WO2022054267A1 - Terminal, base station, communication method, and program - Google Patents

Terminal, base station, communication method, and program Download PDF

Info

Publication number
WO2022054267A1
WO2022054267A1 PCT/JP2020/034666 JP2020034666W WO2022054267A1 WO 2022054267 A1 WO2022054267 A1 WO 2022054267A1 JP 2020034666 W JP2020034666 W JP 2020034666W WO 2022054267 A1 WO2022054267 A1 WO 2022054267A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
network
slice
network slice
Prior art date
Application number
PCT/JP2020/034666
Other languages
French (fr)
Japanese (ja)
Inventor
克成 上村
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2020/034666 priority Critical patent/WO2022054267A1/en
Publication of WO2022054267A1 publication Critical patent/WO2022054267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to terminals, base stations, communication methods and programs.
  • the 3GPP (3rd Generation Partnership Project), an international standardization organization, is studying the 5G system (5GS: 5G System), which is a 5th generation (5G) cellular system.
  • Network slicing is being studied as a technology for operating an optimal network for 5G services.
  • Network slicing is a technology for constructing multiple virtualized logical networks on a physical network in order to support the service requirements of a certain communication service.
  • Each of the plurality of virtualized logical networks is referred to as a network slice or simply a slice (Non-Patent Document 1).
  • the terminal registers with the network by transmitting information indicating the network slice desired to be registered to the cell selected by the cell selection process or the cell reselection process. Perform processing. If the network cannot provide the specified network slice from the terminal, registration to the specified network slice will be refused.
  • the terminal determines whether or not the network slice desired to be registered is provided unless the cell selected by the cell selection process or the cell reselection process is registered in the network. Since it cannot be known, there is a possibility that wireless resources related to the registration process to the network will be wasted.
  • an object of the present invention is to provide a technique that enables cell selection or cell reselection in consideration of network slices.
  • the terminal is a camp from an acquisition unit that acquires slice information indicating a network slice that can be provided by a cell and a cell that can provide a network slice supported by the terminal based on the slice information. It has a control unit for selecting or reselecting a cell to be turned on.
  • the wireless communication system targets, but is limited to, a 5G system (5G system: 5GS) including a radio access network (RAN), a core network (CN), and a terminal. Not done.
  • a wireless communication system that employs LTE and LTE-Advanced.
  • the radio access network may operate with a plurality of RATs (multi-RATs) including LTE and / or LTE-Advanced and NR, or may operate with any one RAT (Radio Access Technology). good.
  • LTE and / or LTE-Advanced are also referred to as EUTRA (Evolved Universal Terrestrial Radio Access).
  • 5G is also called NR (New Radio Access). This embodiment can be applied to any wireless communication system including at least a terminal, a base station, and a core network.
  • FIG. 1 is a diagram showing an example of an outline of the wireless communication system 1 according to the present embodiment.
  • the wireless communication system 1 includes a terminal 10, base stations 20A to 20B, and a core network 30.
  • the base stations 20A to 20B and the cells C1 to C2 are not distinguished, they are collectively referred to as the base station 20 and the cell C, respectively.
  • the numbers of the terminals 10 and the base station 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • the terminal 10 is a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device and a stationary device.
  • the terminal 10 may be referred to as a user equipment (UE).
  • the terminal 10 may be a mobile type or a fixed type.
  • the terminal 10 can communicate with, for example, a RAT that employs at least one of EUTRA and NR.
  • a base station for EUTRA Evolved Universal Terrestrial Radio Access
  • a base station for NR or a base station that supports both EUTRA and NR
  • the base station 20 for EUTRA is called eNB (evolved NodeB)
  • the base station 20 for NR is called gNB (g-NodeB).
  • the base station 20 includes ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor node, Central Unit (CU), and low power node ( low-power node), pico eNB, Home eNB (HeNB), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), or Integrated Access and Backhaul / Backhauling (IAB) node, etc. good.
  • ng-eNB gNodeB
  • NG-RAN Next Generation-Radio Access Network
  • DeNB Donor eNodeB
  • CU Central Unit
  • low power node low-power node
  • pico eNB Home eNB
  • HeNB Home eNB
  • DU Distributed Unit
  • RRH Remote Radio Head
  • IAB Integrated Access and Backhaul / Backhauling
  • Base station 20 forms one or more cells C.
  • Cell C is a serving cell, carrier, component carrier (CC), primary cell (PrimaryCell: PCell), secondary cell (SecondaryCell: SCell), primary secondary cell (PrimarySCell), special cell (SpecialCell), etc. May be paraphrased as.
  • the base stations 20A and 20B form cells C1 and C2, respectively, but the present invention is not limited to this, and each base station may form a plurality of cells C. Further, the plurality of base stations 20 may be connected to each other by a predetermined interface (for example, X2 or Xn interface).
  • a predetermined interface for example, X2 or Xn interface
  • the core network 30 is, for example, a core network corresponding to EUTRA (Evolved Packet Core: EPC) or a core network corresponding to NR (5G Core Network: 5GC).
  • the core network 30 includes a plurality of entities (entities) such as AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function) and NSSF (Network Slice Selection Function) (shown). figure). These entities are implemented in one or more physical or logical devices. For example, each slice may contain AMF, SMF, UPF respectively, or may share a part or all.
  • the terminal 10 can communicate with one or more base stations 20.
  • the terminal 10 can communicate by means of dual connectivity (DC) connected to two cell groups including one or more cells C, respectively.
  • DC dual connectivity
  • the DC may be referred to as a Multi-RAT DC (MR-DC).
  • MR-DC Multi-RAT DC
  • the terminal 10 can also perform communication by using carrier aggregation (CA) that integrates a plurality of cells C.
  • CA carrier aggregation
  • FIG. 2 is a diagram for explaining network slicing and network slicing.
  • network slicing resources of the entire network or a part of the network including the radio access network (RAN) 2 composed of a plurality of base stations 20 and the core network 30 are virtually divided as network slices.
  • the core network 30 and the base station 20 may be prepared individually for each network slice, or may be partially or wholly shared between different network slices.
  • Network slicing typically divides the core network 30 logically / virtually, but may also physically / logically / virtually divide the radio access network 2.
  • the base station 20 allocates radio resources to the terminal 10 (scheduling), and various types related to layer 1 (physical layer), layer 2 (MAC layer, RLC layer, PDCP layer) and layer 3 (RRC layer).
  • radio resources to the terminal 10 (scheduling)
  • layer 1 physical layer
  • layer 2 MAC layer, RLC layer, PDCP layer
  • RRC layer layer 3
  • the core network 30 is a core network (eMBB (enhanced Mobile Broadband)) 30-1 for high-capacity high-speed communication and a core network (URLLC (Ultra Reliable Low Latency Communication)) 30- for low latency. It has a function to virtually realize at least three different networks of 2 and the core network (MIoT (massiveIoT)) 30-3 for IoT terminals, and can be operated as slice 1, slice 2, and slice 3, respectively. Indicates that. Terminals with different service requirements, such as terminals 10-1 used as game consoles, terminals 10-2 mounted on vehicles and used as IoT devices, have their respective service requirements. It belongs to Slice 1, Slice 2 and Slice 3 to fill.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication
  • the communication performed by the terminal 10-1 is processed by the core network (eMBB) 30-1. Further, the communication performed by the terminal 10-2 is processed by the core network (URLLC) 30-2. The communication performed by the terminal 10-3 is processed by the core network (MIoT) 30-3. In this way, by using the network slice, it is possible to perform communication processing suitable for the characteristics of the service required for the terminal 10.
  • eMBB core network
  • URLLC core network
  • MIoT core network
  • FIG. 3 is a diagram illustrating a conventional processing procedure when the terminal 10 is registered in the network.
  • the radio access network 2 including at least one base station 20 and the core network 30 are collectively referred to as “network”. Further, it is assumed that the core network 30 knows in advance which base station 20 (cell) supports which network slice.
  • the state of the terminal 10 includes an idle state, an inactive state, and a connected state.
  • the idle state is a state in which the terminal 10 has not established an RRC connection with the base station 20, and is also called an RRC_IDLE state, an idle mode, or the like.
  • the idle terminal 10 receives the system information (System Information) of the cell C (S10), and camps on the cell C selected by cell selection or cell reselection (S11). "Camping on to cell C” may be paraphrased as "being in cell C”.
  • Cell selection is to select cell C (also referred to as an appropriate cell “suitable cell”) that satisfies a predetermined criterion (Cell Selection Criteria).
  • Cell reselection is to find (detect) and camp on a cell C (more suiteable cell) that is more suitable than the cell C that is currently camping on according to a predetermined criterion (CellReselectionCriteria).
  • Cell reselection includes reselection of cell C having the same carrier frequency as cell C to camp on (intra-frequency cell selection), and reselection of cell C having a carrier frequency different from that of cell C to camp on. (Inter-frequency cell selection), reselection of cell C having a carrier frequency different from that of cell C to camp on (inter-RAT cell selection) is included.
  • the terminal 10 uses the radio resource notified in advance by the system information to transmit a signal called a random access preamble to the base station 20 (step S12).
  • the random access preamble is also called message 1 (Msg1).
  • the base station 20 Upon receiving the random access preamble, the base station 20 transmits a random access response message (RandomAccessresponse) to the terminal 10 (step S13).
  • the random access response message is also referred to as message 2 (Msg2).
  • the terminal 10 transmits an RRC message including an RRC Setup Request (RRCSetupRequest) to the base station 20 (step S14).
  • the RRC setup request message contains at least information (Establishment Cause) indicating the reason for establishing the RRC.
  • the message containing the RRC setup request is also referred to as message 3 (Msg3).
  • the base station 20 transmits an RRC message including an RRC setup (RRCSetup) to the terminal 10 (step S15).
  • the RRC message containing the RRC setup is also referred to as message 4 (Msg4).
  • the terminal 10 transmits an RRC message including the RRC Setup Complete to the terminal 10 (step S16).
  • the RRC message containing the RRC setup complete is also referred to as message 5 (Msg5).
  • the terminal 10 piggybacks the registration request including the ID that uniquely identifies the network slice requesting registration with the RRCSetupComplete message to the base station 20.
  • the ID that uniquely identifies the network slice is called S-NSSAI (Single Network Slice Selection Assistance Information).
  • S-NSSAI Single Network Slice Selection Assistance Information
  • NSSAI Network Slice Selection Assistance Information
  • the base station 20 selects the core network 30 (AMF) for registering the terminal information, and the base station 20 selects the registration request (Registration) to the selected core network 30. Request) is forwarded.
  • the core network 30 (AMF) is a requested network slice based on a network slice supported by the base station 20 (or cell) receiving the registration request and a network slice supported by the core network 30. It is determined whether or not it is possible to accept the registration in, and the determination result is notified to the base station 20.
  • the base station 20 supports the information (Allowed NSSAI) indicating that the requested S-NSSAI is supported or the requested S-NSSAI in the RRC reconfiguration message (RRCReconfiguration) or the downlink information transfer message (DLInformationTransfer). It is transmitted to the terminal 10 including the information (Rejected NSSAI) indicating that the information is not performed (step S17).
  • FIG. 4 is a diagram illustrating the configuration of S-NSSAI specified in the 3GPP specifications.
  • FIG. 4A shows the bit configuration of S-NSSAI.
  • S-NSSAI is composed of SST (Slice / Service Type) indicating the type of network slice and SD (Slice Differentiator) which is information for distinguishing network slices belonging to the same SST.
  • SST Slice / Service Type
  • SD Slice Differentiator
  • the SST may be composed of 8 bits and the SD may be composed of 24 bits. Since SD is optional information, it does not necessarily have to be included in S-NSSAI. That is, S-NSSAI is an information bit composed of 8 bits or 32 bits.
  • FIG. 4B is a definition of the SST value (SST Value).
  • SST values 1, 2, 3 and 4 indicate that the service types (or slice types) provided by the network slice are eMBB, URLLC, MioT and V2X (Vehicle-to-Everything), respectively.
  • the definition of the SST value is not limited to FIG. 4B in the future, and a new SST value may be added.
  • the terminal 10 executes a random access procedure in the camp-on cell by cell selection or cell reselection, and registers in the network. It is not possible to know if a given network slice is supported without processing. If the network does not support the network slice that the terminal 10 wants to register, the random access procedure and the registration process to the network (that is, the processing procedure of steps S12 to S17 in FIG. 3) become useless. ..
  • the system information transmitted by each base station 20 includes information indicating a network slice that can be provided by the cell C formed by each base station 20, and the terminal 10 selects the cell.
  • the cell that can provide the network slice supported by the terminal 10 (or wishes to be registered) is preferentially camp-on.
  • FIG. 5 is a diagram showing an example of the hardware configuration of the terminal 10 and the base station 20.
  • the terminal 10 and the base station 20 include a processor 11, a memory 12, a storage device 13, a communication device 14 for wired or wireless communication, an input device 15 for receiving input operations, an output device 16 for outputting information, and an antenna 17.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls a terminal 10 or a base station 20.
  • a CPU Central Processing Unit
  • the memory 12 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
  • ROM ReadOnlyMemory
  • EPROM ErasableProgrammableROM
  • EEPROM ElectricallyErasableProgrammableROM
  • RAM RandomAccessMemory
  • the storage device 13 is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMediaCard), for example.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • eMMC embedded MultiMediaCard
  • the communication device 14 is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 14 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal transmitted from the antenna 17 by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna 17, and transmits the digital baseband signal to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
  • the input device 15 is, for example, a keyboard, a touch panel, a mouse and / or a microphone.
  • the output device 16 is, for example, a display and / or a speaker.
  • FIG. 6 is a diagram showing an example of a functional block configuration of the terminal 10.
  • the terminal 10 includes a storage unit 100, a reception unit 101, a transmission unit 102, an acquisition unit 103, and a control unit 104. Note that FIG. 6 shows a functional block required in this embodiment.
  • the storage unit 100 may be realized by using the memory 12 and / or the storage device 13 included in the terminal 10.
  • the receiving unit 101 and the transmitting unit 102 may be realized, for example, by the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. ..
  • the acquisition unit 103 and the control unit 104 may be realized by the processor 11 of the terminal 10 executing a program stored in the storage device 13. Further, the program can be stored in a storage medium.
  • the storage medium in which the program is stored may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • the storage unit 100 stores information (S-NSSAI or NSSAI) indicating one or more network slices supported by the terminal 10.
  • the receiving unit 101 receives a downlink (DownLink) signal from the base station 20.
  • the transmission unit 102 generates an uplink (UPLink) signal and transmits it to the base station 20.
  • DownLink downlink
  • UPLink uplink
  • the acquisition unit 103 acquires information indicating a network slice that can be provided in the cell (hereinafter, referred to as "slice information").
  • the "network slices that can be provided by the cell” are “network slices that can be provided by the cell", “network slices that can be registered in the area including the cell”, and “network slices that can be provided by the base station 20 (or network)". It may be read as “a network slice supported by the base station 20 (or a network)" or "a network slice that can be registered in an area including the base station 20 (or a network)”.
  • the acquisition unit 103 acquires slice information from the RRC message (system information, RRC reset message, etc.) received from the base station 20.
