WO2022059183A1 - Information processing device, information processing method, and information processing program - Google Patents

Information processing device, information processing method, and information processing program Download PDF

Info

Publication number
WO2022059183A1
WO2022059183A1 PCT/JP2020/035512 JP2020035512W WO2022059183A1 WO 2022059183 A1 WO2022059183 A1 WO 2022059183A1 JP 2020035512 W JP2020035512 W JP 2020035512W WO 2022059183 A1 WO2022059183 A1 WO 2022059183A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance
elements
unit
designated
improvement
Prior art date
Application number
PCT/JP2020/035512
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022544236A priority Critical patent/JP7154468B2/en
Priority to PCT/JP2020/035512 priority patent/WO2022059183A1/en
Priority to CN202080105029.XA priority patent/CN116194945A/en
Priority to TW110106269A priority patent/TW202230060A/en
Publication of WO2022059183A1 publication Critical patent/WO2022059183A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • This disclosure relates to a technique for performing analysis to improve performance.
  • priority targets are set according to the situation from time to time among management indicators such as quality, cost, delivery date, and production quantity. Then, production control is performed to achieve the set priority target.
  • the priority goal is called KGI (Key Goal Indicator).
  • KGI Key Goal Indicator
  • production control collects information on the current operational status from the production system, compares the current value with the target value, and if the current value does not reach the target value, improves so that the current value achieves the target value.
  • Improvement activities include activities such as strengthening equipment in the production system, adjusting parameters, training workers, reviewing work procedures, and reviewing materials and / or inventories.
  • Patent Document 1 defines a hierarchical structure of relationships between a plurality of KPIs (Key Performance Indicators), each of which is a management index for a plurality of processes and / or a plurality of facilities. Further, in Patent Document 1, information for calculating KPI is collected from the process and / or equipment. Then, in Patent Document 1, by correlating each KPI, an alarm for notifying the administrator of the abnormality when an abnormality occurs is efficiently selected.
  • KPIs Key Performance Indicators
  • Patent Document 1 when improvement activities are performed in a system composed of a large number of elements such as a production system, an element for improving KGI, that is, an element for improving performance and other elements are used. It is difficult to analyze the relationship with multiple factors. Therefore, the technique of Patent Document 1 has a problem that it is not easy to identify other elements that contribute to the improvement of the performance of the element for which the performance is to be improved.
  • the main object of the present disclosure is to efficiently identify the elements that contribute to the improvement of the performance of the elements for which the performance should be improved.
  • the information processing device is A designated part that designates an element whose performance should be improved among three or more elements as a designated element,
  • An extraction unit that extracts two or more elements that have a significant relationship with the designated element from the elements other than the designated element as related elements.
  • To improve the performance of the designated element from among the two or more related elements by analyzing the influence of the performance of each of the two or more related elements extracted by the extraction unit on the performance of the designated element. It has an estimation unit that estimates related elements to be improved, which are related elements for which performance should be improved.
  • FIG. The figure which shows the functional composition example of the improvement part analysis apparatus which concerns on Embodiment 1.
  • FIG. The figure which shows the hardware configuration example of the improvement part analysis apparatus which concerns on Embodiment 1.
  • FIG. The figure which shows the structural example of the information model which concerns on Embodiment 1.
  • the flowchart which shows the operation example of the evaluation part which concerns on Embodiment 1.
  • FIG. The figure which shows the example of the evaluation result by the evaluation unit which concerns on Embodiment 1.
  • FIG. The flowchart which shows the operation example of the improvement part analysis part which concerns on Embodiment 1.
  • the figure which shows the example of the analysis condition which concerns on Embodiment 6. The figure which shows the output example which concerns on Embodiment 6.
  • FIG. 1 shows an example of a functional configuration of the improved location analysis device 100 according to the present embodiment.
  • the improved location analysis device 100 according to the present embodiment is connected to the analysis target 200 via the network 300.
  • the analysis target 200 is a production system.
  • the improvement location analysis device 100 corresponds to an information processing device. Further, the operation procedure of the improvement point analysis device 100 corresponds to the information processing method.
  • the improvement location analysis device 100 includes an information storage unit 101, an evaluation unit 102, an improvement location analysis unit 103, and an information collection unit 104. Details of the information storage unit 101, the evaluation unit 102, the improvement location analysis unit 103, and the information collection unit 104 will be described later.
  • FIG. 2 shows an example of the hardware configuration of the improved location analyzer 100.
  • the improvement location analyzer 100 is a computer.
  • the improvement location analysis device 100 includes a processor 901, a storage device 902, and a communication interface 903 as hardware.
  • the processor 901, the storage device 902, and the communication interface 903 are connected to each other by the bus 905.
  • the storage device 902 stores the program 904.
  • the program 904 is a program for realizing the functions of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 shown in FIG.
  • the processor 901 reads the program 904 from the storage device 902 and executes the program 904.
  • Program 904 corresponds to an information processing program.
  • the storage device 902 stores various information necessary for realizing the function of the improvement point analysis device 100 according to the present embodiment, in addition to the program 904.
  • the information storage unit 101 shown in FIG. 1 is realized by the storage device 902.
  • the communication interface 903 is used for communication with the production system which is the analysis target 200.
  • FIG. 3 shows a configuration example of the information model used in this embodiment.
  • the information model a plurality of elements constituting the production system, which is the analysis target 200, are shown. Further, in the information model, the relationship between each element is shown by a hierarchical structure and / or a logical structure.
  • the solid line shows the relationship by the hierarchical structure
  • the broken line arrow shows the relationship by the logical structure.
  • FIG. 3 shows an example in which "Product A production lead time” is set as the KGI of the production system and production is controlled.
  • Process # 1 lead time As the lower hierarchy of "Product A production lead time”, "process # 1 lead time”, “process # 2 lead time” and “process # 3 lead time”, which are the lead times of each process of the production system, are defined. ing. "Process # 1 lead time”, “process # 2 lead time” and “process # 3 lead time” are connected to "product A production lead time” by a hierarchical structure.
  • process # 1 lead time may affect the "product A production lead time”.
  • process # 2 lead time may affect the "product A production lead time”.
  • process # 3 lead time may affect the "product A production lead time”.
  • each process is connected by a relationship by a logical structure based on the production process.
  • process # 3 an example in which production is performed in the order of "process # 1", “process # 2", and “process # 3” is shown.
  • “lead time” means required time. That is, the "product A production lead time” is the time required to complete the production of the product A.
  • the relationship between the equipment and equipment hierarchies and the elements of the upper hierarchy is shown.
  • equipment “equipment # 1-1 lead time”, “equipment # 1-2 lead time”, “equipment # 2-1 lead time”, “equipment # 3-1””Leadtime” and “Equipment # 3-2 lead time” are defined. “Equipment # 1-1 lead time” and “equipment # 1-2 lead time” can affect “process # 1 lead time”. Further, the “equipment # 2-1 lead time” may affect the “process # 2 lead time”. Further, “equipment # 3-1 lead time” and “equipment # 3-2 lead time” may affect "process # 3 lead time”.
  • the information storage unit 101 the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 shown in FIG. 1 will be described.
  • the information storage unit 101 stores the information model illustrated in FIG. Further, the information storage unit 101 stores the setting items described later. Further, the information storage unit 101 stores the evaluation result by the evaluation unit 102. Further, the information storage unit 101 stores the analysis result by the improvement location analysis unit 103. Further, the information storage unit 101 stores the information collected by the information collection unit 104.
  • the evaluation unit 102 evaluates whether or not the performance matches the performance standard for each element included in the analysis target 200.
  • the evaluation unit 102 evaluates whether or not the performance of each element matches the performance standard defined for each element. Further, although each element constitutes a plurality of layers as described above, the evaluation unit 102 may evaluate whether or not the performance of each element meets the performance standard with a different time width for each layer. good. Further, the evaluation unit 102 may output the evaluation result each time the evaluation is performed.
  • the improvement point analysis unit 103 designates an element whose performance should be improved among the elements included in the analysis target 200 as a designated element. Further, the improvement point analysis unit 103 may designate the estimated improvement target related element (described later) as a new designated element. Further, the improvement point analysis unit 103 may repeatedly designate the estimated new improvement target related element as a new designated element every time a new improvement target related element is estimated.
  • the improvement point analysis unit 103 extracts one or more elements having a significant relationship with the designated element from the elements other than the designated element as related elements.
  • the improvement point analysis unit 103 since it is possible to analyze the 1: 1 relationship between the designated element and the related element, the improvement point analysis unit 103 will explain an example of extracting one or more elements as the related element.
  • the improvement point analysis unit 103 extracts two or more elements as related elements.
  • a "significant relationship" is a relationship that can affect the performance of a designated element. More specifically, in the information model of FIG.
  • the improvement point analysis unit 103 sets it as an element (related element) having a significant relationship with "Product A production lead time”. Extract “process # 1 lead time”, “process # 2 lead time”, and "process # 3 lead time”. Further, for example, when “process # 2 lead time” is designated as a designated element by the evaluation unit 102, the improvement point analysis unit 103 has an element (related element) having a significant relationship with "process # 2 lead time”.
  • process # 1 lead time and "equipment # 2-1 lead time” are extracted.
  • the “performance” is a value obtained by measurement and / or calculation.
  • the performance of "Product A production lead time” is a time obtained by measuring the required time of each process and adding the required time of each process.
  • the performance of the "servo # 1-1-2 motor current value” is the motor current value obtained by actually measuring the servo # 1-1-2.
  • the improvement point analysis unit 103 analyzes the influence of the performance of each of the extracted one or more related elements on the performance of the designated element, and improves the performance of the designated element from among the one or more related elements. Estimate the related elements to be improved, which are the related elements that should improve the performance.
  • the improvement point analysis unit 103 uses that the performance of the designated element is improved (or deteriorated) as the conclusion unit, and is conditioned on the condition that the performance of each of the one or more related elements is improved (or deteriorated). Perform the association analysis used in the department to estimate the factors related to the improvement target. Association analysis will be described later.
  • the improvement point analysis unit 103 analyzes the influence of the performance of each improvement target-related element on the performance of other improvement target-related elements when a plurality of improvement target-related elements are estimated, and a plurality of improvement target-related elements. Set priorities between related elements. Further, when a new designated element is designated by the evaluation unit 102, the improvement point analysis unit 103 sets one or more elements other than the new designated element, which have a significant relationship with the new designated element, as a new related element. Extract as. Then, the improvement point analysis unit 103 analyzes the influence of the performance of each of the extracted one or more new related elements on the performance of the new designated element, and from among the one or more new related elements, a new one.
  • the improvement point analysis unit 103 repeatedly extracts one or more elements other than the designated new designated element as a new related element every time a new designated element is designated, and one or more new designated elements. Every time the related element is extracted, the estimation of the new improvement target related element may be repeated.
  • the improvement location analysis unit 103 corresponds to a designation unit, an extraction unit, and an estimation unit. Further, the processing performed by the improvement point analysis unit 103 corresponds to the designated processing, the extraction processing, and the estimation processing.
  • Association analysis also called basket analysis, association rules, etc.
  • association analysis is known as a method for analyzing the relationship between a plurality of pieces of information.
  • statistical information is used as an input, and the degree of support, reliability, and lift value are calculated for the relationship between the condition part and the conclusion part.
  • the degree of support is the ratio of data including both the condition part and the conclusion part to the total number of data.
  • the reliability is the ratio of the data including both the condition part and the conclusion part to the number of data including the condition part.
  • the lift value is a value obtained by dividing the reliability by the number of data including the conclusion part.
  • the improvement point analysis unit 103 determines that the calculation maintenance condition is not satisfied in any of the plurality of calculation items (support degree, reliability, lift value) included in the association analysis. Do not calculate uncalculated calculation items among multiple calculation items. By doing so, in the present embodiment, the association analysis is effectively applied to the production system having many kinds of information.
  • the information collecting unit 104 collects information about each element shown in FIG. 3 from the production system which is the analysis target 200. For example, the information collecting unit 104 collects performance for each element shown in FIG. Specifically, the information collecting unit 104 collects the time required for each measured process as the performance of the "product A production lead time", adds the time required for each process, and the time required for the production of the product A. To get. Further, the information collecting unit 104 collects the motor current value obtained by actually measuring the servo # 1-1-2 as the performance of the "servo # 1-1-2 motor current value”. The information collecting unit 104 stores the collected information in the information storage unit 101.
  • FIG. 4 shows an example of setting items of the information collecting unit 104.
  • the information collecting unit 104 collects information on each element included in the information model according to the setting items shown in FIG.
  • elements, collection targets, monitoring periods, and determination criteria are defined as setting items of the information collection unit 104.
  • the element included in the information model is shown in the element column.
  • the collection target column indicates how to collect information.
  • As a collection method there are a method of collecting information directly from any device existing in the production system and a method of calculating based on the information collected from any device.
  • the device from which the information was collected is indicated in the collection target column.
  • the monitoring period column the time width for applying the criterion is shown.
  • criteria used for evaluation by the evaluation unit 102 that is, performance criteria are shown.
  • the information collected by the information collecting unit 104 is held by the evaluation unit 102 as time-series data as shown in the stored contents.
  • FIG. 5 is a flowchart showing an operation example of the evaluation unit 102.
  • FIG. 6 shows an example of the evaluation result of the evaluation unit 102 in a graph format.
  • FIG. 7 shows an example of the evaluation result of the evaluation unit 102 in a table format.
  • FIG. 8 is a flowchart showing an operation example of the improvement point analysis unit 103.
  • FIG. 9 is a flowchart showing the details of step S204 of FIG.
  • FIG. 10 shows an example of an analysis target according to the present embodiment.
  • FIG. 11 shows an example of the analysis conditions according to the present embodiment.
  • FIG. 12 shows an example of the analysis result of the improvement point analysis unit 103.
  • Pre-setting phase The manager or designer of the production system generates the information model shown in FIG. 3 and the setting items shown in FIG. 4 for the management of the production system. Then, the manager or the designer of the production system stores the generated information model and setting items in the information storage unit 101 of the improvement point analysis device 100. It is desirable to generate the information model and setting items based on the design information of the production system.
  • the information collection unit 104 collects information from the production system, which is the analysis target 200, based on the setting items in FIG. Then, the collected information is stored in the information storage unit 101. Even if the information collecting unit 104 acquires information collected by an external device other than the improvement location analysis device 100 from the external device and stores the information acquired from the external device in the information storage unit 101 in association with the setting items. good.
  • the evaluation unit 102 performs the flowchart shown in FIG. Specifically, the evaluation unit 102 reads the setting items shown in FIG. 4 from the information storage unit 101 (step S101). Next, the evaluation unit 102 reads the information collected by the information collection unit 104 from the information storage unit 101 (step S102). Next, the information collecting unit 104 evaluates the performance of each element using the setting items and the collected information, and stores the evaluation result in the information storage unit 101 (step S103). That is, the information collecting unit 104 determines whether or not the information collected by the information collecting unit 104 meets the determination criteria for each element shown in the setting item in the unit of the monitoring period. When the "collection target" is defined as “calculation” as in the "product A production lead time", the evaluation unit 102 performs a calculation based on the information collected by the information collection unit 104, and the calculation is performed. Compare the obtained values with the criteria.
  • FIG. 6 and 7 show an example of the evaluation result by the evaluation unit 102.
  • FIG. 6 shows the evaluation results in a graph format
  • FIG. 7 shows the evaluation results in a table format.
  • the determination standard of "Product A production lead time” is the threshold value X1.
  • the evaluation unit 102 evaluates it as HIGH (1 in the binary value).
  • the evaluation unit 102 evaluates it as LOW (0 in the binary value).
  • the evaluation unit 102 may sequentially output the evaluation results to the HMI (Human Machine Interface). With this configuration, the person in charge of improving the production system can understand the situation of the production system in real time by referring to the HMI and determine the necessity of improvement.
  • Improvement location analysis phase The person in charge of improving the production system refers to the evaluation result by the evaluation unit 102 and determines the necessity of improvement from the evaluation status of the evaluation unit 102 for KGI. For example, as shown in FIGS. 6 and 7, when the “product A production lead time” is higher than the criterion, that is, there are multiple periods in which the productivity is reduced, the person in charge of improving the production system is in charge of improving the production system. Judge that improvement is necessary. When it is determined that improvement is necessary, the person in charge of improving the production system instructs the improvement point analysis device 100 to analyze by the improvement point analysis unit 103. The improvement point analysis unit 103 executes the flow of FIG. 8 based on the instruction from the person in charge of improvement of the production system.
  • the improvement point analysis unit 103 executes the flow of FIG. 8 based on an instruction from the person in charge of improvement of the production system, but the improvement point analysis unit 103 periodically executes the flow of FIG. You may.
  • the improvement point analysis unit 103 may execute the flow of FIG.
  • the improvement point analysis unit 103 determines the necessity of improvement by referring to the evaluation result by the evaluation unit 102 and determines that improvement is necessary, the flow of FIG. 8 may be executed.
  • the improvement location analysis unit 103 reads the information model shown in FIG. 3 from the information storage unit 101 (step S201). Further, the improvement point analysis unit 103 reads the evaluation result by the evaluation unit 102 from the information storage unit 101 (step S202). The order of step S201 and step S202 may be changed, or step S201 and step S202 may be performed in parallel.
  • the improvement point analysis unit 103 designates a designated element to be analyzed, and sets or reads the analysis condition (step S203).
  • the improvement point analysis unit 103 may specify the designated element according to the instruction of the person in charge of improvement of the production system, or may analyze the evaluation result by the evaluation unit 102 and specify the designated element.
  • the improvement point analysis unit 103 designates the element of the highest hierarchy among the elements whose performance does not meet the determination criteria a plurality of times as the designated element. The details of the analysis conditions will be described later.
  • the improvement location analysis unit 103 performs analysis and stores the analysis result in the information storage unit 101 (step S204). Further, when the analysis is continued (YES in step S205), the process returns to step S203, and the improvement point analysis unit 103 designates a new designated element.
  • the improvement point analysis unit 103 designates the improvement target related element obtained in step S204 as a new designated element.
  • FIG. 9 shows the details of step S204.
  • the details of step S204 will be described with reference to FIG.
  • the improvement point analysis unit 103 extracts a significant combination of the conclusion unit and the condition unit in the association analysis from the information model (step S2041).
  • a significant combination means that the conclusion part and the condition part are consistent in terms of both the hierarchical relationship and the logical relationship in the information model. That is, a significant combination means that the conclusion part and the condition part are connected in the correct direction in the relation by the hierarchical structure, or are connected in the correct direction in the relationship by the logical structure. Elements that are connected in the correct direction in the relationship between the elements of the conclusion part and the hierarchical structure and elements that are connected in the correct direction in the relationship between the elements of the conclusion part and the logical structure affect the performance of the elements of the conclusion part. It is an element that can be given.
  • the improvement point analysis unit 103 sets the designated element specified in step S203 in the conclusion unit. Then, the improvement point analysis unit 103 determines the elements connected in the correct direction in the relationship between the designated element and the hierarchical structure and the element connected in the correct direction in the relationship between the designated element and the logical structure based on the information model. Set in the condition section. The element set in the condition part corresponds to the related element. For example, when the improvement point analysis unit 103 specifies "product A production lead time" as a designated element in step S203, the improvement point analysis unit 103 has the correct direction in the relationship between the "product A production lead time" and the hierarchical structure.
  • the "process # 1 lead time”, "process # 2 lead time”, and “process # 3 lead time” connected by are extracted as related elements.
  • the improvement point analysis unit 103 sets in the conclusion unit that "the value of the product A production lead time is higher than the judgment standard", and sets "process # 1 lead time” and ".
  • "Process # 2 lead time” and "process # 3 lead time” are set in the condition unit. Further, for example, when the improvement point analysis unit 103 specifies "process # 1 lead time” as a designated element in step S203, "process # 2 lead time” and “process # 3 lead time” are related by a logical structure.
  • the improvement point analysis unit 103 does not extract "process # 2 lead time” and "process # 3 lead time” as related elements.
  • the improvement point analysis unit 103 executes an association analysis for the combination of the extracted condition unit and the conclusion unit (step S2042).
  • the improvement point analysis unit 103 shall calculate the support level, the reliability, and the lift value in the association analysis.
  • the calculation order of these calculation items is not particularly specified.
  • the improvement point analysis unit 103 may stop the calculation of the uncalculated calculation item when the calculation maintenance condition is not satisfied in any of the calculation items with reference to the analysis condition. With this configuration, the amount of calculation for association analysis can be reduced.
  • FIG. 11 shows an example of analysis conditions. In the analysis conditions of FIG. 11, the section (time width) to be analyzed and the calculation maintenance conditions of each calculation item of the association analysis are defined. In the example of FIG. 11, the condition of the section is a constant section regardless of the hierarchy.
  • FIG. 12 shows an example of the analysis result by the improvement point analysis unit 103.
  • the combination in which the support, reliability, and lift value are all canceled by diagonal lines is a combination that was not the target of the association analysis because it is not a significant combination.
  • the upper part of FIG. 12 shows the result obtained by analyzing the influence of the lead time of each process on the product A production lead time by the improvement point analysis unit 103.
  • the improvement point analysis unit 103 extracts and analyzes only significant combinations. Therefore, in the upper part of FIG. 12, "Product A production lead time” is set in the conclusion part, and each of "process # 1 lead time", “process # 2 lead time”, and “process # 3 lead time” is a condition.
  • the result of the association analysis performed by setting the part is shown.
  • the lift value is larger than 1. Therefore, it is highly possible that "process # 1 lead time” and "process # 2 lead time” are factors of deterioration of "product A production lead time”. Therefore, the improvement location analysis unit 103 estimates that the “process # 1 lead time” and the “process # 2 lead time” are related elements to be improved. That is, the improvement point analysis unit 103 extracts "process # 1 lead time” and "process # 2 lead time” as elements for which the performance should be improved in order to improve the performance of "product A production lead time”.
  • the improvement point analysis unit 103 analyzes the influence of each of "process # 1 lead time", "process # 2 lead time” and "process # 3 lead time” on the lead time of other processes. The results obtained are shown below.
  • the improvement point analysis unit 103 since there are a plurality of combinations having a lift value larger than 1, the improvement point analysis unit 103 also analyzes the influence of the lead time of each process on the lead time of other processes. That is, the improvement point analysis unit 103 designates each process as a new designated element, extracts processes other than the process designated as the new designated element as a new related element, and performs association analysis.
  • FIG. 12 the improvement point analysis unit 103 analyzes the influence of each of "process # 1 lead time”, "process # 2 lead time” and "process # 3 lead time” on the lead time of other processes. The results obtained are shown below.
  • the improvement point analysis unit 103 since there are a plurality of combinations having a lift value larger than 1, the improvement point analysis unit 103 also analyzes the influence of the lead time of each process on the
  • the improvement point analysis unit 103 determines that "process # 1 lead time” is the most effective improvement target related element for improving the performance of "product A production lead time”, and determines that "process # 2 lead time” is the most effective. Is the next effective improvement target related element.
  • the improvement point analysis unit 103 gives priority among the plurality of improvement target-related elements as in the lower example of FIG. To set.
  • the improvement point analysis unit 103 can presume that "the deterioration of the product A production lead time is caused by the deterioration of the process # 1 lead time and the deterioration of the process # 2 lead time". Further, the improvement point analysis unit 103 can presume that "the deterioration of the process # 2 lead time is due to the deterioration of the process # 1 lead time". Therefore, the improvement point analysis unit 103 may propose the improvement point to the person in charge of improving the production system, saying, "First, the process # 1 lead time, which is a factor of deterioration of both lead times, should be improved.” can.
  • the improvement location analysis unit 103 outputs such an analysis result (proposal of improvement location) to the HMI, and stores the analysis result in the information storage unit 101 (step S2043).
  • the improvement point analysis unit 103 can deeply analyze the cause of the deterioration of the “process # 1 lead time” as needed (step S205 in FIG. 8). Specifically, the improvement point analysis unit 103 sets "process # 1 lead time” as a new designated element in the conclusion unit based on the relationship of the hierarchical structure of the information model in FIG. 3, and "equipment # 1-". Perform the association analysis with "1 lead time” and "equipment # 1-2 lead time” set in the condition section as new related elements. After the analysis of the equipment hierarchy is completed, the improvement point analysis unit 103 may further perform an association analysis in which the element of the equipment hierarchy is set in the condition unit as a new related element, if necessary. In this way, the improvement point analysis unit 103 can perform deep analysis. As an analysis condition, the number of repetitions of such an analysis may be set.
  • the improvement point analysis device 100 analyzes the relationship between the KGI and the plurality of information stepwise and logically while referring to the relationship by the hierarchical structure and the logical structure defined in the information model. Therefore, according to the present embodiment, it is possible to efficiently identify the improvement points that contribute to the improvement of KGI.
  • the evaluation unit 102 sequentially outputs the evaluation results to the HMI, so that the person in charge of improving the production system understands the situation of the production system in real time and immediately determines the necessity of improvement. be able to.
  • the improvement point analysis unit 103 refers to the analysis condition, and if any of the calculation items does not correspond to the calculation maintenance condition, the uncalculated calculation item is not calculated, so that the analysis is performed. The amount of time calculation can be reduced.
  • the person in charge of improving the production system does not have to wait for the final result of the improvement point analysis device 100 by himself / herself.
  • Analysis results can be obtained within the range where the experience of the above can be applied, and improvement activities can be streamlined.
  • the analysis section can be adjusted according to the hierarchy, so that the analysis can be effectively performed.
  • Embodiment 2 ***Purpose***
  • the evaluation results obtained by the evaluation by a single criterion are binarized.
  • the second embodiment has a main purpose of solving such a problem.
  • the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2.
  • additional determination criteria are provided for the setting items (FIG. 4) in the information collection shown in the first embodiment.
  • subdivision conditions are provided in the analysis conditions (FIG. 11).
  • the threshold value X6 is set as the first judgment criterion for “sensor # 1-1-3 target angle”
  • the threshold values X7 and X8 are set as additional judgment criteria. is doing.
  • FIG. 14 as the conditions for subdivision, a case where the lift value is larger than 2 and a case where the support degree is larger than 0.5 are set.
  • FIG. 15 shows an example of the effect in the second embodiment. That is, in the present embodiment, the improvement point analysis unit 103 sets "equipment # 1-1 lead time" as the conclusion unit and "sensor # 1-1-3 target angle" as the condition unit, and performs association analysis. There is. Then, the improvement point analysis unit 103 estimates "sensor # 1-1-3 target angle" as an improvement target related element.
  • FIG. 15 shows the evaluation results obtained by the evaluation using the determination criterion 2. Although not shown in FIG. 15, it is possible to also show the results (lift value, support degree, reliability) of the analysis using the determination criterion 2 newly by subdivision. In this case, when the "sensor # 1-1-3 target angle" is the specific value, the "sensor # 1-1-3 target angle” is the performance of the "equipment # 1-1 lead time". It is possible to analyze whether it affects the deterioration.
  • a plurality of determination criteria are provided, and conditions for subdivision for the evaluation unit 102 to apply the plurality of determination criteria are provided. Therefore, according to the present embodiment, the evaluation result in a single judgment criterion can be subdivided by a plurality of judgment criteria, and the element that can affect the performance of the designated element is specifically any value. If this happens, it can be clearly determined whether the performance of the specified element will be affected.
  • Embodiment 3 ***Purpose***
  • the determination criteria of the setting items in the information collection unit 104 and the analysis conditions in the improvement point analysis unit 103 are set in advance with reference to design information and the like.
  • the design information cannot be obtained or if there is a difference between the design information and the actual state of the production system, the effects in the first and second embodiments may not be obtained.
  • the third embodiment has a main purpose of solving such a problem. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2.
  • the method of setting the determination criteria of the information collecting unit 104 is shown in FIG.
  • statistical processing for the collected information is defined as a determination criterion in the setting item of the information collecting unit 104.
  • Statistical processing is set, for example, "mean value”.
  • mean value the standard deviation is taken into consideration in the mean value (mean value ⁇ standard deviation), the mode value in the frequency distribution, the minimum value, and the like are also suitable, but are not limited thereto.
  • step S103 the evaluation unit 102 performs statistical processing on the information collected by the information collecting unit 104 and stored in the information storage unit 101. Then, the evaluation unit 102 sets the result of the statistical processing as the determination criterion in FIG. Then, the evaluation unit 102 evaluates by comparing the individual information collected by the information collection unit 104 and stored in the information storage unit 101 with the result of the statistical processing set as the determination standard. After that, the evaluation unit 102 stores the evaluation result in the information storage unit 101. After that, in the improvement point analysis phase, the same operation as in the first embodiment is performed.
  • Embodiment 4. ***Purpose***
  • the relation by the hierarchical structure and / or the logical structure is defined by the information model.
  • the information model it is difficult to strictly define the information of the equipment because the designer is different from the designer of the production system. Therefore, it may not be possible to accurately define the relationship by the hierarchical structure and / or the logical structure. If the relationship is misdefined or cannot be defined, the wrong analysis result may be output. Also, analysis may occur for all possible combinations. In such a case, the efficiency is reduced.
  • the fourth embodiment has a main purpose of solving such a problem. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • FIG. 17 shows an example of the information model according to the fourth embodiment.
  • the relationship by the hierarchical structure and the logical structure is not defined. That is, in the information model shown in FIG. 17, only the elements existing in the device hierarchy are defined.
  • FIG. 18 shows additional items under the analysis conditions in the fourth embodiment. In FIG. 18, an item related to the relationship is added to the analysis conditions. As a condition related to the relationship, it is conceivable to define, for example, "automatically generate the relationship of the device hierarchy".
  • FIG. 19 shows an additional procedure performed by the improvement point analysis unit 103 in step S204 (execution and storage of analysis) of FIG.
  • step S204 the flow of FIG. 19 is performed prior to the flow of FIG. That is, when the relationship between any of the elements is unknown, the improvement point analysis unit 103 estimates the relationship between the elements whose relationship is unknown and automatically generates the relationship between the elements. Specifically, the improvement point analysis unit 103 refers to the setting item of FIG. 18 and executes the flow of FIG. 19 in order to automatically generate the relationship for the device hierarchy.
  • a special relationship is not defined with "PLC # 1-1-1 cycle time" in which the hierarchical structure with the equipment hierarchy which is the upper layer is defined.
  • step S301 the improvement location analysis unit 103 executes an association analysis of the “PLC # 1-1-1 cycle time” and the “servo # x-1 motor current value”.
  • step S302 the improvement point analysis unit 103 evaluates the analysis result of step S301.
  • the improvement point analysis unit 103 evaluates which combination of the support, reliability, and lift value of the analysis result gives the highest value. That is, the improvement point analysis unit 103 evaluates which of the combination 1 and the combination 2 gives the higher value.
  • the improvement point analysis unit 103 may evaluate the results of each item with weights so as to emphasize the lift value. These weights may be provided in the setting items of FIG. Further, the condition for generating the relationship may be similarly provided in the setting item of FIG.
  • step S303 the improvement location analysis unit 103 constructs a relationship between the elements with reference to the evaluation result, and stores the constructed relationship between the elements in the information storage unit 101.
  • it is set in the condition part that the "servo # x-1 motor current value” is higher than the judgment standard, and the conclusion part that the "PLC # 1-1-1 cycle time” is higher than the judgment standard.
  • the improvement point analysis unit 103 adds to the information model the relationship that the "servo # x-1 motor current value" affects the performance of the "PLC # 1-1-1 cycle time".
  • the improvement point analysis unit 103 estimates the relationship between the elements whose relationship is unknown, and determines the relationship between the elements. Automatically generated. Therefore, according to the present embodiment, even when the relation by the hierarchical structure and / or the logical structure cannot be accurately defined in the information model, the relation between the elements is constructed based on the actually collected information. And the analysis can be performed efficiently. In addition, even if the relationship between elements is erroneously defined, the information model can be modified by evaluating the relationship between elements based on the information actually collected.
  • Embodiment 5 ***Purpose***
  • the analysis results are output in a plurality of items such as support, reliability, and lift value. It is necessary to determine the factors to be improved in consideration of the output of these multiple items. However, there is a problem that it is difficult for a production system administrator who is unfamiliar with analysis to determine which factor is an improvement point.
  • the fifth embodiment has a main purpose of solving such a problem. In this embodiment, the difference from the first embodiment will be mainly described. The matters not described below are the same as those in the first embodiment.
  • FIGS. 1 and 2 the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2.
  • the analysis conditions of the improvement location analysis unit 103 are different.
  • FIG. 20 shows the analysis conditions according to the fifth embodiment.
  • a new analysis result output item is added as compared with FIG.
  • the calculation formula "A1 + A2 + A3" is defined.
  • “A1” is set to 1 when the support degree is larger than 0.1, and 0 when the support degree is smaller than 0.1.
  • “A2" is set to 1 when the reliability is greater than 0.1 and 0 when the reliability is less than 0.1.
  • the lift value is set as it is when the lift value is 1 or more, and 0 is set when the lift value is smaller than 1.
  • the calculation formula may be adjusted so as to emphasize any of support, reliability, and lift value.
  • the weight ⁇ is used to make adjustments such as A1 + A2 + A3 ⁇ ⁇ .
  • the weight ⁇ is set by the designer of the production system or the person in charge of improvement.
  • the improvement point analysis unit 103 performs a calculation using a plurality of calculated values for a plurality of calculated items included in the association analysis, and performs a calculation using the plurality of calculated values. Outputs the calculated value of.
  • step S2043 the improvement point analysis unit 103 calculates the analysis result output according to the calculation formula of the analysis result output of FIG. 20, outputs the calculation result, and stores the calculation result in the information storage unit 101.
  • FIG. 21 shows an example of the output according to the fifth embodiment. As shown in FIG. 21, the output according to the present embodiment includes the analysis result obtained according to the calculation formula of the analysis result output of FIG. 20.
  • the analysis result output calculation method is defined in the analysis conditions, and the analysis result calculated according to the calculation method is output. Therefore, according to the present embodiment, the production system administrator who is unfamiliar with the analysis can easily determine which element is the improvement point.
  • Embodiment 6 ***Purpose***
  • the sixth embodiment has a main purpose of solving such a problem. In this embodiment, the difference from the fifth embodiment will be mainly described. The matters not described below are the same as those in the fifth embodiment.
  • FIG. 22 shows a configuration example of the improved location analysis device 100 according to the sixth embodiment.
  • the improvement record storage unit 105 is added to the configuration of FIG. 1.
  • the improvement record is stored in the improvement record storage unit 105. It is the same as that shown in FIG. 1 except for the improvement record storage unit 105.
  • FIG. 23 shows an example of the improvement record stored in the improvement record storage unit 105.
  • the improvement results shown in FIG. 23 include the events that have occurred and the factors (improvement points) of the events. It is desirable to describe the events and factors in detail, including specific values. The improvement results are described by the person in charge of improvement while operating the analysis target.
  • the improvement record of the same type of analysis target may be diverted. However, in this case, it is desirable to describe it so that it can be understood that it is an improvement record of another analysis target.
  • the correct / incorrect evaluation result or the evaluation result accompanied by the numerical value given to the analysis result output through the HMI by the person in charge of improvement referring to the analysis result output shown in the fifth embodiment may be used as the improvement result.
  • the contents described in the improvement record storage unit 105 have a relationship defined in the information model. If the relationship is not defined in the information model, it may be configured so that the relationship is defined in the information model.
  • FIG. 24 shows an example of the analysis conditions according to the sixth embodiment. In FIG. 24, as a condition for outputting the analysis result, a calculation formula that reflects the improvement result in the output is defined. In FIG. 24, the number of actual improvements is described as the correction value “A4”, and “A4” is also included in the calculation formula.
  • step S2043 the improvement point analysis unit 103 calculates the analysis result output according to the analysis result output calculation formula of FIG. 24, outputs the calculation result, and stores the calculation result in the information storage unit 101. That is, in step S2043, the improvement location analysis unit 103 corrects the calculated value obtained by the calculation formula “A1 + A2 + A3” using the improvement results for the related elements corresponding to the condition unit in the association analysis, and obtains the corrected calculated value.
  • FIG. 25 shows an example of analysis result output according to the sixth embodiment. As shown in FIG. 25, in the present embodiment, the improvement result of FIG. 23 is output as a correction value, and the corrected analysis result output based on the number of improvement results is output.
  • Embodiment 7 ***Purpose***
  • the analysis result output is calculated using the calculation formula, and the obtained analysis result output is output to obtain a more accurate analysis result.
  • the seventh embodiment has a main purpose of solving such a problem. In this embodiment, the difference from the fifth embodiment will be mainly described. The matters not described below are the same as those in the fifth embodiment.
  • FIG. 26 shows the setting of the analysis conditions according to the seventh embodiment. In FIG. 26, it is set to calculate the analysis result output in FIG. 20 or 24 by utilizing a trained model learned by using machine learning described later.
  • FIG. 27 shows a configuration example of the machine learning device 400 utilized by the improvement location analysis device 100.
  • the machine learning device 400 includes a data acquisition unit 401, a teacher data acquisition unit 402, a learning unit 403, a learned model storage unit 405, and an output unit 404.
  • the machine learning device 400 includes a processor, a storage device, a communication interface, and a bus as a hardware configuration, as in FIG. 2.
  • the data acquisition unit 401, the teacher data acquisition unit 402, and the learning unit 403 are realized by, for example, a program.
  • the program is executed by the processor.
  • the trained model storage unit 405 is realized by a storage device.
  • the data acquisition unit 401 acquires the condition unit, the conclusion unit, the support degree, the reliability, and the lift value shown in FIGS. 10, 11, 20, and 24 as state variables.
  • the data acquisition unit 401 may acquire the evaluation results of the evaluation unit 102 shown in FIGS. 6 and 7.
  • the teacher data acquisition unit 402 acquires the factors and events shown in the improvement results of FIG. 23.
  • the learning unit 403 is a data set created based on a combination of a condition unit output from the data acquisition unit 401, a conclusion unit, a support level, a reliability, a lift value, and factors and events output from the teacher data acquisition unit 402. Learn how to correct the output based on.
  • the learning unit 403 analyzes from the condition unit, the conclusion unit, the support level, the reliability, the lift value, which are the analysis results of the improvement point analysis unit 103 of the improvement point analysis device 100, and the factors and events which are the actual improvement results. Generate a trained model that infers how to correct the result output.
  • the data set is data in which state variables and teacher data are associated with each other.
  • the machine learning device 400 is used to learn how to correct the output of the improvement point analysis device 100.
  • the machine learning device 400 and the improvement point analysis device 100 connected to the improvement point analysis device 100 via a network. May be a separate device.
  • the machine learning device 400 may be built in the improvement point analysis device 100.
  • the machine learning device 400 may exist on the cloud server.
  • the learning unit 403 learns the output correction method by, for example, supervised learning according to a neural network model.
  • supervised learning is a model in which a large number of sets of data of a certain input and a result (label) are given to the machine learning device 400, the features in those data sets are learned, and the result is estimated from the input.
  • a neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer (hidden layer) composed of a plurality of neurons, and an output layer composed of a plurality of neurons.
  • the intermediate layer may be one layer or two or more layers.
  • each input data is multiplied by the weight W1 (w11-w16).
  • Each input data multiplied by the weight W1 is input to the intermediate layer (Y1-Y2).
  • the result of the intermediate layer (Y1-Y2) is further multiplied by the weight W2 (w21-w26), and the result of the intermediate layer (Y1-Y2) multiplied by the weight W2 is output from the output layer (Z1-Z3). ..
  • the output result changes depending on the value of the weight W1 and the value of the weight W2.
  • the neural network is created based on the combination of the condition part, the conclusion part, the support degree, the reliability, the lift value acquired by the data acquisition unit 401, and the factors and events acquired by the supervised data acquisition unit 402.
  • the output correction method is learned by so-called supervised learning. That is, the neural network inputs the condition part, the conclusion part, the support degree, the reliability, and the lift value to the input layer, and adjusts the weights W1 and W2 so that the result output from the output layer approaches the factor and the event. Learn by.
  • the neural network can also learn the output correction method by so-called unsupervised learning.
  • unsupervised learning a large amount of input data is given to the machine learning device 400, and the machine learning device 400 learns how the input data is distributed.
  • unsupervised learning it is possible to perform learning by compressing, classifying, shaping, etc. on the input data without giving the corresponding teacher output data. That is, in unsupervised learning, features in multiple datasets can be clustered among similar people. The output can be predicted by using the clustering result and assigning the output so as to optimize the clustering result by setting some criteria.
  • Semi-supervised learning is an intermediate problem setting between unsupervised learning and supervised learning. In semi-supervised learning, only a part of the set of input data and output data exists, and the others exist only of input data.
  • the learning unit 403 generates a trained model by executing the above learning.
  • the trained model storage unit 405 stores the trained model generated by the learning unit 403.
  • the output unit 404 outputs a correction method of the analysis result output of the improvement point analysis device 100 obtained by using the trained model. That is, by inputting the condition unit, the conclusion unit, the support degree, the reliability, and the lift value into the data acquisition unit 401, the condition unit, the conclusion unit, the support degree, the reliability, and the lift are input from the output unit 404 based on the trained model. An output correction method suitable for the value can be obtained.
  • the output unit 404 of the machine learning device 400 outputs the correction method of the analysis result output to the improvement point analysis device 100 using the learned model obtained by the learning in the learning unit 403.
  • the improved part analysis device 100 may acquire a trained model and acquire a correction method for an analysis result output based on the trained model.
  • FIG. 28 is a flowchart relating to the learning process of the machine learning device 400.
  • the data acquisition unit 401 acquires the condition unit, the conclusion unit, the support degree, the reliability, and the lift value as state variables.
  • the teacher data acquisition unit 402 acquires factors and events that are actual improvements.
  • the data is acquired in the order described above, but it is sufficient if the condition part, the conclusion part, the support level, the reliability, the lift value, and the factors and events can be input in association with each other. They may be executed at the same time or in reverse order.
  • the learning unit 403 is a combination of the condition unit, the conclusion unit, the support level, the reliability, the lift value acquired by the data acquisition unit 401, and the factors and events acquired by the teacher data acquisition unit 402. According to the data set created based on, the correction method of the analysis result output is learned by so-called supervised learning, and the trained model is generated.
  • the trained model storage unit 405 stores the trained model generated by the learning unit 403.
  • step S501 the data acquisition unit 401 acquires the condition unit, the conclusion unit, the support level, the reliability, and the lift value.
  • step S502 the learning unit 403 inputs the condition unit, the conclusion unit, the support level, the reliability, and the lift value into the trained model stored in the trained model storage unit 405, and corrects the analysis result output. obtain.
  • the learning unit 403 outputs the correction method of the obtained analysis result output to the output unit 404.
  • the output unit 404 outputs a correction method for the analysis result output obtained by the trained model.
  • step S504 the improvement point analysis unit of the improvement point analysis device 100 corrects the analysis result by using the correction method of the output analysis result output, and outputs the corrected analysis result. As a result, it is possible to output improvement points that match the actual conditions of the production system.
  • the learning unit 403 may learn the output correction method according to the data sets collected from the plurality of improvement point analysis devices 100.
  • the learning unit 403 may acquire a data set from a plurality of improvement point analyzers 100 used in the same area.
  • the learning unit 403 may learn the correction method of the analysis result output by using the data set collected from the plurality of improvement point analysis devices 100 that operate independently in different areas.
  • the learning unit 403 can add an improvement point analysis device 100 for collecting a data set on the way. Alternatively, the learning unit 403 can conversely remove any of the improvement location analysis devices 100 from the improvement location analysis device 100 that collects the data set. Further, the machine learning device 400 that has learned the correction method of the analysis result output for a certain improvement point analysis device 100 is applied to another improvement point analysis device 100, and the analysis result output for the other improvement point analysis device 100. You may relearn and update the correction method of. Further, as the learning algorithm used in the learning unit 403, deep learning that learns the extraction of the feature amount itself can also be used, and other known methods such as genetic programming, functional logic programming, and support can be used. Machine learning may be performed according to a vector machine or the like.
  • the correction method of the analysis result output is acquired by utilizing machine learning. Therefore, according to the present embodiment, even if the analysis target is a large-scale or complicated production system, it is possible to output the improvement points according to the actual state of the production system.
  • the processor 901 shown in FIG. 2 is an IC (Integrated Circuit) that performs processing.
  • the processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the storage device 902 shown in FIG. 2 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
  • the communication interface 903 shown in FIG. 2 is an electronic circuit that executes data communication processing.
  • the communication interface 903 is, for example, a communication chip or a NIC (Network Interface Card).
  • An OS (Operating System) is also stored in the auxiliary storage device 902. Then, at least a part of the OS is executed by the processor 901.
  • the processor 901 executes the program 904 while executing at least a part of the OS.
  • the processor 901 executes the OS, task management, memory management, file management, communication control, and the like are performed.
  • at least one of the information, data, signal value, and variable value indicating the processing result of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 is a register and a cache memory in the storage device 902 and the processor 901. It is stored in at least one of them.
  • the program 904 may be stored in a portable recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disc, a Blu-ray (registered trademark) disc, or a DVD. Then, a portable recording medium in which the program 904 is stored may be distributed.
  • a portable recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disc, a Blu-ray (registered trademark) disc, or a DVD.
  • the "section" of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 may be read as “circuit” or “process” or “procedure” or “processing”.
  • the improved location analysis device 100 may be realized by a processing circuit.
  • the processing circuit is, for example, a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array).
  • the evaluation unit 102, the improvement location analysis unit 103, and the information collection unit 104 are each realized as a part of the processing circuit.
  • the superordinate concept of the processor and the processing circuit is referred to as "processing circuit Lee". That is, the processor and the processing circuit are specific examples of the "processing circuit Lee", respectively.
  • improvement location analysis device 101 information storage unit, 102 evaluation unit, 103 improvement location analysis unit, 104 information collection unit, 105 improvement record storage unit, 200 analysis target, 300 network, 400 machine learning device, 401 data acquisition unit, 402 Teacher data acquisition unit, 403 learning unit, 404 output unit, 405 trained model storage unit, 901 processor, 902 storage device, 903 communication interface, 904 program, 905 bus.

