WO2022044580A1 - High frequency circuit and communication device - Google Patents

High frequency circuit and communication device Download PDF

Info

Publication number
WO2022044580A1
WO2022044580A1 PCT/JP2021/026126 JP2021026126W WO2022044580A1 WO 2022044580 A1 WO2022044580 A1 WO 2022044580A1 JP 2021026126 W JP2021026126 W JP 2021026126W WO 2022044580 A1 WO2022044580 A1 WO 2022044580A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
band
communication band
high frequency
circuit
Prior art date
Application number
PCT/JP2021/026126
Other languages
French (fr)
Japanese (ja)
Inventor
弘嗣 森
純一 吉岡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022044580A1 publication Critical patent/WO2022044580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present invention relates to a high frequency circuit and a communication device.
  • 5G NR 5th Generation New Radio
  • 5G NR 5th Generation New Radio
  • the channel width tends to increase in the NR-compatible communication band specified by 3GPP (3rd Generation Partnership Project).
  • 3GPP 3rd Generation Partnership Project
  • signal quality such as EVM (Error Vector Magnitude) deteriorates.
  • an object of the present invention is to provide a high frequency circuit and a communication device in which deterioration of signal quality due to an increase in channel width is suppressed.
  • the high frequency circuit includes an antenna terminal, a first filter having a variable pass band, and a surface-mounted first impedance element connected between the antenna terminal and the first filter.
  • the first mode of transmitting the signal of the first communication band the first channel signal of the first communication band is transmitted, and in the second mode of transmitting the signal of the second communication band, the bandwidth is wider than that of the first channel signal.
  • a narrow second channel signal is transmitted, at least one of the first communication band and the second communication band is a communication band for 5 GNR, and the pass band of the first filter is the first in the case of the first mode. It becomes a pass band, and in the case of the second mode, it becomes a second pass band having a wider band than the first pass band.
  • the present invention it is possible to provide a high frequency circuit and a communication device in which deterioration of signal quality due to an increase in channel width is suppressed.
  • FIG. 1 is a circuit configuration diagram of a high frequency circuit according to the first embodiment.
  • FIG. 2 is a diagram showing the frequency relationship of the communication band.
  • FIG. 3A is a diagram showing a first example of the relationship between the communication band and the channel signal.
  • FIG. 3B is a diagram showing a second example of the relationship between the communication band and the channel signal.
  • FIG. 4A is a diagram showing a first circuit configuration example of the first filter according to the first embodiment.
  • FIG. 4B is a diagram showing a second circuit configuration example of the first filter according to the first embodiment.
  • FIG. 4C is a diagram showing a third circuit configuration example of the first filter according to the first embodiment.
  • FIG. 4D is a diagram showing a fourth circuit configuration example of the first filter according to the first embodiment.
  • FIG. 4A is a diagram showing a first circuit configuration example of the first filter according to the first embodiment.
  • FIG. 4B is a diagram showing a second circuit configuration example of the first filter according to the first embodiment
  • FIG. 5 is a circuit configuration diagram of the high frequency circuit and the communication device according to the second embodiment.
  • FIG. 6 is a circuit configuration diagram of the high frequency circuit according to the first modification of the second embodiment.
  • FIG. 7 is a circuit configuration diagram of a high frequency circuit according to the second modification of the second embodiment.
  • FIG. 8 is a circuit configuration diagram of a high frequency circuit according to a modification 3 of the second embodiment.
  • each figure is a schematic diagram in which emphasis, omission, or ratio is adjusted as appropriate to show the present invention, and is not necessarily exactly illustrated. What is the actual shape, positional relationship, and ratio? May be different. In each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description may be omitted or simplified.
  • connection means not only the case of being directly connected by a connection terminal and / or a wiring conductor, but also the case of being electrically connected via another circuit element.
  • connected between A and B means being connected to A and B on the route connecting A and B.
  • FIG. 1 is a circuit configuration diagram of the high frequency circuit 1a according to the first embodiment.
  • the high frequency circuit 1a according to the present embodiment includes an antenna terminal 101, a filter 10, and a matching circuit 12.
  • the antenna terminal 101 is a terminal connected to the antenna.
  • the matching circuit 12 is a circuit for impedance matching between the antenna terminal 101 and the antenna and the filter 10.
  • the matching circuit 12 includes at least one surface mount type first impedance element.
  • the filter 10 is an example of the first filter, and is a filter circuit having a variable pass band.
  • the filter 10 has input / output terminals 102 and 103, and the input / output terminals 102 are connected to the matching circuit 12.
  • the pass band of the filter 10 changes into a first pass band and a second pass band.
  • the first pass band includes, for example, the uplink operation band of the first communication band
  • the second pass band includes, for example, the uplink operation band of the second communication band.
  • the filter 10 is, for example, an elastic surface wave (SAW: Surface Acoustic Wave) filter, an elastic wave filter using a bulk elastic wave (BAW: Bulk Acoustic Wave), an LC resonance filter using an inductor and a capacitor, an elastic wave resonator, and the like. It may be a hybrid filter using an inductor and a capacitor, or a dielectric filter, and is not limited thereto.
  • SAW Surface Acoustic Wave
  • BAW Bulk Acoustic Wave
  • LC resonance filter using an inductor and a capacitor an elastic wave resonator, and the like.
  • It may be a hybrid filter using an inductor and a capacitor, or a dielectric filter, and is not limited thereto.
  • each of the first communication band and the second communication band is a standardization organization or the like (for example, 3GPP, IEEE (Institute of Electrical and Electronics Engineers)) for a communication system constructed by using wireless access technology (RAT: RadioAccess Technology). Electronics Engineers) etc.) means a frequency band defined in advance.
  • RAT RadioAccess Technology
  • Electronics Engineers etc.
  • the communication system for example, an LTE (Longterm Evolution) system, a 5GNR system, a WLAN (Wireless Local Area Network) system, or the like can be used, but the communication system is not limited thereto.
  • each of the first communication band and the second communication band is composed of a downlink operation band and an uplink operation band.
  • the uplink operating band means the frequency range specified for the uplink in the communication band.
  • the downlink operation band means a frequency range designated for the downlink in the communication band.
  • FIG. 2 is a diagram showing the frequency relationship of the communication band.
  • the first communication band is, for example, n1 for 5G NR for frequency division duplex (FDD)
  • the uplink operation band is 1920-1980 MHz
  • the downlink operation is 2110-2170 MHz.
  • the second communication band is, for example, n65 for 5G NR for FDD
  • the uplink operating band is 1920-2010 MHz
  • the downlink operating band is 2110-2200 MHz.
  • the second communication band (n65) has at least a partial overlap in frequency with the first communication band (n1), and is wider than the first communication band.
  • n34 (2010-2025MHz) for 5G NR for Time Division Duplex (TDD) is located close to the high frequency side of the second communication band (n65) and the first communication band (n1). is doing.
  • FIG. 3A is a diagram showing a first example of the relationship between the communication band and the channel signal.
  • the channel signal (first channel signal) of the first communication band (n1) has a wider bandwidth than the channel signal (second channel signal) of the second communication band (n65). That is, the first communication band has a narrower bandwidth than the second communication band, but the first channel signal has a wider bandwidth than the second channel signal.
  • the bandwidth of the first channel signal of the first communication band (n1) is, for example, 50 MHz
  • the bandwidth of the second channel signal of the second communication band (n65) is, for example, 25 MHz.
  • the mode for transmitting the first channel signal is defined as the first mode
  • the mode for transmitting the second channel signal having a narrower bandwidth than the first channel signal is defined as the second mode.
  • the pass band of the filter 10 is, as shown in FIG. 3A, the first pass band in the case of the first mode. In the case of the second mode, the second pass band is wider than the first pass band.
  • the second communication band does not have to be wider than the first communication band. Further, the first communication band and the second communication band may be the same communication band. Even in this case, the pass band of the filter 10 is the first pass band in the case of the first mode, and is the second pass band wider than the first pass band in the case of the second mode.
  • the bandwidth of the channel signal tends to increase in the NR-compatible communication band specified by 3GPP.
  • the bandwidth of the channel signal increases, it becomes difficult to secure the attenuation characteristic (suppress unnecessary radiation) of the adjacent communication band (for example, n34), and there is a concern that the signal quality of EVM or the like deteriorates. ..
  • the pass band of the filter 10 in the first mode in which the signal of the first communication band is transmitted, the pass band of the filter 10 is narrowed to obtain the pass band of the filter 10 and the first mode. Since a large frequency interval with a communication band close to one communication band can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a high Q surface mount impedance element is arranged as a matching circuit. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
  • At least one of the first communication band and the second communication band to which the high frequency circuit 1a according to the present embodiment is applied may be a communication band for 5G NR, and one of them is for LTE. It may be a communication band.
  • the first impedance element included in the matching circuit 12 may be an integrated passive element (IPD: Integrated Passive Device). According to this, the matching circuit 12 and the high frequency circuit 1a can be miniaturized.
  • IPD integrated Passive Device
  • the matching circuit 12 may have one or more series arm elements connected in series to the path connecting the antenna terminal 101 and the filter 10. At this time, it is desirable that all the series arm elements connected in series to the above path are surface mount type impedance elements. According to this, the transmission loss of the matching circuit 12 and the high frequency circuit 1a can be further reduced.
  • the matching circuit 12 may have a plurality of series arm elements connected in series to the path connecting the antenna terminal 101 and the filter 10. At this time, it is desirable that the series arm element closest to the antenna terminal 101 among the plurality of series arm elements is a surface mount type impedance element.
  • the reflection coefficient in the first communication band and the second communication band of the filter is further connected. Therefore, the transmission loss of the high frequency circuit 1a including the filter can be reduced.
  • the frequency end on the low frequency side of the first communication band does not have to coincide with the frequency end on the low frequency side of the second communication band.
  • the frequency end on the high frequency side of the first communication band does not have to coincide with the frequency end on the high frequency side of the second communication band.
  • the frequency range of the first communication band may be included in the frequency range of the second communication band.
  • the frequency bands on the high frequency side of the first pass band and the second pass band are variable, but when the proximity band is located on the low frequency side of the filter 10, the first pass band is used.
  • the frequency band on the low frequency side of the pass band and the second pass band may be varied.
  • the frequency bands on the low frequency side and the high frequency side of the first pass band and the second pass band may be varied.
  • one of the low frequency side frequency end and the high frequency side frequency end of the first pass band, and the low frequency side frequency end and the high frequency side frequency of the second pass band may match one of the ends.
  • FIG. 3B is a diagram showing a second example of the relationship between the communication band and the channel signal.
  • the first communication band is n48 or n49 for 5G NR for TDD and the operating band is 3.55-3.7GHz.
  • the second communication band is n77 for 5G NR for TDD, and the operating band is 3.45-3.55GHz and 3.7-3.98GHz.
  • the second communication band of this example is 3.45-3.55 GHz, which is the frequency range on the low frequency side, and the high frequency side, out of 3.3-4.2 GHz, which is the normal operation band of n77 for 5 GNR. It is composed of 3.7-3.98 GHz, which is a frequency range.
  • the channel signal (first channel signal) of the first communication band (n48 or n49) has a wider bandwidth than the channel signal (second channel signal) of the second communication band n77. That is, the first communication band has a narrower bandwidth than the second communication band, but the first channel signal has a wider bandwidth than the second channel signal.
  • the bandwidth of the first channel signal of the first communication band (n48) is, for example, 100 MHz
  • the bandwidth of the second channel signal of the second communication band (n77) is, for example, 40 MHz.
  • the pass band of the filter 10 is, as shown in FIG. 3B, the first pass band in the case of the first mode. In the case of the second mode, the second pass band is wider than the first pass band.
  • the bandwidth of the channel signal tends to increase in the NR-compatible communication band specified by 3GPP.
  • the bandwidth of the channel signal increases, it becomes difficult to secure the attenuation characteristics (suppress unnecessary radiation) of the adjacent communication band (n77) for the n48 or n49 signal, and the signal quality such as EVM deteriorates. There is concern about doing so.
  • the pass band of the filter 10 in the first mode in which the signal of the first communication band is transmitted, the pass band of the filter 10 is narrowed so as to be close to the first communication band. It is possible to secure the attenuation characteristic of the second communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a high Q surface mount impedance element is arranged as a matching circuit. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
  • FIG. 4A is a diagram showing a first circuit configuration example of the filter 10 according to the first embodiment.
  • the filter 10A includes circuit elements 18 and 19, elastic wave resonator 13, resonance circuit 14, and switch 15.
  • circuit elements 18 and 19 are arranged in the series arm path connecting the input / output terminal 102 and the input / output terminal 103, respectively.
  • Circuit elements 18 and 19 are, for example, any of inductors, capacitors, and elastic wave resonators.
  • the inductors and capacitors of the circuit elements 18 and 19 may be composed of any of surface mount components, substrate inner layer wiring, and substrate wiring.
  • the elastic wave resonator 13 may be either a SAW resonator or a BAW resonator.
  • the resonant circuit 14 includes, for example, an inductor, a capacitor, and at least one elastic wave resonator, and is either an LC series resonant circuit, an LC parallel resonant circuit, or an elastic wave resonant circuit.
  • a series connection circuit of the switch 15 and the resonance circuit 14 and the elastic wave resonator 13 is arranged in the parallel arm path connecting the series arm path and the ground.
  • the pass band of the filter 10A changes into a first pass band and a second pass band by switching between conduction and non-conduction of the switch 15.
  • FIG. 4B is a diagram showing a second circuit configuration example of the filter 10 according to the first embodiment.
  • the filter 10B includes circuit elements 18 and 19, elastic wave resonator 13, resonance circuit 14, and switch 15.
  • the filter 10B differs from the filter 10A only in the connection configuration of the circuits arranged in the parallel arm path.
  • the filter 10B will be described focusing on the differences from the filter 10A.
  • a parallel connection circuit of the switch 15 and the resonance circuit 14 and the elastic wave resonator 13 is arranged in the parallel arm path connecting the series arm path and the ground.
  • the pass band of the filter 10B changes into a first pass band and a second pass band by switching between conduction and non-conduction of the switch 15.
  • the switch 15 and at least one of the circuit elements other than the switch 15 may be formed in the same package.
  • FIG. 4C is a diagram showing a third circuit configuration example of the filter 10 according to the first embodiment.
  • the filter 10C includes circuit elements 18 and 19, elastic wave resonator 13, and variable circuit 16.
  • the filter 10C differs from the filter 10A only in the configuration of the circuit arranged in the parallel arm path.
  • the filter 10C will be described focusing on the differences from the filter 10A.
  • the variable circuit 16 has, for example, at least one of a variable inductor, a variable capacitor, and a switch, and is a circuit that changes physical constants such as capacitance and inductance.
  • the variable circuit 16 is arranged in the first parallel arm path connecting the series arm path and the ground.
  • the variable capacitor may be, for example, a DTC (Digital Tunable Capacitor).
  • the elastic wave resonator 13 is arranged in the second parallel arm path connecting the series arm path and the ground.
  • the pass band of the filter 10C changes into a first pass band and a second pass band due to a change in the physical constant of the variable circuit 16.
  • FIG. 4D is a diagram showing a fourth circuit configuration example of the filter 10 according to the first embodiment.
  • the filter 10D includes filters 11a and 11b, and a first switch and a second switch.
  • the filter 11a is a filter element having a second pass band including an uplink operation band (for example, n65Tx) of the second communication band.
  • the filter 11b is a filter element having a first pass band including an uplink operation band (for example, n1Tx) of the first communication band.
  • the first switch has a common terminal and two selection terminals, the common terminal is connected to the input / output terminal 102, one selection terminal is connected to the filter 11a, and the other selection terminal is connected to the filter 11b.
  • the second switch has a common terminal and two selection terminals, the common terminal is connected to the input / output terminal 103, one selection terminal is connected to the filter 11a, and the other selection terminal is connected to the filter 11b. ..
  • the pass band of the filter 10D changes into a first pass band and a second pass band when the first switch and the second switch are switched in synchronization.
  • the duplexer is composed of a transmission filter having a pass band including the uplink operation band of the second communication band and a reception filter having a pass band including the downlink operation band of the second communication band. It may be arranged between the first switch and the second switch.
  • a duplexer composed of a transmission filter having a pass band including the uplink operation band of the first communication band and a reception filter having a pass band including the downlink operation band of the first communication band is provided. It may be arranged between the first switch and the second switch.
  • FIG. 5 is a circuit configuration diagram of the high frequency circuit 1 and the communication device 5 according to the second embodiment.
  • the communication device 5 includes a high frequency circuit 1, an antenna 2, an RF signal processing circuit (RFIC) 3, and a baseband signal processing circuit (BBIC) 4. ..
  • the high frequency circuit 1 transmits a high frequency signal between the antenna 2 and the RFIC 3.
  • the detailed circuit configuration of the high frequency circuit 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminal 100 of the high frequency circuit 1, transmits a high frequency signal output from the high frequency circuit 1, and also receives a high frequency signal from the outside and outputs the high frequency signal to the high frequency circuit 1.
  • RFIC3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception path of the high frequency circuit 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-conversion or the like, and outputs the high frequency transmission signal generated by the signal processing to the transmission path of the high frequency circuit 1. Further, the RFIC 3 has a control unit for controlling a switch, an amplifier and the like included in the high frequency circuit 1. A part or all of the function of the RFIC3 as a control unit may be mounted outside the RFIC3, or may be mounted on, for example, the BBIC4 or the high frequency circuit 1.
  • the BBIC 4 is a baseband signal processing circuit that processes signals using an intermediate frequency band having a lower frequency than the high frequency signal transmitted by the high frequency circuit 1.
  • the signal processed by the BBIC 4 for example, an image signal for displaying an image and / or an audio signal for a call via a speaker are used.
  • the antenna 2 and the BBIC 4 are not essential components.
  • the high frequency circuit 1 includes an antenna connection terminal 100, filters 10 and 20, a matching circuit 22, a switch 50, and input / output terminals 110 and 120.
  • the antenna connection terminal 100 is connected to the antenna 2.
  • the input / output terminals 110 and 120 are terminals for receiving a high frequency transmission signal from the outside of the high frequency circuit 1 or providing a high frequency reception signal to the outside of the high frequency circuit 1.
  • the filter 10 is an example of the first filter, and is a filter circuit having a variable pass band.
  • One terminal of the filter 10 is connected to the selection terminal 50b of the switch 50 without an impedance element, and the other terminal of the filter 10 is connected to the input / output terminal 110.
  • the pass band of the filter 10 changes into a first pass band and a second pass band.
  • the first pass band includes, for example, the uplink operation band of the first communication band
  • the second pass band includes, for example, the uplink operation band of the second communication band.
  • the filter 20 is an example of the second filter, and is a filter circuit in which the pass band is not variable.
  • One terminal of the filter 20 is connected to the matching circuit 22, and the other terminal of the filter 20 is connected to the input / output terminal 120.
  • Each of the filters 10 and 20 is, for example, an elastic surface wave filter, an elastic wave filter using a BAW, an LC resonance filter using an inductor and a capacitor, a surface acoustic wave resonator, a hybrid filter using an inductor and a capacitor, and a dielectric filter. It may be any of, and further, it is not limited to these.
  • the matching circuit 22 is a circuit connected between the selection terminal 50c of the switch 50 and the filter 20 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 20.
  • the matching circuit 22 includes at least one second impedance element.
  • the switch 50 is an example of an antenna switch, and has a common terminal 50a, a selection terminal 50b, and a 50c.
  • the common terminal 50a is connected to the antenna connection terminal 100.
  • the selection terminal 50b is an example of the first antenna terminal, and is connected to the filter 10 without an impedance element.
  • the selection terminal 50c is an example of the second antenna terminal, and is connected to the filter 20 via the matching circuit 22.
  • the switch 50 switches between connection and non-connection between the common terminal 50a and the selection terminal 50b based on, for example, a control signal from RFIC3, and also connects and does not connect the common terminal 50a and the selection terminal 50c. Can be switched.
  • the high frequency circuit 1 does not have to have the switch 50, and the filters 10 and 20 may be directly connected to the antenna connection terminal 100.
  • the high frequency circuit 1 includes a power amplifier or a low noise amplifier connected between the filter 10 and the input / output terminal 110, and a power amplifier or a low noise amplifier connected between the filter 20 and the input / output terminal 120. May be provided.
  • the first communication band is, for example, n1 for 5G NR for FDD
  • the second communication band is, for example, for example. N65 for 5G NR for FDD.
  • the pass band of the filter 20 includes, for example, n34 (2010-2025 MHz) or n39 (1880-1920 MHz) for 5 GNR.
  • the second communication band (n65) has at least a partial overlap in frequency with the first communication band (n1), and is wider than the first communication band.
  • n34 for 5G NR is located close to the high frequency side of the second communication band (n65) and the first communication band (n1).
  • the channel signal (first channel signal) of the first communication band (n1) has a wider bandwidth than the channel signal (second channel signal) of the second communication band (n65). That is, the first communication band has a narrower bandwidth than the second communication band, but the first channel signal has a wider bandwidth than the second channel signal.
  • the pass band of the filter 10 is a first communication band for transmitting the signal of the first communication band as shown in FIG. 3A.
  • the first pass band is used, and in the case of the second mode in which the signal of the second communication band is transmitted, the second pass band is wider than the first pass band.
  • the pass band of the filter 10 and the first mode are narrowed by narrowing the pass band of the filter 10. Since a large frequency interval with a communication band close to one communication band can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, an impedance element is not arranged between the switch 50 and the filter 10. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
  • At least one of the first communication band and the second communication band to which the high frequency circuit 1 according to the present embodiment is applied may be a communication band for 5G NR, and one of them is for 4GLTE. It may be a communication band.
  • FIG. 6 is a circuit configuration diagram of the high frequency circuit 1A according to the first modification of the second embodiment.
  • the high frequency circuit 1A includes an antenna connection terminal 100, filters 10 and 20, matching circuits 12 and 22, a switch 50, and input / output terminals 110 and 120.
  • the high frequency circuit 1A according to this modification is different from the high frequency circuit 1 according to the second embodiment in that a matching circuit 12 is added.
  • the high-frequency circuit 1A according to the present modification will be described by omitting the description of the same configuration as the high-frequency circuit 1 according to the second embodiment and focusing on different points.
  • the matching circuit 12 is a circuit connected between the selection terminal 50b and the filter 10 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 10.
  • the matching circuit 12 includes at least one surface mount type first impedance element.
  • the matching circuit 22 is a circuit connected between the selection terminal 50c and the filter 20 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 20.
  • the matching circuit 22 includes at least one second impedance element. Further, the matching circuit 22 does not include a surface mount type impedance element, and the Q value of the matching circuit 22 is smaller than the Q value of the matching circuit 12.
  • the pass band of the filter 10 in the first mode of transmitting the signal of the first communication band, the pass band of the filter 10 is narrowed, so that the communication close to the pass band of the filter 10 and the first communication band is performed. Since a large frequency interval with the band can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a matching circuit 12 having a relatively high Q value is arranged between the switch 50 and the filter 10. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
  • FIG. 7 is a circuit configuration diagram of the high frequency circuit 1B according to the second modification of the second embodiment.
  • the high frequency circuit 1B includes an antenna connection terminal 100, filters 10, 20 and 30, matching circuits 22 and 32, a switch 50, and input / output terminals 110, 120 and 130.
  • the high frequency circuit 1B according to this modification is different from the high frequency circuit 1 according to the second embodiment in that a filter 30 and a matching circuit 32 are added.
  • the high-frequency circuit 1B according to the present modification will be described by omitting the description of the same configuration as the high-frequency circuit 1 according to the second embodiment and focusing on different points.
  • the input / output terminal 130 is a terminal for receiving a high frequency transmission signal from the outside of the high frequency circuit 1B or providing a high frequency reception signal to the outside of the high frequency circuit 1B.
  • the filter 30 is an example of a third filter, and is a filter circuit in which the pass band is not variable. One terminal of the filter 30 is connected to the matching circuit 32.
  • the filter 30 is, for example, any of an elastic surface wave filter, an elastic wave filter using a BAW, an LC resonance filter using an inductor and a capacitor, an elastic wave resonator, a hybrid filter using an inductor and a capacitor, and a dielectric filter. It may, and is not limited to, these.
  • the matching circuit 32 is a circuit connected between the selection terminal 50b and the filter 30 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 30.
  • the matching circuit 32 includes at least one third impedance element.
  • the pass band of the filter 30 includes, for example, n3 for 5G NR (see FIG. 2).
  • the third impedance element is connected between the selection terminal 50b and the filter 30, whereas the impedance element is arranged between the selection terminal 50b and the filter 10. Therefore, the EVM standard of the signals of the first communication band and the second communication band passing through the filter 10 can be satisfied.
  • FIG. 8 is a circuit configuration diagram of the high frequency circuit 1C according to the third modification of the second embodiment.
  • the high frequency circuit 1C includes an antenna connection terminal 100, filters 10, 20 and 30, matching circuits 22 and 32, a switch 51, and input / output terminals 110, 120 and 130.
  • the high frequency circuit 1C according to the present modification has a different configuration of the switch 51 as compared with the high frequency circuit 1B according to the modification 2.
  • the same configuration as the high frequency circuit 1B according to the modification 3 will be omitted from the description of the high frequency circuit 1C according to the modification, and the differences will be mainly described.
  • the switch 51 is an example of an antenna switch and has a common terminal 51a and selection terminals 51b, 51c and 51d.
  • the common terminal 51a is connected to the antenna connection terminal 100.
  • the selection terminal 51b is an example of the first antenna terminal, and is connected to the filter 10 without an impedance element.
  • the selection terminal 51c is an example of the second antenna terminal, and is connected to the filter 20 via the matching circuit 22.
  • the selection terminal 51d is connected to the filter 30 via the matching circuit 32.
  • the switch 51 switches between connection and non-connection between the common terminal 51a and the selection terminal 51b based on, for example, a control signal from RFIC3, and also connects and does not connect the common terminal 51a and the selection terminal 51c. Can be switched, and connection and non-connection between the common terminal 51a and the selection terminal 51d can be switched.
  • the third impedance element is connected between the selection terminal 51d and the filter 30, whereas the impedance element is arranged between the selection terminal 51b and the filter 10. Therefore, the EVM standard of the signals of the first communication band and the second communication band passing through the filter 10 can be satisfied.
  • the antenna terminal 101, the filter 10 having a variable pass band, and the surface-mounted first impedance connected between the antenna terminal 101 and the filter 10 In the first mode in which the element and the signal of the first communication band are transmitted, the first channel signal of the first communication band is transmitted, and in the second mode of transmitting the signal of the second communication band, the first channel is transmitted.
  • a second channel signal having a narrower bandwidth than the signal is transmitted, at least one of the first communication band and the second communication band is a communication band for 5 GNR, and the pass band of the filter 10 is the case of the first mode. Is the first pass band, and in the case of the second mode, the second pass band is wider than the first pass band.
  • the pass band of the filter 10 is narrowed to reduce the frequency interval between the pass band of the filter 10 and the communication band close to the first communication band. Since a large amount can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a high Q surface mount impedance element is arranged as a matching circuit. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
  • the first impedance element may be an integrated passive element.
  • the matching circuit 12 and the high frequency circuit 1a can be miniaturized.
  • a matching circuit 12 including a first impedance element is connected between the antenna terminal 101 and the filter 10, and the matching circuit 12 is a path connecting the antenna terminal 101 and the filter 10. All the series arm elements having one or more series arm elements connected in series and connected in series to the path may be surface-mounted impedance elements.
  • the transmission loss of the matching circuit 12 and the high frequency circuit 1a can be further reduced.
  • a matching circuit 12 including a first impedance element is connected between the antenna terminal 101 and the filter 10, and the matching circuit 12 is a path connecting the antenna terminal 101 and the filter 10.
  • the series arm element having a plurality of series arm elements connected in series and connected closest to the antenna terminal 101 among the plurality of series arm elements may be a surface-mounted impedance element.
  • the reflection coefficient in the first communication band and the second communication band of the filter is further connected. Therefore, the transmission loss of the high frequency circuit 1a including the filter can be reduced.
  • the high frequency circuit 1 is connected to the switch 50 without an impedance element, and includes a filter 10 having a variable pass band, a filter 20 having a non-variable pass band, and a switch 50 and a filter 20.
  • the first mode which comprises a second impedance element connected between them and transmits a signal of the first communication band
  • the first channel signal of the first communication band is transmitted, and the band widest than that of the first communication band.
  • a second channel signal having a narrower bandwidth than the first channel signal is transmitted, and at least one of the first communication band and the second communication band communicates for 5 GNR. It is a band
  • the pass band of the first filter is the first pass band in the case of the first mode, and is the second pass band wider than the first pass band in the case of the second mode.
  • the pass band of the filter 10 is narrowed to reduce the frequency interval between the pass band of the filter 10 and the communication band close to the first communication band. Since a large amount can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, an impedance element is not arranged between the switch 50 and the filter 10. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
  • the high frequency circuit 1B according to the second modification of the second embodiment further has a filter 30 whose pass band does not change, and a third impedance connected between the path connecting the switch 50 and the filter 10 and the filter 30.
  • the element may be provided.
  • the second communication band may have a wider band than the first communication band.
  • the third impedance element is connected between the switch 50 and the filter 30, whereas the impedance element is not arranged between the switch 50 and the filter 10, so that the third impedance element passes through the filter 10.
  • the EVM standard of the signals of the 1st communication band and the 2nd communication band can be satisfied.
  • the first communication band is n1 for 5G NR
  • the second communication band is n65 for 5G NR. You may.
  • the pass band of the filter 20 may include n34 or n39 for 5G NR.
  • the pass band of the filter 30 may include n3 for 5 GNR.
  • the filter 10 may be an elastic wave filter using a bulk elastic wave.
  • the attenuation slope near the pass band of the filter 10 can be steep and can be miniaturized.
  • the communication device 5 includes an RFIC 3 for processing a high frequency signal and a high frequency circuit 1 for transmitting a high frequency signal between the RFIC 3 and the antenna 2.
  • the high-frequency circuit and communication device according to the present invention have been described above based on the embodiments and modifications, but the high-frequency circuit and communication device according to the present invention are not limited to the above-described embodiments and modifications. do not have.
  • Other embodiments realized by combining arbitrary components in the above-described embodiments and modifications, and various modifications that can be conceived by those skilled in the art within the scope of the present invention are applied to the above-described embodiments.
  • the present invention also includes the obtained modifications and various devices incorporating the high frequency circuit and the communication device.
  • At least one of the first communication band and the second communication band may have a frequency band of 5 GHz or more.
  • communication bands for other wireless access technologies may be used in the embodiments and modifications described above.
  • a communication band for a wireless local area network may be used.
  • a millimeter wave band of 7 GHz or more may be used as the communication band.
  • the high frequency circuit 1, the antenna 2, and the RFIC 3 may form a millimeter-wave antenna module, and a distributed constant type filter may be used as the filter.
  • the present invention can be widely used in communication devices such as mobile phones as a high frequency circuit arranged in the front end portion.
  • RFIC radio frequency circuit
  • BBIC Baseband signal processing circuit
  • Variable circuit 18, 19 Circuit element 50, 51 switch 50a, 51a common terminal 50b, 50c, 51b, 51c, 51d selection terminal 101 antenna terminal 102, 103, 110, 120, 130 input / output terminal

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

A high frequency circuit (1a) comprises: an antenna terminal (101); a filter (10) the passband of which is variable; and a surface-mounted type of first impedance element connected between the antenna terminal (101) and the filter (10), wherein: in a first mode for transmitting signals of a first communication band, first channel signals of the first communication band are transmitted; in a second mode for transmitting signals of a second communication band, second channel signals the bandwidth of which is narrower than that of the first channel signals are transmitted; at least one of the first communication band and the second communication band is a communication band for 5G NR; and the passband of the filter (10) becomes a first passband in the case of the first mode and becomes a second passband wider than the first passband in the case of the second mode.

Description

高周波回路および通信装置High frequency circuits and communication equipment
 本発明は、高周波回路および通信装置に関する。 The present invention relates to a high frequency circuit and a communication device.
 5GNR(5th Generation New Radio)では、より広いバンド幅を有する通信バンドが利用可能であり、このような広帯域な通信バンドの効率的な利用について検討が進んでいる。 In 5G NR (5th Generation New Radio), a communication band with a wider bandwidth can be used, and studies are underway on the efficient use of such a wide band communication band.
特表2017-527155号公報Special Table 2017-527155
 5GNRにより通信性能を向上させるため、3GPP(3rd Generation Partnership Project)で規定されたNR対応の通信バンドでは、チャネル幅が増加する傾向にある。しかしながら、チャネル幅が増加すると、近接する通信バンドの減衰特性(不要輻射の抑制)を確保することが困難となり、EVM(Error Vector Magnitude)などの信号品質が劣化することが懸念される。 In order to improve communication performance by 5G NR, the channel width tends to increase in the NR-compatible communication band specified by 3GPP (3rd Generation Partnership Project). However, when the channel width increases, it becomes difficult to secure the attenuation characteristics (suppression of unnecessary radiation) of adjacent communication bands, and there is a concern that signal quality such as EVM (Error Vector Magnitude) deteriorates.
 そこで、本発明は、チャネル幅の増加に伴う信号品質の劣化が抑制された高周波回路および通信装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a high frequency circuit and a communication device in which deterioration of signal quality due to an increase in channel width is suppressed.
 本発明の一態様に係る高周波回路は、アンテナ端子と、通過帯域が可変する第1フィルタと、アンテナ端子と第1フィルタとの間に接続された表面実装型の第1インピーダンス素子と、を備え、第1通信バンドの信号を伝送する第1モードでは、第1通信バンドの第1チャネル信号が伝送され、第2通信バンドの信号を伝送する第2モードでは、第1チャネル信号よりも帯域幅が狭い第2チャネル信号が伝送され、第1通信バンドおよび第2通信バンドの少なくとも一方は、5GNRのための通信バンドであり、第1フィルタの通過帯域は、第1モードの場合には第1通過帯域となり、第2モードの場合には第1通過帯域よりも広帯域の第2通過帯域となる。 The high frequency circuit according to one aspect of the present invention includes an antenna terminal, a first filter having a variable pass band, and a surface-mounted first impedance element connected between the antenna terminal and the first filter. In the first mode of transmitting the signal of the first communication band, the first channel signal of the first communication band is transmitted, and in the second mode of transmitting the signal of the second communication band, the bandwidth is wider than that of the first channel signal. A narrow second channel signal is transmitted, at least one of the first communication band and the second communication band is a communication band for 5 GNR, and the pass band of the first filter is the first in the case of the first mode. It becomes a pass band, and in the case of the second mode, it becomes a second pass band having a wider band than the first pass band.
 本発明によれば、チャネル幅の増加に伴う信号品質の劣化が抑制された高周波回路および通信装置を提供することが可能となる。 According to the present invention, it is possible to provide a high frequency circuit and a communication device in which deterioration of signal quality due to an increase in channel width is suppressed.
図1は、実施の形態1に係る高周波回路の回路構成図である。FIG. 1 is a circuit configuration diagram of a high frequency circuit according to the first embodiment. 図2は、通信バンドの周波数関係を示す図である。FIG. 2 is a diagram showing the frequency relationship of the communication band. 図3Aは、通信バンドとチャネル信号との関係性の第1例を示す図である。FIG. 3A is a diagram showing a first example of the relationship between the communication band and the channel signal. 図3Bは、通信バンドとチャネル信号との関係性の第2例を示す図である。FIG. 3B is a diagram showing a second example of the relationship between the communication band and the channel signal. 図4Aは、実施の形態1に係る第1フィルタの第1の回路構成例を示す図である。FIG. 4A is a diagram showing a first circuit configuration example of the first filter according to the first embodiment. 図4Bは、実施の形態1に係る第1フィルタの第2の回路構成例を示す図である。FIG. 4B is a diagram showing a second circuit configuration example of the first filter according to the first embodiment. 図4Cは、実施の形態1に係る第1フィルタの第3の回路構成例を示す図である。FIG. 4C is a diagram showing a third circuit configuration example of the first filter according to the first embodiment. 図4Dは、実施の形態1に係る第1フィルタの第4の回路構成例を示す図である。FIG. 4D is a diagram showing a fourth circuit configuration example of the first filter according to the first embodiment. 図5は、実施の形態2に係る高周波回路および通信装置の回路構成図である。FIG. 5 is a circuit configuration diagram of the high frequency circuit and the communication device according to the second embodiment. 図6は、実施の形態2の変形例1に係る高周波回路の回路構成図である。FIG. 6 is a circuit configuration diagram of the high frequency circuit according to the first modification of the second embodiment. 図7は、実施の形態2の変形例2に係る高周波回路の回路構成図である。FIG. 7 is a circuit configuration diagram of a high frequency circuit according to the second modification of the second embodiment. 図8は、実施の形態2の変形例3に係る高周波回路の回路構成図である。FIG. 8 is a circuit configuration diagram of a high frequency circuit according to a modification 3 of the second embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that all of the embodiments described below are comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement of components, connection modes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention.
 なお、各図は、本発明を示すために適宜強調、省略、または比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、および比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡素化される場合がある。 It should be noted that each figure is a schematic diagram in which emphasis, omission, or ratio is adjusted as appropriate to show the present invention, and is not necessarily exactly illustrated. What is the actual shape, positional relationship, and ratio? May be different. In each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description may be omitted or simplified.
 本開示において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含むことを意味する。また、「AとBとの間に接続される」とは、AおよびBを結ぶ経路上でAおよびBと接続されることを意味する。 In the present disclosure, "connected" means not only the case of being directly connected by a connection terminal and / or a wiring conductor, but also the case of being electrically connected via another circuit element. Further, "connected between A and B" means being connected to A and B on the route connecting A and B.
 (実施の形態1)
 [1.1 高周波回路1aの回路構成]
 本実施の形態に係る高周波回路1aの回路構成について、図1を参照しながら説明する。図1は、実施の形態1に係る高周波回路1aの回路構成図である。同図に示すように、本実施の形態に係る高周波回路1aは、アンテナ端子101と、フィルタ10と、整合回路12と、を備える。
(Embodiment 1)
[1.1 Circuit configuration of high frequency circuit 1a]
The circuit configuration of the high frequency circuit 1a according to the present embodiment will be described with reference to FIG. FIG. 1 is a circuit configuration diagram of the high frequency circuit 1a according to the first embodiment. As shown in the figure, the high frequency circuit 1a according to the present embodiment includes an antenna terminal 101, a filter 10, and a matching circuit 12.
 アンテナ端子101は、アンテナに接続される端子である。 The antenna terminal 101 is a terminal connected to the antenna.
 整合回路12は、アンテナ端子101およびアンテナと、フィルタ10とのインピーダンス整合をとる回路である。整合回路12は、少なくとも1以上の表面実装型の第1インピーダンス素子を含む。 The matching circuit 12 is a circuit for impedance matching between the antenna terminal 101 and the antenna and the filter 10. The matching circuit 12 includes at least one surface mount type first impedance element.
 フィルタ10は、第1フィルタの一例であり、通過帯域が可変するフィルタ回路である。フィルタ10は、入出力端子102および103を有し、入出力端子102が整合回路12に接続されている。フィルタ10の通過帯域は、第1通過帯域と第2通過帯域とに変化する。第1通過帯域は、例えば、第1通信バンドのアップリンク動作バンドを含み、第2通過帯域は、例えば、第2通信バンドのアップリンク動作バンドを含む。 The filter 10 is an example of the first filter, and is a filter circuit having a variable pass band. The filter 10 has input / output terminals 102 and 103, and the input / output terminals 102 are connected to the matching circuit 12. The pass band of the filter 10 changes into a first pass band and a second pass band. The first pass band includes, for example, the uplink operation band of the first communication band, and the second pass band includes, for example, the uplink operation band of the second communication band.
 フィルタ10は、例えば、弾性表面波(SAW:Surface Acoustic Wave)フィルタ、バルク弾性波(BAW:Bulk Acoustic Wave)を用いた弾性波フィルタ、インダクタおよびキャパシタを用いたLC共振フィルタ、弾性波共振子、インダクタおよびキャパシタを用いたハイブリッドフィルタ、誘電体フィルタのいずれであってもよく、さらには、これらには限定されない。 The filter 10 is, for example, an elastic surface wave (SAW: Surface Acoustic Wave) filter, an elastic wave filter using a bulk elastic wave (BAW: Bulk Acoustic Wave), an LC resonance filter using an inductor and a capacitor, an elastic wave resonator, and the like. It may be a hybrid filter using an inductor and a capacitor, or a dielectric filter, and is not limited thereto.
 なお、第1通信バンドおよび第2通信バンドのそれぞれは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのために、標準化団体など(例えば3GPP、IEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。本実施の形態では、通信システムとしては、例えばLTE(Long term Evolution)システム、5GNRシステム、およびWLAN(Wireless Local Area Network)システム等を用いることができるが、これらに限定されない。 In addition, each of the first communication band and the second communication band is a standardization organization or the like (for example, 3GPP, IEEE (Institute of Electrical and Electronics Engineers)) for a communication system constructed by using wireless access technology (RAT: RadioAccess Technology). Electronics Engineers) etc.) means a frequency band defined in advance. In the present embodiment, as the communication system, for example, an LTE (Longterm Evolution) system, a 5GNR system, a WLAN (Wireless Local Area Network) system, or the like can be used, but the communication system is not limited thereto.
 また、第1通信バンドおよび第2通信バンドのそれぞれは、ダウンリンク動作バンドおよびアップリンク動作バンドで構成されている。アップリンク動作バンドとは、通信バンドのうちのアップリンク用に指定された周波数範囲を意味する。また、ダウンリンク動作バンドとは、通信バンドのうちのダウンリンク用に指定された周波数範囲を意味する。 Further, each of the first communication band and the second communication band is composed of a downlink operation band and an uplink operation band. The uplink operating band means the frequency range specified for the uplink in the communication band. Further, the downlink operation band means a frequency range designated for the downlink in the communication band.
 図2は、通信バンドの周波数関係を示す図である。同図に示すように、第1通信バンドは、例えば、周波数分割複信(FDD:Frequency Division Duplex)用の5GNRのためのn1であり、アップリンク動作バンドは1920-1980MHzであり、ダウンリンク動作バンドは2110-2170MHzである。第2通信バンドは、例えば、FDD用の5GNRのためのn65であり、アップリンク動作バンドは1920-2010MHzであり、ダウンリンク動作バンドは2110-2200MHzである。 FIG. 2 is a diagram showing the frequency relationship of the communication band. As shown in the figure, the first communication band is, for example, n1 for 5G NR for frequency division duplex (FDD), the uplink operation band is 1920-1980 MHz, and the downlink operation. The band is 2110-2170 MHz. The second communication band is, for example, n65 for 5G NR for FDD, the uplink operating band is 1920-2010 MHz, and the downlink operating band is 2110-2200 MHz.
 図2に示すように、第2通信バンド(n65)は、第1通信バンド(n1)と周波数が少なくとも一部重複し、第1通信バンドよりも広帯域である。また、第2通信バンド(n65)および第1通信バンド(n1)の高周波側に近接して、時分割複信(TDD:Time Division Duplex)用の5GNRのためのn34(2010-2025MHz)が位置している。 As shown in FIG. 2, the second communication band (n65) has at least a partial overlap in frequency with the first communication band (n1), and is wider than the first communication band. In addition, n34 (2010-2025MHz) for 5G NR for Time Division Duplex (TDD) is located close to the high frequency side of the second communication band (n65) and the first communication band (n1). is doing.
 図3Aは、通信バンドとチャネル信号との関係性の第1例を示す図である。同図に示すように、第1通信バンド(n1)のチャネル信号(第1チャネル信号)は、第2通信バンド(n65)のチャネル信号(第2チャネル信号)よりも帯域幅が広い。つまり、第1通信バンドは第2通信バンドよりも帯域幅が狭いが、第1チャネル信号は、第2チャネル信号よりも帯域幅が広い。第1通信バンド(n1)の第1チャネル信号の帯域幅は、例えば、50MHzであり、第2通信バンド(n65)の第2チャネル信号の帯域幅は、例えば、25MHzである。 FIG. 3A is a diagram showing a first example of the relationship between the communication band and the channel signal. As shown in the figure, the channel signal (first channel signal) of the first communication band (n1) has a wider bandwidth than the channel signal (second channel signal) of the second communication band (n65). That is, the first communication band has a narrower bandwidth than the second communication band, but the first channel signal has a wider bandwidth than the second channel signal. The bandwidth of the first channel signal of the first communication band (n1) is, for example, 50 MHz, and the bandwidth of the second channel signal of the second communication band (n65) is, for example, 25 MHz.
 ここで、第1チャネル信号を伝送するモードを第1モードとし、第1チャネル信号よりも帯域幅が狭い第2チャネル信号を伝送するモードを第2モードと定義する。 Here, the mode for transmitting the first channel signal is defined as the first mode, and the mode for transmitting the second channel signal having a narrower bandwidth than the first channel signal is defined as the second mode.
 第1通信バンド、第2通信バンド、第1チャネル信号および第2チャネル信号の上記周波数関係において、フィルタ10の通過帯域は、図3Aに示すように、第1モードの場合には第1通過帯域となり、第2モードの場合には、第1通過帯域よりも広帯域の第2通過帯域となる。 In the above frequency relationship of the first communication band, the second communication band, the first channel signal and the second channel signal, the pass band of the filter 10 is, as shown in FIG. 3A, the first pass band in the case of the first mode. In the case of the second mode, the second pass band is wider than the first pass band.
 なお、第2通信バンドは、第1通信バンドよりも広帯域でなくてもよい。また、第1通信バンドと第2通信バンドとは、同一の通信バンドであってもよい。この場合であっても、フィルタ10の通過帯域は、第1モードの場合には第1通過帯域となり、第2モードの場合には、第1通過帯域よりも広帯域の第2通過帯域となる。 The second communication band does not have to be wider than the first communication band. Further, the first communication band and the second communication band may be the same communication band. Even in this case, the pass band of the filter 10 is the first pass band in the case of the first mode, and is the second pass band wider than the first pass band in the case of the second mode.
 5GNRにより通信性能を向上させるため、3GPPで規定されたNR対応の通信バンドでは、チャネル信号の帯域幅が増加する傾向にある。しかしながら、チャネル信号の帯域幅が増加すると、近接する通信バンド(例えばn34)の減衰特性を確保する(不要輻射を抑制する)ことが困難となり、EVMなどの信号品質が劣化することが懸念される。 In order to improve communication performance by 5G NR, the bandwidth of the channel signal tends to increase in the NR-compatible communication band specified by 3GPP. However, when the bandwidth of the channel signal increases, it becomes difficult to secure the attenuation characteristic (suppress unnecessary radiation) of the adjacent communication band (for example, n34), and there is a concern that the signal quality of EVM or the like deteriorates. ..
 つまり、帯域幅が相対的に広い第1チャネル信号を伝送する場合には、第1通信バンドに近接する通信バンドの減衰量を十分に確保できないことが懸念される。これに対して、本実施の形態に係る高周波回路1aによれば、第1通信バンドの信号を伝送する第1モードでは、フィルタ10の通過帯域を狭くすることで、フィルタ10の通過帯域と第1通信バンドに近接する通信バンドとの周波数間隔を大きく確保できるので、第1通信バンドに近接する通信バンドの減衰特性を確保する(不要輻射を抑制する)ことが可能となる。また、フィルタ10を可変型にすることで増加する伝送損失の対策として、高Qの表面実装型インピーダンス素子が整合回路として配置される。これにより、第1通信バンドおよび第2通信バンドの信号を低損失で伝送できるので、5GNRにおける厳しいEVM規格を満たすことが可能となる。 That is, when transmitting a first channel signal having a relatively wide bandwidth, there is a concern that the attenuation amount of the communication band close to the first communication band cannot be sufficiently secured. On the other hand, according to the high frequency circuit 1a according to the present embodiment, in the first mode in which the signal of the first communication band is transmitted, the pass band of the filter 10 is narrowed to obtain the pass band of the filter 10 and the first mode. Since a large frequency interval with a communication band close to one communication band can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a high Q surface mount impedance element is arranged as a matching circuit. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
 なお、本実施の形態に係る高周波回路1aが適用される第1通信バンドおよび第2通信バンドのうちの少なくとも一方が、5GNRのための通信バンドであればよく、いずれか一方がLTEのための通信バンドであってもよい。 It should be noted that at least one of the first communication band and the second communication band to which the high frequency circuit 1a according to the present embodiment is applied may be a communication band for 5G NR, and one of them is for LTE. It may be a communication band.
 なお、整合回路12が有する第1インピーダンス素子は、集積型受動素子(IPD:Integrated Passive Device)であってもよい。これによれば、整合回路12および高周波回路1aを小型化できる。 The first impedance element included in the matching circuit 12 may be an integrated passive element (IPD: Integrated Passive Device). According to this, the matching circuit 12 and the high frequency circuit 1a can be miniaturized.
 また、整合回路12は、アンテナ端子101とフィルタ10とを結ぶ経路に直列接続された1以上の直列腕素子を有していてもよい。このとき、上記経路に直列接続された全ての直列腕素子は、表面実装型のインピーダンス素子であることが望ましい。これによれば、整合回路12および高周波回路1aの伝送損失を、より低減できる。 Further, the matching circuit 12 may have one or more series arm elements connected in series to the path connecting the antenna terminal 101 and the filter 10. At this time, it is desirable that all the series arm elements connected in series to the above path are surface mount type impedance elements. According to this, the transmission loss of the matching circuit 12 and the high frequency circuit 1a can be further reduced.
 また、整合回路12は、アンテナ端子101とフィルタ10とを結ぶ経路に直列接続された複数の直列腕素子を有していてもよい。このとき、複数の直列腕素子のうちアンテナ端子101に最も近く接続された直列腕素子は、表面実装型のインピーダンス素子であることが望ましい。 Further, the matching circuit 12 may have a plurality of series arm elements connected in series to the path connecting the antenna terminal 101 and the filter 10. At this time, it is desirable that the series arm element closest to the antenna terminal 101 among the plurality of series arm elements is a surface mount type impedance element.
 これによれば、アンテナ端子101に第1通信バンドおよび第2通信バンド以外の通信バンドを通過帯域とするフィルタがさらに接続された場合、当該フィルタの第1通信バンドおよび第2通信バンドにおける反射係数を大きくできるので、当該フィルタを含む高周波回路1aの伝送損失を低減できる。 According to this, when a filter having a communication band other than the first communication band and the second communication band as a pass band is further connected to the antenna terminal 101, the reflection coefficient in the first communication band and the second communication band of the filter is further connected. Therefore, the transmission loss of the high frequency circuit 1a including the filter can be reduced.
 なお、第1通信バンドの低周波側の周波数端は、第2通信バンドの低周波側の周波数端と一致していなくてもよい。また、第1通信バンドの高周波側の周波数端は、第2通信バンドの高周波側の周波数端と一致していなくてもよい。また、第1通信バンドの周波数範囲は、第2通信バンドの周波数範囲に包含されていてもよい。 The frequency end on the low frequency side of the first communication band does not have to coincide with the frequency end on the low frequency side of the second communication band. Further, the frequency end on the high frequency side of the first communication band does not have to coincide with the frequency end on the high frequency side of the second communication band. Further, the frequency range of the first communication band may be included in the frequency range of the second communication band.
 また、図3Aに示された例では、第1通過帯域および第2通過帯域の高周波側の周波数帯域を可変させているが、フィルタ10の低周波側に近接バンドが位置する場合では、第1通過帯域および第2通過帯域の低周波側の周波数帯域を可変させてもよい。 Further, in the example shown in FIG. 3A, the frequency bands on the high frequency side of the first pass band and the second pass band are variable, but when the proximity band is located on the low frequency side of the filter 10, the first pass band is used. The frequency band on the low frequency side of the pass band and the second pass band may be varied.
 また、フィルタ10の高周波側および低周波側の双方に近接バンドが位置する場合では、第1通過帯域および第2通過帯域の低周波側および高周波側の周波数帯域を可変させてもよい。 Further, when the proximity band is located on both the high frequency side and the low frequency side of the filter 10, the frequency bands on the low frequency side and the high frequency side of the first pass band and the second pass band may be varied.
 また、フィルタ10の通過帯域を可変させる場合において、第1通過帯域の低周波側の周波数端および高周波側の周波数端の一方と、第2通過帯域の低周波側の周波数端および高周波側の周波数端の一方とが一致していてもよい。 Further, when the pass band of the filter 10 is varied, one of the low frequency side frequency end and the high frequency side frequency end of the first pass band, and the low frequency side frequency end and the high frequency side frequency of the second pass band. It may match one of the ends.
 図3Bは、通信バンドとチャネル信号との関係性の第2例を示す図である。本例では、第1通信バンドは、TDD用の5GNRのためのn48またはn49であり、動作バンドは3.55-3.7GHzである。また、第2通信バンドは、TDD用の5GNRのためのn77であり、動作バンドは3.45-3.55GHzかつ3.7-3.98GHzである。本例の第2通信バンドは、5GNRのためのn77の通常の動作バンドである3.3-4.2GHzのうち、低周波側の周波数範囲である3.45-3.55GHzと高周波側の周波数範囲である3.7-3.98GHzとで構成される。 FIG. 3B is a diagram showing a second example of the relationship between the communication band and the channel signal. In this example, the first communication band is n48 or n49 for 5G NR for TDD and the operating band is 3.55-3.7GHz. The second communication band is n77 for 5G NR for TDD, and the operating band is 3.45-3.55GHz and 3.7-3.98GHz. The second communication band of this example is 3.45-3.55 GHz, which is the frequency range on the low frequency side, and the high frequency side, out of 3.3-4.2 GHz, which is the normal operation band of n77 for 5 GNR. It is composed of 3.7-3.98 GHz, which is a frequency range.
 同図に示すように、第1通信バンド(n48またはn49)のチャネル信号(第1チャネル信号)は、第2通信バンドn77のチャネル信号(第2チャネル信号)よりも帯域幅が広い。つまり、第1通信バンドは第2通信バンドよりも帯域幅が狭いが、第1チャネル信号は、第2チャネル信号よりも帯域幅が広い。第1通信バンド(n48)の第1チャネル信号の帯域幅は、例えば、100MHzであり、第2通信バンド(n77)の第2チャネル信号の帯域幅は、例えば、40MHzである。 As shown in the figure, the channel signal (first channel signal) of the first communication band (n48 or n49) has a wider bandwidth than the channel signal (second channel signal) of the second communication band n77. That is, the first communication band has a narrower bandwidth than the second communication band, but the first channel signal has a wider bandwidth than the second channel signal. The bandwidth of the first channel signal of the first communication band (n48) is, for example, 100 MHz, and the bandwidth of the second channel signal of the second communication band (n77) is, for example, 40 MHz.
 第1通信バンド、第2通信バンド、第1チャネル信号および第2チャネル信号の上記周波数関係において、フィルタ10の通過帯域は、図3Bに示すように、第1モードの場合には第1通過帯域となり、第2モードの場合には、第1通過帯域よりも広帯域の第2通過帯域となる。 In the above frequency relationship of the first communication band, the second communication band, the first channel signal, and the second channel signal, the pass band of the filter 10 is, as shown in FIG. 3B, the first pass band in the case of the first mode. In the case of the second mode, the second pass band is wider than the first pass band.
 5GNRにより通信性能を向上させるため、3GPPで規定されたNR対応の通信バンドでは、チャネル信号の帯域幅が増加する傾向にある。しかしながら、チャネル信号の帯域幅が増加すると、n48またはn49の信号について、近接する通信バンド(n77)の減衰特性を確保する(不要輻射を抑制する)ことが困難となり、EVMなどの信号品質が劣化することが懸念される。 In order to improve communication performance by 5G NR, the bandwidth of the channel signal tends to increase in the NR-compatible communication band specified by 3GPP. However, when the bandwidth of the channel signal increases, it becomes difficult to secure the attenuation characteristics (suppress unnecessary radiation) of the adjacent communication band (n77) for the n48 or n49 signal, and the signal quality such as EVM deteriorates. There is concern about doing so.
 つまり、帯域幅が相対的に広い第1チャネル信号を伝送する場合には、第1通信バンドに近接する第2通信バンドの減衰量を十分に確保できないことが懸念される。これに対して、本実施の形態に係る高周波回路1aによれば、第1通信バンドの信号を伝送する第1モードでは、フィルタ10の通過帯域を狭くすることで、第1通信バンドに近接する第2通信バンドの減衰特性を確保する(不要輻射を抑制する)ことが可能となる。また、フィルタ10を可変型にすることで増加する伝送損失の対策として、高Qの表面実装型インピーダンス素子が整合回路として配置される。これにより、第1通信バンドおよび第2通信バンドの信号を低損失で伝送できるので、5GNRにおける厳しいEVM規格を満たすことが可能となる。 That is, when transmitting a first channel signal having a relatively wide bandwidth, there is a concern that the attenuation amount of the second communication band close to the first communication band cannot be sufficiently secured. On the other hand, according to the high frequency circuit 1a according to the present embodiment, in the first mode in which the signal of the first communication band is transmitted, the pass band of the filter 10 is narrowed so as to be close to the first communication band. It is possible to secure the attenuation characteristic of the second communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a high Q surface mount impedance element is arranged as a matching circuit. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
 [1.2 フィルタ10の回路構成]
 次に、フィルタ10の回路構成例を示す。図4Aは、実施の形態1に係るフィルタ10の第1の回路構成例を示す図である。同図に示すように、フィルタ10Aは、回路素子18および19と、弾性波共振子13と、共振回路14と、スイッチ15と、を備える。
[1.2 Circuit configuration of filter 10]
Next, an example of the circuit configuration of the filter 10 will be shown. FIG. 4A is a diagram showing a first circuit configuration example of the filter 10 according to the first embodiment. As shown in the figure, the filter 10A includes circuit elements 18 and 19, elastic wave resonator 13, resonance circuit 14, and switch 15.
 回路素子18および19は、入出力端子102と入出力端子103とを結ぶ直列腕経路に、それぞれ配置されている。回路素子18および19は、例えば、インダクタ、キャパシタ、および弾性波共振子のいずれかである。なお、回路素子18および19のインダクタ、キャパシタは、表面実装部品、基板内層配線、基板上配線のいずれから構成されてもよい。 The circuit elements 18 and 19 are arranged in the series arm path connecting the input / output terminal 102 and the input / output terminal 103, respectively. Circuit elements 18 and 19 are, for example, any of inductors, capacitors, and elastic wave resonators. The inductors and capacitors of the circuit elements 18 and 19 may be composed of any of surface mount components, substrate inner layer wiring, and substrate wiring.
 弾性波共振子13は、SAW共振子およびBAW共振子のいずれであってもよい。 The elastic wave resonator 13 may be either a SAW resonator or a BAW resonator.
 共振回路14は、例えば、インダクタ、キャパシタ、および弾性波共振子の少なくとも1つを含み、LC直列共振回路、LC並列共振回路、および弾性波共振回路のいずれかである。 The resonant circuit 14 includes, for example, an inductor, a capacitor, and at least one elastic wave resonator, and is either an LC series resonant circuit, an LC parallel resonant circuit, or an elastic wave resonant circuit.
 スイッチ15および共振回路14の並列接続回路と、弾性波共振子13と、の直列接続回路が、上記直列腕経路とグランドとを結ぶ並列腕経路に配置されている。 A series connection circuit of the switch 15 and the resonance circuit 14 and the elastic wave resonator 13 is arranged in the parallel arm path connecting the series arm path and the ground.
 上記回路構成によれば、スイッチ15の導通および非導通の切り替えにより、フィルタ10Aの通過帯域は、第1通過帯域と第2通過帯域とに変化する。 According to the circuit configuration, the pass band of the filter 10A changes into a first pass band and a second pass band by switching between conduction and non-conduction of the switch 15.
 図4Bは、実施の形態1に係るフィルタ10の第2の回路構成例を示す図である。同図に示すように、フィルタ10Bは、回路素子18および19と、弾性波共振子13と、共振回路14と、スイッチ15と、を備える。フィルタ10Bは、フィルタ10Aと比較して、並列腕経路に配置される回路の接続構成のみが異なる。以下、フィルタ10Bについて、フィルタ10Aと異なる点を中心に説明する。 FIG. 4B is a diagram showing a second circuit configuration example of the filter 10 according to the first embodiment. As shown in the figure, the filter 10B includes circuit elements 18 and 19, elastic wave resonator 13, resonance circuit 14, and switch 15. The filter 10B differs from the filter 10A only in the connection configuration of the circuits arranged in the parallel arm path. Hereinafter, the filter 10B will be described focusing on the differences from the filter 10A.
 スイッチ15および共振回路14の直列接続回路と、弾性波共振子13と、の並列接続回路が、上記直列腕経路とグランドとを結ぶ並列腕経路に配置されている。 A parallel connection circuit of the switch 15 and the resonance circuit 14 and the elastic wave resonator 13 is arranged in the parallel arm path connecting the series arm path and the ground.
 上記回路構成によれば、スイッチ15の導通および非導通の切り替えにより、フィルタ10Bの通過帯域は、第1通過帯域と第2通過帯域とに変化する。 According to the circuit configuration, the pass band of the filter 10B changes into a first pass band and a second pass band by switching between conduction and non-conduction of the switch 15.
 なお、フィルタ10Aおよび10Bにおいて、スイッチ15と、スイッチ15を除く回路素子の少なくとも1つとは、同一のパッケージに形成されていてもよい。 In the filters 10A and 10B, the switch 15 and at least one of the circuit elements other than the switch 15 may be formed in the same package.
 図4Cは、実施の形態1に係るフィルタ10の第3の回路構成例を示す図である。同図に示すように、フィルタ10Cは、回路素子18および19と、弾性波共振子13と、可変回路16と、を備える。フィルタ10Cは、フィルタ10Aと比較して、並列腕経路に配置される回路の構成のみが異なる。以下、フィルタ10Cについて、フィルタ10Aと異なる点を中心に説明する。 FIG. 4C is a diagram showing a third circuit configuration example of the filter 10 according to the first embodiment. As shown in the figure, the filter 10C includes circuit elements 18 and 19, elastic wave resonator 13, and variable circuit 16. The filter 10C differs from the filter 10A only in the configuration of the circuit arranged in the parallel arm path. Hereinafter, the filter 10C will be described focusing on the differences from the filter 10A.
 可変回路16は、例えば、可変インダクタ、可変キャパシタ、スイッチの少なくとも1つを有しており、キャパシタンスおよびインダクタンスなどの物理定数を可変させる回路である。可変回路16は、上記直列腕経路とグランドとを結ぶ第1並列腕経路に配置されている。なお、可変キャパシタは、例えば、DTC(Digital Tunable Capacitor)であってもよい。 The variable circuit 16 has, for example, at least one of a variable inductor, a variable capacitor, and a switch, and is a circuit that changes physical constants such as capacitance and inductance. The variable circuit 16 is arranged in the first parallel arm path connecting the series arm path and the ground. The variable capacitor may be, for example, a DTC (Digital Tunable Capacitor).
 弾性波共振子13は、上記直列腕経路とグランドとを結ぶ第2並列腕経路に配置されている。 The elastic wave resonator 13 is arranged in the second parallel arm path connecting the series arm path and the ground.
 上記回路構成によれば、可変回路16の物理定数の変化により、フィルタ10Cの通過帯域は、第1通過帯域と第2通過帯域とに変化する。 According to the circuit configuration, the pass band of the filter 10C changes into a first pass band and a second pass band due to a change in the physical constant of the variable circuit 16.
 図4Dは、実施の形態1に係るフィルタ10の第4の回路構成例を示す図である。同図に示すように、フィルタ10Dは、フィルタ11aおよび11bと、第1スイッチおよび第2スイッチと、を備える。 FIG. 4D is a diagram showing a fourth circuit configuration example of the filter 10 according to the first embodiment. As shown in the figure, the filter 10D includes filters 11a and 11b, and a first switch and a second switch.
 フィルタ11aは、第2通信バンドのアップリンク動作バンド(例えば、n65Tx)を含む第2通過帯域を有するフィルタ素子である。フィルタ11bは、第1通信バンドのアップリンク動作バンド(例えば、n1Tx)を含む第1通過帯域を有するフィルタ素子である。 The filter 11a is a filter element having a second pass band including an uplink operation band (for example, n65Tx) of the second communication band. The filter 11b is a filter element having a first pass band including an uplink operation band (for example, n1Tx) of the first communication band.
 第1スイッチは、共通端子および2つの選択端子を有し、共通端子が入出力端子102に接続され、一方の選択端子がフィルタ11aに接続され、他方の選択端子がフィルタ11bに接続されている。第2スイッチは、共通端子および2つの選択端子を有し、共通端子が入出力端子103に接続され、一方の選択端子がフィルタ11aに接続され、他方の選択端子がフィルタ11bに接続されている。 The first switch has a common terminal and two selection terminals, the common terminal is connected to the input / output terminal 102, one selection terminal is connected to the filter 11a, and the other selection terminal is connected to the filter 11b. .. The second switch has a common terminal and two selection terminals, the common terminal is connected to the input / output terminal 103, one selection terminal is connected to the filter 11a, and the other selection terminal is connected to the filter 11b. ..
 上記回路構成によれば、第1スイッチおよび第2スイッチが同期して切り替わることにより、フィルタ10Dの通過帯域は、第1通過帯域と第2通過帯域とに変化する。 According to the above circuit configuration, the pass band of the filter 10D changes into a first pass band and a second pass band when the first switch and the second switch are switched in synchronization.
 なお、フィルタ11aに代わり、第2通信バンドのアップリンク動作バンドを含む通過帯域を有する送信フィルタと、第2通信バンドのダウンリンク動作バンドを含む通過帯域を有する受信フィルタとで構成されたデュプレクサが第1スイッチと第2スイッチとの間に配置されていてもよい。 Instead of the filter 11a, the duplexer is composed of a transmission filter having a pass band including the uplink operation band of the second communication band and a reception filter having a pass band including the downlink operation band of the second communication band. It may be arranged between the first switch and the second switch.
 また、フィルタ11bに代わり、第1通信バンドのアップリンク動作バンドを含む通過帯域を有する送信フィルタと、第1通信バンドのダウンリンク動作バンドを含む通過帯域を有する受信フィルタとで構成されたデュプレクサが第1スイッチと第2スイッチとの間に配置されていてもよい。 Further, instead of the filter 11b, a duplexer composed of a transmission filter having a pass band including the uplink operation band of the first communication band and a reception filter having a pass band including the downlink operation band of the first communication band is provided. It may be arranged between the first switch and the second switch.
 (実施の形態2)
 本実施の形態では、実施の形態1に係るフィルタ10を含む複数のフィルタを備えた高周波回路(マルチプレクサ)および通信装置について説明する。
(Embodiment 2)
In this embodiment, a high frequency circuit (multiplexer) and a communication device including a plurality of filters including the filter 10 according to the first embodiment will be described.
 図5は、実施の形態2に係る高周波回路1および通信装置5の回路構成図である。 FIG. 5 is a circuit configuration diagram of the high frequency circuit 1 and the communication device 5 according to the second embodiment.
 [2.1 通信装置5の回路構成]
 まず、通信装置5の回路構成について説明する。図5に示すように、本実施の形態に係る通信装置5は、高周波回路1と、アンテナ2と、RF信号処理回路(RFIC)3と、ベースバンド信号処理回路(BBIC)4と、を備える。
[2.1 Circuit configuration of communication device 5]
First, the circuit configuration of the communication device 5 will be described. As shown in FIG. 5, the communication device 5 according to the present embodiment includes a high frequency circuit 1, an antenna 2, an RF signal processing circuit (RFIC) 3, and a baseband signal processing circuit (BBIC) 4. ..
 高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の詳細な回路構成については後述する。 The high frequency circuit 1 transmits a high frequency signal between the antenna 2 and the RFIC 3. The detailed circuit configuration of the high frequency circuit 1 will be described later.
 アンテナ2は、高周波回路1のアンテナ接続端子100に接続され、高周波回路1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波回路1へ出力する。 The antenna 2 is connected to the antenna connection terminal 100 of the high frequency circuit 1, transmits a high frequency signal output from the high frequency circuit 1, and also receives a high frequency signal from the outside and outputs the high frequency signal to the high frequency circuit 1.
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波回路1の受信経路を介して入力された高周波受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1の送信経路に出力する。また、RFIC3は、高周波回路1が有するスイッチおよび増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部または全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4または高周波回路1に実装されてもよい。 RFIC3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception path of the high frequency circuit 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-conversion or the like, and outputs the high frequency transmission signal generated by the signal processing to the transmission path of the high frequency circuit 1. Further, the RFIC 3 has a control unit for controlling a switch, an amplifier and the like included in the high frequency circuit 1. A part or all of the function of the RFIC3 as a control unit may be mounted outside the RFIC3, or may be mounted on, for example, the BBIC4 or the high frequency circuit 1.
 BBIC4は、高周波回路1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、および/または、スピーカを介した通話のための音声信号が用いられる。 The BBIC 4 is a baseband signal processing circuit that processes signals using an intermediate frequency band having a lower frequency than the high frequency signal transmitted by the high frequency circuit 1. As the signal processed by the BBIC 4, for example, an image signal for displaying an image and / or an audio signal for a call via a speaker are used.
 なお、本実施の形態に係る通信装置5において、アンテナ2およびBBIC4は、必須の構成要素ではない。 In the communication device 5 according to the present embodiment, the antenna 2 and the BBIC 4 are not essential components.
 [2.2 高周波回路1の回路構成]
 次に、高周波回路1の回路構成について説明する。図5に示すように、高周波回路1は、アンテナ接続端子100と、フィルタ10および20と、整合回路22と、スイッチ50と、入出力端子110および120と、を備える。
[2.2 Circuit configuration of high frequency circuit 1]
Next, the circuit configuration of the high frequency circuit 1 will be described. As shown in FIG. 5, the high frequency circuit 1 includes an antenna connection terminal 100, filters 10 and 20, a matching circuit 22, a switch 50, and input / output terminals 110 and 120.
 アンテナ接続端子100は、アンテナ2に接続される。入出力端子110および120は、高周波回路1の外部から高周波送信信号を受ける、または、高周波回路1の外部に高周波受信信号を提供するための端子である。 The antenna connection terminal 100 is connected to the antenna 2. The input / output terminals 110 and 120 are terminals for receiving a high frequency transmission signal from the outside of the high frequency circuit 1 or providing a high frequency reception signal to the outside of the high frequency circuit 1.
 フィルタ10は、第1フィルタの一例であり、通過帯域が可変するフィルタ回路である。フィルタ10の一方端子はインピーダンス素子を介さずにスイッチ50の選択端子50bに接続され、フィルタ10の他方端子は入出力端子110に接続されている。フィルタ10の通過帯域は、第1通過帯域と第2通過帯域とに変化する。第1通過帯域は、例えば、第1通信バンドのアップリンク動作バンドを含み、第2通過帯域は、例えば、第2通信バンドのアップリンク動作バンドを含む。 The filter 10 is an example of the first filter, and is a filter circuit having a variable pass band. One terminal of the filter 10 is connected to the selection terminal 50b of the switch 50 without an impedance element, and the other terminal of the filter 10 is connected to the input / output terminal 110. The pass band of the filter 10 changes into a first pass band and a second pass band. The first pass band includes, for example, the uplink operation band of the first communication band, and the second pass band includes, for example, the uplink operation band of the second communication band.
 フィルタ20は、第2フィルタの一例であり、通過帯域が可変しないフィルタ回路である。フィルタ20の一方端子は整合回路22に接続され、フィルタ20の他方端子は入出力端子120に接続されている。 The filter 20 is an example of the second filter, and is a filter circuit in which the pass band is not variable. One terminal of the filter 20 is connected to the matching circuit 22, and the other terminal of the filter 20 is connected to the input / output terminal 120.
 フィルタ10および20のそれぞれは、例えば、弾性表面波フィルタ、BAWを用いた弾性波フィルタ、インダクタおよびキャパシタを用いたLC共振フィルタ、弾性波共振子、インダクタおよびキャパシタを用いたハイブリッドフィルタ、誘電体フィルタのいずれであってもよく、さらには、これらには限定されない。 Each of the filters 10 and 20 is, for example, an elastic surface wave filter, an elastic wave filter using a BAW, an LC resonance filter using an inductor and a capacitor, a surface acoustic wave resonator, a hybrid filter using an inductor and a capacitor, and a dielectric filter. It may be any of, and further, it is not limited to these.
 整合回路22は、スイッチ50の選択端子50cとフィルタ20との間に接続され、スイッチ50およびアンテナ2と、フィルタ20とのインピーダンス整合をとる回路である。整合回路22は、少なくとも1以上の第2インピーダンス素子を含む。 The matching circuit 22 is a circuit connected between the selection terminal 50c of the switch 50 and the filter 20 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 20. The matching circuit 22 includes at least one second impedance element.
 スイッチ50は、アンテナスイッチの一例であり、共通端子50a、選択端子50bおよび50cを有する。共通端子50aは、アンテナ接続端子100に接続されている。選択端子50bは、第1アンテナ端子の一例であり、インピーダンス素子を介さずにフィルタ10に接続されている。選択端子50cは、第2アンテナ端子の一例であり、整合回路22を介してフィルタ20に接続されている。 The switch 50 is an example of an antenna switch, and has a common terminal 50a, a selection terminal 50b, and a 50c. The common terminal 50a is connected to the antenna connection terminal 100. The selection terminal 50b is an example of the first antenna terminal, and is connected to the filter 10 without an impedance element. The selection terminal 50c is an example of the second antenna terminal, and is connected to the filter 20 via the matching circuit 22.
 この接続構成において、スイッチ50は、例えばRFIC3からの制御信号に基づいて、共通端子50aと選択端子50bとの接続および非接続を切り替え、また、共通端子50aと選択端子50cとの接続および非接続を切り替えることができる。 In this connection configuration, the switch 50 switches between connection and non-connection between the common terminal 50a and the selection terminal 50b based on, for example, a control signal from RFIC3, and also connects and does not connect the common terminal 50a and the selection terminal 50c. Can be switched.
 なお、高周波回路1は、スイッチ50を有していなくてもよく、フィルタ10および20がアンテナ接続端子100に直接接続されていてもよい。 The high frequency circuit 1 does not have to have the switch 50, and the filters 10 and 20 may be directly connected to the antenna connection terminal 100.
 また、高周波回路1は、フィルタ10と入出力端子110との間に接続される電力増幅器または低雑音増幅器、および、フィルタ20と入出力端子120との間に接続される電力増幅器または低雑音増幅器を備えてもよい。 Further, the high frequency circuit 1 includes a power amplifier or a low noise amplifier connected between the filter 10 and the input / output terminal 110, and a power amplifier or a low noise amplifier connected between the filter 20 and the input / output terminal 120. May be provided.
 本実施の形態に係る高周波回路1および通信装置5においても、図2に示すように、第1通信バンドは、例えば、FDD用の5GNRのためのn1であり、第2通信バンドは、例えば、FDD用の5GNRのためのn65である。 In the high frequency circuit 1 and the communication device 5 according to the present embodiment, as shown in FIG. 2, the first communication band is, for example, n1 for 5G NR for FDD, and the second communication band is, for example, for example. N65 for 5G NR for FDD.
 また、フィルタ20の通過帯域は、例えば、5GNRのためのn34(2010-2025MHz)またはn39(1880-1920MHz)を含む。 Further, the pass band of the filter 20 includes, for example, n34 (2010-2025 MHz) or n39 (1880-1920 MHz) for 5 GNR.
 図2に示すように、第2通信バンド(n65)は、第1通信バンド(n1)と周波数が少なくとも一部重複し、第1通信バンドよりも広帯域である。また、第2通信バンド(n65)および第1通信バンド(n1)の高周波側に近接して5GNRのためのn34が位置している。また、図3Aに示すように、第1通信バンド(n1)のチャネル信号(第1チャネル信号)は、第2通信バンド(n65)のチャネル信号(第2チャネル信号)よりも帯域幅が広い。つまり、第1通信バンドは第2通信バンドよりも帯域幅が狭いが、第1チャネル信号は、第2チャネル信号よりも帯域幅が広い。 As shown in FIG. 2, the second communication band (n65) has at least a partial overlap in frequency with the first communication band (n1), and is wider than the first communication band. Further, n34 for 5G NR is located close to the high frequency side of the second communication band (n65) and the first communication band (n1). Further, as shown in FIG. 3A, the channel signal (first channel signal) of the first communication band (n1) has a wider bandwidth than the channel signal (second channel signal) of the second communication band (n65). That is, the first communication band has a narrower bandwidth than the second communication band, but the first channel signal has a wider bandwidth than the second channel signal.
 第1通信バンド、第2通信バンド、第1チャネル信号および第2チャネル信号の上記周波数関係において、フィルタ10の通過帯域は、図3Aに示すように、第1通信バンドの信号を伝送する第1モードの場合には第1通過帯域となり、第2通信バンドの信号を伝送する第2モードの場合には、第1通過帯域よりも広帯域の第2通過帯域となる。 In the above frequency relationship of the first communication band, the second communication band, the first channel signal and the second channel signal, the pass band of the filter 10 is a first communication band for transmitting the signal of the first communication band as shown in FIG. 3A. In the case of the mode, the first pass band is used, and in the case of the second mode in which the signal of the second communication band is transmitted, the second pass band is wider than the first pass band.
 つまり、帯域幅が相対的に広い第1チャネル信号を伝送する場合には、第1通信バンドに近接する通信バンドの減衰量を十分に確保できないことが懸念される。これに対して、本実施の形態に係る高周波回路1によれば、第1通信バンドの信号を伝送する第1モードでは、フィルタ10の通過帯域を狭くすることで、フィルタ10の通過帯域と第1通信バンドに近接する通信バンドとの周波数間隔を大きく確保できるので、第1通信バンドに近接する通信バンドの減衰特性を確保する(不要輻射を抑制する)ことが可能となる。また、フィルタ10を可変型にすることで増加する伝送損失の対策として、スイッチ50とフィルタ10との間にインピーダンス素子が配置されていない。これにより、第1通信バンドおよび第2通信バンドの信号を低損失で伝送できるので、5GNRにおける厳しいEVM規格を満たすことが可能となる。 That is, when transmitting a first channel signal having a relatively wide bandwidth, there is a concern that the attenuation amount of the communication band close to the first communication band cannot be sufficiently secured. On the other hand, according to the high frequency circuit 1 according to the present embodiment, in the first mode of transmitting the signal of the first communication band, the pass band of the filter 10 and the first mode are narrowed by narrowing the pass band of the filter 10. Since a large frequency interval with a communication band close to one communication band can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, an impedance element is not arranged between the switch 50 and the filter 10. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
 なお、本実施の形態に係る高周波回路1が適用される第1通信バンドおよび第2通信バンドのうちの少なくとも一方が、5GNRのための通信バンドであればよく、いずれか一方が4GLTEのための通信バンドであってもよい。 It should be noted that at least one of the first communication band and the second communication band to which the high frequency circuit 1 according to the present embodiment is applied may be a communication band for 5G NR, and one of them is for 4GLTE. It may be a communication band.
 [2.3 変形例1に係る高周波回路1Aの回路構成]
 図6は、実施の形態2の変形例1に係る高周波回路1Aの回路構成図である。同図に示すように、高周波回路1Aは、アンテナ接続端子100と、フィルタ10および20と、整合回路12および22と、スイッチ50と、入出力端子110および120と、を備える。本変形例に係る高周波回路1Aは、実施の形態2に係る高周波回路1と比較して、整合回路12が付加されている点が異なる。以下、本変形例に係る高周波回路1Aについて、実施の形態2に係る高周波回路1と同じ構成については説明を省略し、異なる点を中心に説明する。
[Circuit configuration of high frequency circuit 1A according to 2.3 Modification 1]
FIG. 6 is a circuit configuration diagram of the high frequency circuit 1A according to the first modification of the second embodiment. As shown in the figure, the high frequency circuit 1A includes an antenna connection terminal 100, filters 10 and 20, matching circuits 12 and 22, a switch 50, and input / output terminals 110 and 120. The high frequency circuit 1A according to this modification is different from the high frequency circuit 1 according to the second embodiment in that a matching circuit 12 is added. Hereinafter, the high-frequency circuit 1A according to the present modification will be described by omitting the description of the same configuration as the high-frequency circuit 1 according to the second embodiment and focusing on different points.
 整合回路12は、選択端子50bとフィルタ10との間に接続され、スイッチ50およびアンテナ2と、フィルタ10とのインピーダンス整合をとる回路である。整合回路12は、少なくとも1以上の表面実装型の第1インピーダンス素子を含む。 The matching circuit 12 is a circuit connected between the selection terminal 50b and the filter 10 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 10. The matching circuit 12 includes at least one surface mount type first impedance element.
 整合回路22は、選択端子50cとフィルタ20との間に接続され、スイッチ50およびアンテナ2と、フィルタ20とのインピーダンス整合をとる回路である。整合回路22は、少なくとも1以上の第2インピーダンス素子を含む。また、整合回路22は、表面実装型のインピーダンス素子を含まず、整合回路22のQ値は、整合回路12のQ値よりも小さい。 The matching circuit 22 is a circuit connected between the selection terminal 50c and the filter 20 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 20. The matching circuit 22 includes at least one second impedance element. Further, the matching circuit 22 does not include a surface mount type impedance element, and the Q value of the matching circuit 22 is smaller than the Q value of the matching circuit 12.
 本変形例に係る高周波回路1Aによれば、第1通信バンドの信号を伝送する第1モードでは、フィルタ10の通過帯域を狭くするので、フィルタ10の通過帯域と第1通信バンドに近接する通信バンドとの周波数間隔を大きく確保できるので、第1通信バンドに近接する通信バンドの減衰特性を確保する(不要輻射を抑制する)ことが可能となる。また、フィルタ10を可変型にすることで増加する伝送損失の対策として、スイッチ50とフィルタ10との間に、相対的にQ値が高い整合回路12が配置される。これにより、第1通信バンドおよび第2通信バンドの信号を低損失で伝送できるので、5GNRにおける厳しいEVM規格を満たすことが可能となる。 According to the high frequency circuit 1A according to this modification, in the first mode of transmitting the signal of the first communication band, the pass band of the filter 10 is narrowed, so that the communication close to the pass band of the filter 10 and the first communication band is performed. Since a large frequency interval with the band can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a matching circuit 12 having a relatively high Q value is arranged between the switch 50 and the filter 10. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
 [2.4 変形例2に係る高周波回路1Bの回路構成]
 図7は、実施の形態2の変形例2に係る高周波回路1Bの回路構成図である。同図に示すように、高周波回路1Bは、アンテナ接続端子100と、フィルタ10、20および30と、整合回路22および32と、スイッチ50と、入出力端子110、120および130と、を備える。本変形例に係る高周波回路1Bは、実施の形態2に係る高周波回路1と比較して、フィルタ30および整合回路32が付加されている点が異なる。以下、本変形例に係る高周波回路1Bについて、実施の形態2に係る高周波回路1と同じ構成については説明を省略し、異なる点を中心に説明する。
[Circuit configuration of high frequency circuit 1B according to 2.4 modification 2]
FIG. 7 is a circuit configuration diagram of the high frequency circuit 1B according to the second modification of the second embodiment. As shown in the figure, the high frequency circuit 1B includes an antenna connection terminal 100, filters 10, 20 and 30, matching circuits 22 and 32, a switch 50, and input / output terminals 110, 120 and 130. The high frequency circuit 1B according to this modification is different from the high frequency circuit 1 according to the second embodiment in that a filter 30 and a matching circuit 32 are added. Hereinafter, the high-frequency circuit 1B according to the present modification will be described by omitting the description of the same configuration as the high-frequency circuit 1 according to the second embodiment and focusing on different points.
 入出力端子130は、高周波回路1Bの外部から高周波送信信号を受ける、または、高周波回路1Bの外部に高周波受信信号を提供するための端子である。 The input / output terminal 130 is a terminal for receiving a high frequency transmission signal from the outside of the high frequency circuit 1B or providing a high frequency reception signal to the outside of the high frequency circuit 1B.
 フィルタ30は、第3フィルタの一例であり、通過帯域が可変しないフィルタ回路である。フィルタ30の一方端子は、整合回路32に接続されている。 The filter 30 is an example of a third filter, and is a filter circuit in which the pass band is not variable. One terminal of the filter 30 is connected to the matching circuit 32.
 フィルタ30は、例えば、弾性表面波フィルタ、BAWを用いた弾性波フィルタ、インダクタおよびキャパシタを用いたLC共振フィルタ、弾性波共振子、インダクタおよびキャパシタを用いたハイブリッドフィルタ、誘電体フィルタのいずれであってもよく、さらには、これらには限定されない。 The filter 30 is, for example, any of an elastic surface wave filter, an elastic wave filter using a BAW, an LC resonance filter using an inductor and a capacitor, an elastic wave resonator, a hybrid filter using an inductor and a capacitor, and a dielectric filter. It may, and is not limited to, these.
 整合回路32は、選択端子50bとフィルタ30との間に接続され、スイッチ50およびアンテナ2とフィルタ30とのインピーダンス整合をとる回路である。整合回路32は、少なくとも1以上の第3インピーダンス素子を含む。 The matching circuit 32 is a circuit connected between the selection terminal 50b and the filter 30 to achieve impedance matching between the switch 50 and the antenna 2 and the filter 30. The matching circuit 32 includes at least one third impedance element.
 フィルタ30の通過帯域は、例えば、5GNRのためのn3(図2参照)を含む。 The pass band of the filter 30 includes, for example, n3 for 5G NR (see FIG. 2).
 本変形例に係る高周波回路1Bによれば、選択端子50bとフィルタ30との間に第3インピーダンス素子が接続されるのに対して、選択端子50bとフィルタ10との間にはインピーダンス素子が配置されないので、フィルタ10を通過する第1通信バンドおよび第2通信バンドの信号のEVM規格を満足できる。 According to the high frequency circuit 1B according to this modification, the third impedance element is connected between the selection terminal 50b and the filter 30, whereas the impedance element is arranged between the selection terminal 50b and the filter 10. Therefore, the EVM standard of the signals of the first communication band and the second communication band passing through the filter 10 can be satisfied.
 [2.5 変形例3に係る高周波回路1Cの回路構成]
 図8は、実施の形態2の変形例3に係る高周波回路1Cの回路構成図である。同図に示すように、高周波回路1Cは、アンテナ接続端子100と、フィルタ10、20および30と、整合回路22および32と、スイッチ51と、入出力端子110、120および130と、を備える。本変形例に係る高周波回路1Cは、変形例2に係る高周波回路1Bと比較して、スイッチ51の構成が異なる。以下、本変形例に係る高周波回路1Cについて、変形例3に係る高周波回路1Bと同じ構成については説明を省略し、異なる点を中心に説明する。
[2.5 Circuit configuration of high frequency circuit 1C according to modification 3]
FIG. 8 is a circuit configuration diagram of the high frequency circuit 1C according to the third modification of the second embodiment. As shown in the figure, the high frequency circuit 1C includes an antenna connection terminal 100, filters 10, 20 and 30, matching circuits 22 and 32, a switch 51, and input / output terminals 110, 120 and 130. The high frequency circuit 1C according to the present modification has a different configuration of the switch 51 as compared with the high frequency circuit 1B according to the modification 2. Hereinafter, the same configuration as the high frequency circuit 1B according to the modification 3 will be omitted from the description of the high frequency circuit 1C according to the modification, and the differences will be mainly described.
 スイッチ51は、アンテナスイッチの一例であり、共通端子51a、選択端子51b、51cおよび51dを有する。共通端子51aは、アンテナ接続端子100に接続されている。選択端子51bは、第1アンテナ端子の一例であり、インピーダンス素子を介さずにフィルタ10に接続されている。選択端子51cは、第2アンテナ端子の一例であり、整合回路22を介してフィルタ20に接続されている。選択端子51dは、整合回路32を介してフィルタ30に接続されている。 The switch 51 is an example of an antenna switch and has a common terminal 51a and selection terminals 51b, 51c and 51d. The common terminal 51a is connected to the antenna connection terminal 100. The selection terminal 51b is an example of the first antenna terminal, and is connected to the filter 10 without an impedance element. The selection terminal 51c is an example of the second antenna terminal, and is connected to the filter 20 via the matching circuit 22. The selection terminal 51d is connected to the filter 30 via the matching circuit 32.
 この接続構成において、スイッチ51は、例えばRFIC3からの制御信号に基づいて、共通端子51aと選択端子51bとの接続および非接続を切り替え、また、共通端子51aと選択端子51cとの接続および非接続を切り替え、また、共通端子51aと選択端子51dとの接続および非接続を切り替えることができる。 In this connection configuration, the switch 51 switches between connection and non-connection between the common terminal 51a and the selection terminal 51b based on, for example, a control signal from RFIC3, and also connects and does not connect the common terminal 51a and the selection terminal 51c. Can be switched, and connection and non-connection between the common terminal 51a and the selection terminal 51d can be switched.
 本変形例に係る高周波回路1Cによれば、選択端子51dとフィルタ30との間に第3インピーダンス素子が接続されるのに対して、選択端子51bとフィルタ10との間にはインピーダンス素子が配置されないので、フィルタ10を通過する第1通信バンドおよび第2通信バンドの信号のEVM規格を満足できる。 According to the high frequency circuit 1C according to this modification, the third impedance element is connected between the selection terminal 51d and the filter 30, whereas the impedance element is arranged between the selection terminal 51b and the filter 10. Therefore, the EVM standard of the signals of the first communication band and the second communication band passing through the filter 10 can be satisfied.
 (効果など)
 以上のように、実施の形態1に係る高周波回路1aは、アンテナ端子101と、通過帯域が可変するフィルタ10と、アンテナ端子101とフィルタ10との間に接続された表面実装型の第1インピーダンス素子と、を備え、第1通信バンドの信号を伝送する第1モードでは、第1通信バンドの第1チャネル信号が伝送され、第2通信バンドの信号を伝送する第2モードでは、第1チャネル信号よりも帯域幅が狭い第2チャネル信号が伝送され、第1通信バンドおよび第2通信バンドの少なくとも一方は、5GNRのための通信バンドであり、フィルタ10の通過帯域は、第1モードの場合には第1通過帯域となり、第2モードの場合には第1通過帯域よりも広帯域の第2通過帯域となる。
(Effects, etc.)
As described above, in the high frequency circuit 1a according to the first embodiment, the antenna terminal 101, the filter 10 having a variable pass band, and the surface-mounted first impedance connected between the antenna terminal 101 and the filter 10 In the first mode in which the element and the signal of the first communication band are transmitted, the first channel signal of the first communication band is transmitted, and in the second mode of transmitting the signal of the second communication band, the first channel is transmitted. A second channel signal having a narrower bandwidth than the signal is transmitted, at least one of the first communication band and the second communication band is a communication band for 5 GNR, and the pass band of the filter 10 is the case of the first mode. Is the first pass band, and in the case of the second mode, the second pass band is wider than the first pass band.
 これによれば、第1通信バンドの信号を伝送する第1モードでは、フィルタ10の通過帯域を狭くすることで、フィルタ10の通過帯域と第1通信バンドに近接する通信バンドとの周波数間隔を大きく確保できるので、第1通信バンドに近接する通信バンドの減衰特性を確保する(不要輻射を抑制する)ことが可能となる。また、フィルタ10を可変型にすることで増加する伝送損失の対策として、高Qの表面実装型インピーダンス素子が整合回路として配置される。これにより、第1通信バンドおよび第2通信バンドの信号を低損失で伝送できるので、5GNRにおける厳しいEVM規格を満たすことが可能となる。 According to this, in the first mode in which the signal of the first communication band is transmitted, the pass band of the filter 10 is narrowed to reduce the frequency interval between the pass band of the filter 10 and the communication band close to the first communication band. Since a large amount can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, a high Q surface mount impedance element is arranged as a matching circuit. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
 また、高周波回路1aにおいて、第1インピーダンス素子は、集積型受動素子であってもよい。 Further, in the high frequency circuit 1a, the first impedance element may be an integrated passive element.
 これによれば、整合回路12および高周波回路1aを小型化できる。 According to this, the matching circuit 12 and the high frequency circuit 1a can be miniaturized.
 また、高周波回路1aにおいて、アンテナ端子101とフィルタ10との間には、第1インピーダンス素子を含む整合回路12が接続されており、整合回路12は、アンテナ端子101とフィルタ10とを結ぶ経路に直列接続された1以上の直列腕素子を有し、当該経路に直列接続された全ての直列腕素子は、表面実装型のインピーダンス素子であってもよい。 Further, in the high frequency circuit 1a, a matching circuit 12 including a first impedance element is connected between the antenna terminal 101 and the filter 10, and the matching circuit 12 is a path connecting the antenna terminal 101 and the filter 10. All the series arm elements having one or more series arm elements connected in series and connected in series to the path may be surface-mounted impedance elements.
 これによれば、整合回路12および高周波回路1aの伝送損失を、より低減できる。 According to this, the transmission loss of the matching circuit 12 and the high frequency circuit 1a can be further reduced.
 また、高周波回路1aにおいて、アンテナ端子101とフィルタ10との間には、第1インピーダンス素子を含む整合回路12が接続されており、整合回路12は、アンテナ端子101とフィルタ10とを結ぶ経路に直列接続された複数の直列腕素子を有し、当該複数の直列腕素子のうちアンテナ端子101に最も近く接続された直列腕素子は、表面実装型のインピーダンス素子であってもよい。 Further, in the high frequency circuit 1a, a matching circuit 12 including a first impedance element is connected between the antenna terminal 101 and the filter 10, and the matching circuit 12 is a path connecting the antenna terminal 101 and the filter 10. The series arm element having a plurality of series arm elements connected in series and connected closest to the antenna terminal 101 among the plurality of series arm elements may be a surface-mounted impedance element.
 これによれば、アンテナ端子101に第1通信バンドおよび第2通信バンド以外の通信バンドを通過帯域とするフィルタがさらに接続された場合、当該フィルタの第1通信バンドおよび第2通信バンドにおける反射係数を大きくできるので、当該フィルタを含む高周波回路1aの伝送損失を低減できる。 According to this, when a filter having a communication band other than the first communication band and the second communication band as a pass band is further connected to the antenna terminal 101, the reflection coefficient in the first communication band and the second communication band of the filter is further connected. Therefore, the transmission loss of the high frequency circuit 1a including the filter can be reduced.
 また、実施の形態1に係る高周波回路1は、スイッチ50とインピーダンス素子を介さずに接続され、通過帯域が可変するフィルタ10と、通過帯域が可変しないフィルタ20と、スイッチ50とフィルタ20との間に接続された第2インピーダンス素子と、を備え、第1通信バンドの信号を伝送する第1モードでは、第1通信バンドの第1チャネル信号が伝送され、第1通信バンドよりも広帯域の第2通信バンドの信号を伝送する第2モードでは、第1チャネル信号よりも帯域幅が狭い第2チャネル信号が伝送され、第1通信バンドおよび第2通信バンドの少なくとも一方は、5GNRのための通信バンドであり、第1フィルタの通過帯域は、第1モードの場合には第1通過帯域となり、第2モードの場合には第1通過帯域よりも広帯域の第2通過帯域となる。 Further, the high frequency circuit 1 according to the first embodiment is connected to the switch 50 without an impedance element, and includes a filter 10 having a variable pass band, a filter 20 having a non-variable pass band, and a switch 50 and a filter 20. In the first mode, which comprises a second impedance element connected between them and transmits a signal of the first communication band, the first channel signal of the first communication band is transmitted, and the band widest than that of the first communication band. In the second mode of transmitting signals of two communication bands, a second channel signal having a narrower bandwidth than the first channel signal is transmitted, and at least one of the first communication band and the second communication band communicates for 5 GNR. It is a band, and the pass band of the first filter is the first pass band in the case of the first mode, and is the second pass band wider than the first pass band in the case of the second mode.
 これによれば、第1通信バンドの信号を伝送する第1モードでは、フィルタ10の通過帯域を狭くすることで、フィルタ10の通過帯域と第1通信バンドに近接する通信バンドとの周波数間隔を大きく確保できるので、第1通信バンドに近接する通信バンドの減衰特性を確保する(不要輻射を抑制する)ことが可能となる。また、フィルタ10を可変型にすることで増加する伝送損失の対策として、スイッチ50とフィルタ10との間にインピーダンス素子が配置されていない。これにより、第1通信バンドおよび第2通信バンドの信号を低損失で伝送できるので、5GNRにおける厳しいEVM規格を満たすことが可能となる。 According to this, in the first mode in which the signal of the first communication band is transmitted, the pass band of the filter 10 is narrowed to reduce the frequency interval between the pass band of the filter 10 and the communication band close to the first communication band. Since a large amount can be secured, it is possible to secure the attenuation characteristic of the communication band close to the first communication band (suppress unnecessary radiation). Further, as a countermeasure against the transmission loss increased by making the filter 10 variable, an impedance element is not arranged between the switch 50 and the filter 10. As a result, the signals of the first communication band and the second communication band can be transmitted with low loss, so that the strict EVM standard at 5 GNR can be satisfied.
 また、実施の形態2の変形例2に係る高周波回路1Bは、さらに、通過帯域が可変しないフィルタ30と、スイッチ50およびフィルタ10を接続する経路とフィルタ30との間に接続された第3インピーダンス素子と、を備えてもよい。 Further, the high frequency circuit 1B according to the second modification of the second embodiment further has a filter 30 whose pass band does not change, and a third impedance connected between the path connecting the switch 50 and the filter 10 and the filter 30. The element may be provided.
 また、高周波回路1aおよび1において、第2通信バンドは、第1通信バンドよりも広帯域であってもよい。 Further, in the high frequency circuits 1a and 1, the second communication band may have a wider band than the first communication band.
 これによれば、スイッチ50とフィルタ30との間に第3インピーダンス素子が接続されるのに対して、スイッチ50とフィルタ10との間にはインピーダンス素子が配置されないので、フィルタ10を通過する第1通信バンドおよび第2通信バンドの信号のEVM規格を満足できる。 According to this, the third impedance element is connected between the switch 50 and the filter 30, whereas the impedance element is not arranged between the switch 50 and the filter 10, so that the third impedance element passes through the filter 10. The EVM standard of the signals of the 1st communication band and the 2nd communication band can be satisfied.
 また、実施の形態1に係る高周波回路1aおよび実施の形態2に係る高周波回路1において、第1通信バンドは、5GNRのためのn1であり、第2通信バンドは、5GNRのためのn65であってもよい。 Further, in the high frequency circuit 1a according to the first embodiment and the high frequency circuit 1 according to the second embodiment, the first communication band is n1 for 5G NR, and the second communication band is n65 for 5G NR. You may.
 また、実施の形態2に係る高周波回路1において、フィルタ20の通過帯域は、5GNRのためのn34またはn39を含んでもよい。 Further, in the high frequency circuit 1 according to the second embodiment, the pass band of the filter 20 may include n34 or n39 for 5G NR.
 また、実施の形態2の変形例2に係る高周波回路1Bにおいて、フィルタ30の通過帯域は、5GNRのためのn3を含んでもよい。 Further, in the high frequency circuit 1B according to the second modification of the second embodiment, the pass band of the filter 30 may include n3 for 5 GNR.
 また、高周波回路1aおよび1において、フィルタ10は、バルク弾性波を用いた弾性波フィルタであってもよい。 Further, in the high frequency circuits 1a and 1, the filter 10 may be an elastic wave filter using a bulk elastic wave.
 これによれば、フィルタ10の通過帯域近傍の減衰スロープを急峻にでき、かつ小型化できる。 According to this, the attenuation slope near the pass band of the filter 10 can be steep and can be miniaturized.
 また、実施の形態2に係る通信装置5は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波回路1と、備える。 Further, the communication device 5 according to the second embodiment includes an RFIC 3 for processing a high frequency signal and a high frequency circuit 1 for transmitting a high frequency signal between the RFIC 3 and the antenna 2.
 これによれば、上述した高周波回路1と同様の効果を実現することができる。 According to this, the same effect as that of the high frequency circuit 1 described above can be realized.
 (その他の実施の形態)
 以上、本発明に係る高周波回路および通信装置について、実施の形態および変形例に基づいて説明したが、本発明に係る高周波回路および通信装置は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路および通信装置を内蔵した各種機器も本発明に含まれる。
(Other embodiments)
The high-frequency circuit and communication device according to the present invention have been described above based on the embodiments and modifications, but the high-frequency circuit and communication device according to the present invention are not limited to the above-described embodiments and modifications. do not have. Other embodiments realized by combining arbitrary components in the above-described embodiments and modifications, and various modifications that can be conceived by those skilled in the art within the scope of the present invention are applied to the above-described embodiments. The present invention also includes the obtained modifications and various devices incorporating the high frequency circuit and the communication device.
 例えば、上記実施の形態および変形例に係る高周波回路および通信装置の回路構成において、図面に表された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されてもよい。 For example, in the circuit configuration of the high-frequency circuit and the communication device according to the above-described embodiment and modification, another circuit element, wiring, or the like is inserted between the paths connecting the circuit elements and the signal paths shown in the drawings. You may.
 また、上記実施の形態および変形例において、第1通信バンドおよび第2通信バンドのうちの少なくとも一方は、5GHz以上の周波数帯域を有していてもよい。 Further, in the above-described embodiment and modification, at least one of the first communication band and the second communication band may have a frequency band of 5 GHz or more.
 また、上記実施の形態および変形例において、5GNRまたはLTEに加えてまたは代わりに、他の無線アクセス技術のための通信バンドが用いられてもよい。例えば、通信バンドとして、無線ローカルエリアネットワークのための通信バンドが用いられてもよい。また例えば、通信バンドとして、7ギガヘルツ以上のミリ波帯域が用いられてもよい。この場合、例えば、高周波回路1と、アンテナ2と、RFIC3とは、ミリ波アンテナモジュールを構成し、フィルタとして、例えば分布定数型フィルタが用いられてもよい。 Also, in addition to or instead of 5G NR or LTE, communication bands for other wireless access technologies may be used in the embodiments and modifications described above. For example, as the communication band, a communication band for a wireless local area network may be used. Further, for example, a millimeter wave band of 7 GHz or more may be used as the communication band. In this case, for example, the high frequency circuit 1, the antenna 2, and the RFIC 3 may form a millimeter-wave antenna module, and a distributed constant type filter may be used as the filter.
 本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication devices such as mobile phones as a high frequency circuit arranged in the front end portion.
 1、1a、1A、1B、1C  高周波回路
 2  アンテナ
 3  RF信号処理回路(RFIC)
 4  ベースバンド信号処理回路(BBIC)
 5  通信装置
 10、10A、10B、10C、10D、11a、11b、20、30  フィルタ
 12、22、32  整合回路
 13  弾性波共振子
 14  共振回路
 15  スイッチ
 16  可変回路
 18、19  回路素子
 50、51  スイッチ
 50a、51a  共通端子
 50b、50c、51b、51c、51d  選択端子
 101  アンテナ端子
 102、103、110、120、130  入出力端子
1, 1a, 1A, 1B, 1C radio frequency circuit 2 antenna 3 RF signal processing circuit (RFIC)
4 Baseband signal processing circuit (BBIC)
5 Communication device 10, 10A, 10B, 10C, 10D, 11a, 11b, 20, 30 Filter 12, 22, 32 Matching circuit 13 Elastic wave resonator 14 Resonant circuit 15 switch 16 Variable circuit 18, 19 Circuit element 50, 51 switch 50a, 51a common terminal 50b, 50c, 51b, 51c, 51d selection terminal 101 antenna terminal 102, 103, 110, 120, 130 input / output terminal

Claims (13)

  1.  アンテナ端子と、
     通過帯域が可変する第1フィルタと、
     前記アンテナ端子と前記第1フィルタとの間に接続された表面実装型の第1インピーダンス素子と、を備え、
     第1通信バンドの信号を伝送する第1モードでは、前記第1通信バンドの第1チャネル信号が伝送され、第2通信バンドの信号を伝送する第2モードでは、前記第1チャネル信号よりも帯域幅が狭い第2チャネル信号が伝送され、
     前記第1通信バンドおよび前記第2通信バンドの少なくとも一方は、5GNRのための通信バンドであり、
     前記第1フィルタの前記通過帯域は、前記第1モードの場合には第1通過帯域となり、前記第2モードの場合には前記第1通過帯域よりも広帯域の第2通過帯域となる、
     高周波回路。
    With the antenna terminal
    The first filter with variable pass band and
    A surface mount type first impedance element connected between the antenna terminal and the first filter is provided.
    In the first mode of transmitting the signal of the first communication band, the first channel signal of the first communication band is transmitted, and in the second mode of transmitting the signal of the second communication band, the band is higher than that of the first channel signal. A narrow second channel signal is transmitted and
    At least one of the first communication band and the second communication band is a communication band for 5G NR.
    The pass band of the first filter is the first pass band in the case of the first mode, and is the second pass band wider than the first pass band in the case of the second mode.
    High frequency circuit.
  2.  前記第1インピーダンス素子は、集積型受動素子である、
     請求項1に記載の高周波回路。
    The first impedance element is an integrated passive element.
    The high frequency circuit according to claim 1.
  3.  前記アンテナ端子と前記第1フィルタとの間には、前記第1インピーダンス素子を含む整合回路が接続されており、
     前記整合回路は、
     前記アンテナ端子と前記第1フィルタとを結ぶ経路に直列接続された1以上の直列腕素子を有し、
     前記経路に直列接続された全ての直列腕素子は、表面実装型のインピーダンス素子である、
     請求項1に記載の高周波回路。
    A matching circuit including the first impedance element is connected between the antenna terminal and the first filter.
    The matching circuit is
    It has one or more series arm elements connected in series to the path connecting the antenna terminal and the first filter.
    All series arm elements connected in series to the path are surface mount impedance elements.
    The high frequency circuit according to claim 1.
  4.  前記アンテナ端子と前記第1フィルタとの間には、前記第1インピーダンス素子を含む整合回路が接続されており、
     前記整合回路は、
     前記アンテナ端子と前記第1フィルタとを結ぶ経路に直列接続された複数の直列腕素子を有し、
     前記複数の直列腕素子のうち前記アンテナ端子に最も近く接続された直列腕素子は、表面実装型のインピーダンス素子である、
     請求項1に記載の高周波回路。
    A matching circuit including the first impedance element is connected between the antenna terminal and the first filter.
    The matching circuit is
    It has a plurality of series arm elements connected in series to the path connecting the antenna terminal and the first filter.
    Of the plurality of series arm elements, the series arm element connected closest to the antenna terminal is a surface mount type impedance element.
    The high frequency circuit according to claim 1.
  5.  第1アンテナ端子および第2アンテナ端子と、
     前記第1アンテナ端子とインピーダンス素子を介さずに接続され、通過帯域が可変する第1フィルタと、
     通過帯域が可変しない第2フィルタと、
     前記第2アンテナ端子と前記第2フィルタとの間に接続された第2インピーダンス素子と、を備え、
     第1通信バンドの信号を伝送する第1モードでは、前記第1通信バンドの第1チャネル信号が伝送され、前記第1通信バンドよりも広帯域の第2通信バンドの信号を伝送する第2モードでは、前記第1チャネル信号よりも帯域幅が狭い第2チャネル信号が伝送され、
     前記第1通信バンドおよび前記第2通信バンドの少なくとも一方は、5GNRのための通信バンドであり、
     前記第1フィルタの前記通過帯域は、前記第1モードの場合には第1通過帯域となり、前記第2モードの場合には前記第1通過帯域よりも広帯域の第2通過帯域となる、
     高周波回路。
    The first antenna terminal and the second antenna terminal,
    A first filter that is connected to the first antenna terminal without an impedance element and has a variable pass band,
    The second filter, whose pass band is not variable,
    A second impedance element connected between the second antenna terminal and the second filter is provided.
    In the first mode of transmitting the signal of the first communication band, the first channel signal of the first communication band is transmitted, and in the second mode of transmitting the signal of the second communication band wider than the first communication band. , A second channel signal having a narrower bandwidth than the first channel signal is transmitted.
    At least one of the first communication band and the second communication band is a communication band for 5G NR.
    The pass band of the first filter is the first pass band in the case of the first mode, and is the second pass band wider than the first pass band in the case of the second mode.
    High frequency circuit.
  6.  さらに、
     通過帯域が可変しない第3フィルタと、
     前記第1アンテナ端子および前記第1フィルタを接続する経路と前記第3フィルタとの間に接続された第3インピーダンス素子と、を備える、
     請求項5に記載の高周波回路。
    Moreover,
    The third filter, whose pass band is not variable,
    A third impedance element connected between the first antenna terminal, a path connecting the first filter, and the third filter is provided.
    The high frequency circuit according to claim 5.
  7.  前記第2通信バンドは、前記第1通信バンドよりも広帯域である、
     請求項1~6のいずれか1項に記載の高周波回路。
    The second communication band has a wider band than the first communication band.
    The high frequency circuit according to any one of claims 1 to 6.
  8.  前記第1通信バンドは、5GNRのためのn1であり、
     前記第2通信バンドは、5GNRのためのn65である、
     請求項7に記載の高周波回路。
    The first communication band is n1 for 5G NR.
    The second communication band is n65 for 5G NR.
    The high frequency circuit according to claim 7.
  9.  前記第1通信バンドは、5GNRのためのn48またはn49であり、
     前記第2通信バンドは、5GNRのためのn77である、
     請求項7に記載の高周波回路。
    The first communication band is n48 or n49 for 5G NR.
    The second communication band is n77 for 5G NR.
    The high frequency circuit according to claim 7.
  10.  前記第2フィルタの通過帯域は、5GNRのためのn34またはn39を含む、
     請求項5に記載の高周波回路。
    The passband of the second filter includes n34 or n39 for 5G NR.
    The high frequency circuit according to claim 5.
  11.  前記第3フィルタの通過帯域は、5GNRのためのn3を含む、
     請求項6に記載の高周波回路。
    The passband of the third filter includes n3 for 5G NR.
    The high frequency circuit according to claim 6.
  12.  前記第1フィルタは、バルク弾性波を用いた弾性波フィルタである、
     請求項1~11のいずれか1項に記載の高周波回路。
    The first filter is an elastic wave filter using a bulk elastic wave.
    The high frequency circuit according to any one of claims 1 to 11.
  13.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する請求項1~12のいずれか1項に記載の高周波回路と、を備える、
     通信装置。
    A signal processing circuit that processes high-frequency signals and
    The high-frequency circuit according to any one of claims 1 to 12 for transmitting the high-frequency signal between the signal processing circuit and the antenna.
    Communication device.
PCT/JP2021/026126 2020-08-28 2021-07-12 High frequency circuit and communication device WO2022044580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-144830 2020-08-28
JP2020144830 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022044580A1 true WO2022044580A1 (en) 2022-03-03

Family

ID=80353141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026126 WO2022044580A1 (en) 2020-08-28 2021-07-12 High frequency circuit and communication device

Country Status (1)

Country Link
WO (1) WO2022044580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057738A1 (en) * 2022-09-13 2024-03-21 株式会社村田製作所 High frequency circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129445A (en) * 2004-09-28 2006-05-18 Fujitsu Media Device Kk Duplexer
JP2013009411A (en) * 2012-08-23 2013-01-10 Taiyo Yuden Co Ltd Antenna branching filter
WO2013118237A1 (en) * 2012-02-06 2013-08-15 太陽誘電株式会社 Filter circuit and module
WO2015098791A1 (en) * 2013-12-27 2015-07-02 株式会社村田製作所 Branching device
WO2016158954A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 High-frequency filter, front end circuit, and communication device
WO2017170071A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Variable-frequency filter, rf front end circuit, and communication terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129445A (en) * 2004-09-28 2006-05-18 Fujitsu Media Device Kk Duplexer
WO2013118237A1 (en) * 2012-02-06 2013-08-15 太陽誘電株式会社 Filter circuit and module
JP2013009411A (en) * 2012-08-23 2013-01-10 Taiyo Yuden Co Ltd Antenna branching filter
WO2015098791A1 (en) * 2013-12-27 2015-07-02 株式会社村田製作所 Branching device
WO2016158954A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 High-frequency filter, front end circuit, and communication device
WO2017170071A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Variable-frequency filter, rf front end circuit, and communication terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TP to TS 38.101-1: NR band numbering", 3GPP TSG RAN WG4 ADHOC_TSGR4_NR_SEP2017 R4-1709856, 21 September 2017 (2017-09-21), pages 3, XP051331947 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057738A1 (en) * 2022-09-13 2024-03-21 株式会社村田製作所 High frequency circuit

Similar Documents

Publication Publication Date Title
US11652462B2 (en) Multiplexer with hybrid acoustic passive filter
WO2017204347A1 (en) High-frequency filter device and communication device
US20210194452A1 (en) Multiplexer, and radio frequency front-end circuit and communication device that use the same
US20210351809A1 (en) High frequency filter, multiplexer, high frequency front-end circuit, and communication device
JP2021125775A (en) Multiplexer, front-end circuit, and communication device
US10873309B2 (en) LC filter, radio-frequency front-end circuit, and communication device
WO2022044524A1 (en) Elastic wave filter circuit, multiplexer, front end circuit, and communication device
US11658794B2 (en) Radio frequency module and communication device
JP2021064874A (en) High frequency module and communication device
WO2022044580A1 (en) High frequency circuit and communication device
US20210306013A1 (en) Radio frequency circuit, antenna module, and communication device
WO2020184614A1 (en) Multiplexor, front-end module, and communication device
US20230163803A1 (en) Radio-frequency circuit and communication apparatus
JP2021175084A (en) High frequency circuit and communication apparatus
WO2022153926A1 (en) High frequency circuit and communication apparatus
WO2022145128A1 (en) High-frequency circuit and communication device
KR20220161194A (en) Switchable acoustic wave filter and related multiplexers
US11146242B2 (en) Filter device, multiplexer, radio frequency front end circuit, and communication device
CN115955211A (en) Bulk acoustic wave filter, duplexer and electronic equipment
WO2022091726A1 (en) Multiplexer, high-frequency module, and communication device
WO2024057696A1 (en) High frequency circuit and communication apparatus
US20230079361A1 (en) High-frequency circuit and communication device
US20240113732A1 (en) Communication circuit and communication device
WO2022259987A1 (en) High-frequency module and communication device
JP2021082975A (en) High frequency circuit and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP