WO2022054604A1 - Display device and electronic apparatus - Google Patents

Display device and electronic apparatus Download PDF

Info

Publication number
WO2022054604A1
WO2022054604A1 PCT/JP2021/031460 JP2021031460W WO2022054604A1 WO 2022054604 A1 WO2022054604 A1 WO 2022054604A1 JP 2021031460 W JP2021031460 W JP 2021031460W WO 2022054604 A1 WO2022054604 A1 WO 2022054604A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
display device
display
optical element
Prior art date
Application number
PCT/JP2021/031460
Other languages
French (fr)
Japanese (ja)
Inventor
柱元 濱地
陽介 元山
伸一 荒川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022547499A priority Critical patent/JPWO2022054604A1/ja
Priority to CN202180054416.XA priority patent/CN116034296A/en
Publication of WO2022054604A1 publication Critical patent/WO2022054604A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • This disclosure relates to display devices and electronic devices.
  • a light emitting element having a current-driven light emitting unit and a display device provided with such a light emitting element are well known.
  • a light emitting element provided with a light emitting unit composed of an organic electroluminescence element is attracting attention as a light emitting element capable of high-luminance light emission by low-voltage direct current drive.
  • Patent Document 1 describes that a hemispherical optical element is arranged on a light emitting layer to improve the light extraction efficiency.
  • the shape of the light emitting surface of the light emitting element is, for example, rectangular
  • an optical element having a circular bottom surface is arranged, it is difficult for the optical element to completely cover the light emitting surface. Therefore, the proportion of light that does not enter the optical element increases, and the light extraction efficiency decreases.
  • an object of the present disclosure is to provide a display device having an optical element above the light emitting element and having a structure capable of improving the light extraction efficiency, and an electronic device provided with such a display device.
  • the display device for achieving the above object is It contains light emitting elements arranged in a matrix and contains light emitting elements.
  • the light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
  • the upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered, It is a display device.
  • the electronic devices pertaining to this disclosure to achieve the above objectives are: It contains light emitting elements arranged in a matrix and contains light emitting elements.
  • the light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
  • the upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface.
  • FIG. 1 is a schematic plan view for explaining the display device according to the first embodiment.
  • FIG. 2 is a schematic circuit diagram for explaining the configuration of the light emitting element.
  • FIG. 3 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device.
  • FIG. 4 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device, following FIG.
  • FIG. 5A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the first configuration example including a plurality of light emitting elements.
  • FIG. 5B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 6A is a schematic perspective view for explaining the shape of the optical element, following FIG. 5B.
  • FIG. 6B is a schematic perspective view for explaining the shape of the optical element, following FIG. 5B.
  • FIG. 7A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the second configuration example including the plurality of light emitting elements.
  • FIG. 7B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 8A is a schematic perspective view for explaining the shape of the optical element, following FIG. 7B.
  • FIG. 8B is a schematic perspective view for explaining the shape of the optical element, following FIG. 7B.
  • FIG. 9A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the third configuration example including the plurality of light emitting elements.
  • FIG. 9B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 10A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fourth configuration example including the plurality of light emitting elements.
  • FIG. 10B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 11A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fifth configuration example including the plurality of light emitting elements.
  • FIG. 11B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 12A is a schematic partial plan view for explaining the arrangement relationship between the pixels and the optical element according to the fifth configuration example, following FIG. 11A.
  • FIG. 12B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 13A is a schematic plan view for explaining the long side and the short side of the rectangular light emitting surface.
  • FIG. 13B is a schematic graph for explaining the relationship between the dimensions of the long side and the number of optical elements when the light extraction efficiency is maximized.
  • FIG. 14A is a schematic plan view for explaining a case where an optical element divided into a long side direction and a short side direction is arranged on a rectangular light emitting surface.
  • FIG. 14B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 15 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second embodiment.
  • FIG. 16 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device, following FIG. FIG.
  • FIG. 17 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the third embodiment.
  • FIG. 18 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the first modification of the third embodiment.
  • FIG. 19 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second modification of the third embodiment.
  • FIG. 20A is a front view of an interchangeable lens single-lens reflex type digital still camera.
  • FIG. 20B is a rear view of an interchangeable lens single-lens reflex type digital still camera.
  • FIG. 21 is an external view of the head-mounted display.
  • FIG. 22 is an external view of the see-through head-mounted display.
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a vehicle control system.
  • FIG. 24 is an explanatory diagram showing an example of the installation positions of the vehicle exterior information detection unit and
  • the display device according to the present disclosure and the display device used for the electronic device according to the present disclosure are arranged in a matrix.
  • the light emitting element has a convex polygonal light emitting surface, and the upper part of the light emitting element is independently provided corresponding to each light emitting element and follows the side of the light emitting surface. A portion of the shape is included and the portion is covered by an optical element having a bottom surface or an upper surface extending outside the region of the light emitting surface.
  • the cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is a semicircular shape, a trapezoidal shape, a rectangular shape, a polygonal shape, or a combination thereof.
  • the cross-sectional shape is trapezoidal or semicircular.
  • the "semicircular shape" is not limited to a strictly semicircular shape, but includes a shape recognized as a semicircular shape in actual use.
  • a suitable material may be appropriately selected from transparent organic materials and inorganic materials.
  • the optical element can be obtained, for example, by forming a resist on a transparent material layer and etching it.
  • the light emitting element has a convex polygonal light emitting surface.
  • the convex polygon shape may be a regular tessellation type shape such as a regular triangle shape, a square shape, or a regular hexagon shape, or may be a rectangular shape such as a rectangle. Basically, it is preferable that the light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
  • each light emitting element can be configured so that at least one optical element corresponds to it.
  • the display device of the present disclosure including the various preferable configurations described above can be configured to include at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
  • each light emitting element for displaying a specific color may be configured so that a plurality of optical elements correspond to each other.
  • the light emitting element for displaying a specific color is provided with a rectangular light emitting surface, and a plurality of optical elements can be provided side by side in the long side direction of the light emitting surface.
  • each light emitting element for displaying blue can be configured so that a plurality of optical elements correspond to each other.
  • the light emitting surface of the group consisting of the element and the light emitting element for displaying blue can be configured to be arranged in a rectangular shape as a whole.
  • the display device of the present disclosure including the various preferable configurations described above can be configured to further include a color filter corresponding to the display color.
  • the display device may be further provided with a color filter corresponding to a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
  • the color filter can be configured to be arranged between the light emitting element and the optical element.
  • the color filter may be configured to be located above the optical element.
  • the color filter can be configured to include a coloring material and / or fine particles constituting quantum dots.
  • the color filter may be configured by using a well-known resist material to which a desired color material or the like is added. Well-known pigments and dyes can be used as the coloring material. Further, the fine particles constituting the quantum dots are not particularly limited, and for example, luminescent semiconductor nanoparticles can be used.
  • a color filter containing a color material performs color display by transmitting light in a target wavelength range among the light from a light emitting element. Further, a color filter containing fine particles constituting quantum dots performs color display by converting the wavelength of light from a light emitting element.
  • the light emitting element may be configured to include a light emitting unit including an organic electroluminescence element, an LED element, a semiconductor laser element, and the like. These can be constructed using well-known materials and methods. From the viewpoint of configuring a flat display device, it is preferable that the light emitting element includes a light emitting unit including an organic electroluminescence element.
  • the light emitting element can be configured to have a resonator structure that resonates light.
  • the light emitting element may include a drive circuit for controlling light emission.
  • the light emitting element and the drive circuit can be connected via, for example, a conductive portion made of a via provided in an interlayer insulating film.
  • the emission color of the light emitting element can be set to a predetermined display color, so that a color filter is basically unnecessary.
  • the display device may be configured to further include a color filter corresponding to a light emitting element for displaying red.
  • the display device is further provided with a color filter corresponding to a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display. It can also be.
  • a transparent protective film may be formed on the entire surface including the optical element.
  • a suitable material may be appropriately selected from transparent organic materials and inorganic materials.
  • the light emitting elements arranged in a matrix are formed on a substrate, for example.
  • a semiconductor material, a glass material, or a plastic material can be exemplified.
  • the drive circuit is configured by a transistor formed on a semiconductor substrate, for example, a well region may be provided on a semiconductor substrate made of silicon and a transistor may be formed in the well.
  • the drive circuit is configured by a thin film transistor or the like, a semiconductor thin film can be formed on the substrate made of a glass material or a plastic material to form the drive circuit.
  • the various wirings can have well-known configurations and structures.
  • the configuration of the drive circuit or the like that controls the light emission of the light emitting element is not particularly limited.
  • the light emitting element may be formed, for example, in a certain plane on the substrate, and may be arranged above the drive circuit for driving the light emitting element via, for example, an interlayer insulating layer.
  • the configuration of the transistors constituting the drive circuit is not particularly limited. It may be a p-channel type field-effect transistor or an n-channel type field-effect transistor.
  • the light emitting element can be configured to be a so-called top light emitting type.
  • a light emitting device composed of an organic electroluminescence device is configured by sandwiching an organic layer including a hole transport layer, a light emitting layer, an electron transport layer, and the like between a first electrode and a second electrode.
  • the cathode is shared, the second electrode is the cathode electrode and the first electrode is the anode electrode.
  • the first electrode is provided for each light emitting element on the substrate.
  • the first electrode can be configured by using a metal such as aluminum (Al), an aluminum alloy, platinum (Pt), gold (Au), chromium (Cr), tungsten (W), an alloy thereof, or the like.
  • a metal such as aluminum (Al), an aluminum alloy, platinum (Pt), gold (Au), chromium (Cr), tungsten (W), an alloy thereof, or the like.
  • it may be composed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the second electrode is provided as a common electrode for each light emitting element, and is, for example, a mixed layer of magnesium (Mg) and silver (Ag), a metal such as silver (Ag), or indium tin oxide (ITO). It can be constructed using a conductive material such as indium zinc oxide (IZO).
  • the organic layer is formed by laminating a plurality of material layers and is provided on the entire surface including the first electrode as a common continuous film.
  • the organic layer emits light when a voltage is applied between the first electrode and the second electrode.
  • the organic layer can be composed of, for example, a structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sequentially laminated from the first electrode side.
  • the hole transporting material, the hole transporting material, the electron transporting material, and the organic light emitting material constituting the organic layer are not particularly limited, and well-known materials can be used.
  • the organic layer may include a structure in which a plurality of light emitting layers are laminated.
  • a light emitting element that emits white light can be configured by stacking light emitting layers of red light emission, blue light emission, and green light emission, or by stacking light emission layers of blue light emission and yellow light emission.
  • the light emitting layer may be painted separately for each light emitting element according to the color to be displayed.
  • the display device of the present disclosure may have a color display configuration.
  • a so-called monochrome display configuration may be used.
  • one light emitting element constitutes one pixel.
  • one light emitting element constitutes one sub-pixel.
  • one pixel is composed of a plurality of sub-pixels, specifically, one pixel is composed of three types of sub-pixels: a red display sub-pixel, a green display sub-pixel, and a blue display sub-pixel. can do.
  • a set of these three types of sub-pixels plus one or more types of sub-pixels for example, a set of sub-pixels that emit white light to improve brightness, a color reproduction range).
  • the partition wall portion that partitions the adjacent light emitting elements can be formed by using a material appropriately selected from known inorganic materials and organic materials, and is, for example, a physical vapor deposition method exemplified by a vacuum vapor deposition method or a sputtering method. It can be formed by a combination of a well-known film forming method such as (PVD method) and various chemical vapor deposition methods (CVD method) and a well-known patterning method such as an etching method and a lift-off method.
  • PVD method physical vapor deposition method exemplified by a vacuum vapor deposition method or a sputtering method. It can be formed by a combination of a well-known film forming method such as (PVD method) and various chemical vapor deposition methods (CVD method) and a well-known patterning method such as an etching method and a lift-off method.
  • VGA 640,480
  • S-VGA 800,600
  • XGA XGA
  • APRC APRC
  • S-XGA 1280,1024
  • Image display such as U-XGA (1600,1200), HD-TV (1920,1080), Q-XGA (2048,1536), (1920,1035), (720,480), (1280,960), etc.
  • various electronic devices having an image display function can be exemplified in addition to the direct-view type and projection type display devices.
  • the first embodiment relates to a display device and an electronic device according to the present disclosure.
  • FIG. 1 is a schematic plan view for explaining the display device according to the first embodiment.
  • the display device 1 includes various circuits such as a light emitting element PX arranged in a matrix, a horizontal drive circuit 11 for driving the light emitting element PX, and a vertical drive circuit 12.
  • the reference numeral SCL is a scanning line for scanning the light emitting element PX
  • the reference numeral DTL is a signal line for supplying various voltages to the light emitting element PX.
  • the display device 1 also includes a feeder line or the like for supplying a drive voltage or the like to the pixels, it is omitted in FIG. 1 for convenience of illustration.
  • M light emitting elements PX are arranged in a matrix, M in the horizontal direction (X direction in the figure) and N in the vertical direction (Y direction in the figure), for a total of M ⁇ N.
  • the display device 1 is a display device capable of color display.
  • the light emitting elements PX corresponding to the red display, the green display, and the blue display are shown with reference numerals R, G, and B, respectively.
  • the horizontal drive circuit 11 and the vertical drive circuit 12 are respectively arranged on one end side of the display device 1, but this is merely an example.
  • the light emitting element PX has a light emitting surface having a convex polygonal shape.
  • the upper part of the light emitting element PX is independently provided corresponding to each light emitting element PX, and includes a portion having a shape that imitates the side of the light emitting surface, and the bottom surface or the upper surface of which the portion extends outside the region of the light emitting surface. It is covered by the optical element it has.
  • FIG. 2 is a schematic circuit diagram for explaining the configuration of the light emitting element. For convenience of illustration, the wiring relationship is shown for one light emitting element PX, more specifically, for the light emitting element PX in the mth row and the nth column.
  • the light emitting element PX includes a current-driven light emitting unit ELP and a drive circuit for controlling light emission of the light emitting unit ELP.
  • This drive circuit includes at least a write transistor TR W for writing a video signal and a drive transistor TR D for passing a current through the light emitting unit ELP. These are composed of p-channel type transistors.
  • the drive circuit further includes a capacitance section CS .
  • the capacitance section C S is used to hold the voltage of the gate electrode (so-called gate-source voltage) with respect to the source region of the drive transistor TR D.
  • the light emitting element PX emits light
  • one source / drain region of the drive transistor TR D (the side connected to the feeder line PS1 in FIG. 2) serves as a source region
  • the other source / drain region serves as a drain region. ..
  • One electrode and the other electrode constituting the capacitance portion CS are connected to one source / drain region and the gate electrode of the drive transistor TR D , respectively.
  • the other source / drain region of the drive transistor TR D is connected to the anode electrode of the light emitting unit ELP.
  • the light emitting element PX includes a light emitting unit ELP composed of an organic electroluminescence element.
  • the light emitting unit ELP is a current-driven light emitting unit whose emission brightness changes according to the flowing current value, and is a well-known unit including an anode electrode, a hole transport layer, a light emitting layer, an electron transport layer, a cathode electrode, and the like. It has a structure and structure.
  • the other end of the light emitting unit ELP (specifically, the cathode electrode) is connected to the common feeder line PS2.
  • a predetermined voltage V CATH (for example, ground potential) is supplied to the common feeder line PS2.
  • the capacitance of the light emitting unit ELP is represented by the reference numeral C EL . If the capacity C EL of the light emitting unit ELP is small and causes a problem in driving, an auxiliary capacity connected in parallel to the light emitting unit ELP may be provided as necessary.
  • the write transistor TR W has a gate electrode connected to the scanning line SCL, one source / drain region connected to the data line DTL, and the other source / drain region connected to the gate electrode of the drive transistor TR D. Has. As a result, the signal voltage from the data line DTL is written to the capacitance section CS via the write transistor TR W.
  • the capacitive section C S is connected between one source / drain region of the drive transistor TR D and the gate electrode.
  • a power supply voltage VC C is applied to one source / drain region of the drive transistor TR D from a power supply unit (not shown) via a feeder line PS1 m .
  • the capacitance section C S applies a voltage such as (VCC ⁇ V Sig ) to the gate of the drive transistor TR D. Hold as source voltage.
  • the drain current Ids represented by the following equation (1) flows through the drive transistor TR D , and the light emitting unit ELP emits light with a brightness corresponding to the current value.
  • I ds k ⁇ ⁇ ⁇ (( VCC -V Sig ) -
  • FIG. 3 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device.
  • the display device 1 includes a substrate 100 and a light emitting element PX arranged in a matrix on the substrate 100.
  • the light emitting unit ELP composed of an organic electroluminescence element is configured by sequentially laminating an organic layer 120 including a light emitting layer and a second electrode 121 on a first electrode 111 provided for each light emitting element PX.
  • the organic layer 120 is shown as a single layer in FIG.
  • the organic layer 120 is formed so as to emit white light.
  • a second electrode 121 made of, for example, a transparent conductive material is formed on the entire surface including the organic layer 120, and a protective layer 122 and a flattening layer 123 are further formed on the second electrode 121.
  • the first electrode 111 is made of, for example, a metal material, and the light emitted by the organic layer 120 is emitted from the second electrode 121 side.
  • the planar shape of the light emitting surface of the light emitting element PX generally follows the planar shape of the first electrode 111.
  • the light emitting element PX has a light emitting surface having a convex polygonal shape.
  • an optical element 140 independently provided corresponding to each light emitting element PX is arranged.
  • the display device 1 further includes a color filter 130 corresponding to the display color. The color filter 130 is arranged between the light emitting element PX and the optical element 140.
  • a partition wall 112 made of an insulating material is provided between the adjacent first electrodes 111. As a result, each light emitting unit ELP is divided. Although not shown, a drive circuit provided for each light emitting unit ELP is formed on the substrate 100. The light emitting state of the light emitting unit ELP is controlled according to the signal from the outside.
  • the color filter 130 is formed on the flattening layer 123. Specifically, a red color filter 130 R corresponding to the light emitting element PX for red display, a green color filter 130 G corresponding to the light emitting element PX for green display, and a blue color filter corresponding to the light emitting element PX for blue display. 130 B is arranged.
  • the display device 1 includes at least a light emitting element such as a light emitting element PX for red display, a light emitting element PX for green display, and a light emitting element PX for blue display.
  • the optical element 140 independently provided corresponding to each light emitting element PX is arranged on the color filter 130.
  • the cross-sectional shape when the optical element 140 is cut in a virtual plane orthogonal to the light emitting element PX is trapezoidal or semicircular.
  • FIG. 3 shows an example in which the cross section of the optical element 140 is trapezoidal.
  • FIG. 4 shows an example in which the cross section of the optical element 140 is semicircular.
  • the display device 1 according to the first embodiment can be obtained by, for example, the following manufacturing process.
  • Step-100 The substrate 100 shown in FIG. 3 is prepared, and the first electrode 111 corresponding to each light emitting unit ELP is formed on the substrate 100. Next, the organic layer 120 including the light emitting layer, the second electrode 121, the protective layer 122, and the flattening layer 123 are sequentially formed.
  • the optical element 140 corresponding to each light emitting unit ELP is formed.
  • the color filter 130 is formed on the flattening layer 123 by a well-known method.
  • a transparent material layer that is the basis of the optical element 140 is formed on the entire surface.
  • a resist for forming an optical element is formed on the transparent material layer.
  • a trapezoidal resist is formed.
  • etching is performed to etch the resist and the transparent material layer.
  • the thicker the resist the smaller the amount of etching of the base, so that the trapezoidal optical element 140 is formed. If the resist is formed as a hemisphere, a trapezoidal optical element 140 is formed.
  • FIG. 5A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the first configuration example including a plurality of light emitting elements.
  • FIG. 5B is a schematic perspective view for explaining the shape of the optical element.
  • each light emitting element PX is arranged substantially in a square shape to form one pixel.
  • a light emitting element PX for red display is arranged in the upper left
  • blue display is arranged in the lower left and upper right
  • green display is arranged in the lower right.
  • the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display each have a rectangular light emitting surface.
  • the portion of the light emitting surface of each light emitting element PX is shown with hatched diagonal lines. The same applies to other drawings described later.
  • the group consisting of the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display is arranged in a rectangular shape as a whole.
  • Each light emitting element PX is provided with one optical element 140 corresponding to it.
  • an optical element 140 including a portion having a shape following the side of the light emitting surface and having a bottom surface extending the portion outside the region of the light emitting surface is covered.
  • the broken line indicates the side of the light emitting surface
  • the alternate long and short dash line indicates the side of the bottom surface of the optical element 140. The same applies to other drawings described later.
  • each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 5B.
  • Each optical element 140 can cover the entire light emitting surface, and more light from the organic film can be incident on the optical element 140. This makes it possible to improve the light extraction efficiency. As described above, it is possible to obtain a display device having an optical element above the light emitting element and having a structure capable of improving the light extraction efficiency.
  • FIG. 5B shows an example in which the cross sections of the optical elements 140 are all trapezoidal, but this is only an example.
  • the cross sections of the optical elements 140 are all semicircular, and as shown in FIG. 6B, trapezoidal and semicircular cross sections are mixed. It may be.
  • FIG. 7A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the second configuration example composed of a plurality of light emitting elements.
  • FIG. 7B is a schematic perspective view for explaining the shape of the optical element.
  • three light emitting elements PX are arranged substantially in a square shape to form one pixel.
  • a light emitting element PX for red display is arranged in the upper left
  • green display is arranged in the lower left
  • blue display is arranged in the right.
  • the side extending in the Y direction is a long side having a length corresponding to the side of the display element PX for red display and the side of the display element PX for green display.
  • the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display each have a rectangular light emitting surface.
  • the group consisting of the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display is arranged in a rectangular shape as a whole.
  • Each light emitting element PX is provided with one optical element 140 corresponding to it.
  • an optical element 140 including a portion having a shape following the side of the light emitting surface and having a bottom surface extending the portion outside the region of the light emitting surface is covered.
  • each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 7B.
  • Each optical element 140 can cover the entire light emitting surface, and more light from the organic film can be incident on the optical element 140. This makes it possible to improve the light extraction efficiency.
  • FIG. 7B shows an example in which the cross sections of the optical elements 140 are all trapezoidal, but this is only an example.
  • the cross sections of the optical elements 140 are all semicircular, and as shown in FIG. 8B, trapezoidal and semicircular cross sections are mixed. It may be.
  • FIG. 9A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the third configuration example including a plurality of light emitting elements.
  • FIG. 9B is a schematic perspective view for explaining the shape of the optical element.
  • the third configuration example is a modification of the second configuration example, in which the light emitting portion of the light emitting element PX for blue display is divided.
  • the light emitting element PX for displaying blue has a configuration in which the first electrode 111 shown in FIG. 3 is divided and arranged.
  • One optical element 140 is provided so as to correspond to the light emitting element PX for red display and the light emitting element PX for green display. As for the light emitting element PX for displaying blue, an independent optical element 140 is arranged in each of the two light emitting units ELP corresponding to the divided first electrode 111.
  • each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 7B. As with the other configuration examples described above, even if the cross sections of the optical elements 140 are all semicircular, or if the cross sections are trapezoidal and semicircular. good.