Abstract

In the present invention, an improvement location analysis unit (103) designates, as a designated element, an element for which performance is to be improved from among three or more elements. The improvement location analysis unit (103) also extracts, as relation elements, two or more elements in a significant relationship with the designated element from among elements other than the designated element. The improvement location analysis unit (103) furthermore analyzes the effect of the performance of each of the two or more extracted relation elements on the performance of the designated element and estimates, from among the two or more relation elements, a relation element to be improved, which is a relation element for which the performance is to be improved in order to improve the performance of the designated element.

Description

情報処理装置、情報処理方法及び情報処理プログラムInformation processing equipment, information processing methods and information processing programs
 本開示は、性能を改善するための分析を行う技術に関する。 This disclosure relates to a technique for performing analysis to improve performance.
 工場等の生産システムでは、品質、コスト、納期、生産数量といった管理指標の内、時々の状況に応じて優先目標が設定される。そして、設定された優先目標を達成すべく生産管理が行われる。
 優先目標はKGI(Key Goal Indicator)と呼ばれる。例えば、KGIに品質を設定した場合、品質の目標値を達成するよう日々の生産管理が行われる。生産管理とは、生産システムから現在の運用状況の情報を収集して現在値と目標値を比較し、現在値が目標値を達成していない場合は現在値が目標値を達成するように改善活動を行うことである。改善活動とは、生産システム内の設備の増強、パラメタの調整、作業員の教育、作業手順の見直し、材料及び/又は在庫の見直し等の活動である。
In production systems such as factories, priority targets are set according to the situation from time to time among management indicators such as quality, cost, delivery date, and production quantity. Then, production control is performed to achieve the set priority target.
The priority goal is called KGI (Key Goal Indicator). For example, when quality is set in KGI, daily production control is performed so as to achieve the quality target value. Production control collects information on the current operational status from the production system, compares the current value with the target value, and if the current value does not reach the target value, improves so that the current value achieves the target value. To carry out activities. Improvement activities include activities such as strengthening equipment in the production system, adjusting parameters, training workers, reviewing work procedures, and reviewing materials and / or inventories.
 従来、このような改善活動は生産システム管理者の経験によって行われることが多く、必ずしも優先目標の達成に寄与しない改善活動又は効果の低い改善活動が行われる、という課題があった。
 このような課題に対して、近年では生産システムのIoT(Internet of Things)化を進めることで解決が図られている。具体的には、以下のような活動により課題が解決される。ある生産システムにおけるKGIの現在値に加え、その時々の生産システム内の工程、設備、設備内の機器の状態について詳細なデータが収集される。そして、収集したデータを分析することで生産システム内のデータの関係性が明らかにされる。そして、明らかにされた関係性を生産管理の参考にする。
Conventionally, such improvement activities are often carried out based on the experience of production system managers, and there has been a problem that improvement activities that do not necessarily contribute to the achievement of priority goals or improvement activities that are less effective are carried out.
In recent years, such problems have been solved by promoting the introduction of IoT (Internet of Things) in production systems. Specifically, the following activities will solve the problems. In addition to the current value of KGI in a production system, detailed data on the process, equipment, and equipment status in the equipment at that time is collected. Then, by analyzing the collected data, the relationship of the data in the production system is clarified. Then, the clarified relationship is used as a reference for production control.
 例えば特許文献1では、それぞれが複数の工程及び/又は複数の設備の管理指標である複数のKPI(Key Performance Indicator)のそれぞれの関係性の階層構造が定義される。また、特許文献1では、KPIを算出するための情報が工程及び/又は設備から収集される。そして、特許文献1では、各KPIを相関分析することで異常が発生した際に管理者に異常を通知するアラームが効率的に選別される。 For example, Patent Document 1 defines a hierarchical structure of relationships between a plurality of KPIs (Key Performance Indicators), each of which is a management index for a plurality of processes and / or a plurality of facilities. Further, in Patent Document 1, information for calculating KPI is collected from the process and / or equipment. Then, in Patent Document 1, by correlating each KPI, an alarm for notifying the administrator of the abnormality when an abnormality occurs is efficiently selected.
特開2019-117464号公報Japanese Unexamined Patent Publication No. 2019-117464
 しかしながら、特許文献1の技術で用いられる相関分析では、収集した情報が外れ値であった場合の影響が大きいため、この影響を取り除くための煩雑な前処理が必要となる。また、相関分析では異なる工程のKPIについて1:1で関係を分析するため、例えばKGIと複数のKPIとの間の関係性といった1対多の情報の関係性については分析することができないという課題がある。 However, in the correlation analysis used in the technique of Patent Document 1, since the influence when the collected information is an outlier is large, complicated preprocessing is required to remove this influence. In addition, since correlation analysis analyzes 1: 1 relationships for KPIs in different processes, it is not possible to analyze one-to-many information relationships such as relationships between KGIs and multiple KPIs. There is.
 このように、特許文献1の技術では、生産システムのように多数の要素で構成されるシステムにおいて改善活動を行う場合、KGIを改善しようとする要素、すなわち性能を改善しようとする要素と他の複数の要素との関係性を分析することが困難である。このため、特許文献1の技術では、性能を改善しようとする要素の性能の改善に寄与する他の要素を特定することが容易ではない、という課題がある。 As described above, in the technique of Patent Document 1, when improvement activities are performed in a system composed of a large number of elements such as a production system, an element for improving KGI, that is, an element for improving performance and other elements are used. It is difficult to analyze the relationship with multiple factors. Therefore, the technique of Patent Document 1 has a problem that it is not easy to identify other elements that contribute to the improvement of the performance of the element for which the performance is to be improved.
 本開示は、このような課題を解決することを主な目的の一つとしている。より具体的には、本開示は、性能を改善すべき要素の性能の改善に寄与する要素の特定を効率的に行うことを主な目的とする。 One of the main purposes of this disclosure is to solve such problems. More specifically, the main object of the present disclosure is to efficiently identify the elements that contribute to the improvement of the performance of the elements for which the performance should be improved.
 本開示に係る情報処理装置は、
 3以上の要素のうち性能を改善させるべき要素を指定要素として指定する指定部と、
 前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出する抽出部と、
 前記抽出部により抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する推定部とを有する。
The information processing device according to this disclosure is
A designated part that designates an element whose performance should be improved among three or more elements as a designated element,
An extraction unit that extracts two or more elements that have a significant relationship with the designated element from the elements other than the designated element as related elements.
To improve the performance of the designated element from among the two or more related elements by analyzing the influence of the performance of each of the two or more related elements extracted by the extraction unit on the performance of the designated element. It has an estimation unit that estimates related elements to be improved, which are related elements for which performance should be improved.
 本開示によれば、性能を改善すべき要素の性能の改善に寄与する要素の特定を効率的に行うことができる。 According to the present disclosure, it is possible to efficiently identify the elements that contribute to the improvement of the performance of the elements for which the performance should be improved.
実施の形態1に係る改善箇所分析装置の機能構成例を示す図。The figure which shows the functional composition example of the improvement part analysis apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る改善箇所分析装置のハードウェア構成例を示す図。The figure which shows the hardware configuration example of the improvement part analysis apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る情報モデルの構成例を示す図。The figure which shows the structural example of the information model which concerns on Embodiment 1. 実施の形態1に係る設定項目の例を示す図。The figure which shows the example of the setting item which concerns on Embodiment 1. 実施の形態1に係る評価部の動作例を示すフローチャート。The flowchart which shows the operation example of the evaluation part which concerns on Embodiment 1. 実施の形態1に係る評価部による評価結果の例を示す図。The figure which shows the example of the evaluation result by the evaluation unit which concerns on Embodiment 1. FIG. 実施の形態1に係る評価部による評価結果の例を示す図。The figure which shows the example of the evaluation result by the evaluation unit which concerns on Embodiment 1. FIG. 実施の形態1に係る改善箇所分析部の動作例を示すフローチャート。The flowchart which shows the operation example of the improvement part analysis part which concerns on Embodiment 1. 実施の形態1に係る改善箇所分析部の動作例を示すフローチャート。The flowchart which shows the operation example of the improvement part analysis part which concerns on Embodiment 1. 実施の形態1に係る分析対象の例を示す図。The figure which shows the example of the analysis target which concerns on Embodiment 1. 実施の形態1に係る分析条件の例を示す図。The figure which shows the example of the analysis condition which concerns on Embodiment 1. FIG. 実施の形態1に係る改善箇所分析部の分析結果の例を示す図。The figure which shows the example of the analysis result of the improvement part analysis part which concerns on Embodiment 1. 実施の形態2に係る設定項目の例を示す図。The figure which shows the example of the setting item which concerns on Embodiment 2. 実施の形態2に係る分析条件の例を示す図。The figure which shows the example of the analysis condition which concerns on Embodiment 2. 実施の形態2により得られる効果の例を示す図。The figure which shows the example of the effect obtained by Embodiment 2. 実施の形態3に係る設定項目の例を示す図。The figure which shows the example of the setting item which concerns on Embodiment 3. 実施の形態4に係る情報モデルの構成例を示す図。The figure which shows the structural example of the information model which concerns on Embodiment 4. 実施の形態4に係る分析条件の例を示す図。The figure which shows the example of the analysis condition which concerns on Embodiment 4. 実施の形態4に係る改善箇所分析部の動作例を示すフローチャート。The flowchart which shows the operation example of the improvement part analysis part which concerns on Embodiment 4. 実施の形態5に係る分析条件の例を示す図。The figure which shows the example of the analysis condition which concerns on Embodiment 5. 実施の形態5に係る出力例を示す図。The figure which shows the output example which concerns on Embodiment 5. 実施の形態6に係る改善箇所分析装置の機能構成例を示す図。The figure which shows the functional composition example of the improvement part analysis apparatus which concerns on Embodiment 6. 実施の形態6に係る改善実績の例を示す図。The figure which shows the example of the improvement result which concerns on Embodiment 6. 実施の形態6に係る分析条件の例を示す図。The figure which shows the example of the analysis condition which concerns on Embodiment 6. 実施の形態6に係る出力例を示す図。The figure which shows the output example which concerns on Embodiment 6. 実施の形態7に係る分析条件の例を示す図。The figure which shows the example of the analysis condition which concerns on Embodiment 7. 実施の形態7に係る機械学習装置の機能構成例を示す図。The figure which shows the functional structure example of the machine learning apparatus which concerns on Embodiment 7. 実施の形態7に係る機械学習装置の動作例を示すフローチャート。The flowchart which shows the operation example of the machine learning apparatus which concerns on Embodiment 7. 実施の形態7に係る分析結果出力の補正手順を示すフローチャート。The flowchart which shows the correction procedure of the analysis result output which concerns on Embodiment 7. 実施の形態7に係るニューラルネットワークの例を示す図。The figure which shows the example of the neural network which concerns on Embodiment 7.
 以下、実施の形態を図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。 Hereinafter, embodiments will be described with reference to figures. In the following description and drawings of the embodiments, those having the same reference numerals indicate the same parts or corresponding parts.
実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る改善箇所分析装置100の機能構成例を示す。
 本実施の形態に係る改善箇所分析装置100は、ネットワーク300を介して分析対象200と接続されている。本実施の形態では、分析対象200は生産システムである。
 改善箇所分析装置100は情報処理装置に相当する。また、改善箇所分析装置100の動作手順は情報処理方法に相当する。
Embodiment 1.
*** Explanation of configuration ***
FIG. 1 shows an example of a functional configuration of the improved location analysis device 100 according to the present embodiment.
The improved location analysis device 100 according to the present embodiment is connected to the analysis target 200 via the network 300. In this embodiment, the analysis target 200 is a production system.
The improvement location analysis device 100 corresponds to an information processing device. Further, the operation procedure of the improvement point analysis device 100 corresponds to the information processing method.
 図1に示すように、改善箇所分析装置100は、情報記憶部101、評価部102、改善箇所分析部103及び情報収集部104を有する。
 情報記憶部101、評価部102、改善箇所分析部103及び情報収集部104の詳細は後述する。
As shown in FIG. 1, the improvement location analysis device 100 includes an information storage unit 101, an evaluation unit 102, an improvement location analysis unit 103, and an information collection unit 104.
Details of the information storage unit 101, the evaluation unit 102, the improvement location analysis unit 103, and the information collection unit 104 will be described later.
 図2は、改善箇所分析装置100のハードウェア構成例を示す。
 改善箇所分析装置100は、コンピュータである。
 改善箇所分析装置100は、ハードウェアとして、プロセッサ901、記憶装置902及び通信インタフェース903を備える。プロセッサ901、記憶装置902及び通信インタフェース903は、相互にバス905により接続される。
 記憶装置902はプログラム904を記憶する。プログラム904は、図1に示す評価部102、改善箇所分析部103及び情報収集部104の機能を実現するためのプログラムである。
 プロセッサ901は記憶装置902からプログラム904を読み出し、プログラム904を実行する。プロセッサ901がプログラム904を実行することにより、後述する評価部102、改善箇所分析部103及び情報収集部104の機能が実現される。
 プログラム904は、情報処理プログラムに相当する。
 また、図示は省略しているが、記憶装置902は、プログラム904以外に、本実施の形態に係る改善箇所分析装置100の機能の実現に必要な各種情報を記憶している。図1に示す情報記憶部101は記憶装置902により実現される。
 通信インタフェース903は、分析対象200である生産システムとの通信に用いられる。
FIG. 2 shows an example of the hardware configuration of the improved location analyzer 100.
The improvement location analyzer 100 is a computer.
The improvement location analysis device 100 includes a processor 901, a storage device 902, and a communication interface 903 as hardware. The processor 901, the storage device 902, and the communication interface 903 are connected to each other by the bus 905.
The storage device 902 stores the program 904. The program 904 is a program for realizing the functions of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 shown in FIG.
The processor 901 reads the program 904 from the storage device 902 and executes the program 904. When the processor 901 executes the program 904, the functions of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104, which will be described later, are realized.
Program 904 corresponds to an information processing program.
Although not shown, the storage device 902 stores various information necessary for realizing the function of the improvement point analysis device 100 according to the present embodiment, in addition to the program 904. The information storage unit 101 shown in FIG. 1 is realized by the storage device 902.
The communication interface 903 is used for communication with the production system which is the analysis target 200.
 図3は、本実施の形態で用いられる情報モデルの構成例を示す。
 情報モデルでは、分析対象200である生産システムを構成する複数の要素が示される。また、情報モデルでは、各要素間の関係を、階層構造及び/又は論理構造により示す。図3において、実線は階層構造による関係性を示しており、破線矢印は論理構造による関係性を示している。
FIG. 3 shows a configuration example of the information model used in this embodiment.
In the information model, a plurality of elements constituting the production system, which is the analysis target 200, are shown. Further, in the information model, the relationship between each element is shown by a hierarchical structure and / or a logical structure. In FIG. 3, the solid line shows the relationship by the hierarchical structure, and the broken line arrow shows the relationship by the logical structure.
 図3の情報モデルでは、階層として、生産ライン、工程、設備及び機器が含まれる。
 そして、階層:生産ラインを構成する要素として、「製品A生産リードタイム」が定義されている。図3は、生産システムのKGIとして「製品A生産リードタイム」を設定して生産管理する例を示している。
 「製品A生産リードタイム」の下位の階層として、生産システムの各工程のリードタイムである、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」が定義されている。「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」は、「製品A生産リードタイム」と階層構造による関係性で接続されている。つまり、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」は、「製品A生産リードタイム」に影響を与え得る。更に、各工程は生産プロセスに基づいた論理構造による関係性で接続されている。ここでは「工程#1」、「工程#2」、「工程#3」の順に生産が行われている例を示している。なお、本明細書では、「リードタイム」は所要時間の意味である。つまり、「製品A生産リードタイム」は製品Aの生産を完了するのに要する所要時間である。
 設備及び機器の階層についても同様に上位階層の要素との関係性が示される。
 具体的には、階層:設備を構成する要素として、「設備#1-1リードタイム」、「設備#1-2リードタイム」、「設備#2-1リードタイム」、「設備#3-1リードタイム」及び「設備#3-2リードタイム」が定義されている。「設備#1-1リードタイム」及び「設備#1-2リードタイム」は「工程#1リードタイム」に影響を与え得る。また、「設備#2-1リードタイム」は「工程#2リードタイム」に影響を与え得る。また、「設備#3-1リードタイム」と「設備#3-2リードタイム」は「工程#3リードタイム」に影響を与え得る。
 また、階層:機器を構成する要素として、「PLC#1-1-1サイクルタイム」、「サーボ#1-1-2モータ電流値」、「センサ#1-1-3対象角度」、「PLC#1-2-1サイクルタイム」及び「ロボット#1-2-2到達率」が定義されている。「PLC#1-1-1サイクルタイム」、「サーボ#1-1-2モータ電流値」及び「センサ#1-1-3対象角度」は「設備#1-1リードタイム」に影響を与え得る。また、「PLC#1-2-1サイクルタイム」及び「ロボット#1-2-2到達率」は、「設備#1-2リードタイム」に影響を与え得る。更に、「サーボ#1-1-2モータ電流値」は、「PLC#1-1-1サイクルタイム」及び「センサ#1-1-3対象角度」に影響を与え得る。また、「センサ#1-1-3対象角度」は「ロボット#1-2-2到達率」に影響を与え、「ロボット#1-2-2到達率」は「PLC#1-2-1サイクルタイム」に影響を与え得る。
In the information model of FIG. 3, the hierarchies include production lines, processes, equipment and equipment.
Then, "Product A production lead time" is defined as an element constituting the hierarchy: production line. FIG. 3 shows an example in which "Product A production lead time" is set as the KGI of the production system and production is controlled.
As the lower hierarchy of "Product A production lead time", "process # 1 lead time", "process # 2 lead time" and "process # 3 lead time", which are the lead times of each process of the production system, are defined. ing. "Process # 1 lead time", "process # 2 lead time" and "process # 3 lead time" are connected to "product A production lead time" by a hierarchical structure. That is, the "process # 1 lead time", "process # 2 lead time", and "process # 3 lead time" may affect the "product A production lead time". Further, each process is connected by a relationship by a logical structure based on the production process. Here, an example in which production is performed in the order of "process # 1", "process # 2", and "process # 3" is shown. In addition, in this specification, "lead time" means required time. That is, the "product A production lead time" is the time required to complete the production of the product A.
Similarly, the relationship between the equipment and equipment hierarchies and the elements of the upper hierarchy is shown.
Specifically, as the elements that make up the hierarchy: equipment, "equipment # 1-1 lead time", "equipment # 1-2 lead time", "equipment # 2-1 lead time", "equipment # 3-1""Leadtime" and "Equipment # 3-2 lead time" are defined. “Equipment # 1-1 lead time” and “equipment # 1-2 lead time” can affect “process # 1 lead time”. Further, the "equipment # 2-1 lead time" may affect the "process # 2 lead time". Further, "equipment # 3-1 lead time" and "equipment # 3-2 lead time" may affect "process # 3 lead time".
Hierarchy: As elements that make up the device, "PLC # 1-1-1 cycle time", "servo # 1-1-2 motor current value", "sensor # 1-1-3 target angle", "PLC""# 1-2-1 cycle time" and "robot # 1-2-2 arrival rate" are defined. "PLC # 1-1-1 cycle time", "servo # 1-1-2 motor current value" and "sensor # 1-1-3 target angle" affect "equipment # 1-1 lead time". obtain. Further, "PLC # 1-2-1 cycle time" and "robot # 1-2-2 arrival rate" may affect "equipment # 1-2 lead time". Further, the "servo # 1-1-2 motor current value" may affect the "PLC # 1-1-1 cycle time" and the "sensor # 1-1-3 target angle". In addition, "sensor # 1-1-3 target angle" affects "robot # 1-2-2 arrival rate", and "robot # 1-2-2 arrival rate" is "PLC # 1-2-1". It can affect the "cycle time".
 ここで、図1に示す情報記憶部101、評価部102、改善箇所分析部103及び情報収集部104を説明する。 Here, the information storage unit 101, the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 shown in FIG. 1 will be described.
 情報記憶部101は、図3に例示した情報モデルを記憶する。
 また、情報記憶部101は、後述する設定項目を記憶する。
 また、情報記憶部101は、評価部102による評価結果を記憶する。
 また、情報記憶部101は、改善箇所分析部103による分析結果を記憶する。
 また、情報記憶部101は、情報収集部104により収集された情報を記憶する。
The information storage unit 101 stores the information model illustrated in FIG.
Further, the information storage unit 101 stores the setting items described later.
Further, the information storage unit 101 stores the evaluation result by the evaluation unit 102.
Further, the information storage unit 101 stores the analysis result by the improvement location analysis unit 103.
Further, the information storage unit 101 stores the information collected by the information collection unit 104.
 評価部102は、分析対象200に含まれる要素ごとに、性能の基準に性能が合致するか否かを評価する。評価部102は、各要素が要素ごとに定義された性能の基準に性能が合致するか否かを評価する。
 また、上述のように各要素は複数の階層を構成しているが、評価部102は、階層ごとに異なる時間幅で各要素の性能が性能の基準に合致するか否かを評価してもよい。
 更に、評価部102は、評価を行う度に、評価結果を出力してもよい。
The evaluation unit 102 evaluates whether or not the performance matches the performance standard for each element included in the analysis target 200. The evaluation unit 102 evaluates whether or not the performance of each element matches the performance standard defined for each element.
Further, although each element constitutes a plurality of layers as described above, the evaluation unit 102 may evaluate whether or not the performance of each element meets the performance standard with a different time width for each layer. good.
Further, the evaluation unit 102 may output the evaluation result each time the evaluation is performed.
 改善箇所分析部103は、評価部102による評価結果に基づき、分析対象200に含まれる要素のうち性能を改善させるべき要素を指定要素として指定する。
 また、改善箇所分析部103は、推定した改善対象関連要素(後述)を新たな指定要素に指定することもある。更に、改善箇所分析部103は、新たな改善対象関連要素を推定する度に、推定した新たな改善対象関連要素を新たな指定要素に指定することを繰り返してもよい。
Based on the evaluation result by the evaluation unit 102, the improvement point analysis unit 103 designates an element whose performance should be improved among the elements included in the analysis target 200 as a designated element.
Further, the improvement point analysis unit 103 may designate the estimated improvement target related element (described later) as a new designated element. Further, the improvement point analysis unit 103 may repeatedly designate the estimated new improvement target related element as a new designated element every time a new improvement target related element is estimated.
 また、改善箇所分析部103は、指定要素以外の要素の中から指定要素と有意な関係にある1以上の要素を関連要素として抽出する。本実施の形態では、指定要素と関連要素との1:1の関係についても分析可能であるため、改善箇所分析部103は1以上の要素を関連要素として抽出する例を説明する。1つの指定要素に対して複数の関連要素の各々との関係を分析する場合は、改善箇所分析部103は2以上の要素を関連要素として抽出する。「有意な関係」とは、指定要素の性能に影響を与え得る関係である。より具体的には、図3の情報モデルにおいて、指定要素と実線(階層構造による関係性)で接続された下位の階層の要素又は指定要素に向かう破線矢印(論理構造による関係性)の起点に位置する要素である。
 例えば、評価部102により「製品A生産リードタイム」が指定要素に指定された場合は、改善箇所分析部103は、「製品A生産リードタイム」と有意な関係になる要素(関連要素)として、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」を抽出する。また、例えば、評価部102により「工程#2リードタイム」が指定要素に指定された場合は、改善箇所分析部103は、「工程#2リードタイム」と有意な関係になる要素(関連要素)として、「工程#1リードタイム」及び「設備#2-1リードタイム」を抽出する。なお、「性能」とは、測定及び/又は計算により得られる値である。例えば、「製品A生産リードタイム」の性能は、各工程の所要時間を測定し、各工程の所要時間を加算して得られる時間である。また、例えば、「サーボ#1-1-2モータ電流値」の性能は、サーボ#1-1-2に対して実際に測定を行って得られたモータ電流値である。