  • the control unit 104 selects (cell selection) or reselects (cell selection) the cell to camp on from the cells that can provide the network slice supported by the terminal 10. Select).
  • "Network slices supported by terminal 10" should be read as “network slices used by terminal 10", “network slices desired by terminal 10", or “network slices desired by terminal 10 to be registered”. May be good. Further, the "network slice used by the terminal 10", the "network slice desired by the terminal 10", or the “network slice desired by the terminal 10" are among the network slices supported by the terminal 10. It may mean the slice / service type or S-NSSAI used by the terminal 10. In the present embodiment, the expressions "used by the terminal 10", “desired to be used by the terminal 10", and “desired to be registered by the terminal 10" can be interchanged with each other.
  • FIG. 7 is a diagram showing an example of a functional block configuration of the base station 20.
  • the base station 20 includes a storage unit 200, a reception unit 201, and a transmission unit 202. Note that FIG. 7 shows a functional block required in this embodiment.
  • the storage unit 200 may be realized by using the memory 12 and / or the storage device 13 included in the base station 20.
  • the receiving unit 201 and the transmitting unit 202 may be realized, for example, by the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. ..
  • the program can be stored in a storage medium.
  • the storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • the receiving unit 201 receives the uplink signal from the terminal 10.
  • the transmission unit 202 generates a downlink signal and transmits it to the terminal 10. Further, the transmission unit 202 transmits an RRC message (system information, RRC reset message, etc.) including slice information.
  • the receiving unit 201 and the transmitting unit 202 correspond to a random access procedure, an RRC connection establishment process (for example, reception of an RRCSetupComplete message including desired slice information), and transmission / reception of other RRC messages with the terminal 10. Perform the processing to be performed. Further, the receiving unit 201 and the transmitting unit 202 transmit and receive a message (NAS message) with and from the core network 30.
  • NAS message message
  • the transmission unit 202 includes the slice information indicating the network slice that can be provided by the cell in the system information and transmits the slice information. Further, the receiving unit 201 selects a cell to camp on from among the cells capable of providing the network slice supported by the terminal 10 (or used by the terminal 10) to the terminal 10 based on the slice information. The cell reselection is executed, and the information of the network slice used by the terminal 10 is received from the terminal 10.
  • FIG. 8 is a flowchart showing an example of a processing procedure when the terminal 10 performs cell selection or cell reselection.
  • the acquisition unit 103 searches for peripheral cells of the terminal 10 itself, and acquires system information including slice information in the detected cells to acquire slice information and information necessary for camp-on.
  • the acquisition unit 103 acquires slice information about peripheral cells in advance by receiving an RRC message (for example, RRC Reconfiguration, RRC Release, etc.) or an upper layer message (for example, NAS message) other than the system information from the base station 20 in advance. You may do it.
  • the slice information may be provided in a bitmap format in which bits corresponding to the supported slices are set, in a list format in which the supported slices are listed, or an SST value may be notified.
  • step S101 when cell selection or cell reselection is performed, the control unit 104 has acquired information indicating the slices supported by the terminal 10 itself and the presence or absence of appropriate cells capable of providing slices supported by the terminal 10 itself. Judgment is based on system information.
  • the information indicating the slices supported by the terminal 10 itself may be stored in the storage unit 100 in advance, or may be stored in the SIM (Subscriber Identity Module). If the cell is found, the control unit 104 proceeds to the processing procedure of step S102, and if not found, the control unit 104 proceeds to the processing procedure of step S103.
  • SIM Subscriber Identity Module
  • the "appropriate cell” in the processing procedure of step S101 may mean a cell C that satisfies a predetermined criterion (Cell Selection Criteria) at the time of cell selection.
  • “appropriate cell” means a cell C (more suiteable cell) that is found according to a predetermined criterion (CellReselectionCriteria) and is more appropriate than the cell C currently camping on at the time of cell reselection. You may do it.
  • the terminal 10 may be capable of supporting a plurality of network slices.
  • a terminal 10 or the like that supports both a slice whose slice / service type is URLLC and a slice whose service type is V2X is assumed.
  • the terminal 10 supports both a slice that is a URLLC and a slice that is a V2X, and whether it operates as a URLLC terminal or a V2X terminal according to a user's instruction or an operator (PLMN) contract or the like. It may be switchable. In this case, when making a cell selection, the terminal 10 is asked to select an appropriate cell that can provide slices supported by the terminal 10 itself (that is, a cell that supports at least both URLLC and V2X) as a cell to camp on. You may do it.
  • PLMN operator
  • the terminal 10 when the terminal 10 performs cell selection, if the slice used by the terminal 10 itself is URLLC (that is, when the terminal 10 operates as a URLLC terminal), at least an appropriate cell capable of providing a slice of URLLC is selected. It may be selected as the cell to camp on.
  • URLLC that is, when the terminal 10 operates as a URLLC terminal
  • step S101 the "appropriate cell capable of providing the slice supported by the terminal 10 itself” may be replaced with the "appropriate cell supporting the slice supported by the terminal 10 itself”.
  • the terminal 10 may determine whether or not it is possible to provide a network slice to be supported after determining that the cell satisfies a predetermined criterion. However, it may be determined whether or not it is possible to provide a network slice that supports it regardless of whether or not it meets a predetermined criterion.
  • step S102 the control unit 104 of the terminal 10 camps on the cell found in step S101 and returns to the processing procedure of step S100 to search for a cell more suitable than the camp-on cell. do.
  • step S103 when the control unit 104 of the terminal 10 ends the cell selection or cell reselection process (for example, when the power of the terminal 10 is turned off) (step S103-YES), the process procedure shown in FIG. 8 ends. .. If it does not end (step S103-NO), the process returns to the processing procedure of step S100.
  • An "appropriate cell” may be defined as a cell capable of providing a network slice supported by the terminal 10 and satisfying a predetermined criterion.
  • the predetermined criterion may be "Cell Selection Criteria” in the case of cell selection and “Cell Reselection Criteria” in the case of cell reselection.
  • Modification 2 the cell capable of providing the network slice supported by the terminal 10 by adding the offset value related to the corresponding network slice to the predetermined selection criterion (Cell Selection Criteria) used at the time of cell selection is ". It may be included in the "appropriate cell”.
  • Cell Selection Criteria Cell Selection Criteria
  • control unit 104 may select a cell for detecting an appropriate cell, and the appropriate cell may be a cell that satisfies at least a predetermined selection criterion.
  • the predetermined selection criterion may be that the reception level and / or the reception quality calculated based on the predetermined formula exceeds a predetermined value.
  • the predetermined calculation formula may be a calculation formula defined so that the reception level or the reception quality is equal to or less than the predetermined value for the cells that cannot provide the network slice supported by the terminal 10. ..
  • the predetermined calculation formula may be the formula shown below. That is, the predetermined selection criterion described above may be that the reception level (Srxlev) and the reception quality (Squal) calculated based on the following equation exceed the predetermined values (0). According to the following formula, if the measured cell is a cell that cannot provide the network slice supported by the terminal 10, the Qoffset slice is set to infinity. Therefore, since the reception level (Srxlev) and the reception quality (Squal) are both equal to or less than the predetermined value (0), the predetermined selection criteria are not satisfied.
  • Srxlev indicates the reception level (Cell selection RX level value) at the time of cell selection
  • Squal indicates the reception quality (Cell selection quality value) at the time of cell selection.
  • Qrxlevmeas indicates the received level (RSRP) of the measured cell
  • Qqualmeas indicates the received quality (RSRQ) of the measured cell
  • Qrxlevmin indicates the minimum reception level of the required cell
  • Qqualmin indicates the minimum reception quality of the required cell
  • Qrxlevminoffset is the offset value applied to Qrxlevmin
  • Qqualminoffset is the offset value applied to Qqualmin.
  • Pcompensation is a value determined by whether the frequency is in the FR1 range or the FR2 range.
  • Qoffsettemp is a temporary offset value applied to the cell.
  • Qoffsetslice can be set to an infinite value if the measured cell is not capable of providing a network slice supported by terminal 10, and the detected cell can provide a network slice supported by terminal 10. In the case of a cell, it may be set to 0. Qoffsetslice also sets the measured cell to a positive value (ie, a value that lowers the Srxlev and Squal calculation results) indicated in the system information if the measured cell is not capable of providing the network slices supported by the terminal 10. If the set and detected cell is a cell capable of providing the network slice supported by the terminal 10, it may be set to 0. Qoffsetslice is also set to 0 if the measured cell is not capable of providing network slices supported by terminal 10, and the detected cells can provide network slices supported by terminal 10.
  • a positive value ie, a value that lowers the Srxlev and Squal calculation results
  • a cell In the case of a cell, it may be set to a negative value indicated by system information (that is, a value that raises the calculation result of Srxlev and Squal). Also, Qoffset slice may be applied to only one of Srxlev and Squal.
  • the terminal 10 can provide all the one or more network slices supported by the terminal 10 when performing cell selection or cell reselection.
  • the cell may be selected as the cell to camp on.
  • the slice information included in the system information indicates one or more network slices that can be provided by the cell, and the control unit 104 sets the one or more network slices supported by the terminal 10. Cell selection or cell reselection may be performed from all available cells.
  • the terminal 10 uses a cell that can provide both a slice that is URLLC and a slice that is V2X as an appropriate cell. You may consider it as a camp on.
  • the terminal 10 prefers at least one or more network slices supported by the terminal 10 when performing cell selection or cell reselection.
  • the cell that can provide the network slice with the highest degree may be selected as the cell to camp on.
  • the network slice having the highest priority may be preset in the storage unit 100, the SIM card, or the like. Alternatively, the network slice with the highest priority may be the slice desired to be registered at the time of the latest RRC connection.
  • the slice information indicates one or more network slices that can be provided in the cell
  • the control unit 104 tells the terminal 10 among the one or more network slices supported by the terminal 10.
  • Cell selection or cell reselection may be performed from among the cells that can provide the set highest priority network slice.
  • the terminal 10 may camp on by regarding a cell capable of providing a slice that is URLLC as an appropriate cell.
  • the modified example 3 and the modified example 4 may be combined.
  • the control unit 104 performs cell selection or cell reselection from cells capable of providing all one or a plurality of network slices supported by the terminal 10, and a cell capable of providing all the plurality of network slices is available. If it does not exist, cell selection or cell reselection may be performed from the cells that can provide the highest priority network slice set in the terminal 10.
  • the slice information may indicate a network slice that can be provided in the cell by storing information about the network slice that is not provided in the cell. Further, the control unit 104 of the terminal 10 may consider the network slice not stored in the slice information to be the network slice provided by the cell. That is, the slice information may be so-called blacklist format information.
  • the system information may include information (for example, a bit of 0 or 1) indicating whether or not the terminal 10 is to execute the cell selection or cell reselection process in consideration of the network slice. Further, the terminal 10 is based on the system information including "information indicating whether or not the process of performing cell selection or cell reselection in consideration of the network slice is permitted" from the cells detected by the terminal 10. Selection or cell reselection may be performed.
  • the acquisition unit 103 acquires system information including information indicating whether or not the process of cell selection or cell reselection is permitted from the cells that can provide the network slice supported by the terminal 10. You may try to do it. The information may be included in the system information of all cells belonging to the same PLMN, for example.
  • the control unit 104 selects a cell or a cell from the cells capable of providing the network slice supported by the terminal 10 based on the slice information acquired by the acquisition unit 103 when the processing is permitted. You may want to reselect. Further, the control unit 104 causes cell selection or cell reselection when the processing is not allowed, regardless of whether the detected cell is a cell capable of providing the network slice supported by the terminal 10. You may do it. That is, if the processing is not allowed, the terminal 10 may perform cell selection or cell reselection according to the conventional processing procedure described with reference to FIG.
  • the base station 20 performs cell selection or cell reselection processing in consideration of the network slices on the terminal 10.
  • the terminal 10 is regarded as a "conventional base station 20 that does not support this function” and performs a conventional processing procedure, or "a base station 20 that supports this function but cannot provide a network slice (that is, a network slice).
  • This information can also be used to determine whether to perform the processing by regarding it as a base station 20) connected to a core network that does not support.
  • the terminal 10 When the terminal 10 cannot camp on without considering the detected cell as an appropriate cell when the terminal 10 selects a cell because there is no cell capable of providing the network slice supported by the terminal 10, the terminal 10 communicates. You will not be able to. Therefore, the system information may include information that allows camping on when there is no appropriate cell to camp on.
  • the acquisition unit 103 acquires system information including information indicating a cell that is allowed to camp on when there is no cell that can provide a network slice supported by the terminal 10. You may try to do it. Further, in the cell selection, if there is no cell capable of providing the network slice supported by the terminal 10, the control unit 104 camps on the cell that is allowed to camp on, which is indicated by the system information at the time of cell selection. You may try to do it. As a result, the terminal 10 camps on the cell in which the information is transmitted in the system information, so that communication can be performed even if there is no cell capable of providing the network slice supported by the terminal 10. become.
  • Slice information may be defined for each PLMN (mobile network).
  • the slice information included in the system information may indicate a network slice that can be provided in a cell for each PLMN (mobile network).
  • the control unit 104 performs cell selection or cell reselection based on the slice information from the cells of the mobile network selected by the terminal 10 and which can provide the network slice supported by the terminal 10. You may do so. This makes it possible to set different slice information for each PLMN when RAN sharing that shares a radio access network is performed among a plurality of PLMNs.
  • the terminal 10 camps on a cell capable of providing a network slice supported by the terminal 10 itself based on the slice information included in the system information or the like. This makes it possible to provide a technique that enables cell selection or cell reselection in consideration of network slices.
  • 1 wireless communication system, 10 ... terminal, 11 ... processor, 12 ... memory, 13 ... storage device, 14 ... communication device, 15 ... input device, 16 ... output device, 17 ... antenna, 20 ... base station, 30 ... core Network, 100 ... storage unit, 101 ... reception unit, 102 ... transmission unit, 103 ... acquisition unit, 104 ... control unit, 200 ... storage unit, 201 ... reception unit, 202 ... transmission unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a terminal having: an acquisition unit for acquiring slice information indicating a network slice that can be provided by a cell; and a control unit for performing, on the basis of the slice information, a cell selection or a cell reselection of a cell to be camped on, from among cells capable of providing a network slice supported by the terminal.

