WO2022032942A1 - 无人机填图方法、填图装置及填图系统 - Google Patents

无人机填图方法、填图装置及填图系统 Download PDF

Info

Publication number
WO2022032942A1
WO2022032942A1 PCT/CN2020/134789 CN2020134789W WO2022032942A1 WO 2022032942 A1 WO2022032942 A1 WO 2022032942A1 CN 2020134789 W CN2020134789 W CN 2020134789W WO 2022032942 A1 WO2022032942 A1 WO 2022032942A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
uav
shooting
mapping
image
Prior art date
Application number
PCT/CN2020/134789
Other languages
English (en)
French (fr)
Inventor
宋扬
刘治博
郑明�
胡懿灵
Original Assignee
中国地质科学院矿产资源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010800039.7A external-priority patent/CN112001277B/zh
Priority claimed from CN202010800040.XA external-priority patent/CN111959803B/zh
Application filed by 中国地质科学院矿产资源研究所 filed Critical 中国地质科学院矿产资源研究所
Publication of WO2022032942A1 publication Critical patent/WO2022032942A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals

Definitions

  • Patent 1 titled “UAV mapping method, mapping device and mapping system”, application number 2020108000397;
  • Patent 2 titled “UAV tilting shooting platform and tilting shooting drone", application The number is 202010800040X.
  • the invention relates to the field of unmanned aerial vehicle equipment, in particular to a mapping method, a mapping device and a mapping system of an unmanned aerial vehicle.
  • UAV technology As a kind of aircraft platform, compared with the ground platform, the UAV has less working scene restrictions and a wide range of use.
  • the UAV platform can be equipped with many sensor devices, such as cameras with higher resolution, high-resolution visible light cameras, infrared cameras, multispectral devices, aeromagnetic devices in the field of geophysical exploration, and sensors such as lidar.
  • sensor devices such as cameras with higher resolution, high-resolution visible light cameras, infrared cameras, multispectral devices, aeromagnetic devices in the field of geophysical exploration, and sensors such as lidar.
  • UAVs are mainly classified into fixed-wing UAVs, rotary-wing UAVs, umbrella-wing UAVs and flapping-wing UAVs according to their structure, while multi-rotor UAVs are mainly used in the fields of geology and mapping
  • multi-rotor UAVs are mainly used in the fields of geology and mapping
  • four-rotor drone, eight-rotor drone or twelve-rotor drone are used according to different loads.
  • the air density in the plateau area is low, which affects the power and stability of the UAV
  • the climate in the plateau area is harsh , the wind, rain and snow weather accounts for a large proportion, which affects the operation of the UAV and the stability of the airborne equipment.
  • the use of the problem in the plateau area has a negative impact on the imaging of the UAV platform and airborne equipment, and easily affects the quality of the 3D solid model generated by the UAV mapping, reducing the accuracy and reference of the operation. .
  • a method, a mapping device and a mapping system for an unmanned aerial vehicle are provided.
  • a UAV mapping method comprising the steps of:
  • the first image data is subjected to imaging detection, the correction parameters of the first image data are obtained, and the correction parameters of the first image data are obtained.
  • the correction parameter corrects redundant information in the first image data to obtain second image data, further eliminates the distortion difference in the second image data, obtains third image data, and converts the third image data into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • the UAV mapping method further includes the steps:
  • the target image map or the target digital model is obtained according to the three-dimensional calibration data and the third image data to complete the mapping.
  • Camera calibration is performed on the airborne equipment to eliminate the imaging distortion of the airborne equipment in the target area.
  • the process of eliminating the distortion difference in the second image data includes the step of correcting the distortion difference in the second image data according to a preset appraisal report corresponding to the airborne device.
  • the process of performing imaging detection on the first image data and obtaining the correction parameters of the first image data includes the steps:
  • the correction parameters are based on the contrast measurement and the actual signal-to-noise ratio.
  • the process of correcting the redundant information in the first image data according to the correction parameters includes the steps:
  • the process of converting the third image data into a mapping result includes the steps:
  • the process of converting the third image data into a mapping result includes the steps:
  • a digital elevation model is extracted based on the third image data.
  • An unmanned aerial vehicle mapping device comprising:
  • the aerial photography acquisition module is used to acquire the first image data of the aerial photography of the target area by the airborne equipment of the UAV;
  • a parameter acquisition module configured to perform imaging detection on the first image data, and acquire correction parameters of the first image data
  • a correction module configured to correct redundant information in the first image data according to the correction parameters to obtain second image data
  • a correction module for eliminating the distortion difference in the second image data to obtain the third image data
  • the image conversion module is used for converting the third image data into a mapping result.
  • the above-mentioned UAV mapping device after obtaining the first image data of the aerial photography of the target area by the airborne equipment of the UAV, performs imaging detection on the first image data, obtains the correction parameters of the first image data, and according to the first image data.
  • the correction parameter corrects redundant information in the first image data to obtain second image data, further eliminates the distortion difference in the second image data, obtains third image data, and converts the third image data into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, the steps of the UAV mapping method in any of the above embodiments are implemented.
  • the above-mentioned computer equipment after acquiring the first image data of the aerial photography of the target area by the airborne equipment of the UAV, performs imaging detection on the first image data, obtains the correction parameters of the first image data, and corrects the first image data according to the correction parameters.
  • the redundant information in the first image data is obtained, the second image data is obtained, the distortion difference in the second image data is further eliminated, the third image data is obtained, and the third image data is converted into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • the above-mentioned computer-readable storage medium after obtaining the first image data of the aerial photography of the target area by the airborne equipment of the unmanned aerial vehicle, performing imaging detection on the first image data, obtaining the correction parameters of the first image data, and correcting the first image data according to the correction parameters.
  • the parameter corrects redundant information in the first image data to obtain second image data, further eliminates the distortion difference in the second image data, obtains third image data, and converts the third image data into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • a mapping system including image processing equipment and unmanned aerial vehicle
  • the image processing device is configured to:
  • the image processing device performs imaging detection on the first image data after obtaining the first image data of the aerial photography of the target area by the airborne device of the UAV, obtains the correction parameters of the first image data, and according to the first image data.
  • the correction parameter corrects redundant information in the first image data to obtain second image data, further eliminates the distortion difference in the second image data, obtains third image data, and converts the third image data into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • the UAV is an oblique shooting UAV
  • the oblique shooting UAV is provided with a UAV oblique shooting platform, an infrared ranging device and a height controller
  • the UAV oblique shooting platform is provided on The bottom of the UAV
  • the infrared ranging device is used to measure the vertical height of the UAV from the ground
  • the height controller is used to adjust the vertical height of the UAV from the ground.
  • a UAV oblique shooting platform is set, and a more accurate model of an irregular shooting object can be obtained through the continuously inclined shooting images of the UAV oblique shooting platform, and a height adjustment device can be set on the UAV.
  • a height adjustment device can be set on the UAV.
  • the UAV tilting shooting platform includes: a base plate, a leveling device, a horizontal plate, a first shooting component and a second shooting component;
  • the horizontal plate is installed on the base plate through the leveling device;
  • the leveling device Adjust the horizontal plate to be in a horizontal state;
  • the first photographing component is fixedly arranged on the bottom surface of the horizontal plate, and the photographing direction is vertically downward;
  • the second photographing component is rotatably arranged on the bottom surface of the horizontal plate, and the photographing direction is relative to the vertical direction Inclined downward; the second photographing assembly rotates around the first photographing assembly.
  • the bottom surface of the horizontal plate is provided with a circular slide rail, and the first shooting component is located at the center of the circular slide rail; the second shooting component is set on the slider, and the slide block is located on the circular slide rail It rotates around the first shooting assembly.
  • the inner side wall of the circular slide rail is provided with a ring gear, and the part of the slider located in the circular slide rail is provided with a gear; the gear and the ring gear are meshed with the planetary gear set, and the second shooting assembly Incline radially outward away from the circular slide.
  • the horizontal plate is provided with a gear set motor, and the gear set motor controls the sliding block to rotate around the first photographing assembly.
  • the leveling device is provided with at least three leveling components and one calibration hinge; the leveling components are telescopic rods, which are evenly distributed in the circumferential direction relative to the position of the first photographing component on the horizontal plate;
  • the hinge is a ball hinge that directly connects the base plate and the horizontal plate; the fixed end of the telescopic rod is hinged with the horizontal cricket ball, and the telescopic end of the telescopic rod is hinged with the base plate ball;
  • the controller is electrically connected, and the controller controls the telescopic length of the leveling assembly.
  • the first photographing component includes a first camera, and the photographing direction of the first camera is vertically downward;
  • the second photographing component includes a second camera and a tilt adjustment component, and the tilt adjustment component adjusts the position of the second camera. The angle between the shooting direction and the vertical direction.
  • a common shooting area is set between the shooting range of the second camera and the shooting range of the first camera.
  • the horizontal plate and the base plate are both circular plates; the base plate is provided with a plurality of installation through holes uniformly distributed in the circumferential direction.
  • the UAV is a fixed-wing UAV or a rotary-wing UAV.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle inclined shooting platform of an embodiment in Example 1;
  • Example 2 is a schematic structural diagram of an oblique photographing drone according to an embodiment in Example 2;
  • Example 3 is a flow chart of a method for mapping an unmanned aerial vehicle according to an embodiment in Example 3;
  • Embodiment 4 is a flowchart of a recording and broadcasting control method of another embodiment in Embodiment 3;
  • Fig. 5 is a recording and broadcasting display interface diagram of an embodiment in Example 4.
  • FIG. 6 is a flowchart of a handover method of an embodiment in Embodiment 4.
  • Example 7 is a structural diagram of a UAV mapping device module according to an embodiment in Example 4.
  • FIG. 8 is a schematic structural diagram of a mapping system according to an embodiment of Embodiment 6.
  • FIG. 8 is a schematic structural diagram of a mapping system according to an embodiment of Embodiment 6.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium.
  • top bottom
  • above bottom
  • under over
  • an embodiment of the present invention provides a UAV oblique shooting platform, which is used for UAV oblique shooting.
  • the UAV tilting shooting platform includes: a base plate 1, a leveling device, a horizontal plate 2, a first shooting component and a second shooting component.
  • the base plate 1 is fixedly connected with the UAV, as the installation carrier of the whole UAV tilting shooting platform;
  • the horizontal plate 2 is installed on the base plate 1 through the leveling device, and the leveling device adjusts the horizontal plate 2 to be in a horizontal state;
  • the first shooting component is fixed is arranged on the bottom surface of the horizontal plate 2, and the shooting direction is vertically downward;
  • the second shooting component is rotatably arranged on the bottom surface of the horizontal plate 2, and the shooting direction is inclined downward relative to the vertical direction, so as to obtain direct shooting images ;
  • the second photographing assembly rotates around the first photographing assembly for obtaining continuous oblique photographed images.
  • the embodiment of the present invention is mainly used for field geological survey or disaster assessment in mountainous areas, complicated airflow in the field will cause the UAV to tilt.
  • the leveling device can adjust the horizontal plate 2 to be in a horizontal state. Therefore, when the second photographing component performs continuous oblique photography, there will be no difference in height and/or angle of the continuously oblique photographed images due to the inclination of the drone, so as to avoid the resulting three-dimensional model error.
  • the photographing direction of the second photographing component is always radially outward of the circular motion trajectory of the second photographing component, so as to ensure that the angle of continuous oblique photography remains unchanged and facilitates the synthesis of three-dimensional models.
  • the bottom surface of the horizontal plate 2 is provided with a circular slide rail 6, and the first photographing component is located at the center of the circular slide rail; It rotates around the first photographing assembly, and the second photographing assembly is inclined radially outward away from the circular slide rail 6 .
  • the slider 7 rotates at a constant angular speed in the circular slide 6.