Further, the improvement point analysis unit 103 extracts one or more elements having a significant relationship with the designated element from the elements other than the designated element as related elements. In the present embodiment, since it is possible to analyze the 1: 1 relationship between the designated element and the related element, the improvement point analysis unit 103 will explain an example of extracting one or more elements as the related element. When analyzing the relationship between one designated element and each of the plurality of related elements, the improvement point analysis unit 103 extracts two or more elements as related elements. A "significant relationship" is a relationship that can affect the performance of a designated element. More specifically, in the information model of FIG. 3, at the starting point of the broken line arrow (relationship by logical structure) toward the element of the lower hierarchy connected by the solid line (relationship by hierarchical structure) or the designated element. It is a located element.
For example, when "Product A production lead time" is designated as a designated element by the evaluation unit 102, the improvement point analysis unit 103 sets it as an element (related element) having a significant relationship with "Product A production lead time". Extract "process # 1 lead time", "process # 2 lead time", and "process # 3 lead time". Further, for example, when "process # 2 lead time" is designated as a designated element by the evaluation unit 102, the improvement point analysis unit 103 has an element (related element) having a significant relationship with "process # 2 lead time". As, "process # 1 lead time" and "equipment # 2-1 lead time" are extracted. The "performance" is a value obtained by measurement and / or calculation. For example, the performance of "Product A production lead time" is a time obtained by measuring the required time of each process and adding the required time of each process. Further, for example, the performance of the "servo # 1-1-2 motor current value" is the motor current value obtained by actually measuring the servo # 1-1-2.
 また、改善箇所分析部103は、抽出した1以上の関連要素の各々の性能が指定要素の性能に与える影響を分析して、1以上の関連要素の中から、指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する。改善箇所分析部103は、指定要素の性能が改善されること(又は悪化すること)を結論部に用い、1以上の関連要素の各々の性能が改善されること(又は悪化すること)を条件部に用いたアソシエーション分析を行って、改善対象関連要素を推定する。アソシエーション分析については後述する。
 また、改善箇所分析部103は、複数の改善対象関連要素を推定した場合に、各々の改善対象関連要素の性能が他の改善対象関連要素の性能に与える影響を分析して、複数の改善対象関連要素の間に優先順位を設定する。
 また、改善箇所分析部103は、評価部102により新たな指定要素が指定された場合に、新たな指定要素と有意な関係にある、新たな指定要素以外の1以上の要素を新たな関連要素として抽出する。そして、改善箇所分析部103は、抽出した1以上の新たな関連要素の各々の性能が新たな指定要素の性能に与える影響を分析して、1以上の新たな関連要素の中から、新たな指定要素の性能の改善のために性能を改善させるべき新たな関連要素を新たな改善対象関連要素として推定する。
 また、改善箇所分析部103は、新たな指定要素を指定する度に、指定した新たな指定要素以外の1以上の要素を新たな関連要素として抽出することを繰り返し、また、1以上の新たな関連要素を抽出する度に、新たな改善対象関連要素を推定することを繰り返してもよい。
 なお、改善箇所分析部103は指定部、抽出部及び推定部に相当する。また、改善箇所分析部103により行われる処理は指定処理、抽出処理及び推定処理に相当する。
Further, the improvement point analysis unit 103 analyzes the influence of the performance of each of the extracted one or more related elements on the performance of the designated element, and improves the performance of the designated element from among the one or more related elements. Estimate the related elements to be improved, which are the related elements that should improve the performance. The improvement point analysis unit 103 uses that the performance of the designated element is improved (or deteriorated) as the conclusion unit, and is conditioned on the condition that the performance of each of the one or more related elements is improved (or deteriorated). Perform the association analysis used in the department to estimate the factors related to the improvement target. Association analysis will be described later.
Further, the improvement point analysis unit 103 analyzes the influence of the performance of each improvement target-related element on the performance of other improvement target-related elements when a plurality of improvement target-related elements are estimated, and a plurality of improvement target-related elements. Set priorities between related elements.
Further, when a new designated element is designated by the evaluation unit 102, the improvement point analysis unit 103 sets one or more elements other than the new designated element, which have a significant relationship with the new designated element, as a new related element. Extract as. Then, the improvement point analysis unit 103 analyzes the influence of the performance of each of the extracted one or more new related elements on the performance of the new designated element, and from among the one or more new related elements, a new one. Estimate new related elements whose performance should be improved in order to improve the performance of the specified element as new improvement target related elements.
Further, the improvement point analysis unit 103 repeatedly extracts one or more elements other than the designated new designated element as a new related element every time a new designated element is designated, and one or more new designated elements. Every time the related element is extracted, the estimation of the new improvement target related element may be repeated.
The improvement location analysis unit 103 corresponds to a designation unit, an extraction unit, and an estimation unit. Further, the processing performed by the improvement point analysis unit 103 corresponds to the designated processing, the extraction processing, and the estimation processing.
 ここで、アソシエーション分析について説明する。
 複数の情報の間の関係性を分析する手法として、アソシエーション分析(バスケット分析、アソシエーションルール等とも呼ばれる)が知られている。
 アソシエーション分析では、統計情報が入力として用いられ、条件部と結論部の関係について支持度、信頼度、リフト値が算出される。支持度とは、全データ数の内、条件部と結論部を共に含むデータの割合である。信頼度とは、条件部を含むデータ数の内、条件部と結論部を共に含むデータの割合である。リフト値は、信頼度を、結論部を含むデータ数で割って得られる値である。一般的にリフト値が1より大きい場合に、条件部が結論部に与える影響が大きく、結論部と条件部の間に関係があると定量的に判断できる。
 しかしながら、アソシエーション分析では入力となる情報の組み合わせごとに支持度、信頼度、リフト値を算出する必要があることから計算量が膨大となる。このため、情報の種類が多い生産システムにアソシエーション分析を単純に適用することができないという課題がある。
 本実施の形態では、改善箇所分析部103は、アソシエーション分析に含まれる複数の計算項目(支持度、信頼度、リフト値)のうちのいずれかの計算項目において計算維持条件が不成立の場合に、複数の計算項目のうちの未計算の計算項目の計算を行わない。このようにすることで、本実施の形態では、情報の種類が多い生産システムにもアソシエーション分析を効果的に適用する。
Here, association analysis will be described.
Association analysis (also called basket analysis, association rules, etc.) is known as a method for analyzing the relationship between a plurality of pieces of information.
In the association analysis, statistical information is used as an input, and the degree of support, reliability, and lift value are calculated for the relationship between the condition part and the conclusion part. The degree of support is the ratio of data including both the condition part and the conclusion part to the total number of data. The reliability is the ratio of the data including both the condition part and the conclusion part to the number of data including the condition part. The lift value is a value obtained by dividing the reliability by the number of data including the conclusion part. Generally, when the lift value is larger than 1, the influence of the condition part on the conclusion part is large, and it can be quantitatively determined that there is a relationship between the conclusion part and the condition part.
However, in the association analysis, it is necessary to calculate the support level, the reliability, and the lift value for each combination of input information, so that the amount of calculation becomes enormous. Therefore, there is a problem that association analysis cannot be simply applied to a production system having many kinds of information.
In the present embodiment, the improvement point analysis unit 103 determines that the calculation maintenance condition is not satisfied in any of the plurality of calculation items (support degree, reliability, lift value) included in the association analysis. Do not calculate uncalculated calculation items among multiple calculation items. By doing so, in the present embodiment, the association analysis is effectively applied to the production system having many kinds of information.
 情報収集部104は、分析対象200である生産システムから、図3に示す各要素についての情報を収集する。
 例えば、情報収集部104は、図3に示す要素ごとに性能を収集する。具体的には、情報収集部104は、「製品A生産リードタイム」の性能として、測定された各工程の所要時間を収集し、各工程の所要時間を加算して製品Aの生産に要する時間を得る。また、情報収集部104は、「サーボ#1-1-2モータ電流値」の性能として、サーボ#1-1-2を実際に測定して得られたモータ電流値を収集する。
 情報収集部104は、収集した情報を情報記憶部101に格納する。
The information collecting unit 104 collects information about each element shown in FIG. 3 from the production system which is the analysis target 200.
For example, the information collecting unit 104 collects performance for each element shown in FIG. Specifically, the information collecting unit 104 collects the time required for each measured process as the performance of the "product A production lead time", adds the time required for each process, and the time required for the production of the product A. To get. Further, the information collecting unit 104 collects the motor current value obtained by actually measuring the servo # 1-1-2 as the performance of the "servo # 1-1-2 motor current value".
The information collecting unit 104 stores the collected information in the information storage unit 101.
 図4は、情報収集部104の設定項目の例を示す。
 情報収集部104は、図4に示す設定項目に従って、情報モデルに含まれる各要素の情報を収集する。
 図4では、情報収集部104の設定項目として、要素、収集対象、監視期間、判定基準が定義されている。
 図4の設定項目のうち、要素の欄には、情報モデルに含まれる要素が示される。
 収集対象の欄には、情報の収集方法が示される。収集方法としては、生産システム内に存在するいずれかの機器から直接情報を収集する方法と、いずれかの機器から収集した情報を基に計算する方法がある。機器から直接情報を収集する場合は、収集対象の欄に情報収集元の機器が示される。
 監視期間の欄には、判定基準を適用する時間幅が示される。
 判定基準の欄には、評価部102での評価に用いられる基準、つまり性能の基準が示される。
 情報収集部104により収集された情報は、記憶内容に示すように、時系列データとして評価部102で保持される。
FIG. 4 shows an example of setting items of the information collecting unit 104.
The information collecting unit 104 collects information on each element included in the information model according to the setting items shown in FIG.
In FIG. 4, elements, collection targets, monitoring periods, and determination criteria are defined as setting items of the information collection unit 104.
Among the setting items of FIG. 4, the element included in the information model is shown in the element column.
The collection target column indicates how to collect information. As a collection method, there are a method of collecting information directly from any device existing in the production system and a method of calculating based on the information collected from any device. When collecting information directly from a device, the device from which the information was collected is indicated in the collection target column.
In the monitoring period column, the time width for applying the criterion is shown.
In the column of determination criteria, criteria used for evaluation by the evaluation unit 102, that is, performance criteria are shown.
The information collected by the information collecting unit 104 is held by the evaluation unit 102 as time-series data as shown in the stored contents.
***動作の説明***
 図5は、評価部102の動作例を示すフローチャートである。
 図6は、評価部102の評価結果の例をグラフ形式で示す。
 図7は、評価部102の評価結果の例を表形式で示す。
 図8は、改善箇所分析部103の動作例を示すフローチャートである。
 図9は、図8のステップS204の詳細を示すフローチャートである。
 図10は、本実施の形態に係る分析対象の例を示す。
 図11は、本実施の形態に係る分析条件の例を示す。
 図12は、改善箇所分析部103の分析結果の例を示す。
 以降、図1~図12を参照しながら本実施の形態に係る改善箇所分析装置100の動作例を説明する。
*** Explanation of operation ***
FIG. 5 is a flowchart showing an operation example of the evaluation unit 102.
FIG. 6 shows an example of the evaluation result of the evaluation unit 102 in a graph format.
FIG. 7 shows an example of the evaluation result of the evaluation unit 102 in a table format.
FIG. 8 is a flowchart showing an operation example of the improvement point analysis unit 103.
FIG. 9 is a flowchart showing the details of step S204 of FIG.
FIG. 10 shows an example of an analysis target according to the present embodiment.
FIG. 11 shows an example of the analysis conditions according to the present embodiment.
FIG. 12 shows an example of the analysis result of the improvement point analysis unit 103.
Hereinafter, an operation example of the improved location analysis device 100 according to the present embodiment will be described with reference to FIGS. 1 to 12.
事前設定フェーズ
 生産システムの管理者あるいは設計者は、生産システムの管理のため、図3に示す情報モデルと図4に示す設定項目を生成する。そして、生産システムの管理者あるいは設計者は、生成した情報モデルと設定項目を改善箇所分析装置100の情報記憶部101に格納する。
 情報モデル及び設定項目は、生産システムの設計情報を基に生成することが望ましい。
Pre-setting phase The manager or designer of the production system generates the information model shown in FIG. 3 and the setting items shown in FIG. 4 for the management of the production system. Then, the manager or the designer of the production system stores the generated information model and setting items in the information storage unit 101 of the improvement point analysis device 100.
It is desirable to generate the information model and setting items based on the design information of the production system.
情報収集フェーズ
 情報収集部104は、図4の設定項目に基づき、分析対象200である生産システムから情報を収集する。そして、収集した情報を情報記憶部101に格納する。
 なお、情報収集部104は、改善箇所分析装置100以外の外部装置が収集した情報を外部装置から取得し、外部装置から取得した情報を設定項目に対応付けて情報記憶部101に格納してもよい。
Information collection phase The information collection unit 104 collects information from the production system, which is the analysis target 200, based on the setting items in FIG. Then, the collected information is stored in the information storage unit 101.
Even if the information collecting unit 104 acquires information collected by an external device other than the improvement location analysis device 100 from the external device and stores the information acquired from the external device in the information storage unit 101 in association with the setting items. good.
評価フェーズ
 次に、評価フェーズとして、評価部102が図5に示すフローチャートを行う。
 具体的には、評価部102は、図4に示す設定項目を情報記憶部101から読み込む(ステップS101)。
 次に、評価部102は、情報収集部104により収集された情報を情報記憶部101から読み込む(ステップS102)。
 次に、情報収集部104は、設定項目と収集された情報とを用いて各要素の性能の評価を行い、評価結果を情報記憶部101に格納する(ステップS103)。つまり、情報収集部104は、設定項目に示す要素ごとに、監視期間の単位で、情報収集部104により収集された情報が判定基準に合致するか否かを判定する。なお、「製品A生産リードタイム」のように「収集対象」が「算出」と定義されている場合は、評価部102は、情報収集部104により収集された情報に基づく計算を行い、計算により得られた値と判定基準とを比較する。
Evaluation Phase Next, as an evaluation phase, the evaluation unit 102 performs the flowchart shown in FIG.
Specifically, the evaluation unit 102 reads the setting items shown in FIG. 4 from the information storage unit 101 (step S101).
Next, the evaluation unit 102 reads the information collected by the information collection unit 104 from the information storage unit 101 (step S102).
Next, the information collecting unit 104 evaluates the performance of each element using the setting items and the collected information, and stores the evaluation result in the information storage unit 101 (step S103). That is, the information collecting unit 104 determines whether or not the information collected by the information collecting unit 104 meets the determination criteria for each element shown in the setting item in the unit of the monitoring period. When the "collection target" is defined as "calculation" as in the "product A production lead time", the evaluation unit 102 performs a calculation based on the information collected by the information collection unit 104, and the calculation is performed. Compare the obtained values with the criteria.
 図6及び図7は、評価部102による評価結果の例を示す。図6は評価結果をグラフ形式で示しており、図7は評価結果を表形式で示している。
 例えば、「製品A生産リードタイム」は判定基準が閾値X1である。評価部102は、ある監視期間で「製品A生産リードタイム」の性能(所要時間)が閾値X1を上回った場合はHIGH(バイナリ値における1)と評価する。また、評価部102は、別の監視期間で「製品A生産リードタイム」の性能(所要時間)が閾値X1以下であった場合はLOW(バイナリ値における0)と評価する。本実施の形態では、「製品A生産リードタイム」をKGIに設定しているため、「製品A生産リードタイム」の性能(所要時間)が判定基準より高い(=HIGH)場合は生産性が低下していることを意味する。
 なお、評価部102は、評価結果を逐次、HMI(Human Machine Interface)に出力してもよい。このように構成すれば、生産システムの改善担当者がHMIを参照することで生産システムの状況をリアルタイムに理解し、改善要否を判断することができる。
6 and 7 show an example of the evaluation result by the evaluation unit 102. FIG. 6 shows the evaluation results in a graph format, and FIG. 7 shows the evaluation results in a table format.
For example, the determination standard of "Product A production lead time" is the threshold value X1. When the performance (required time) of the "product A production lead time" exceeds the threshold value X1 in a certain monitoring period, the evaluation unit 102 evaluates it as HIGH (1 in the binary value). Further, when the performance (required time) of the "product A production lead time" is equal to or less than the threshold value X1 in another monitoring period, the evaluation unit 102 evaluates it as LOW (0 in the binary value). In this embodiment, since the "product A production lead time" is set to KGI, the productivity decreases when the performance (required time) of the "product A production lead time" is higher than the judgment standard (= HIGH). It means that you are doing it.
The evaluation unit 102 may sequentially output the evaluation results to the HMI (Human Machine Interface). With this configuration, the person in charge of improving the production system can understand the situation of the production system in real time by referring to the HMI and determine the necessity of improvement.
改善箇所分析フェーズ
 生産システムの改善担当者は、評価部102による評価結果を参照し、KGIに対する評価部102の評価状況から改善要否を判断する。例えば、図6及び図7に示すように、「製品A生産リードタイム」が判定基準より高い、つまり生産性が低下している期間が複数回存在する場合は、生産システムの改善担当者は、改善が必要であると判断する。
 改善が必要と判断した場合は、生産システムの改善担当者は改善箇所分析装置100に改善箇所分析部103による分析を指示する。
 改善箇所分析部103は、生産システムの改善担当者からの指示に基づき、図8のフローを実行する。
 なお、ここでは生産システムの改善担当者からの指示に基づき、改善箇所分析部103が図8のフローを実行する例を示すが、改善箇所分析部103が図8のフローを周期的に実行してもよい。あるいは評価部102による評価結果が規定数蓄積した場合に改善箇所分析部103が図8のフローを実行してもよい。更に、改善箇所分析部103が評価部102による評価結果を参照して改善要否を判定し、改善が必要と判定した場合に、図8のフローを実行してもよい。
Improvement location analysis phase The person in charge of improving the production system refers to the evaluation result by the evaluation unit 102 and determines the necessity of improvement from the evaluation status of the evaluation unit 102 for KGI. For example, as shown in FIGS. 6 and 7, when the “product A production lead time” is higher than the criterion, that is, there are multiple periods in which the productivity is reduced, the person in charge of improving the production system is in charge of improving the production system. Judge that improvement is necessary.
When it is determined that improvement is necessary, the person in charge of improving the production system instructs the improvement point analysis device 100 to analyze by the improvement point analysis unit 103.
The improvement point analysis unit 103 executes the flow of FIG. 8 based on the instruction from the person in charge of improvement of the production system.
Here, an example is shown in which the improvement point analysis unit 103 executes the flow of FIG. 8 based on an instruction from the person in charge of improvement of the production system, but the improvement point analysis unit 103 periodically executes the flow of FIG. You may. Alternatively, when a specified number of evaluation results by the evaluation unit 102 are accumulated, the improvement point analysis unit 103 may execute the flow of FIG. Further, when the improvement point analysis unit 103 determines the necessity of improvement by referring to the evaluation result by the evaluation unit 102 and determines that improvement is necessary, the flow of FIG. 8 may be executed.
 図8に示すように、改善箇所分析部103は、図3に示す情報モデルを情報記憶部101から読み込む(ステップS201)。
 また、改善箇所分析部103は、評価部102による評価結果を情報記憶部101から読み込む(ステップS202)。
 ステップS201とステップS202は順序が入れ替わってもよいし、ステップS201とステップS202が並行して行われてもよい。
As shown in FIG. 8, the improvement location analysis unit 103 reads the information model shown in FIG. 3 from the information storage unit 101 (step S201).
Further, the improvement point analysis unit 103 reads the evaluation result by the evaluation unit 102 from the information storage unit 101 (step S202).
The order of step S201 and step S202 may be changed, or step S201 and step S202 may be performed in parallel.
 次に、改善箇所分析部103は、分析対象である指定要素を指定し、分析条件の設定又は読み込みを行う(ステップS203)。
 改善箇所分析部103は、生産システムの改善担当者の指示に従って指定要素を指定してもよいし、評価部102による評価結果を分析して指定要素を指定してもよい。例えば、改善箇所分析部103は、複数回にわたって性能が判定基準に合致していない要素のうちで最上位の階層の要素を指定要素に指定する。
 なお、分析条件の詳細は後述する。
Next, the improvement point analysis unit 103 designates a designated element to be analyzed, and sets or reads the analysis condition (step S203).
The improvement point analysis unit 103 may specify the designated element according to the instruction of the person in charge of improvement of the production system, or may analyze the evaluation result by the evaluation unit 102 and specify the designated element. For example, the improvement point analysis unit 103 designates the element of the highest hierarchy among the elements whose performance does not meet the determination criteria a plurality of times as the designated element.
The details of the analysis conditions will be described later.
 次に、改善箇所分析部103は、分析を行い、分析結果を情報記憶部101に格納する(ステップS204)。
 また、更に分析を続ける場合(ステップS205でYES)は、処理がステップS203に戻り、改善箇所分析部103が新たな指定要素を指定する。改善箇所分析部103は、例えば、ステップS204で得られた改善対象関連要素を新たな指定要素に指定する。
Next, the improvement location analysis unit 103 performs analysis and stores the analysis result in the information storage unit 101 (step S204).
Further, when the analysis is continued (YES in step S205), the process returns to step S203, and the improvement point analysis unit 103 designates a new designated element. The improvement point analysis unit 103, for example, designates the improvement target related element obtained in step S204 as a new designated element.
 図9は、ステップS204の詳細を示す。以下、図9を参照してステップS204の詳細を説明する。 FIG. 9 shows the details of step S204. Hereinafter, the details of step S204 will be described with reference to FIG.
 まず、改善箇所分析部103は、情報モデルからアソシエーション分析における結論部と条件部の有意な組み合わせを抽出する(ステップS2041)。
 有意な組み合わせとは、結論部及と条件部が情報モデルにおける階層構造による関係性、論理構造による関係性の両観点で矛盾がないことを示す。すなわち、有意な組み合わせとは、結論部と条件部が階層構造による関係性において正しい方向で接続されている、あるいは論理構造による関係性において正しい方向で接続されていることを意味する。結論部の要素と階層構造による関係性において正しい方向で接続されている要素及び結論部の要素と論理構造による関係性において正しい方向で接続されている要素は、結論部の要素の性能に影響を与え得る要素である。
 具体的には、改善箇所分析部103は、ステップS203で指定された指定要素を結論部に設定する。そして、改善箇所分析部103は、情報モデルに基づき、指定要素と階層構造による関係性において正しい方向で接続されている要素及び指定要素と論理構造による関係性において正しい方向で接続されている要素を条件部に設定する。条件部に設定される要素が関連要素に相当する。
 例えば、改善箇所分析部103がステップS203で「製品A生産リードタイム」を指定要素に指定した場合に、改善箇所分析部103は、「製品A生産リードタイム」と階層構造による関係性において正しい方向で接続されている「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」を関連要素として抽出する。
 この場合は、改善箇所分析部103は、図10に示すように、「製品A生産リードタイムの値が判定基準より高くなる」ことを結論部に設定し、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」を条件部に設定する。
 また、例えば、改善箇所分析部103がステップS203で「工程#1リードタイム」を指定要素に指定した場合は、「工程#2リードタイム」及び「工程#3リードタイム」は論理構造による関係性と矛盾し、有意な組み合わせとはならない(工程#2又は工程#3のリードタイムに変化があっても、工程#1のリードタイムは変化しない)。このため、改善箇所分析部103は「工程#2リードタイム」及び「工程#3リードタイム」は関連要素として抽出しない。
First, the improvement point analysis unit 103 extracts a significant combination of the conclusion unit and the condition unit in the association analysis from the information model (step S2041).
A significant combination means that the conclusion part and the condition part are consistent in terms of both the hierarchical relationship and the logical relationship in the information model. That is, a significant combination means that the conclusion part and the condition part are connected in the correct direction in the relation by the hierarchical structure, or are connected in the correct direction in the relationship by the logical structure. Elements that are connected in the correct direction in the relationship between the elements of the conclusion part and the hierarchical structure and elements that are connected in the correct direction in the relationship between the elements of the conclusion part and the logical structure affect the performance of the elements of the conclusion part. It is an element that can be given.
Specifically, the improvement point analysis unit 103 sets the designated element specified in step S203 in the conclusion unit. Then, the improvement point analysis unit 103 determines the elements connected in the correct direction in the relationship between the designated element and the hierarchical structure and the element connected in the correct direction in the relationship between the designated element and the logical structure based on the information model. Set in the condition section. The element set in the condition part corresponds to the related element.
For example, when the improvement point analysis unit 103 specifies "product A production lead time" as a designated element in step S203, the improvement point analysis unit 103 has the correct direction in the relationship between the "product A production lead time" and the hierarchical structure. The "process # 1 lead time", "process # 2 lead time", and "process # 3 lead time" connected by are extracted as related elements.
In this case, as shown in FIG. 10, the improvement point analysis unit 103 sets in the conclusion unit that "the value of the product A production lead time is higher than the judgment standard", and sets "process # 1 lead time" and ". "Process # 2 lead time" and "process # 3 lead time" are set in the condition unit.
Further, for example, when the improvement point analysis unit 103 specifies "process # 1 lead time" as a designated element in step S203, "process # 2 lead time" and "process # 3 lead time" are related by a logical structure. Inconsistent with, and the combination is not significant (even if the lead time of step # 2 or step # 3 changes, the lead time of step # 1 does not change). Therefore, the improvement point analysis unit 103 does not extract "process # 2 lead time" and "process # 3 lead time" as related elements.
 次に、改善箇所分析部103は、抽出した条件部及び結論部の組み合わせに対してアソシエーション分析を実行する(ステップS2042)。
 ここでは、改善箇所分析部103は、アソシエーション分析における支持度、信頼度及びリフト値を計算するものとする。これらの計算項目の計算順序は特に定めない。
 改善箇所分析部103は、分析条件を参照して、いずれかの計算項目において計算維持条件が不成立の場合は、未計算の計算項目の計算を停止してもよい。このように構成することでアソシエーション分析の計算量を削減できる。
 図11は、分析条件の例を示す。
 図11の分析条件では、分析対象の区間(時間幅)、アソシエーション分析の各計算項目の計算維持条件が定義されている。
 なお、図11の例では、区間の条件を階層にかかわらず一定の区間としている。上位の階層の要素ほど長い周期で収集されることが一般的であり、下位の階層の要素の変化が上位の階層に伝わるまで一定の遅延を含む場合がある。このような場合は上位の階層の要素と下位の階層の要素で分析対象とする区間(時間幅)をずらして設定するとよい。
 また、図11の例では、リフト値の計算維持条件が1以上であり、支持度の計算維持条件が0.001より大きく、信頼度の計算維持条件が0.001より大きいことが示される。
Next, the improvement point analysis unit 103 executes an association analysis for the combination of the extracted condition unit and the conclusion unit (step S2042).
Here, the improvement point analysis unit 103 shall calculate the support level, the reliability, and the lift value in the association analysis. The calculation order of these calculation items is not particularly specified.
The improvement point analysis unit 103 may stop the calculation of the uncalculated calculation item when the calculation maintenance condition is not satisfied in any of the calculation items with reference to the analysis condition. With this configuration, the amount of calculation for association analysis can be reduced.
FIG. 11 shows an example of analysis conditions.
In the analysis conditions of FIG. 11, the section (time width) to be analyzed and the calculation maintenance conditions of each calculation item of the association analysis are defined.
In the example of FIG. 11, the condition of the section is a constant section regardless of the hierarchy. It is common for elements in the upper hierarchy to be collected in a longer cycle, and may include a certain delay until changes in the elements in the lower hierarchy are transmitted to the upper hierarchy. In such a case, it is advisable to shift the section (time width) to be analyzed between the elements of the upper layer and the elements of the lower layer.
Further, in the example of FIG. 11, it is shown that the calculation / maintenance condition of the lift value is 1 or more, the calculation / maintenance condition of the support degree is larger than 0.001, and the calculation / maintenance condition of the reliability is larger than 0.001.
 図12は、改善箇所分析部103による分析結果の例を示す。
 なお、図12において、支持度、信頼度及びリフト値のすべてが斜線で打ち消されている組み合わせは、有意な組み合わせではないためアソシエーション分析の対象とならなかった組み合わせである。
FIG. 12 shows an example of the analysis result by the improvement point analysis unit 103.
In FIG. 12, the combination in which the support, reliability, and lift value are all canceled by diagonal lines is a combination that was not the target of the association analysis because it is not a significant combination.
 図12の上段は、改善箇所分析部103が、製品A生産リードタイムに各工程のリードタイムが与える影響を分析して得られた結果を示す。上述した通り、改善箇所分析部103は有意な組み合わせのみ抽出して分析する。このため、図12の上段では、「製品A生産リードタイム」を結論部に設定し、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」の各々を条件部に設定して行ったアソシエーション分析の結果を示す。
 図12の上段の例では、「工程#1リードタイム」が判定基準より高い(=HIGH)場合を条件部にしたアソシエーション分析と「工程#2リードタイム」が判定基準より高い(=HIGH)場合を条件部にしたアソシエーション分析において、リフト値が1より大きい。このため、「工程#1リードタイム」及び「工程#2リードタイム」が「製品A生産リードタイム」の悪化の要因である可能性が高い。従って、改善箇所分析部103は「工程#1リードタイム」及び「工程#2リードタイム」を改善対象関連要素と推定する。つまり、改善箇所分析部103は、「製品A生産リードタイム」の性能を改善するために性能を改善させるべき要素として、「工程#1リードタイム」及び「工程#2リードタイム」を抽出する。
The upper part of FIG. 12 shows the result obtained by analyzing the influence of the lead time of each process on the product A production lead time by the improvement point analysis unit 103. As described above, the improvement point analysis unit 103 extracts and analyzes only significant combinations. Therefore, in the upper part of FIG. 12, "Product A production lead time" is set in the conclusion part, and each of "process # 1 lead time", "process # 2 lead time", and "process # 3 lead time" is a condition. The result of the association analysis performed by setting the part is shown.
In the upper example of FIG. 12, the association analysis is based on the condition that "process # 1 lead time" is higher than the judgment standard (= HIGH), and the case where "process # 2 lead time" is higher than the judgment standard (= HIGH). In the association analysis with the condition part, the lift value is larger than 1. Therefore, it is highly possible that "process # 1 lead time" and "process # 2 lead time" are factors of deterioration of "product A production lead time". Therefore, the improvement location analysis unit 103 estimates that the “process # 1 lead time” and the “process # 2 lead time” are related elements to be improved. That is, the improvement point analysis unit 103 extracts "process # 1 lead time" and "process # 2 lead time" as elements for which the performance should be improved in order to improve the performance of "product A production lead time".
 図12の下段は、改善箇所分析部103が、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」の各々が他の工程のリードタイムに与える影響を分析して得られた結果を示す。
 図12の上段では、リフト値が1より大きい組み合わせが複数あることから、改善箇所分析部103は、各工程のリードタイムが他の工程のリードタイムに与える影響も分析している。つまり、改善箇所分析部103は、各工程を新たな指定要素として指定し、また、新たな指定要素として指定した工程以外の工程を新たな関連要素として抽出して、アソシエーション分析を行う。
 図12の下段の例では、「工程#1リードタイム」が判定基準より高い(=HIGH)場合を条件部に設定し、「工程#2リードタイム」が高くなることを結論部に設定したアソシエーション分析において、リフト値が1より大きい。従って、「工程#1リードタイム」が「工程#2リードタイム」の悪化の要因である可能性が高い。従って、改善箇所分析部103は、「工程#2リードタイム」の性能を改善するために性能を改善させるべき要素として、「工程#1リードタイム」を抽出する。
 この結果、改善箇所分析部103は、「工程#1リードタイム」を最優先の改善対象関連要素と推定する。つまり、改善箇所分析部103は、「製品A生産リードタイム」の性能の改善のために「工程#1リードタイム」が最も有効な改善対象関連要素であると判定し、「工程#2リードタイム」が次に有効な改善対象関連要素であると判定する。
 図12の上段の例のように複数の改善対象関連要素が得られた場合に、改善箇所分析部103は、図12の下段の例のように、複数の改善対象関連要素の間に優先順位を設定する。
In the lower part of FIG. 12, the improvement point analysis unit 103 analyzes the influence of each of "process # 1 lead time", "process # 2 lead time" and "process # 3 lead time" on the lead time of other processes. The results obtained are shown below.
In the upper part of FIG. 12, since there are a plurality of combinations having a lift value larger than 1, the improvement point analysis unit 103 also analyzes the influence of the lead time of each process on the lead time of other processes. That is, the improvement point analysis unit 103 designates each process as a new designated element, extracts processes other than the process designated as the new designated element as a new related element, and performs association analysis.
In the lower example of FIG. 12, an association in which the case where the "process # 1 lead time" is higher than the judgment criterion (= HIGH) is set in the condition section and the "process # 2 lead time" is set in the conclusion section. In the analysis, the lift value is greater than 1. Therefore, it is highly possible that the “process # 1 lead time” is a factor in the deterioration of the “process # 2 lead time”. Therefore, the improvement point analysis unit 103 extracts the “process # 1 lead time” as an element for which the performance should be improved in order to improve the performance of the “process # 2 lead time”.
As a result, the improvement point analysis unit 103 estimates that "process # 1 lead time" is the highest priority related element for improvement. That is, the improvement point analysis unit 103 determines that "process # 1 lead time" is the most effective improvement target related element for improving the performance of "product A production lead time", and determines that "process # 2 lead time" is the most effective. Is the next effective improvement target related element.
When a plurality of improvement target-related elements are obtained as in the upper example of FIG. 12, the improvement point analysis unit 103 gives priority among the plurality of improvement target-related elements as in the lower example of FIG. To set.
 以上の分析結果から、改善箇所分析部103は、「製品A生産リードタイム悪化は工程#1リードタイムの悪化と工程#2リードタイムの悪化が要因である」と推定することができる。また、改善箇所分析部103は、「工程#2リードタイムの悪化は、工程#1リードタイム悪化が要因である」と推定することができる。このため、改善箇所分析部103は、「先ずは、両リードタイムの悪化の要因である工程#1リードタイムを改善すべきである」と生産システムの改善担当者に改善箇所を提案することができる。
 改善箇所分析部103は、このような分析結果(改善箇所の提案)をHMIに出力し、また、分析結果を情報記憶部101に格納する(ステップS2043)。
From the above analysis results, the improvement point analysis unit 103 can presume that "the deterioration of the product A production lead time is caused by the deterioration of the process # 1 lead time and the deterioration of the process # 2 lead time". Further, the improvement point analysis unit 103 can presume that "the deterioration of the process # 2 lead time is due to the deterioration of the process # 1 lead time". Therefore, the improvement point analysis unit 103 may propose the improvement point to the person in charge of improving the production system, saying, "First, the process # 1 lead time, which is a factor of deterioration of both lead times, should be improved." can.
The improvement location analysis unit 103 outputs such an analysis result (proposal of improvement location) to the HMI, and stores the analysis result in the information storage unit 101 (step S2043).
 更に、改善箇所分析部103は、必要に応じて「工程#1リードタイム」の悪化の要因について分析の深堀を行うことができる(図8のステップS205)。
 具体的には、改善箇所分析部103は、図3の情報モデルの階層構造の関係性に基づき、「工程#1リードタイム」を新たな指定要素として結論部に設定し、「設備#1-1リードタイム」及び「設備#1-2リードタイム」を新たな関連要素として条件部に設定したアソシエーション分析を行う。
 設備階層の分析が完了した後、改善箇所分析部103は、更に必要に応じて機器階層の要素を新たな関連要素として条件部に設定したアソシエーション分析を行ってもよい。このようにして、改善箇所分析部103は、分析の深堀を行うことができる。なお、分析条件として、このような分析の深堀の繰り返し回数を設けてもよい。
Further, the improvement point analysis unit 103 can deeply analyze the cause of the deterioration of the “process # 1 lead time” as needed (step S205 in FIG. 8).
Specifically, the improvement point analysis unit 103 sets "process # 1 lead time" as a new designated element in the conclusion unit based on the relationship of the hierarchical structure of the information model in FIG. 3, and "equipment # 1-". Perform the association analysis with "1 lead time" and "equipment # 1-2 lead time" set in the condition section as new related elements.
After the analysis of the equipment hierarchy is completed, the improvement point analysis unit 103 may further perform an association analysis in which the element of the equipment hierarchy is set in the condition unit as a new related element, if necessary. In this way, the improvement point analysis unit 103 can perform deep analysis. As an analysis condition, the number of repetitions of such an analysis may be set.
***実施の形態の効果の説明***
 以上、本実施の形態によれば、性能を改善すべき要素の性能の改善に寄与する要素の特定を効率的に行うことができる。
 つまり、本実施の形態に係る改善箇所分析装置100は、情報モデルに定義した階層構造及び論理構造による関係性を参照しつつKGIと複数の情報の関係性を段階的かつ論理的に分析する。このため、本実施の形態によれば、KGIの改善に寄与する改善箇所の特定を効率的に行うことができる。
*** Explanation of the effect of the embodiment ***
As described above, according to the present embodiment, it is possible to efficiently identify the elements that contribute to the improvement of the performance of the elements whose performance should be improved.
That is, the improvement point analysis device 100 according to the present embodiment analyzes the relationship between the KGI and the plurality of information stepwise and logically while referring to the relationship by the hierarchical structure and the logical structure defined in the information model. Therefore, according to the present embodiment, it is possible to efficiently identify the improvement points that contribute to the improvement of KGI.
 また、本実施の形態によれば、評価部102が評価結果を逐次HMIに出力することで、生産システムの改善担当者が生産システムの状況をリアルタイムに理解し、改善要否を即座に判断することができる。 Further, according to the present embodiment, the evaluation unit 102 sequentially outputs the evaluation results to the HMI, so that the person in charge of improving the production system understands the situation of the production system in real time and immediately determines the necessity of improvement. be able to.
 また、本実施の形態によれば、改善箇所分析部103が分析条件を参照して、いずれかの計算項目が計算維持条件に該当しない場合は未計算の計算項目の計算を行わないため、分析時の計算量を削減することができる。 Further, according to the present embodiment, the improvement point analysis unit 103 refers to the analysis condition, and if any of the calculation items does not correspond to the calculation maintenance condition, the uncalculated calculation item is not calculated, so that the analysis is performed. The amount of time calculation can be reduced.
 また、本実施の形態によれば、改善箇所分析部103による分析の深堀のための繰り返し回数を設けることで、生産システムの改善担当者が改善箇所分析装置100の最終結果を待たずとも、自身の経験が通用する範囲で分析結果を得ることができ、改善活動を効率化できる。 Further, according to the present embodiment, by providing the number of repetitions for deep digging of the analysis by the improvement point analysis unit 103, the person in charge of improving the production system does not have to wait for the final result of the improvement point analysis device 100 by himself / herself. Analysis results can be obtained within the range where the experience of the above can be applied, and improvement activities can be streamlined.
 また、本実施の形態によれば、改善箇所分析部103は、階層の異なる分析対象である場合に、階層に応じて分析区間を調整できるため、有効に分析を行うことができる。 Further, according to the present embodiment, when the improvement point analysis unit 103 is an analysis target having a different hierarchy, the analysis section can be adjusted according to the hierarchy, so that the analysis can be effectively performed.
実施の形態2.
***目的***
 実施の形態1では、単一の判定基準による評価で得られた評価結果をバイナリ化している。実施の形態1の方法では、特に情報モデルにおける機器階層の改善を図る際、機器階層の要素がいずれの値となった場合に指定要素の性能に影響を与えるのかを明確に分析できない可能性がある。
 実施の形態2は、このような課題の解決を主な目的としている。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 2.
***Purpose***
In the first embodiment, the evaluation results obtained by the evaluation by a single criterion are binarized. In the method of the first embodiment, there is a possibility that it is not possible to clearly analyze which value the element of the device hierarchy affects the performance of the designated element, especially when improving the device hierarchy in the information model. be.
The second embodiment has a main purpose of solving such a problem.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
***構成の説明**
 本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。
 本実施の形態では、実施の形態1で示した情報収集における設定項目(図4)に、図13に示すように、追加の判定基準を設ける。更に、図14に示すように、分析条件(図11)に細分化条件を設ける。
 図13では、情報収集における設定項目の内、「センサ#1-1-3対象角度」について、判定基準の一つ目に閾値X6を設定し、さらに追加の判定基準として閾値X7及びX8を設定している。更に、図14では、細分化の条件として、リフト値が2より大きい場合と、支持度が0.5より大きい場合を設定している。
*** Explanation of configuration ***
Also in this embodiment, the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2.
In the present embodiment, as shown in FIG. 13, additional determination criteria are provided for the setting items (FIG. 4) in the information collection shown in the first embodiment. Further, as shown in FIG. 14, subdivision conditions are provided in the analysis conditions (FIG. 11).
In FIG. 13, among the setting items in information collection, the threshold value X6 is set as the first judgment criterion for “sensor # 1-1-3 target angle”, and the threshold values X7 and X8 are set as additional judgment criteria. is doing. Further, in FIG. 14, as the conditions for subdivision, a case where the lift value is larger than 2 and a case where the support degree is larger than 0.5 are set.
***動作の説明***
 本実施の形態では、改善箇所分析フェーズの完了までは実施の形態1と同一の動作が行われる。
 このとき、図12に示すような分析結果が得られ、更に、図14の分析条件の細分化の条件を満たしている場合に、評価部102は、図13の追加の判定基準で更に評価を行う。
 図15は実施の形態2における効果の例を示す。
 つまり、本実施の形態では、改善箇所分析部103が「設備#1-1リードタイム」を結論部、「センサ#1-1-3対象角度」を条件部に設定してアソシエーション分析を行っている。そして、改善箇所分析部103は、「センサ#1-1-3対象角度」を改善対象関連要素として推定している。そして、アソシエーション分析の結果が上述した細分化の条件(図14)を満たしている。このため、評価部102が細分化として、改善対象関連要素である「センサ#1-1-3対象角度」の性能が追加の判定基準である判定基準2(閾値X7及びX8)に合致するか否かの評価を行っている。図15は、判定基準2を用いた評価により得られた評価結果を示す。
 図15では図示を省略しているが、細分化により新たに判定基準2を用いて分析した結果(リフト値、支持度、信頼度)についても併せて示すことが可能である。この場合は、「センサ#1-1-3対象角度」が具体的にどの値となった場合に「センサ#1-1-3対象角度」が「設備#1-1リードタイム」の性能の悪化に影響するかを分析することができる。
*** Explanation of operation ***
In the present embodiment, the same operation as in the first embodiment is performed until the improvement point analysis phase is completed.
At this time, when the analysis result as shown in FIG. 12 is obtained and the conditions for subdividing the analysis conditions of FIG. 14 are satisfied, the evaluation unit 102 further evaluates with the additional determination criteria of FIG. conduct.
FIG. 15 shows an example of the effect in the second embodiment.
That is, in the present embodiment, the improvement point analysis unit 103 sets "equipment # 1-1 lead time" as the conclusion unit and "sensor # 1-1-3 target angle" as the condition unit, and performs association analysis. There is. Then, the improvement point analysis unit 103 estimates "sensor # 1-1-3 target angle" as an improvement target related element. The result of the association analysis satisfies the above-mentioned subdivision condition (FIG. 14). Therefore, as the evaluation unit 102 subdivides, does the performance of the "sensor # 1-1-3 target angle", which is an element related to the improvement target, match the judgment standard 2 (threshold values X7 and X8) which is an additional judgment standard? We are evaluating whether or not. FIG. 15 shows the evaluation results obtained by the evaluation using the determination criterion 2.
Although not shown in FIG. 15, it is possible to also show the results (lift value, support degree, reliability) of the analysis using the determination criterion 2 newly by subdivision. In this case, when the "sensor # 1-1-3 target angle" is the specific value, the "sensor # 1-1-3 target angle" is the performance of the "equipment # 1-1 lead time". It is possible to analyze whether it affects the deterioration.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、複数の判定基準を設け、評価部102が複数の判定基準を適用するための細分化の条件を設けている。このため、本実施の形態によれば、単一の判定基準における評価結果を複数の判定基準により細分化することができ、指定要素の性能に影響を与え得る要素が具体的にいずれの値となった場合に指定要素の性能に影響を与えるかを明確に判断することができる。
*** Explanation of the effect of the embodiment ***
As described above, in the present embodiment, a plurality of determination criteria are provided, and conditions for subdivision for the evaluation unit 102 to apply the plurality of determination criteria are provided. Therefore, according to the present embodiment, the evaluation result in a single judgment criterion can be subdivided by a plurality of judgment criteria, and the element that can affect the performance of the designated element is specifically any value. If this happens, it can be clearly determined whether the performance of the specified element will be affected.
実施の形態3.
***目的***
 実施の形態1及び2では、情報収集部104における設定項目の判定基準及び改善箇所分析部103における分析条件について、設計情報等を参考に予め値を設定することを前提としている。
 しかしながら、設計情報が得られない場合及び設計情報と生産システムの実態に差異がある場合には、実施の形態1及び2における効果が得られない可能性がある。
 実施の形態3は、このような課題の解決を主な目的としている。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 3.
***Purpose***
In the first and second embodiments, it is premised that the determination criteria of the setting items in the information collection unit 104 and the analysis conditions in the improvement point analysis unit 103 are set in advance with reference to design information and the like.
However, if the design information cannot be obtained or if there is a difference between the design information and the actual state of the production system, the effects in the first and second embodiments may not be obtained.
The third embodiment has a main purpose of solving such a problem.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
***構成の説明***
 本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。但し、本実施の形態では、情報収集部104の判定基準の設定方法を図16に示すようにする。
 図16では、情報収集部104の設定項目における判定基準に、収集した情報に対する統計処理を定義している。統計処理は、例えば「平均値」のように設定される。これ以外にも、平均値に標準偏差を考慮したもの(平均値±標準偏差)、度数分布における最頻値、極小値なども好適であるがこれらに限定しない。
*** Explanation of configuration ***
Also in this embodiment, the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2. However, in the present embodiment, the method of setting the determination criteria of the information collecting unit 104 is shown in FIG.
In FIG. 16, statistical processing for the collected information is defined as a determination criterion in the setting item of the information collecting unit 104. Statistical processing is set, for example, "mean value". In addition to this, those in which the standard deviation is taken into consideration in the mean value (mean value ± standard deviation), the mode value in the frequency distribution, the minimum value, and the like are also suitable, but are not limited thereto.
***動作の説明***
 本実施の形態では、情報収集と評価フェーズの途中まで実施の形態1と同一の動作を行う。
 本実施の形態では、図5のフローチャートにおいて、ステップS103で、評価部102は、情報収集部104により収集され、情報記憶部101において記憶されている情報に対する統計処理を行う。そして、評価部102は、統計処理の結果を図16の判定基準に設定する。そして評価部102は、情報収集部104により収集され、情報記憶部101において記憶されている個々の情報と、判定基準として設定された統計処理の結果とを比較して評価を行う。その後、評価部102は、評価結果を情報記憶部101に格納する。
 以降、改善箇所分析フェーズでは実施の形態1と同一の動作が行われる。
*** Explanation of operation ***
In the present embodiment, the same operation as in the first embodiment is performed until the middle of the information collection and evaluation phase.
In the present embodiment, in the flowchart of FIG. 5, in step S103, the evaluation unit 102 performs statistical processing on the information collected by the information collecting unit 104 and stored in the information storage unit 101. Then, the evaluation unit 102 sets the result of the statistical processing as the determination criterion in FIG. Then, the evaluation unit 102 evaluates by comparing the individual information collected by the information collection unit 104 and stored in the information storage unit 101 with the result of the statistical processing set as the determination standard. After that, the evaluation unit 102 stores the evaluation result in the information storage unit 101.
After that, in the improvement point analysis phase, the same operation as in the first embodiment is performed.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、判定基準として統計処理の結果を設定するため、分析対象の設計値が得られない場合においても実施の形態1及び2の効果を得ることができる。
 また、判定基準として統計処理の結果を設定することで、判定基準を予め設定しなければならないという手間を削減することができる。
*** Explanation of the effect of the embodiment ***
As described above, in the present embodiment, since the result of the statistical processing is set as the determination criterion, the effects of the first and second embodiments can be obtained even when the design value of the analysis target cannot be obtained.
Further, by setting the result of statistical processing as the determination standard, it is possible to reduce the trouble of having to set the determination standard in advance.
実施の形態4.
***目的***
 実施の形態1から3では、情報モデルで階層構造及び/又は論理構造による関係性を定義することを前提としている。
 しかしながら、特に機器階層においては、設計者が生産システムの設計者と異なる等の理由から機器の情報を厳密に定義することが困難である。このため、階層構造及び/又は論理構造による関係性を正確に定義できない場合がある。関係性が誤って定義されている場合又は関係性が定義できない場合は、誤った分析結果が出力されることがある。また、想定されるすべての組み合わせに対する分析が発生することがある。このような場合には、効率が低下する。
 実施の形態4は、このような課題の解決を主な目的としている。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 4.
***Purpose***
In the first to third embodiments, it is premised that the relation by the hierarchical structure and / or the logical structure is defined by the information model.
However, especially in the equipment hierarchy, it is difficult to strictly define the information of the equipment because the designer is different from the designer of the production system. Therefore, it may not be possible to accurately define the relationship by the hierarchical structure and / or the logical structure. If the relationship is misdefined or cannot be defined, the wrong analysis result may be output. Also, analysis may occur for all possible combinations. In such a case, the efficiency is reduced.
The fourth embodiment has a main purpose of solving such a problem.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
***構成の説明***
 本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。本実施の形態では、情報モデルの構成と改善箇所分析部103の分析条件及びフローチャートが異なる。
 図17は、実施の形態4に係る情報モデルの例を示す。図17では、機器階層において、階層構造及び論理構造による関係性が定義されていない。つまり、図17に示す情報モデルでは、機器階層に存在する要素のみが定義されている。
 図18は、実施の形態4における分析条件での追加項目を示す。図18では、分析条件に関係性に関する項目を追加している。関係性に関する条件として、例えば「機器階層の関係性については自動生成する」等を定義することが考えられる。機器階層以外の階層の関係性を自動生成することを定義してもよいし、自動生成以外の方法により関係性を生成するように定義してもよい。更に、一度生成した関係性を定期的に確認するように定義してもよい。
 図19は、図8のステップS204(分析の実行及び記憶)において改善箇所分析部103が追加で行う手順を示す。
*** Explanation of configuration ***
Also in this embodiment, the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2. In the present embodiment, the configuration of the information model and the analysis conditions and the flowchart of the improvement point analysis unit 103 are different.
FIG. 17 shows an example of the information model according to the fourth embodiment. In FIG. 17, in the device hierarchy, the relationship by the hierarchical structure and the logical structure is not defined. That is, in the information model shown in FIG. 17, only the elements existing in the device hierarchy are defined.
FIG. 18 shows additional items under the analysis conditions in the fourth embodiment. In FIG. 18, an item related to the relationship is added to the analysis conditions. As a condition related to the relationship, it is conceivable to define, for example, "automatically generate the relationship of the device hierarchy". It may be defined to automatically generate the relationship of the hierarchy other than the device hierarchy, or it may be defined to generate the relationship by a method other than the automatic generation. Furthermore, it may be defined to periodically check the relationship once generated.
FIG. 19 shows an additional procedure performed by the improvement point analysis unit 103 in step S204 (execution and storage of analysis) of FIG.
***動作の説明***
 情報収集フェーズ、評価フェーズ及び図8のステップS203までは、実施の形態1と同一の動作が行われる。
 ステップS204では、図9のフローに先立ち、図19のフローが行われる。つまり、いずれかの要素間の関係が不明な場合に、改善箇所分析部103が、関係が不明な要素間の関係を推定し、当該要素間の関係性を自動生成する。
 具体的には、改善箇所分析部103は、図18の設定項目を参照し、機器階層について関係性を自動生成するために図19のフローを実行する。
 図19では、機器階層に含まれる要素のうち、上位層である設備階層との階層構造が定義されている「PLC#1-1-1サイクルタイム」と、特段の関係性が定義されていない「サーボ#x-1モータ電流値」との間の関係性を自動生成する手順を示している。
 はじめに、ステップS301において、改善箇所分析部103は、「PLC#1-1-1サイクルタイム」と「サーボ#x-1モータ電流値」とについてアソシエーション分析を実行する。図19の例では、改善箇所分析部103は、「PLC#1-1-1サイクルタイム」が判定基準よりも高い(=HIGH)ことを条件部に設定し、「サーボ#x-1モータ電流値」が判定基準より高い(=HIGH)ことを結論部に設定した組合せ(以下、「組合せ1」という)の支持度、信頼度、リフト値を算出している。更に、改善箇所分析部103は、「サーボ#x-1モータ電流値」が判定基準よりも高い(=HIGH)ことを条件部に設定し、「PLC#1-1-1サイクルタイム」が判定基準より高い(=HIGH)ことを結論部に設定した組合せ(以下、「組合せ2」という)の支持度、信頼度、リフト値を算出している。なお、情報の意味が未知である場合は、改善箇所分析部103はそれぞれの要素の値が判定基準よりも低い(=LOW)場合の組合せを含めてアソシエーション分析を実行することが望ましい。
 次に、ステップS302において、改善箇所分析部103は、ステップS301の分析結果を評価する。ここでは、改善箇所分析部103は、分析結果の支持度、信頼度、リフト値について、どちらの組み合わせで高い値が得られたかを評価している。つまり、改善箇所分析部103は、組合せ1と組合せ2のいずれで高い値が得られたかを評価する。アソシエーション分析においてはリフト値の評価結果が1より大きいと条件部と結論部との間に関係性があると評価できる。このため、改善箇所分析部103は、リフト値を重視するよう各項目の結果に重みを設けて評価を行ってもよい。これら重みについては、図18の設定項目に設けるとよい。また、関係性を生成する条件についても、同様に図18の設定項目に設けるとよい。
 最後に、ステップS303において、改善箇所分析部103は、評価結果を参照して要素間の関係性を構築し、構築した要素間の関係性を情報記憶部101に記憶する。
 図19の例では「サーボ#x-1モータ電流値」が判定基準よりも高いことを条件部に設定し、「PLC#1-1-1サイクルタイム」が判定基準よりも高いことを結論部に設定した組み合わせ(組合せ1)において、支持度、信頼度、リフト値が高い。このため、改善箇所分析部103は、「サーボ#x-1モータ電流値」が「PLC#1-1-1サイクルタイム」の性能に影響を与えるという関係性を情報モデルに追加する。
 なお、本例では「PLC#1-1-1サイクルタイム」と「サーボ#x-1モータ電流値」との間の関係性を自動生成する手順を示した。図17に示した、関係性が定義されていない「センサ#x-2対象角度」及び「ロボット#x-3到達率」についても、改善箇所分析部103は同様の手順で関係性を自動生成する。
*** Explanation of operation ***
The same operations as those in the first embodiment are performed up to the information collection phase, the evaluation phase, and step S203 in FIG.
In step S204, the flow of FIG. 19 is performed prior to the flow of FIG. That is, when the relationship between any of the elements is unknown, the improvement point analysis unit 103 estimates the relationship between the elements whose relationship is unknown and automatically generates the relationship between the elements.
Specifically, the improvement point analysis unit 103 refers to the setting item of FIG. 18 and executes the flow of FIG. 19 in order to automatically generate the relationship for the device hierarchy.
In FIG. 19, among the elements included in the equipment hierarchy, a special relationship is not defined with "PLC # 1-1-1 cycle time" in which the hierarchical structure with the equipment hierarchy which is the upper layer is defined. The procedure for automatically generating the relationship with "servo # x-1 motor current value" is shown.
First, in step S301, the improvement location analysis unit 103 executes an association analysis of the “PLC # 1-1-1 cycle time” and the “servo # x-1 motor current value”. In the example of FIG. 19, the improvement point analysis unit 103 sets that the “PLC # 1-1-1 cycle time” is higher than the determination criterion (= HIGH) in the condition unit, and sets the “servo # x-1 motor current”. The support, reliability, and lift value of the combination (hereinafter referred to as "combination 1") in which the "value" is set to be higher than the judgment criterion (= HIGH) in the conclusion unit are calculated. Further, the improvement point analysis unit 103 sets in the condition unit that the "servo # x-1 motor current value" is higher than the determination standard (= HIGH), and determines the "PLC # 1-1-1 cycle time". The support, reliability, and lift value of the combination (hereinafter referred to as "combination 2") in which the conclusion is set to be higher than the standard (= HIGH) are calculated. When the meaning of the information is unknown, it is desirable that the improvement point analysis unit 103 execute the association analysis including the combination when the value of each element is lower than the judgment criterion (= LOW).
Next, in step S302, the improvement point analysis unit 103 evaluates the analysis result of step S301. Here, the improvement point analysis unit 103 evaluates which combination of the support, reliability, and lift value of the analysis result gives the highest value. That is, the improvement point analysis unit 103 evaluates which of the combination 1 and the combination 2 gives the higher value. In the association analysis, if the evaluation result of the lift value is larger than 1, it can be evaluated that there is a relationship between the condition part and the conclusion part. Therefore, the improvement point analysis unit 103 may evaluate the results of each item with weights so as to emphasize the lift value. These weights may be provided in the setting items of FIG. Further, the condition for generating the relationship may be similarly provided in the setting item of FIG.
Finally, in step S303, the improvement location analysis unit 103 constructs a relationship between the elements with reference to the evaluation result, and stores the constructed relationship between the elements in the information storage unit 101.
In the example of FIG. 19, it is set in the condition part that the "servo # x-1 motor current value" is higher than the judgment standard, and the conclusion part that the "PLC # 1-1-1 cycle time" is higher than the judgment standard. In the combination set to (Combination 1), the support, reliability, and lift value are high. Therefore, the improvement point analysis unit 103 adds to the information model the relationship that the "servo # x-1 motor current value" affects the performance of the "PLC # 1-1-1 cycle time".
In this example, the procedure for automatically generating the relationship between "PLC # 1-1-1 cycle time" and "servo # x-1 motor current value" is shown. For the “sensor # x-2 target angle” and “robot # x-3 arrival rate” for which the relationship is not defined as shown in FIG. 17, the improvement point analysis unit 103 automatically generates the relationship by the same procedure. do.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、いずれかの要素間の関係が不明な場合に、改善箇所分析部103が、関係が不明な要素間の関係を推定し、当該要素間の関係性を自動生成する。このため、本実施の形態によれば、情報モデルに階層構造及び/又は論理構造による関係性を正確に定義できない場合においても、実際に収集した情報を基に要素間の関係性を構築することができ、分析を効率よく行うことができるようになる。
 また、要素間の関係性を誤って定義した場合においても、実際に収集した情報を基に要素間の関係性を評価することで、情報モデルを修正することができる。
*** Explanation of the effect of the embodiment ***
As described above, in the present embodiment, when the relationship between any of the elements is unknown, the improvement point analysis unit 103 estimates the relationship between the elements whose relationship is unknown, and determines the relationship between the elements. Automatically generated. Therefore, according to the present embodiment, even when the relation by the hierarchical structure and / or the logical structure cannot be accurately defined in the information model, the relation between the elements is constructed based on the actually collected information. And the analysis can be performed efficiently.
In addition, even if the relationship between elements is erroneously defined, the information model can be modified by evaluating the relationship between elements based on the information actually collected.
実施の形態5.
***目的***
 実施の形態1から4では、分析結果を支持度、信頼度、リフト値といった複数項目で出力している。改善箇所となる要素は、これら複数項目の出力を勘案して判断する必要がある。しかしながら、いずれの要素が改善箇所であるか、特に分析に不慣れである生産システム管理者には判断が難しいという課題がある。
 実施の形態5は、このような課題の解決を主な目的としている。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 5.
***Purpose***
In the first to fourth embodiments, the analysis results are output in a plurality of items such as support, reliability, and lift value. It is necessary to determine the factors to be improved in consideration of the output of these multiple items. However, there is a problem that it is difficult for a production system administrator who is unfamiliar with analysis to determine which factor is an improvement point.
The fifth embodiment has a main purpose of solving such a problem.
In this embodiment, the difference from the first embodiment will be mainly described.
The matters not described below are the same as those in the first embodiment.
***構成の説明***
 本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。本実施の形態では、改善箇所分析部103の分析条件が異なる。
 図20は、実施の形態5に係る分析条件を示す。図20では、図11と比較して、新たに分析結果出力の項目を追加している。分析結果出力の条件として、例えば、算出式「A1+A2+A3」が定義される。なお、「A1」は支持度が0.1より大きい場合に1、支持度が0.1より小さい場合に0が設定される。同様に、「A2」は信頼度が0.1より大きい場合に1、信頼度が0.1より小さい場合に0が設定される。「A3」はリフト値が1以上の場合にリフト値がそのまま設定され、リフト値が1より小さい場合に0が設定される。
 なお、支持度、信頼度及びリフト値のいずれかを重視するよう算出式を調整してもよい。例えば重みαを用いてA1+A2+A3×αのように調整する。重みαは、生産システムの設計者又は改善担当者が設定する。
 本実施の形態では、図20に示すように、改善箇所分析部103が、アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算を行い、複数の計算値を用いた計算の計算値を出力する。
*** Explanation of configuration ***
Also in this embodiment, the configuration of the improved location analyzer 100 is as shown in FIGS. 1 and 2. In the present embodiment, the analysis conditions of the improvement location analysis unit 103 are different.
FIG. 20 shows the analysis conditions according to the fifth embodiment. In FIG. 20, a new analysis result output item is added as compared with FIG. As a condition for outputting the analysis result, for example, the calculation formula "A1 + A2 + A3" is defined. In addition, "A1" is set to 1 when the support degree is larger than 0.1, and 0 when the support degree is smaller than 0.1. Similarly, "A2" is set to 1 when the reliability is greater than 0.1 and 0 when the reliability is less than 0.1. In "A3", the lift value is set as it is when the lift value is 1 or more, and 0 is set when the lift value is smaller than 1.
The calculation formula may be adjusted so as to emphasize any of support, reliability, and lift value. For example, the weight α is used to make adjustments such as A1 + A2 + A3 × α. The weight α is set by the designer of the production system or the person in charge of improvement.
In the present embodiment, as shown in FIG. 20, the improvement point analysis unit 103 performs a calculation using a plurality of calculated values for a plurality of calculated items included in the association analysis, and performs a calculation using the plurality of calculated values. Outputs the calculated value of.
***動作の説明***
 情報収集フェーズ、評価フェーズ及び改善箇所分析フェーズの図9のステップS2042までは実施の形態1と同一の動作が行われる。
 ステップS2043では、改善箇所分析部103は、図20の分析結果出力の算出式に従って分析結果出力を算出し、算出結果を出力し、また、算出結果を情報記憶部101に格納する。
 図21は、実施の形態5に係る出力の一例を示す。図21に示すように、本実施の形態に係る出力では、図20の分析結果出力の算出式に従って得られた分析結果が含まれる。
*** Explanation of operation ***
The same operation as that of the first embodiment is performed up to step S2042 in FIG. 9 of the information collection phase, the evaluation phase, and the improvement point analysis phase.
In step S2043, the improvement point analysis unit 103 calculates the analysis result output according to the calculation formula of the analysis result output of FIG. 20, outputs the calculation result, and stores the calculation result in the information storage unit 101.
FIG. 21 shows an example of the output according to the fifth embodiment. As shown in FIG. 21, the output according to the present embodiment includes the analysis result obtained according to the calculation formula of the analysis result output of FIG. 20.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、分析条件に分析結果出力の算出方法が定義され、当該算出方法に従って算出された分析結果が出力される。このため、本実施の形態によれば、分析に不慣れである生産システム管理者がいずれの要素が改善箇所であるか容易に判断できるようになる。
*** Explanation of the effect of the embodiment ***
As described above, in the present embodiment, the analysis result output calculation method is defined in the analysis conditions, and the analysis result calculated according to the calculation method is output. Therefore, according to the present embodiment, the production system administrator who is unfamiliar with the analysis can easily determine which element is the improvement point.
実施の形態6.
***目的***
 実施の形態5では、改善箇所の分析結果出力のための算出式を生産システムの設計者又は改善担当者が適宜設定する必要がある。しかしながら、特に複雑な生産システムにおいては分析結果出力と実際の改善箇所が異なっている可能性がある。
 実施の形態6は、このような課題の解決を主な目的としている。
 本実施の形態では、主に実施の形態5との差異を説明する。
 なお、以下で説明していない事項は、実施の形態5と同様である。
Embodiment 6.
***Purpose***
In the fifth embodiment, it is necessary for the designer of the production system or the person in charge of improvement to appropriately set the calculation formula for outputting the analysis result of the improvement portion. However, especially in a complicated production system, the analysis result output and the actual improvement point may be different.
The sixth embodiment has a main purpose of solving such a problem.
In this embodiment, the difference from the fifth embodiment will be mainly described.
The matters not described below are the same as those in the fifth embodiment.
***構成の説明***
 図22は、実施の形態6に係る改善箇所分析装置100の構成例を示す。図22の構成では、図1の構成に、改善実績記憶部105が追加されている。改善実績記憶部105には改善実績が記憶されている。改善実績記憶部105以外は、図1の示すものと同じである。
 図23は、改善実績記憶部105が記憶する改善実績の例を示す。図23に示す改善実績には、発生した事象と、事象の要因(改善箇所)が含まれる。事象及び要因については、具体的な値を含めて詳細に記述することが望ましい。改善実績は、分析対象を稼働していく中で改善担当者が記述する。あるいは、同種の分析対象の改善実績が存在する場合は、同種の分析対象の改善実績を流用してもよい。但し、この場合は、別の分析対象の改善実績であることがわかるように記述することが望ましい。または、実施の形態5に示した分析結果出力を参照した改善担当者がHMIを通して分析結果出力に対して与えた正誤の評価結果又は数値を伴う評価結果を改善実績としてもよい。このとき、改善実績記憶部105に記述した内容は、情報モデル内に関係性が定義されていることが望ましい。情報モデル内に関係性が定義されていない場合、情報モデル内に関係性が定義されるよう構成しても良い。
 図24は、実施の形態6に係る分析条件の例を示す。図24では、分析結果出力の条件として、改善実績を出力に反映する算出式が定義されている。図24では、補正値「A4」として改善実績数が記述されており、また、算出式にも「A4」が含まれている。
*** Explanation of configuration ***
FIG. 22 shows a configuration example of the improved location analysis device 100 according to the sixth embodiment. In the configuration of FIG. 22, the improvement record storage unit 105 is added to the configuration of FIG. 1. The improvement record is stored in the improvement record storage unit 105. It is the same as that shown in FIG. 1 except for the improvement record storage unit 105.
FIG. 23 shows an example of the improvement record stored in the improvement record storage unit 105. The improvement results shown in FIG. 23 include the events that have occurred and the factors (improvement points) of the events. It is desirable to describe the events and factors in detail, including specific values. The improvement results are described by the person in charge of improvement while operating the analysis target. Alternatively, if there is an improvement record of the same type of analysis target, the improvement record of the same type of analysis target may be diverted. However, in this case, it is desirable to describe it so that it can be understood that it is an improvement record of another analysis target. Alternatively, the correct / incorrect evaluation result or the evaluation result accompanied by the numerical value given to the analysis result output through the HMI by the person in charge of improvement referring to the analysis result output shown in the fifth embodiment may be used as the improvement result. At this time, it is desirable that the contents described in the improvement record storage unit 105 have a relationship defined in the information model. If the relationship is not defined in the information model, it may be configured so that the relationship is defined in the information model.
FIG. 24 shows an example of the analysis conditions according to the sixth embodiment. In FIG. 24, as a condition for outputting the analysis result, a calculation formula that reflects the improvement result in the output is defined. In FIG. 24, the number of actual improvements is described as the correction value “A4”, and “A4” is also included in the calculation formula.
***動作の説明***
 情報収集フェーズ、評価フェーズ及び改善箇所分析フェーズの図9のステップS2042までは実施の形態1と同一の動作が行われる。
 ステップS2043では、改善箇所分析部103は、図24の分析結果出力の算出式に従って分析結果出力を算出し、算出結果を出力し、また、算出結果を情報記憶部101に格納する。つまり、ステップS2043では、改善箇所分析部103は、アソシエーション分析における条件部に相当する関連要素に対する改善実績を用いて、算出式「A1+A2+A3」により得られる計算値を補正し、補正後の計算値を出力する。
 図25は実施の形態6に係る分析結果出力の一例を示す。図25に示すように、本実施の形態では、図23の改善実績を補正値として出力し、また、改善実績数に基づく補正後の分析結果出力を出力する。
*** Explanation of operation ***
The same operation as that of the first embodiment is performed up to step S2042 in FIG. 9 of the information collection phase, the evaluation phase, and the improvement point analysis phase.
In step S2043, the improvement point analysis unit 103 calculates the analysis result output according to the analysis result output calculation formula of FIG. 24, outputs the calculation result, and stores the calculation result in the information storage unit 101. That is, in step S2043, the improvement location analysis unit 103 corrects the calculated value obtained by the calculation formula “A1 + A2 + A3” using the improvement results for the related elements corresponding to the condition unit in the association analysis, and obtains the corrected calculated value. Output.