Description

端末、基地局、通信方法及びプログラムTerminals, base stations, communication methods and programs
 本発明は、端末、基地局、通信方法及びプログラムに関する。 The present invention relates to terminals, base stations, communication methods and programs.
 国際標準化団体である3GPP(3rd Generation Partnership Project)において、第5世代(5G)のセルラーシステムである5Gシステム(5GS:5G System)の検討が行われている。 The 3GPP (3rd Generation Partnership Project), an international standardization organization, is studying the 5G system (5GS: 5G System), which is a 5th generation (5G) cellular system.
 例えば、5Gのサービスに対して最適なネットワークを運用するための技術として、ネットワークスライシング(Network Slicing)が検討されている。ネットワークスライシングとは、ある通信サービスのサービス要件をサポートするために、物理的なネットワーク上に複数の仮想化された論理ネットワークを構築する技術である。この複数の仮想化された論理ネットワークをそれぞれネットワークスライス、または、単にスライスと呼称する(非特許文献1)。 For example, network slicing is being studied as a technology for operating an optimal network for 5G services. Network slicing is a technology for constructing multiple virtualized logical networks on a physical network in order to support the service requirements of a certain communication service. Each of the plurality of virtualized logical networks is referred to as a network slice or simply a slice (Non-Patent Document 1).
 現在、3GPPで検討されている仕様によれば、端末は、セル選択処理又はセル再選択処理により選択したセルに対し、登録を希望するネットワークスライスを示す情報を送信することで、ネットワークへの登録処理を行う。もし、ネットワークが、端末から指定されたネットワークスライスを提供することができない場合、指定されたネットワークスライスへの登録は拒否されることになる。 According to the specifications currently under consideration in 3GPP, the terminal registers with the network by transmitting information indicating the network slice desired to be registered to the cell selected by the cell selection process or the cell reselection process. Perform processing. If the network cannot provide the specified network slice from the terminal, registration to the specified network slice will be refused.
 しかしながら、現在の仕様では、端末は、セル選択処理又はセル再選択処理により選択したセルに対してネットワークへの登録処理を行わない限り、登録を希望するネットワークスライスが提供されているのか否かを知ることができないことから、ネットワークへの登録処理に係る無線リソースを無駄に消費してしまう可能性がある。 However, according to the current specifications, the terminal determines whether or not the network slice desired to be registered is provided unless the cell selected by the cell selection process or the cell reselection process is registered in the network. Since it cannot be known, there is a possibility that wireless resources related to the registration process to the network will be wasted.
 そこで、本発明は、ネットワークスライスを考慮してセル選択又はセル再選択を行うことを可能とする技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique that enables cell selection or cell reselection in consideration of network slices.
 本発明の一態様に係る端末は、セルで提供可能なネットワークスライスを示すスライス情報を取得する取得部と、スライス情報に基づいて、端末がサポートするネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択又は再選択を行う制御部と、を有する。 The terminal according to one aspect of the present invention is a camp from an acquisition unit that acquires slice information indicating a network slice that can be provided by a cell and a cell that can provide a network slice supported by the terminal based on the slice information. It has a control unit for selecting or reselecting a cell to be turned on.
 本発明によれば、ネットワークスライスを考慮してセル選択又はセル再選択を行うことを可能とする技術を提供することができる。 According to the present invention, it is possible to provide a technique that enables cell selection or cell reselection in consideration of network slices.
本実施形態に係る無線通信システムの概要の一例を示す図である。It is a figure which shows an example of the outline of the wireless communication system which concerns on this embodiment. ネットワークスライシング及びネットワークスライスを説明するための図である。It is a figure for demonstrating network slicing and network slicing. 端末がネットワークに登録される際の従来の処理手順を説明する図である。It is a figure explaining the conventional processing procedure when a terminal is registered in a network. S-NSSAIのビット構成を示す図である。It is a figure which shows the bit composition of S-NSSAI. SST値(SST Value)の定義である。It is a definition of SST value (SST Value). 端末及び基地局のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of a terminal and a base station. 端末の機能ブロック構成例を示す図である。It is a figure which shows the functional block composition example of a terminal. 基地局の機能ブロック構成の一例を示す図である。It is a figure which shows an example of the functional block composition of a base station. 端末がセル選択又はセル再選択を行う際の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure when a terminal performs cell selection or cell reselection.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 An embodiment of the present invention will be described with reference to the accompanying drawings. In each figure, those with the same reference numerals have the same or similar configurations.
 <システム構成>
 本実施形態に係る無線通信システムは、無線アクセスネットワーク(Radio Access Network:RAN)、コアネットワーク(Core network:CN)及び端末を含む5Gシステム(5G system:5GS)を対象とするが、これに限定されない。例えば、LTE及びLTE-Advancedを採用する無線通信システムに対しても適用可能である。また、無線アクセスネットワークは、LTE及び/又はLTE-AdvancedとNRとを含む複数のRAT(multi-RAT)で動作してもよいし、いずれか1つのRAT(Radio Access Technology)で動作してもよい。LTE及び/又はLTE-Advancedは、EUTRA(Evolved Universal Terrestrial Radio Access)とも呼ばれる。また、5Gは、NR(New Radio Access)とも呼ばれる。本実施形態は、少なくとも端末と基地局とコアネットワークを備える無線通信システムであればどのような無線通信システムに対しても適用可能である。
<System configuration>
The wireless communication system according to the present embodiment targets, but is limited to, a 5G system (5G system: 5GS) including a radio access network (RAN), a core network (CN), and a terminal. Not done. For example, it is also applicable to a wireless communication system that employs LTE and LTE-Advanced. Further, the radio access network may operate with a plurality of RATs (multi-RATs) including LTE and / or LTE-Advanced and NR, or may operate with any one RAT (Radio Access Technology). good. LTE and / or LTE-Advanced are also referred to as EUTRA (Evolved Universal Terrestrial Radio Access). 5G is also called NR (New Radio Access). This embodiment can be applied to any wireless communication system including at least a terminal, a base station, and a core network.
 図1は、本実施形態に係る無線通信システム1の概要の一例を示す図である。図1に示すように、無線通信システム1は、端末10と、基地局20A~20Bと、コアネットワーク30と、を含む。なお、基地局20A~20B、セルC1~C2を区別しない場合、それぞれ、基地局20、セルCと総称する。また、図1に示す端末10及び基地局20の数は例示にすぎず、図示する数に限られない。 FIG. 1 is a diagram showing an example of an outline of the wireless communication system 1 according to the present embodiment. As shown in FIG. 1, the wireless communication system 1 includes a terminal 10, base stations 20A to 20B, and a core network 30. When the base stations 20A to 20B and the cells C1 to C2 are not distinguished, they are collectively referred to as the base station 20 and the cell C, respectively. Further, the numbers of the terminals 10 and the base station 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
 端末10は、例えば、スマートフォン、パーソナルコンピュータ、車載端末、車載装置及び静止装置等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。端末10は、例えば、EUTRA及びNRのうち少なくとも一つを採用するRATとの間で通信可能である。 The terminal 10 is a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device and a stationary device. The terminal 10 may be referred to as a user equipment (UE). The terminal 10 may be a mobile type or a fixed type. The terminal 10 can communicate with, for example, a RAT that employs at least one of EUTRA and NR.
 基地局20には、EUTRA(Evolved Universal Terrestrial Radio Access)用の基地局、NR用の基地局、又は、EUTRA及びNRの両方をサポートする基地局を用いることができる。EUTRA用の基地局20はeNB(evolved NodeB)、NR用の基地局20はgNB(g-NodeB)と呼ばれる。 As the base station 20, a base station for EUTRA (Evolved Universal Terrestrial Radio Access), a base station for NR, or a base station that supports both EUTRA and NR can be used. The base station 20 for EUTRA is called eNB (evolved NodeB), and the base station 20 for NR is called gNB (g-NodeB).
 基地局20は、ng-eNB、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、Donor eNodeB(DeNB)、Donor node、Central Unit(CU)、低電力ノード(low-power node)、pico eNB、Home eNB(HeNB)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、又は、Integrated Access and Backhaul/Backhauling(IAB)ノード等と呼ばれてもよい。 The base station 20 includes ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor node, Central Unit (CU), and low power node ( low-power node), pico eNB, Home eNB (HeNB), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), or Integrated Access and Backhaul / Backhauling (IAB) node, etc. good.
 基地局20は、一以上のセルCを形成する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)、プライマリセル(Primary Cell:PCell)、セカンダリセル(Secondary Cell:SCell)、プライマリセカンダリセル(Primary SCell)、スペシャルセル(Special Cell)等と言い換えられてもよい。なお、図1では、基地局20A及び20BはそれぞれセルC1及びC2を形成するが、これに限られず、各基地局は、複数のセルCを形成してもよい。また、複数の基地局20は、所定のインタフェース(例えば、X2又はXnインタフェース)で互いに接続されてもよい。 Base station 20 forms one or more cells C. Cell C is a serving cell, carrier, component carrier (CC), primary cell (PrimaryCell: PCell), secondary cell (SecondaryCell: SCell), primary secondary cell (PrimarySCell), special cell (SpecialCell), etc. May be paraphrased as. In FIG. 1, the base stations 20A and 20B form cells C1 and C2, respectively, but the present invention is not limited to this, and each base station may form a plurality of cells C. Further, the plurality of base stations 20 may be connected to each other by a predetermined interface (for example, X2 or Xn interface).
 コアネットワーク30は、例えば、EUTRAに対応したコアネットワーク(Evolved Packet Core:EPC)、又は、NRに対応したコアネットワーク(5G Core Network:5GC)である。コアネットワーク30には、AMF(Access and Mobility Management Function)、SMF(Session Management Function)、UPF(User Plane Function)及びNSSF(Network Slice Selection Function)など、複数のエンティティ(entity)が含まれる(図示せず)。これらのエンティティは、1又は複数の物理的、あるいは論理的な装置に実装される。例えば、各スライスがAMF、SMF、UPFをそれぞれ具備してもよいし、一部または全部を共有してもよい。 The core network 30 is, for example, a core network corresponding to EUTRA (Evolved Packet Core: EPC) or a core network corresponding to NR (5G Core Network: 5GC). The core network 30 includes a plurality of entities (entities) such as AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function) and NSSF (Network Slice Selection Function) (shown). figure). These entities are implemented in one or more physical or logical devices. For example, each slice may contain AMF, SMF, UPF respectively, or may share a part or all.
 無線通信システム1において、端末10は、一つ又は複数の基地局20と通信を行うことができる。例えば、図1において、端末10は、一以上のセルCをそれぞれ含む2つのセルグループに接続するデュアルコネクティビティ(Dual Connectivity:DC)により、通信を行うことができる。2つのセルグループが異なるRATを用いる場合、当該DCは、マルチRAT DC(Multi-RAT DC:MR-DC)と呼ばれてもよい。また、端末10は、複数のセルCを統合するキャリアアグリゲーション(Carrier Aggregation:CA)を用いて、通信を行うこともできる。 In the wireless communication system 1, the terminal 10 can communicate with one or more base stations 20. For example, in FIG. 1, the terminal 10 can communicate by means of dual connectivity (DC) connected to two cell groups including one or more cells C, respectively. When two cell groups use different RATs, the DC may be referred to as a Multi-RAT DC (MR-DC). Further, the terminal 10 can also perform communication by using carrier aggregation (CA) that integrates a plurality of cells C.
 図2は、ネットワークスライシング及びネットワークスライスを説明するための図である。ネットワークスライシングにより、複数の基地局20から構成される無線アクセスネットワーク(RAN)2、及びコアネットワーク30を含むネットワーク全体又は一部の資源(リソース)は、ネットワークスライスとしてそれぞれ仮想的に分割される。コアネットワーク30と基地局20は、ネットワークスライス毎に個別に用意されてもよいし、異なるネットワークスライス間で一部または全てが共有されてもよい。ネットワークスライシングは、典型的にはコアネットワーク30を論理的/仮想的に分割するものであるが、無線アクセスネットワーク2を物理的/論理的/仮想的に分割することとしてもよい。例えば、基地局20は、端末10への無線リソースの割り当て(スケジューリング)、及び、レイヤ1(物理レイヤ)、レイヤ2(MACレイヤ、RLCレイヤ、PDCPレイヤ)及びレイヤ3(RRCレイヤ)に関する各種の処理をスライスごとに行うことで、無線アクセスネットワーク2でネットワークスライシングを実現することができる。 FIG. 2 is a diagram for explaining network slicing and network slicing. By network slicing, resources of the entire network or a part of the network including the radio access network (RAN) 2 composed of a plurality of base stations 20 and the core network 30 are virtually divided as network slices. The core network 30 and the base station 20 may be prepared individually for each network slice, or may be partially or wholly shared between different network slices. Network slicing typically divides the core network 30 logically / virtually, but may also physically / logically / virtually divide the radio access network 2. For example, the base station 20 allocates radio resources to the terminal 10 (scheduling), and various types related to layer 1 (physical layer), layer 2 (MAC layer, RLC layer, PDCP layer) and layer 3 (RRC layer). By performing the processing for each slice, network slicing can be realized in the wireless access network 2.
 図2の例では、コアネットワーク30は、大容量高速通信向けのコアネットワーク(eMBB(enhanced Mobile Broadband))30-1と、低遅延向けのコアネットワーク(URLLC(Ultra Reliable Low Latency Communication))30-2と、IoT端末向けのコアネットワーク(MIoT(massive IoT))30-3との少なくとも3つの異なるネットワークを仮想的に実現する機能を具備し、それぞれ、スライス1、スライス2及びスライス3として運用可能であることを示す。異なるサービス要件を持つ端末、例えば、ゲーム機として使用される端末10-1、車両に搭載されて使用される端末10-2及びIoT機器として使用される端末10-3は、それぞれのサービス要件を満たす、スライス1、スライス2及びスライス3に属している。 In the example of FIG. 2, the core network 30 is a core network (eMBB (enhanced Mobile Broadband)) 30-1 for high-capacity high-speed communication and a core network (URLLC (Ultra Reliable Low Latency Communication)) 30- for low latency. It has a function to virtually realize at least three different networks of 2 and the core network (MIoT (massiveIoT)) 30-3 for IoT terminals, and can be operated as slice 1, slice 2, and slice 3, respectively. Indicates that. Terminals with different service requirements, such as terminals 10-1 used as game consoles, terminals 10-2 mounted on vehicles and used as IoT devices, have their respective service requirements. It belongs to Slice 1, Slice 2 and Slice 3 to fill.
 この場合、端末10-1が行う通信は、コアネットワーク(eMBB)30-1で処理される。また、端末10-2が行う通信は、コアネットワーク(URLLC)30-2で処理される。端末10-3が行う通信は、コアネットワーク(MIoT)30-3で処理される。このように、ネットワークスライスを利用することで、端末10に要求されるサービスの特性に適した通信処理を行うことが可能になる。 In this case, the communication performed by the terminal 10-1 is processed by the core network (eMBB) 30-1. Further, the communication performed by the terminal 10-2 is processed by the core network (URLLC) 30-2. The communication performed by the terminal 10-3 is processed by the core network (MIoT) 30-3. In this way, by using the network slice, it is possible to perform communication processing suitable for the characteristics of the service required for the terminal 10.
 図3は、端末10がネットワークに登録される際の従来の処理手順を説明する図である。図3では、少なくとも1つの基地局20を含む無線アクセスネットワーク2及びコアネットワーク30をまとめて「ネットワーク」と記載する。また、コアネットワーク30は、どの基地局20(セル)がどのネットワークスライスをサポートしているのか予め把握しているものとする。 FIG. 3 is a diagram illustrating a conventional processing procedure when the terminal 10 is registered in the network. In FIG. 3, the radio access network 2 including at least one base station 20 and the core network 30 are collectively referred to as “network”. Further, it is assumed that the core network 30 knows in advance which base station 20 (cell) supports which network slice.