  • the shooting step of continuous shooting the more images will be taken continuously obliquely after the slider 7 rotates once.
  • the shooting step is too short and too many images are captured, the amount of image data and the calculation amount of model synthesis will be greatly increased.
  • the slider 7 rotates once, and the number of images taken continuously obliquely is 8-60, preferably 24.
  • the movement of the slider 7 in the circular slide rail 6 is realized in the form of a planetary gear set.
  • the inner side wall of the circular slide rail 6 is provided with a ring gear, and the slide block 7 is located on the circular slide rail 6
  • the inner part is provided with gears; the gears mesh with the ring gear through the planetary gear set.
  • the horizontal plate 2 is provided with a gear set motor, and the gear set motor controls the sliding block 7 to rotate around the first shooting assembly, Since the rotational angular velocity of the gear set motor determines the angular velocity of the slider 7 rotating around the first photographing assembly in the circular slide 6, and the angular velocity of the slider 7 rotating around the first photographing assembly in the circular slide 6 determines the first photographing assembly
  • the gear set motor in the embodiment of the present invention adopts a stepping motor to simplify the control algorithm of the motor.
  • the leveling device adjusts the horizontal plate 2 to be in a horizontal state.
  • the leveling device is provided with at least three leveling components 3 and one calibration hinge;
  • the leveling component 3 is a telescopic rod, which is relatively The positions of the photographing components on the horizontal plate 2 are evenly distributed in the circumferential direction;
  • the calibration hinge is a spherical hinge that directly connects the base plate 1 and the horizontal plate 2;
  • the fixed end of the telescopic rod is spherically hinged with the horizontal plate 2, and the telescopic end of the telescopic rod is connected to the base plate 1 ball hinged.
  • the leveling assembly 3 adjusts the distance between the corresponding positions of the substrate 1 and the horizontal plate 2 by extending and retracting, so that when the substrate 1 tilts with the drone, the horizontal plate 2 can be guaranteed to be in a horizontal state.
  • the setting of the calibration hinge can prevent the leveling assembly 3 from causing the leveling plate 2 to move away from or approach the UAV. As long as the UAV can keep the height relative to the ground unchanged, the leveling can be achieved.
  • the height of the plate 2 relative to the ground surface is unchanged and kept horizontal, so that the height difference of the image will not appear when the second photographing component is continuously tilted, and the resulting 3D modeling error is avoided, so that the 3D model can simulate the actual situation more accurately. terrain.
  • the position where the calibration hinge is connected to the horizontal plate 2 is coincident with the installation position of the first photographing assembly on the horizontal plate 2, and the positions on the top of the horizontal plate 2 are respectively On the surface and bottom surface, at the center of the circular slide rail 6.
  • a gyroscope is used as the feedback of the level of the horizontal plate 2 in the embodiment of the present invention.
  • the horizontal plate 2 is provided with a gyroscope, and the gyroscope is electrically connected to the controller of the leveling device. , the controller controls the telescopic length of the leveling assembly 3 .
  • the state of the horizontal plate 2 is reflected by the gyroscope, and a feedback signal is provided, which is used as the basis for adjusting the telescopic length of the leveling knot assembly.
  • the first photographing component includes a first camera 4, the photographing direction of the first camera 4 is vertically downward, and the first camera 4 obtains a direct image, which can be used as a composite position basis for generating a three-dimensional model from continuously obliquely photographed images , so that there will be no obvious positional misalignment between images during image synthesis.
  • the second photographing assembly includes a second camera 5 and an inclination adjustment assembly 8 , and the inclination adjustment assembly 8 adjusts the angle between the photographing direction of the second camera 5 and the vertical direction.
  • the second camera 5 is rotated around the first camera 4 to perform continuous oblique shooting, and the continuous oblique shooting images are obtained to synthesize the three-dimensional model. In the whole process, only one camera is used as the oblique shooting camera. Compared with the existing tilt cameras with 4 different directions, the weight of the tilt shooting platform can be simplified, the load of the drone can be reduced, and the actual battery life of the drone can be improved.
  • the tilt adjustment component 8 can adjust the tilt angle of the second camera 5 relative to the horizontal plane.
  • the tilt angle of the second camera 5 can be set according to the mountain trend and the degree of tilt of the photographed object.
  • the image captured by the second camera 5 continuously obliquely captures more information such as features and shapes of the captured object, so that the three-dimensional model synthesized by the continuously captured images can more realistically simulate the captured object.
  • a common photographing area is set between the photographing range of the second camera 5 and the photographing range of the first camera 4 .
  • the horizontal plate 2 and the base plate 1 are both circular plates, which is convenient for the setting of the circular slide rail 6, the evenly distributed setting of the leveling components 3 in the circumferential direction, and the first shooting The position of the components on the horizontal plate 2 is set.
  • the substrate 1 is provided with a plurality of installation through holes that are evenly distributed in the circumferential direction to be fixedly connected to the UAV.
  • the evenly distributed setting in the circumferential direction is conducive to applying the force of the substrate 1 to the UAV in a circumferentially uniform distribution, preventing the embodiment of the present invention from being compatible with the UAV. installation, resulting in the unbalanced weight of the drone.
  • the embodiment of the present invention provides a UAV for oblique shooting.
  • the UAV can realize the oblique shooting of irregular shooting objects such as outdoor mountains.
  • UAVs are fixed-wing UAVs or rotary-wing UAVs; fixed-wing UAVs are lower in cost, more portable, smaller in size and lighter in weight.
  • the oil machine developed into the current oil-electric hybrid and pure electric-driven unmanned aerial vehicle is suitable for geological regional survey projects.
  • Rotor drones can be quad-rotor drones, eight-rotor drones with greater lift, twelve-rotor drones, and sixteen-rotor drones with larger loads. According to the complex size, the complex composition of the shooting environment degree determined.
  • the UAV tilting shooting platform in Example 1 can ensure that the height difference between the second shooting component and the substrate 1 is unchanged, that is, the height difference between the second shooting component and the drone is unchanged. If the height remains unchanged, it can be ensured that the height of the second photographing component relative to the ground surface remains unchanged, so that there is no height difference between images taken continuously obliquely. It is more convenient to synthesize 3D models by continuously tilting the captured images.
  • the oblique shooting drone is further provided with an infrared ranging device and an altitude controller; the infrared ranging device measures the vertical height of the oblique shooting drone from the ground; the altitude controller adjusts the flight of the drone by adjusting the Or hover state, to adjust the vertical height of the tilt shooting drone from the ground.
  • the substrate 1 When using the embodiment of the present invention for geological mapping, geological exploration or disaster assessment, first connect the substrate 1 to the bottom of the drone, use bolts to pass through the mounting through holes of the substrate 1 and the bottom of the drone, and connect the substrate 1 to the bottom of the drone. It is fixedly connected with the UAV to complete the installation of the UAV and the UAV tilting shooting platform.
  • the gyroscope sends a signal that the horizontal board 2 is tilted, and each leveling device is adjusted by the controller of the leveling device.
  • the telescopic length of component 3 makes the horizontal plate 2 in a horizontal state again; when the height of the drone changes due to external force (mountain airflow, etc.), the infrared ranging device on the drone detects that the height of the drone relative to the bottom changes. , and adjust the hovering or flying height of the drone to the initial height through the drone's own control device.
  • the second camera 5 performs continuous oblique shooting
  • the obtained continuous shooting images will not have height difference and angle difference, and combined with the direct image, the three-dimensional model of the target area can be synthesized more accurately.
  • the direct image and the continuous oblique shooting image can be stored in the storage device of the UAV, and can also be transmitted to the controller of the UAV by wireless or wired means.
  • the embodiments of the present invention provide a UAV tilting shooting platform and a tilting shooting UAV; the present invention performs continuous tilt shooting in different horizontal directions by the second shooting component that rotates around the first shooting component, thereby A more accurate model of an irregularly photographed object can be obtained by continuously tilting the images; the present invention provides a horizontal plate and a leveling device, which can ensure that when the second photographing component is continuously tilted and photographed around the first photographing component, the second photographing component It is always located on the same horizontal plane, so that there is no displacement difference in height in the continuously tilted images, and it is convenient to synthesize the model through the images; the present invention sets a height adjustment device on the UAV, so as to ensure that the UAV is not affected by the continuous tilt shooting. The height relative to the bottom surface remains unchanged, which can adapt to the complex and changeable mountain winds in the wild mountain areas, and prevent the continuous shooting images from causing height differences due to the mountain winds.
  • the embodiment of the present invention provides a method for mapping an unmanned aerial vehicle.
  • the UAV mapping method can be applied to the oblique shooting UAV of any of the above embodiments.
  • FIG. 3 is a flow chart of a method for mapping a UAV in an embodiment. As shown in FIG. 3 , the method for mapping a UAV in an embodiment includes steps S100 to S104:
  • the drone adopts the oblique shooting drone of Embodiment 2, and the airborne equipment adopts but is not limited to the drone oblique shooting platform of Example 1.
  • the oblique shooting drone is used to take aerial photos of the target area, and the direct images and continuous oblique shooting images of the target area are obtained.
  • the target area is the survey area for the drone to map.
  • the aerial photography of the target area can be completed according to the control of the staff or the automatic planning of the flight route.
  • the UAV tilting shooting platform can observe objects from multiple directions, can obtain direct images and continuous tilted shooting images, and can also realize the data recording of the height, length, slope and angle of the shooting object.
  • the first image data includes direct images and continuous oblique images captured by the UAV oblique shooting platform, as well as related parameters of the aerial images.
  • FIG. 3 is a flowchart of a mapping method for an unmanned aerial vehicle according to another embodiment.
  • step S100 the first step of the aerial photography of the target area by the airborne equipment of the unmanned aerial vehicle is obtained.
  • step S200 Before the process of image data, it also includes step S200:
  • S200 Perform camera calibration on the airborne equipment to eliminate imaging distortion of the airborne equipment in the target area.
  • the first image data obtained based on the airborne device is mainly used for three-dimensional reconstruction.
  • the airborne device as a CCD camera as an example
  • a CCD digital camera performs three-dimensional reconstruction of the physical world.
  • the image format corresponding to the first image data is stored in pixels.
  • the camera calibration is mainly to establish the relationship between two-dimensional images and three-dimensional images.
  • Correspondence The camera needs to set the 3D model in advance, and determine the relationship between the data points of the 3D model and the corresponding points in the image, as the parameters of the camera.
  • the first image data includes a direct image and a continuous oblique shooting image. Since the direct image and the continuous oblique shooting image have an overlapping area of the shooting range, the direct image can be The image reference basis for synthesizing a 3D model from continuously obliquely captured images.
  • Each continuous oblique shooting image corresponds to a shooting orientation on a horizontal plane, and a coordinate system can be established with the shooting direction and position of the corresponding second camera at this time, and according to the continuous oblique shooting image, the model image in this coordinate system can be obtained. , and then convert the model images in the respective coordinate systems corresponding to all the continuous oblique shooting images into the model images of the spatial reference coordinate system established at the first camera through the coordinate system transformation, and finally the direct image and each continuous oblique shooting.
  • the model images of the spatial reference coordinate system corresponding to the images are compared, and the corresponding public areas are obtained. According to the positional relationship of each public area in the direct image, the model images of the spatial reference coordinate system corresponding to all the continuously oblique shooting images are stitched together. 3D model.
  • the acquired first image data is data received from aerial photography of the airborne device, and the quality of the first image data depends on the performance of the airborne device.
  • the unfavorable factors in the plateau area will affect the imaging level of the airborne equipment and introduce interference data for the first image data.
  • Performing imaging detection on the first image data includes detecting noise, contrast, brightness, etc. in the first image data, and obtaining an imaging detection result. The difference between the imaging detection result and the preset reference reference value is used as a correction parameter.