  • FIG. 10A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fourth configuration example including a plurality of light emitting elements.
  • FIG. 10B is a schematic perspective view for explaining the shape of the optical element.
  • the fourth configuration example is a so-called delta array configuration, in which a light emitting element PX for displaying blue is arranged on the upper side, for displaying green on the lower left side, and for displaying red on the lower right side.
  • the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display each have a regular hexagonal light emitting surface.
  • Each light emitting element PX is provided with one optical element 140 corresponding to it.
  • an optical element 140 including a portion having a shape following the side of the light emitting surface and having a bottom surface extending the portion outside the region of the light emitting surface is covered.
  • each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 10B. As with the other configuration examples described above, even if the cross sections of the optical elements 140 are all semicircular, or if the cross sections are trapezoidal and semicircular. good.
  • FIG. 11A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fifth configuration example including a plurality of light emitting elements.
  • FIG. 11B is a schematic perspective view for explaining the shape of the optical element.
  • FIG. 12A is a schematic partial plan view for explaining the arrangement relationship between the pixels and the optical element according to the fifth configuration example, following FIG. 11.
  • FIG. 12B is a schematic perspective view for explaining the shape of the optical element.
  • the fifth configuration example is a modification of the second configuration example, in which a plurality of optical elements are arranged on a light emitting element PX for displaying a specific color (here, a light emitting element PX for displaying blue). It is a composition such as being.
  • the light emitting element PX for displaying blue has a rectangular light emitting surface.
  • two optical elements 140 are provided side by side in the long side direction (Y direction in the figure) of the light emitting surface.
  • the cross sections of the optical elements 140 are all trapezoidal and show the appearance as shown in FIG. 11B.
  • three optical elements 140 are provided side by side in the long side direction (Y direction in the figure) of the light emitting surface.
  • the cross sections of the optical elements 140 are all trapezoidal and show the appearance as shown in FIG. 12B.
  • the number of optical elements 140 to be arranged in the light emitting element PX for displaying a specific color may be appropriately set by an experiment or the like in consideration of the light extraction efficiency.
  • FIG. 13A is a schematic plan view for explaining the long side and the short side of the rectangular light emitting surface.
  • FIG. 13B is a schematic graph for explaining the relationship between the dimensions of the long side and the number of optical elements when the light extraction efficiency is maximized.
  • the length of the long side of the rectangular light emitting surface is represented by the symbol L
  • the length of the short side is represented by the symbol W.
  • Reference numeral LA indicates a region where an optical element can be arranged.
  • the inventors set various values of the length L of the long side by using an optical simulation, and obtained the number (number of divisions) of the optical elements 140 when the light extraction efficiency was the highest at that time. ..
  • the graphed results are shown in FIG. 13B.
  • the graph shown in FIG. 13B is a linear function with a Y-intercept of about 0.1 and a slope of about 0.38. Therefore, basically, it tends to be preferable to increase the number of optical elements (number of divisions) as the length L of the long side becomes longer.
  • the length L of the long side is, for example, 8 micrometers, it is preferable to arrange three optical elements 140 in terms of light extraction efficiency. Further, when the length L of the long side is, for example, 13 micrometers, it is preferable to arrange five optical elements 140.
  • the optical element 140 may be divided and arranged in each of the long side direction and the short side direction. Conceivable.
  • FIG. 14A is a schematic plan view for explaining a case where an optical element divided into a long side direction and a short side direction is arranged on a rectangular light emitting surface.
  • FIG. 14B is a schematic perspective view for explaining the shape of the optical element.
  • the second embodiment also relates to a display device and an electronic device according to the present disclosure.
  • FIG. 15 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second embodiment.
  • the display device 1 may be read as the display device 2 in FIG.
  • the color filter is arranged between the light emitting element and the optical element.
  • the color filter is arranged above the optical element.
  • the optical element 240 is arranged above the light emitting element PX via a packed bed 224 made of a transparent material. However, unlike the first embodiment, it is arranged so as to have a convex shape on the light emitting element PX side.
  • the upper part of the light emitting element PX is provided independently corresponding to each light emitting element PX, and includes an optical portion having a shape that imitates the side of the light emitting surface, and the portion has an upper surface extending outside the region of the light emitting surface. It is covered by the element 240.
  • the color filter 130 is arranged on the optical element 240 and the packed bed 224.
  • FIG. 15 shows an example in which the cross section of the optical element 240 is trapezoidal. As in the first embodiment, the cross section of the optical element 240 may be semicircular.
  • FIG. 16 shows an example in which the cross section of the optical element 240 is semicircular.
  • the contents described with reference to FIGS. 5 to 12 may be appropriately read, except that the relationship between the bottom surface and the upper surface of the optical element 240 is exchanged, and thus the description thereof is omitted. do.
  • a third embodiment also relates to a display device and an electronic device according to the present disclosure.
  • FIG. 17 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the third embodiment.
  • the display device 1 may be read as the display device 3 in FIG.
  • the light emitting element includes a light emitting unit composed of an organic electroluminescence element.
  • the light emitting element has a resonator structure that resonates light.
  • the display device 3 Similar to the display device 1 of the first embodiment, the display device 3 includes a substrate 100 and a light emitting element PX arranged in a matrix on the substrate 100. Unlike the display device 1, in the display device 3, a reflective film ML made of, for example, aluminum or the like is formed on the substrate 100 at a position corresponding to each light emitting unit ELP.
  • the light emitting unit ELP composed of an organic electroluminescence element is configured by sequentially laminating an organic layer 120 including a light emitting layer and a second electrode 421 on a first electrode 411 provided for each light emitting element PX.
  • the first electrode 411 is formed of a transparent conductive material such as ITO.
  • a partition wall 112 made of an insulating material is provided between the adjacent first electrodes 411.
  • the organic layer 120 including the light emitting layer and the second electrode 421 are sequentially laminated on the entire surface including the first electrode 411 and the partition wall portion 112.
  • the organic layer 120 is formed so as to emit white light.
  • the second electrode 421 is formed of a semi-transmissive conductive material such as a metal thin film.
  • a protective layer 122 and a flattening layer 123 are formed on the second electrode 421.
  • the optical element 140 described in the first embodiment is formed on the flattening layer 123.
  • the resonator structure is formed by a microcavity structure in which the optical path length between the reflective film ML and the second electrode 421 is different for each display color.
  • the optical path length can be adjusted by forming the base on which the reflective film ML is formed by laminating a plurality of material layers and by making the number of layers of the base different according to the type of pixel PX. can.
  • the display device according to the third embodiment can basically perform color display without using a color filter.
  • the display device according to the third embodiment can be modified in various ways. Hereinafter, a modified example will be described.
  • FIG. 18 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the first modification of the third embodiment.
  • the display device 3A shown in FIG. 18 further includes a color filter corresponding to the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display with respect to the display device 3 shown in FIG. It is a configuration that is equipped.
  • the wavelength of the light extracted from the light emitting element PX for each display color may fluctuate to some extent. Therefore, in reality, some color mixing may occur in the display color of the light emitting element PX. Therefore, it is possible to improve the color purity by providing a color filter according to the display color.
  • FIG. 19 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second modification of the third embodiment.
  • the display device 3B shown in FIG. 19 is configured to further include a color filter corresponding to the light emitting element PX for red display with respect to the display device 3 shown in FIG.
  • a color filter corresponding to the light emitting element PX for red display with respect to the display device 3 shown in FIG.
  • the color filter 130 T made of a colorless and transparent material is arranged in the light emitting element PX for displaying green and the light emitting element PX for displaying blue.
  • a red color filter 130 R is arranged only for the light emitting element PX for red display that emits red light having a relatively long wavelength.
  • the arrangement relationship between the light emitting element PX and the optical element 140 may be appropriately read as described with reference to FIGS. 5 to 12. Therefore, the description is omitted. Further, the display device according to the third embodiment may also be configured such that the optical element is arranged between the light emitting element and the color filter as in the second embodiment.
  • the display device of the present disclosure described above is used as a display unit (display device) of an electronic device in all fields for displaying a video signal input to an electronic device or a video signal generated in the electronic device as an image or a video.
  • a display unit such as a television set, a digital still camera, a notebook personal computer, a portable terminal device such as a mobile phone, a video camera, and a head mount display (head-mounted display).
  • the display device of the present disclosure also includes a modular device having a sealed configuration.
  • the display module may be provided with a circuit unit for inputting / outputting a signal or the like from the outside to the light emitting region, a flexible printed circuit (FPC), or the like.
  • FPC flexible printed circuit
  • a digital still camera and a head-mounted display will be illustrated as specific examples of the electronic device using the display device of the present disclosure. However, the specific examples exemplified here are only examples, and are not limited to these.
  • FIG. 20 is an external view of an interchangeable lens single-lens reflex type digital still camera, the front view thereof is shown in FIG. 20A, and the rear view thereof is shown in FIG. 20B.
  • the interchangeable-lens single-lens reflex type digital still camera has, for example, an interchangeable shooting lens unit (interchangeable lens) 512 on the front right side of the camera body (camera body) 511, and is held by the photographer on the front left side. It has a grip portion 513 for the purpose.
  • interchangeable shooting lens unit interchangeable lens
  • a monitor 514 is provided in the center of the back of the camera body 511.
  • a view finder (eyepiece window) 515 is provided on the upper part of the monitor 514. By looking into the viewfinder 515, the photographer can visually recognize the optical image of the subject guided from the photographing lens unit 512 and determine the composition.
  • the display device of the present disclosure can be used as the viewfinder 515. That is, the interchangeable lens type single-lens reflex type digital still camera according to this example is manufactured by using the display device of the present disclosure as the viewfinder 515.
  • FIG. 21 is an external view of the head-mounted display.
  • the head-mounted display has, for example, ear hooks 612 for being worn on the user's head on both sides of the eyeglass-shaped display unit 611.
  • the display device of the present disclosure can be used as the display unit 611. That is, the head-mounted display according to this example is manufactured by using the display device of the present disclosure as the display unit 611.
  • FIG. 22 is an external view of the see-through head-mounted display.
  • the see-through head-mounted display 711 is composed of a main body 712, an arm 713, and a lens barrel 714.
  • the main body 712 is connected to the arm 713 and the glasses 700. Specifically, the end portion of the main body portion 712 in the long side direction is connected to the arm 713, and one side of the side surface of the main body portion 712 is connected to the eyeglasses 700 via a connecting member.
  • the main body 712 may be directly attached to the head of the human body.
  • the main body 712 incorporates a control board for controlling the operation of the see-through head-mounted display 711 and a display unit.
  • the arm 713 connects the main body 712 and the lens barrel 714, and supports the lens barrel 714. Specifically, the arm 713 is coupled to the end of the main body 712 and the end of the lens barrel 714, respectively, to fix the lens barrel 714. Further, the arm 713 has a built-in signal line for communicating data related to an image provided from the main body 712 to the lens barrel 714.
  • the lens barrel 714 projects the image light provided from the main body 712 via the arm 713 toward the eyes of the user who wears the see-through head-mounted display 711 through the eyepiece.
  • the display device of the present disclosure can be used for the display unit of the main body unit 712.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is any kind of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). It may be realized as a device mounted on the body.
  • FIG. 23 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an in-vehicle information detection unit 7500, and an integrated control unit 7600. ..
  • the communication network 7010 connecting these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various arithmetic, and a drive circuit that drives various controlled devices. To prepare for.
  • Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and is connected to devices or sensors inside or outside the vehicle by wired communication or wireless communication.
  • a communication I / F for performing communication is provided. In FIG.
  • control unit 7600 As the functional configuration of the integrated control unit 7600, the microcomputer 7610, the general-purpose communication I / F7620, the dedicated communication I / F7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I / F7660, the audio image output unit 7670, The vehicle-mounted network I / F 7680 and the storage unit 7690 are illustrated.
  • Other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 has a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • the vehicle state detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 may include, for example, a gyro sensor that detects the angular velocity of the axial rotation motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or steering wheel steering. It includes at least one of sensors for detecting an angle, engine speed, wheel speed, and the like.
  • the drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • a radio wave transmitted from a portable device that substitutes for a key or signals of various switches may be input to the body system control unit 7200.
  • the body system control unit 7200 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source of the drive motor, according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature control of the secondary battery 7310 or the cooling device provided in the battery device.
  • the vehicle outside information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000.
  • the image pickup unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400.
  • the image pickup unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle outside information detection unit 7420 is used, for example, to detect the current weather or an environment sensor for detecting the weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the ambient information detection sensors is included.
  • the environment sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the image pickup unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 24 shows an example of the installation position of the image pickup unit 7410 and the vehicle exterior information detection unit 7420.
  • the image pickup unit 7910, 7912, 7914, 7916, 7918 are provided, for example, at at least one of the front nose, side mirror, rear bumper, back door, and upper part of the windshield of the vehicle interior of the vehicle 7900.
  • the image pickup unit 7910 provided in the front nose and the image pickup section 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • the image pickup units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900.
  • the image pickup unit 7916 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900.
  • the image pickup unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 24 shows an example of the shooting range of each of the imaging units 7910, 7912, 7914, 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose
  • the imaging ranges b and c indicate the imaging range of the imaging units 7912 and 7914 provided on the side mirrors, respectively
  • the imaging range d indicates the imaging range d.
  • the imaging range of the imaging unit 7916 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the image pickup units 7910, 7912, 7914, 7916, a bird's-eye view image of the vehicle 7900 can be obtained.
  • the vehicle exterior information detection unit 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, side, corner and the upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, an ultrasonic sensor or a radar device.
  • the vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, a lidar device.
  • These out-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, or the like.
  • the vehicle outside information detection unit 7400 causes the image pickup unit 7410 to capture an image of the outside of the vehicle and receives the captured image data. Further, the vehicle exterior information detection unit 7400 receives detection information from the connected vehicle exterior information detection unit 7420. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a lidar device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information.
  • the out-of-vehicle information detection unit 7400 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on a road surface based on the received information.
  • the out-of-vehicle information detection unit 7400 may perform an environment recognition process for recognizing rainfall, fog, road surface conditions, etc. based on the received information.
  • the out-of-vehicle information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
  • the vehicle outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a vehicle, an obstacle, a sign, a character on the road surface, or the like based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different image pickup units 7410 to generate a bird's-eye view image or a panoramic image. May be good.
  • the vehicle exterior information detection unit 7400 may perform the viewpoint conversion process using the image data captured by different image pickup units 7410.
  • the in-vehicle information detection unit 7500 detects the in-vehicle information.
  • a driver state detection unit 7510 that detects the state of the driver is connected to the in-vehicle information detection unit 7500.
  • the driver state detection unit 7510 may include a camera that captures the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like.
  • the biosensor is provided on, for example, on the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and may determine whether the driver is asleep. You may.
  • the in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
  • the integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device that can be input-operated by the occupant, such as a touch panel, a button, a microphone, a switch, or a lever. Data obtained by recognizing the voice input by the microphone may be input to the integrated control unit 7600.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. You may.
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Further, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the above input unit 7800 and outputs the input signal to the integrated control unit 7600. By operating the input unit 7800, the passenger or the like inputs various data to the vehicle control system 7000 and instructs the processing operation.
  • the storage unit 7690 may include a ROM (Read Only Memory) for storing various programs executed by the microcomputer, and a RAM (Random Access Memory) for storing various parameters, calculation results, sensor values, and the like. Further, the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750.
  • General-purpose communication I / F7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or wireless LAN (Wi-Fi).
  • GSM Global System of Mobile communications
  • WiMAX Wireless F
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • Wi-Fi wireless LAN
  • Other wireless communication protocols such as (also referred to as (registered trademark)) and Bluetooth (registered trademark) may be implemented.
  • the general-purpose communication I / F7620 connects to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point, for example. You may. Further, the general-purpose communication I / F7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in a vehicle.
  • the dedicated communication I / F7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of the lower layer IEEE802.11p and the upper layer IEEE1609, or a cellular communication protocol. May be implemented.
  • Dedicated communication I / F7630 is typically vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-house (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Pedestrian) communication. ) Carry out V2X communication, a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), executes positioning, and executes positioning, and the latitude, longitude, and altitude of the vehicle. Generate location information including.
  • the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
  • the beacon receiving unit 7650 receives, for example, a radio wave or an electromagnetic wave transmitted from a radio station or the like installed on a road, and acquires information such as a current position, a traffic jam, a road closure, or a required time.
  • the function of the beacon receiving unit 7650 may be included in the above-mentioned dedicated communication I / F 7630.
  • the in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle.
  • the in-vehicle device I / F7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • the in-vehicle device I / F7660 is connected via a connection terminal (and a cable if necessary) (not shown), USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL (Mobile).
  • a wired connection such as High-definition Link may be established.
  • the in-vehicle device 7760 may include, for example, at least one of a passenger's mobile device or wearable device, or information device carried in or attached to the vehicle. Further, the in-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination.
  • the in-vehicle device I / F 7660 exchanges a control signal or a data signal with these in-vehicle devices 7760.
  • the in-vehicle network I / F7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the vehicle-mounted network I / F7680 transmits / receives signals and the like according to a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 is via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680.
  • the vehicle control system 7000 is controlled according to various programs based on the information acquired. For example, the microcomputer 7610 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. May be good.
  • the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. Cooperative control may be performed for the purpose of.
  • the microcomputer 7610 automatically travels autonomously without relying on the driver's operation by controlling the driving force generator, steering mechanism, braking device, etc. based on the acquired information on the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving or the like.
  • the microcomputer 7610 has information acquired via at least one of a general-purpose communication I / F7620, a dedicated communication I / F7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F7660, and an in-vehicle network I / F7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict the danger of a vehicle collision, a pedestrian or the like approaching or entering a closed road, and generate a warning signal based on the acquired information.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are exemplified as output devices.
  • the display unit 7720 may include, for example, at least one of an onboard display and a head-up display.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be other devices such as headphones, wearable devices such as eyeglass-type displays worn by passengers, projectors or lamps other than these devices.
  • the display device displays the results obtained by various processes performed by the microcomputer 7610 or the information received from other control units in various formats such as texts, images, tables, and graphs. Display visually.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs the audio signal audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be composed of a plurality of control units.
  • the vehicle control system 7000 may include another control unit (not shown).
  • the other control unit may have a part or all of the functions carried out by any of the control units. That is, as long as information is transmitted and received via the communication network 7010, predetermined arithmetic processing may be performed by any of the control units.
  • a sensor or device connected to any control unit may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. .
  • the technique according to the present disclosure can be applied to, for example, the display unit of an output device capable of visually or audibly notifying information among the configurations described above.
  • the light emitting element contains light emitting elements arranged in a matrix and contains light emitting elements.
  • the light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
  • the upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface.
  • Covered, Display device [A2]
  • the cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is trapezoidal or semicircular. The display device according to the above [A1].
  • the light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
  • Each light emitting element is provided with at least one optical element corresponding to it.
  • the display device includes at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
  • the light emitting element for displaying a specific color has a rectangular light emitting surface, and has a rectangular light emitting surface. A plurality of optical elements are provided side by side in the long side direction of the light emitting surface.
  • Each light emitting element for blue display is provided so as to correspond to a plurality of optical elements.
  • [A9] The group consisting of a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display is arranged in a rectangular shape as a whole.
  • the display device further includes a color filter corresponding to the display color.
  • the color filter is arranged between the light emitting element and the optical element.
  • the color filter is located above the optical element, The display device according to the above [A10].
  • the light emitting device includes a light emitting unit composed of an organic electroluminescence device.
  • the light emitting element has a resonator structure that resonates light.
  • the display device further includes a color filter corresponding to a light emitting element for displaying red.
  • the display device further includes a light emitting element for red display, a light emitting element for green display, and a color filter corresponding to the light emitting element for blue display.
  • the light emitting element contains light emitting elements arranged in a matrix and contains light emitting elements.
  • the light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
  • the upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface.
  • the cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is trapezoidal or semicircular. The electronic device according to the above [B1].
  • the light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
  • Each light emitting element is provided with at least one optical element corresponding to it.
  • the display device includes at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
  • the light emitting element for displaying a specific color has a rectangular light emitting surface, and has a rectangular light emitting surface. A plurality of optical elements are provided side by side in the long side direction of the light emitting surface.
  • Each light emitting element for blue display is provided so as to correspond to a plurality of optical elements.
  • the group consisting of a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display is arranged in a rectangular shape as a whole.
  • the display device further includes a color filter corresponding to the display color.
  • the color filter is arranged between the light emitting element and the optical element.
  • the color filter is located above the optical element,
  • the light emitting device includes a light emitting unit composed of an organic electroluminescence device.
  • the light emitting element has a resonator structure that resonates light.
  • the display device further includes a color filter corresponding to a light emitting element for displaying red.
  • the display device further includes a light emitting element for red display, a light emitting element for green display, and a color filter corresponding to the light emitting element for blue display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display device according to the present disclosure includes light-emitting elements arranged in a matrix. Each light-emitting element has a convex polygon-shaped light-emitting surface, and an upper part of the light-emitting element is covered with an optical element provided independently to correspond to each light-emitting element, and having a bottom surface or a top surface including a portion with a shape copying the sides of the light-emitting surface, the portion extending to the outside of the region of the light-emitting surface.