FIG. 25 shows an example of analysis result output according to the sixth embodiment. As shown in FIG. 25, in the present embodiment, the improvement result of FIG. 23 is output as a correction value, and the corrected analysis result output based on the number of improvement results is output.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、改善実績を記憶し、改善実績に合わせて分析結果出力を補正する。このため、本実施の形態によれば、生産システムの実態に即した改善箇所を出力することができる。
*** Explanation of the effect of the embodiment ***
As described above, in the present embodiment, the improvement results are stored and the analysis result output is corrected according to the improvement results. Therefore, according to the present embodiment, it is possible to output the improvement points according to the actual conditions of the production system.
実施の形態7.
***目的***
 実施の形態5及び6では、算出式を用いて分析結果出力を算出し、得られた分析結果出力を出力することで、より確度の高い分析結果が得られる。
 しかしながら、大規模あるいは複雑な生産システムの場合、要素の種類が膨大かつ要素間の関係性が複雑である。このため、分析対象の実態に即した分析結果出力となるよう算出式を定義することが困難な場合がある。
 実施の形態7は、このような課題の解決を主な目的としている。
 本実施の形態では、主に実施の形態5との差異を説明する。
 なお、以下で説明していない事項は、実施の形態5と同様である。
Embodiment 7.
***Purpose***
In the fifth and sixth embodiments, the analysis result output is calculated using the calculation formula, and the obtained analysis result output is output to obtain a more accurate analysis result.
However, in the case of a large-scale or complicated production system, the types of elements are enormous and the relationships between the elements are complicated. Therefore, it may be difficult to define a calculation formula so that the analysis result output matches the actual condition of the analysis target.
The seventh embodiment has a main purpose of solving such a problem.
In this embodiment, the difference from the fifth embodiment will be mainly described.
The matters not described below are the same as those in the fifth embodiment.
***構成の説明***
 図26は、実施の形態7に係る分析条件の設定を示す。図26では、図20又は図24における分析結果出力を、後述する機械学習を用いて学習した学習済みモデルを活用して算出することが設定されている。
 図27は、改善箇所分析装置100が活用する機械学習装置400の構成例を示す。機械学習装置400は、データ取得部401、教師データ取得部402、学習部403、学習済みモデル記憶部405及び出力部404を備える。機械学習装置400は、ハードウェア構成として、図2と同様に、プロセッサ、記憶装置、通信インタフェース及びバスを備える。データ取得部401、教師データ取得部402、学習部403は、例えば、プログラムにより実現される。当該プログラムはプロセッサにより実行される。学習済みモデル記憶部405は記憶装置により実現される。
*** Explanation of configuration ***
FIG. 26 shows the setting of the analysis conditions according to the seventh embodiment. In FIG. 26, it is set to calculate the analysis result output in FIG. 20 or 24 by utilizing a trained model learned by using machine learning described later.
FIG. 27 shows a configuration example of the machine learning device 400 utilized by the improvement location analysis device 100. The machine learning device 400 includes a data acquisition unit 401, a teacher data acquisition unit 402, a learning unit 403, a learned model storage unit 405, and an output unit 404. The machine learning device 400 includes a processor, a storage device, a communication interface, and a bus as a hardware configuration, as in FIG. 2. The data acquisition unit 401, the teacher data acquisition unit 402, and the learning unit 403 are realized by, for example, a program. The program is executed by the processor. The trained model storage unit 405 is realized by a storage device.
 データ取得部401は、図10、図11、図20及び図24に示す条件部、結論部、支持度、信頼度、リフト値を状態変数として取得する。なお、データ取得部401は、図6及び図7に示す評価部102の評価結果を取得してもよい。
 教師データ取得部402は、図23の改善実績に示される要因及び事象を取得する。
 学習部403は、データ取得部401から出力される条件部、結論部、支持度、信頼度、リフト値及び教師データ取得部402から出力される要因及び事象の組合せに基づいて作成されるデータセットに基づいて、出力の補正方法を学習する。すなわち、学習部403は、改善箇所分析装置100の改善箇所分析部103の分析結果である条件部、結論部、支持度、信頼度、リフト値と、実際の改善実績である要因及び事象から分析結果出力の補正方法を推測する学習済みモデルを生成する。ここで、データセットは、状態変数及び教師データを互いに関連付けたデータである。
The data acquisition unit 401 acquires the condition unit, the conclusion unit, the support degree, the reliability, and the lift value shown in FIGS. 10, 11, 20, and 24 as state variables. The data acquisition unit 401 may acquire the evaluation results of the evaluation unit 102 shown in FIGS. 6 and 7.
The teacher data acquisition unit 402 acquires the factors and events shown in the improvement results of FIG. 23.
The learning unit 403 is a data set created based on a combination of a condition unit output from the data acquisition unit 401, a conclusion unit, a support level, a reliability, a lift value, and factors and events output from the teacher data acquisition unit 402. Learn how to correct the output based on. That is, the learning unit 403 analyzes from the condition unit, the conclusion unit, the support level, the reliability, the lift value, which are the analysis results of the improvement point analysis unit 103 of the improvement point analysis device 100, and the factors and events which are the actual improvement results. Generate a trained model that infers how to correct the result output. Here, the data set is data in which state variables and teacher data are associated with each other.
 なお、機械学習装置400は、改善箇所分析装置100の出力の補正方法を学習するために使用されるが、例えば、ネットワークを介して改善箇所分析装置100に接続された、改善箇所分析装置100とは別個の装置であってもよい。また、機械学習装置400は、改善箇所分析装置100に内蔵されていてもよい。さらに、機械学習装置400は、クラウドサーバ上に存在していてもよい。 The machine learning device 400 is used to learn how to correct the output of the improvement point analysis device 100. For example, the machine learning device 400 and the improvement point analysis device 100 connected to the improvement point analysis device 100 via a network. May be a separate device. Further, the machine learning device 400 may be built in the improvement point analysis device 100. Further, the machine learning device 400 may exist on the cloud server.
 学習部403が用いる学習アルゴリズムはどのようなものを用いてもよい。本実施の形態では、一例として、ニューラルネットワークを適用した場合について説明する。
 学習部403は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、出力の補正方法を学習する。ここで、教師あり学習とは、ある入力と結果(ラベル)のデータの組を大量に機械学習装置400に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定するモデルをいう。
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)及び複数のニューロンからなる出力層で構成される。中間層は、1層でもよいし、又は2層以上でもよい。
 例えば、図30に示すような3層のニューラルネットワークであれば、複数の入力データが入力層(X1‐X3)に入力されると、各入力データの値に重みW1(w11‐w16)を掛けて重みW1が掛けられた各入力データが中間層(Y1‐Y2)に入力される。そして、中間層(Y1‐Y2)の結果にさらに重みW2(w21‐w26)を掛けて重みW2が掛けられた中間層(Y1‐Y2)の結果が出力層(Z1‐Z3)から出力される。出力結果は、重みW1の値と重みW2の値によって変わる。
 本願において、ニューラルネットワークは、データ取得部401によって取得される条件部、結論部、支持度、信頼度、リフト値、並びに、教師データ取得部402によって取得される要因及び事象の組合せに基づいて作成されるデータセットに従って、いわゆる教師あり学習により、出力の補正方法を学習する。
 すなわち、ニューラルネットワークは、入力層に条件部、結論部、支持度、信頼度、リフト値を入力して出力層から出力された結果が、要因及び事象に近づくように重みW1とW2を調整することで学習する。
 また、ニューラルネットワークは、いわゆる教師なし学習によって、出力の補正方法を学習することもできる。教師なし学習とは、入力データのみを大量に機械学習装置400に与えることで、機械学習装置400が入力データがどのような分布をしているか学習する。教師なし学習では、対応する教師出力データを与えなくても、入力データに対して圧縮、分類、整形等を行って学習することが可能である。つまり、教師なし学習では、複数のデータセットにある特徴を似た者同士にクラスタリングすることができる。クラスタリングの結果を使って、何らかの基準を設けてクラスタリング結果を最適にするような出力の割り当てを行うことで、出力の予測を実現することできる。また、教師なし学習と教師あり学習の中間的な問題設定として、半教師あり学習がある。半教師あり学習では、一部のみ入力データと出力データの組が存在し、それ以外は入力データのみが存在する。
Any learning algorithm may be used as the learning algorithm used by the learning unit 403. In this embodiment, a case where a neural network is applied will be described as an example.
The learning unit 403 learns the output correction method by, for example, supervised learning according to a neural network model. Here, supervised learning is a model in which a large number of sets of data of a certain input and a result (label) are given to the machine learning device 400, the features in those data sets are learned, and the result is estimated from the input. To say.
A neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer (hidden layer) composed of a plurality of neurons, and an output layer composed of a plurality of neurons. The intermediate layer may be one layer or two or more layers.
For example, in the case of a three-layer neural network as shown in FIG. 30, when a plurality of input data are input to the input layer (X1-X3), the value of each input data is multiplied by the weight W1 (w11-w16). Each input data multiplied by the weight W1 is input to the intermediate layer (Y1-Y2). Then, the result of the intermediate layer (Y1-Y2) is further multiplied by the weight W2 (w21-w26), and the result of the intermediate layer (Y1-Y2) multiplied by the weight W2 is output from the output layer (Z1-Z3). .. The output result changes depending on the value of the weight W1 and the value of the weight W2.
In the present application, the neural network is created based on the combination of the condition part, the conclusion part, the support degree, the reliability, the lift value acquired by the data acquisition unit 401, and the factors and events acquired by the supervised data acquisition unit 402. According to the data set, the output correction method is learned by so-called supervised learning.
That is, the neural network inputs the condition part, the conclusion part, the support degree, the reliability, and the lift value to the input layer, and adjusts the weights W1 and W2 so that the result output from the output layer approaches the factor and the event. Learn by.
The neural network can also learn the output correction method by so-called unsupervised learning. In unsupervised learning, a large amount of input data is given to the machine learning device 400, and the machine learning device 400 learns how the input data is distributed. In unsupervised learning, it is possible to perform learning by compressing, classifying, shaping, etc. on the input data without giving the corresponding teacher output data. That is, in unsupervised learning, features in multiple datasets can be clustered among similar people. The output can be predicted by using the clustering result and assigning the output so as to optimize the clustering result by setting some criteria. Semi-supervised learning is an intermediate problem setting between unsupervised learning and supervised learning. In semi-supervised learning, only a part of the set of input data and output data exists, and the others exist only of input data.
 学習部403は、以上のような学習を実行することで学習済みモデルを生成する。
 学習済みモデル記憶部405は、学習部403で生成された学習済みモデルを記憶する。
 出力部404は、学習済みモデルを利用して得られる、改善箇所分析装置100の分析結果出力の補正方法を出力する。すなわち、データ取得部401に条件部、結論部、支持度、信頼度、リフト値を入力することで、出力部404から学習済みモデルに基づいて条件部、結論部、支持度、信頼度、リフト値に適した出力の補正方法を得ることができる。
 なお、本実施の形態では、機械学習装置400の出力部404が、学習部403での学習で得られた学習済みモデルを用いて分析結果出力の補正方法を改善箇所分析装置100に出力する例を説明するが、改善箇所分析装置100が学習済みモデルを取得し、この学習済みモデルに基づいて分析結果出力の補正方法を取得するようにしてもよい。
The learning unit 403 generates a trained model by executing the above learning.
The trained model storage unit 405 stores the trained model generated by the learning unit 403.
The output unit 404 outputs a correction method of the analysis result output of the improvement point analysis device 100 obtained by using the trained model. That is, by inputting the condition unit, the conclusion unit, the support degree, the reliability, and the lift value into the data acquisition unit 401, the condition unit, the conclusion unit, the support degree, the reliability, and the lift are input from the output unit 404 based on the trained model. An output correction method suitable for the value can be obtained.
In this embodiment, the output unit 404 of the machine learning device 400 outputs the correction method of the analysis result output to the improvement point analysis device 100 using the learned model obtained by the learning in the learning unit 403. However, the improved part analysis device 100 may acquire a trained model and acquire a correction method for an analysis result output based on the trained model.
***動作の説明***
 次に、図28を用いて、機械学習装置400が学習する処理について説明する。図28は機械学習装置400の学習処理に関するフローチャートである。
 始めに、ステップS401において、データ取得部401は条件部、結論部、支持度、信頼度、リフト値を状態変数として取得する。
 次に、ステップS402において、教師データ取得部402は改善実績である要因及び事象を取得する。なお、本実施の形態では上述の順でデータを取得するものとしたが、条件部、結論部、支持度、信頼度、リフト値、及び要因及び事象を関連づけて入力できればよく、これらのステップが同時に実行されてもよいし、逆順に実行されてもよい。
 さらに、ステップS403において、学習部403は、データ取得部401によって取得された条件部、結論部、支持度、信頼度、リフト値、並びに、教師データ取得部402によって取得された要因及び事象の組合せに基づいて作成されるデータセットに従って、いわゆる教師あり学習により、分析結果出力の補正方法を学習し、学習済みモデルを生成する。
 最後に、ステップS404において、学習済みモデル記憶部405は、学習部403が生成した学習済みモデルを記憶する。
*** Explanation of operation ***
Next, the process of learning by the machine learning device 400 will be described with reference to FIG. 28. FIG. 28 is a flowchart relating to the learning process of the machine learning device 400.
First, in step S401, the data acquisition unit 401 acquires the condition unit, the conclusion unit, the support degree, the reliability, and the lift value as state variables.
Next, in step S402, the teacher data acquisition unit 402 acquires factors and events that are actual improvements. In this embodiment, the data is acquired in the order described above, but it is sufficient if the condition part, the conclusion part, the support level, the reliability, the lift value, and the factors and events can be input in association with each other. They may be executed at the same time or in reverse order.
Further, in step S403, the learning unit 403 is a combination of the condition unit, the conclusion unit, the support level, the reliability, the lift value acquired by the data acquisition unit 401, and the factors and events acquired by the teacher data acquisition unit 402. According to the data set created based on, the correction method of the analysis result output is learned by so-called supervised learning, and the trained model is generated.
Finally, in step S404, the trained model storage unit 405 stores the trained model generated by the learning unit 403.
 次に、図29を用いて、機械学習装置400を使って分析結果出力の補正方法を得るための処理を説明する。
 始めに、ステップS501において、データ取得部401は、条件部、結論部、支持度、信頼度、リフト値を取得する。
 次に、ステップS502において、学習部403は学習済みモデル記憶部405に記憶された学習済みモデルに条件部、結論部、支持度、信頼度、リフト値を入力し、分析結果出力の補正方法を得る。学習部403は得られた分析結果出力の補正方法を出力部404に出力する。
 更に、ステップS503において、出力部404は、学習済みモデルにより得られた分析結果出力の補正方法を出力する。
 最後に、ステップS504において、改善箇所分析装置100の改善箇所分析部は、出力された分析結果出力の補正方法を用いて、分析結果を補正し、補正後の分析結果を出力する。これにより、生産システムの実態に即した改善箇所を出力することができる。
Next, with reference to FIG. 29, a process for obtaining a correction method for the analysis result output using the machine learning device 400 will be described.
First, in step S501, the data acquisition unit 401 acquires the condition unit, the conclusion unit, the support level, the reliability, and the lift value.
Next, in step S502, the learning unit 403 inputs the condition unit, the conclusion unit, the support level, the reliability, and the lift value into the trained model stored in the trained model storage unit 405, and corrects the analysis result output. obtain. The learning unit 403 outputs the correction method of the obtained analysis result output to the output unit 404.
Further, in step S503, the output unit 404 outputs a correction method for the analysis result output obtained by the trained model.
Finally, in step S504, the improvement point analysis unit of the improvement point analysis device 100 corrects the analysis result by using the correction method of the output analysis result output, and outputs the corrected analysis result. As a result, it is possible to output improvement points that match the actual conditions of the production system.
 なお、本実施の形態では、学習部403が用いる学習アルゴリズムに教師あり学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、教師あり学習以外にも、強化学習、教師なし学習、又は半教師あり学習等を適用することも可能である。
 また、学習部403は、複数の改善箇所分析装置100から収集されるデータセットに従って、出力の補正方法を学習するようにしてもよい。
 なお、学習部403は、同一のエリアで使用される複数の改善箇所分析装置100からデータセットを取得してもよい。或いは、学習部403は、異なるエリアで独立して動作する複数の改善箇所分析装置100から収集されるデータセットを利用して分析結果出力の補正方法を学習してもよい。さらに、学習部403は、データセットを収集する改善箇所分析装置100を途中で追加することも可能である。或いは、学習部403は、逆に、データセットを収集する改善箇所分析装置100から、いずれかの改善箇所分析装置100を途中で除去することも可能である。
 さらに、ある改善箇所分析装置100に関して分析結果出力の補正方法を学習した機械学習装置400を、これとは別の改善箇所分析装置100に適用し、当該別の改善箇所分析装置100に関して分析結果出力の補正方法を再学習して更新するようにしてもよい。
 また、学習部403に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。
***実施の形態の効果の説明***
 以上のように、本実施の形態では、機械学習を活用して分析結果出力の補正方法を取得する。このため、本実施の形態によれば、分析対象が大規模あるいは複雑な生産システムであっても、生産システムの実態に即した改善箇所を出力することができる。
In the present embodiment, the case where supervised learning is applied to the learning algorithm used by the learning unit 403 has been described, but the present invention is not limited to this. As for the learning algorithm, it is also possible to apply reinforcement learning, unsupervised learning, semi-supervised learning, or the like, in addition to supervised learning.
Further, the learning unit 403 may learn the output correction method according to the data sets collected from the plurality of improvement point analysis devices 100.
The learning unit 403 may acquire a data set from a plurality of improvement point analyzers 100 used in the same area. Alternatively, the learning unit 403 may learn the correction method of the analysis result output by using the data set collected from the plurality of improvement point analysis devices 100 that operate independently in different areas. Further, the learning unit 403 can add an improvement point analysis device 100 for collecting a data set on the way. Alternatively, the learning unit 403 can conversely remove any of the improvement location analysis devices 100 from the improvement location analysis device 100 that collects the data set.
Further, the machine learning device 400 that has learned the correction method of the analysis result output for a certain improvement point analysis device 100 is applied to another improvement point analysis device 100, and the analysis result output for the other improvement point analysis device 100. You may relearn and update the correction method of.
Further, as the learning algorithm used in the learning unit 403, deep learning that learns the extraction of the feature amount itself can also be used, and other known methods such as genetic programming, functional logic programming, and support can be used. Machine learning may be performed according to a vector machine or the like.
*** Explanation of the effect of the embodiment ***
As described above, in the present embodiment, the correction method of the analysis result output is acquired by utilizing machine learning. Therefore, according to the present embodiment, even if the analysis target is a large-scale or complicated production system, it is possible to output the improvement points according to the actual state of the production system.
 以上、実施の形態1~7を説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 また、これらの実施の形態に記載された構成及び手順を必要に応じて変更してもよい。
Although the embodiments 1 to 7 have been described above, two or more of these embodiments may be combined and implemented.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined and carried out.
In addition, the configurations and procedures described in these embodiments may be changed as necessary.
***ハードウェア構成の補足説明***
 最後に、改善箇所分析装置100のハードウェア構成の補足説明を行う。
 図2に示すプロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
 プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
 図2に示す記憶装置902は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
 図2に示す通信インタフェース903は、データの通信処理を実行する電子回路である。
 通信インタフェース903は、例えば、通信チップ又はNIC(Network Interface Card)である。
*** Supplementary explanation of hardware configuration ***
Finally, a supplementary explanation of the hardware configuration of the improved location analyzer 100 will be given.
The processor 901 shown in FIG. 2 is an IC (Integrated Circuit) that performs processing.
The processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
The storage device 902 shown in FIG. 2 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
The communication interface 903 shown in FIG. 2 is an electronic circuit that executes data communication processing.
The communication interface 903 is, for example, a communication chip or a NIC (Network Interface Card).
 また、補助記憶装置902には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ901により実行される。
 プロセッサ901はOSの少なくとも一部を実行しながら、プログラム904を実行する。
 プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、評価部102、改善箇所分析部103及び情報収集部104の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、記憶装置902、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
 また、プログラム904は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、プログラム904が格納された可搬記録媒体を流通させてもよい。
An OS (Operating System) is also stored in the auxiliary storage device 902.
Then, at least a part of the OS is executed by the processor 901.
The processor 901 executes the program 904 while executing at least a part of the OS.
When the processor 901 executes the OS, task management, memory management, file management, communication control, and the like are performed.
Further, at least one of the information, data, signal value, and variable value indicating the processing result of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 is a register and a cache memory in the storage device 902 and the processor 901. It is stored in at least one of them.
Further, the program 904 may be stored in a portable recording medium such as a magnetic disk, a flexible disk, an optical disk, a compact disc, a Blu-ray (registered trademark) disc, or a DVD. Then, a portable recording medium in which the program 904 is stored may be distributed.
 また、評価部102、改善箇所分析部103及び情報収集部104の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
 また、改善箇所分析装置100は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
 この場合は、評価部102、改善箇所分析部103及び情報収集部104は、それぞれ処理回路の一部として実現される。
 なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
 つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
Further, the "section" of the evaluation unit 102, the improvement point analysis unit 103, and the information collection unit 104 may be read as "circuit" or "process" or "procedure" or "processing".
Further, the improved location analysis device 100 may be realized by a processing circuit. The processing circuit is, for example, a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array).
In this case, the evaluation unit 102, the improvement location analysis unit 103, and the information collection unit 104 are each realized as a part of the processing circuit.
In this specification, the superordinate concept of the processor and the processing circuit is referred to as "processing circuit Lee".
That is, the processor and the processing circuit are specific examples of the "processing circuit Lee", respectively.
 100 改善箇所分析装置、101 情報記憶部、102 評価部、103 改善箇所分析部、104 情報収集部、105 改善実績記憶部、200 分析対象、300 ネットワーク、400 機械学習装置、401 データ取得部、402 教師データ取得部、403 学習部、404 出力部、405 学習済みモデル記憶部、901 プロセッサ、902 記憶装置、903 通信インタフェース、904 プログラム、905 バス。 100 improvement location analysis device, 101 information storage unit, 102 evaluation unit, 103 improvement location analysis unit, 104 information collection unit, 105 improvement record storage unit, 200 analysis target, 300 network, 400 machine learning device, 401 data acquisition unit, 402 Teacher data acquisition unit, 403 learning unit, 404 output unit, 405 trained model storage unit, 901 processor, 902 storage device, 903 communication interface, 904 program, 905 bus.

Claims (18)

  1.  3以上の要素のうち性能を改善させるべき要素を指定要素として指定する指定部と、
     前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出する抽出部と、
     前記抽出部により抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する推定部とを有する情報処理装置。
    A designated part that designates an element whose performance should be improved among three or more elements as a designated element,
    An extraction unit that extracts two or more elements that have a significant relationship with the designated element from the elements other than the designated element as related elements.
    To improve the performance of the designated element from among the two or more related elements by analyzing the influence of the performance of each of the two or more related elements extracted by the extraction unit on the performance of the designated element. An information processing device having an estimation unit that estimates related elements to be improved, which are related elements whose performance should be improved.
  2.  前記推定部は、
     複数の改善対象関連要素を推定した場合に、各々の改善対象関連要素の性能が他の改善対象関連要素の性能に与える影響を分析して、前記複数の改善対象関連要素の間に優先順位を設定する請求項1に記載の情報処理装置。
    The estimation unit
    When a plurality of improvement target related elements are estimated, the influence of the performance of each improvement target related element on the performance of other improvement target related elements is analyzed, and the priority is set among the plurality of improvement target related elements. The information processing apparatus according to claim 1.
  3.  前記指定部は、
     前記推定部により推定された前記改善対象関連要素を新たな指定要素に指定し、
     前記抽出部は、
     前記新たな指定要素と有意な関係にある、前記新たな指定要素以外の2以上の要素を新たな関連要素として抽出し、
     前記推定部は、
     前記抽出部により抽出された2以上の新たな関連要素の各々の性能が前記新たな指定要素の性能に与える影響を分析して、前記2以上の新たな関連要素の中から、前記新たな指定要素の性能の改善のために性能を改善させるべき新たな関連要素を新たな改善対象関連要素として推定する請求項1に記載の情報処理装置。
    The designated part is
    The improvement target related element estimated by the estimation unit is designated as a new designated element, and the improvement target related element is designated as a new designated element.
    The extraction unit
    Two or more elements other than the new designated element, which have a significant relationship with the new designated element, are extracted as new related elements.
    The estimation unit
    The influence of the performance of each of the two or more new related elements extracted by the extraction unit on the performance of the new designated element is analyzed, and the new designation is made from the two or more new related elements. The information processing apparatus according to claim 1, wherein a new related element whose performance should be improved in order to improve the performance of the element is estimated as a new improvement target related element.
  4.  前記指定部は、
     前記推定部により新たな改善対象関連要素が推定される度に、推定された新たな改善対象関連要素を新たな指定要素に指定することを繰り返し、
     前記抽出部は、
     前記指定部により新たな指定要素が指定される度に、指定された新たな指定要素以外の2以上の要素を新たな関連要素として抽出することを繰り返し、
     前記推定部は、
     前記抽出部により2以上の新たな関連要素が抽出される度に、新たな改善対象関連要素を推定することを繰り返す請求項3に記載の情報処理装置。
    The designated part is
    Every time a new improvement target related element is estimated by the estimation unit, the estimated new improvement target related element is repeatedly designated as a new designated element.
    The extraction unit
    Every time a new designated element is designated by the designated unit, two or more elements other than the designated new designated element are repeatedly extracted as new related elements.
    The estimation unit
    The information processing apparatus according to claim 3, wherein every time two or more new related elements are extracted by the extraction unit, a new improvement target related element is repeatedly estimated.
  5.  前記推定部は、
     前記指定要素の性能が改善されることを結論部に用い、前記2以上の関連要素の各々の性能が改善されることを条件部に用いたアソシエーション分析を行って、前記改善対象関連要素を推定する請求項1に記載の情報処理装置。
    The estimation unit
    An association analysis is performed using the improvement of the performance of the designated element as the conclusion part and the improvement of the performance of each of the two or more related elements as the condition part, and the related element to be improved is estimated. The information processing apparatus according to claim 1.
  6.  前記推定部は、
     前記アソシエーション分析に含まれる複数の計算項目のうちのいずれかの計算項目において計算維持条件が不成立の場合に、前記複数の計算項目のうちの未計算の計算項目の計算を行わない請求項5に記載の情報処理装置。
    The estimation unit
    In claim 5, when the calculation maintenance condition is not satisfied in any of the plurality of calculation items included in the association analysis, the uncalculated calculation item in the plurality of calculation items is not calculated. The information processing device described.
  7.  前記情報処理装置は、更に、
     要素ごとに、性能の基準に性能が合致するか否かを評価する評価部を有し、
     前記指定部は、
     前記評価部により性能の基準に性能が合致しないと評価された要素を前記指定要素として指定する請求項1に記載の情報処理装置。
    The information processing device further
    Each element has an evaluation unit that evaluates whether or not the performance meets the performance criteria.
    The designated part is
    The information processing apparatus according to claim 1, wherein an element evaluated by the evaluation unit as not meeting the performance standard is designated as the designated element.
  8.  前記評価部は、
     各要素の性能が要素ごとに定義された性能の基準に合致するか否かを評価する請求項7に記載の情報処理装置。
    The evaluation unit
    The information processing apparatus according to claim 7, wherein it is evaluated whether or not the performance of each element meets the performance standard defined for each element.
  9.  前記3以上の要素は複数の階層を構成しており、
     前記評価部は、
     階層ごとに異なる時間幅で各要素の性能が性能の基準に合致するか否かを評価する請求項7に記載の情報処理装置。
    The three or more elements constitute a plurality of layers.
    The evaluation unit
    The information processing apparatus according to claim 7, wherein it is evaluated whether or not the performance of each element meets the performance standard in a time width different for each layer.
  10.  前記評価部は、
     評価を行う度に、評価結果を出力する請求項7に記載の情報処理装置。
    The evaluation unit
    The information processing apparatus according to claim 7, which outputs an evaluation result each time an evaluation is performed.
  11.  前記評価部は、
     前記推定部により推定された改善対象関連要素に追加の性能の基準が定義されており、前記追加の性能の基準を前記改善対象関連要素に適用するための条件が成立する場合に、前記改善対象関連要素の性能が前記追加の性能の基準に合致するか否かを評価する請求項7に記載の情報処理装置。
    The evaluation unit
    An improvement target is defined in the improvement target related element estimated by the estimation unit, and when the condition for applying the additional performance standard to the improvement target related element is satisfied, the improvement target is satisfied. The information processing apparatus according to claim 7, wherein the performance of the related element is evaluated as to whether or not the performance of the related element meets the criteria of the additional performance.
  12.  前記評価部は、
     統計処理により得られた前記性能の基準を用いて評価を行う請求項7に記載の情報処理装置。
    The evaluation unit
    The information processing apparatus according to claim 7, wherein the evaluation is performed using the performance standard obtained by statistical processing.
  13.  前記推定部は、
     前記3以上の要素のうちのいずれか2以上の要素の間の関係が不明の場合に、関係が不明な要素の間の関係を推定する請求項1に記載の情報処理装置。
    The estimation unit
    The information processing apparatus according to claim 1, wherein when the relationship between any two or more of the three or more elements is unknown, the relationship between the elements whose relationship is unknown is estimated.
  14.  前記推定部は、
     前記アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算を行い、前記複数の計算値を用いた計算の計算値を出力する請求項5に記載の情報処理装置。
    The estimation unit
    The information processing apparatus according to claim 5, wherein a calculation using a plurality of calculated values for a plurality of calculated items included in the association analysis is performed, and the calculated value of the calculation using the plurality of calculated values is output.
  15.  前記推定部は、
     前記アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算により得られる計算値を前記2以上の関連要素のうちの少なくともいずれかに対する改善実績に基づいて補正し、補正後の計算値を出力する請求項5に記載の情報処理装置。
    The estimation unit
    The calculated values obtained by the calculation using the plurality of calculated values for the plurality of calculated items included in the association analysis are corrected based on the improvement results for at least one of the two or more related elements, and the corrected values are corrected. The information processing apparatus according to claim 5, which outputs a calculated value.
  16.  前記推定部は、
     前記アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算により得られる計算値の補正方法を機械学習により取得し、取得した補正方法により前記複数の計算値を用いた計算により得られる計算値を補正し、補正後の計算値を出力する請求項5に記載の情報処理装置。
    The estimation unit
    The correction method of the calculated value obtained by the calculation using the plurality of calculated values for the plurality of calculated items included in the association analysis is acquired by machine learning, and the acquired correction method is used for the calculation using the plurality of calculated values. The information processing apparatus according to claim 5, which corrects the obtained calculated value and outputs the corrected calculated value.
  17.  コンピュータが、3以上の要素のうち性能を改善させるべき要素を指定要素として指定し、
     前記コンピュータが、前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出し、
     前記コンピュータが、抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する情報処理方法。
    The computer specifies the element that should improve the performance among the three or more elements as the specified element,
    The computer extracts two or more elements having a significant relationship with the designated element from the elements other than the designated element as related elements.
    The computer analyzes the influence of the performance of each of the two or more extracted related elements on the performance of the designated element, and among the two or more related elements, in order to improve the performance of the designated element. An information processing method that estimates related elements to be improved, which are related elements that should improve performance.
  18.  3以上の要素のうち性能を改善させるべき要素を指定要素として指定する指定処理と、
     前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出する抽出処理と、
     前記抽出処理により抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する推定処理とをコンピュータに実行させる情報処理プログラム。
    Designation process that specifies the element that should improve the performance among 3 or more elements as the specified element,
    Extraction processing that extracts two or more elements that have a significant relationship with the designated element from the elements other than the designated element as related elements.
    To improve the performance of the designated element from among the two or more related elements by analyzing the influence of the performance of each of the two or more related elements extracted by the extraction process on the performance of the designated element. An information processing program that causes a computer to perform estimation processing that estimates related elements to be improved, which are related elements that should improve performance.
PCT/JP2020/035512 2020-09-18 2020-09-18 Information processing device, information processing method, and information processing program WO2022059183A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022544236A JP7154468B2 (en) 2020-09-18 2020-09-18 Information processing device, information processing method and information processing program
PCT/JP2020/035512 WO2022059183A1 (en) 2020-09-18 2020-09-18 Information processing device, information processing method, and information processing program
CN202080105029.XA CN116194945A (en) 2020-09-18 2020-09-18 Information processing device, information processing method, and information processing program
TW110106269A TW202230060A (en) 2020-09-18 2021-02-23 Information processing device, information processing method, and information processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035512 WO2022059183A1 (en) 2020-09-18 2020-09-18 Information processing device, information processing method, and information processing program

Publications (1)

Publication Number Publication Date
WO2022059183A1 true WO2022059183A1 (en) 2022-03-24

Family

ID=80776087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035512 WO2022059183A1 (en) 2020-09-18 2020-09-18 Information processing device, information processing method, and information processing program

Country Status (4)

Country Link
JP (1) JP7154468B2 (en)
CN (1) CN116194945A (en)
TW (1) TW202230060A (en)
WO (1) WO2022059183A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249683A (en) * 1997-03-14 1998-09-22 Omron Corp Process improving and supporting method and device thereof
JP2002006930A (en) * 2000-06-20 2002-01-11 Hitachi Ltd Process history tracing system
JP2009104523A (en) * 2007-10-25 2009-05-14 Sharp Corp Method and device for extracting poor factor, process stabilization support system, program, and computer readable storage medium
JP2018195130A (en) * 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 Abnormality-cause-estimating device, abnormality-cause-estimating method, and abnormality-cause-estimating program
JP2019049940A (en) * 2017-09-12 2019-03-28 安川情報システム株式会社 Abnormal process estimating method, abnormal process estimating apparatus, and abnormal process estimating program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149389A1 (en) 2019-01-17 2020-07-23 日本電気株式会社 Process improvement support device, process improvement support method, and recording medium storing process improvement support program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249683A (en) * 1997-03-14 1998-09-22 Omron Corp Process improving and supporting method and device thereof
JP2002006930A (en) * 2000-06-20 2002-01-11 Hitachi Ltd Process history tracing system
JP2009104523A (en) * 2007-10-25 2009-05-14 Sharp Corp Method and device for extracting poor factor, process stabilization support system, program, and computer readable storage medium
JP2018195130A (en) * 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 Abnormality-cause-estimating device, abnormality-cause-estimating method, and abnormality-cause-estimating program
JP2019049940A (en) * 2017-09-12 2019-03-28 安川情報システム株式会社 Abnormal process estimating method, abnormal process estimating apparatus, and abnormal process estimating program

Also Published As

Publication number Publication date
CN116194945A (en) 2023-05-30
JPWO2022059183A1 (en) 2022-03-24
JP7154468B2 (en) 2022-10-17
TW202230060A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
CN109766583A (en) Based on no label, unbalanced, initial value uncertain data aero-engine service life prediction technique
US9208209B1 (en) Techniques for monitoring transformation techniques using control charts
CN103597417A (en) Method and device for condition monitoring
CN111179591B (en) Road network traffic time sequence characteristic data quality diagnosis and restoration method
CN113506009B (en) Equipment management method and system based on smart cloud service
JP6521096B2 (en) Display method, display device, and program
JP6489235B2 (en) System analysis method, system analysis apparatus, and program
Gouriveau et al. Strategies to face imbalanced and unlabelled data in PHM applications.
CN112182056A (en) Data detection method, device, equipment and storage medium
Cohen et al. Shapley-based explainable ai for clustering applications in fault diagnosis and prognosis
Ackermann et al. Black-box learning of parametric dependencies for performance models
CN113919540A (en) Method for monitoring running state of production process and related equipment
WO2022059183A1 (en) Information processing device, information processing method, and information processing program
CN109635008B (en) Equipment fault detection method based on machine learning
Ziegenbein et al. Machine learning algorithms in machining: A guideline for efficient algorithm selection
CN114139643B (en) Monoglyceride quality detection method and system based on machine vision
Kovářík et al. Implementing control charts to corporate financial management
US20210373987A1 (en) Reinforcement learning approach to root cause analysis
CN113657501A (en) Model adaptive training method, apparatus, device, medium, and program product
KR20230135580A (en) Method and system for detecting and classifying maneuvers performed by an aircraft based on measurements obtained during flight of the aircraft
Shahoud et al. Incorporating unsupervised deep learning into meta learning for energy time series forecasting
Suvorov et al. OSA: One-class recursive SVM algorithm with negative samples for fault detection
Hinz et al. Framework for customized, machine learning driven condition monitoring system for manufacturing
JPWO2019142344A1 (en) Analyzer, analysis method, and program
EP4332707A1 (en) Apparatus, method and programme for processing information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954168

Country of ref document: EP

Kind code of ref document: A1