機能構築ステップと、
     を備える多重伝送システムのリソース制御方法。
    In a multiplex transmission system in which a plurality of signals are multiplexed and transmitted between a first multiplex transmission device and a second multiplex transmission device, the first multiplex transmission device is provided with one or more functions among the plurality of functions. Is a method of controlling a resource pool that has resources that can be selectively constructed.
    When a failure occurs, a monitoring step to monitor the information of the failure and
    Based on the result of the monitoring step, the function construction step for causing the resource pool to execute the construction of the function for constructing the redundant configuration according to the content of the failure, and the function construction step.
    A resource control method for a multiplex transmission system.
PCT/JP2020/038017 2020-10-07 2020-10-07 Multiplex transmission system and resource control method for multiplex transmission system WO2022074765A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/038017 WO2022074765A1 (en) 2020-10-07 2020-10-07 Multiplex transmission system and resource control method for multiplex transmission system
US18/028,744 US20230336244A1 (en) 2020-10-07 2020-10-07 Multiplex transmission system, resource control method for multiplex transmission system
JP2022555030A JPWO2022074765A1 (en) 2020-10-07 2020-10-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038017 WO2022074765A1 (en) 2020-10-07 2020-10-07 Multiplex transmission system and resource control method for multiplex transmission system

Publications (1)

Publication Number Publication Date
WO2022074765A1 true WO2022074765A1 (en) 2022-04-14

Family

ID=81125757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038017 WO2022074765A1 (en) 2020-10-07 2020-10-07 Multiplex transmission system and resource control method for multiplex transmission system

Country Status (3)

Country Link
US (1) US20230336244A1 (en)
JP (1) JPWO2022074765A1 (en)
WO (1) WO2022074765A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022232A1 (en) * 2015-08-06 2017-02-09 日本電気株式会社 Optical transmitter, optical transmission device, optical transmission/reception system, and optical transmission method
JP2017220777A (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Optical communication system, optical communication unit, and communication line switching method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022232A1 (en) * 2015-08-06 2017-02-09 日本電気株式会社 Optical transmitter, optical transmission device, optical transmission/reception system, and optical transmission method
JP2017220777A (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Optical communication system, optical communication unit, and communication line switching method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATORU OKAMOTO, JUN MATSUMOTO, TAKEHIRO SATO, NAOAKI YAMANAKAL: "Proposal of the Photonic Programmable Node Architecture using Virtual Reconfigurable Communication Processors", IEICE TECHNICAL REPORT, vol. 116, no. 205 (PN2016-24), 25 August 2016 (2016-08-25), JP , pages 59 - 64, XP009536622, ISSN: 0913-5685 *
TANIMURA, TAKAHITO; HOSHIDA, TAKESHI; RASMUSSEN, JENS C.; SUZUKI, MAKOTO; MORIKAWA, HIROYUKI: "Experimental feasibility study of latency and bandwidth programmable optical transceiver by using hybrid Nyquist FDM technique", IEICE TECHNICAL REPORT, vol. 116, no. 164 (OCS2016-21), 21 July 2016 (2016-07-21), pages 5 - 10, XP009536667 *

Also Published As

Publication number Publication date
JPWO2022074765A1 (en) 2022-04-14
US20230336244A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US6331906B1 (en) Method and apparatus for operation, protection and restoration of heterogeneous optical communication networks
US8693880B2 (en) Wavelength path communication node apparatus, wavelength path communication control method, and recording medium
US7321729B2 (en) Optical ring network with selective signal regeneration and wavelength conversion
US7206508B2 (en) Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
JP2005521330A (en) Supervisory channel in optical network systems
JP5206211B2 (en) WDM network and node equipment
JP2002510441A (en) Operation, protection and recovery method and apparatus for heterogeneous optical communication network
US9680564B2 (en) Protection in metro optical networks
AU7826000A (en) Optical protection methods, systems, and apparatuses
JP2005160097A (en) Optical ring network with optical subnet and method
JP5029068B2 (en) Wireless base station
CN107819522B (en) ROADM device, optical network system and transmission method
JP2000078080A (en) Optical switching device
US20220209988A1 (en) Communication system and control method
JP6095652B2 (en) Symmetric optical multiplexing node
WO2022074765A1 (en) Multiplex transmission system and resource control method for multiplex transmission system
WO2022074766A1 (en) Multiplex transmission system and resource control method for multiplex transmission system
WO2022074763A1 (en) Multiplex transmission system and resource control method for multiplex transmission system
US20230361875A1 (en) Optical network, network management device, and network management method
CN209930282U (en) System for automatically protecting data plane link by using control plane link
CN114545562A (en) Optical fiber connection box, data processing method and computer storage medium
JP4488813B2 (en) Method and system for managing directly connected optical elements
EP2757715B1 (en) Optical transmission link protection device
EP2983317B1 (en) Controlling method, controller, and node in transport network
US20230101846A1 (en) Optical transmission system, optical device, and optical transmission method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022555030

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956713

Country of ref document: EP

Kind code of ref document: A1