Description

表示装置および電子機器Display devices and electronic devices
 本開示は、表示装置および電子機器に関する。 This disclosure relates to display devices and electronic devices.
 電流駆動型の発光部を有する発光素子や、係る発光素子を備えた表示装置が周知である。例えば、有機エレクトロルミネッセンス素子から成る発光部を備えた発光素子は、低電圧直流駆動による高輝度発光が可能な発光素子として注目されている。 A light emitting element having a current-driven light emitting unit and a display device provided with such a light emitting element are well known. For example, a light emitting element provided with a light emitting unit composed of an organic electroluminescence element is attracting attention as a light emitting element capable of high-luminance light emission by low-voltage direct current drive.
 眼鏡やゴーグルなどといったアイウェアに装着されて画像表示を行う表示装置にあっては、発光素子のサイズを数マイクロメートルないし10マイクロメートル程度とするといったことに加えて、高輝度化を図ることが求められている。例えば、特許文献1には、発光層の上に半球状の光学素子を配置して光の取り出し効率を向上させるといったことが記載されている。 For display devices that are attached to eyewear such as eyeglasses and goggles to display images, in addition to making the size of the light emitting element about several micrometers to 10 micrometers, it is possible to increase the brightness. It has been demanded. For example, Patent Document 1 describes that a hemispherical optical element is arranged on a light emitting layer to improve the light extraction efficiency.
特開2011-60720号公報Japanese Unexamined Patent Publication No. 2011-60720
 発光素子の発光面の形状が例えば矩形状である場合、底面が円形状の光学素子を配置すると、光学素子が発光面を全て覆うことが困難である。このため、光学素子に入射しない光の割合が大きくなり、光の取り出し効率が低下する。 When the shape of the light emitting surface of the light emitting element is, for example, rectangular, if an optical element having a circular bottom surface is arranged, it is difficult for the optical element to completely cover the light emitting surface. Therefore, the proportion of light that does not enter the optical element increases, and the light extraction efficiency decreases.
 従って、本開示の目的は、発光素子の上方に光学素子を備えると共に、光の取り出し効率を向上させることができる構造を有する表示装置および係る表示装置を備えた電子機器を提供することにある。 Therefore, an object of the present disclosure is to provide a display device having an optical element above the light emitting element and having a structure capable of improving the light extraction efficiency, and an electronic device provided with such a display device.
 上記の目的を達成するための本開示に係る表示装置は、
 マトリクス状に配置された発光素子を含んでおり、
 発光素子は、凸多角形状の発光面を有しており、
 発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている、
表示装置である。
The display device according to the present disclosure for achieving the above object is
It contains light emitting elements arranged in a matrix and contains light emitting elements.
The light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
The upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered,
It is a display device.
 上記の目的を達成するための本開示に係る電子機器は、
 マトリクス状に配置された発光素子を含んでおり、
 発光素子は、凸多角形状の発光面を有しており、
 発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている、
表示装置を備えた電子機器である。
The electronic devices pertaining to this disclosure to achieve the above objectives are:
It contains light emitting elements arranged in a matrix and contains light emitting elements.
The light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
The upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered,
It is an electronic device equipped with a display device.
図1は、第1の実施形態に係る表示装置を説明するための模式的な平面図である。FIG. 1 is a schematic plan view for explaining the display device according to the first embodiment. 図2は、発光素子の構成を説明するための模式的な回路図である。FIG. 2 is a schematic circuit diagram for explaining the configuration of the light emitting element. 図3は、表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 3 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device. 図4は、図3に引き続き、表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 4 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device, following FIG. 図5Aは、複数の発光素子から成る第1の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。FIG. 5A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the first configuration example including a plurality of light emitting elements. 図5Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 5B is a schematic perspective view for explaining the shape of the optical element. 図6Aは、図5Bに引き続き、光学素子の形状を説明するための模式的な斜視図である。FIG. 6A is a schematic perspective view for explaining the shape of the optical element, following FIG. 5B. 図6Bは、図5Bに引き続き、光学素子の形状を説明するための模式的な斜視図である。FIG. 6B is a schematic perspective view for explaining the shape of the optical element, following FIG. 5B. 図7Aは、複数の発光素子から成る第2の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。FIG. 7A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the second configuration example including the plurality of light emitting elements. 図7Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 7B is a schematic perspective view for explaining the shape of the optical element. 図8Aは、図7Bに引き続き、光学素子の形状を説明するための模式的な斜視図である。FIG. 8A is a schematic perspective view for explaining the shape of the optical element, following FIG. 7B. 図8Bは、図7Bに引き続き、光学素子の形状を説明するための模式的な斜視図である。FIG. 8B is a schematic perspective view for explaining the shape of the optical element, following FIG. 7B. 図9Aは、複数の発光素子から成る第3の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。FIG. 9A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the third configuration example including the plurality of light emitting elements. 図9Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 9B is a schematic perspective view for explaining the shape of the optical element. 図10Aは、複数の発光素子から成る第4の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。FIG. 10A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fourth configuration example including the plurality of light emitting elements. 図10Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 10B is a schematic perspective view for explaining the shape of the optical element. 図11Aは、複数の発光素子から成る第5の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。FIG. 11A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fifth configuration example including the plurality of light emitting elements. 図11Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 11B is a schematic perspective view for explaining the shape of the optical element. 図12Aは、図11Aに引き続き、第5の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。FIG. 12A is a schematic partial plan view for explaining the arrangement relationship between the pixels and the optical element according to the fifth configuration example, following FIG. 11A. 図12Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 12B is a schematic perspective view for explaining the shape of the optical element. 図13Aは、矩形状の発光面における長辺と短辺とを説明するための模式的な平面図である。FIG. 13A is a schematic plan view for explaining the long side and the short side of the rectangular light emitting surface. 図13Bは、長辺の寸法と光の取り出し効率が最も大きくなるときの光学素子の個数との関係を説明するための模式的なグラフである。FIG. 13B is a schematic graph for explaining the relationship between the dimensions of the long side and the number of optical elements when the light extraction efficiency is maximized. 図14Aは、矩形状の発光面において長辺方向と短辺方向とにそれぞれ分割された光学素子を配置する場合を説明するための模式的な平面図である。FIG. 14A is a schematic plan view for explaining a case where an optical element divided into a long side direction and a short side direction is arranged on a rectangular light emitting surface. 図14Bは、光学素子の形状を説明するための模式的な斜視図である。FIG. 14B is a schematic perspective view for explaining the shape of the optical element. 図15は、第2の実施形態に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 15 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second embodiment. 図16は、図15に引き続き、表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 16 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device, following FIG. 図17は、第3の実施形態に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 17 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the third embodiment. 図18は、第3の実施形態の第1の変形例に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 18 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the first modification of the third embodiment. 図19は、第3の実施形態の第2の変形例に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。FIG. 19 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second modification of the third embodiment. 図20Aは、レンズ交換式一眼レフレックスタイプのデジタルスチルカメラの正面図である。FIG. 20A is a front view of an interchangeable lens single-lens reflex type digital still camera. 図20Bは、レンズ交換式一眼レフレックスタイプのデジタルスチルカメラの背面図である。FIG. 20B is a rear view of an interchangeable lens single-lens reflex type digital still camera. 図21は、ヘッドマウントディスプレイの外観図である。FIG. 21 is an external view of the head-mounted display. 図22は、シースルーヘッドマウントディスプレイの外観図である。FIG. 22 is an external view of the see-through head-mounted display. 図23は、車両制御システムの概略的な構成の一例を示すブロック図である。FIG. 23 is a block diagram showing an example of a schematic configuration of a vehicle control system. 図24は、車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 24 is an explanatory diagram showing an example of the installation positions of the vehicle exterior information detection unit and the image pickup unit.
 以下、図面を参照して、実施形態に基づいて本開示を説明する。本開示は実施形態に限定されるものではなく、実施形態における種々の数値や材料は例示である。以下の説明において、同一要素または同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は、以下の順序で行う。
 1.本開示に係る表示装置および電子機器、全般に関する説明
 2.第1の実施形態および各種の構成例
 3.第2の実施形態
 4.第3の実施形態および各種の変形例
 5.電子機器の説明
 6.応用例
 7.その他
Hereinafter, the present disclosure will be described with reference to the drawings. The present disclosure is not limited to embodiments, and various numerical values and materials in the embodiments are examples. In the following description, the same reference numerals will be used for the same elements or elements having the same function, and duplicate description will be omitted. The explanation will be given in the following order.
1. 1. Description of display devices and electronic devices related to this disclosure in general 2. First embodiment and various configuration examples 3. Second embodiment 4. 3. Third embodiment and various modifications 5. Description of electronic devices 6. Application example 7. others
[本開示に係る表示装置および電子機器、全般に関する説明]
 上述したように、本開示に係る表示装置および本開示に係る電子機器に用いられる表示装置(以下、これらを単に「本開示の表示装置」と呼ぶ場合がある。)は、マトリクス状に配置された発光素子を含んでおり、発光素子は、凸多角形状の発光面を有しており、発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている。
[Explanation of display devices and electronic devices related to this disclosure, in general]
As described above, the display device according to the present disclosure and the display device used for the electronic device according to the present disclosure (hereinafter, these may be simply referred to as "the display device of the present disclosure") are arranged in a matrix. The light emitting element has a convex polygonal light emitting surface, and the upper part of the light emitting element is independently provided corresponding to each light emitting element and follows the side of the light emitting surface. A portion of the shape is included and the portion is covered by an optical element having a bottom surface or an upper surface extending outside the region of the light emitting surface.
 この場合において、発光素子に直交する仮想平面で光学素子を切断したときの断面形状は、半円状、台形状、矩形状および多角形状のいずれかの形状、またはこれらを組み合わせた形状である構成とすることができる。基本的には、断面形状は、台形状あるいは半円状である構成とすることが好ましい。尚、「半円状」は厳密に半円状であることに限られず、実使用上において半円状と認められる形状を含む。 In this case, the cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is a semicircular shape, a trapezoidal shape, a rectangular shape, a polygonal shape, or a combination thereof. Can be. Basically, it is preferable that the cross-sectional shape is trapezoidal or semicircular. It should be noted that the "semicircular shape" is not limited to a strictly semicircular shape, but includes a shape recognized as a semicircular shape in actual use.
 光学素子を構成する材料は、透明な有機材料や無機材料から、適宜好適なものを選んで用いればよい。光学素子は、例えば透明材料層の上にレジストを形成し、エッチングを施すことによって得ることができる。 As the material constituting the optical element, a suitable material may be appropriately selected from transparent organic materials and inorganic materials. The optical element can be obtained, for example, by forming a resist on a transparent material layer and etching it.
 上述したように、本開示の表示装置において、発光素子は凸多角形状の発光面を有する。凸多角形状は、例えば、正三角形状、正方形状、正六角形状といった正平面充填型の形状であってもよいし、長方形などの矩形状であってもよい。基本的には、発光素子の発光面は、矩形状または正六角形状とすることが好ましい。 As described above, in the display device of the present disclosure, the light emitting element has a convex polygonal light emitting surface. The convex polygon shape may be a regular tessellation type shape such as a regular triangle shape, a square shape, or a regular hexagon shape, or may be a rectangular shape such as a rectangle. Basically, it is preferable that the light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
 上述した各種の好ましい構成を含む本開示の表示装置において、各発光素子には少なくとも1つの光学素子が対応するように設けられているように構成することができる。 In the display device of the present disclosure including the various preferable configurations described above, each light emitting element can be configured so that at least one optical element corresponds to it.
 上述した各種の好ましい構成を含む本開示の表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子を少なくとも含んでいる構成とすることができる。この場合において、或る特定色表示用の各発光素子には複数の光学素子が対応するように設けられている構成とすることができる。 The display device of the present disclosure including the various preferable configurations described above can be configured to include at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display. In this case, each light emitting element for displaying a specific color may be configured so that a plurality of optical elements correspond to each other.
 この場合において、特定色表示用の発光素子は矩形状の発光面を備えており、発光面の長辺方向に並んで複数の光学素子が設けられている構成とすることができる。特に、青色表示用の各発光素子には複数の光学素子が対応するように設けられている構成とすることができる。 In this case, the light emitting element for displaying a specific color is provided with a rectangular light emitting surface, and a plurality of optical elements can be provided side by side in the long side direction of the light emitting surface. In particular, each light emitting element for displaying blue can be configured so that a plurality of optical elements correspond to each other.
 上述した各種の好ましい構成を含む、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子を少なくとも含んでいる表示装置において、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子から成る群の発光面は、全体として矩形状に配置されている構成とすることができる。 A light emitting element for red display, a light emitting element for green display, and a display device including at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display, which include various preferable configurations described above. The light emitting surface of the group consisting of the element and the light emitting element for displaying blue can be configured to be arranged in a rectangular shape as a whole.
 上述した各種の好ましい構成を含む本開示の表示装置は、表示色に対応したカラーフィルタを更に備えている構成とすることができる。例えば、表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子に対応したカラーフィルタを更に備えている構成とすることができる。 The display device of the present disclosure including the various preferable configurations described above can be configured to further include a color filter corresponding to the display color. For example, the display device may be further provided with a color filter corresponding to a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
 この場合において、カラーフィルタは、発光素子と光学素子との間に配置されている構成とすることができる。あるいは又、カラーフィルタは、光学素子の上方に配置されている構成とすることができる。 In this case, the color filter can be configured to be arranged between the light emitting element and the optical element. Alternatively, the color filter may be configured to be located above the optical element.
 カラーフィルタは、色材および/または量子ドットを構成する微粒子を含む構成とすることができる。カラーフィルタは、所望の色材等を添加した周知のレジスト材料を用いて構成すればよい。色材として、周知の顔料や染料を用いることができる。また、量子ドットを構成する微粒子は特に限定するものではなく、例えば、発光性の半導体ナノ粒子を用いることができる。色材を含むカラーフィルタは、発光素子からの光のうち目的の波長範囲の光を透過させることでカラー表示を行う。また、量子ドットを構成する微粒子を含むカラーフィルタは、発光素子からの光の波長変換を行うことによってカラー表示を行う。 The color filter can be configured to include a coloring material and / or fine particles constituting quantum dots. The color filter may be configured by using a well-known resist material to which a desired color material or the like is added. Well-known pigments and dyes can be used as the coloring material. Further, the fine particles constituting the quantum dots are not particularly limited, and for example, luminescent semiconductor nanoparticles can be used. A color filter containing a color material performs color display by transmitting light in a target wavelength range among the light from a light emitting element. Further, a color filter containing fine particles constituting quantum dots performs color display by converting the wavelength of light from a light emitting element.
 上述した各種の好ましい構成を含む本開示の表示装置において、発光素子は、有機エレクトロルミネッセンス素子、LED素子、半導体レーザ素子などから成る発光部を含む構成とすることができる。これらは、周知の材料や方法を用いて構成することができる。平面型の表示装置を構成する観点からは、中でも、発光素子は有機エレクトロルミネッセンス素子から成る発光部を含む構成とすることが好ましい。 In the display device of the present disclosure including the various preferable configurations described above, the light emitting element may be configured to include a light emitting unit including an organic electroluminescence element, an LED element, a semiconductor laser element, and the like. These can be constructed using well-known materials and methods. From the viewpoint of configuring a flat display device, it is preferable that the light emitting element includes a light emitting unit including an organic electroluminescence element.
 この場合において、発光素子は光を共振させる共振器構造を備えている構成とすることができる。また、発光素子は発光を制御する駆動回路を含んでいてもよい。発光素子と駆動回路とは例えば層間絶縁膜に設けられたビアなどから成る導通部を介して接続することができる。共振器構造を備えることによって、発光素子の発光色を所定の表示色に設定することができるので、カラーフィルタは基本的には不要となる。但し、波長が長い光の色純度を更に向上させるために、表示装置は、赤色表示用の発光素子に対応したカラーフィルタを更に備えている構成とすることができる。あるいは又、表示色全般の色純度の向上のために、表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子に対応したカラーフィルタを更に備えている構成とすることもできる。 In this case, the light emitting element can be configured to have a resonator structure that resonates light. Further, the light emitting element may include a drive circuit for controlling light emission. The light emitting element and the drive circuit can be connected via, for example, a conductive portion made of a via provided in an interlayer insulating film. By providing the resonator structure, the emission color of the light emitting element can be set to a predetermined display color, so that a color filter is basically unnecessary. However, in order to further improve the color purity of light having a long wavelength, the display device may be configured to further include a color filter corresponding to a light emitting element for displaying red. Alternatively, in order to improve the color purity of the display color as a whole, the display device is further provided with a color filter corresponding to a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display. It can also be.
 上述した各種の好ましい構成を含む本開示の表示装置において、光学素子上を含む全面には透明な保護膜が形成されていてもよい。保護膜を構成する材料は、透明な有機材料や無機材料から、適宜好適なものを選んで用いればよい。 In the display device of the present disclosure including the various preferable configurations described above, a transparent protective film may be formed on the entire surface including the optical element. As the material constituting the protective film, a suitable material may be appropriately selected from transparent organic materials and inorganic materials.
 マトリクス状に配置されている発光素子は、例えば、基板上に形成される。基板の構成材料として、半導体材料、ガラス材料、あるいは、プラスチック材料を例示することができる。駆動回路を半導体基板に形成されたトランジスタによって構成するといった場合、例えばシリコンから成る半導体基板にウェル領域を設け、ウェル内にトランジスタを形成するといった構成とすればよい。一方、駆動回路を薄膜トランジスタなどによって構成するといった場合は、ガラス材料やプラスチック材料から成る基板を用いてその上に半導体薄膜を形成し駆動回路を形成することができる。各種の配線は、周知の構成や構造とすることができる。 The light emitting elements arranged in a matrix are formed on a substrate, for example. As the constituent material of the substrate, a semiconductor material, a glass material, or a plastic material can be exemplified. When the drive circuit is configured by a transistor formed on a semiconductor substrate, for example, a well region may be provided on a semiconductor substrate made of silicon and a transistor may be formed in the well. On the other hand, when the drive circuit is configured by a thin film transistor or the like, a semiconductor thin film can be formed on the substrate made of a glass material or a plastic material to form the drive circuit. The various wirings can have well-known configurations and structures.
 本開示の表示装置において、発光素子の発光を制御する駆動回路などの構成は特に限定するものではない。発光素子は、例えば、基板上の或る平面内に形成され、例えば、層間絶縁層を介して、発光素子を駆動する駆動回路の上方に配置されているといった構成とすることができる。駆動回路を構成するトランジスタの構成は、特に限定するものではない。pチャネル型の電界効果トランジスタであってもよいし、nチャネル型の電界効果トランジスタであってもよい。 In the display device of the present disclosure, the configuration of the drive circuit or the like that controls the light emission of the light emitting element is not particularly limited. The light emitting element may be formed, for example, in a certain plane on the substrate, and may be arranged above the drive circuit for driving the light emitting element via, for example, an interlayer insulating layer. The configuration of the transistors constituting the drive circuit is not particularly limited. It may be a p-channel type field-effect transistor or an n-channel type field-effect transistor.
 本開示の表示装置において、発光素子は、いわゆる上面発光型である構成とすることができる。例えば、有機エレクトロルミネッセンス素子から成る発光素子は、正孔輸送層、発光層、電子輸送層などを備えた有機層を、第1電極と第2電極で挟まれることによって構成される。カソードを共通化する場合、第2電極がカソード電極、第1電極がアノード電極となる。 In the display device of the present disclosure, the light emitting element can be configured to be a so-called top light emitting type. For example, a light emitting device composed of an organic electroluminescence device is configured by sandwiching an organic layer including a hole transport layer, a light emitting layer, an electron transport layer, and the like between a first electrode and a second electrode. When the cathode is shared, the second electrode is the cathode electrode and the first electrode is the anode electrode.
 第1電極は、基板上に発光素子ごとに設けられている。第1電極は、アルミニウム(Al)、アルミニウム合金、白金(Pt)、金(Au)、クロム(Cr)、タングステン(W)などの金属やそれらの合金等を用いて構成することができる。あるいは又、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)などの透明導電材料から構成されていてもよい。第2電極は各発光素子について共通の電極として設けられ、例えば、マグネシウム(Mg)と銀(Ag)との混合層や銀(Ag)などの金属、あるいは又、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)などの導電材料を用いて構成することができる。 The first electrode is provided for each light emitting element on the substrate. The first electrode can be configured by using a metal such as aluminum (Al), an aluminum alloy, platinum (Pt), gold (Au), chromium (Cr), tungsten (W), an alloy thereof, or the like. Alternatively, it may be composed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO). The second electrode is provided as a common electrode for each light emitting element, and is, for example, a mixed layer of magnesium (Mg) and silver (Ag), a metal such as silver (Ag), or indium tin oxide (ITO). It can be constructed using a conductive material such as indium zinc oxide (IZO).
 有機層は、複数の材料層が積層されて成り、共通の連続膜として、第1電極上を含む全面に設けられる。有機層は、第1電極と第2電極との間に電圧が印加されることによって発光する。有機層は、例えば、第1電極側から、正孔注入層、正孔輸送層、発光層、電子輸送層、および、電子注入層を順に積層した構造で構成することができる。有機層を構成する正孔輸送材料、正孔輸送材料、電子輸送材料、有機発光材料は特に限定するものではなく、周知の材料を用いることができる。 The organic layer is formed by laminating a plurality of material layers and is provided on the entire surface including the first electrode as a common continuous film. The organic layer emits light when a voltage is applied between the first electrode and the second electrode. The organic layer can be composed of, for example, a structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sequentially laminated from the first electrode side. The hole transporting material, the hole transporting material, the electron transporting material, and the organic light emitting material constituting the organic layer are not particularly limited, and well-known materials can be used.
 有機層は、複数の発光層が積層された構造を含んでいてもよい。例えば、赤色発光、青色発光、緑色発光の発光層を積層することによって、あるいは又、青色発光、黄色発光の発光層を積層することによって、白色で発光する発光素子を構成することができる。あるいは又、表示すべき色に応じて、発光素子ごとに発光層を塗分ける構成とすることもできる。 The organic layer may include a structure in which a plurality of light emitting layers are laminated. For example, a light emitting element that emits white light can be configured by stacking light emitting layers of red light emission, blue light emission, and green light emission, or by stacking light emission layers of blue light emission and yellow light emission. Alternatively, the light emitting layer may be painted separately for each light emitting element according to the color to be displayed.
 本開示の表示装置はカラー表示の構成とすることができる。尚、場合によっては、所謂モノクロ表示の構成であってもよい。モノクロ表示の場合、1つの発光素子は1つの画素を構成する。 The display device of the present disclosure may have a color display configuration. In some cases, a so-called monochrome display configuration may be used. In the case of monochrome display, one light emitting element constitutes one pixel.
 また、カラー表示の場合、1つの発光素子は1つの副画素を構成する。例えば、1つの画素は複数の副画素から成る構成、具体的には、1つの画素は、赤色表示副画素、緑色表示副画素、及び、青色表示副画素の3種の副画素から成る構成とすることができる。更には、これらの3種の副画素に更に1種類あるいは複数種類の副画素を加えた1組(例えば、輝度向上のために白色光を発光する副画素を加えた1組、色再現範囲を拡大するために補色を発光する副画素を加えた1組、色再現範囲を拡大するためにイエローを発光する副画素を加えた1組、色再現範囲を拡大するためにイエロー及びシアンを発光する副画素を加えた1組)から構成することもできる。 Also, in the case of color display, one light emitting element constitutes one sub-pixel. For example, one pixel is composed of a plurality of sub-pixels, specifically, one pixel is composed of three types of sub-pixels: a red display sub-pixel, a green display sub-pixel, and a blue display sub-pixel. can do. Furthermore, a set of these three types of sub-pixels plus one or more types of sub-pixels (for example, a set of sub-pixels that emit white light to improve brightness, a color reproduction range). A set with a sub-pixel that emits complementary colors to expand, a set with a sub-pixel that emits yellow to expand the color reproduction range, and a set that emits yellow and cyan to expand the color reproduction range. It can also be composed of one set) including sub-pixels.
 隣接する発光素子を区画する隔壁部は、公知の無機材料や有機材料から適宜選択した材料を用いて形成することができ、例えば、真空蒸着法やスパッタリング法に例示される物理的気相成長法(PVD法)、各種の化学的気相成長法(CVD法)などの周知の成膜方法と、エッチング法やリフトオフ法などの周知のパターニング法との組み合わせによって形成することができる。 The partition wall portion that partitions the adjacent light emitting elements can be formed by using a material appropriately selected from known inorganic materials and organic materials, and is, for example, a physical vapor deposition method exemplified by a vacuum vapor deposition method or a sputtering method. It can be formed by a combination of a well-known film forming method such as (PVD method) and various chemical vapor deposition methods (CVD method) and a well-known patterning method such as an etching method and a lift-off method.
 表示装置の画素(ピクセル)の値として、VGA(640,480)、S-VGA(800,600)、XGA(1024,768)、APRC(1152,900)、S-XGA(1280,1024)、U-XGA(1600,1200)、HD-TV(1920,1080)、Q-XGA(2048,1536)の他、(1920,1035)、(720,480)、(1280,960)等、画像表示用解像度の幾つかを例示することができるが、これらの値に限定するものではない。 As the pixel values of the display device, VGA (640,480), S-VGA (800,600), XGA (1024,768), APRC (1152,900), S-XGA (1280,1024), Image display such as U-XGA (1600,1200), HD-TV (1920,1080), Q-XGA (2048,1536), (1920,1035), (720,480), (1280,960), etc. Some of the resolutions can be exemplified, but are not limited to these values.
 本開示の表示装置を備えた電子機器として、直視型や投射型の表示装置の他、画像表示機能を備えた各種の電子機器を例示することができる。 As the electronic device provided with the display device of the present disclosure, various electronic devices having an image display function can be exemplified in addition to the direct-view type and projection type display devices.
 本明細書における各種の条件は、厳密に成立する場合の他、実質的に成立する場合にも満たされる。設計上あるいは製造上生ずる種々のばらつきの存在は許容される。また、以下の説明で用いる各図面は模式的なものであり、実際の寸法やその割合を示すものではない。 The various conditions in this specification are satisfied not only when they are strictly satisfied but also when they are substantially satisfied. The presence of various design or manufacturing variations is acceptable. In addition, each drawing used in the following description is a schematic one and does not show actual dimensions or their ratios.
[第1の実施形態および各種の構成例]
 第1の実施形態は、本開示に係る、表示装置および電子機器に関する。
[First Embodiment and various configuration examples]
The first embodiment relates to a display device and an electronic device according to the present disclosure.
 図1は、第1の実施形態に係る表示装置を説明するための模式的な平面図である。表示装置1は、マトリクス状に配置された発光素子PX、発光素子PXを駆動するための水平駆動回路11および垂直駆動回路12といった各種回路を備えている。符号SCLは発光素子PXを走査するための走査線であり、符号DTLは発光素子PXに各種の電圧を供給するための信号線である。尚、表示装置1は画素に駆動電圧などを供給する給電線等も備えているが、図示の都合上、図1においては省略されている。 FIG. 1 is a schematic plan view for explaining the display device according to the first embodiment. The display device 1 includes various circuits such as a light emitting element PX arranged in a matrix, a horizontal drive circuit 11 for driving the light emitting element PX, and a vertical drive circuit 12. The reference numeral SCL is a scanning line for scanning the light emitting element PX, and the reference numeral DTL is a signal line for supplying various voltages to the light emitting element PX. Although the display device 1 also includes a feeder line or the like for supplying a drive voltage or the like to the pixels, it is omitted in FIG. 1 for convenience of illustration.
 発光素子PXは、例えば水平方向(図においてX方向)にM個、垂直方向(図においてY方向)にN個、合計M×N個が、マトリクス状に配置されている。表示装置1はカラー表示が可能な表示装置である。赤色表示、緑色表示、青色表示に対応する発光素子PXをそれぞれ符号R,G,Bを付して示した。尚、図1に示す例において、水平駆動回路11および垂直駆動回路12は、それぞれ、表示装置1の一端側に配置されているとしたが、これは例示に過ぎない。 For example, M light emitting elements PX are arranged in a matrix, M in the horizontal direction (X direction in the figure) and N in the vertical direction (Y direction in the figure), for a total of M × N. The display device 1 is a display device capable of color display. The light emitting elements PX corresponding to the red display, the green display, and the blue display are shown with reference numerals R, G, and B, respectively. In the example shown in FIG. 1, the horizontal drive circuit 11 and the vertical drive circuit 12 are respectively arranged on one end side of the display device 1, but this is merely an example.
 後で図5ないし図12を参照して詳しく説明するが、発光素子PXは、凸多角形状の発光面を有している。そして、発光素子PXの上方は、各発光素子PXに対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている。 As will be described in detail later with reference to FIGS. 5 to 12, the light emitting element PX has a light emitting surface having a convex polygonal shape. The upper part of the light emitting element PX is independently provided corresponding to each light emitting element PX, and includes a portion having a shape that imitates the side of the light emitting surface, and the bottom surface or the upper surface of which the portion extends outside the region of the light emitting surface. It is covered by the optical element it has.
 図2は、発光素子の構成を説明するための模式的な回路図である。尚、図示の都合上、1つの発光素子PX、より具体的には、第m行第n列目の発光素子PXについての結線関係を示した。 FIG. 2 is a schematic circuit diagram for explaining the configuration of the light emitting element. For convenience of illustration, the wiring relationship is shown for one light emitting element PX, more specifically, for the light emitting element PX in the mth row and the nth column.
 発光素子PXは、電流駆動型の発光部ELP、及び、発光部ELPの発光を制御する駆動回路を備えている。この駆動回路は、映像信号を書き込むための書込みトランジスタTRWと、発光部ELPに電流を流す駆動トランジスタTRDとを少なくとも含んでいる。これらは、pチャネル型トランジスタから構成されている。 The light emitting element PX includes a current-driven light emitting unit ELP and a drive circuit for controlling light emission of the light emitting unit ELP. This drive circuit includes at least a write transistor TR W for writing a video signal and a drive transistor TR D for passing a current through the light emitting unit ELP. These are composed of p-channel type transistors.
 駆動回路は、更に、容量部CSを備えている。容量部CSは、駆動トランジスタTRDのソース領域に対するゲート電極の電圧(所謂ゲート・ソース間電圧)を保持するために用いられる。発光素子PXの発光時において、駆動トランジスタTRDの一方のソース/ドレイン領域(図2において給電線PS1に接続されている側)はソース領域として働き、他方のソース/ドレイン領域はドレイン領域として働く。 The drive circuit further includes a capacitance section CS . The capacitance section C S is used to hold the voltage of the gate electrode (so-called gate-source voltage) with respect to the source region of the drive transistor TR D. When the light emitting element PX emits light, one source / drain region of the drive transistor TR D (the side connected to the feeder line PS1 in FIG. 2) serves as a source region, and the other source / drain region serves as a drain region. ..
 容量部CSを構成する一方の電極と他方の電極は、それぞれ、駆動トランジスタTRDの一方のソース/ドレイン領域とゲート電極に接続されている。駆動トランジスタTRDの他方のソース/ドレイン領域は、発光部ELPのアノード電極に接続されている。 One electrode and the other electrode constituting the capacitance portion CS are connected to one source / drain region and the gate electrode of the drive transistor TR D , respectively. The other source / drain region of the drive transistor TR D is connected to the anode electrode of the light emitting unit ELP.
 発光素子PXは、有機エレクトロルミネッセンス素子から成る発光部ELPを含む。発光部ELPは、流れる電流値に応じて発光輝度が変化する電流駆動型の発光部であって、アノード電極、正孔輸送層、発光層、電子輸送層、及び、カソード電極等から成る周知の構成や構造を有する。 The light emitting element PX includes a light emitting unit ELP composed of an organic electroluminescence element. The light emitting unit ELP is a current-driven light emitting unit whose emission brightness changes according to the flowing current value, and is a well-known unit including an anode electrode, a hole transport layer, a light emitting layer, an electron transport layer, a cathode electrode, and the like. It has a structure and structure.
 発光部ELPの他端(具体的には、カソード電極)は、共通給電線PS2に接続されている。共通給電線PS2には所定の電圧VCATH(例えば接地電位)が供給される。尚、発光部ELPの容量を符号CELで表す。発光部ELPの容量CELが小さいため駆動する上で支障を生ずるなどといった場合には、必要に応じて、発光部ELPに対して並列に接続される補助容量を設ければよい。 The other end of the light emitting unit ELP (specifically, the cathode electrode) is connected to the common feeder line PS2. A predetermined voltage V CATH (for example, ground potential) is supplied to the common feeder line PS2. The capacitance of the light emitting unit ELP is represented by the reference numeral C EL . If the capacity C EL of the light emitting unit ELP is small and causes a problem in driving, an auxiliary capacity connected in parallel to the light emitting unit ELP may be provided as necessary.
 書込みトランジスタTRWは、走査線SCLに接続されるゲート電極と、データ線DTLに接続される一方のソース/ドレイン領域と、駆動トランジスタTRDのゲート電極に接続される他方のソース/ドレイン領域とを有する。結果として、データ線DTLからの信号電圧は、書込みトランジスタTRWを介して容量部CSに書き込まれる。 The write transistor TR W has a gate electrode connected to the scanning line SCL, one source / drain region connected to the data line DTL, and the other source / drain region connected to the gate electrode of the drive transistor TR D. Has. As a result, the signal voltage from the data line DTL is written to the capacitance section CS via the write transistor TR W.
 上述したように、容量部CSは、駆動トランジスタTRDの一方のソース/ドレイン領域とゲート電極との間に接続されている。駆動トランジスタTRDの一方のソース/ドレイン領域には図示せぬ電源部から給電線PS1mを介して電源電圧VCCが印加される。データ線DTLからの映像信号電圧VSigが書込みトランジスタTRWを介して容量部CSに書き込まれると、容量部CSは(VCC-VSig)といった電圧を、駆動トランジスタTRDのゲート・ソース間電圧として保持する。駆動トランジスタTRDには、以下の式(1)で表すドレイン電流Idsが流れ、発光部ELPは電流値に応じた輝度で発光する。 As described above, the capacitive section C S is connected between one source / drain region of the drive transistor TR D and the gate electrode. A power supply voltage VC C is applied to one source / drain region of the drive transistor TR D from a power supply unit (not shown) via a feeder line PS1 m . When the video signal voltage V Sig from the data line DTL is written to the capacitance section C S via the write transistor TR W , the capacitance section C S applies a voltage such as (VCC − V Sig ) to the gate of the drive transistor TR D. Hold as source voltage. The drain current Ids represented by the following equation (1) flows through the drive transistor TR D , and the light emitting unit ELP emits light with a brightness corresponding to the current value.
ds=k・μ・((VCC-VSig)-|Vth|)2  (1)
 尚、
μ :実効的な移動度
L :チャネル長
W :チャネル幅
th:閾値電圧
ox:(ゲート絶縁層の比誘電率)×(真空の誘電率)/(ゲート絶縁層の厚さ)
k≡(1/2)・(W/L)・Cox
とする。
I ds = k · μ · (( VCC -V Sig ) - | V th |) 2 (1)
still,
μ: Effective mobility L: Channel length W: Channel width V th : Threshold voltage Cox : (Relative permittivity of gate insulating layer) × (Vacuum permittivity) / (Thickness of gate insulating layer)
k≡ (1/2) ・ (W / L) ・ Cox
And.
 引き続き、発光部ELPやトランジスタなどの立体的な配置関係について説明する。図3は、表示装置の構造を説明するための基板等の模式的な一部断面図である。 Next, I will explain the three-dimensional arrangement of the light emitting part ELP and the transistor. FIG. 3 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device.
 表示装置1は、基板100と、基板100上にマトリクス状に配置されている発光素子PXを備えている。有機エレクトロルミネッセンス素子から成る発光部ELPは、発光素子PX毎に設けられた第1電極111上に、発光層を含む有機層120と第2電極121とが順次積層されて構成されている。図示の都合上、図2においては有機層120を一層で示した。尚、有機層120は白色を発光するように形成されている。有機層120上を含む全面には、例えば透明導電材料から成る第2電極121が形成されており、更に、その上に、保護層122と平坦化層123が形成されている。 The display device 1 includes a substrate 100 and a light emitting element PX arranged in a matrix on the substrate 100. The light emitting unit ELP composed of an organic electroluminescence element is configured by sequentially laminating an organic layer 120 including a light emitting layer and a second electrode 121 on a first electrode 111 provided for each light emitting element PX. For convenience of illustration, the organic layer 120 is shown as a single layer in FIG. The organic layer 120 is formed so as to emit white light. A second electrode 121 made of, for example, a transparent conductive material is formed on the entire surface including the organic layer 120, and a protective layer 122 and a flattening layer 123 are further formed on the second electrode 121.
 第1電極111は例えば金属材料から成り、有機層120で発光した光は、第2電極121側から出射する。発光素子PXの発光面の平面形状は、概ね、第1電極111の平面形状に倣った形状である。発光素子PXは、凸多角形状の発光面を有している。発光素子の上方には、各発光素子PXに対応して独立して設けられた光学素子140が配置されている。表示装置1は、表示色に対応したカラーフィルタ130を更に備えている。カラーフィルタ130は、発光素子PXと光学素子140との間に配置されている。 The first electrode 111 is made of, for example, a metal material, and the light emitted by the organic layer 120 is emitted from the second electrode 121 side. The planar shape of the light emitting surface of the light emitting element PX generally follows the planar shape of the first electrode 111. The light emitting element PX has a light emitting surface having a convex polygonal shape. Above the light emitting element, an optical element 140 independently provided corresponding to each light emitting element PX is arranged. The display device 1 further includes a color filter 130 corresponding to the display color. The color filter 130 is arranged between the light emitting element PX and the optical element 140.
 それぞれ隣接する第1電極111の間には、絶縁材料から成る隔壁部112が設けられている。これによって、各発光部ELPが区分されている。図示はされていないが、基板100には、各発光部ELP毎に設けられた駆動回路が形成されている。外部からの信号に応じて、発光部ELPの発光状態が制御される。 A partition wall 112 made of an insulating material is provided between the adjacent first electrodes 111. As a result, each light emitting unit ELP is divided. Although not shown, a drive circuit provided for each light emitting unit ELP is formed on the substrate 100. The light emitting state of the light emitting unit ELP is controlled according to the signal from the outside.
 カラーフィルタ130は、平坦化層123の上に形成されている。具体的には、赤色表示用の発光素子PXに対応した赤色カラーフィルタ130R、緑色表示用の発光素子PXに対応した緑色カラーフィルタ130G、青色表示用の発光素子PXに対応した青色カラーフィルタ130Bが配置されている。このように、表示装置1は、赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXといった発光素子を少なくとも含んでいる。 The color filter 130 is formed on the flattening layer 123. Specifically, a red color filter 130 R corresponding to the light emitting element PX for red display, a green color filter 130 G corresponding to the light emitting element PX for green display, and a blue color filter corresponding to the light emitting element PX for blue display. 130 B is arranged. As described above, the display device 1 includes at least a light emitting element such as a light emitting element PX for red display, a light emitting element PX for green display, and a light emitting element PX for blue display.
 各発光素子PXに対応して独立して設けられた光学素子140は、カラーフィルタ130の上に配置されている。発光素子PXに直交する仮想平面で光学素子140を切断したときの断面形状は台形状あるいは半円状である。図3は、光学素子140の断面が台形状の例を示す。また、図4は、光学素子140の断面が半円状の例を示す。 The optical element 140 independently provided corresponding to each light emitting element PX is arranged on the color filter 130. The cross-sectional shape when the optical element 140 is cut in a virtual plane orthogonal to the light emitting element PX is trapezoidal or semicircular. FIG. 3 shows an example in which the cross section of the optical element 140 is trapezoidal. Further, FIG. 4 shows an example in which the cross section of the optical element 140 is semicircular.
 第1の実施形態に係る表示装置1は、例えば、以下のような製造工程によって得ることができる。 The display device 1 according to the first embodiment can be obtained by, for example, the following manufacturing process.
  [工程-100]
 図3に示す基板100を準備し、基板100上に、各発光部ELPに対応した第1電極111を形成する。次いで、発光層を含む有機層120、第2電極121、保護層122および平坦化層123を順次形成する。
[Step-100]
The substrate 100 shown in FIG. 3 is prepared, and the first electrode 111 corresponding to each light emitting unit ELP is formed on the substrate 100. Next, the organic layer 120 including the light emitting layer, the second electrode 121, the protective layer 122, and the flattening layer 123 are sequentially formed.
  [工程-110]
 次いで、各発光部ELPに対応した光学素子140を形成する。先ず、平坦化層123上に、カラーフィルタ130を、周知の方法によって形成する。その後、全面に、光学素子140の元となる透明材料層を形成する。
[Process-110]
Next, the optical element 140 corresponding to each light emitting unit ELP is formed. First, the color filter 130 is formed on the flattening layer 123 by a well-known method. After that, a transparent material layer that is the basis of the optical element 140 is formed on the entire surface.
 次いで、透明材料層上に、光学素子形成用のレジストを形成する。ここでは、台形状のレジストを形成するものとする。 Next, a resist for forming an optical element is formed on the transparent material layer. Here, it is assumed that a trapezoidal resist is formed.
 その後、例えばドライエッチング処理を施して、レジストと透明材料層とにエッチングを行う。レジストが厚いほど下地のエッチング量は少なくなるので、台形状の光学素子140が形成される。尚、レジストを半球状として形成すれば、台形状の光学素子140が形成される。 After that, for example, dry etching is performed to etch the resist and the transparent material layer. The thicker the resist, the smaller the amount of etching of the base, so that the trapezoidal optical element 140 is formed. If the resist is formed as a hemisphere, a trapezoidal optical element 140 is formed.
 以上、表示装置1の製造工程例について説明した。次いで、発光素子と光学素子との配置関係について説明する。図5Aは、複数の発光素子から成る第1の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。図5Bは、光学素子の形状を説明するための模式的な斜視図である。 The example of the manufacturing process of the display device 1 has been described above. Next, the arrangement relationship between the light emitting element and the optical element will be described. FIG. 5A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the first configuration example including a plurality of light emitting elements. FIG. 5B is a schematic perspective view for explaining the shape of the optical element.
 図5Aに示す例では、4つの発光素子PXが概ね正方に配置されて1つの画素を形成する。図において、左上には赤色表示用、左下および右上には青色表示用、右下には緑色表示用の発光素子PXが配置されている。赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXはそれぞれ矩形状の発光面を備えている。尚、各発光素子PXの発光面の部分を斜線のハッチングを付して示した。後述する他の図面においても同様である。 In the example shown in FIG. 5A, four light emitting elements PX are arranged substantially in a square shape to form one pixel. In the figure, a light emitting element PX for red display is arranged in the upper left, blue display is arranged in the lower left and upper right, and green display is arranged in the lower right. The light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display each have a rectangular light emitting surface. The portion of the light emitting surface of each light emitting element PX is shown with hatched diagonal lines. The same applies to other drawings described later.
 また、赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXから成る群は、全体として矩形状に配置されている。 Further, the group consisting of the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display is arranged in a rectangular shape as a whole.
 各発光素子PXには1つの光学素子140が対応するように設けられている。発光素子PXの上方には、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面を有する光学素子140によって覆われている。図5Aにおいて破線は発光面の辺を示し、一点鎖線は光学素子140の底面の辺を示す。後述する他の図面においても同様である。 Each light emitting element PX is provided with one optical element 140 corresponding to it. Above the light emitting element PX, an optical element 140 including a portion having a shape following the side of the light emitting surface and having a bottom surface extending the portion outside the region of the light emitting surface is covered. In FIG. 5A, the broken line indicates the side of the light emitting surface, and the alternate long and short dash line indicates the side of the bottom surface of the optical element 140. The same applies to other drawings described later.
 各光学素子140の断面は全て台形状であって、図5Bに示すような外観を示す。各光学素子140は発光面をすべて覆うことができ、有機膜からの光をより多く光学素子140に入射させることができる。これによって、光の取り出し効率の向上を図ることができる。このように、発光素子の上方に光学素子を備えると共に、光の取り出し効率を向上させることができる構造を有する表示装置を得ることができる。 The cross section of each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 5B. Each optical element 140 can cover the entire light emitting surface, and more light from the organic film can be incident on the optical element 140. This makes it possible to improve the light extraction efficiency. As described above, it is possible to obtain a display device having an optical element above the light emitting element and having a structure capable of improving the light extraction efficiency.
 尚、図5Bでは、各光学素子140の断面が全て台形状の場合の例を示したが、これは一例にすぎない。例えば、図6Aに示すように、各光学素子140の断面が全て半円状の構成や、図6Bに示すように、断面が台形状のものと半円状のものとが混在している構成であってもよい。 Note that FIG. 5B shows an example in which the cross sections of the optical elements 140 are all trapezoidal, but this is only an example. For example, as shown in FIG. 6A, the cross sections of the optical elements 140 are all semicircular, and as shown in FIG. 6B, trapezoidal and semicircular cross sections are mixed. It may be.
 以上、第1の構成例に係る画素と光学素子との配置関係について説明した。引き続き、第2の構成例に係る画素と光学素子との配置関係について説明する。 The arrangement relationship between the pixels and the optical element according to the first configuration example has been described above. Subsequently, the arrangement relationship between the pixel and the optical element according to the second configuration example will be described.
 図7Aは、複数の発光素子から成る第2の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。図7Bは、光学素子の形状を説明するための模式的な斜視図である。 FIG. 7A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the second configuration example composed of a plurality of light emitting elements. FIG. 7B is a schematic perspective view for explaining the shape of the optical element.
 図7Aに示す例では、3つの発光素子PXが概ね正方に配置されて1つの画素を形成する。図において、左上には赤色表示用、左下には緑色表示用、右には青色表示用の発光素子PXが配置されている。青色表示用の発光素子PXは、Y方向に延びる辺が、赤色表示用の表示素子PXの辺と緑色表示用の表示素子PXの辺とに相当する長さの長辺となっている。赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXはそれぞれ矩形状の発光面を備えている。 In the example shown in FIG. 7A, three light emitting elements PX are arranged substantially in a square shape to form one pixel. In the figure, a light emitting element PX for red display is arranged in the upper left, green display is arranged in the lower left, and blue display is arranged in the right. In the blue display element PX, the side extending in the Y direction is a long side having a length corresponding to the side of the display element PX for red display and the side of the display element PX for green display. The light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display each have a rectangular light emitting surface.
 第2の構成例においても、赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXから成る群は、全体として矩形状に配置されている。 Also in the second configuration example, the group consisting of the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display is arranged in a rectangular shape as a whole.
 各発光素子PXには1つの光学素子140が対応するように設けられている。発光素子PXの上方には、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面を有する光学素子140によって覆われている。 Each light emitting element PX is provided with one optical element 140 corresponding to it. Above the light emitting element PX, an optical element 140 including a portion having a shape following the side of the light emitting surface and having a bottom surface extending the portion outside the region of the light emitting surface is covered.
 各光学素子140の断面は全て台形状であって、図7Bに示すような外観を示す。各光学素子140は発光面をすべて覆うことができ、有機膜からの光をより多く光学素子140に入射させることができる。これによって、光の取り出し効率の向上を図ることができる。 The cross section of each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 7B. Each optical element 140 can cover the entire light emitting surface, and more light from the organic film can be incident on the optical element 140. This makes it possible to improve the light extraction efficiency.
 尚、図7Bでは、各光学素子140の断面が全て台形状の場合の例を示したが、これは一例にすぎない。例えば、図8Aに示すように、各光学素子140の断面が全て半円状の構成や、図8Bに示すように、断面が台形状のものと半円状のものとが混在している構成であってもよい。 Note that FIG. 7B shows an example in which the cross sections of the optical elements 140 are all trapezoidal, but this is only an example. For example, as shown in FIG. 8A, the cross sections of the optical elements 140 are all semicircular, and as shown in FIG. 8B, trapezoidal and semicircular cross sections are mixed. It may be.
 以上、第2の構成例に係る画素と光学素子との配置関係について説明した。引き続き、第3の構成例に係る画素と光学素子との配置関係について説明する。 The arrangement relationship between the pixels and the optical element according to the second configuration example has been described above. Subsequently, the arrangement relationship between the pixel and the optical element according to the third configuration example will be described.
 図9Aは、複数の発光素子から成る第3の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。図9Bは、光学素子の形状を説明するための模式的な斜視図である。 FIG. 9A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the third configuration example including a plurality of light emitting elements. FIG. 9B is a schematic perspective view for explaining the shape of the optical element.
 第3の構成例は、第2の構成例の変形であって、青色表示用の発光素子PXの発光部が分割されているといった構成である。具体的には、青色表示用の発光素子PXについて、図3に示す第1電極111が分割して配置されているといった構成である。 The third configuration example is a modification of the second configuration example, in which the light emitting portion of the light emitting element PX for blue display is divided. Specifically, the light emitting element PX for displaying blue has a configuration in which the first electrode 111 shown in FIG. 3 is divided and arranged.
 赤色表示用の発光素子PXと緑色表示用の発光素子PXにはそれぞれ1つの光学素子140が対応するように設けられている。青色表示用の発光素子PXについては、分割された第1電極111に対応する2つの発光部ELPのそれぞれに独立した光学素子140が配置されている。 One optical element 140 is provided so as to correspond to the light emitting element PX for red display and the light emitting element PX for green display. As for the light emitting element PX for displaying blue, an independent optical element 140 is arranged in each of the two light emitting units ELP corresponding to the divided first electrode 111.
 各光学素子140の断面は全て台形状であって、図7Bに示すような外観を示す。尚、上述した他の構成例と同様に、各光学素子140の断面が全て半円状の構成や、断面が台形状のものと半円状のものとが混在している構成であってもよい。 The cross section of each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 7B. As with the other configuration examples described above, even if the cross sections of the optical elements 140 are all semicircular, or if the cross sections are trapezoidal and semicircular. good.
 以上、第3の構成例に係る画素と光学素子との配置関係について説明した。引き続き、第4の構成例に係る画素と光学素子との配置関係について説明する。 The arrangement relationship between the pixels and the optical element according to the third configuration example has been described above. Subsequently, the arrangement relationship between the pixel and the optical element according to the fourth configuration example will be described.
 図10Aは、複数の発光素子から成る第4の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。図10Bは、光学素子の形状を説明するための模式的な斜視図である。 FIG. 10A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fourth configuration example including a plurality of light emitting elements. FIG. 10B is a schematic perspective view for explaining the shape of the optical element.
 図10Aに示す例では、3つの発光素子PXが概ね三角状に配置されて1つの画素を形成する。第4の構成例は所謂デルタ配列の構成であって、上には青色表示用、左下には緑色表示用、右下には赤色表示用の発光素子PXが配置されている。赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXはそれぞれ正六角形状の発光面を備えている。 In the example shown in FIG. 10A, three light emitting elements PX are arranged in a substantially triangular shape to form one pixel. The fourth configuration example is a so-called delta array configuration, in which a light emitting element PX for displaying blue is arranged on the upper side, for displaying green on the lower left side, and for displaying red on the lower right side. The light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display each have a regular hexagonal light emitting surface.
 各発光素子PXには1つの光学素子140が対応するように設けられている。発光素子PXの上方には、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面を有する光学素子140によって覆われている。 Each light emitting element PX is provided with one optical element 140 corresponding to it. Above the light emitting element PX, an optical element 140 including a portion having a shape following the side of the light emitting surface and having a bottom surface extending the portion outside the region of the light emitting surface is covered.
 各光学素子140の断面は全て台形状であって、図10Bに示すような外観を示す。尚、上述した他の構成例と同様に、各光学素子140の断面が全て半円状の構成や、断面が台形状のものと半円状のものとが混在している構成であってもよい。 The cross section of each optical element 140 is trapezoidal and shows the appearance as shown in FIG. 10B. As with the other configuration examples described above, even if the cross sections of the optical elements 140 are all semicircular, or if the cross sections are trapezoidal and semicircular. good.
 以上、第4の構成例に係る画素と光学素子との配置関係について説明した。引き続き、第5の構成例に係る画素と光学素子との配置関係について説明する。 The arrangement relationship between the pixels and the optical element according to the fourth configuration example has been described above. Subsequently, the arrangement relationship between the pixel and the optical element according to the fifth configuration example will be described.
 図11Aは、複数の発光素子から成る第5の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。図11Bは、光学素子の形状を説明するための模式的な斜視図である。図12Aは、図11に引き続き、第5の構成例に係る画素と光学素子との配置関係を説明するための模式的な一部平面図である。図12Bは、光学素子の形状を説明するための模式的な斜視図である。 FIG. 11A is a schematic partial plan view for explaining the arrangement relationship between the pixel and the optical element according to the fifth configuration example including a plurality of light emitting elements. FIG. 11B is a schematic perspective view for explaining the shape of the optical element. FIG. 12A is a schematic partial plan view for explaining the arrangement relationship between the pixels and the optical element according to the fifth configuration example, following FIG. 11. FIG. 12B is a schematic perspective view for explaining the shape of the optical element.
 第5の構成例は、第2の構成例の変形であって、或る特定色表示用の発光素子PX(ここでは、青色表示用の発光素子PX)に、複数の光学素子が配置されているといった構成である。 The fifth configuration example is a modification of the second configuration example, in which a plurality of optical elements are arranged on a light emitting element PX for displaying a specific color (here, a light emitting element PX for displaying blue). It is a composition such as being.
 第2の構成例においても説明したが、青色表示用の発光素子PXは矩形状の発光面を備えている。そして、図11Aに示す例では、発光面の長辺方向(図においてY方向)に並んで2つの光学素子140が設けられている。各光学素子140の断面は全て台形状であって、図11Bに示すような外観を示す。また、図12Aに示す例では、発光面の長辺方向(図においてY方向)に並んで3つの光学素子140が設けられている。各光学素子140の断面は全て台形状であって、図12Bに示すような外観を示す。尚、上述した他の構成例と同様に、各光学素子140の断面が全て半円状の構成や、断面が台形状のものと半円状のものとが混在している構成であってもよい。 As described in the second configuration example, the light emitting element PX for displaying blue has a rectangular light emitting surface. Then, in the example shown in FIG. 11A, two optical elements 140 are provided side by side in the long side direction (Y direction in the figure) of the light emitting surface. The cross sections of the optical elements 140 are all trapezoidal and show the appearance as shown in FIG. 11B. Further, in the example shown in FIG. 12A, three optical elements 140 are provided side by side in the long side direction (Y direction in the figure) of the light emitting surface. The cross sections of the optical elements 140 are all trapezoidal and show the appearance as shown in FIG. 12B. As with the other configuration examples described above, even if the cross sections of the optical elements 140 are all semicircular, or if the cross sections are trapezoidal and semicircular. good.
 特定色表示用の発光素子PXに幾つの光学素子140を配置するかは、基本的には、光の取り出し効率を考慮して実験等により適宜設定すればよい。 Basically, the number of optical elements 140 to be arranged in the light emitting element PX for displaying a specific color may be appropriately set by an experiment or the like in consideration of the light extraction efficiency.
 図13Aは、矩形状の発光面における長辺と短辺とを説明するための模式的な平面図である。図13Bは、長辺の寸法と光の取り出し効率が最も大きくなるときの光学素子の個数との関係を説明するための模式的なグラフである。 FIG. 13A is a schematic plan view for explaining the long side and the short side of the rectangular light emitting surface. FIG. 13B is a schematic graph for explaining the relationship between the dimensions of the long side and the number of optical elements when the light extraction efficiency is maximized.
 図13Aに示すように、矩形状の発光面の長辺の長さを符号L、短辺の長さを符号Wで表す。符号LAは、光学素子を配置し得る領域を示す。発明者らは、光学的シミュレーションを用いて、長辺の長さLの値を種々設定し、そのときに光の取り出し効率が最も高くなるときの光学素子140の個数(分割数)を求めた。グラフ化した結果を図13Bに示す。 As shown in FIG. 13A, the length of the long side of the rectangular light emitting surface is represented by the symbol L, and the length of the short side is represented by the symbol W. Reference numeral LA indicates a region where an optical element can be arranged. The inventors set various values of the length L of the long side by using an optical simulation, and obtained the number (number of divisions) of the optical elements 140 when the light extraction efficiency was the highest at that time. .. The graphed results are shown in FIG. 13B.
 図13Bに示すグラフは、Y切片が約0.1であって傾きが約0.38といった一次関数である。従って、基本的には、長辺の長さLが長くなるほど光学素子の個数(分割数)を大きくすることが好ましい傾向を示す。長辺の長さLが例えば8マイクロメートルである場合、光学素子140を3個配置することが光の取り出し効率の点で好ましい。また、長辺の長さLが例えば13マイクロメートルである場合、光学素子140を5個配置することが好ましい。 The graph shown in FIG. 13B is a linear function with a Y-intercept of about 0.1 and a slope of about 0.38. Therefore, basically, it tends to be preferable to increase the number of optical elements (number of divisions) as the length L of the long side becomes longer. When the length L of the long side is, for example, 8 micrometers, it is preferable to arrange three optical elements 140 in terms of light extraction efficiency. Further, when the length L of the long side is, for example, 13 micrometers, it is preferable to arrange five optical elements 140.
 尚、矩形状の発光面の長辺の長さLと短辺の長さWにそれほど差がない場合、長辺方向および短辺方向のそれぞれに光学素子140を分割して配置するといった構成も考えられる。図14Aは、矩形状の発光面において長辺方向と短辺方向とにそれぞれ分割された光学素子を配置する場合を説明するための模式的な平面図である。図14Bは、光学素子の形状を説明するための模式的な斜視図である。 If there is not much difference between the length L of the long side and the length W of the short side of the rectangular light emitting surface, the optical element 140 may be divided and arranged in each of the long side direction and the short side direction. Conceivable. FIG. 14A is a schematic plan view for explaining a case where an optical element divided into a long side direction and a short side direction is arranged on a rectangular light emitting surface. FIG. 14B is a schematic perspective view for explaining the shape of the optical element.
[第2の実施形態]
 第2の実施形態も、本開示に係る、表示装置および電子機器に関する。
[Second Embodiment]
The second embodiment also relates to a display device and an electronic device according to the present disclosure.
 図15は、第2の実施形態に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。第2の実施形態に係る表示装置を説明するための模式的な平面図は、図1において表示装置1を表示装置2と読み替えればよい。 FIG. 15 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second embodiment. In the schematic plan view for explaining the display device according to the second embodiment, the display device 1 may be read as the display device 2 in FIG.
 第1の実施形態において、カラーフィルタは、発光素子と光学素子との間に配置されていた。これに対し、第2の実施形態において、カラーフィルタは、光学素子の上方に配置されている。 In the first embodiment, the color filter is arranged between the light emitting element and the optical element. On the other hand, in the second embodiment, the color filter is arranged above the optical element.
 光学素子240は、透明材料から成る充填層224を介して発光素子PXの上方に配置されている。但し、第1の実施形態とは異なり、発光素子PX側に凸な形状となるように配置されている。 The optical element 240 is arranged above the light emitting element PX via a packed bed 224 made of a transparent material. However, unlike the first embodiment, it is arranged so as to have a convex shape on the light emitting element PX side.
 即ち、発光素子PXの上方は、各発光素子PXに対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ上面を有する光学素子240によって覆われている。カラーフィルタ130は、光学素子240および充填層224の上に配置されている。図15は、光学素子240の断面が台形状の例を示す。尚、第1の実施形態と同様に、光学素子240の断面は半円状とすることもできる。図16は、光学素子240の断面が半円状の例を示す。 That is, the upper part of the light emitting element PX is provided independently corresponding to each light emitting element PX, and includes an optical portion having a shape that imitates the side of the light emitting surface, and the portion has an upper surface extending outside the region of the light emitting surface. It is covered by the element 240. The color filter 130 is arranged on the optical element 240 and the packed bed 224. FIG. 15 shows an example in which the cross section of the optical element 240 is trapezoidal. As in the first embodiment, the cross section of the optical element 240 may be semicircular. FIG. 16 shows an example in which the cross section of the optical element 240 is semicircular.
 発光素子PXと光学素子240との配置関係は、光学素子240の底面と上面の関係を入れ替える他は、図5ないし図12を参照して説明した内容を適宜読み替えればよいので、説明を省略する。 Regarding the arrangement relationship between the light emitting element PX and the optical element 240, the contents described with reference to FIGS. 5 to 12 may be appropriately read, except that the relationship between the bottom surface and the upper surface of the optical element 240 is exchanged, and thus the description thereof is omitted. do.
[第3の実施形態および各種の変形例]
 第3の実施形態も、本開示に係る、表示装置および電子機器に関する。
[Third Embodiment and various modifications]
A third embodiment also relates to a display device and an electronic device according to the present disclosure.
 図17は、第3の実施形態に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。第3の実施形態に係る表示装置を説明するための模式的な平面図は、図1において表示装置1を表示装置3と読み替えればよい。 FIG. 17 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the third embodiment. In the schematic plan view for explaining the display device according to the third embodiment, the display device 1 may be read as the display device 3 in FIG.
 第1の実施形態の表示装置と同様に、第3の実施形態の表示装置においても、発光素子は有機エレクトロルミネッセンス素子から成る発光部を含む。但し、第3の実施形態の表示装置において、発光素子は光を共振させる共振器構造を備えている。 Similar to the display device of the first embodiment, in the display device of the third embodiment, the light emitting element includes a light emitting unit composed of an organic electroluminescence element. However, in the display device of the third embodiment, the light emitting element has a resonator structure that resonates light.
 表示装置3の構造について説明する。第1の実施形態の表示装置1と同様に、表示装置3は、基板100と、基板100上にマトリクス状に配置されている発光素子PXを備えている。尚、表示装置1と異なり、表示装置3において、基板100には、各発光部ELPに対応する位置に、例えばアルミニウム等から成る反射膜MLが形成されている。 The structure of the display device 3 will be described. Similar to the display device 1 of the first embodiment, the display device 3 includes a substrate 100 and a light emitting element PX arranged in a matrix on the substrate 100. Unlike the display device 1, in the display device 3, a reflective film ML made of, for example, aluminum or the like is formed on the substrate 100 at a position corresponding to each light emitting unit ELP.
 有機エレクトロルミネッセンス素子から成る発光部ELPは、発光素子PX毎に設けられた第1電極411上に、発光層を含む有機層120と第2電極421とが順次積層されて構成されている。尚、第1電極411は、例えばITO等の透明導電材料から形成されている。それぞれ隣接する第1電極411の間には、絶縁材料から成る隔壁部112が設けられている。 The light emitting unit ELP composed of an organic electroluminescence element is configured by sequentially laminating an organic layer 120 including a light emitting layer and a second electrode 421 on a first electrode 411 provided for each light emitting element PX. The first electrode 411 is formed of a transparent conductive material such as ITO. A partition wall 112 made of an insulating material is provided between the adjacent first electrodes 411.
 第1電極411および隔壁部112上を含む全面には、発光層を含む有機層120と第2電極421とが順次積層されて構成されている。有機層120は白色を発光するように形成されている。尚、第2電極421は、金属薄膜などの半透過導電材料から形成されている。第2電極421上には、保護層122と平坦化層123が形成されている。平坦化層123の上には、第1の実施形態において説明した光学素子140が形成されている。 The organic layer 120 including the light emitting layer and the second electrode 421 are sequentially laminated on the entire surface including the first electrode 411 and the partition wall portion 112. The organic layer 120 is formed so as to emit white light. The second electrode 421 is formed of a semi-transmissive conductive material such as a metal thin film. A protective layer 122 and a flattening layer 123 are formed on the second electrode 421. The optical element 140 described in the first embodiment is formed on the flattening layer 123.
 共振器構造は、反射膜MLと第2電極421との間の光路長を表示色毎に異ならせることによるマイクロキャビティ構造によって形成されている。例えば、反射膜MLを形成する下地を複数の材料層を積層することによって形成するとともに、画素PXの種類に応じて、下地の積層数を異にするといったことによって、光路長を調整することができる。共振器構造によって、有機層120の白色光のうち、特定の波長の光を強調して取り出すことができる。従って、第3の実施形態に係る表示装置は、基本的には、カラーフィルタを用いることなくカラー表示を行うことができる。 The resonator structure is formed by a microcavity structure in which the optical path length between the reflective film ML and the second electrode 421 is different for each display color. For example, the optical path length can be adjusted by forming the base on which the reflective film ML is formed by laminating a plurality of material layers and by making the number of layers of the base different according to the type of pixel PX. can. With the resonator structure, it is possible to emphasize and extract light having a specific wavelength among the white light of the organic layer 120. Therefore, the display device according to the third embodiment can basically perform color display without using a color filter.
 第3の実施形態に係る表示装置においては、種々の変形が可能である。以下、変形例について説明する。 The display device according to the third embodiment can be modified in various ways. Hereinafter, a modified example will be described.
 図18は、第3の実施形態の第1の変形例に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。 FIG. 18 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the first modification of the third embodiment.
 図18に示す表示装置3Aは、図17に示す表示装置3に対して、赤色表示用の発光素子PX、緑色表示用の発光素子PXおよび青色表示用の発光素子PXに対応したカラーフィルタを更に備えているといった構成である。 The display device 3A shown in FIG. 18 further includes a color filter corresponding to the light emitting element PX for red display, the light emitting element PX for green display, and the light emitting element PX for blue display with respect to the display device 3 shown in FIG. It is a configuration that is equipped.
 共振器構造の特性上、各表示色用の発光素子PXから取り出される光の波長には多少のゆらぎは生ずる。従って、実際には、発光素子PXの表示色に多少の混色は生じ得る。このため、表示色に応じたカラーフィルタを備えることによって、色純度の向上を図ることができる。 Due to the characteristics of the resonator structure, the wavelength of the light extracted from the light emitting element PX for each display color may fluctuate to some extent. Therefore, in reality, some color mixing may occur in the display color of the light emitting element PX. Therefore, it is possible to improve the color purity by providing a color filter according to the display color.
 図19は、第3の実施形態の第2の変形例に係る表示装置の構造を説明するための基板等の模式的な一部断面図である。 FIG. 19 is a schematic partial cross-sectional view of a substrate or the like for explaining the structure of the display device according to the second modification of the third embodiment.
 図19に示す表示装置3Bは、図17に示す表示装置3に対して、赤色表示用の発光素子PXに対応したカラーフィルタを更に備えているといった構成である。尚、図に示す例では、緑色表示用の発光素子PXおよび青色表示用の発光素子PXには、無色透明な材料から成るカラーフィルタ130Tが配置されているとした。 The display device 3B shown in FIG. 19 is configured to further include a color filter corresponding to the light emitting element PX for red display with respect to the display device 3 shown in FIG. In the example shown in the figure, it is assumed that the color filter 130 T made of a colorless and transparent material is arranged in the light emitting element PX for displaying green and the light emitting element PX for displaying blue.
 共振器構造により取り出される光の混色は、基本的には波長が長いほど起こりやすい。そこで、表示装置3Bでは、相対的に波長が長い赤色光を発光する赤色表示用の発光素子PXのみに対応して赤色のカラーフィルタ130Rを配置した。 Basically, the longer the wavelength, the more likely it is that the color mixing of the light extracted by the resonator structure will occur. Therefore, in the display device 3B, a red color filter 130 R is arranged only for the light emitting element PX for red display that emits red light having a relatively long wavelength.
 上述した各種の変形例を含む第3の実施形態に係る表示装置において、発光素子PXと光学素子140との配置関係は、図5ないし図12を参照して説明した内容を適宜読み替えればよいので、説明を省略する。また、第3の実施形態に係る表示装置においても、第2の実施形態のように、光学素子を発光素子とカラーフィルタとの間に配置するといった構成とすることもできる。 In the display device according to the third embodiment including the various modifications described above, the arrangement relationship between the light emitting element PX and the optical element 140 may be appropriately read as described with reference to FIGS. 5 to 12. Therefore, the description is omitted. Further, the display device according to the third embodiment may also be configured such that the optical element is arranged between the light emitting element and the color filter as in the second embodiment.
[電子機器の説明]
 以上説明した本開示の表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器の表示部(表示装置)として用いることができる。一例として、例えば、テレビジョンセット、デジタルスチルカメラ、ノート型パーソナルコンピュータ、携帯電話機等の携帯端末装置、ビデオカメラ、ヘッドマウントディスプレイ(頭部装着型ディスプレイ)等の表示部として用いることができる。
[Description of electronic devices]
The display device of the present disclosure described above is used as a display unit (display device) of an electronic device in all fields for displaying a video signal input to an electronic device or a video signal generated in the electronic device as an image or a video. Can be used. As an example, it can be used as a display unit such as a television set, a digital still camera, a notebook personal computer, a portable terminal device such as a mobile phone, a video camera, and a head mount display (head-mounted display).
 本開示の表示装置は、封止された構成のモジュール形状のものをも含む。尚、表示モジュールには、外部から発光領域への信号等を入出力するための回路部やフレキシブルプリントサーキット(FPC)などが設けられていてもよい。以下に、本開示の表示装置を用いる電子機器の具体例として、デジタルスチルカメラ及びヘッドマウントディスプレイを例示する。但し、ここで例示する具体例は一例に過ぎず、これに限られるものではない。 The display device of the present disclosure also includes a modular device having a sealed configuration. The display module may be provided with a circuit unit for inputting / outputting a signal or the like from the outside to the light emitting region, a flexible printed circuit (FPC), or the like. Hereinafter, a digital still camera and a head-mounted display will be illustrated as specific examples of the electronic device using the display device of the present disclosure. However, the specific examples exemplified here are only examples, and are not limited to these.
(具体例1)
 図20は、レンズ交換式一眼レフレックスタイプのデジタルスチルカメラの外観図であり、図20Aにその正面図を示し、図20Bにその背面図を示す。レンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、例えば、カメラ本体部(カメラボディ)511の正面右側に交換式の撮影レンズユニット(交換レンズ)512を有し、正面左側に撮影者が把持するためのグリップ部513を有している。
(Specific example 1)
FIG. 20 is an external view of an interchangeable lens single-lens reflex type digital still camera, the front view thereof is shown in FIG. 20A, and the rear view thereof is shown in FIG. 20B. The interchangeable-lens single-lens reflex type digital still camera has, for example, an interchangeable shooting lens unit (interchangeable lens) 512 on the front right side of the camera body (camera body) 511, and is held by the photographer on the front left side. It has a grip portion 513 for the purpose.
 そして、カメラ本体部511の背面略中央にはモニタ514が設けられている。モニタ514の上部には、ビューファインダ(接眼窓)515が設けられている。撮影者は、ビューファインダ515を覗くことによって、撮影レンズユニット512から導かれた被写体の光像を視認して構図決定を行うことが可能である。 A monitor 514 is provided in the center of the back of the camera body 511. A view finder (eyepiece window) 515 is provided on the upper part of the monitor 514. By looking into the viewfinder 515, the photographer can visually recognize the optical image of the subject guided from the photographing lens unit 512 and determine the composition.
 上記の構成のレンズ交換式一眼レフレックスタイプのデジタルスチルカメラにおいて、そのビューファインダ515として本開示の表示装置を用いることができる。すなわち、本例に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、そのビューファインダ515として本開示の表示装置を用いることによって作製される。 In the interchangeable-lens single-lens reflex type digital still camera having the above configuration, the display device of the present disclosure can be used as the viewfinder 515. That is, the interchangeable lens type single-lens reflex type digital still camera according to this example is manufactured by using the display device of the present disclosure as the viewfinder 515.
(具体例2)
 図21は、ヘッドマウントディスプレイの外観図である。ヘッドマウントディスプレイは、例えば、眼鏡形の表示部611の両側に、使用者の頭部に装着するための耳掛け部612を有している。このヘッドマウントディスプレイにおいて、その表示部611として本開示の表示装置を用いることができる。すなわち、本例に係るヘッドマウントディスプレイは、その表示部611として本開示の表示装置を用いることによって作製される。
(Specific example 2)
FIG. 21 is an external view of the head-mounted display. The head-mounted display has, for example, ear hooks 612 for being worn on the user's head on both sides of the eyeglass-shaped display unit 611. In this head-mounted display, the display device of the present disclosure can be used as the display unit 611. That is, the head-mounted display according to this example is manufactured by using the display device of the present disclosure as the display unit 611.
(具体例3)
 図22は、シースルーヘッドマウントディスプレイの外観図である。シースルーヘッドマウントディスプレイ711は、本体部712、アーム713および鏡筒714で構成される。
(Specific example 3)
FIG. 22 is an external view of the see-through head-mounted display. The see-through head-mounted display 711 is composed of a main body 712, an arm 713, and a lens barrel 714.
 本体部712は、アーム713および眼鏡700と接続される。具体的には、本体部712の長辺方向の端部はアーム713と結合され、本体部712の側面の一側は接続部材を介して眼鏡700と連結される。尚、本体部712は、直接的に人体の頭部に装着されてもよい。 The main body 712 is connected to the arm 713 and the glasses 700. Specifically, the end portion of the main body portion 712 in the long side direction is connected to the arm 713, and one side of the side surface of the main body portion 712 is connected to the eyeglasses 700 via a connecting member. The main body 712 may be directly attached to the head of the human body.
 本体部712は、シースルーヘッドマウントディスプレイ711の動作を制御するための制御基板や、表示部を内蔵する。アーム713は、本体部712と鏡筒714とを接続させ、鏡筒714を支える。具体的には、アーム713は、本体部712の端部および鏡筒714の端部とそれぞれ結合され、鏡筒714を固定する。また、アーム713は、本体部712から鏡筒714に提供される画像に係るデータを通信するための信号線を内蔵する。 The main body 712 incorporates a control board for controlling the operation of the see-through head-mounted display 711 and a display unit. The arm 713 connects the main body 712 and the lens barrel 714, and supports the lens barrel 714. Specifically, the arm 713 is coupled to the end of the main body 712 and the end of the lens barrel 714, respectively, to fix the lens barrel 714. Further, the arm 713 has a built-in signal line for communicating data related to an image provided from the main body 712 to the lens barrel 714.
 鏡筒714は、本体部712からアーム713を経由して提供される画像光を、接眼レンズを通じて、シースルーヘッドマウントディスプレイ711を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ711において、本体部712の表示部に、本開示の表示装置を用いることができる。 The lens barrel 714 projects the image light provided from the main body 712 via the arm 713 toward the eyes of the user who wears the see-through head-mounted display 711 through the eyepiece. In this see-through head-mounted display 711, the display device of the present disclosure can be used for the display unit of the main body unit 712.
 尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
[応用例]
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
[Application example]
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is any kind of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). It may be realized as a device mounted on the body.
 図23は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図23に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 23 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technique according to the present disclosure can be applied. The vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010. In the example shown in FIG. 23, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an in-vehicle information detection unit 7500, and an integrated control unit 7600. .. The communication network 7010 connecting these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図23では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various arithmetic, and a drive circuit that drives various controlled devices. To prepare for. Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and is connected to devices or sensors inside or outside the vehicle by wired communication or wireless communication. A communication I / F for performing communication is provided. In FIG. 23, as the functional configuration of the integrated control unit 7600, the microcomputer 7610, the general-purpose communication I / F7620, the dedicated communication I / F7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I / F7660, the audio image output unit 7670, The vehicle-mounted network I / F 7680 and the storage unit 7690 are illustrated. Other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 7100 has a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 The vehicle state detection unit 7110 is connected to the drive system control unit 7100. The vehicle state detection unit 7110 may include, for example, a gyro sensor that detects the angular velocity of the axial rotation motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or steering wheel steering. It includes at least one of sensors for detecting an angle, engine speed, wheel speed, and the like. The drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps. In this case, a radio wave transmitted from a portable device that substitutes for a key or signals of various switches may be input to the body system control unit 7200. The body system control unit 7200 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310, which is the power supply source of the drive motor, according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature control of the secondary battery 7310 or the cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The vehicle outside information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000. For example, at least one of the image pickup unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400. The image pickup unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The vehicle outside information detection unit 7420 is used, for example, to detect the current weather or an environment sensor for detecting the weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the ambient information detection sensors is included.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environment sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. The image pickup unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図24は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 24 shows an example of the installation position of the image pickup unit 7410 and the vehicle exterior information detection unit 7420. The image pickup unit 7910, 7912, 7914, 7916, 7918 are provided, for example, at at least one of the front nose, side mirror, rear bumper, back door, and upper part of the windshield of the vehicle interior of the vehicle 7900. The image pickup unit 7910 provided in the front nose and the image pickup section 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900. The image pickup units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900. The image pickup unit 7916 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900. The image pickup unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図24には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 24 shows an example of the shooting range of each of the imaging units 7910, 7912, 7914, 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose, the imaging ranges b and c indicate the imaging range of the imaging units 7912 and 7914 provided on the side mirrors, respectively, and the imaging range d indicates the imaging range d. The imaging range of the imaging unit 7916 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the image pickup units 7910, 7912, 7914, 7916, a bird's-eye view image of the vehicle 7900 can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle exterior information detection unit 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, side, corner and the upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, an ultrasonic sensor or a radar device. The vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, a lidar device. These out-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, or the like.
 図23に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Return to Fig. 23 and continue the explanation. The vehicle outside information detection unit 7400 causes the image pickup unit 7410 to capture an image of the outside of the vehicle and receives the captured image data. Further, the vehicle exterior information detection unit 7400 receives detection information from the connected vehicle exterior information detection unit 7420. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a lidar device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information. The out-of-vehicle information detection unit 7400 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on a road surface based on the received information. The out-of-vehicle information detection unit 7400 may perform an environment recognition process for recognizing rainfall, fog, road surface conditions, etc. based on the received information. The out-of-vehicle information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 Further, the vehicle outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a vehicle, an obstacle, a sign, a character on the road surface, or the like based on the received image data. The vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different image pickup units 7410 to generate a bird's-eye view image or a panoramic image. May be good. The vehicle exterior information detection unit 7400 may perform the viewpoint conversion process using the image data captured by different image pickup units 7410.
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The in-vehicle information detection unit 7500 detects the in-vehicle information. For example, a driver state detection unit 7510 that detects the state of the driver is connected to the in-vehicle information detection unit 7500. The driver state detection unit 7510 may include a camera that captures the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like. The biosensor is provided on, for example, on the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and may determine whether the driver is asleep. You may. The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs. An input unit 7800 is connected to the integrated control unit 7600. The input unit 7800 is realized by a device that can be input-operated by the occupant, such as a touch panel, a button, a microphone, a switch, or a lever. Data obtained by recognizing the voice input by the microphone may be input to the integrated control unit 7600. The input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. You may. The input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Further, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the above input unit 7800 and outputs the input signal to the integrated control unit 7600. By operating the input unit 7800, the passenger or the like inputs various data to the vehicle control system 7000 and instructs the processing operation.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) for storing various programs executed by the microcomputer, and a RAM (Random Access Memory) for storing various parameters, calculation results, sensor values, and the like. Further, the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX、LTE(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750. General-purpose communication I / F7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or wireless LAN (Wi-Fi). Other wireless communication protocols such as (also referred to as (registered trademark)) and Bluetooth (registered trademark) may be implemented. The general-purpose communication I / F7620 connects to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point, for example. You may. Further, the general-purpose communication I / F7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in a vehicle. The dedicated communication I / F7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of the lower layer IEEE802.11p and the upper layer IEEE1609, or a cellular communication protocol. May be implemented. Dedicated communication I / F7630 is typically vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-house (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Pedestrian) communication. ) Carry out V2X communication, a concept that includes one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), executes positioning, and executes positioning, and the latitude, longitude, and altitude of the vehicle. Generate location information including. The positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, a radio wave or an electromagnetic wave transmitted from a radio station or the like installed on a road, and acquires information such as a current position, a traffic jam, a road closure, or a required time. The function of the beacon receiving unit 7650 may be included in the above-mentioned dedicated communication I / F 7630.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle. The in-vehicle device I / F7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB). In addition, the in-vehicle device I / F7660 is connected via a connection terminal (and a cable if necessary) (not shown), USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL (Mobile). A wired connection such as High-definition Link) may be established. The in-vehicle device 7760 may include, for example, at least one of a passenger's mobile device or wearable device, or information device carried in or attached to the vehicle. Further, the in-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination. The in-vehicle device I / F 7660 exchanges a control signal or a data signal with these in-vehicle devices 7760.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I / F7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. The vehicle-mounted network I / F7680 transmits / receives signals and the like according to a predetermined protocol supported by the communication network 7010.
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 is via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680. The vehicle control system 7000 is controlled according to various programs based on the information acquired. For example, the microcomputer 7610 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. May be good. For example, the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. Cooperative control may be performed for the purpose of. In addition, the microcomputer 7610 automatically travels autonomously without relying on the driver's operation by controlling the driving force generator, steering mechanism, braking device, etc. based on the acquired information on the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving or the like.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 The microcomputer 7610 has information acquired via at least one of a general-purpose communication I / F7620, a dedicated communication I / F7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F7660, and an in-vehicle network I / F7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict the danger of a vehicle collision, a pedestrian or the like approaching or entering a closed road, and generate a warning signal based on the acquired information. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図23の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 23, an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are exemplified as output devices. The display unit 7720 may include, for example, at least one of an onboard display and a head-up display. The display unit 7720 may have an AR (Augmented Reality) display function. The output device may be other devices such as headphones, wearable devices such as eyeglass-type displays worn by passengers, projectors or lamps other than these devices. When the output device is a display device, the display device displays the results obtained by various processes performed by the microcomputer 7610 or the information received from other control units in various formats such as texts, images, tables, and graphs. Display visually. When the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs the audio signal audibly.
 なお、図23に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 In the example shown in FIG. 23, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, each control unit may be composed of a plurality of control units. Further, the vehicle control system 7000 may include another control unit (not shown). Further, in the above description, the other control unit may have a part or all of the functions carried out by any of the control units. That is, as long as information is transmitted and received via the communication network 7010, predetermined arithmetic processing may be performed by any of the control units. Similarly, a sensor or device connected to any control unit may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. ..
 本開示に係る技術は、以上説明した構成のうち、例えば、視覚的又は聴覚的に情報を通知することが可能な出力装置の表示部に適用され得る。 The technique according to the present disclosure can be applied to, for example, the display unit of an output device capable of visually or audibly notifying information among the configurations described above.
[その他]
 尚、本開示の技術は以下のような構成も取ることができる。
[others]
The technology disclosed in the present disclosure can also have the following configurations.
[A1]
 マトリクス状に配置された発光素子を含んでおり、
 発光素子は、凸多角形状の発光面を有しており、
 発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている、
表示装置。
[A2]
 発光素子に直交する仮想平面で光学素子を切断したときの断面形状は、台形状あるいは半円状である、
上記[A1]に記載の表示装置。
[A3]
 発光素子の発光面は、矩形状または正六角形状である、
上記[A1]または[A2]に記載の表示装置。
[A4]
 各発光素子には少なくとも1つの光学素子が対応するように設けられている、
上記[A1]ないし[A3]のいずれかに記載の表示装置。
[A5]
 表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子を少なくとも含んでいる、
上記[A1]ないし[A4]のいずれかに記載の表示装置。
[A6]
 或る特定色表示用の各発光素子には複数の光学素子が対応するように設けられている、上記[A5]に記載の表示装置。
[A7]
 特定色表示用の発光素子は矩形状の発光面を備えており、
 発光面の長辺方向に並んで複数の光学素子が設けられている、
上記[A6]に記載の表示装置。
[A8]
 青色表示用の各発光素子には複数の光学素子が対応するように設けられている、
上記[A6]または[A7]に記載の表示装置。
[A9]
 赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子から成る群は、全体として矩形状に配置されている、
上記[A5]ないし[A8]のいずれかに記載の表示装置。
[A10]
 表示装置は、表示色に対応したカラーフィルタを更に備えている、
上記[A5]ないし[A9]のいずれかに記載の表示装置。
[A11]
 カラーフィルタは、発光素子と光学素子との間に配置されている、
上記[A10]に記載の表示装置。
[A12]
 カラーフィルタは、光学素子の上方に配置されている、
上記[A10]に記載の表示装置。
[A13]
 発光素子は有機エレクトロルミネッセンス素子から成る発光部を含む、
上記[A1]ないし[A12]に記載の表示装置。
[A14]
 発光素子は光を共振させる共振器構造を備えている、
上記[A13]に記載の表示装置。
[A15]
 表示装置は、赤色表示用の発光素子に対応したカラーフィルタを更に備えている、
上記[A14]に記載の表示装置。
[A16]
 表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子に対応したカラーフィルタを更に備えている、
上記[A14]に記載の表示装置。
[A1]
It contains light emitting elements arranged in a matrix and contains light emitting elements.
The light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
The upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered,
Display device.
[A2]
The cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is trapezoidal or semicircular.
The display device according to the above [A1].
[A3]
The light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
The display device according to the above [A1] or [A2].
[A4]
Each light emitting element is provided with at least one optical element corresponding to it.
The display device according to any one of the above [A1] to [A3].
[A5]
The display device includes at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
The display device according to any one of the above [A1] to [A4].
[A6]
The display device according to the above [A5], wherein a plurality of optical elements are provided so as to correspond to each light emitting element for displaying a specific color.
[A7]
The light emitting element for displaying a specific color has a rectangular light emitting surface, and has a rectangular light emitting surface.
A plurality of optical elements are provided side by side in the long side direction of the light emitting surface.
The display device according to the above [A6].
[A8]
Each light emitting element for blue display is provided so as to correspond to a plurality of optical elements.
The display device according to the above [A6] or [A7].
[A9]
The group consisting of a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display is arranged in a rectangular shape as a whole.
The display device according to any one of the above [A5] to [A8].
[A10]
The display device further includes a color filter corresponding to the display color.
The display device according to any one of the above [A5] to [A9].
[A11]
The color filter is arranged between the light emitting element and the optical element.
The display device according to the above [A10].
[A12]
The color filter is located above the optical element,
The display device according to the above [A10].
[A13]
The light emitting device includes a light emitting unit composed of an organic electroluminescence device.
The display device according to the above [A1] to [A12].
[A14]
The light emitting element has a resonator structure that resonates light.
The display device according to the above [A13].
[A15]
The display device further includes a color filter corresponding to a light emitting element for displaying red.
The display device according to the above [A14].
[A16]
The display device further includes a light emitting element for red display, a light emitting element for green display, and a color filter corresponding to the light emitting element for blue display.
The display device according to the above [A14].
[B1]
 マトリクス状に配置された発光素子を含んでおり、
 発光素子は、凸多角形状の発光面を有しており、
 発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている、
表示装置を備えた電子機器。
[B2]
 発光素子に直交する仮想平面で光学素子を切断したときの断面形状は、台形状あるいは半円状である、
上記[B1]に記載の電子機器。
[B3]
 発光素子の発光面は、矩形状または正六角形状である、
上記[B1]または[B2]に記載の電子機器。
[B4]
 各発光素子には少なくとも1つの光学素子が対応するように設けられている、
上記[B1]ないし[B3]のいずれかに記載の電子機器。
[B5]
 表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子を少なくとも含んでいる、
上記[B1]ないし[B4]のいずれかに記載の電子機器。
[B6]
 或る特定色表示用の各発光素子には複数の光学素子が対応するように設けられている、上記[B5]に記載の電子機器。
[B7]
 特定色表示用の発光素子は矩形状の発光面を備えており、
 発光面の長辺方向に並んで複数の光学素子が設けられている、
上記[B6]に記載の電子機器。
[B8]
 青色表示用の各発光素子には複数の光学素子が対応するように設けられている、
上記[B6]または[B7]に記載の電子機器。
[B9]
 赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子から成る群は、全体として矩形状に配置されている、
上記[B5]ないし[B8]のいずれかに記載の電子機器。
[B10]
 表示装置は、表示色に対応したカラーフィルタを更に備えている、
上記[B5]ないし[B9]のいずれかに記載の電子機器。
[B11]
 カラーフィルタは、発光素子と光学素子との間に配置されている、
上記[B10]に記載の電子機器。
[B12]
 カラーフィルタは、光学素子の上方に配置されている、
上記[B10]に記載の電子機器。
[B13]
 発光素子は有機エレクトロルミネッセンス素子から成る発光部を含む、
上記[B1]ないし[B12]に記載の電子機器。
[B14]
 発光素子は光を共振させる共振器構造を備えている、
上記[B13]に記載の電子機器。
[B15]
 表示装置は、赤色表示用の発光素子に対応したカラーフィルタを更に備えている、
上記[B14]に記載の電子機器。
[B16]
 表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子に対応したカラーフィルタを更に備えている、
上記[B14]に記載の電子機器。
[B1]
It contains light emitting elements arranged in a matrix and contains light emitting elements.
The light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
The upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered,
An electronic device equipped with a display device.
[B2]
The cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is trapezoidal or semicircular.
The electronic device according to the above [B1].
[B3]
The light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
The electronic device according to the above [B1] or [B2].
[B4]
Each light emitting element is provided with at least one optical element corresponding to it.
The electronic device according to any one of the above [B1] to [B3].
[B5]
The display device includes at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
The electronic device according to any one of the above [B1] to [B4].
[B6]
The electronic device according to the above [B5], wherein a plurality of optical elements are provided so as to correspond to each light emitting element for displaying a specific color.
[B7]
The light emitting element for displaying a specific color has a rectangular light emitting surface, and has a rectangular light emitting surface.
A plurality of optical elements are provided side by side in the long side direction of the light emitting surface.
The electronic device according to the above [B6].
[B8]
Each light emitting element for blue display is provided so as to correspond to a plurality of optical elements.
The electronic device according to the above [B6] or [B7].
[B9]
The group consisting of a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display is arranged in a rectangular shape as a whole.
The electronic device according to any one of the above [B5] to [B8].
[B10]
The display device further includes a color filter corresponding to the display color.
The electronic device according to any one of the above [B5] to [B9].
[B11]
The color filter is arranged between the light emitting element and the optical element.
The electronic device according to the above [B10].
[B12]
The color filter is located above the optical element,
The electronic device according to the above [B10].
[B13]
The light emitting device includes a light emitting unit composed of an organic electroluminescence device.
The electronic device according to the above [B1] to [B12].
[B14]
The light emitting element has a resonator structure that resonates light.
The electronic device according to the above [B13].
[B15]
The display device further includes a color filter corresponding to a light emitting element for displaying red.
The electronic device according to the above [B14].
[B16]
The display device further includes a light emitting element for red display, a light emitting element for green display, and a color filter corresponding to the light emitting element for blue display.
The electronic device according to the above [B14].
1,2,3,3A,3B・・・表示装置、100・・・基板、111・・・第1電極、112・・・隔壁部、121・・・第2電極、122・・・保護層、123・・・平坦化層、130,130R,130B,130G,130T・・・カラーフィルタ、140・・・光学素子、224・・・充填層、240・・・光学素子、411・・・第1電極、421・・・第2電極、511・・・カメラ本体部、512・・・撮影レンズユニット、513・・・グリップ部、514・・・モニタ、515・・・ビューファインダ、611・・・眼鏡形の表示部、612・・・耳掛け部、700・・・眼鏡、711・・・シースルーヘッドマウントディスプレイ、712・・・本体部、713・・・アーム、714・・・鏡筒、ELP・・・発光素子、LA・・・光学素子を配置し得る領域、ML・・・反射膜 1,2,3,3A, 3B ... Display device, 100 ... Substrate, 111 ... First electrode, 112 ... Bulk partition, 121 ... Second electrode, 122 ... Protective layer , 123 ... Flattening layer, 130, 130 R , 130 B , 130 G , 130 T ... Color filter, 140 ... Optical element, 224 ... Filling layer, 240 ... Optical element, 411 ... 1st electrode, 421 ... 2nd electrode, 511 ... Camera body, 512 ... Shooting lens unit, 513 ... Grip, 514 ... Monitor, 515 ... Viewfinder , 611 ... Eyeglass-shaped display, 612 ... Ear hook, 700 ... Glasses, 711 ... See-through head-mounted display, 712 ... Main body, 713 ... Arm, 714 ... -Lens barrel, ELP: light emitting element, LA: area where optical elements can be placed, ML: reflective film

Claims (17)

  1.  マトリクス状に配置された発光素子を含んでおり、
     発光素子は、凸多角形状の発光面を有しており、
     発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている、
    表示装置。
    It contains light emitting elements arranged in a matrix and contains light emitting elements.
    The light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
    The upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered,
    Display device.
  2.  発光素子に直交する仮想平面で光学素子を切断したときの断面形状は、台形状あるいは半円状である、
    請求項1に記載の表示装置。
    The cross-sectional shape when the optical element is cut in a virtual plane orthogonal to the light emitting element is trapezoidal or semicircular.
    The display device according to claim 1.
  3.  発光素子の発光面は、矩形状または正六角形状である、
    請求項1に記載の表示装置。
    The light emitting surface of the light emitting element has a rectangular shape or a regular hexagonal shape.
    The display device according to claim 1.
  4.  各発光素子には少なくとも1つの光学素子が対応するように設けられている、
    請求項1に記載の表示装置。
    Each light emitting element is provided with at least one optical element corresponding to it.
    The display device according to claim 1.
  5.  表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子を少なくとも含んでいる、
    請求項1に記載の表示装置。
    The display device includes at least a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display.
    The display device according to claim 1.
  6.  或る特定色表示用の各発光素子には複数の光学素子が対応するように設けられている、請求項5に記載の表示装置。 The display device according to claim 5, wherein each light emitting element for displaying a specific color is provided so as to correspond to a plurality of optical elements.
  7.  特定色表示用の発光素子は矩形状の発光面を備えており、
     発光面の長辺方向に並んで複数の光学素子が設けられている、
    請求項6に記載の表示装置。
    The light emitting element for displaying a specific color has a rectangular light emitting surface, and has a rectangular light emitting surface.
    A plurality of optical elements are provided side by side in the long side direction of the light emitting surface.
    The display device according to claim 6.
  8.  青色表示用の各発光素子には複数の光学素子が対応するように設けられている、
    請求項6に記載の表示装置。
    Each light emitting element for blue display is provided so as to correspond to a plurality of optical elements.
    The display device according to claim 6.
  9.  赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子から成る群は、全体として矩形状に配置されている、
    請求項5に記載の表示装置。
    The group consisting of a light emitting element for red display, a light emitting element for green display, and a light emitting element for blue display is arranged in a rectangular shape as a whole.
    The display device according to claim 5.
  10.  表示装置は、表示色に対応したカラーフィルタを更に備えている、
    請求項5に記載の表示装置。
    The display device further includes a color filter corresponding to the display color.
    The display device according to claim 5.
  11.  カラーフィルタは、発光素子と光学素子との間に配置されている、
    請求項10に記載の表示装置。
    The color filter is arranged between the light emitting element and the optical element.
    The display device according to claim 10.
  12.  カラーフィルタは、光学素子の上方に配置されている、
    請求項10に記載の表示装置。
    The color filter is located above the optical element,
    The display device according to claim 10.
  13.  発光素子は有機エレクトロルミネッセンス素子から成る発光部を含む、
    請求項1に記載の表示装置。
    The light emitting device includes a light emitting unit composed of an organic electroluminescence device.
    The display device according to claim 1.
  14.  発光素子は光を共振させる共振器構造を備えている、
    請求項13に記載の表示装置。
    The light emitting element has a resonator structure that resonates light.
    The display device according to claim 13.
  15.  表示装置は、赤色表示用の発光素子に対応したカラーフィルタを更に備えている、
    請求項14に記載の表示装置。
    The display device further includes a color filter corresponding to a light emitting element for displaying red.
    The display device according to claim 14.
  16.  表示装置は、赤色表示用の発光素子、緑色表示用の発光素子および青色表示用の発光素子に対応したカラーフィルタを更に備えている、
    請求項14に記載の表示装置。
    The display device further includes a light emitting element for red display, a light emitting element for green display, and a color filter corresponding to the light emitting element for blue display.
    The display device according to claim 14.
  17.  マトリクス状に配置された発光素子を含んでおり、
     発光素子は、凸多角形状の発光面を有しており、
     発光素子の上方は、各発光素子に対応して独立して設けられ、発光面の辺に倣った形状の部分を含むと共にその部分が発光面の領域外に及ぶ底面あるいは上面を有する光学素子によって覆われている、
    表示装置を備えた電子機器。
    It contains light emitting elements arranged in a matrix and contains light emitting elements.
    The light emitting element has a convex polygonal light emitting surface, and has a light emitting surface.
    The upper part of the light emitting element is provided independently corresponding to each light emitting element, and includes an optical element having a bottom surface or an upper surface that includes a portion having a shape that imitates the side of the light emitting surface and the portion extends outside the region of the light emitting surface. Covered,
    An electronic device equipped with a display device.
PCT/JP2021/031460 2020-09-10 2021-08-27 Display device and electronic apparatus WO2022054604A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022547499A JPWO2022054604A1 (en) 2020-09-10 2021-08-27
CN202180054416.XA CN116034296A (en) 2020-09-10 2021-08-27 Display device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151915 2020-09-10
JP2020-151915 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022054604A1 true WO2022054604A1 (en) 2022-03-17

Family

ID=80631627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031460 WO2022054604A1 (en) 2020-09-10 2021-08-27 Display device and electronic apparatus

Country Status (4)

Country Link
JP (1) JPWO2022054604A1 (en)
CN (1) CN116034296A (en)
TW (1) TW202211724A (en)
WO (1) WO2022054604A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150082A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Method for driving el display device and el display device and its manufacturing method and information display device
JP2010231010A (en) * 2009-03-27 2010-10-14 Seiko Epson Corp Electrooptical device
JP2012248432A (en) * 2011-05-27 2012-12-13 Seiko Epson Corp Light emitting device and electronic apparatus, and method for manufacturing light emitting device
JP2012248433A (en) * 2011-05-27 2012-12-13 Seiko Epson Corp Light emitting device and electronic device
JP2013182775A (en) * 2012-03-01 2013-09-12 Dainippon Printing Co Ltd Organo electroluminescent panel
JP2013200486A (en) * 2012-03-26 2013-10-03 Dainippon Printing Co Ltd Optical element and light emission panel
JP2015069700A (en) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ Display device
US20200251689A1 (en) * 2018-07-31 2020-08-06 Fuzhou Boe Optoelectronics Technology Co., Ltd. Display panel and display device
JP2020177796A (en) * 2019-04-17 2020-10-29 株式会社Joled Self-luminous panel, manufacturing method of the same, self-luminous display device, and electronic device
JP2020184481A (en) * 2019-05-09 2020-11-12 セイコーエプソン株式会社 Display device and electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150082A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Method for driving el display device and el display device and its manufacturing method and information display device
JP2010231010A (en) * 2009-03-27 2010-10-14 Seiko Epson Corp Electrooptical device
JP2012248432A (en) * 2011-05-27 2012-12-13 Seiko Epson Corp Light emitting device and electronic apparatus, and method for manufacturing light emitting device
JP2012248433A (en) * 2011-05-27 2012-12-13 Seiko Epson Corp Light emitting device and electronic device
JP2013182775A (en) * 2012-03-01 2013-09-12 Dainippon Printing Co Ltd Organo electroluminescent panel
JP2013200486A (en) * 2012-03-26 2013-10-03 Dainippon Printing Co Ltd Optical element and light emission panel
JP2015069700A (en) * 2013-09-26 2015-04-13 株式会社ジャパンディスプレイ Display device
US20200251689A1 (en) * 2018-07-31 2020-08-06 Fuzhou Boe Optoelectronics Technology Co., Ltd. Display panel and display device
JP2020177796A (en) * 2019-04-17 2020-10-29 株式会社Joled Self-luminous panel, manufacturing method of the same, self-luminous display device, and electronic device
JP2020184481A (en) * 2019-05-09 2020-11-12 セイコーエプソン株式会社 Display device and electronic device

Also Published As

Publication number Publication date
JPWO2022054604A1 (en) 2022-03-17
CN116034296A (en) 2023-04-28
TW202211724A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11639138B2 (en) Vehicle display system and vehicle
US20220365345A1 (en) Head-up display and picture display system
US20210347259A1 (en) Vehicle display system and vehicle
US20230121146A1 (en) Information processing apparatus, information processing method, and computer program
WO2020241139A1 (en) Display device and electronic device
WO2022054604A1 (en) Display device and electronic apparatus
US20220171058A1 (en) Light source module, distance measuring device and control method
WO2021149424A1 (en) Optical compensation element, method for manufacturing optical compensation element, liquid crystal display device, and electronic apparatus
CN111630452B (en) Imaging device and electronic apparatus
WO2021205869A1 (en) Liquid crystal display device and electronic apparatus
EP4171021A1 (en) Control device, projection system, control method, and program
WO2021053957A1 (en) Capacitor structure, transistor array substrate, production method for transistor array substrate, liquid crystal display device, and electronic device
WO2021065157A1 (en) Optical compensation element, liquid crystal display device, and electronic apparatus
WO2021095451A1 (en) Transistor array substrate, production method for transistor array substrate, liquid crystal display device, and electronic apparatus
WO2021246113A1 (en) Optical element, liquid crystal display device, and electronic apparatus
WO2022113864A1 (en) Display device, electronic apparatus, and method for manufacturing display device
US20240120356A1 (en) Imaging device and electronic apparatus
US20220197025A1 (en) Vehicular head-up display and light source unit used therefor
US20230415652A1 (en) Camera module, information processing system, information processing method, and information processing apparatus
WO2021132250A1 (en) In-vehicle display device and program
WO2024018812A1 (en) Solid-state imaging device
US20230100857A1 (en) Vehicle remote control system
WO2024106132A1 (en) Solid-state imaging device and information processing system
CN116724562A (en) Image processing apparatus, image processing method, and image processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866563

Country of ref document: EP

Kind code of ref document: A1