  • imaging detection may be performed on the first image data according to a priori standard, a difference between the first image data and the priori standard may be detected, and the difference value may be used as a correction parameter.
  • the process of performing imaging detection on the first image data in step S101 to obtain correction parameters of the first image data includes steps S300 to S302:
  • the actual signal-to-noise ratio of the first image data is detected.
  • the image corresponding to the first image data is divided into regions, and the signal-to-noise ratio detection is performed on each divided region to obtain the actual signal-to-noise ratio.
  • the division of the original interference area may be determined according to a priori standard.
  • the signal-to-noise ratio of each image divided area is determined by a priori standard, and the area with the signal-to-noise ratio greater than the set threshold is determined as the original interference area.
  • the contrast measurement is obtained by comparing the original interference area with the actual signal-to-noise ratio.
  • the contrast measurement value may also be determined from the luminance value of the original interference area.
  • the parameter interval may be determined based on the correction coefficient. Adjusting or deleting the image area in the selected area in the first image data whose corresponding parameter exceeds the parameter interval, so as to correct the first image data to obtain the second image data.
  • step S102 the redundant information in the first image data is corrected according to the correction parameters to obtain the second image data, including step S400:
  • the interference data introduced by the operation of the UAV in the plateau is reduced.
  • step S200 the distortion of the airborne equipment is eliminated through camera calibration.
  • step S103 after the second image data is acquired, the distortion difference in the second image data is eliminated by data processing.
  • the camera calibration result in step S200 may be stored in advance, and data processing may be performed according to the camera calibration result to eliminate the distortion difference in the second image data.
  • the identification report of the airborne device can be used to correct the distortion difference of the second image data by using the small image size module in the distortion difference correction.
  • the pre-processed third image data is converted into a three-dimensional data model or a three-dimensional reality map, etc., and the mapping of the target area has been completed.
  • step S500 the process of converting the third image data into a mapping result in step S104 includes step S500:
  • Performing aerial triangulation processing on the third image data is to perform aerial triangulation on the aerial photography of the airborne equipment based on the third image data to obtain measurement results.
  • the traditional method of aerial triangulation mainly uses image data combined with control point data to obtain the coordinates of the point of interest.
  • the amount of image data is large, and the encryption points, control points, and connection points are encrypted in the aerial triangulation processing.
  • the processing volume is also large, and the traditional manual interpretation and thorn operation methods are difficult to handle large data volumes.
  • the process of performing the empty triad processing on the third image data in step S500 includes the following steps A1 to A3:
  • A1 perform an air-triple calculation on the third image data.
  • control point data and camera calibration data corresponding to the third image data of the target area are acquired.
  • Interpretation of control point data determines the image of each control point and its position on the image.
  • the camera calibration file is used to correct the optical distortion of the image in the early stage of the Aerial triangulation solution and provide the initial value for the self-checking beam method adjustment in the later stage.
  • SIFT Scale-invariant feature transform
  • the absolute orientation parameters are obtained according to the coordinates of the control point in the ground measurement coordinate system and the corresponding coordinates in the camera space coordinate system, and then the entire area network is replaced by the ground measurement coordinate system according to the absolute orientation index.
  • A2 generate point cloud data.
  • dense point cloud is obtained by dense matching or expansion of sparse point cloud, which provides a data source for obtaining a digital surface model.
  • a visible stereo image pair model can be formed according to the absolute external orientation elements of the image, and then the coordinates of the ground objects are collected in a stereo environment to obtain a digital line drawing; digital line drawings can be obtained from the generated point cloud data.
  • Surface model, and real radiographic images can be obtained according to the digital surface model.
  • an irregular triangular network is generated from point cloud data, and a three-dimensional model of the survey area is obtained through texture mapping.
  • FIG. 5 is a flowchart of a mapping method for a drone according to another embodiment.
  • the process of converting the third image data into a mapping result in step S104 includes step S600:
  • the first image data includes UAV remote sensing images and their precise orientation parameters.
  • image preprocessing and multi-level pyramid image generation three types of matching units of feature lines, feature points and grid points can be obtained.
  • From the generated low-scale pyramid The image starts to be extracted from coarse to fine and from low to high, and finally the results on the original resolution image can be obtained.
  • all the matching characteristics form the digital elevation model result of the irregular triangulation type, which is based on the initial value of the low-level pyramid image matching and adjusts the matching parameters and premise.
  • First-level image matching, and then based on the multi-image least squares matching algorithm the features of all successfully matched images can be refined and registered. After gross errors are eliminated, after all matching feature units are fused, the final digital elevation is formed by interpolation. Model.
  • the UAV mapping method of another embodiment further includes the following steps:
  • steps B1 to B3 After completing the previous data collection, preprocessing, image registration, image fusion, etc., the orthophoto stitching is completed according to the two stitching methods of spatial domain and frequency domain. Include steps B1 to B3:
  • image preprocessing is performed on the aerial image of the airborne equipment through image coordinate transformation and resampling.
  • the left transformation of the image adopts the polynomial method, which is processed by stretching, scaling, rotating and translating the aerial image.
  • the registration algorithm includes the following parts: 1) find the feature information points in the image for registration; 2) find the matching feature pairs between the images; 3) establish the matching relationship and model between the UAV images 4) Establish a unified plane for global splicing.
  • Image fusion mainly eliminates stitching traces caused by light, registration errors and jitter.
  • the control points in the image are selected as known feature points, or the feature points can be selected artificially, and the least squares method is used for fusion according to certain transformation rules.
  • the UAV mapping method of another embodiment further includes the following steps:
  • Geometric correction is performed on an image corresponding to the first image data, the second image data or the third image data.
  • geometric correction is performed. From it, the coordinates and elevations of the control points can be obtained, and geometric correction can be performed by matching the points with the same name.
  • FIG. 6 is a flowchart of a mapping method for a drone according to another embodiment. As shown in FIG. 6 , the mapping method for a drone according to another embodiment further includes steps S700 to S702:
  • a plurality of preset calibration points are preset in the target area, and the UAV performs aerial photography of the preset calibration points when operating in the target area.
  • the preset calibration point can be clearly displayed in the image corresponding to the fourth influence data.
  • the preset calibration point may constitute a preset three-dimensional model, and the preset three-dimensional coordinates of the preset calibration point in the preset three-dimensional model are determined.
  • the image pixel coordinates corresponding to the preset coordinate points in the fourth image data can be determined.
  • the three-dimensional calibration data is determined according to the mapping relationship between the image pixel coordinates, the preset three-dimensional coordinates and the preset three-dimensional model.
  • the third image data can also determine the image pixel coordinates of the preset calibration point, and after determining the image pixel coordinates corresponding to the third image data of the preset calibration point, the preset calibration point to which the preset calibration point belongs is obtained according to the three-dimensional calibration data.
  • the UAV mapping method of any of the above-mentioned embodiments after obtaining the first image data of the aerial photography of the target area by the airborne equipment of the UAV, imaging detection is performed on the first image data, and the correction of the first image data is obtained. parameters, and correct the redundant information in the first image data according to the correction parameters to obtain the second image data, further eliminate the distortion difference in the second image data, obtain the third image data, and convert the third image data into the mapping result . Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • An embodiment of the present invention also provides a mapping device for an unmanned aerial vehicle.
  • FIG. 7 is a structural diagram of a UAV mapping device module according to an embodiment. As shown in FIG. 7 , the UAV mapping device according to an embodiment includes modules 100 to 104 :
  • the aerial photography acquisition module 100 is used for acquiring the first image data of the aerial photography of the target area by the airborne equipment of the UAV;
  • a parameter acquisition module 101 configured to perform imaging detection on the first image data, and acquire correction parameters of the first image data
  • a correction module 102 configured to correct redundant information in the first image data according to the correction parameters to obtain second image data
  • the correction module 103 is used for eliminating the distortion difference in the second image data to obtain the third image data
  • the image conversion module 104 is used for converting the third image data into a mapping result.
  • the drone mapping device after acquiring the first image data of the aerial photography of the target area by the airborne equipment of the drone, the imaging detection is performed on the first image data, and the correction of the first image data is obtained. parameters, and correct the redundant information in the first image data according to the correction parameters to obtain the second image data, further eliminate the distortion difference in the second image data, obtain the third image data, and convert the third image data into the mapping result . Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • An embodiment of the present invention further provides a computer storage medium, which stores computer instructions, and when the instructions are executed by a processor, implements the recording and playback control method of any of the foregoing embodiments.
  • the aforementioned program may be stored in a computer-readable storage medium, and when the program is executed, execute Including the steps of the above method embodiment; and the aforementioned storage medium includes: a mobile storage device, a random access memory (RAM, Random Access Memory), a read-only memory (ROM, Read-Only Memory), a magnetic disk or an optical disk and other various A medium on which program code can be stored.
  • RAM random access memory
  • ROM Read-Only Memory
  • magnetic disk or an optical disk and other various A medium on which program code can be stored.
  • the above-mentioned integrated unit of the present invention is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions for making A computer device (which may be a personal computer, a terminal, or a network device, etc.) executes all or part of the methods of the various embodiments of the present invention.
  • the aforementioned storage medium includes: a removable storage device, a RAM, a ROM, a magnetic disk or an optical disk and other mediums that can store program codes.
  • a computer device is also provided, and the computer device includes a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor When the program is executed, any one of the UAV mapping methods in the above-mentioned embodiments is implemented.
  • the above computer equipment after obtaining the first image data of the aerial photography of the target area by the airborne equipment of the UAV, performs imaging detection on the first image data, obtains the correction parameters of the first image data, and corrects the first image data according to the correction parameters.
  • the redundant information in the image data is obtained to obtain the second image data, the distortion difference in the second image data is further eliminated, the third image data is obtained, and the third image data is converted into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • the embodiment of the present invention also provides a mapping system.
  • FIG. 8 is a schematic structural diagram of a mapping system according to an embodiment. As shown in FIG. 8 , the mapping system according to an embodiment includes an image processing device 1000 and an unmanned aerial vehicle 1001 ;
  • the image processing apparatus 1000 is configured to:
  • the drone 1001 completes the aerial photography of the target area according to the control of the staff or automatically plans the flight route, and wirelessly transmits the aerial photography data, including the first image data, to the image processing device 1000, and the image processing device 1000 performs the above-mentioned tasks.
  • the above mapping system after obtaining the first image data of the aerial photography of the target area by the airborne equipment of the UAV 1001, performs imaging detection on the first image data, obtains the correction parameters of the first image data, and corrects according to the correction parameters
  • the redundant information in the first image data is used to obtain the second image data, the distortion difference in the second image data is further eliminated, the third image data is obtained, and the third image data is converted into a mapping result. Based on this, the negative impact of the plateau environment on the UAV imaging is reduced by correcting the parameters and eliminating the distortion difference, so as to improve the quality of the mapping results.
  • the drone 1001 adopts the oblique photographing drone of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

一种无人机填图方法、装置及填图系统,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。

Description

无人机填图方法、填图装置及填图系统
相关申请的交叉引用
本申请要求于2020年08月11日提交的2件中国专利申请的优先权,2件中国专利为:
专利1:名称为“无人机填图方法、填图装置及填图系统”、申请号为2020108000397;专利2:名称为“一种无人机倾斜拍摄平台及倾斜拍摄无人机”、申请号为202010800040X。
将上述2件专利申请的全部内容在此引入作为参考。
技术领域
本发明涉及无人机设备领域,特别是涉及一种无人机填图方法、填图装置及填图系统。
背景技术
近些年来,无人机技术作为一种新兴技术,从理论研究走向了实用化的阶段。出现了众多不同类型的无人机技术产品。无人机作为一种飞行器平台,相比较于地面平台,其工作场景限制较小且使用范围广。目前,无人机平台可以搭载诸多的传感器设备,诸如分辨率较高的相机、可见光高分辨相机、红外摄像机、多光谱设备、物探领域的航磁设备、以及激光雷达等传感器。基于无人机平台和平台搭载设备的发展,无人机在各个领域开始得到广泛的应用。
其中,区域地质调查、勘探或地图测绘等地质区域作业,传统的方式是依靠工作人员人工作业,包括使用行走载具、攀爬设备等进行地面作业。但是,这类区域作业往往需要面临复杂的地形和恶劣的环境,给地面作业带来了诸多不便。无人机作为一种飞行器平台,可有效地克服地面作业中需要的障碍。因此,无人机在地质、测绘领域的应用优势开始突显,尤其是在高海拔且交通不便的高原地区,使用无人机进行填图作业,进而完成地质调查、勘探或地图测绘等作业的需求更为迫切。
目前,无人机根据构造分类主要有固定翼无人机、旋翼无人机、伞翼无人机和扑翼无人机等几种,而在地质、测绘领域中使用的主要是多旋翼无人机,根据载重不同采用四旋翼无人机、八旋翼无人机或十二旋翼无人机等。然而,无论是哪种构造分类的无人机,在高原地区使用都会面临以下几个问题:第一,高原地区空气密度低,影响无人机的动力和稳定性; 第二,高原地区气候恶劣,风雨雪天气占比大,影响无人机的运行和机载设备的稳定性。由此可见,高原地区的使用问题,对无人机的平台和机载设备成像均有不利的影响,容易影响无人机填图生成的三维实体模型的质量,降低作业的精确度和参考性。
发明内容
基于此,有必要针对高原地区的使用问题,对无人机的平台和机载设备均有不利的影响,容易影响无人机填图生成的三维实体模型的质量,降低作业的精确度和参考性的缺陷,提供一种无人机填图方法、填图装置及填图系统。
一种无人机填图方法,包括步骤:
获取无人机的机载设备对目标区域进行航拍的第一影像数据;
对第一影像数据进行成像检测,获取第一影像数据的修正参数;
根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据;
消除第二影像数据中的畸变差,得到第三影像数据;
将第三影像数据转换为填图结果。
上述的无人机填图方法,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
本发明的一套技术方案中,无人机填图方法还包括步骤:
获取无人机的机载设备对目标区域内预设标定点进行航拍的第四影像数据;
根据预设标定点对应的预设三维模型和第四影像数据获得三维标定数据;
根据三维标定数据和第三影像数据获得目标影像图或目标数字模型,以完成填图。
本发明的一套技术方案中,在获取无人机的机载设备对目标区域进行航拍的第一影像数据的过程之前,还包括步骤:
对机载设备进行相机标定,消除机载设备在目标区域的成像畸变。
本发明的一套技术方案中,消除第二影像数据中的畸变差的过程,包括步骤:根据机载设备对应的预设鉴定报告,校正第二影像数据中的畸变差。
本发明的一套技术方案中,对第一影像数据进行成像检测,获取第一影像数据的修正参数的过程,包括步骤:
检测第一影像数据的实际信噪比;
比较第一影像数据对应的原始干扰区域和实际信噪比,得到对比度测量值;
根据对比度测量值和实际信噪比作为修正参数。
本发明的一套技术方案中,根据修正参数修正第一影像数据中的冗杂信息的过程,包括步骤:
去除第一影像数据中原始干扰区域中大于修正参数的影像区域。
本发明的一套技术方案中,将第三影像数据转换为填图结果的过程,包括步骤:
对第三影像数据进行空三处理,获得空三处理结果。
本发明的一套技术方案中,将第三影像数据转换为填图结果的过程,包括步骤:
基于第三影像数据提取出数字高程模型。
一种无人机填图装置,包括:
航拍获取模块,用于获取无人机的机载设备对目标区域进行航拍的第一影像数据;
参数获取模块,用于对第一影像数据进行成像检测,获取第一影像数据的修正参数;
修正模块,用于根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据;
校正模块,用于消除第二影像数据中的畸变差,得到第三影像数据;
影像转换模块,用于将第三影像数据转换为填图结果。
上述的无人机填图装置,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述任一实施例的无人机填图方法的步骤。
上述的计算机设备,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第 三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的无人机填图方法的步骤。
上述的计算机可读存储介质,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
一种填图系统,包括影像处理设备和无人机;
影像处理设备被配置为:
获取无人机的机载设备对目标区域进行航拍的第一影像数据;
对第一影像数据进行成像检测,获取第一影像数据的修正参数;
根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据;
消除第二影像数据中的畸变差,得到第三影像数据;
将第三影像数据转换为填图结果。
上述的填图系统,影像处理设备在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
本发明的一套技术方案中,无人机为倾斜拍摄无人机,倾斜拍摄无人机设有无人机倾斜拍摄平台、红外测距设备和高度控制器;无人机倾斜拍摄平台设于无人机的底部;红外测距设备用于测量倾斜拍摄无人机距离地面的竖直高度;高度控制器用于调整倾斜拍摄无人机距离地面的竖直高度。
上述的倾斜拍摄无人机,设置无人机倾斜拍摄平台,能够通过无人机倾斜拍摄平台连续倾斜拍摄的图像获取更加准确的非规则拍摄对象的模型,并且通过在无人机上设置高度调节装置,保证无人机倾斜拍摄平台在进行连续倾斜拍摄时,无人机相对底面的高度保持不变, 可以适应野外山区内复杂多变的山风,防止山风造成连续拍摄的图像产生高度差,以降低高原环境对无人机成像的负面影响。
本发明的一套技术方案中,无人机倾斜拍摄平台包括:基板、调平装置、水平板、第一拍摄组件和第二拍摄组件;水平板通过调平装置安装在基板上;调平装置调节水平板处于水平状态;第一拍摄组件固定设置在水平板的底面上,且拍摄方向竖直向下;第二拍摄组件可转动地设置在水平板的底面上,且拍摄方向相对竖直方向倾斜向下;第二拍摄组件绕第一拍摄组件旋转。
本发明的一套技术方案中,水平板的底面设有圆形滑轨,第一拍摄组件位于圆形滑轨的圆心处;第二拍摄组件设置在滑块上,滑块在圆形滑轨内绕第一拍摄组件转动。
本发明的一套技术方案中,圆形滑轨的内侧壁设有齿圈,滑块位于圆形滑轨内的部分设有齿轮;齿轮与齿圈通过行星齿轮组啮合,且第二拍摄组件朝远离圆形滑轨的径向向外倾斜。
本发明的一套技术方案中,水平板设有齿轮组电机,齿轮组电机控制滑块绕第一拍摄组件转动。
本发明的一套技术方案中,调平装置设有至少3个调平组件和1个标定铰;调平组件为可伸缩杆,相对于第一拍摄组件在水平板上的位置周向均布;标定铰为直接将基板和水平板连接的球铰;可伸缩杆的固定端与水平板球铰接,可伸缩杆的伸缩端与基板球铰接;水平板设有陀螺仪,陀螺仪与调平装置的控制器电连接,控制器控制调平组件的伸缩长度。
本发明的一套技术方案中,第一拍摄组件包括第一相机,第一相机的拍摄方向竖直向下;第二拍摄组件包括第二相机和倾斜调整组件,倾斜调整组件调整第二相机的拍摄方向与竖直方向的夹角。
本发明的一套技术方案中,第二相机的拍摄范围与第一相机的拍摄范围之间设有公共拍摄区域。
本发明的一套技术方案中,水平板和基板均为圆形板;基板设有周向均布的多个安装通孔。
本发明的一套技术方案中,无人机为固定翼无人机或旋翼无人机。
附图说明
图1为实施例1中一实施方式的无人机倾斜拍摄平台的结构示意图;
图2为实施例2中一实施方式的倾斜拍摄无人机的结构示意图;
图3为实施例3中一实施方式的无人机填图方法流程图;
图4为实施例3中另一实施方式的录播控制方法流程图;
图5为实施例4中一实施方式的录播显示界面图;
图6为实施例4中一实施方式的切换方法流程图;
图7为实施例4中一实施方式的无人机填图装置模块结构图;
图8为实施例6中一实施方式的填图系统结构示意图。
附图标记:
1-基板;2-水平板;3-调平组件;4-第一相机;5-第二相机;6-圆形滑轨;7-滑块;8-倾斜调整组件;1000-影像处理设备;1001-无人机。
具体实施方式
为了更好地理解本发明的目的、技术方案以及技术效果,以下结合附图和实施例对本发明进行进一步的讲解说明。同时声明,以下所描述的实施例仅用于解释本发明,并不用于限定本发明。
在本发明实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接可以是机械连接,也可以是电连接可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
全文中描述使用的术语“顶部”、“底部”、“在……上方”、“下”和“在……上”是相对于装置的部件的相对位置,例如装置内部的顶部和底部衬底的相对位置。可以理解的是装置是多功能的,与它们在空间中的方位无关。
实施例1
如图1、图2所示,本发明实施例提供一种无人机倾斜拍摄平台,用于无人机倾斜拍摄。无人机倾斜拍摄平台,包括:基板1、调平装置、水平板2、第一拍摄组件和第二拍摄组件。基板1与无人机固定连接,作为整个无人机倾斜拍摄平台的安装载体;水平板2通过调平装置安装在基板1上,调平装置调节水平板2处于水平状态;第一拍摄组件固定设置在水平板 2的底面上,且拍摄方向竖直向下;第二拍摄组件可转动地设置在水平板2的底面上,且拍摄方向相对竖直方向倾斜向下,用于获取直射拍摄图像;第二拍摄组件绕第一拍摄组件旋转,用于获取连续倾斜拍摄图像。由于本发明实施例主要用于对山区等野外地质勘察或灾害评估,野外复杂的气流会造成无人机的倾斜,当无人机发生倾斜时,调平装置能够调节水平板2处于水平状态,使得在第二拍摄组件进行连续倾斜拍摄时,不会因无人机的倾斜而造成连续倾斜拍摄图像存在高度和/或角度的差异,避免因此产生的三维模型误差。
在第二拍摄组件进行倾斜拍摄时,第二拍摄组件的拍摄方向始终沿第二拍摄组件圆形运动轨迹的径向向外,以保证连续倾斜拍摄的角度保持不变,方便三维模型的合成。具体的,水平板2的底面设有圆形滑轨6,第一拍摄组件位于圆形滑轨的圆心处;第二拍摄组件设置在滑块7上,滑块7在圆形滑轨6内绕第一拍摄组件转动,且第二拍摄组件朝远离圆形滑轨6的径向向外倾斜。在进行连续倾斜拍摄时,滑块7在圆形滑轨6内匀角速度转动,连续拍摄的拍摄步长越短、滑块7旋转一周后,连续倾斜拍摄的图像越多,每帧图像之间的连续性越好,三维模型的合成越贴合实际的拍摄对象,但如果拍摄步长过短,拍摄的图像过多,会极大地增加图像的数据量以及模型合成的计算量,本发明实施例中滑块7旋转一周,连续倾斜拍摄的图像数量为8-60,优选为24。
本发明实施例通过行星齿轮组的形式来实现滑块7在圆形滑轨6内的运动,具体的,圆形滑轨6的内侧壁设有齿圈,滑块7位于圆形滑轨6内的部分设有齿轮;齿轮与齿圈通过行星齿轮组啮合。
为了使滑块7能够在圆形滑轨6内绕第一拍摄组件匀速转动,本发明实施例中,水平板2设有齿轮组电机,齿轮组电机控制滑块7绕第一拍摄组件转动,由于齿轮组电机的转动角速度决定了滑块7在圆形滑轨6内绕第一拍摄组件旋转的角速度,而滑块7在圆形滑轨6内绕第一拍摄组件旋转的角速度决定了第二拍摄组件进行连续倾斜拍摄过程中拍摄图像的时间间隔,因此为了方便对齿轮组电机转动速度的控制,本发明实施例中齿轮组电机采用步进电机,以简化电机的控制算法。
本发明实施例中,调平装置调节水平板2处于水平状态,具体的,调平装置设有至少3个调平组件3和1个标定铰;调平组件3为可伸缩杆,相对于第一拍摄组件在水平板2上的位置周向均布;标定铰为直接将基板1和水平板2连接的球铰;可伸缩杆的固定端与水平板2球铰接,可伸缩杆的伸缩端与基板1球铰接。调平组件3通过伸缩来调整基板1与水平板2 对应位置处的距离,使得在基板1随无人机发生倾斜时,水平板2能够保证处于水平状态。此外,由于调平组件3均未可伸缩杆,标定铰的设置能够防止调平组件3造成水平板2远离或靠近无人机,只要无人机能够保持相对地表高度不变,即可实现水平板2相对地表高度不变,且保持水平,进而使得第二拍摄组件在进行连续倾斜拍摄时不会出现图像的高度差,避免因此产生的三维建模误差,是三维模型能更加准确地模拟实际地形。为了简化调平组件3控制算法的复杂程度,本发明实施例中,标定铰与水平板2连接的位置与第一拍摄组件在水平板2上的安装位置重合,并分别位置水平板2的顶面和底面上,圆形滑轨6的圆心处。
为了反映水平板2是否处于水平状态,本发明实施例中采用陀螺仪作为水平板2的水平程度的反馈,具体的,水平板2设有陀螺仪,陀螺仪与调平装置的控制器电连接,控制器控制调平组件3的伸缩长度。通过陀螺仪来反映水平板2的状态,并提供反馈信号,用以作为调整调平结组件的伸缩长度依据。
本发明实施例中,第一拍摄组件包括第一相机4,第一相机4的拍摄方向竖直向下,第一相机4获取直射图像,能够作为连续倾斜拍摄图像生成三维模型时的合成位置依据,使得图像合成时不会造成图像间明显的位置错位。
第二拍摄组件包括第二相机5和倾斜调整组件8,倾斜调整组件8调整第二相机5的拍摄方向与竖直方向的夹角。本发明实施例采用第二相机5绕第一相机4旋转的方式来进行连续倾斜拍摄,并获取连续倾斜拍摄图像,用以合成三维模型,整个过程中只使用一个相机作为倾斜拍摄的相机,相比现有的设置4个不同方向的倾斜相机,能够简化倾斜拍摄平台的重量,减轻无人机的负载,提高无人机的实际续航时间。此外,倾斜调整组件8能够调整第二相机5相对水平面的俯仰角度,在使用第二相机5进行连续倾斜拍摄前,可以根据拍摄对象的山体走势、倾斜程度等设置第二相机5的俯仰角度,使得第二相机5进行连续倾斜拍摄的图像能够包含更多的拍摄对象的特征、形状等信息,使通过连续倾斜拍摄的图像合成的三维模型能够更加真实地模拟拍摄对象。
由于第一相机4的直射图像作为连续倾斜拍摄图像合成的位置标定依据,第二相机5的拍摄范围与第一相机4的拍摄范围之间设有公共拍摄区域。
为了方便本发明实施例的生产加工,本发明实施例中,水平板2和基板1均为圆形板,方便圆形滑轨6的设置、调平组件3的周向均布设置、以及第一拍摄组件在水平板2上的位置设置。基板1设有周向均布的多个安装通孔,用以与无人机固定连接,周向均布设置有利 于使基板1对无人机的作用力周向均布施加,防止本发明实施例与无人机的安装,造成无人机的重量不平衡。
实施例2
本发明实施例提供了一种倾斜拍摄无人机,通过在无人机上安装实施例1的无人机倾斜拍摄平台来实现无人机对户外山地等非规则拍摄对象的倾斜拍摄。需要说明的是,无人机为固定翼无人机或旋翼无人机;固定翼无人机成本较低、便携性更强,体型变得越来越小,重量越来越轻,由原来的油机,发展为现在的油电混合、纯电力驱动的无人机,适用于地质区域调查项目。旋翼无人机,可以为四旋翼无人机、升力更大的八旋翼无人机载重更大的十二旋翼无人机、十六旋翼无人机,根据复杂的大小,拍摄环境的复杂成度确定。
实施例1中的无人机倾斜拍摄平台能够保证第二拍摄组件相对与基板1的高度差不变,即第二拍摄组件相对与无人机的高度差不变,当无人机相对地表的高度不变,即可保证第二拍摄组件相对地表的高度不变,从而使连续倾斜拍摄的图像之间不存在高度差。更方便通过连续倾斜拍摄的图像来合成三维模型。本发明实施例中,倾斜拍摄无人机还设有红外测距设备和高度控制器;红外测距设备测量倾斜拍摄无人机距离地面的竖直高度;高度控制器通过调整无人机的飞行或悬停状态,来调整倾斜拍摄无人机距离地面的竖直高度。
使用本发明实施例进行地质填图、地质勘探或灾害评估时,先将基板1与无人机的底部连接,使用螺栓穿过基板1的安装通孔和无人机的底部,并将基板1与无人机固定连接,完成无人机与无人机倾斜拍摄平台的安装。
预先对待航拍的山体进行粗评估,确定无人机航拍的高度、第二相机5的俯仰角度、第二相机5进行连续是倾斜拍摄360°的拍摄次数等参数,完成无人机连续倾斜拍摄的参数的预先设置。
放飞无人机,并控制无人机飞行至目标拍摄区域上方,调整无人机的高度,至目标高度;启动第一相机4,对目标区域进行直射拍摄,获得的直射图像作为连续倾斜拍摄图像的合成依据;启动滑块7,滑块7带动第二相机5绕第一相机4匀速转动,在第二相机5绕第一相机4匀速转动的过程中,第二相机5进行连续倾斜拍摄,获取连续倾斜拍摄图像,用于合成目标区域的三维空间模型。
在上述拍摄过程中:当无人机因外力(山区气流等)发生倾斜时,水平板2页发生倾斜,陀螺仪发出水平板2倾斜的信号,通过调平装置的控制器调整每个调平组件3的伸缩长度,使得水平板2再次处于水平状态;当无人机因外力(山区气流等)发生高度变化时,无人机上的红外测距设备检测到无人机相对底面的高度发生变换,并通过无人机自身的控制装置调整无人机的悬停或飞行高度至初始高度。本发明实施例通过上述调整,使得在第二相机5进行连续倾斜拍摄时,获得的连续拍摄图像不会出现高度差和角度差,同时结合直射图像,能更加准确地合成目标区域的三维模型。需要说明的是,直射图像和连续倾斜拍摄图像可以储存在无人机的存储设备中,也可通过无线或有线的方式传输至无人机的控制人员处。
当完成对目标区域的航拍后,回收无人机,将实施例1的无人机倾斜拍摄平台从无人机上拆下即可。
综上所述,本发明实施例提供了一种无人机倾斜拍摄平台及倾斜拍摄无人机;本发明通过绕第一拍摄组件旋转的第二拍摄组件进行不同水平方向的连续倾斜拍摄,从而能够通过连续倾斜拍摄的图像获取更加准确的非规则拍摄对象的模型;本发明设置水平板及调平装置,能够保证在第二拍摄组件绕第一拍摄组件进行连续倾斜拍摄时,第二拍摄组件始终位于同一水平面上,使得连续倾斜拍摄的图像不会出现高度上的位移差,方便通过图像合成模型;本发明在无人机上设置高度调节装置,从而保证在进行连续倾斜拍摄时,无人机相对底面的高度保持不变,可以适应野外山区内复杂多变的山风,防止山风造成连续拍摄的图像产生高度差。
实施例3
本发明实施例提供了一种无人机填图方法。
其中,无人机填图方法可应用于上述任一实施例的倾斜拍摄无人机。
图3为一实施方式的无人机填图方法流程图,如图3所示,一实施方式的无人机填图方法包括步骤S100至步骤S104:
S100,获取无人机的机载设备对目标区域进行航拍的第一影像数据;
无人机采用实施例2的倾斜拍摄无人机,机载设备采用但不限于实施例1的无人机倾斜拍摄平台。利用倾斜拍摄无人机对目标区域进行航拍,获取目标区域的直射图像和连续倾斜 拍摄图像,目标区域为无人机进行填图的勘测区域。拍摄过程中可根据工作人员的操控或自动规划飞行路线完成对目标区域的航拍。无人机倾斜拍摄平台能够从多个方向来观察物体,能够获取直射图像和连续倾斜拍摄图像,还可以实现对拍摄对象的高度、长度、坡度、角度的数据记录。
基于此,第一影像数据包括无人机倾斜拍摄平台拍摄的直射图像和连续倾斜拍摄图像以及航拍影像的相关参数。
在其中一个实施例中,图3为另一实施方式的无人机填图方法流程图,如图3所示,在步骤S100中获取无人机的机载设备对目标区域进行航拍的第一影像数据的过程之前,还包括步骤S200:
S200,对机载设备进行相机标定,消除机载设备在目标区域的成像畸变。
其中,基于机载设备获取到的第一影像数据主要用于三维重建。以机载设备为CCD相机为例,CCD数码相机对物理世界进行三维重建,第一影像数据对应的储存影像格式是以像素为单位进行,相机标定的工作主要是确立二维影像与三维影像的对应关系。相机需提前设置好三维模型,并确定三维模型的数据点与影像中对应点的关系,以作为相机的参数。需要注意的是,对机载设备的相机标定,可以根据机载设备选用的相机种类和应用场景选用不同的标定方法,包括但不限于主动视觉相机标定方法或相机自标定法等。本发明实施例采用实施例1的无人机倾斜拍摄平台时,第一映像数据包括直射图像和连续倾斜拍摄图像,由于直射图像与连续倾斜拍摄图像存在拍摄范围的重叠区域,直射图像可以作为将连续倾斜拍摄图像合成三维模型时的图像参照依据。每个连续倾斜拍摄图像对应一个水平面上的拍摄方位,以此时对应的第二相机的拍摄方向和位置能够建立坐标系,并根据该连续倾斜拍摄图像,能够获取在该坐标系下的模型图像,再将所有连续倾斜拍摄图像对应的各自的坐标系下的模型图像,通过坐标系变换,转换为第一相机处建立的空间基准坐标系的模型图像,最后将直射图像与每个连续倾斜拍摄图像对应的空间基准坐标系的模型图像进行比对,获取对应的公共区域,依照每个公共区域在直射图像中的位置关系,将所有连续倾斜拍摄图像对应的空间基准坐标系的模型图像拼合成三维模型。
S101,对第一影像数据进行成像检测,获取第一影像数据的修正参数;
获取到的第一影像数据为接收自机载设备航拍的数据,第一影像数据的质量依赖机载设备的性能。在高原地区应用时,高原地区的不利因素会影响机载设备的成像水平,为第一影 像数据引入干扰数据。对第一影像数据进行成像检测,包括检测第一影像数据中的噪声、对比度和亮度等,得到成像检测结果。通过成像检测结果与预设的基准参考值的差值,作为修正参数。
在其中一个实施例中,可根据先验标准对第一影像数据进行成像检测,检测第一影像数据与先验标准的差异,将差异值作为修正参数。
在其中一个实施例中,如图3所示,步骤S101中对第一影像数据进行成像检测,获取第一影像数据的修正参数的过程,包括步骤S300至S302:
S300,检测第一影像数据的实际信噪比;
在获取到第一影像数据后,检测第一影像数据的实际信噪比。在其中一个实施例中,对第一影像数据对应的影像进行区域划分,对各划分后的区域进行信噪比检测,得到实际信噪比。
S301,比较第一影像数据对应的原始干扰区域和实际信噪比,得到对比度测量值;
其中,原始干扰区域的划分,可以根据先验标准确定。通过先验标准确定各影像划分区域的信噪比,确定信噪比大于设定阈值的区域为原始干扰区域。比较原始干扰区域的和实际信噪比,得到对比度测量值。
S302,根据对比度测量值和实际信噪比作为修正参数。
在其中一个实施例中,还可根据原始干扰区域的亮度值确定对比度测量值。
S102,根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据;
在确定修正系数后,可基于修正系数确定参数区间。调整或删除第一影像数据中选定区域中相应参数超出参数区间的影像区域,以修正第一影像数据得到第二影像数据。
在其中一个实施例中,如图3所示,步骤S102中根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据的过程,包括步骤S400:
S400,去除第一影像数据中原始干扰区域中大于修正参数的影像区域。
其中,通过去除第一影像数据中的部分影像区域,以降低无人机在高原运行引入的干扰数据。
S103,消除第二影像数据中的畸变差,得到第三影像数据;
在上述实施例中,步骤S200中通过相机标定消除机载设备的畸变。在步骤S103中,获取到第二影像数据后,通过数据处理方式消除第二影像数据中的畸变差。在其中一个实施例 中,可根据预先存储S200步骤中的相机标定结果,并根据相机标定结果执行数据处理,消除第二影像数据中的畸变差。在另一个实施例中,可采用机载设备的鉴定报告,使用畸变差校正中的小像幅模块进行校正,纠正第二影像数据的畸变差。
S104,将第三影像数据转换为填图结果。
在获取到第三影像数据后,将经数据预处理后的第三影像数据进行填图转换,转换为三维数据模型或三维实景图等,已完成对目标区域的填图作业。
在其中一个实施例中,如图3所示,步骤S104中将第三影像数据转换为填图结果的过程,包括步骤S500:
S500,对第三影像数据进行空三处理,获得空三处理结果。
对第三影像数据进行空三处理,就是基于第三影像数据对机载设备的航拍做空中三角测量,获得测量结果。
其中,传统的空三处理的方式主要是影像数据结合控制点数据获得兴趣点坐标,而无人机在高原地区作业时,影像数据量大,空三处理中对加密点、控制点、连接点的处理量也较大,传统的人工判读和转刺的作业方式难以处理大数据量。基于此,在其中一个实施例中,步骤S500中对第三影像数据进行空三处理的过程,包括以下步骤A1至A3:
A1,对第三影像数据进行空三解算。
其中,获取目标区域第三影像数据对应的控制点数据和相机标定数据。判读控制点数据判读确定各控制点所在的影像及影像上的位置,相机标定文件用于空三解算前期纠正影像的光学畸变和后期中为自检校光束法平差提供初值。具体过程如下:
第一,判读确定各控制点所在的影像及影像上的位置。作为一个较优的实施方式,在确定控制点所在影像位置时,选择控制点位于中间部位的影像。第二,完成特征点提取和匹配。特征点提取时选用具有旋转不变性、尺度不变性及对影像灰度变化不敏感的算子进行。作为一个较优的实施方式,选用SIFT(Scale-invariant feature transform尺度不变特征变换)作为算子。第三,相对定向构建区域网,通过获得各影像之间的相对外方位元素,再通过将各影像间的相对外方位元素统一至像空间辅助坐标系下构建区域网。第四,根据控制点在地面测量坐标系下的坐标和与之相对应的相机空间坐标系下的坐标求得绝对定向参数,然后根据绝对定向指标将整个区域网替换至地面测量坐标系下。第五,通过自检较光束法平差优化,基于以上各步骤获得了各影像的概略绝对外方位元素和连接点在地面测量坐标系下的概略坐 标。经过自检较光束法平差优化获得精确的绝对外方位元素和连接点地面测量坐标。
A2,生成点云数据。
在步骤A1空三解算结果的基础上,通过稠密匹配或对稀疏点云的扩展等方式获得密集点云,为获得数字地表模型提供数据源。
A3,填图结果获取。
在其中一个实施例中,根据影像的绝对外方位元素可以形成可视立体像对模型,进而在立体环境下对地物点坐标进行采集获得数字线划图;由产生的点云数据可以获得数字地表模型,根据数字地表模型又可以获得真正射影像图。
在另一实施例中,由点云数据生成不规则三角网,通过纹理映射获得测区的三维模型。
在其中一个实施例中,图5为又一实施方式的无人机填图方法流程图,如图5所示,步骤S104中将第三影像数据转换为填图结果的过程,包括步骤S600:
S600,基于第三影像数据提取出数字高程模型。
其中,第一影像数据包括无人机遥感影像及其精确定向参数,经过影像预处理和多级金字塔影像生成,能得到特征线、特征点和格网点三类匹配单元,从生成的低尺度金字塔影像中开始进行由粗到细的、由低到高提取,最后可以获得原始分辩率影像上的成果。完成基于逐级金字塔影像之后配准后,全部的匹配的特性形成了不规则的三角网类型的数字高程模型结果,以低一级金字塔影像匹配的初始值并且调正匹配参数和前提下进行高一级影像匹配,然后可以基于多影像最小二乘匹配算法精化配准全部已经匹配成功的影像的特征,经过粗差的消除,在融合了所有匹配特征单元之后,内插形成最终的数字高程模型。
本实施例中,又一实施方式的无人机填图方法还包括以下步骤:
在机载设备选用全景相机时,完成正射影像拼接。
在完成前期数据采集、预处理、图片的配准、图片融合等后,根据空间域与频率域两种拼接方法完成正射影像拼接。包括步骤B1至B3:
B1,通过图像坐标变换和重采样对机载设备的航拍影像进行图像预处理。其中,图像左边变换采用多项式法,通过对航拍影像进行拉伸、放缩、旋转和平移的方法进行处理。
B2,对航拍数据进行图像配准。在参考图中找出图像中的特征点和模板,用来确定对应的位置,确定两幅图像之间的变换关系。确定两幅图像中的变换关系是保证图像拼接质量的重要因素。配准的算法包括以下几个部分:1)在图像中找到用于配准的特征信息点;2)找 到图像之间的匹配特征对;3)建立无人机图像之间的匹配关系和模型的参数;4)确立统一平面进行全局拼接。
B3,对航拍数据进行图像融合。根据图像配准的结果,进行图像的融合。图像融合主要是通过消除光线、配准误差和抖动带来的拼接痕迹。在机载设备航拍图像的拼接过程中,选取图像中的控制点为已知特征点,也可以人为选择特征点,根据一定的变换规则,采用最小二乘法进行融合。
在其中一个实施例中,又一实施方式的无人机填图方法还包括以下步骤:
对第一影像数据、第二影像数据或第三影像数据对应的图像进行几何校正。
对已经存在的大比例尺图件为基准,进行几何校正。从中可以获取控制点的坐标和高程,通过同名点之间的匹配,进行几何校正。
在其中一个实施例中,图6为再一实施方式的无人机填图方法流程图,如图6所示,再一实施方式的无人机填图方法还包括步骤S700至S702:
S700,获取无人机的机载设备对目标区域内预设标定点进行航拍的第四影像数据;
其中,在目标区域内预先设定多个预设标定点,无人机在目标区域内作业时对预设标定点进行航拍。在其中一个实施例中,预设标定点可在第四影响数据对应的图像内清晰显像。
S701,根据预设标定点对应的预设三维模型和第四影像数据获得三维标定数据;
其中,预设标定点可构成预设三维模型,预设标定点在预设三维模型内的预设三维坐标确定。根据第四影像数据,可确定预设坐标点在第四影像数据中对应的图像像素坐标。根据图像像素坐标、预设三维坐标和预设三维模型的映射关系,确定三维标定数据。
S702,根据三维标定数据和第三影像数据获得目标影像图或目标数字模型,以完成填图。
其中,第三影像数据也可确定预设标定点的图像像素坐标,在确定预设标定点的在第三影像数据对应的图像像素坐标,根据三维标定数据获取确定预设标定点所属的预设三维模型与目标区域实际图像的比例关系。在根据第三影像数据进行填图转换,获得目标影像图或目标数字模型时,根据该比例关系修正目标影像图或目标数字模型。
上述任一实施例的无人机填图方法,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正 和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
实施例4
本发明实施例还提供一种无人机填图装置。
图7为一实施方式的无人机填图装置模块结构图,如图7所示,一实施方式的无人机填图装置包括模块100至104:
航拍获取模块100,用于获取无人机的机载设备对目标区域进行航拍的第一影像数据;
参数获取模块101,用于对第一影像数据进行成像检测,获取第一影像数据的修正参数;
修正模块102,用于根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据;
校正模块103,用于消除第二影像数据中的畸变差,得到第三影像数据;
影像转换模块104,用于将第三影像数据转换为填图结果。
上述任一实施例的无人机填图装置,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
实施例5
本发明实施例还提供了一种计算机存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述任一实施例的录播控制方法。
本领域的技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、随机存取存储器(RAM,Random Access Memory)、只读存储器(ROM,Read-Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技 术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、终端、或者网络设备等)执行本发明各个实施例方法的全部或部分。而前述的存储介质包括:移动存储设备、RAM、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
与上述的计算机存储介质对应的是,在一个实施例中还提供一种计算机设备,该计算机设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,处理器执行程序时实现如上述各实施例中的任意一种无人机填图方法。
上述计算机设备,在获取无人机的机载设备对目标区域进行航拍的第一影像数据后,对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
实施例6
本发明实施例还提供一种填图系统。
图8为一实施方式的填图系统结构示意图,如图8所示,一实施方式的填图系统包括影像处理设备1000和无人机1001;
影像处理设备1000被配置为:
获取无人机1001的机载设备对目标区域进行航拍的第一影像数据;
对第一影像数据进行成像检测,获取第一影像数据的修正参数;
根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据;
消除第二影像数据中的畸变差,得到第三影像数据;
将第三影像数据转换为填图结果。
其中,无人机1001根据工作人员的操控或自动规划飞行路线完成对目标区域的航拍,并将航拍数据,包括第一影像数据等无线传输至影像处理设备1000,由影像处理设备1000执行上述任一实施例的无人机填图方法的步骤。
上述填图系统,在获取无人机1001的机载设备对目标区域进行航拍的第一影像数据后, 对第一影像数据进行成像检测,获取第一影像数据的修正参数,并根据修正参数修正第一影像数据中的冗杂信息,得到第二影像数据,进一步地消除第二影像数据中的畸变差,得到第三影像数据,将第三影像数据转换为填图结果。基于此,通过修正参数修正和畸变差消除,降低高原环境对无人机成像的负面影响,以提高填图结果的质量。
本实施例中,无人机1001采用实施例2的倾斜拍摄无人机。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种无人机填图方法,其特征在于,包括步骤:
    获取无人机(1001)的机载设备对目标区域进行航拍的第一影像数据;
    对所述第一影像数据进行成像检测,获取所述第一影像数据的修正参数;
    根据所述修正参数修正所述第一影像数据中的冗杂信息,得到第二影像数据;
    消除所述第二影像数据中的畸变差,得到第三影像数据;
    将所述第三影像数据转换为填图结果。
  2. 根据权利要求1所述的无人机填图方法,其特征在于,所述无人机填图方法还包括步骤:
    获取无人机(1001)的机载设备对目标区域内预设标定点进行航拍的第四影像数据;
    根据所述预设标定点对应的预设三维模型和所述第四影像数据获得三维标定数据;
    根据所述三维标定数据和所述第三影像数据获得目标影像图或目标数字模型,以完成填图。
  3. 根据权利要求1所述的无人机填图方法,其特征在于,在获取无人机(1001)的机载设备对目标区域进行航拍的第一影像数据的过程之前,还包括步骤:
    对所述机载设备进行相机标定,消除所述机载设备在目标区域的成像畸变。
  4. 根据权利要求1所述的无人机填图方法,其特征在于,所述消除所述第二影像数据中的畸变差的过程,包括步骤:
    根据所述机载设备对应的预设鉴定报告,校正所述第二影像数据中的畸变差。
  5. 根据权利要求1所述的无人机填图方法,其特征在于,所述对所述第一影像数据进行成像检测,获取所述第一影像数据的修正参数的过程,包括步骤:
    检测所述第一影像数据的实际信噪比;
    比较所述第一影像数据对应的原始干扰区域和所述实际信噪比,得到对比度测量值;
    根据所述对比度测量值和所述实际信噪比作为所述修正参数。
  6. 根据权利要求5所述的无人机填图方法,其特征在于,所述根据所述修正参数修正所述第一影像数据中的冗杂信息的过程,包括步骤:
    去除所述第一影像数据中原始干扰区域中大于所述修正参数的影像区域。
  7. 根据权利要求1至6任一项所述的无人机填图方法,其特征在于,所述将所述第三影像数据转换为填图结果的过程,包括步骤:
    对所述第三影像数据进行空三处理,获得空三处理结果。
  8. 根据权利要求7所述的无人机填图方法,其特征在于,所述将所述第三影像数据转换为填图结果的过程,包括步骤:
    基于所述第三影像数据提取出数字高程模型。
  9. 一种无人机填图装置,其特征在于,包括:
    航拍获取模块,用于获取无人机(1001)的机载设备对目标区域进行航拍的第一影像数据;
    参数获取模块,用于对所述第一影像数据进行成像检测,获取所述第一影像数据的修正参数;
    修正模块,用于根据所述修正参数修正所述第一影像数据中的冗杂信息,得到第二影像数据;
    校正模块,用于消除所述第二影像数据中的畸变差,得到第三影像数据;
    影像转换模块,用于将所述第三影像数据转换为填图结果。
  10. 一种填图系统,其特征在于,包括影像处理设备(1000)和无人机(1001);
    所述影像处理设备(1000)被配置为:
    获取无人机(1001)的机载设备对目标区域进行航拍的第一影像数据;
    对所述第一影像数据进行成像检测,获取所述第一影像数据的修正参数;
    根据所述修正参数修正所述第一影像数据中的冗杂信息,得到第二影像数据;
    消除所述第二影像数据中的畸变差,得到第三影像数据;
    将所述第三影像数据转换为填图结果。
  11. 根据权利要求10所述的填图系统,其特征在于,所述无人机(1001)为倾斜拍摄无人机,所述倾斜拍摄无人机设有无人机倾斜拍摄平台、红外测距设备和高度控制器;
    所述无人机倾斜拍摄平台设于所述无人机(1001)的底部;
    所述红外测距设备用于测量倾斜拍摄无人机距离地面的竖直高度;
    所述高度控制器用于调整倾斜拍摄无人机距离地面的竖直高度。
  12. 根据权利要求11所述的填图系统,其特征在于,所述无人机倾斜拍摄平台包括基板(1)、调平装置、水平板(2)、第一拍摄组件和第二拍摄组件;
    所述水平板(2)通过调平装置安装在所述基板(1)上;所述调平装置用于调节水平板 (2)处于水平状态;所述第一拍摄组件固定设置在水平板(2)的底面上,且拍摄方向竖直向下;所述第二拍摄组件可转动地设置在水平板(2)的底面上,且拍摄方向相对竖直方向倾斜向下;所述第二拍摄组件能够绕所述第一拍摄组件旋转。
  13. 根据权利要求12所述的填图系统,其特征在于,所述水平板(2)的底面设有圆形滑轨(6),所述第一拍摄组件位于圆形滑轨的圆心处;所述第二拍摄组件设置在滑块(7)上,所述滑块(7)在所述圆形滑轨(6)内绕第一拍摄组件转动。
  14. 根据权利要求12或13所述的填图系统,其特征在于,所述调平装置设有至少3个调平组件(3)和1个标定铰;所述调平组件(3)为可伸缩杆,相对于第一拍摄组件在水平板(2)上的位置周向均布;所述标定铰为直接将基板(1)和水平板(2)连接的球铰。
  15. 根据权利要求14所述的填图系统,其特征在于,所述可伸缩杆的固定端与水平板(2)球铰接,可伸缩杆的伸缩端与基板(1)球铰接。
  16. 根据权利要求15所述的填图系统,其特征在于,所述水平板(2)设有陀螺仪,所述陀螺仪与调平装置的控制器电连接,所述控制器控制调平组件(3)的伸缩长度。
  17. 根据权利要求16所述的填图系统,其特征在于,所述第一拍摄组件包括第一相机(4),所述第一相机(4)的拍摄方向竖直向下;
    所述第二拍摄组件包括第二相机(5)和倾斜调整组件(8),所述倾斜调整组件(8)调整第二相机(5)的拍摄方向与竖直方向的夹角。
  18. 根据权利要求17所述的填图系统,其特征在于,所述第二相机(5)的拍摄范围与第一相机(4)的拍摄范围之间设有公共拍摄区域。
  19. 根据权利要求12所述的填图系统,其特征在于,所述水平板(2)和基板(1)均为圆形板;
    所述基板(1)设有周向均布的多个安装通孔。
  20. 根据权利要求12所述的填图系统,其特征在于,所述无人机(1001)为固定翼无人机或旋翼无人机。
PCT/CN2020/134789 2020-08-11 2020-12-09 无人机填图方法、填图装置及填图系统 WO2022032942A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010800039.7 2020-08-11
CN202010800039.7A CN112001277B (zh) 2020-08-11 2020-08-11 无人机填图方法、填图装置及填图系统
CN202010800040.X 2020-08-11
CN202010800040.XA CN111959803B (zh) 2020-08-11 2020-08-11 一种无人机倾斜拍摄平台及倾斜拍摄无人机

Publications (1)

Publication Number Publication Date
WO2022032942A1 true WO2022032942A1 (zh) 2022-02-17

Family

ID=80246705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134789 WO2022032942A1 (zh) 2020-08-11 2020-12-09 无人机填图方法、填图装置及填图系统

Country Status (1)

Country Link
WO (1) WO2022032942A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931008A (zh) * 2023-02-27 2023-04-07 昆明人为峰科技有限公司 一种地形测绘设备运行状态监测系统与监测方法
CN116753427A (zh) * 2023-08-16 2023-09-15 四川鑫海工程造价咨询事务所有限公司 一种自调节角度的工程造价户外测绘设备及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102042A (zh) * 1993-01-22 1995-04-26 奥林柏斯光学工业株式会社 图象处理装置
CN106327573A (zh) * 2016-08-25 2017-01-11 成都慧途科技有限公司 一种针对城市建筑的实景三维建模方法
CN106586009A (zh) * 2016-10-27 2017-04-26 江苏云端智能科技有限公司 一种无人机
CN109555959A (zh) * 2018-11-22 2019-04-02 四川西华通用航空股份有限公司 一种高速航空摄影云台
CN209814323U (zh) * 2019-03-27 2019-12-20 湖南优加特装智能科技有限公司 一种应用于系留无人机的起降平台
CN111959803A (zh) * 2020-08-11 2020-11-20 中国地质科学院矿产资源研究所 一种无人机倾斜拍摄平台及倾斜拍摄无人机
CN112001277A (zh) * 2020-08-11 2020-11-27 中国地质科学院矿产资源研究所 无人机填图方法、填图装置及填图系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102042A (zh) * 1993-01-22 1995-04-26 奥林柏斯光学工业株式会社 图象处理装置
CN106327573A (zh) * 2016-08-25 2017-01-11 成都慧途科技有限公司 一种针对城市建筑的实景三维建模方法
CN106586009A (zh) * 2016-10-27 2017-04-26 江苏云端智能科技有限公司 一种无人机
CN109555959A (zh) * 2018-11-22 2019-04-02 四川西华通用航空股份有限公司 一种高速航空摄影云台
CN209814323U (zh) * 2019-03-27 2019-12-20 湖南优加特装智能科技有限公司 一种应用于系留无人机的起降平台
CN111959803A (zh) * 2020-08-11 2020-11-20 中国地质科学院矿产资源研究所 一种无人机倾斜拍摄平台及倾斜拍摄无人机
CN112001277A (zh) * 2020-08-11 2020-11-27 中国地质科学院矿产资源研究所 无人机填图方法、填图装置及填图系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931008A (zh) * 2023-02-27 2023-04-07 昆明人为峰科技有限公司 一种地形测绘设备运行状态监测系统与监测方法
CN116753427A (zh) * 2023-08-16 2023-09-15 四川鑫海工程造价咨询事务所有限公司 一种自调节角度的工程造价户外测绘设备及其控制方法
CN116753427B (zh) * 2023-08-16 2023-10-20 四川鑫海工程造价咨询事务所有限公司 一种自调节角度的工程造价户外测绘设备及其控制方法

Similar Documents

Publication Publication Date Title
CN111458720B (zh) 复杂山区基于机载激光雷达数据的倾斜摄影建模方法
CN111959803B (zh) 一种无人机倾斜拍摄平台及倾斜拍摄无人机
CN107504957B (zh) 利用无人机多视角摄像快速进行三维地形模型构建的方法
US11644839B2 (en) Systems and methods for generating a real-time map using a movable object
JP6496323B2 (ja) 可動物体を検出し、追跡するシステム及び方法
KR101793509B1 (ko) 작물 모니터링을 위하여 무인 비행체의 자동 경로 산정을 통한 원격 관측 방법 및 그 시스템
CN112001277B (zh) 无人机填图方法、填图装置及填图系统
CN111091613A (zh) 基于无人机航测的三维实景建模方法
JP7251474B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム、画像処理装置および画像処理システム
CN107492069B (zh) 基于多镜头传感器的图像融合方法
Adams et al. Unmanned aerial vehicle data acquisition for damage assessment in hurricane events
Laefer et al. 2015 aerial laser and photogrammetry survey of Dublin city collection record
CN112113542A (zh) 一种无人机航摄建设用地土地专项数据验收的方法
CN101919235A (zh) 正射影像图像的生成方法以及摄影装置
WO2022032942A1 (zh) 无人机填图方法、填图装置及填图系统
CN105758384A (zh) 一种无人机摇摆式倾斜摄影系统
WO2019100219A1 (zh) 输出影像生成方法、设备及无人机
CN115937288A (zh) 一种变电站三维场景模型构建方法
CN110998241A (zh) 用于校准可移动对象的光学系统的系统和方法
CN110986888A (zh) 一种航空摄影一体化方法
CN115937446A (zh) 基于ar技术的地形测绘装置及方法
Trevoho et al. Aerial data application for construction of large-scale plans
Reich et al. Filling the Holes: potential of UAV-based photogrammetric façade modelling
Fernández-Hernandez et al. A new trend for reverse engineering: Robotized aerial system for spatial information management
CN212922000U (zh) 一种用于高海拔地区填图的无人机倾斜拍摄平台及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949434

Country of ref document: EP

Kind code of ref document: A1