 まず、端末10の状態(state)について説明する。端末10の状態は、アイドル状態、非アクティブ状態、コネクティッド状態を含む。アイドル状態は、端末10が基地局20との間のRRCコネクションを確立(establish)していない状態であり、RRC_IDLE状態、アイドルモード等とも呼ばれる。 First, the state of the terminal 10 will be described. The state of the terminal 10 includes an idle state, an inactive state, and a connected state. The idle state is a state in which the terminal 10 has not established an RRC connection with the base station 20, and is also called an RRC_IDLE state, an idle mode, or the like.
 アイドル状態の端末10は、当該セルCのシステム情報(System Information)を受信し(S10)、セル選択又はセル再選択により選択されたセルCにキャンプオン(camp on)する(S11)。「セルCにキャンプオンする」は、「セルCに在圏する」と言い換えられてもよい。 The idle terminal 10 receives the system information (System Information) of the cell C (S10), and camps on the cell C selected by cell selection or cell reselection (S11). "Camping on to cell C" may be paraphrased as "being in cell C".
 セル選択とは、所定の基準(Cell Selection Criteria)を満たすセルC(適切セル「suitable cell」ともいう)を選択することである。 Cell selection is to select cell C (also referred to as an appropriate cell "suitable cell") that satisfies a predetermined criterion (Cell Selection Criteria).
 セル再選択とは、所定の基準(Cell Reselection Criteria)に従って、現在キャンプオンしているセルCよりも適切なセルC(more suitable cell)を発見(検出)してキャンプオンすることである。セル再選択は、キャンプオンするセルCと同一のキャリア周波数のセルCの再選択(同周波数セル選択(intra-frequency cell reselection))、キャンプオンするセルCと異なるキャリア周波数のセルCの再選択(異周波数セル選択(inter-frequency cell reselection))、キャンプオンするセルCと異なるRATのキャリア周波数のセルCの再選択(RAT間セル選択(inter-RAT cell reselection))を含む。 Cell reselection is to find (detect) and camp on a cell C (more suiteable cell) that is more suitable than the cell C that is currently camping on according to a predetermined criterion (CellReselectionCriteria). Cell reselection includes reselection of cell C having the same carrier frequency as cell C to camp on (intra-frequency cell selection), and reselection of cell C having a carrier frequency different from that of cell C to camp on. (Inter-frequency cell selection), reselection of cell C having a carrier frequency different from that of cell C to camp on (inter-RAT cell selection) is included.
 次に、端末10は、システム情報で予め通知された無線リソースを利用し、ランダムアクセスプリアンブル(Random access preamble)と呼ばれる信号を基地局20に送信する(ステップS12)。ランダムアクセスプリアンブルは、メッセージ1(Msg1)とも呼ばれる。基地局20は、ランダムアクセスプリアンブルを受信すると、ランダムアクセス応答メッセージ(Random Access response)を端末10に送信する(ステップS13)。ランダムアクセス応答メッセージは、メッセージ2(Msg2)とも呼ばれる。続いて、端末10は、RRCセットアップリクエスト(RRC Setup Request)を含むRRCメッセージを基地局20に送信する(ステップS14)。RRCセットアップリクエストメッセージには、RRCを確立する理由を示す情報(Establishment Cause)が少なくとも含まれる。RRCセットアップリクエストを含むメッセージは、メッセージ3(Msg3)とも呼ばれる。 Next, the terminal 10 uses the radio resource notified in advance by the system information to transmit a signal called a random access preamble to the base station 20 (step S12). The random access preamble is also called message 1 (Msg1). Upon receiving the random access preamble, the base station 20 transmits a random access response message (RandomAccessresponse) to the terminal 10 (step S13). The random access response message is also referred to as message 2 (Msg2). Subsequently, the terminal 10 transmits an RRC message including an RRC Setup Request (RRCSetupRequest) to the base station 20 (step S14). The RRC setup request message contains at least information (Establishment Cause) indicating the reason for establishing the RRC. The message containing the RRC setup request is also referred to as message 3 (Msg3).
 続いて、基地局20は、RRCセットアップ(RRC Setup)を含むRRCメッセージを端末10に送信する(ステップS15)。RRCセットアップを含むRRCメッセージは、メッセージ4(Msg4)とも呼ばれる。続いて、端末10は、RRCセットアップコンプリート(RRC Setup Complete)を含むRRCメッセージを端末10に送信する(ステップS16)。RRCセットアップコンプリートを含むRRCメッセージは、メッセージ5(Msg5)とも呼ばれる。メッセージ5の送信が完了すると、RRCコネクションが確立され、アイドル状態の端末10は、コネクティッド状態に遷移する。 Subsequently, the base station 20 transmits an RRC message including an RRC setup (RRCSetup) to the terminal 10 (step S15). The RRC message containing the RRC setup is also referred to as message 4 (Msg4). Subsequently, the terminal 10 transmits an RRC message including the RRC Setup Complete to the terminal 10 (step S16). The RRC message containing the RRC setup complete is also referred to as message 5 (Msg5). When the transmission of the message 5 is completed, the RRC connection is established, and the idle terminal 10 transitions to the connected state.
 端末10は、ネットワークスライスへの登録を希望する場合、登録を要求するネットワークスライスを一意に識別するIDを含む登録要求を、RRCセットアップコンプリート(RRCSetupComplete)メッセージに相乗り(piggyback)させて基地局20に送信する。ネットワークスライスを一意に識別するIDは、S-NSSAI(Single Network Slice Selection Assistance Information(単一ネットワークスライス選択アシスト情報))と呼ばれる。また、複数のS-NSSAIをリスト化したものはNSSAI(Network Slice Selection Assistance Information)と呼称される。以降、S-NSSAIはNSSAIを含むものとして説明する。 When the terminal 10 wishes to register in the network slice, the terminal 10 piggybacks the registration request including the ID that uniquely identifies the network slice requesting registration with the RRCSetupComplete message to the base station 20. Send. The ID that uniquely identifies the network slice is called S-NSSAI (Single Network Slice Selection Assistance Information). Further, a list of a plurality of S-NSSAIs is called NSSAI (Network Slice Selection Assistance Information). Hereinafter, S-NSSAI will be described as including NSSAI.
 基地局20は、S-NSSAIを含む登録要求(Registration Request)がメッセージ5で通知された場合、端末情報を登録するコアネットワーク30(AMF)を選択し、選択したコアネットワーク30へ登録要求(Registration Request)を転送する。コアネットワーク30(AMF)は、当該登録要求を受信した基地局20(又はセル)がサポートしているネットワークスライスと、コアネットワーク30がサポートしているネットワークスライスとに基づいて、要求されたネットワークスライスでの登録を受け付けることが可能か否かを判定し、判定結果を基地局20に通知する。基地局20は、RRC再設定メッセージ(RRCReconfiguration)又は下り情報転送メッセージ(DLInformationTransfer)に、要求されたS-NSSAIをサポートしていることを示す情報(Allowed NSSAI)又は要求されたS-NSSAIをサポートしていないことを示す情報(Rejected NSSAI)を含めて端末10に送信する(ステップS17)。 When the registration request (Registration Request) including S-NSSAI is notified by the message 5, the base station 20 selects the core network 30 (AMF) for registering the terminal information, and the base station 20 selects the registration request (Registration) to the selected core network 30. Request) is forwarded. The core network 30 (AMF) is a requested network slice based on a network slice supported by the base station 20 (or cell) receiving the registration request and a network slice supported by the core network 30. It is determined whether or not it is possible to accept the registration in, and the determination result is notified to the base station 20. The base station 20 supports the information (Allowed NSSAI) indicating that the requested S-NSSAI is supported or the requested S-NSSAI in the RRC reconfiguration message (RRCReconfiguration) or the downlink information transfer message (DLInformationTransfer). It is transmitted to the terminal 10 including the information (Rejected NSSAI) indicating that the information is not performed (step S17).
 図4は、3GPP仕様に規定されている、S-NSSAIの構成を説明する図である。図4Aは、S-NSSAIのビット構成を示す。S-NSSAIは、ネットワークスライスのタイプを示すSST(Slice/Service Type)と、同一のSSTに属するネットワークスライスを区別するための情報であるSD(Slice Differentiator(スライス差別要因))から構成される。例えば、SSTは8ビットで構成され、SDは24ビットで構成されてもよい。なお、SDはオプション情報であるため、必ずしもS-NSSAIに含まれていなくてもよい。すなわち、S-NSSAIは8ビット、または32ビットから構成される情報ビットである。 FIG. 4 is a diagram illustrating the configuration of S-NSSAI specified in the 3GPP specifications. FIG. 4A shows the bit configuration of S-NSSAI. S-NSSAI is composed of SST (Slice / Service Type) indicating the type of network slice and SD (Slice Differentiator) which is information for distinguishing network slices belonging to the same SST. For example, the SST may be composed of 8 bits and the SD may be composed of 24 bits. Since SD is optional information, it does not necessarily have to be included in S-NSSAI. That is, S-NSSAI is an information bit composed of 8 bits or 32 bits.
 図4Bは、SST値(SST Value)の定義である。SST値=1、2、3及び4は、それぞれ、ネットワークスライスが提供するサービスタイプ(又はスライスタイプ)がeMBB、URLLC、MIoT及びV2X(Vehicle-to-Everything)であることを示す。なお、今後SST値の定義は図4Bに限定されず、新たなSST値が追加されることもあり得る。 FIG. 4B is a definition of the SST value (SST Value). SST values = 1, 2, 3 and 4 indicate that the service types (or slice types) provided by the network slice are eMBB, URLLC, MioT and V2X (Vehicle-to-Everything), respectively. The definition of the SST value is not limited to FIG. 4B in the future, and a new SST value may be added.
 以上説明した従来の処理手順によれば、端末10は、所定のネットワークスライスへの登録を希望する場合、セル選択又はセル再選択によりキャンプオンしたセルでランダムアクセス手順を実行し、ネットワークへの登録処理を行わない限り、所定のネットワークスライスがサポートされているのか否かを知ることができない。仮に、端末10が登録を希望するネットワークスライスをネットワークがサポートしていなかった場合、ランダムアクセス手順及びネットワークへの登録処理(つまり図3のステップS12~ステップS17の処理手順)は無駄になってしまう。 According to the conventional processing procedure described above, when the terminal 10 wishes to be registered in a predetermined network slice, the terminal 10 executes a random access procedure in the camp-on cell by cell selection or cell reselection, and registers in the network. It is not possible to know if a given network slice is supported without processing. If the network does not support the network slice that the terminal 10 wants to register, the random access procedure and the registration process to the network (that is, the processing procedure of steps S12 to S17 in FIG. 3) become useless. ..
 そこで、本実施形態では、各基地局20が送信するシステム情報の中に、各基地局20により形成されるセルCで提供可能なネットワークスライスを示す情報を含めておき、端末10は、セル選択又はセル再選択の際に、端末10がサポートする(又は登録を希望する)ネットワークスライスを提供可能なセルを優先してキャンプオンすることとする。 Therefore, in the present embodiment, the system information transmitted by each base station 20 includes information indicating a network slice that can be provided by the cell C formed by each base station 20, and the terminal 10 selects the cell. Alternatively, when the cell is reselected, the cell that can provide the network slice supported by the terminal 10 (or wishes to be registered) is preferentially camp-on.
 <ハードウェア構成>
 図5は、端末10及び基地局20のハードウェア構成の一例を示す図である。端末10及び基地局20は、プロセッサ11、メモリ12、記憶装置13、有線又は無線通信を行う通信装置14、入力操作を受け付ける入力装置15、情報の出力を行う出力装置16及びアンテナ17を有する。
<Hardware configuration>
FIG. 5 is a diagram showing an example of the hardware configuration of the terminal 10 and the base station 20. The terminal 10 and the base station 20 include a processor 11, a memory 12, a storage device 13, a communication device 14 for wired or wireless communication, an input device 15 for receiving input operations, an output device 16 for outputting information, and an antenna 17.
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、端末10または基地局20を制御する。 The processor 11 is, for example, a CPU (Central Processing Unit) and controls a terminal 10 or a base station 20.
 メモリ12は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。 The memory 12 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
 記憶装置13は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The storage device 13 is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and / or eMMC (embedded MultiMediaCard), for example.
 通信装置14は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュールなどである。また、通信装置14には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 14 is a device that communicates via a wired and / or wireless network, and is, for example, a network card, a communication module, or the like. Further, the communication device 14 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナ17から送信する無線信号を生成する。また、RF装置は、アンテナ17から受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 The RF device generates a radio signal transmitted from the antenna 17 by performing D / A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device, for example. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D conversion, etc. on the radio signal received from the antenna 17, and transmits the digital baseband signal to the BB device. The BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
 入力装置15は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等である。出力装置16は、例えば、ディスプレイ及び/又はスピーカ等である。 The input device 15 is, for example, a keyboard, a touch panel, a mouse and / or a microphone. The output device 16 is, for example, a display and / or a speaker.
 <機能ブロック構成>
 (端末)
 図6は、端末10の機能ブロック構成例を示す図である。端末10は、記憶部100と、受信部101と、送信部102と、取得部103と、制御部104とを含む。なお、図6は、本実施形態において必要な機能ブロックを示すものである。記憶部100は、端末10が備えるメモリ12及び/又は記憶装置13を用いて実現されてもよい。受信部101と、送信部102とは、例えば通信装置14により実現されてもよいし、通信装置14に加えてプロセッサ11が記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。取得部103と、制御部104とは、端末10のプロセッサ11が、記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
<Functional block configuration>
(Terminal)
FIG. 6 is a diagram showing an example of a functional block configuration of the terminal 10. The terminal 10 includes a storage unit 100, a reception unit 101, a transmission unit 102, an acquisition unit 103, and a control unit 104. Note that FIG. 6 shows a functional block required in this embodiment. The storage unit 100 may be realized by using the memory 12 and / or the storage device 13 included in the terminal 10. The receiving unit 101 and the transmitting unit 102 may be realized, for example, by the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. .. The acquisition unit 103 and the control unit 104 may be realized by the processor 11 of the terminal 10 executing a program stored in the storage device 13. Further, the program can be stored in a storage medium. The storage medium in which the program is stored may be a non-transitory computer readable medium. The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 記憶部100は、端末10がサポートする1以上のネットワークスライスを示す情報(S-NSSAI又はNSSAI)を記憶する。 The storage unit 100 stores information (S-NSSAI or NSSAI) indicating one or more network slices supported by the terminal 10.
 受信部101は、基地局20から下りリンク(Down Link)の信号を受信する。送信部102は、上りリンク(UP Link)の信号を生成して基地局20に送信する。 The receiving unit 101 receives a downlink (DownLink) signal from the base station 20. The transmission unit 102 generates an uplink (UPLink) signal and transmits it to the base station 20.
 取得部103は、セルで提供可能なネットワークスライスを示す情報(以下、「スライス情報」と言う。)を取得する。「セルで提供可能なネットワークスライス」は、「セルでサポートするネットワークスライス」、「セルを含むエリアにて登録可能なネットワークスライス」、「基地局20(又はネットワーク)で提供可能なネットワークスライス」、「基地局20(又はネットワーク)でサポートするネットワークスライス」又は「基地局20(又はネットワーク)を含むエリアにて登録可能なネットワークスライス」などと読み替えてもよい。取得部103は、基地局20から受信したRRCメッセージ(システム情報及びRRC再設定メッセージ等)からスライス情報を取得する。 The acquisition unit 103 acquires information indicating a network slice that can be provided in the cell (hereinafter, referred to as "slice information"). The "network slices that can be provided by the cell" are "network slices that can be provided by the cell", "network slices that can be registered in the area including the cell", and "network slices that can be provided by the base station 20 (or network)". It may be read as "a network slice supported by the base station 20 (or a network)" or "a network slice that can be registered in an area including the base station 20 (or a network)". The acquisition unit 103 acquires slice information from the RRC message (system information, RRC reset message, etc.) received from the base station 20.
 制御部104は、取得部103で取得されたスライス情報に基づいて、端末10がサポートするネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択(セル選択)又は再選択(セル再選択)を行う。「端末10がサポートするネットワークスライス」は、「端末10が利用するネットワークスライス」、「端末10が利用を希望するネットワークスライス」、又は、「端末10が登録を希望するネットワークスライス」などに読み替えてもよい。また、「端末10が利用するネットワークスライス」、「端末10が利用を希望するネットワークスライス」、又は、「端末10が登録を希望するネットワークスライス」は、端末10がサポートするネットワークスライスの中で、端末10が利用するスライス/サービスタイプ又はS-NSSAIを意味することとしてもよい。本実施形態において、「端末10が利用する」、「端末10が利用を希望する」及び「端末10が登録を希望する」の表現は、相互に置き換え可能である。 Based on the slice information acquired by the acquisition unit 103, the control unit 104 selects (cell selection) or reselects (cell selection) the cell to camp on from the cells that can provide the network slice supported by the terminal 10. Select). "Network slices supported by terminal 10" should be read as "network slices used by terminal 10", "network slices desired by terminal 10", or "network slices desired by terminal 10 to be registered". May be good. Further, the "network slice used by the terminal 10", the "network slice desired by the terminal 10", or the "network slice desired by the terminal 10" are among the network slices supported by the terminal 10. It may mean the slice / service type or S-NSSAI used by the terminal 10. In the present embodiment, the expressions "used by the terminal 10", "desired to be used by the terminal 10", and "desired to be registered by the terminal 10" can be interchanged with each other.
 (基地局)
 図7は、基地局20の機能ブロック構成の一例を示す図である。基地局20は、記憶部200と、受信部201と、送信部202とを含む。なお、図7は、本実施形態において必要な機能ブロックを示すものである。記憶部200は、基地局20が備えるメモリ12及び/又は記憶装置13を用いて実現されてもよい。受信部201と、送信部202とは、例えば通信装置14により実現されてもよいし、通信装置14に加えてプロセッサ11が記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
(base station)
FIG. 7 is a diagram showing an example of a functional block configuration of the base station 20. The base station 20 includes a storage unit 200, a reception unit 201, and a transmission unit 202. Note that FIG. 7 shows a functional block required in this embodiment. The storage unit 200 may be realized by using the memory 12 and / or the storage device 13 included in the base station 20. The receiving unit 201 and the transmitting unit 202 may be realized, for example, by the communication device 14, or may be realized by the processor 11 executing the program stored in the storage device 13 in addition to the communication device 14. .. Further, the program can be stored in a storage medium. The storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer. The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 受信部201は、端末10から上りリンクの信号を受信する。送信部202は、下りリンクの信号を生成して端末10に送信する。また、送信部202は、スライス情報を含むRRCメッセージ(システム情報及びRRC再設定メッセージ等)を送信する。また、受信部201及び送信部202は、端末10との間でランダムアクセス手順及びRRCコネクション確立処理(例えば、所望のスライス情報を含むRRCSetupCompleteメッセージの受信など)、ならびにその他のRRCメッセージの送受信と対応する処理を行う。また、受信部201及び送信部202は、コアネットワーク30との間でメッセージ(NASメッセージ)の送受信を行う。 The receiving unit 201 receives the uplink signal from the terminal 10. The transmission unit 202 generates a downlink signal and transmits it to the terminal 10. Further, the transmission unit 202 transmits an RRC message (system information, RRC reset message, etc.) including slice information. Further, the receiving unit 201 and the transmitting unit 202 correspond to a random access procedure, an RRC connection establishment process (for example, reception of an RRCSetupComplete message including desired slice information), and transmission / reception of other RRC messages with the terminal 10. Perform the processing to be performed. Further, the receiving unit 201 and the transmitting unit 202 transmit and receive a message (NAS message) with and from the core network 30.
 また、送信部202は、セルで提供可能なネットワークスライスを示すスライス情報をシステム情報に含めて送信する。また、受信部201は、端末10に対し、スライス情報に基づいて、端末10がサポートする(又は端末10が利用する)ネットワークスライスを提供可能なセルの中から、キャンプオンするセルのセル選択又はセル再選択を実行させ、端末10が利用するネットワークスライスの情報を端末10から受信する。 Further, the transmission unit 202 includes the slice information indicating the network slice that can be provided by the cell in the system information and transmits the slice information. Further, the receiving unit 201 selects a cell to camp on from among the cells capable of providing the network slice supported by the terminal 10 (or used by the terminal 10) to the terminal 10 based on the slice information. The cell reselection is executed, and the information of the network slice used by the terminal 10 is received from the terminal 10.
 <処理手順>
 続いて、本実施形態に係る無線通信システム1が行う処理手順について具体的に説明する。
<Processing procedure>
Subsequently, the processing procedure performed by the wireless communication system 1 according to the present embodiment will be specifically described.
 図8は、端末10がセル選択又はセル再選択を行う際の処理手順の一例を示すフローチャートである。 FIG. 8 is a flowchart showing an example of a processing procedure when the terminal 10 performs cell selection or cell reselection.
 ステップS100で、取得部103は、端末10自身の周辺セルをサーチし、検出されたセルにおいてスライス情報を含むシステム情報を受信することでスライス情報およびキャンプオンに必要な情報を取得する。若しくは取得部103は、システム情報以外のRRCメッセージ(例えばRRCReconfiguration、RRCRelease等)あるいは上位レイヤメッセージ(例えば、NASメッセージ)を基地局20から事前に受信することで、予め周辺のセルに関するスライス情報を取得することとしてもよい。スライス情報は、サポートするスライスに対応するビットを立てるビットマップ形式で提供されてもよいし、サポートするスライスが列挙されたリスト形式で提供されてもよいし、SST値が通知されてもよい。 In step S100, the acquisition unit 103 searches for peripheral cells of the terminal 10 itself, and acquires system information including slice information in the detected cells to acquire slice information and information necessary for camp-on. Alternatively, the acquisition unit 103 acquires slice information about peripheral cells in advance by receiving an RRC message (for example, RRC Reconfiguration, RRC Release, etc.) or an upper layer message (for example, NAS message) other than the system information from the base station 20 in advance. You may do it. The slice information may be provided in a bitmap format in which bits corresponding to the supported slices are set, in a list format in which the supported slices are listed, or an SST value may be notified.
 ステップS101で、制御部104は、セル選択又はセル再選択を行う際、端末10自身がサポートするスライスを提供可能な適切セルの有無を、端末10自身がサポートするスライスを示す情報と、取得したシステム情報とに基づいて判定する。端末10自身がサポートするスライスを示す情報は、予め記憶部100に格納されていてもよいし、SIM(Subscriber Identity Module)に格納されていてもよい。制御部104は、当該セルが発見された場合はステップS102の処理手順に進み、発見されない場合は、ステップS103の処理手順に進む。なお、ステップS101の処理手順における「適切セル」は、セル選択の際には、所定の基準(Cell Selection Criteria)を満たすセルCを意味することとしてもよい。また、「適切セル」は、セル再選択の際には、所定の基準(Cell Reselection Criteria)に従って発見された、現在キャンプオンしているセルCよりも適切なセルC(more suitable cell)を意味することとしてもよい。 In step S101, when cell selection or cell reselection is performed, the control unit 104 has acquired information indicating the slices supported by the terminal 10 itself and the presence or absence of appropriate cells capable of providing slices supported by the terminal 10 itself. Judgment is based on system information. The information indicating the slices supported by the terminal 10 itself may be stored in the storage unit 100 in advance, or may be stored in the SIM (Subscriber Identity Module). If the cell is found, the control unit 104 proceeds to the processing procedure of step S102, and if not found, the control unit 104 proceeds to the processing procedure of step S103. The "appropriate cell" in the processing procedure of step S101 may mean a cell C that satisfies a predetermined criterion (Cell Selection Criteria) at the time of cell selection. In addition, "appropriate cell" means a cell C (more suiteable cell) that is found according to a predetermined criterion (CellReselectionCriteria) and is more appropriate than the cell C currently camping on at the time of cell reselection. You may do it.
 端末10は、複数のネットワークスライスをサポートすることが可能であってもよい。例えば、スライス/サービスタイプがURLLCであるスライスとV2Xであるスライスの両方をサポートする端末10等も想定されるためである。 The terminal 10 may be capable of supporting a plurality of network slices. For example, a terminal 10 or the like that supports both a slice whose slice / service type is URLLC and a slice whose service type is V2X is assumed.
 例えば、端末10は、URLLCであるスライスとV2Xであるスライスの両方をサポートしており、ユーザの指示又はオペレータ(PLMN)の契約等により、URLLC端末として動作するのか、V2X端末として動作するのかを切り替え可能であってもよい。この場合、端末10は、セル選択を行う際、端末10自身がサポートするスライスを提供可能な適切セル(つまり、少なくともURLLC及びV2Xの両方をサポートするセル)を、キャンプオンするセルとして選択するようにしてもよい。若しくは、端末10は、セル選択を行う際、端末10自身が利用するスライスがURLLCである場合(つまり、端末10がURLLC端末として動作する場合)、少なくともURLLCのスライスを提供可能な適切セルを、キャンプオンするセルとして選択するようにしてもよい。 For example, the terminal 10 supports both a slice that is a URLLC and a slice that is a V2X, and whether it operates as a URLLC terminal or a V2X terminal according to a user's instruction or an operator (PLMN) contract or the like. It may be switchable. In this case, when making a cell selection, the terminal 10 is asked to select an appropriate cell that can provide slices supported by the terminal 10 itself (that is, a cell that supports at least both URLLC and V2X) as a cell to camp on. You may do it. Alternatively, when the terminal 10 performs cell selection, if the slice used by the terminal 10 itself is URLLC (that is, when the terminal 10 operates as a URLLC terminal), at least an appropriate cell capable of providing a slice of URLLC is selected. It may be selected as the cell to camp on.
 また、ステップS101の処理手順において、「端末10自身がサポートするスライスを提供可能な適切セル」とは、「端末10自身がサポートするスライスをサポートする適切セル」と置き換えてもよい。 Further, in the processing procedure of step S101, the "appropriate cell capable of providing the slice supported by the terminal 10 itself" may be replaced with the "appropriate cell supporting the slice supported by the terminal 10 itself".
 また、ステップS100の処理手順とステップS101の処理手順において、端末10は、所定の基準を満たすセルであると判定した後でサポートするネットワークスライスを提供可能かどうかの判定を行うようにしてもよいし、所定の基準を満たすか否かに関わらずサポートするネットワークスライスを提供可能かどうかの判定を行ってもよい。 Further, in the processing procedure of step S100 and the processing procedure of step S101, the terminal 10 may determine whether or not it is possible to provide a network slice to be supported after determining that the cell satisfies a predetermined criterion. However, it may be determined whether or not it is possible to provide a network slice that supports it regardless of whether or not it meets a predetermined criterion.
 ステップS102で、端末10の制御部104は、ステップS101にて発見されたセルにキャンプオンし、ステップS100の処理手順に戻ることで、キャンプオンしたセルよりも適切なセルが存在しないかをサーチする。 In step S102, the control unit 104 of the terminal 10 camps on the cell found in step S101 and returns to the processing procedure of step S100 to search for a cell more suitable than the camp-on cell. do.
 ステップS103で、端末10の制御部104は、セル選択又はセル再選択処理を終了する場合(例えば端末10の電源を切る場合等)(ステップS103-YES)、図8に示す処理手順を終了する。終了しない場合(ステップS103-NO)はステップS100の処理手順に戻る。 In step S103, when the control unit 104 of the terminal 10 ends the cell selection or cell reselection process (for example, when the power of the terminal 10 is turned off) (step S103-YES), the process procedure shown in FIG. 8 ends. .. If it does not end (step S103-NO), the process returns to the processing procedure of step S100.
 続いて、ステップS100の処理手順について、複数の変形例を説明する。以下に示す変形例は任意に組み合わせることが可能である。 Subsequently, a plurality of modified examples will be described for the processing procedure of step S100. The following modification examples can be combined arbitrarily.
 (変形例1)
 「適切セル」は、端末10がサポートするネットワークスライスを提供可能なセルであり、かつ、所定の基準を満たすセルと定義されてもよい。ここで、所定の基準は、セル選択の場合は「Cell Selection Criteria」であり、セル再選択の場合は「Cell Reselection Criteria」であってもよい。
(Modification 1)
An "appropriate cell" may be defined as a cell capable of providing a network slice supported by the terminal 10 and satisfying a predetermined criterion. Here, the predetermined criterion may be "Cell Selection Criteria" in the case of cell selection and "Cell Reselection Criteria" in the case of cell reselection.
 (変形例2)
 変形例2では、セル選択時に用いられる所定の選択基準(Cell Selection Criteria)に、対応するネットワークスライスに関連するオフセット値を加えることで、端末10がサポートするネットワークスライスを提供可能なセルが、「適切セル」に含まれるようにしてもよい。
(Modification 2)
In the second modification, the cell capable of providing the network slice supported by the terminal 10 by adding the offset value related to the corresponding network slice to the predetermined selection criterion (Cell Selection Criteria) used at the time of cell selection is ". It may be included in the "appropriate cell".
 より具体的には、制御部104は、適切セルを検出するセル選択を行い、適切セルは、少なくとも所定の選択基準を満たすセルであることとしてもよい。また、所定の選択基準は、所定の計算式に基づいて算出される受信レベル及び/又は受信品質が所定の値を超えることであってもよい。更に、所定の計算式は、端末10がサポートするネットワークスライスを提供可能ではないセルについては、受信レベル又は受信品質が当該所定の値以下になるように定められている計算式であってもよい。 More specifically, the control unit 104 may select a cell for detecting an appropriate cell, and the appropriate cell may be a cell that satisfies at least a predetermined selection criterion. Further, the predetermined selection criterion may be that the reception level and / or the reception quality calculated based on the predetermined formula exceeds a predetermined value. Further, the predetermined calculation formula may be a calculation formula defined so that the reception level or the reception quality is equal to or less than the predetermined value for the cells that cannot provide the network slice supported by the terminal 10. ..
 所定の計算式は、具体的には以下に示す式であってもよい。つまり、上述した所定の選択基準は、以下の式に基づいて算出される受信レベル(Srxlev)及び受信品質(Squal)が所定の値(0)を超えることであってもよい。以下の式によれば、測定されたセルが、端末10がサポートするネットワークスライスを提供可能ではないセルの場合には、Qoffsetsliceが無限大に設定される。従って、受信レベル(Srxlev)及び受信品質(Squal)はいずれも所定の値(0)以下になるため、所定の選択基準を満たさないことになる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Srxlevは、セル選択時の受信レベル(Cell selection RX level value)を示し、Squalはセル選択時の受信品質(Cell selection quality value)を示す。Qrxlevmeasは、測定されたセルの受信レベル(RSRP)を示し、Qqualmeasは、測定されたセルの受信品質(RSRQ)を示す。Qrxlevminは、要求されるセルの受信レベルの最低値を示し、 Qqualminは、要求されるセルの受信品質の最低値を示す。Qrxlevminoffsetは、Qrxlevminに適用されるオフセット値であり、Qqualminoffsetは、Qqualminに適用されるオフセット値である。Pcompensationは、周波数がFR1の範囲に含まれるのかFR2の範囲に含まれるのかによって決定される値である。Qoffsettempは、セルに適用される一時的なオフセット値である。
Specifically, the predetermined calculation formula may be the formula shown below. That is, the predetermined selection criterion described above may be that the reception level (Srxlev) and the reception quality (Squal) calculated based on the following equation exceed the predetermined values (0). According to the following formula, if the measured cell is a cell that cannot provide the network slice supported by the terminal 10, the Qoffset slice is set to infinity. Therefore, since the reception level (Srxlev) and the reception quality (Squal) are both equal to or less than the predetermined value (0), the predetermined selection criteria are not satisfied.
Figure JPOXMLDOC01-appb-M000001
Here, Srxlev indicates the reception level (Cell selection RX level value) at the time of cell selection, and Squal indicates the reception quality (Cell selection quality value) at the time of cell selection. Qrxlevmeas indicates the received level (RSRP) of the measured cell, and Qqualmeas indicates the received quality (RSRQ) of the measured cell. Qrxlevmin indicates the minimum reception level of the required cell, and Qqualmin indicates the minimum reception quality of the required cell. Qrxlevminoffset is the offset value applied to Qrxlevmin, and Qqualminoffset is the offset value applied to Qqualmin. Pcompensation is a value determined by whether the frequency is in the FR1 range or the FR2 range. Qoffsettemp is a temporary offset value applied to the cell.
 Qoffsetsliceは、測定されたセルが、端末10がサポートするネットワークスライスを提供可能ではないセルの場合には無限大の値に設定され、検出されたセルが、端末10がサポートするネットワークスライスを提供可能なセルの場合には、0に設定されることとしてもよい。また、Qoffsetsliceは、測定されたセルが、端末10がサポートするネットワークスライスを提供可能ではないセルの場合にはシステム情報で示される正の値(すなわち、SrxlevとSqualの計算結果を下げる値)に設定され、検出されたセルが、端末10がサポートするネットワークスライスを提供可能なセルの場合には、0に設定されることとしてもよい。また、Qoffsetsliceは、測定されたセルが、端末10がサポートするネットワークスライスを提供可能ではないセルの場合には0に設定され、検出されたセルが、端末10がサポートするネットワークスライスを提供可能なセルの場合には、システム情報で示される負の値(すなわち、SrxlevとSqualの計算結果を上げる値)に設定されることとしてもよい。また、Qoffsetsliceは、SrxlevとSqualのどちらか一方のみに適用されてもよい。 Qoffsetslice can be set to an infinite value if the measured cell is not capable of providing a network slice supported by terminal 10, and the detected cell can provide a network slice supported by terminal 10. In the case of a cell, it may be set to 0. Qoffsetslice also sets the measured cell to a positive value (ie, a value that lowers the Srxlev and Squal calculation results) indicated in the system information if the measured cell is not capable of providing the network slices supported by the terminal 10. If the set and detected cell is a cell capable of providing the network slice supported by the terminal 10, it may be set to 0. Qoffsetslice is also set to 0 if the measured cell is not capable of providing network slices supported by terminal 10, and the detected cells can provide network slices supported by terminal 10. In the case of a cell, it may be set to a negative value indicated by system information (that is, a value that raises the calculation result of Srxlev and Squal). Also, Qoffset slice may be applied to only one of Srxlev and Squal.
 (変形例3)
 1つのセルで1つ又は複数のネットワークスライスを提供可能であるケースでは、端末10は、セル選択又はセル再選択を行う際、端末10がサポートする1つ又は複数のネットワークスライスを全て提供可能なセルを、キャンプオンするセルとして選択するようにしてもよい。
(Modification 3)
In the case where one cell can provide one or more network slices, the terminal 10 can provide all the one or more network slices supported by the terminal 10 when performing cell selection or cell reselection. The cell may be selected as the cell to camp on.
 より具体的には、システム情報に含まれるスライス情報は、セルで提供可能な1つ又は複数のネットワークスライスを示しており、制御部104は、端末10がサポートする1つ又は複数のネットワークスライスを全て提供可能なセルの中から、セル選択又はセル再選択を行うこととしてもよい。 More specifically, the slice information included in the system information indicates one or more network slices that can be provided by the cell, and the control unit 104 sets the one or more network slices supported by the terminal 10. Cell selection or cell reselection may be performed from all available cells.
 例えば、URLLCであるスライスとV2Xであるスライスの両方をサポートしている端末10が存在する場合、当該端末10は、URLLCであるスライスとV2Xであるスライスの両方を提供可能なセルを適切セルとみなしてキャンプオンすることとしてもよい。 For example, if there is a terminal 10 that supports both a slice that is URLLC and a slice that is V2X, the terminal 10 uses a cell that can provide both a slice that is URLLC and a slice that is V2X as an appropriate cell. You may consider it as a camp on.
 (変形例4)
 1つのセルで1つ又は複数のネットワークスライスを提供可能であるケースでは、端末10は、セル選択又はセル再選択を行う際、端末10がサポートする1つ又は複数のネットワークスライスのうち、少なくとも優先度が最も高いネットワークスライスを提供可能なセルを、キャンプオンするセルとして選択するようにしてもよい。優先度が最も高いネットワークスライスは、記憶部100又はSIMカード等に予め設定されていてもよい。あるいは、優先度が最も高いネットワークスライスは、直近のRRC接続時に登録を希望したスライスであってもよい。
(Modification example 4)
In the case where one cell can provide one or more network slices, the terminal 10 prefers at least one or more network slices supported by the terminal 10 when performing cell selection or cell reselection. The cell that can provide the network slice with the highest degree may be selected as the cell to camp on. The network slice having the highest priority may be preset in the storage unit 100, the SIM card, or the like. Alternatively, the network slice with the highest priority may be the slice desired to be registered at the time of the latest RRC connection.
 より具体的には、スライス情報は、セルで提供可能な1つ又は複数のネットワークスライスを示しており、制御部104は、端末10がサポートする1つ又は複数のネットワークスライスのうち、端末10に設定された最も優先度の高いネットワークスライスを提供可能なセルの中から、セル選択又はセル再選択を行うこととしてもよい。 More specifically, the slice information indicates one or more network slices that can be provided in the cell, and the control unit 104 tells the terminal 10 among the one or more network slices supported by the terminal 10. Cell selection or cell reselection may be performed from among the cells that can provide the set highest priority network slice.
 例えば、URLLCであるスライスとV2Xであるスライスの両方をサポートしており、URLLCの優先度が最も高く設定されている端末10が存在する場合を想定する。また端末10は、URLLCであるスライスを提供可能なセルと、V2Xであるスライスを提供可能なセルとを発見したとする。この場合、当該端末10は、URLLCであるスライスを提供可能なセルを適切セルとみなしてキャンプオンすることとしてもよい。 For example, it is assumed that there is a terminal 10 that supports both a slice that is URLLC and a slice that is V2X and has the highest priority of URLLC. Further, it is assumed that the terminal 10 has found a cell capable of providing a slice that is URLLC and a cell that can provide a slice that is V2X. In this case, the terminal 10 may camp on by regarding a cell capable of providing a slice that is URLLC as an appropriate cell.
 また、変形例3と変形例4を組み合わせることとしてもよい。例えば、制御部104は、端末10がサポートする1つ又は複数のネットワークスライスを全て提供可能なセルの中から、セル選択又はセル再選択を行い、当該複数のネットワークスライスを全て提供可能なセルが存在しない場合、端末10に設定された最も優先度の高いネットワークスライスを提供可能なセルの中から、セル選択又はセル再選択を行うこととしてもよい。 Further, the modified example 3 and the modified example 4 may be combined. For example, the control unit 104 performs cell selection or cell reselection from cells capable of providing all one or a plurality of network slices supported by the terminal 10, and a cell capable of providing all the plurality of network slices is available. If it does not exist, cell selection or cell reselection may be performed from the cells that can provide the highest priority network slice set in the terminal 10.
 (変形例5)
 スライス情報は、セルで提供されないネットワークスライスに関する情報を格納することによって、セルで提供可能なネットワークスライスを示すものであってもよい。また、端末10の制御部104は、スライス情報に格納されていないネットワークスライスについては、セルで提供されるネットワークスライスであるとみなすようにしてもよい。つまり、スライス情報は、所謂ブラックリスト形式の情報であってもよい。
(Modification 5)
The slice information may indicate a network slice that can be provided in the cell by storing information about the network slice that is not provided in the cell. Further, the control unit 104 of the terminal 10 may consider the network slice not stored in the slice information to be the network slice provided by the cell. That is, the slice information may be so-called blacklist format information.
 (変形例6)
 システム情報には、ネットワークスライスを考慮したセル選択又はセル再選択処理を端末10に実行させるか否かを示す情報(例えば0又は1のビット等)を含めるようにしてもよい。また、端末10は、端末10が検出したセルの中から、「ネットワークスライスを考慮したセル選択又はセル再選択を行う処理を許容するか否かを示す情報」を含むシステム情報に基づいて、セル選択又はセル再選択を行うようにしてもよい。
(Modification 6)
The system information may include information (for example, a bit of 0 or 1) indicating whether or not the terminal 10 is to execute the cell selection or cell reselection process in consideration of the network slice. Further, the terminal 10 is based on the system information including "information indicating whether or not the process of performing cell selection or cell reselection in consideration of the network slice is permitted" from the cells detected by the terminal 10. Selection or cell reselection may be performed.
 具体的には、取得部103は、端末10がサポートするネットワークスライスを提供可能なセルの中から、セル選択又はセル再選択を行う処理を許容するか否かを示す情報を含むシステム情報を取得するようにしてもよい。当該情報は、例えば、同一のPLMNに属する全てのセルのシステム情報に含まれるようにしてもよい。また、制御部104は、当該処理が許容されている場合に、取得部103で取得されたスライス情報に基づいて、端末10がサポートするネットワークスライスを提供可能なセルの中から、セル選択又はセル再選択を行うようにしてもよい。また、制御部104は、当該処理が許容されていない場合に、検出したセルが、端末10がサポートするネットワークスライスを提供可能なセルか否かに関わらず、セル選択又はセル再選択を行うようにしてもよい。すなわち、当該処理が許容されていない場合、端末10は、図3を用いて説明した従来の処理手順に従ってセル選択又はセル再選択を行うようにしてもよい。 Specifically, the acquisition unit 103 acquires system information including information indicating whether or not the process of cell selection or cell reselection is permitted from the cells that can provide the network slice supported by the terminal 10. You may try to do it. The information may be included in the system information of all cells belonging to the same PLMN, for example. Further, the control unit 104 selects a cell or a cell from the cells capable of providing the network slice supported by the terminal 10 based on the slice information acquired by the acquisition unit 103 when the processing is permitted. You may want to reselect. Further, the control unit 104 causes cell selection or cell reselection when the processing is not allowed, regardless of whether the detected cell is a cell capable of providing the network slice supported by the terminal 10. You may do it. That is, if the processing is not allowed, the terminal 10 may perform cell selection or cell reselection according to the conventional processing procedure described with reference to FIG.
 これにより、例えば災害時などで一部又は全部のネットワークスライスの提供が困難になるような状況が生じた場合、基地局20は、ネットワークスライスを考慮したセル選択又はセル再選択処理を端末10に実行させないようにする情報を、システム情報を介して送信することで、端末10が通信不可能な状態に陥ることを迅速に抑止することが可能になる。また、端末10は、「本機能をサポートしない従来の基地局20」とみなして従来の処理手順を行うか、「本機能をサポートするが、ネットワークスライスを提供できない基地局20(すなわち、ネットワークスライスをサポートしていないコアネットワークに接続している基地局20)」とみなして当該処理を行うかについて判断するために本情報を用いることもできる。 As a result, when a situation occurs in which it becomes difficult to provide a part or all of the network slices, for example, in the event of a disaster, the base station 20 performs cell selection or cell reselection processing in consideration of the network slices on the terminal 10. By transmitting information to prevent execution via system information, it is possible to quickly prevent the terminal 10 from falling into a state in which communication is not possible. Further, the terminal 10 is regarded as a "conventional base station 20 that does not support this function" and performs a conventional processing procedure, or "a base station 20 that supports this function but cannot provide a network slice (that is, a network slice). This information can also be used to determine whether to perform the processing by regarding it as a base station 20) connected to a core network that does not support.
 (変形例7)
 端末10がサポートするネットワークスライスを提供可能なセルが存在しないために、端末10がセル選択時に、検出したセルを適切セルとみなさずにキャンプオンすることが出来ない場合、端末10は通信を行うことができなくなる。そこで、システム情報に、キャンプオンする適切セルが存在しない場合に、キャンプオンすることを許容する情報を含めるようにしてもよい。
(Modification 7)
When the terminal 10 cannot camp on without considering the detected cell as an appropriate cell when the terminal 10 selects a cell because there is no cell capable of providing the network slice supported by the terminal 10, the terminal 10 communicates. You will not be able to. Therefore, the system information may include information that allows camping on when there is no appropriate cell to camp on.
 より具体的には、取得部103は、セル選択において、端末10がサポートするネットワークスライスを提供可能なセルが存在しない場合に、キャンプオンすることを許容するセルを示す情報を含むシステム情報を取得するようにしてもよい。また、制御部104は、セル選択において、端末10がサポートするネットワークスライスを提供可能なセルが存在しない場合、セル選択時に、当該システム情報で示される、キャンプオンすることを許容するセルにキャンプオンするようにしてもよい。これにより、端末10は、当該情報がシステム情報で送信されているセルにキャンプオンすることになるため、端末10がサポートするネットワークスライスを提供可能なセルが存在しない場合でも通信を行うことが可能になる。 More specifically, in cell selection, the acquisition unit 103 acquires system information including information indicating a cell that is allowed to camp on when there is no cell that can provide a network slice supported by the terminal 10. You may try to do it. Further, in the cell selection, if there is no cell capable of providing the network slice supported by the terminal 10, the control unit 104 camps on the cell that is allowed to camp on, which is indicated by the system information at the time of cell selection. You may try to do it. As a result, the terminal 10 camps on the cell in which the information is transmitted in the system information, so that communication can be performed even if there is no cell capable of providing the network slice supported by the terminal 10. become.
 (変形例8)
 スライス情報は、PLMN(モバイルネットワーク)ごとに定義されていてもよい。具体的には、システム情報に含まれるスライス情報は、PLMN(モバイルネットワーク)ごとに、セルで提供可能なネットワークスライスを示していてもよい。また、制御部104は、端末10が選択したモバイルネットワークのセルであって、端末10がサポートするネットワークスライスを提供可能なセルの中から、スライス情報に基づいて、セル選択又はセル再選択を行うようにしてもよい。これにより、複数のPLMN間で無線アクセスネットワークを共用するRANシェアリングが行われる場合、PLMNごとに異なるスライス情報を設定することが可能になる。
(Modification 8)
Slice information may be defined for each PLMN (mobile network). Specifically, the slice information included in the system information may indicate a network slice that can be provided in a cell for each PLMN (mobile network). Further, the control unit 104 performs cell selection or cell reselection based on the slice information from the cells of the mobile network selected by the terminal 10 and which can provide the network slice supported by the terminal 10. You may do so. This makes it possible to set different slice information for each PLMN when RAN sharing that shares a radio access network is performed among a plurality of PLMNs.
 <まとめ>
 以上説明した実施形態によれば、端末10は、システム情報等に含まれるスライス情報に基づいて、端末10自身がサポートしているネットワークスライスを提供可能なセルにキャンプオンするようにした。これにより、ネットワークスライスを考慮してセル選択又はセル再選択を行うことを可能とする技術を提供することが可能になる。
<Summary>
According to the embodiment described above, the terminal 10 camps on a cell capable of providing a network slice supported by the terminal 10 itself based on the slice information included in the system information or the like. This makes it possible to provide a technique that enables cell selection or cell reselection in consideration of network slices.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting the interpretation of the present invention. The flowcharts, sequences, elements included in the embodiments, arrangements, materials, conditions, shapes, sizes, and the like described in the embodiments are not limited to those exemplified, and can be appropriately changed. Further, it is possible to partially replace or combine the configurations shown in different embodiments.
 1…無線通信システム、10…端末、11…プロセッサ、12…メモリ、13…記憶装置、14…通信装置、15…入力装置、16…出力装置、17…アンテナ、20…基地局、30…コアネットワーク、100…記憶部、101…受信部、102…送信部、103…取得部、104…制御部、200…記憶部、201…受信部、202…送信部 1 ... wireless communication system, 10 ... terminal, 11 ... processor, 12 ... memory, 13 ... storage device, 14 ... communication device, 15 ... input device, 16 ... output device, 17 ... antenna, 20 ... base station, 30 ... core Network, 100 ... storage unit, 101 ... reception unit, 102 ... transmission unit, 103 ... acquisition unit, 104 ... control unit, 200 ... storage unit, 201 ... reception unit, 202 ... transmission unit

Claims (12)

  1.  端末であって、
     セルで提供可能なネットワークスライスを示すスライス情報を取得する取得部と、
     前記スライス情報に基づいて、前記端末がサポートするネットワークスライスを提供可能なセルの中から、キャンプオンするセルのセル選択又はセル再選択を行う制御部と、
     を有する端末。
    It ’s a terminal,
    An acquisition unit that acquires slice information indicating network slices that can be provided in a cell,
    Based on the slice information, a control unit that selects or reselects the cell to camp on from the cells that can provide the network slice supported by the terminal.
    Terminal with.
  2.  前記制御部は、適切セルを検出することで、前記セル選択又は前記セル再選択を行い、
     前記適切セルは、前記端末がサポートするネットワークスライスを提供可能なセルであり、かつ、所定の基準を満たすセルを含む、
     請求項1に記載の端末。
    The control unit performs the cell selection or the cell reselection by detecting an appropriate cell, and then performs the cell selection or the cell reselection.
    The suitable cell is a cell capable of providing a network slice supported by the terminal and includes a cell satisfying a predetermined criterion.
    The terminal according to claim 1.
  3.  前記制御部は、適切セルを検出することで、前記セル選択を行い、
     前記適切セルは、少なくとも所定の選択基準を満たすセルであり、
     前記所定の選択基準は、所定の計算式に基づいて算出される受信レベル及び受信品質が所定の値を超えることであり、
     前記所定の計算式は、前記端末がサポートするネットワークスライスを提供可能ではないセルについては、前記受信レベル又は前記受信品質が前記所定の値以下になるように定められている、
     請求項1に記載の端末。
    The control unit selects an appropriate cell by detecting the appropriate cell, and then selects the cell.
    The appropriate cell is a cell that meets at least a predetermined selection criterion.
    The predetermined selection criterion is that the reception level and reception quality calculated based on the predetermined formula exceed the predetermined values.
    The predetermined calculation formula is defined so that the reception level or the reception quality is equal to or less than the predetermined value for cells that cannot provide the network slice supported by the terminal.
    The terminal according to claim 1.
  4.  前記スライス情報は、セルで提供可能な1又は複数のネットワークスライスを示しており、
     前記制御部は、前記端末がサポートする1又は複数のネットワークスライスを全て提供可能なセルの中から、前記セル選択又は前記セル再選択を行う、
     請求項1~3のいずれか一項に記載の端末。
    The slice information indicates one or more network slices that can be provided in the cell.
    The control unit performs cell selection or cell reselection from cells capable of providing all one or a plurality of network slices supported by the terminal.
    The terminal according to any one of claims 1 to 3.
  5.  前記スライス情報は、セルで提供可能な1又は複数のネットワークスライスを示しており、
     前記制御部は、前記端末がサポートする1又は複数のネットワークスライスのうち、前記端末に設定された最も優先度の高いネットワークスライスを提供可能なセルの中から、前記セル選択又は前記セル再選択を行う、
     請求項1~3のいずれか一項に記載の端末。
    The slice information indicates one or more network slices that can be provided in the cell.
    The control unit selects or reselects the cell from among the cells that can provide the network slice with the highest priority set in the terminal among one or a plurality of network slices supported by the terminal. conduct,
    The terminal according to any one of claims 1 to 3.
  6.  前記スライス情報は、セルで提供されないネットワークスライスに関する情報を格納することによって、セルで提供可能なネットワークスライスを示しており、
     前記制御部は、前記スライス情報に格納されていないネットワークスライスについては、セルで提供されるネットワークスライスであるとみなす、
     請求項1~5のいずれか一項に記載の端末。
    The slice information indicates a network slice that can be provided in the cell by storing information about the network slice that is not provided in the cell.
    The control unit considers the network slice not stored in the slice information to be the network slice provided by the cell.
    The terminal according to any one of claims 1 to 5.
  7.  前記取得部は、前記端末がサポートするネットワークスライスを提供可能なセルの中から、前記セル選択又は前記セル再選択を行う処理を許容するか否かを示す情報を含むシステム情報を取得し、
     前記制御部は、前記処理が許容されている場合に、前記スライス情報に基づいて、前記端末がサポートするネットワークスライスを提供可能なセルの中から、前記セル選択又は前記セル再選択を行う、
     請求項1~6のいずれか一項に記載の端末。
    The acquisition unit acquires system information including information indicating whether or not the process of performing the cell selection or the cell reselection is permitted from the cells that can provide the network slice supported by the terminal.
    When the processing is permitted, the control unit selects the cell or reselects the cell from the cells that can provide the network slice supported by the terminal based on the slice information.
    The terminal according to any one of claims 1 to 6.
  8.  前記取得部は、前記セル選択において、前記端末がサポートするネットワークスライスを提供可能なセルが存在しない場合に、キャンプオンすることを許容するセルを示す情報を含むシステム情報を取得し、
     前記制御部は、前記セル選択において、前記端末がサポートするネットワークスライスを提供可能なセルが存在しない場合、前記システム情報で示される前記キャンプオンすることを許容するセルにキャンプオンする、
     請求項1~7のいずれか一項に記載の端末。
    The acquisition unit acquires system information including information indicating cells that are allowed to camp on when there is no cell capable of providing a network slice supported by the terminal in the cell selection.
    In the cell selection, if there is no cell capable of providing the network slice supported by the terminal, the control unit camps on the cell that allows the camp-on indicated in the system information.
    The terminal according to any one of claims 1 to 7.
  9.  前記スライス情報は、モバイルネットワークごとに、セルで提供可能なネットワークスライスを示しており、
     前記制御部は、前記スライス情報に基づいて、前記端末が選択したモバイルネットワークのセルであって前記端末がサポートするネットワークスライスを提供可能なセルの中から、前記セル選択又は前記セル再選択を行う、
     請求項1~8のいずれか一項に記載の端末。
    The slice information indicates the network slice that can be provided in the cell for each mobile network.
    Based on the slice information, the control unit selects or reselects the cell from the cells of the mobile network selected by the terminal and capable of providing the network slice supported by the terminal. ,
    The terminal according to any one of claims 1 to 8.
  10.  端末と通信を行う基地局であって、
     セルで提供可能なネットワークスライスを示すスライス情報をシステム情報に含めて送信する送信部と、
     前記端末に対し、前記スライス情報に基づいて、前記端末がサポートするネットワークスライスを提供可能なセルの中から、キャンプオンするセルのセル選択又はセル再選択を実行させ、前記端末が利用を希望するネットワークスライスの情報を前記端末から受信する受信部と、
     を有する基地局。
    A base station that communicates with terminals
    A transmitter that includes slice information indicating network slices that can be provided in a cell in system information and sends it.
    Based on the slice information, the terminal is made to execute cell selection or cell reselection of the cell to camp on from the cells that can provide the network slice supported by the terminal, and the terminal wants to use it. A receiver that receives network slice information from the terminal,
    Base station with.
  11.  端末が行う通信方法であって、
     セルで提供可能なネットワークスライスを示すスライス情報を取得するステップと、
     前記スライス情報に基づいて、前記端末がサポートするネットワークスライスを提供可能なセルの中から、キャンプオンするセルのセル選択又はセル再選択を行うステップと、
     を含む通信方法。
    It is a communication method performed by the terminal.
    Steps to get slice information indicating the network slices that can be provided in the cell,
    Based on the slice information, a step of selecting or reselecting a cell to camp on from among cells that can provide a network slice supported by the terminal.
    Communication methods including.
  12.  コンピュータに、
     セルで提供可能なネットワークスライスを示すスライス情報を取得するステップと、
     前記スライス情報に基づいて、前記コンピュータがサポートするネットワークスライスを提供可能なセルの中から、キャンプオンするセルのセル選択又はセル再選択を行うステップと、
     を実行させるためのプログラム。
    On the computer
    Steps to get slice information indicating the network slices that can be provided in the cell,
    Based on the slice information, a step of selecting or reselecting a cell to camp on from among cells that can provide a network slice supported by the computer.
    A program to execute.
PCT/JP2020/034666 2020-09-14 2020-09-14 Terminal, base station, communication method, and program WO2022054267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034666 WO2022054267A1 (en) 2020-09-14 2020-09-14 Terminal, base station, communication method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034666 WO2022054267A1 (en) 2020-09-14 2020-09-14 Terminal, base station, communication method, and program

Publications (1)

Publication Number Publication Date
WO2022054267A1 true WO2022054267A1 (en) 2022-03-17

Family

ID=80631432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034666 WO2022054267A1 (en) 2020-09-14 2020-09-14 Terminal, base station, communication method, and program

Country Status (1)

Country Link
WO (1) WO2022054267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204171A1 (en) * 2022-04-20 2023-10-26 京セラ株式会社 Slice support existence confirmation method and user device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180376407A1 (en) * 2016-01-08 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Access Control In A Network Comprising Network Slices
JP2019536361A (en) * 2016-11-15 2019-12-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Cell determination method, terminal device, and network device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180376407A1 (en) * 2016-01-08 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Access Control In A Network Comprising Network Slices
JP2019536361A (en) * 2016-11-15 2019-12-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Cell determination method, terminal device, and network device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Cell selection / reselection with network slicing", 3GPP DRAFT; R2-1708409_CELL SELECTION RESELECTION WITH NETWORK SLICING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051318273 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204171A1 (en) * 2022-04-20 2023-10-26 京セラ株式会社 Slice support existence confirmation method and user device

Similar Documents

Publication Publication Date Title
US11134427B2 (en) Terminal, base station, cell access method, and data transmission method for reconfiguring a wireless connection to communicate with a secondary cell
US10064078B2 (en) Wireless communications method, user equipment, and network node
TWI583217B (en) Method of handling cell reselection
CN108200631B (en) System and method for network detection and selection
CN110381550B (en) Cell registration method, device and terminal
WO2017032314A1 (en) Systems and methods for improved data speeds for wireless devices
WO2021217672A1 (en) Load control method for network slice and related product
WO2022067643A1 (en) Cell selection method and apparatus, and paging method and apparatus
EP2816846A1 (en) 3GPP base station, in particular eNodeB, enabling discovery of non-3GPP access networks, in particular Wi-Fi access points
JP2023537310A (en) Cell selection or reselection method, information transmission method and device
WO2022228559A1 (en) Cell reselection method, communications apparatus, and computer-readable storage medium
JP2018524933A (en) Inter-RAT measurement report
WO2021172183A1 (en) Communication control method
WO2016184184A1 (en) Method and apparatus for acquiring neighbor cell frequency band information, mobility management method and apparatus, and storage medium
WO2022054267A1 (en) Terminal, base station, communication method, and program
CN115362711A (en) Network-guided WD cell reselection method
EP3206434B1 (en) Switching process between a base station and wireless lan access point
WO2022176098A1 (en) Terminal, base station, communication method, and program
WO2015042966A1 (en) Backhaul link establishment method, apparatus and system
US20170325150A1 (en) Base station and processor
WO2020230865A1 (en) Cell reselection method and user device
WO2022029902A1 (en) User terminal and wireless communication method
WO2022226921A1 (en) Wireless communication method and device
WO2023116404A1 (en) Communication method and device
JP7472203B2 (en) Communication Control Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP