WO2022018912A1 - Prediction system, prediction method, and display device - Google Patents

Prediction system, prediction method, and display device Download PDF

Info

Publication number
WO2022018912A1
WO2022018912A1 PCT/JP2021/015566 JP2021015566W WO2022018912A1 WO 2022018912 A1 WO2022018912 A1 WO 2022018912A1 JP 2021015566 W JP2021015566 W JP 2021015566W WO 2022018912 A1 WO2022018912 A1 WO 2022018912A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
prediction
input
learning
prediction system
Prior art date
Application number
PCT/JP2021/015566
Other languages
French (fr)
Japanese (ja)
Inventor
晃治 陰山
茂寿 崎村
智裕 山本
秀之 田所
亜由美 渡部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022018912A1 publication Critical patent/WO2022018912A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a prediction system, a prediction method, and a display device that support an operator who judges driving based on a prediction value of machine learning.
  • Predictive systems that obtain predicted values using statistical prediction models such as neural networks, deep learning, and multiple regression analysis, which are machine learning, are being put to practical use in various fields.
  • These prediction models give training data in which the values of input items and output items are aligned in advance at the learning stage, and adjust the values of the parameters in the prediction model to appropriate values so that the calculated values of the prediction model match as much as possible. .. After that, in the prediction stage, an input value is given to this prediction model and the prediction value is calculated.
  • the prediction model is adjusted to match the training data given to the training stage as much as possible, the prediction value obtained when the input value within the range of the training data is given is likely to be close to the correct value, but the training If the data is out of range, that is, if the input value of the extrapolation condition is given, an appropriate predicted value may not be obtained, and the reliability is low.
  • the input value of the extrapolation condition may be given in the prediction stage. Since neural networks and deep learning are non-linear, the predicted values when the input values of extrapolation conditions are given may deviate significantly.
  • Patent Document 1 when operating in an operating region outside the data range on which the parameters and torque statistical model of the internal combustion engine are based (that is, in the case of extrapolation conditions), the physical quantity affected by the torque deviates from the reference value. If so, it is corrected by the correction coefficient. As a result, it is possible to provide a vehicle control device capable of controlling the engine torque of the internal combustion engine that drives the vehicle with high accuracy.
  • Patent Document 2 describes that a redundant input is detected by analyzing the sensitivity characteristic of the output when the input of the neural network is changed. By deleting the detected redundant input, the optimum input can be selected.
  • Patent Document 1 does not describe the function of presenting the degree of extrapolation conditions to the operator. In addition, there is no description about the sensitivity characteristics of how much the input value of each input item affects the output value. Patent Document 2 has no description related to extrapolation conditions.
  • A the input item that has a large influence on the predicted value is an extreme extrapolation condition and the reliability of the predicted value is significantly low
  • B the input item that has a large influence on the predicted value is extrapolated slightly. If the condition is a condition and the reliability of the predicted value is slightly low
  • C If the input item that has an extremely small effect on the predicted value is an extreme extrapolation condition and the reliability of the predicted value is slightly low, It was not possible to distinguish and judge. Also, there is no description about the function of presenting the degree of extrapolation condition to the user.
  • the present invention has been made in view of these problems.
  • the problem to be solved by the present invention is the influence of the input value of each input item on the output value and the extrapolation condition in the prediction system that presents the predicted value by the prediction model obtained by adjusting the parameters using the training data.
  • the degree of reliability of the predicted value is presented to the operator in consideration of both the extrapolation width of the input value.
  • a prediction system including a prediction model that learns using learning data in the learning stage, and an input unit that gives an input value of each input item given to the prediction model in the prediction stage.
  • the sensitivity coefficient calculation unit that calculates the sensitivity coefficient that shows the effect of each input item of the prediction model on the predicted value obtained by the prediction model, and the distance coefficient that shows the degree of deviation from the statistical value of the learning data regarding the input value of each input item.
  • a distance coefficient calculation unit that calculates It is a prediction system characterized by having a display unit that displays a numerical value or a figure.
  • Calculate the sensitivity coefficient that indicates the effect of each input item on the predicted value obtained by the prediction model calculate the distance coefficient that indicates the degree of deviation from the statistical value of the training data for the input value of each input item, and use the sensitivity coefficient.
  • a prediction method characterized by calculating an out-of-learning index from the value of the distance coefficient and displaying the value of either or both of the sensitivity coefficient and the distance coefficient, or the value of the out-of-learning index as a numerical value or a figure. " It is a thing.
  • a display device used in a prediction system including a prediction model that learns using training data in the learning stage, and the display device predicts the input value of each input item given to the prediction model.
  • a sensitivity coefficient that indicates the effect on the predicted value obtained by the model a distance coefficient that indicates the degree of deviation from the statistical value of the training data regarding the input value of each input item, and a learning range calculated from the values of the sensitivity coefficient and the distance coefficient.
  • the external index is a display device characterized by displaying either or both of the sensitivity coefficient and the distance coefficient, or the value of the index outside the learning range as a numerical value or a figure.
  • the operator can know the index value in consideration of both the influence of the input value of the input item as the extrapolation condition on the predicted value and the degree of extrapolation.
  • the operator can say, for example, when A: an input item having a large influence on the predicted value is an extreme extrapolation condition and the reliability of the predicted value is significantly low, B: prediction. If the input item that has a large effect on the value has a slight extrapolation condition and the reliability of the predicted value is slightly low, C: The input value that has an extremely small effect on the predicted value is an extrapolation condition. If the reliability of the predicted value is not so low, it can be judged quantitatively by distinguishing.
  • the operator grasps the reliability of the predicted value calculated by the prediction system, believes the predicted value when the reliability is high, and considers the safety factor in the predicted value when the reliability is low.
  • the values can be used to operate plants and equipment. As a result, the operator can reduce the risk of driving failure.
  • the functional block diagram which shows the whole structure example of the prediction system which concerns on embodiment of this invention.
  • the target of the prediction system of the present invention is specifically the operation of a rainwater pump, the operation of a water treatment plant, the operation of an industrial plant, etc., but the prediction model is identified by training data at the learning stage such as a neural network. It is not limited to these as long as a person obtains some predicted value based on the predicted model and sets an operating condition with reference to the predicted value.
  • FIG. 1 is a functional block diagram showing an overall configuration example of a prediction system according to an embodiment of the present invention.
  • the present invention is a prediction system that supports an operator who makes a judgment based on a prediction value of machine learning, and the entire system includes a learning stage and a prediction stage, but FIG. 1 mainly shows a prediction stage.
  • the prediction system that performs the processing of is described.
  • the learning data D1 used in the learning stage is stored in the statistical value storage unit DB of the learning data.
  • the learning method for obtaining the learning data D1 does not matter, but the learning data D1 is composed of normal data and does not include abnormal data, and is data having a value within a predetermined range. It is configured.
  • each input value D2 of an input item is given from the input unit 10 to the input value normalization calculation unit 12.
  • the normalization calculation unit 12 converts the value of each given input item into a numerical value having a certain width, and outputs the normalized input value D2U.
  • the normalized input value D2U is given to the distance coefficient calculation unit 18 and the sensitivity coefficient calculation unit 22.
  • the distance coefficient calculation unit 18 is also given the statistical value D1U of the training data after normalization.
  • the statistic value D1U of the training data after normalization is a value obtained by normalizing the statistic value D1 of the training data of each input item given from the statistic value storage unit DB of the training data in the statistic value normalization calculation unit 15. be.
  • the distance coefficient calculation unit 18 calculates the distance coefficient L based on the input value D2U after normalization and the statistical value D1U of the learning data after normalization, and gives it to the index calculation unit 26 outside the learning range.
  • the sensitivity coefficient calculation unit 22 gives the input value D2U1 in which one variable of the input value D2U after normalization is perturbed to the prediction model M1 for sensitivity analysis.
  • the prediction model M1 for sensitivity analysis calculates the predicted value DS1 when a perturbation is given and gives it to the sensitivity coefficient calculation unit 22.
  • the sensitivity coefficient calculation unit 22 obtains the sensitivity coefficient K based on the predicted value DS1 when a perturbation is given, and gives it to the out-of-learning range index calculation unit 26.
  • the out-of-learning index calculation unit 26 calculates the out-of-learning index D3 based on the distance coefficient L and the sensitivity coefficient K and gives it to the display unit 30.
  • the display unit 30 displays the given learning range index D3 on the screen.
  • the input value D2U after normalization is also given to the prediction model M2 for predicting value calculation, and the predicted value DS2 is obtained. If the predicted value DS2 is obtained, the predicted value D2 may be given to the predicted value calculation prediction model M2 as well.
  • the predicted value DS2 is also given to the display unit 30, and is displayed on the screen together with the learning range index D3.
  • the display unit 30 is given a distance coefficient L and a sensitivity coefficient K, and these may be displayed. Although not shown, not only the out-of-learning index D3 and the predicted value DS2 but also various data D1 and D2 input to the prediction system and various data D1 and D2 input to the prediction system are used for the display unit 30. All data including various intermediate data generated by the processing can be displayed, and the display format can be appropriate.
  • the above-mentioned room temperature and atmospheric pressure are all converted into values in the range of 0.0 to 1.0, for example.
  • the input value D2U obtained in this way after normalization is given to the distance coefficient calculation unit 18 and the sensitivity coefficient calculation unit 22.
  • the statistical value D1 of the learning data of each input item is given from the statistical value storage unit DB of the learning data.
  • the statistical value D1 of the learning data of each input item it is conceivable that numerical values of various scales are given.
  • the minimum temperature is 5.6 ° C
  • the maximum temperature is 28.4 ° C
  • the average temperature is 16.45 ° C
  • the standard deviation is 7.3 ° C
  • the minimum pressure is 1004.8 hPa
  • the maximum pressure is 1016.7 hPa
  • the average is 1004.8 hPa
  • the maximum pressure is 1016.7 hPa
  • the average is 1004.8 hPa
  • the maximum pressure is 1016.7 hPa
  • a linear transformation may be used for normalization, or an affine transformation may be used.
  • the above-mentioned room temperature and atmospheric pressure are all converted into values in the range of 0.0 to 1.0, for example.
  • the normalization method needs to be exactly the same as the input value normalization calculation unit 12. As a result, the input value D2U after normalization and the statistical value D1U of the learning data after normalization can be compared and evaluated on the same scale by the distance coefficient calculation unit 18.
  • FIG. 2 is an example showing a function for obtaining a distance coefficient from a value of an input item when two or more large and small statistical values are used among the learning data D1 stored in the statistical value storage unit DB of the learning data.
  • the horizontal axis shows the input value X
  • the vertical axis shows the distance coefficient L.
  • the values Xmax and the minimum value Xmin are described. If the value of the input value X is between Xmin and Xmax, it is considered to be close to the interpolation condition or the interpolation condition of the training data D1, and the value of the distance coefficient L in FIG. 2 is set to 0. When the input value X is smaller than Xmin, the value of the distance coefficient L becomes smaller as the value increases from Xmin. When the input value X is larger than Xmax, the value of the distance coefficient L becomes larger as the value increases from Xmax.
  • the line graph in FIG. 2 is shown as a straight line for the sake of simplicity, but it does not have to be a straight line.
  • the pair of Xmin and Xmax will be "minimum value, maximum value", but if the value at the end of the distribution can be regarded as close to the extrapolation condition, other than this.
  • “mean value-standard deviation x ⁇ , mean value + standard deviation x ⁇ (where ⁇ is a positive number)” or the like may be used. The larger the value of ⁇ , the closer the pair of Xmin and Xmax is to the “minimum value, maximum value”, and the closer to the more accurate “extrapolation condition”.
  • the method of determining Xmin and Xmax is not limited to these if two large and small values are used.
  • FIG. 3 shows an example showing a function for obtaining the distance coefficient from the value of the input item when one statistical value is used in the distance coefficient calculation unit 18.
  • FIG. 3 also shows the input value X on the horizontal axis and the distance coefficient L on the vertical axis.
  • the learning data D1 stored in the statistical value storage unit DB of the learning data when one statistical value exists like the average value of the learning data D1, this is described as Xcenter in FIG.
  • the value of the distance coefficient L becomes smaller as the value becomes farther from the Xcenter, taking a negative value.
  • the function of FIG. 3 shows a quadratic function folded at the point of Xcenter, but the function is not particularly limited as long as it shows the same tendency.
  • a mode value, a median value, or the like may be used in addition to the average value.
  • the sensitivity coefficient K indicates how much the predicted value of the sensitivity analysis prediction model M1 changes when a minute perturbation is applied to the input value of the sensitivity analysis prediction model M1.
  • the predicted value when the value of one variable is 0.49 and 0.51, that is, the predicted value DS1 when a perturbation is given is calculated and given to the sensitivity coefficient calculation unit 22. ..
  • the sensitivity coefficient calculation unit 22 calculates the influence of the input item to which the perturbation is given on the predicted value, that is, the sensitivity coefficient K, by dividing the difference of the predicted value DS1 when the perturbation is given by the perturbation width. This value can be a positive number or a negative number.
  • the normalized input value D2U is used as the target to be perturbed by the sensitivity coefficient calculation unit 22, but for example, when the given input value is a jump value, the prediction when the perturbation is given.
  • the value DS1 and the sensitivity coefficient K can be extreme values. Since this has an undesired effect on the calculation of the out-of-learning index D3, the latest value is not used as the normalized input value D2U as the target to be perturbed by the sensitivity coefficient calculation unit 22. It is also possible to obtain in advance a value considering the past values such as the average value, the mode value, and the median value of the past n points including the point of, and give a perturbation to it.
  • the out-of-learning index calculation unit 26 calculates the out-of-learning index D3 from the distance coefficient L and the sensitivity coefficient K.
  • An example of a specific method of this calculation method will be described below.
  • the prediction model M1 for sensitivity analysis it is assumed that there are three input values of the prediction model M1 for sensitivity analysis, and they are called X 1 , X 2 , and X 3 , respectively.
  • the predicted value obtained by the sensitivity analysis prediction model M1 is referred to as Y. Since the sensitivity coefficient K is a change in the predicted value when a minute perturbation is applied to the input value as described above, it can be expressed as the following equation (1).
  • the distance coefficient L can be calculated by giving X 1 , X 2 , and X 3 to a function as shown in FIG. 2, for example. Since there are three types of input values, three distance coefficients L are also obtained, and these are called L 1 , L 2 , and L 3 . Using these variables, the out-of-learning index D3 can be obtained, for example, by the following equation (2).
  • the value of the out-of-learning index D3 is 0, there is no input value as an extrapolation condition, or there is an input value as an extrapolation condition, but the sum of the three terms has no effect on the predicted value Y. Means that. It can be said that the predicted value DS2 obtained by the prediction model M2 for calculating the predicted value in this case has high reliability. On the contrary, when the value of the index D3 outside the learning range deviates from 0, it means that the input value of the extrapolation condition is included and the influence on the predicted value Y cannot be ignored. It can be said that the predicted value DS2 obtained by giving the input value in this case to the predicted value calculation prediction model M2 has low reliability.
  • the value of the out-of-learning index D3 obtained by Eq. (2) is a measure of how much the predicted value DS2 obtained by the predicted value calculation prediction model M2 deviates to either the positive or negative direction. Become.
  • Equation (2) is the sum of three terms for the three input values X 1 , X 2 , and X 3 , and each term can be either a positive value or a negative value. If there are positive and negative terms, the effects of each term will be offset. When offset, the value of the out-of-learning index D3 approaches 0, but the individual input values themselves may be extreme extrapolation conditions. If it is not necessary to estimate how much the predicted value DS2 obtained by the predicted value calculation prediction model M2 deviates in the positive or negative direction, and only whether or not it is an extrapolation condition is evaluated, the learning range.
  • the extrapolation index D3 may be calculated as the sum of the values obtained by taking the absolute values for each term, for example, as shown by the equation (3).
  • the mathematical formulas shown in the formulas (2) and (3) are the simplest examples, and are particularly suitable for formulas that calculate the out-of-learning index D3 based on the values of the sensitivity coefficient K and the distance coefficient L. There is no limitation.
  • the out-of-learning index D3 calculated by the out-of-learning index calculation unit 26 is displayed on the display unit 30.
  • the display unit may be a computer, a tablet, a screen of a mobile terminal, or the like.
  • the predicted value DS2 calculated by the predicted value calculation prediction model M2 is also displayed on the display unit 30. These displays may be numbers, but may also be figures such as graphs.
  • by displaying not only the latest predicted value DS2 but also the past predicted value and the measured value it is possible to confirm how correct the past predicted value was, and at the same time, the prediction error at that time and the index D3 outside the learning range. It is even more useful because you can understand the relationship between them.
  • An example of the display screen is shown in FIGS. 4 to 8.
  • FIG. 4 is a diagram showing a display example in which the predicted value DS2, the measured value D2U, and the value of the out-of-learning range index D3 are all displayed as a line graph.
  • An example of the display screen 90 of FIG. 4 is composed of two graphs, an upper graph and a lower graph.
  • the upper graph is a trend graph with a broken line showing the measured value D2U and the predicted value DS2 on the vertical axis with respect to the elapsed time on the horizontal axis.
  • the elapsed time 0 indicates the present, and the measured value D2U is plotted because there are values up to this elapsed time 0, and for the future elapsed time 1, there is no measured value D2U yet and only the predicted value DS2 is shown.
  • the lower graph of FIG. 4 is a trend graph with a polygonal line of the out-of-learning range index D3 having the same horizontal axis of elapsed time as the upper graph. In this way, the transition of the out-of-learning index D3 up to the future elapsed time 1 can be visually confirmed.
  • the value of the out-of-learning index D3 of the future elapsed time 1 is close to 0 and small. Since this small value means that the degree of extrapolation condition is small, it can be trusted that the predicted value DS2 of the future elapsed time 1 in the upper graph will be correct.
  • the predicted value DS2 is the measured value at the time of the elapsed time -5 in the upper graph. It can be inferred that it will match.
  • the horizontal axis of FIG. 4 shows the elapsed time from -6 to 1, but the width of this elapsed time may be changed.
  • the future value is also shown here up to the elapsed time 1, not only one point but also a plurality of future predicted values DS2 and the value of the out-of-learning range index D3 may be shown.
  • the future predicted value DS2 at multiple times and the value of the out-of-learning range index D3
  • a plurality of graphs may be displayed, or may be narrowed down and displayed when it becomes complicated.
  • the graph on the upper side of FIG. 4 shows an example of a trend graph with a line, but it may be a bar graph as shown in FIG.
  • FIG. 5 is a diagram showing a display example in which the predicted value DS2 and the measured value D2U are displayed as a bar graph. In this figure, two bar graphs of the measured value D2U and the predicted value DS2 are displayed according to the passage of time.
  • the graph on the lower side of FIG. 4 is also a trend graph with a line, it may be a bar graph as shown in FIG.
  • FIG. 6 is a diagram showing a display example in which the value of the index D3 outside the learning range is displayed as a bar graph. For the purpose of comparison with past values, the bar graphs shown in FIGS. 5 and 6 may be easier to see.
  • the out-of-learning index D3 When calculating the out-of-learning index D3 by summing the absolute values of the terms of a plurality of input items as in the above equation (2), the out-of-learning index is displayed by displaying the value of each term. It is possible to indicate which input item affects the value of D3 to what extent. A display example in that case is shown in FIG.
  • FIG. 7 is an example of a display unit that displays the breakdown of the value of the index D3 outside the learning range as a stacked area graph.
  • the stacked area graph may be colored, or may be colored according to whether the value in the term before the absolute value is given is a positive value or a negative value. This makes it possible to grasp which term and which term cancel each other out.
  • a stacked bar graph may be used as shown in FIG. 8 instead of the stacked area graph. Even in this figure, it is possible to determine which input item causes the out-of-learning range index D3 to increase.
  • the stacked bar graph may also be colored, or may be colored according to whether the value in the term before the absolute value is given is a positive value or a negative value.
  • the predicted value DS2 and the measured value D2U on the upper side of the display screen 90 of the display unit 30, and display the out-of-learning range index D3 on the lower side, but reduce the information to be viewed.
  • the result of the out-of-learning index D3 will be included in the upper figure. This can be achieved by changing it according to the value.
  • the value of the out-of-learning index D3 is small to 0 and the reliable predicted value DS2 is a dark black line or legend.
  • the value of the out-of-learning index D3 is extremely large or extremely small, so it is considered to be unreliable.
  • the predicted value DS2 may be a light black line or a legend, or a line or a legend close to red.
  • the above display example is based on the distance coefficient L indicating how much the input value D2 taken into the prediction system deviates from the learning data D1 used in the learning stage, and the sensitivity coefficient K when a perturbation is given.
  • These two indexes are aggregated into one index, the out-of-learning range index D3, and expressed as various graphs and trends as time-series information in the prediction system. Further, it is expressed as various graphs and trends in comparison with the predicted value DS2 and the measured value D2U.
  • notations are for the purpose of providing the operator with judgment material that allows the operator to judge whether or not the predicted value should be adopted for the operation of the plant, for example, through the display, and the method of providing the data is other than the graph and the trend display.
  • various data of each input time are displayed in a table format, which includes a distance coefficient L, a sensitivity coefficient K, and an out-of-learning range index D3.
  • the numerical display of the present invention it is preferable to display either or both of the distance coefficient L and the sensitivity coefficient K, or the out-of-learning index D3 which is one index obtained by aggregating these. Further, it is preferable that the numerical display includes the predicted value DS2 and the measured value D2U.
  • the prediction model in this case is the prediction model M2 of FIG.
  • FIG. 9 is a diagram showing an example of simulated data generated by the equation (3) for learning the equation (4). Therefore, simulated data X 1 and X 2 are generated as shown in FIG. 9 according to the relationship of Eq. (5), and the value of Y at this time is obtained. From these results, these are used as learning data D1 and three coefficients a, The values of b and c were identified. Specifically, X 1 is changed in 0.2 increments as a range from 0 to 1.0, and X 2 is as a range from 0 to 1.0 in 0.2 increments for each value of X 1. By changing, the value of the output Y at the time of each combination was obtained.
  • FIG. 10 The value of the simulated data and the predicted value by the prediction model of the formula (5) are shown in FIG. 10 as a correlation diagram.
  • the horizontal axis represents the value in the range of 0 to 1.0 as the value of the simulated data
  • the vertical axis represents the value in the range of 0 to 1.0 as the predicted value by the prediction model.
  • R 2 which is an index showing the degree of correlation is 0.9214, which is a relatively good model under the interpolation conditions of X 1 and X 2 in FIG. 9 (both are in the range of 0 to 1). You can see that.
  • FIG. 11 shows the result of obtaining the prediction error of the predicted value calculated by the prediction model.
  • FIG. 11 is a bar graph of prediction errors for the values of inputs X 1 and X 2. In this figure, a combination of two inputs X 1 and X 2 is adopted on the horizontal axis, and a prediction error is shown on the vertical axis.
  • FIG. 11 shows the case where X 1 is changed from 1.0 to 1.5 while X 2 is fixed to 1.0, and the right side of FIG. 11 shows the case where X 1 is fixed to 1.0. This is the case where X 2 is changed from 1.0 to 1.5.
  • X 2 is the extrapolation condition when X 1 is the extrapolation condition. It can be estimated in advance that the prediction error will be larger than when the extrapolation condition is used.
  • the prediction model is a black box model such as a neural network or deep learning and cannot be easily grasped by a simple mathematical formula, it is almost impossible to estimate not only the degree of prediction error but also the magnitude. Is.
  • FIG. 12 shows an example of the result of calculating the out-of-learning range index D3.
  • FIG. 12 is a bar graph of out-of-learning index for the values of inputs X 1 and X 2.
  • a combination of two inputs X 1 and X 2 is adopted on the horizontal axis, and the out-of-learning range index D3 is shown on the vertical axis.
  • the left side of FIG. 12 shows the case where X 1 is changed from 1.0 to 1.5 with X 2 fixed to 1.0
  • the right side of FIG. 11 shows the case where X 1 is fixed to 1.0. This is the case where X 2 is changed from 1.0 to 1.5. Looking at the graph on the left side of FIG.
  • the sensitivity coefficient K is also considered, such difference occurs between X 1 and X 2. It can be seen that the value of the out-of-learning range index D3 has a shape similar to the value of the prediction error shown in FIG. In this way, if the value of the index D3 outside the learning range is known, it can be said that the magnitude of the predicted value DS2 may be different from the measured value D2U in advance.
  • FIG. 13 shows the prediction error shown in FIG. 11 and the value of the out-of-learning range index D3 shown in FIG. 12 as a correlation diagram.
  • FIG. 13 is a diagram showing an example of correlation between an index outside the learning range and a prediction error.
  • the out-of-learning index D3 is adopted on the horizontal axis, and the prediction error is shown on the vertical axis. If such a correlation diagram can also be displayed on the display unit 30, it is possible to grasp in advance how much the measured value D2U may deviate from the value of the index D3 outside the learning range of the predicted value in the future, which is more useful. be.
  • the reliability of the predicted value DS2 is considered to be low. You may add a function that does not display the value DS2 itself on the screen. By adding such a function, it becomes possible to drive on the safe side with further reduced risk.
  • the configuration of the prediction system has been explained with reference to the configuration of FIG. 1, but this idea can be realized as it is as a prediction method using a prediction model.
  • the invention of the prediction method is "a prediction method for making a prediction by a prediction model learned by using training data in a learning stage, and in the prediction stage, an input value of each input item given to the prediction model is obtained and predicted.
  • Calculate the sensitivity coefficient that shows the effect of each input item of the model on the predicted value obtained by the prediction model calculate the distance coefficient that shows the degree of deviation from the statistical value of the training data regarding the input value of each input item, and calculate the sensitivity. It can be realized by calculating the out-of-learning index from the values of the coefficient and the distance coefficient, and displaying either or both of the sensitivity coefficient and the distance coefficient, or the value of the out-of-learning index as a numerical value or a figure.
  • the present invention has a feature as a display content displayed on the display device.
  • a display device used in a prediction system including a prediction model for learning using learning stage training data and the display device has an input value of each input item given to the prediction model in the prediction model.
  • Sensitivity coefficient indicating the effect on the required predicted value
  • distance coefficient indicating the degree of deviation from the statistical value of the training data regarding the input value of each input item
  • the out-of-learning index calculated from the values of the sensitivity coefficient and the distance coefficient.
  • a display device characterized by displaying the value of either or both of the sensitivity coefficient and the distance coefficient, or an index outside the learning range as a numerical value or a figure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

This prediction system for presenting a prediction value by a prediction model acquired by adjusting parameters through usage of training data, presents an operator with a degree of reliability of the prediction value in consideration of both of an influence of input values of respective input items on an output value and a width of extrapolation of input values serving as an extrapolation condition. This prediction system includes a prediction model which is trained by using training data at a training stage. The prediction system is characterized by being provided with: an input unit for providing an input value for each input item to be provided to the prediction model at a prediction stage; a sensitivity coefficient calculation unit that calculates a sensitivity coefficient indicating an influence of each input item of the prediction model on the prediction value obtained from the prediction model; a distance coefficient calculation unit that calculates a distance coefficient indicating a degree of deviation from a statistic value of training data regarding the input value for each input item; an out-of-training range index calculation unit that calculates an out-of-training range index from the sensitivity coefficient and a value of the distance coefficient; and a display unit that displays one or both of the sensitivity coefficient and the distance coefficient, or a value of the out-of-training range index as a numerical value or a drawing.

Description

予測システム、予測方法、ならびに表示装置Prediction system, prediction method, and display device
 本発明は、機械学習の予測値に基づき運転を判断する運転員を支援する予測システム、予測方法、ならびに表示装置に関する。 The present invention relates to a prediction system, a prediction method, and a display device that support an operator who judges driving based on a prediction value of machine learning.
 機械学習であるニューラルネットワークやディープラーニング、重回帰分析など統計的な予測モデルを用いて予測値を求める予測システムが、様々な分野において実用化されつつある。これらの予測モデルは、あらかじめ学習段階において入力項目と出力項目の値が揃った学習データを与え、予測モデルの計算値ができるだけ合致するように予測モデル内のパラメータの値を適切な値に調節する。その後、予測段階ではこの予測モデルに入力値を与え、予測値を計算する。 Predictive systems that obtain predicted values using statistical prediction models such as neural networks, deep learning, and multiple regression analysis, which are machine learning, are being put to practical use in various fields. These prediction models give training data in which the values of input items and output items are aligned in advance at the learning stage, and adjust the values of the parameters in the prediction model to appropriate values so that the calculated values of the prediction model match as much as possible. .. After that, in the prediction stage, an input value is given to this prediction model and the prediction value is calculated.
 予測モデルは学習段階に与えた学習データとできるだけ合致するように調節されるため、学習データの範囲内の入力値を与えた場合に得られる予測値は正しい値に近い可能性が高いが、学習データの範囲外、すなわち外挿条件の入力値が与えられた場合には適切な予測値を得られない可能性があり、信頼性が低い。 Since the prediction model is adjusted to match the training data given to the training stage as much as possible, the prediction value obtained when the input value within the range of the training data is given is likely to be close to the correct value, but the training If the data is out of range, that is, if the input value of the extrapolation condition is given, an appropriate predicted value may not be obtained, and the reliability is low.
 とくにニューラルネットワークやディープラーニングなどの予測モデルを用いる場合、学習段階では十分に大量の学習データを用いることが望ましい。時間の制約などで十分に大量の学習データを得られる前に予測段階に移らざるを得ない場合、予測段階で外挿条件の入力値が与えられることが生じることがある。ニューラルネットワークやディープラーニングなどは非線形であるため、外挿条件の入力値が与えられた場合の予測値が大きく外れる可能性がある。 Especially when using predictive models such as neural networks and deep learning, it is desirable to use a sufficiently large amount of training data at the learning stage. If it is necessary to move to the prediction stage before a sufficiently large amount of training data can be obtained due to time constraints, etc., the input value of the extrapolation condition may be given in the prediction stage. Since neural networks and deep learning are non-linear, the predicted values when the input values of extrapolation conditions are given may deviate significantly.
 その結果、予測値を参考にしてプラントや装置の操作をする操作員は、予測値をどの程度信用して良いか判断が難しい。もし学習時に比べて過大あるいは過小となる入力値が含まれていることが分かっても、その入力項目の感度特性が分からないと、予測値がどの程度の影響を受けるか分からない。 As a result, it is difficult for operators who operate plants and equipment with reference to the predicted values to judge how much they can trust the predicted values. Even if it is found that an input value that is too large or too small compared to the time of learning is included, if the sensitivity characteristic of the input item is not known, it is not possible to know how much the predicted value is affected.
 このような課題に関連し、特許文献1および特許文献2に記載の技術が知られている。
特許文献1は、内燃機関のパラメータとトルクの統計モデルの基礎となったデータ範囲外の運転領域で運転する場合(すなわち外挿条件の場合)、トルクの影響する物理量が基準値から乖離していれば補正係数で補正するものである。これにより、車両を駆動する内燃機関の機関トルクを高い精度で制御することのできる車両の制御装置を提供できるとしている。
In relation to such a problem, the techniques described in Patent Document 1 and Patent Document 2 are known.
In Patent Document 1, when operating in an operating region outside the data range on which the parameters and torque statistical model of the internal combustion engine are based (that is, in the case of extrapolation conditions), the physical quantity affected by the torque deviates from the reference value. If so, it is corrected by the correction coefficient. As a result, it is possible to provide a vehicle control device capable of controlling the engine torque of the internal combustion engine that drives the vehicle with high accuracy.
 特許文献2にはニューラルネットの入力を変動させたときの出力の感度特性を解析することで冗長な入力を検出することが記載されている。検出された冗長な入力を削除することで、最適な入力を選択できるとしている。 Patent Document 2 describes that a redundant input is detected by analyzing the sensitivity characteristic of the output when the input of the neural network is changed. By deleting the detected redundant input, the optimum input can be selected.
特開2009-287520号公報Japanese Unexamined Patent Publication No. 2009-287520 特許第3329806号Patent No. 3329806
 しかしながら、特許文献1は外挿条件の程度を運転員に提示する機能について記載されていない。また、各入力項目の入力値がどの程度出力値に影響するか、感度特性に関する記載も見られない。特許文献2は外挿条件に関係する記載がない。 However, Patent Document 1 does not describe the function of presenting the degree of extrapolation conditions to the operator. In addition, there is no description about the sensitivity characteristics of how much the input value of each input item affects the output value. Patent Document 2 has no description related to extrapolation conditions.
 したがって、A:予測値への影響の大きい入力項目が極端な外挿条件となっていて予測値の信頼性が大幅に低い場合、B:予測値への影響の大きい入力項目がわずかな外挿条件となっていて予測値の信頼性がわずかに低い場合、C:予測値への影響が極端に小さい入力項目が極端な外挿条件となっていて予測値の信頼性がわずかに低い場合、などを区別して判断することができなかった。また、外挿条件の程度をユーザに提示する機能に関する記載も見当たらない。 Therefore, if A: the input item that has a large influence on the predicted value is an extreme extrapolation condition and the reliability of the predicted value is significantly low, B: the input item that has a large influence on the predicted value is extrapolated slightly. If the condition is a condition and the reliability of the predicted value is slightly low, C: If the input item that has an extremely small effect on the predicted value is an extreme extrapolation condition and the reliability of the predicted value is slightly low, It was not possible to distinguish and judge. Also, there is no description about the function of presenting the degree of extrapolation condition to the user.
 本発明はこれらの課題に鑑みて為されたものである。本発明が解決する課題は、学習データを用いてパラメータを調整して得られた予測モデルで予測値を提示する予測システムにおいて、各入力項目の入力値が出力値に及ぼす影響と、外挿条件となっている入力値の外挿の幅、の双方を勘案して予測値の信頼性の程度を運転員へ提示することにある。 The present invention has been made in view of these problems. The problem to be solved by the present invention is the influence of the input value of each input item on the output value and the extrapolation condition in the prediction system that presents the predicted value by the prediction model obtained by adjusting the parameters using the training data. The degree of reliability of the predicted value is presented to the operator in consideration of both the extrapolation width of the input value.
 以上のことから本発明においては、「学習段階において学習データを用いて学習する予測モデルを含む予測システムであって、予測段階で前記予測モデルに与える各入力項目の入力値を与える入力部と、予測モデルの各入力項目が予測モデルで求められる予測値に及ぼす影響を示す感度係数を算出する感度係数算出部と、各入力項目の入力値に関する学習データの統計値からの乖離度を示す距離係数を算出する距離係数算出部と、感度係数と距離係数の値から学習範囲外指標を算出する学習範囲外指標算出部と、感度係数と距離係数のいずれか又は双方、あるいは学習範囲外指標の値を数値あるいは図として表示する表示部とを備えたことを特徴とする予測システム。」としたものである。 From the above, in the present invention, "a prediction system including a prediction model that learns using learning data in the learning stage, and an input unit that gives an input value of each input item given to the prediction model in the prediction stage. The sensitivity coefficient calculation unit that calculates the sensitivity coefficient that shows the effect of each input item of the prediction model on the predicted value obtained by the prediction model, and the distance coefficient that shows the degree of deviation from the statistical value of the learning data regarding the input value of each input item. A distance coefficient calculation unit that calculates It is a prediction system characterized by having a display unit that displays a numerical value or a figure. "
 また本発明においては、「学習段階において学習データを用いて学習する予測モデルによる予測を行うための予測方法であって、予測段階において、予測モデルに与える各入力項目の入力値を得、予測モデルの各入力項目が予測モデルで求められる予測値に及ぼす影響を示す感度係数を算出し、各入力項目の入力値に関する学習データの統計値からの乖離度を示す距離係数を算出し、感度係数と距離係数の値から学習範囲外指標を算出し、感度係数と距離係数のいずれか又は双方、あるいは学習範囲外指標の値を数値あるいは図として表示する表ことを特徴とする予測方法。」としたものである。 Further, in the present invention, "a prediction method for making a prediction by a prediction model learned using training data in the learning stage, and in the prediction stage, the input value of each input item given to the prediction model is obtained and the prediction model is obtained. Calculate the sensitivity coefficient that indicates the effect of each input item on the predicted value obtained by the prediction model, calculate the distance coefficient that indicates the degree of deviation from the statistical value of the training data for the input value of each input item, and use the sensitivity coefficient. A prediction method characterized by calculating an out-of-learning index from the value of the distance coefficient and displaying the value of either or both of the sensitivity coefficient and the distance coefficient, or the value of the out-of-learning index as a numerical value or a figure. " It is a thing.
 また本発明においては、「学習段階において学習データを用いて学習する予測モデルを含む予測システムで使用される表示装置であって、表示装置には、予測モデルに与える各入力項目の入力値が予測モデルで求められる予測値に及ぼす影響を示す感度係数と、各入力項目の入力値に関する学習データの統計値からの乖離度を示す距離係数と、感度係数と距離係数の値から算出された学習範囲外指標について、感度係数と距離係数のいずれか又は双方、あるいは前記学習範囲外指標の値を数値あるいは図として表示することを特徴とする表示装置。」としたものである。 Further, in the present invention, "a display device used in a prediction system including a prediction model that learns using training data in the learning stage, and the display device predicts the input value of each input item given to the prediction model. A sensitivity coefficient that indicates the effect on the predicted value obtained by the model, a distance coefficient that indicates the degree of deviation from the statistical value of the training data regarding the input value of each input item, and a learning range calculated from the values of the sensitivity coefficient and the distance coefficient. The external index is a display device characterized by displaying either or both of the sensitivity coefficient and the distance coefficient, or the value of the index outside the learning range as a numerical value or a figure. "
 本発明によれば、外挿条件となる入力項目の入力値が予測値に及ぼす影響と外挿の程度との双方を勘案した指標値を運転員は知ることができる。 According to the present invention, the operator can know the index value in consideration of both the influence of the input value of the input item as the extrapolation condition on the predicted value and the degree of extrapolation.
 その結果、本発明の実施例によれば運転員はたとえばA:予測値への影響の大きい入力項目が極端な外挿条件となっていて予測値の信頼性が大幅に低い場合、B:予測値への影響の大きい入力項目がわずかな外挿条件となっていて予測値の信頼性がわずかに低い場合、C:予測値への影響が極端に小さい入力値が外挿条件となっていて予測値の信頼性がそれほど低くない場合、を区別して定量的に判断することができる。 As a result, according to the embodiment of the present invention, the operator can say, for example, when A: an input item having a large influence on the predicted value is an extreme extrapolation condition and the reliability of the predicted value is significantly low, B: prediction. If the input item that has a large effect on the value has a slight extrapolation condition and the reliability of the predicted value is slightly low, C: The input value that has an extremely small effect on the predicted value is an extrapolation condition. If the reliability of the predicted value is not so low, it can be judged quantitatively by distinguishing.
 すなわち、運転員は予測システムで計算される予測値の信頼性を把握し、信頼性が高い場合にはその予測値を信じて用い、信頼性が低い場合には予測値に安全係数を勘案した値を用いてプラントや設備の運転を実施することができる。その結果、運転員は運転失敗のリスクを低減できる。 That is, the operator grasps the reliability of the predicted value calculated by the prediction system, believes the predicted value when the reliability is high, and considers the safety factor in the predicted value when the reliability is low. The values can be used to operate plants and equipment. As a result, the operator can reduce the risk of driving failure.
本発明の実施例に係る予測システムの全体構成例を示す機能ブロック図。The functional block diagram which shows the whole structure example of the prediction system which concerns on embodiment of this invention. 大小2つ以上の統計値を用いた場合に入力項目の入力値から距離係数を求める関数例を示す図。The figure which shows the function example which obtains the distance coefficient from the input value of an input item when two or more large and small statistical values are used. 1つの統計値を用いた場合に入力項目の入力値から距離係数を求める関数例を示す図。The figure which shows the function example which obtains the distance coefficient from the input value of an input item when one statistical value is used. 予測値と実測値と学習範囲外指標の値をいずれも折れ線グラフとして表示する表示例を示す図。The figure which shows the display example which displays the predicted value, the measured value, and the value of the index outside the learning range as a line graph. 予測値と実測値を棒グラフとして表示する表示例を示す図。The figure which shows the display example which displays the predicted value and the measured value as a bar graph. 学習範囲外指標の値を棒グラフとして表示する表示例を示す図。The figure which shows the display example which displays the value of the index outside the learning range as a bar graph. 学習範囲外指標の値の内訳を積上げ面グラフとして表示する表示例を示す図。The figure which shows the display example which displays the breakdown of the value of the index out of learning range as a stacked area graph. 学習範囲外指標の値の内訳を積上げ棒グラフとして表示する表示例を示す図。The figure which shows the display example which displays the breakdown of the value of the index out of learning range as a stacked bar graph. (4)式の学習のため(3)式により生成した模擬データ例を示す図。The figure which shows the example of the simulated data generated by the formula (3) for learning the formula (4). 模擬データの値と予測モデルによる予測値の相関例を示す図。The figure which shows the correlation example of the value of the simulated data and the predicted value by a prediction model. 入力XとXの値に対する予測誤差の棒グラフ例を示す図。The figure which shows the bar graph example of the prediction error with respect to the value of input X 1 and X 2. 入力XとXの値に対する学習範囲外指標の棒グラフ例を示す図。The figure which shows the bar graph example of the index which is out of learning range for the value of input X 1 and X 2. 学習範囲外指標と予測誤差の相関例を示す図。The figure which shows the correlation example of the index which is out of learning range and prediction error.
 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお本発明の予測システムの対象は、具体的には雨水ポンプの運転、水処理プラントの運転、産業プラントの運転などが挙げられるが、ニューラルネットワークなど学習段階に学習データで予測モデルを同定し、その予測モデルに基づき何らかの予測値を求め、人がその予測値を参考に運転条件を設定する対象であればこれらに限らない。 The target of the prediction system of the present invention is specifically the operation of a rainwater pump, the operation of a water treatment plant, the operation of an industrial plant, etc., but the prediction model is identified by training data at the learning stage such as a neural network. It is not limited to these as long as a person obtains some predicted value based on the predicted model and sets an operating condition with reference to the predicted value.
 図1は、本発明の実施例に係る予測システムの全体構成例を示す機能ブロック図である。なお本発明は、機械学習の予測値に基づき運転を判断する運転員を支援する予測システムであり、システム全体としては学習段階と予測段階を含んで構成されるが、図1には主として予測段階の処理を行う予測システムが記述されている。 FIG. 1 is a functional block diagram showing an overall configuration example of a prediction system according to an embodiment of the present invention. The present invention is a prediction system that supports an operator who makes a judgment based on a prediction value of machine learning, and the entire system includes a learning stage and a prediction stage, but FIG. 1 mainly shows a prediction stage. The prediction system that performs the processing of is described.
 このため、学習データの統計値記憶部DBには学習段階に用いた学習データD1が保管されている。本発明では学習データD1を求める学習手法を問わないが、学習データD1は正常時のデータで構成されており、異常時のデータを含んでいないものであり、所定の範囲内の値のデータで構成されている。 Therefore, the learning data D1 used in the learning stage is stored in the statistical value storage unit DB of the learning data. In the present invention, the learning method for obtaining the learning data D1 does not matter, but the learning data D1 is composed of normal data and does not include abnormal data, and is data having a value within a predetermined range. It is configured.
 他方、入力部10にはプラントなどから適宜検出された、一般的には複数の入力項目のそれぞれの入力値D2が得られている。この場合の入力値D2には、学習データの範囲外、すなわち外挿条件の入力値が与えられている可能性がある。図1では、入力部10から入力項目のそれぞれの入力値D2が入力値正規化演算部12に与えられる。正規化演算部12では、与えられたそれぞれの入力項目の値を一定の幅の数値に変換し、正規化後の入力値D2Uを出力する。正規化後の入力値D2Uは、距離係数算出部18と感度係数算出部22に与えられる。 On the other hand, in the input unit 10, input values D2 of each of a plurality of input items, which are appropriately detected from a plant or the like, are generally obtained. In this case, the input value D2 may be given an input value outside the range of the training data, that is, an extrapolation condition. In FIG. 1, each input value D2 of an input item is given from the input unit 10 to the input value normalization calculation unit 12. The normalization calculation unit 12 converts the value of each given input item into a numerical value having a certain width, and outputs the normalized input value D2U. The normalized input value D2U is given to the distance coefficient calculation unit 18 and the sensitivity coefficient calculation unit 22.
 距離係数算出部18には、正規化後の学習データの統計値D1Uも与えられる。正規化後の学習データの統計値D1Uは、学習データの統計値記憶部DBから与えられたそれぞれの入力項目の学習データの統計値D1が統計値正規化演算部15において正規化された値である。距離係数算出部18では、正規化後の入力値D2Uと正規化後の学習データの統計値D1Uに基づいて距離係数Lを算出し、学習範囲外指標算出部26に与える。 The distance coefficient calculation unit 18 is also given the statistical value D1U of the training data after normalization. The statistic value D1U of the training data after normalization is a value obtained by normalizing the statistic value D1 of the training data of each input item given from the statistic value storage unit DB of the training data in the statistic value normalization calculation unit 15. be. The distance coefficient calculation unit 18 calculates the distance coefficient L based on the input value D2U after normalization and the statistical value D1U of the learning data after normalization, and gives it to the index calculation unit 26 outside the learning range.
 一方、感度係数算出部22は正規化後の入力値D2Uの1変数に摂動を与えた入力値D2U1を感度解析用予測モデルM1に与える。感度解析用予測モデルM1は摂動を与えた場合の予測値DS1を計算して感度係数算出部22に与える。感度係数算出部22は摂動を与えた場合の予測値DS1に基づき感度係数Kを求めて学習範囲外指標算出部26に与える。 On the other hand, the sensitivity coefficient calculation unit 22 gives the input value D2U1 in which one variable of the input value D2U after normalization is perturbed to the prediction model M1 for sensitivity analysis. The prediction model M1 for sensitivity analysis calculates the predicted value DS1 when a perturbation is given and gives it to the sensitivity coefficient calculation unit 22. The sensitivity coefficient calculation unit 22 obtains the sensitivity coefficient K based on the predicted value DS1 when a perturbation is given, and gives it to the out-of-learning range index calculation unit 26.
 学習範囲外指標算出部26は、距離係数Lと感度係数Kに基づき、学習範囲外指標D3を算出して表示部30に与える。表示部30では、与えられた学習範囲外指標D3を画面に表示する。また、正規化後の入力値D2Uは予測値計算用予測モデルM2にも与えられ、予測値DS2が求められる。予測値計算用予測モデルM2にも与えられるのは、予測値DS2が求められるのであれば入力項目のそれぞれの入力値D2であっても良い。予測値DS2も表示部30に与えられ、学習範囲外指標D3とともに画面に表示される。 The out-of-learning index calculation unit 26 calculates the out-of-learning index D3 based on the distance coefficient L and the sensitivity coefficient K and gives it to the display unit 30. The display unit 30 displays the given learning range index D3 on the screen. Further, the input value D2U after normalization is also given to the prediction model M2 for predicting value calculation, and the predicted value DS2 is obtained. If the predicted value DS2 is obtained, the predicted value D2 may be given to the predicted value calculation prediction model M2 as well. The predicted value DS2 is also given to the display unit 30, and is displayed on the screen together with the learning range index D3.
 なお表示部30には、距離係数Lと感度係数Kが与えられて、これらを表示してもよい。図示していないが、表示部30には学習範囲外指標D3や予測値DS2ばかりでなく、予測システムに入力された各種データD1,D2,予測システムに入力された各種データD1,D2を用いた処理により生成される各種中間データを含めたすべてのデータが表示可能であり、かつ表示形式は適宜のものとすることができる。 The display unit 30 is given a distance coefficient L and a sensitivity coefficient K, and these may be displayed. Although not shown, not only the out-of-learning index D3 and the predicted value DS2 but also various data D1 and D2 input to the prediction system and various data D1 and D2 input to the prediction system are used for the display unit 30. All data including various intermediate data generated by the processing can be displayed, and the display format can be appropriate.
 入力値正規化演算部12において正規化後の入力値D2Uを算出する具体的な手法の一例について以下に述べる。入力項目のそれぞれの入力値D2としては、さまざまなスケールの数値が与えられることが想定される。たとえば室温であると5℃~40℃、気圧であると980hPa~1020hPaのように、入力項目によっては桁が異なる場合もある。これらの数値をそのまま用いると数値の大きい入力項目の影響が過大となってしまう場合があるため、無次元化して対等に用いることができるようにする。正規化には線形変換を用いても良いし、アフィン変換を用いても良い。この処理により、上述の室温や気圧をいずれもたとえば0.0~1.0の範囲の値に変換する。このように求められた正規化後の入力値D2Uは距離係数算出部18と感度係数算出部22に与えられる。 An example of a specific method for calculating the input value D2U after normalization in the input value normalization calculation unit 12 will be described below. As the input value D2 of each input item, it is assumed that numerical values of various scales are given. For example, the digits may differ depending on the input item, such as 5 ° C to 40 ° C at room temperature and 980 hPa to 1020 hPa at atmospheric pressure. If these numerical values are used as they are, the influence of input items with large numerical values may become excessive, so dimensionlessization is made so that they can be used on an equal footing. A linear transformation may be used for normalization, or an affine transformation may be used. By this treatment, the above-mentioned room temperature and atmospheric pressure are all converted into values in the range of 0.0 to 1.0, for example. The input value D2U obtained in this way after normalization is given to the distance coefficient calculation unit 18 and the sensitivity coefficient calculation unit 22.
 統計値正規化演算部15において正規化後の学習データの統計値D1Uを算出する具体的な手法の一例について以下に述べる。まず、学習データの統計値記憶部DBからそれぞれの入力項目の学習データの統計値D1が与えられる。それぞれの入力項目の学習データの統計値D1としては、さまざまなスケールの数値が与えられることが考えられる。 An example of a specific method for calculating the statistical value D1U of the learning data after normalization in the statistical value normalization calculation unit 15 will be described below. First, the statistical value D1 of the learning data of each input item is given from the statistical value storage unit DB of the learning data. As the statistical value D1 of the learning data of each input item, it is conceivable that numerical values of various scales are given.
 たとえば気温であると最低気温5.6℃、最高気温28.4℃、平均気温16.45℃、標準偏差7.3℃、気圧であると最低気圧1004.8hPa、最高気圧1016.7hPa、平均気圧1011.2hPa、標準偏差3.69hPaのように、桁が大きく異なる場合もある。これらの数値をそのまま用いると数値の大きい入力項目の影響が過大となってしまう場合があるため、無次元化して対等に用いることができるようにする。 For example, the minimum temperature is 5.6 ° C, the maximum temperature is 28.4 ° C, the average temperature is 16.45 ° C, the standard deviation is 7.3 ° C, and the minimum pressure is 1004.8 hPa, the maximum pressure is 1016.7 hPa, and the average. In some cases, the digits are significantly different, such as air temperature 1011.2 hPa and standard deviation 3.69 hPa. If these numerical values are used as they are, the influence of input items with large numerical values may become excessive, so dimensionlessization is made so that they can be used on an equal footing.
 正規化には線形変換を用いても良いし、アフィン変換を用いても良い。この処理により、上述の室温や気圧をいずれもたとえば0.0~1.0の範囲の値に変換する。正規化方法は入力値正規化演算部12と全く同一とすることが必要である。これにより、正規化後の入力値D2Uと正規化後の学習データの統計値D1Uとを距離係数算出部18において同じスケールで比較評価することが可能となる。 A linear transformation may be used for normalization, or an affine transformation may be used. By this treatment, the above-mentioned room temperature and atmospheric pressure are all converted into values in the range of 0.0 to 1.0, for example. The normalization method needs to be exactly the same as the input value normalization calculation unit 12. As a result, the input value D2U after normalization and the statistical value D1U of the learning data after normalization can be compared and evaluated on the same scale by the distance coefficient calculation unit 18.
 距離係数算出部18において、距離係数Lを算出する具体的な手法の一例について以下に述べる。この距離係数Lは、外挿となっている点がどの程度だけ外挿となっているかを示す指標である。図2は、学習データの統計値記憶部DBに記憶する学習データD1のうち、大小2つ以上の統計値を用いた場合に入力項目の値から距離係数を求める関数を図示した例である。横軸に入力値X,縦軸に距離係数Lを示している。たとえば学習データの統計値記憶部DBに記憶する学習データD1の最大値、最小値のように大小2つの統計値が存在する場合、これを図2中には横軸の入力値Xとして、最大値Xmaxおよび最小値Xminと記載した。入力値Xの値がXminとXmaxの間であれば、学習データD1の内挿条件、あるいは内挿条件に近いとみなし、図2の距離係数Lの値は0とする。入力値XがXminより小さい場合にはXminから値が離れるほど距離係数Lの値は負の値をとって小さくなる。入力値XがXmaxより大きい場合にはXmaxから値が離れるほど距離係数Lの値は正の値をとって大きくなる。なお、簡単のため図2の折れ線グラフは直線で示したが、直線である必要はない。 An example of a specific method for calculating the distance coefficient L in the distance coefficient calculation unit 18 will be described below. This distance coefficient L is an index showing how much extrapolated points are extrapolated. FIG. 2 is an example showing a function for obtaining a distance coefficient from a value of an input item when two or more large and small statistical values are used among the learning data D1 stored in the statistical value storage unit DB of the learning data. The horizontal axis shows the input value X, and the vertical axis shows the distance coefficient L. For example, when there are two large and small statistical values such as the maximum value and the minimum value of the learning data D1 stored in the statistical value storage unit DB of the learning data, this is used as the input value X on the horizontal axis in FIG. 2 to be the maximum. The values Xmax and the minimum value Xmin are described. If the value of the input value X is between Xmin and Xmax, it is considered to be close to the interpolation condition or the interpolation condition of the training data D1, and the value of the distance coefficient L in FIG. 2 is set to 0. When the input value X is smaller than Xmin, the value of the distance coefficient L becomes smaller as the value increases from Xmin. When the input value X is larger than Xmax, the value of the distance coefficient L becomes larger as the value increases from Xmax. The line graph in FIG. 2 is shown as a straight line for the sake of simplicity, but it does not have to be a straight line.
 正確に「外挿条件」を定義するのであれば、XminとXmaxの対は「最小値、最大値」となるが、分布の端の値も外挿条件に近いとみなせる場合には、これ以外にも「平均値-標準偏差×α、平均値+標準偏差×α(ただしαは正の数)」などを用いても良い。
このαの値が大きいほどXminとXmaxの対は「最小値、最大値」に近くなり、より正確な「外挿条件」に近くなる。本発明においては大小2つの値を用いることであればXminとXmaxの決め方はこれらに限定されない。
If the "exclusion condition" is defined accurately, the pair of Xmin and Xmax will be "minimum value, maximum value", but if the value at the end of the distribution can be regarded as close to the extrapolation condition, other than this. Also, "mean value-standard deviation x α, mean value + standard deviation x α (where α is a positive number)" or the like may be used.
The larger the value of α, the closer the pair of Xmin and Xmax is to the “minimum value, maximum value”, and the closer to the more accurate “extrapolation condition”. In the present invention, the method of determining Xmin and Xmax is not limited to these if two large and small values are used.
 距離係数算出部18において1つの統計値を用いた場合に入力項目の値から距離係数を求める関数を図示した例を図3に示す。図3もまた横軸に入力値X,縦軸に距離係数Lを示している。たとえば学習データの統計値記憶部DBに記憶する学習データD1について、学習データD1の平均値のように1つの統計値が存在する場合、これを図3中にはXcenterと記載した。入力値Xの値がXcenterに近いほど、図3の距離係数Lの値は0に近くなるようにする。入力値XがXcenterより小さい場合にはXcenterから値が離れるほど距離係数Lの値は負の値をとって小さくなる。入力値XがXcenterより大きい場合にはXcenterから値が離れるほど距離係数Lの値は正の値をとって大きくなる。なお、簡単のため図3の関数は2次関数をXcenterの点で折り返した形状で示したが、同様の傾向を示す関数であればとくにこれに限定はされない。
このXcenterとしては、平均値のほかに最頻値や中央値などを用いても良い。
FIG. 3 shows an example showing a function for obtaining the distance coefficient from the value of the input item when one statistical value is used in the distance coefficient calculation unit 18. FIG. 3 also shows the input value X on the horizontal axis and the distance coefficient L on the vertical axis. For example, regarding the learning data D1 stored in the statistical value storage unit DB of the learning data, when one statistical value exists like the average value of the learning data D1, this is described as Xcenter in FIG. The closer the value of the input value X is to the Xcenter, the closer the value of the distance coefficient L in FIG. 3 is to 0. When the input value X is smaller than the Xcenter, the value of the distance coefficient L becomes smaller as the value becomes farther from the Xcenter, taking a negative value. When the input value X is larger than the Xcenter, the value of the distance coefficient L becomes larger as the value is farther from the Xcenter. For the sake of simplicity, the function of FIG. 3 shows a quadratic function folded at the point of Xcenter, but the function is not particularly limited as long as it shows the same tendency.
As this Xcenter, a mode value, a median value, or the like may be used in addition to the average value.
 感度係数算出部22において、感度係数Kを算出する具体的な手法の一例について以下に述べる。この感度係数Kは、感度解析用予測モデルM1の入力値に微小な摂動を与えた場合に感度解析用予測モデルM1の予測値がどの程度変化するかを示すものである。感度係数算出部22では、与えられた正規化後の入力値D2Uにあらかじめ設定しておいた摂動幅に応じた摂動を与え、摂動を与えた入力値D2U1をまず生成する。摂動幅がたとえば0.02、正規化後の入力値D2Uのある1変数の値が0.5であった場合、0.5-0.02/2=0.49と0.5+0.02/2=0.51の2つの点を求める。そして、ほかの入力項目の値は変化させずに摂動を与えた入力値D2U1として感度解析用予測モデルM1に与える。 An example of a specific method for calculating the sensitivity coefficient K in the sensitivity coefficient calculation unit 22 will be described below. The sensitivity coefficient K indicates how much the predicted value of the sensitivity analysis prediction model M1 changes when a minute perturbation is applied to the input value of the sensitivity analysis prediction model M1. The sensitivity coefficient calculation unit 22 first gives a perturbation according to a preset perturbation width to the given input value D2U after normalization, and first generates an input value D2U1 to which the perturbation is given. If the perturbation width is, for example, 0.02 and the value of one variable with the normalized input value D2U is 0.5, then 0.5-0.02 / 2 = 0.49 and 0.5 + 0.02 /. Find two points of 2 = 0.51. Then, the values of the other input items are given to the sensitivity analysis prediction model M1 as the input value D2U1 to which the perturbation is given without changing.
 感度解析用予測モデルM1では、1つの変数の値が0.49の場合と0.51の場合の予測値、すなわち摂動を与えた場合の予測値DS1を計算し、感度係数算出部22へ与える。感度係数算出部22では、摂動を与えた場合の予測値DS1の差分を摂動幅で除算することで、摂動を与えた入力項目が予測値に及ぼす影響、すなわち感度係数Kを算出する。この値は、正の数値となる場合もあるし、負の数値となる場合もある。 In the sensitivity analysis prediction model M1, the predicted value when the value of one variable is 0.49 and 0.51, that is, the predicted value DS1 when a perturbation is given is calculated and given to the sensitivity coefficient calculation unit 22. .. The sensitivity coefficient calculation unit 22 calculates the influence of the input item to which the perturbation is given on the predicted value, that is, the sensitivity coefficient K, by dividing the difference of the predicted value DS1 when the perturbation is given by the perturbation width. This value can be a positive number or a negative number.
 感度係数算出部22で摂動を与える対象としては、上述のように正規化後の入力値D2Uを用いることが望ましいが、たとえば与えられた入力値が飛び値の場合、摂動を与えた場合の予測値DS1および感度係数Kが極端な値となる可能性がある。これは学習範囲外指標D3の算出に望ましくない影響を及ぼすため、感度係数算出部22で摂動を与える対象として、正規化後の入力値D2Uとして最新の値1点のみを用いるのではなく、最新の点を含む過去n点の平均値や最頻値、中央値など過去の値も考慮した値をあらかじめ求めておき、それに摂動を与えることでも良い。 It is desirable to use the normalized input value D2U as the target to be perturbed by the sensitivity coefficient calculation unit 22, but for example, when the given input value is a jump value, the prediction when the perturbation is given. The value DS1 and the sensitivity coefficient K can be extreme values. Since this has an undesired effect on the calculation of the out-of-learning index D3, the latest value is not used as the normalized input value D2U as the target to be perturbed by the sensitivity coefficient calculation unit 22. It is also possible to obtain in advance a value considering the past values such as the average value, the mode value, and the median value of the past n points including the point of, and give a perturbation to it.
 学習範囲外指標算出部26では、距離係数Lと感度係数Kから学習範囲外指標D3を算出する。この算出方法の具体的な手法の一例について以下に述べる。まず、感度解析用予測モデルM1の入力値は3個あるとし、それぞれX、X、Xと呼ぶこととする。また、感度解析用予測モデルM1で求められる予測値をYと呼ぶこととする。感度係数Kは、上述のように入力値に微小な摂動を与えた場合の予測値の変化であるため、次の(1)式のように表記できる。 The out-of-learning index calculation unit 26 calculates the out-of-learning index D3 from the distance coefficient L and the sensitivity coefficient K. An example of a specific method of this calculation method will be described below. First, it is assumed that there are three input values of the prediction model M1 for sensitivity analysis, and they are called X 1 , X 2 , and X 3 , respectively. Further, the predicted value obtained by the sensitivity analysis prediction model M1 is referred to as Y. Since the sensitivity coefficient K is a change in the predicted value when a minute perturbation is applied to the input value as described above, it can be expressed as the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、距離係数Lはたとえば図2で示したような関数にX、X、Xを与えて計算できる。入力値は3種類あるため、距離係数Lも3つ求められ、これらをL、L、Lと呼ぶこととする。これらの変数を用い、学習範囲外指標D3はたとえば次の(2)式で求めることができる。 Further, the distance coefficient L can be calculated by giving X 1 , X 2 , and X 3 to a function as shown in FIG. 2, for example. Since there are three types of input values, three distance coefficients L are also obtained, and these are called L 1 , L 2 , and L 3 . Using these variables, the out-of-learning index D3 can be obtained, for example, by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この学習範囲外指標D3の値が0の場合には、外挿条件となる入力値が無い、あるいは外挿条件となる入力値はあるが3つの項の和として予測値Yに及ぼす影響は無いことを意味する。この場合の入力値を予測値計算用予測モデルM2で求められた予測値DS2は、信頼度が高いと言える。逆に、学習範囲外指標D3の値が0から乖離する場合には、外挿条件の入力値が含まれており、それが予測値Yへ及ぼす影響が無視できないことを意味する。この場合の入力値を予測値計算用予測モデルM2に与えて求められた予測値DS2は、信頼度が低いと言える。なお、(2)式で得られる学習範囲外指標D3の値は、予測値計算用予測モデルM2で得られた予測値DS2が正あるいは負の方向のどちら側へどの程度ずれているかの目安になる。 When the value of the out-of-learning index D3 is 0, there is no input value as an extrapolation condition, or there is an input value as an extrapolation condition, but the sum of the three terms has no effect on the predicted value Y. Means that. It can be said that the predicted value DS2 obtained by the prediction model M2 for calculating the predicted value in this case has high reliability. On the contrary, when the value of the index D3 outside the learning range deviates from 0, it means that the input value of the extrapolation condition is included and the influence on the predicted value Y cannot be ignored. It can be said that the predicted value DS2 obtained by giving the input value in this case to the predicted value calculation prediction model M2 has low reliability. The value of the out-of-learning index D3 obtained by Eq. (2) is a measure of how much the predicted value DS2 obtained by the predicted value calculation prediction model M2 deviates to either the positive or negative direction. Become.
 (2)式は3個の入力値X、X、Xに対する3つの項の和となっており、それぞれの項は正の値、負の値のいずれにもなる可能性がある。正の値となる項と負の値となる項がある場合、それぞれの項の影響は相殺されることになる。相殺される場合、学習範囲外指標D3の値は0に近づくが、個々の入力値自身は極端な外挿条件である可能性がある。予測値計算用予測モデルM2で得られる予測値DS2が正あるいは負の方向へどの程度ずれているかの目安が不要で、外挿条件となっているか否かのみを評価するのであれば、学習範囲外指標D3はたとえば(3)式で示すように、それぞれの項ごとに絶対値をとった値の和として算出しても良い。 Equation (2) is the sum of three terms for the three input values X 1 , X 2 , and X 3 , and each term can be either a positive value or a negative value. If there are positive and negative terms, the effects of each term will be offset. When offset, the value of the out-of-learning index D3 approaches 0, but the individual input values themselves may be extreme extrapolation conditions. If it is not necessary to estimate how much the predicted value DS2 obtained by the predicted value calculation prediction model M2 deviates in the positive or negative direction, and only whether or not it is an extrapolation condition is evaluated, the learning range. The extrapolation index D3 may be calculated as the sum of the values obtained by taking the absolute values for each term, for example, as shown by the equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (2)式、(3)式に示した数式はもっとも単純な一例であり、少なくとも感度係数Kと距離係数Lの値に基づいて学習範囲外指標D3を算出する数式であれば、とくにこれらに限定はされない。 The mathematical formulas shown in the formulas (2) and (3) are the simplest examples, and are particularly suitable for formulas that calculate the out-of-learning index D3 based on the values of the sensitivity coefficient K and the distance coefficient L. There is no limitation.
 学習範囲外指標算出部26で算出された学習範囲外指標D3は、表示部30に表示される。この表示部としては、コンピュータやタブレット、モバイル端末の画面などいずれでも良い。また、予測値計算用予測モデルM2で計算された予測値DS2も表示部30に表示される。これらの表示は数字でも良いが、グラフなどの図でも良い。また、最新の予測値DS2のみではなく、過去の予測値と実測値も表示することで、過去の予測値がどの程度正しかったかを確認できると同時に、そのときの予測誤差と学習範囲外指標D3の関連を把握できるため、さらに有用である。表示画面の一例を図4から図8に示す。 The out-of-learning index D3 calculated by the out-of-learning index calculation unit 26 is displayed on the display unit 30. The display unit may be a computer, a tablet, a screen of a mobile terminal, or the like. Further, the predicted value DS2 calculated by the predicted value calculation prediction model M2 is also displayed on the display unit 30. These displays may be numbers, but may also be figures such as graphs. In addition, by displaying not only the latest predicted value DS2 but also the past predicted value and the measured value, it is possible to confirm how correct the past predicted value was, and at the same time, the prediction error at that time and the index D3 outside the learning range. It is even more useful because you can understand the relationship between them. An example of the display screen is shown in FIGS. 4 to 8.
 図4は、予測値DS2と実測値D2Uと学習範囲外指標D3の値をいずれも折れ線グラフとして表示する表示例を示す図である。図4の表示画面90の一例は、上側のグラフと下側のグラフの2つから構成されている。上側のグラフは、横軸の経過時間に対して、縦軸に実測値D2Uと予測値DS2を示した折れ線によるトレンドグラフである。経過時間0が現在を示しており、実測値D2Uはこの経過時間0までは値があるためプロットされており、将来の経過時間1についてはまだ実測値D2Uがなく予測値DS2のみが示されている。このように、経過時間0までに予測値DS2が実測値D2Uからどの程度外れているかを目視確認することができるとともに、将来の経過時間1での予測値DS2が一目で分かるようにしている。 FIG. 4 is a diagram showing a display example in which the predicted value DS2, the measured value D2U, and the value of the out-of-learning range index D3 are all displayed as a line graph. An example of the display screen 90 of FIG. 4 is composed of two graphs, an upper graph and a lower graph. The upper graph is a trend graph with a broken line showing the measured value D2U and the predicted value DS2 on the vertical axis with respect to the elapsed time on the horizontal axis. The elapsed time 0 indicates the present, and the measured value D2U is plotted because there are values up to this elapsed time 0, and for the future elapsed time 1, there is no measured value D2U yet and only the predicted value DS2 is shown. There is. In this way, it is possible to visually confirm how much the predicted value DS2 deviates from the measured value D2U by the elapsed time 0, and at the same time, the predicted value DS2 at the future elapsed time 1 can be known at a glance.
 図4の下側のグラフは、上側のグラフと同じ経過時間の横軸を有する学習範囲外指標D3の折れ線によるトレンドグラフである。このように、将来の経過時間1までの学習範囲外指標D3の推移を目視確認できる。この図4の例では、将来の経過時間1の学習範囲外指標D3の値が0に近く、小さいことが分かる。この値が小さいということは外挿条件の程度が小さいことを意味しているため、上側のグラフの将来の経過時間1の予測値DS2は正しいだろう、と信頼することができる。将来の経過時間1の学習範囲外指標D3の値は、経過時間-5の学習範囲外指標D3の値に近いため、上側のグラフの経過時間-5の時の程度で予測値DS2が実測値と一致するであろうことが推測できる。 The lower graph of FIG. 4 is a trend graph with a polygonal line of the out-of-learning range index D3 having the same horizontal axis of elapsed time as the upper graph. In this way, the transition of the out-of-learning index D3 up to the future elapsed time 1 can be visually confirmed. In the example of FIG. 4, it can be seen that the value of the out-of-learning index D3 of the future elapsed time 1 is close to 0 and small. Since this small value means that the degree of extrapolation condition is small, it can be trusted that the predicted value DS2 of the future elapsed time 1 in the upper graph will be correct. Since the value of the out-of-learning index D3 of the future elapsed time 1 is close to the value of the out-of-learning index D3 of the elapsed time -5, the predicted value DS2 is the measured value at the time of the elapsed time -5 in the upper graph. It can be inferred that it will match.
 図4の横軸はここでは経過時間が-6から1までとしているが、この経過時間の幅は変更できるようにしても良い。また、将来の値もここでは経過時間1まで示しているが、1点のみではなく複数の将来の予測値DS2と学習範囲外指標D3の値を示しても良い。複数時刻の将来の予測値DS2やと学習範囲外指標D3の値を示す場合には、この図4で言うと経過時間-6から0までに表示する予測値DS2として1時刻先の予測値、2時刻先の予測値、さらに将来の予測値か複数ある。複数のグラフを表示しても良いし、あるいは煩雑となる場合には絞り込んで表示しても良い。 The horizontal axis of FIG. 4 shows the elapsed time from -6 to 1, but the width of this elapsed time may be changed. Further, although the future value is also shown here up to the elapsed time 1, not only one point but also a plurality of future predicted values DS2 and the value of the out-of-learning range index D3 may be shown. When showing the future predicted value DS2 at multiple times and the value of the out-of-learning range index D3, the predicted value one hour ahead as the predicted value DS2 displayed from the elapsed time -6 to 0 in this FIG. There are multiple forecast values two hours ahead and future forecast values. A plurality of graphs may be displayed, or may be narrowed down and displayed when it becomes complicated.
 図4の上側のグラフは折れ線によるトレンドグラフの例を示したが、図5で示すように棒グラフであっても良い。図5は、予測値DS2と実測値D2Uを棒グラフとして表示する表示例を示す図である。この図では、実測値D2Uと予測値DS2の2本の棒グラフが時間経過に応じて表示されている。また、図4の下側のグラフも折れ線によるトレンドグラフであったが、図6で示すように棒グラフであっても良い。図6は、学習範囲外指標D3の値を棒グラフとして表示する表示例を示す図である。過去の値との比較を目的とする場合には、とくに図5や図6で示す棒グラフのほうが見やすい場合がある。 The graph on the upper side of FIG. 4 shows an example of a trend graph with a line, but it may be a bar graph as shown in FIG. FIG. 5 is a diagram showing a display example in which the predicted value DS2 and the measured value D2U are displayed as a bar graph. In this figure, two bar graphs of the measured value D2U and the predicted value DS2 are displayed according to the passage of time. Further, although the graph on the lower side of FIG. 4 is also a trend graph with a line, it may be a bar graph as shown in FIG. FIG. 6 is a diagram showing a display example in which the value of the index D3 outside the learning range is displayed as a bar graph. For the purpose of comparison with past values, the bar graphs shown in FIGS. 5 and 6 may be easier to see.
 学習範囲外指標D3の算出にあたり、上述の式(2)のように複数の入力項目の項の絶対値の和で求める場合には、それぞれの項の値を表示することで、学習範囲外指標D3の値にどの入力項目がどの程度影響しているかを示すことができる。その場合の表示例を図7に示す。 When calculating the out-of-learning index D3 by summing the absolute values of the terms of a plurality of input items as in the above equation (2), the out-of-learning index is displayed by displaying the value of each term. It is possible to indicate which input item affects the value of D3 to what extent. A display example in that case is shown in FIG.
 図7は学習範囲外指標D3の値の内訳を積上げ面グラフとして表示する表示部の例である。たとえば、経過時間0の点での学習範囲外指標D3の内訳の中では、入力Xの影響が過半を占めていたことが分かる。したがって、入力Xの値がノイズなど外れ値でないかなど入手データや計測器、通信環境を念のため確認するなどの対応が可能となる。なお、積み上げ面グラフには色を付けても良く、絶対値を付ける前の項の値が正の値か負の値かによって塗り分けても良い。これにより、どの項とどの項が相殺し合っているかも把握することができる。 FIG. 7 is an example of a display unit that displays the breakdown of the value of the index D3 outside the learning range as a stacked area graph. For example, in the breakdown of the learning range indicator D3 in terms of the elapsed time 0, we can be seen that the influence of the input X 3 accounted for the majority. Therefore, it is possible to check the obtained data, measuring instruments, communication environment, etc., such as whether the value of the input X 3 is an outlier such as noise. The stacked area graph may be colored, or may be colored according to whether the value in the term before the absolute value is given is a positive value or a negative value. This makes it possible to grasp which term and which term cancel each other out.
 それぞれの項が及ぼす程度を示すには、積上げ面グラフではなく図8で示すように積み上げ棒グラフを用いても良い。この図であっても、どの入力項目が原因で学習範囲外指標D3が大きくなっているかを判断することができる。積み上げ棒グラフにも色を付けても良く、絶対値を付ける前の項の値が正の値か負の値かによって塗り分けても良い。 To show the degree of each item, a stacked bar graph may be used as shown in FIG. 8 instead of the stacked area graph. Even in this figure, it is possible to determine which input item causes the out-of-learning range index D3 to increase. The stacked bar graph may also be colored, or may be colored according to whether the value in the term before the absolute value is given is a positive value or a negative value.
 図4で示したように、表示部30の表示画面90の上側に予測値DS2と実測値D2Uを表示し、下側に学習範囲外指標D3を表示することも良いが、見る情報を減らして把握しやすくすることを目的として、上側の図のみを表示することでも良い。その場合、学習範囲外指標D3の結果を上段の図中に盛り込むことになるが、たとえば予測線や凡例、塗りつぶしの色や濃さ、あるいは背景の色や濃さなどを学習範囲外指標D3の値に応じて変えることで実現可能である。学習範囲外指標D3の値が0に小さく信頼に足る予測値DS2は濃い黒色の線や凡例とし、逆に学習範囲外指標D3の値が極端に大きいあるいは極端に小さいため信頼性が低いと考えられる場合の予測値DS2は薄い黒色の線や凡例、あるいは赤色に近い線や凡例とするなどが考えられる。 As shown in FIG. 4, it is also possible to display the predicted value DS2 and the measured value D2U on the upper side of the display screen 90 of the display unit 30, and display the out-of-learning range index D3 on the lower side, but reduce the information to be viewed. For the purpose of making it easier to understand, only the upper figure may be displayed. In that case, the result of the out-of-learning index D3 will be included in the upper figure. This can be achieved by changing it according to the value. The value of the out-of-learning index D3 is small to 0 and the reliable predicted value DS2 is a dark black line or legend. Conversely, the value of the out-of-learning index D3 is extremely large or extremely small, so it is considered to be unreliable. In this case, the predicted value DS2 may be a light black line or a legend, or a line or a legend close to red.
 上記した表示例は、予測システムに取り込んだ入力値D2が、学習段階に用いた学習データD1に対してどの程度乖離しているかを示す距離係数Lと、摂動を与えた場合の感度係数Kから、この2つの指標を1つの指標である学習範囲外指標D3に集約してまとめ、予測システムにおける時系列情報として各種グラフやトレンドとして表記したものである。また予測値DS2や実測値D2Uとの対比で各種グラフやトレンドとして表記したものである。 The above display example is based on the distance coefficient L indicating how much the input value D2 taken into the prediction system deviates from the learning data D1 used in the learning stage, and the sensitivity coefficient K when a perturbation is given. , These two indexes are aggregated into one index, the out-of-learning range index D3, and expressed as various graphs and trends as time-series information in the prediction system. Further, it is expressed as various graphs and trends in comparison with the predicted value DS2 and the measured value D2U.
 これらの表記は、表示を通じて運転員に当該データが例えば予測値をプラントの運転に採用すべきか否かを判断せしめる判断材料を提供する目的のものであり、提供手法としてはグラフやトレンド表示以外にも生データでの表示(数値表示)がある。生データでの表示では、各入力時刻の各種データが表形式で表示され、この中には距離係数L、感度係数K、学習範囲外指標D3を含んでいる。本発明の数値表示では、距離係数Lと感度係数Kのいずれか又は双方、あるいはこれらを集約した1つの指標である学習範囲外指標D3が表示されるのがよい。また、この数値表示には予測値DS2や実測値D2Uが含まれるのがよい。 These notations are for the purpose of providing the operator with judgment material that allows the operator to judge whether or not the predicted value should be adopted for the operation of the plant, for example, through the display, and the method of providing the data is other than the graph and the trend display. There is also a display (numerical display) of raw data. In the raw data display, various data of each input time are displayed in a table format, which includes a distance coefficient L, a sensitivity coefficient K, and an out-of-learning range index D3. In the numerical display of the present invention, it is preferable to display either or both of the distance coefficient L and the sensitivity coefficient K, or the out-of-learning index D3 which is one index obtained by aggregating these. Further, it is preferable that the numerical display includes the predicted value DS2 and the measured value D2U.
 以下、本発明の効果を具体的に示すため、評価計算した一例について述べる。いま2つの入力項目から成る入力値XとXがあり、その影響を受ける値Yが現実として(4)式の関係にあるとする。運転員はこの(4)式の関係を全く知らず、X、X、Yのデータのみが現実の実測値D2Uとして得られているとする。 Hereinafter, in order to specifically show the effect of the present invention, an example of evaluation calculation will be described. It is assumed that there are input values X 1 and X 2 consisting of two input items, and the value Y affected by the input values is actually in the relationship of equation (4). Operator is not at all know this (4) of the relationship, only the data of X 1, X 2, Y is that obtained as the real measured value D2U.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この現実の実測値D2Uに対し、(5)式の簡単な予測モデルで予測値を計算すると想定する。この場合の予測モデルは、図1の予測モデルM2である。 It is assumed that the predicted value is calculated by the simple prediction model of Eq. (5) for this actual measured value D2U. The prediction model in this case is the prediction model M2 of FIG.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この予測モデルには3つの係数a,b,cが含まれており、学習段階で学習データD1によりこれらを同定する必要がある。図9は(4)式の学習のため(3)式により生成した模擬データ例を示す図である。そこで、(5)式の関係にしたがって図9のように模擬データX,Xを生成してこの時のYの値を求め、これらの結果からこれらを学習データD1として3つの係数a,b,cの値を同定した。具体的には、Xを0から1.0までの範囲として0.2刻みで変更し、かつ各Xの値の時にXを0から1.0までの範囲として0.2刻みで変更して、各組合せの時の出力Yの値を求めた。 This prediction model contains three coefficients a, b, and c, which need to be identified by the training data D1 at the learning stage. FIG. 9 is a diagram showing an example of simulated data generated by the equation (3) for learning the equation (4). Therefore, simulated data X 1 and X 2 are generated as shown in FIG. 9 according to the relationship of Eq. (5), and the value of Y at this time is obtained. From these results, these are used as learning data D1 and three coefficients a, The values of b and c were identified. Specifically, X 1 is changed in 0.2 increments as a range from 0 to 1.0, and X 2 is as a range from 0 to 1.0 in 0.2 increments for each value of X 1. By changing, the value of the output Y at the time of each combination was obtained.
 その結果、a=1,b=0.01,c=-0.13467が得られた。模擬データの値と(5)式の予測モデルによる予測値を相関図として図10に示す。図10では、横軸に模擬データの値として0から1.0の範囲の値、縦軸に予測モデルによる予測値として0から1.0の範囲の値を表している。この場合、相関の度合いを示す指標であるRは0.9214となっており、図9のX、Xの内挿条件(いずれも0~1の範囲)において比較的良いモデルとなっていることが分かる。 As a result, a = 1, b = 0.01, c = −0.13467 were obtained. The value of the simulated data and the predicted value by the prediction model of the formula (5) are shown in FIG. 10 as a correlation diagram. In FIG. 10, the horizontal axis represents the value in the range of 0 to 1.0 as the value of the simulated data, and the vertical axis represents the value in the range of 0 to 1.0 as the predicted value by the prediction model. In this case, R 2 which is an index showing the degree of correlation is 0.9214, which is a relatively good model under the interpolation conditions of X 1 and X 2 in FIG. 9 (both are in the range of 0 to 1). You can see that.
 これに対し、外挿条件となる入力値が与えられた場合に予測モデルによる予測値がどの程度現実と異なるかについて評価した。図9で示したように学習データはXおよびXのいずれも0~1.0の範囲としたので、外挿条件の例としてXの値を1.1~1.5とした場合とXの値を1.1~1.5とした場合を仮定した。予測モデルで計算した予測値の予測誤差を求めた結果を図11に示す。図11は、入力XとXの値に対する予測誤差の棒グラフである。この図は横軸に2つの入力X,Xの値の組み合わせを採用し、縦軸に予測誤差を記載している。図11の左側はXを1.0に固定した状態でXを1.0から1.5に変化させた場合であり、図11の右側はXを1.0に固定した状態でXを1.0から1.5に変化させた場合である。 On the other hand, we evaluated how much the predicted value by the prediction model differs from the reality when the input value that is the extrapolation condition is given. As shown in FIG. 9, the training data is in the range of 0 to 1.0 for both X 1 and X 2 , so when the value of X 1 is set to 1.1 to 1.5 as an example of extrapolation conditions. And X 2 are assumed to be 1.1 to 1.5. FIG. 11 shows the result of obtaining the prediction error of the predicted value calculated by the prediction model. FIG. 11 is a bar graph of prediction errors for the values of inputs X 1 and X 2. In this figure, a combination of two inputs X 1 and X 2 is adopted on the horizontal axis, and a prediction error is shown on the vertical axis. The left side of FIG. 11 shows the case where X 1 is changed from 1.0 to 1.5 while X 2 is fixed to 1.0, and the right side of FIG. 11 shows the case where X 1 is fixed to 1.0. This is the case where X 2 is changed from 1.0 to 1.5.
 まず図11の左側のグラフについてみると、ここでは、内挿条件である左端の(X=1.0、X=1.0)の条件での予測誤差の絶対値は約0.12であるが、Xが1.1~1.5となると予測誤差の絶対値は約0.4まで約4倍に増大する。一方図11の右側のグラフについてみると、Xは最大の1.5であっても予測誤差は左端の約0.12からほとんど増大しないことがわかる。 First, looking at the graph on the left side of FIG. 11, here, the absolute value of the prediction error under the condition of the left end (X 1 = 1.0, X 2 = 1.0), which is the insertion condition, is about 0.12. However, when X 1 becomes 1.1 to 1.5, the absolute value of the prediction error increases about four times to about 0.4. On the other hand, looking at the graph on the right side of FIG. 11, it can be seen that even if X 2 has a maximum of 1.5, the prediction error hardly increases from about 0.12 at the left end.
 予測モデルが(5)式で示すようにきわめて単純な重回帰式であり、かつ同定された係数の値を運転員が把握している場合、Xが外挿条件となる場合はXが外挿条件となる場合に比べて予測誤差が大きくなることはあらかじめ推定できる。 If the prediction model is a very simple multiple regression equation as shown in equation (5), and the operator knows the value of the identified coefficient, then X 2 is the extrapolation condition when X 1 is the extrapolation condition. It can be estimated in advance that the prediction error will be larger than when the extrapolation condition is used.
 しかし、その程度までは容易に推算できないことも考えられる。もちろん、予測モデルがニューラルネットワークやディープラーニングなどブラックボックスモデルと言われるものであって単純な数式で容易に把握できない場合、予測誤差の程度はもちろんのこと、大小についても推定することはほぼ不可能である。 However, it may not be easy to estimate to that extent. Of course, if the prediction model is a black box model such as a neural network or deep learning and cannot be easily grasped by a simple mathematical formula, it is almost impossible to estimate not only the degree of prediction error but also the magnitude. Is.
 学習範囲外指標D3を計算した結果の一例を図12に示す。図12は、入力XとXの値に対する学習範囲外指標の棒グラフである。この図は横軸に2つの入力X,Xの値の組み合わせを採用し、縦軸に学習範囲外指標D3を記載している。図12の左側はXを1.0に固定した状態でXを1.0から1.5に変化させた場合であり、図11の右側はXを1.0に固定した状態でXを1.0から1.5に変化させた場合である。
このうち図12の左側のグラフについてみると、左端の条件(X=1.0、X=1.0)は内挿条件であるため、学習範囲外指標D3の値は0となっている。入力Xが1.0から乖離するにしたがい、学習範囲外指標D3の値が大きくなることが分かる。一方図12の右側のグラフについてみると、入力Xが1.0から乖離して1.5になっても学習範囲外指標はほぼ1.0のままである。
FIG. 12 shows an example of the result of calculating the out-of-learning range index D3. FIG. 12 is a bar graph of out-of-learning index for the values of inputs X 1 and X 2. In this figure, a combination of two inputs X 1 and X 2 is adopted on the horizontal axis, and the out-of-learning range index D3 is shown on the vertical axis. The left side of FIG. 12 shows the case where X 1 is changed from 1.0 to 1.5 with X 2 fixed to 1.0, and the right side of FIG. 11 shows the case where X 1 is fixed to 1.0. This is the case where X 2 is changed from 1.0 to 1.5.
Looking at the graph on the left side of FIG. 12, since the condition at the left end (X 1 = 1.0, X 2 = 1.0) is an interpolation condition, the value of the out-of-learning index D3 is 0. There is. It can be seen that the value of the out-of-learning range index D3 increases as the input X 1 deviates from 1.0. On the other hand, looking at the graph on the right side of FIG. 12, even if the input X 2 deviates from 1.0 and becomes 1.5, the index outside the learning range remains almost 1.0.
 外挿の程度のみではなく、感度係数Kも考慮しているため、XとXとでこのような違いが生じる。学習範囲外指標D3の値は、図11で示した予測誤差の値に似た形状となることが分かる。このように、学習範囲外指標D3の値が分かれば、予測値DS2が実測値D2Uとどの程度異なる可能性があるか、あらかじめ大小についても分かると言える。 Not only the degree of extrapolation, the sensitivity coefficient K is also considered, such difference occurs between X 1 and X 2. It can be seen that the value of the out-of-learning range index D3 has a shape similar to the value of the prediction error shown in FIG. In this way, if the value of the index D3 outside the learning range is known, it can be said that the magnitude of the predicted value DS2 may be different from the measured value D2U in advance.
 図11で示した予測誤差と図12で示した学習範囲外指標D3の値を相関図として図13に示す。図13は、学習範囲外指標と予測誤差の相関例を示す図である。この図は横軸に学習範囲外指標D3を採用し、縦軸に予測誤差を記載している。このような相関図も表示部30に表示できれば、今後の予測値の学習範囲外指標D3の値から、実測値D2Uがどの程度ずれる可能性があるかをあらかじめ把握することができ、さらに有用である。 FIG. 13 shows the prediction error shown in FIG. 11 and the value of the out-of-learning range index D3 shown in FIG. 12 as a correlation diagram. FIG. 13 is a diagram showing an example of correlation between an index outside the learning range and a prediction error. In this figure, the out-of-learning index D3 is adopted on the horizontal axis, and the prediction error is shown on the vertical axis. If such a correlation diagram can also be displayed on the display unit 30, it is possible to grasp in advance how much the measured value D2U may deviate from the value of the index D3 outside the learning range of the predicted value in the future, which is more useful. be.
 学習範囲外指標D3の値が一定値以上、あるいは一定値以下である場合には予測値DS2の信頼度が低いと考えられるため、誤ってその予測値DS2を運転員が参考としないよう、予測値DS2自体を画面に表示しない機能を加えても良い。このような機能を加えることで、よりリスクを低減した安全サイドで運転することが可能となる。 If the value of the out-of-learning index D3 is greater than or equal to a certain value or less than or equal to a certain value, the reliability of the predicted value DS2 is considered to be low. You may add a function that does not display the value DS2 itself on the screen. By adding such a function, it becomes possible to drive on the safe side with further reduced risk.
 以上図1の構成を参照して、予測システムの構成を説明したが、この考え方はそのまま予測モデルを用いた予測方法として実現することができる。係る予測方法の発明は、「学習段階において学習データを用いて学習する予測モデルによる予測を行うための予測方法であって、予測段階において、予測モデルに与える各入力項目の入力値を得、予測モデルの各入力項目が予測モデルで求められる予測値に及ぼす影響を示す感度係数を算出し、各入力項目の入力値に関するに関する学習データの統計値からの乖離度を示す距離係数を算出し、感度係数と距離係数の値から学習範囲外指標を算出し、感度係数と距離係数のいずれか又は双方、あるいは学習範囲外指標の値を数値あるいは図として表示すること」で実現することができる。 The configuration of the prediction system has been explained with reference to the configuration of FIG. 1, but this idea can be realized as it is as a prediction method using a prediction model. The invention of the prediction method is "a prediction method for making a prediction by a prediction model learned by using training data in a learning stage, and in the prediction stage, an input value of each input item given to the prediction model is obtained and predicted. Calculate the sensitivity coefficient that shows the effect of each input item of the model on the predicted value obtained by the prediction model, calculate the distance coefficient that shows the degree of deviation from the statistical value of the training data regarding the input value of each input item, and calculate the sensitivity. It can be realized by calculating the out-of-learning index from the values of the coefficient and the distance coefficient, and displaying either or both of the sensitivity coefficient and the distance coefficient, or the value of the out-of-learning index as a numerical value or a figure.
 また本発明は、表示装置に表示される表示内容としての特徴を有する。これは例えば、「学習段階学習データを用いて学習する予測モデルを含む予測システムで使用される表示装置であって、表示装置には、前記予測モデルに与える各入力項目の入力値が予測モデルで求められる予測値に及ぼす影響を示す感度係数と、各入力項目の入力値に関する学習データの統計値からの乖離度を示す距離係数と、感度係数と距離係数の値から算出された学習範囲外指標について、感度係数と距離係数のいずれか又は双方、あるいは学習範囲外指標の値を数値あるいは図として表示することを特徴とする表示装置」というものである。 Further, the present invention has a feature as a display content displayed on the display device. This is, for example, "a display device used in a prediction system including a prediction model for learning using learning stage training data, and the display device has an input value of each input item given to the prediction model in the prediction model. Sensitivity coefficient indicating the effect on the required predicted value, distance coefficient indicating the degree of deviation from the statistical value of the training data regarding the input value of each input item, and the out-of-learning index calculated from the values of the sensitivity coefficient and the distance coefficient. A display device characterized by displaying the value of either or both of the sensitivity coefficient and the distance coefficient, or an index outside the learning range as a numerical value or a figure.
10:入力部、12:入力値正規化演算部、15:統計値正規化演算部、18:距離係数算出部、22:感度係数算出部、26:学習範囲外指標算出部、30:表示部、D1:それぞれの入力項目の学習データの統計値、D1U:正規化後の学習データの統計値、D2:入力項目のそれぞれの入力値、D2U:正規化後の入力値、D2U1:摂動を与えた入力値、D3:学習範囲外指標、DB:学習データの統計値記憶部、DS1:摂動を与えた場合の予測値、DS2:予測値、K:感度係数、L:距離係数、M1:感度解析用予測モデル、M2:予測値計算用予測モデル 10: Input unit, 12: Input value normalization calculation unit, 15: Statistical value normalization calculation unit, 18: Distance coefficient calculation unit, 22: Sensitivity coefficient calculation unit, 26: Out-of-learning index calculation unit, 30: Display unit , D1: Statistical value of training data of each input item, D1U: Statistical value of training data after normalization, D2: Each input value of input item, D2U: Input value after normalization, D2U1: Perturbation Input value, D3: Out-of-learning index, DB: Statistical value storage of training data, DS1: Predicted value when perturbation is given, DS2: Predicted value, K: Sensitivity coefficient, L: Distance coefficient, M1: Sensitivity Prediction model for analysis, M2: Prediction model for calculation of predicted value

Claims (15)

  1.  学習段階において学習データを用いて学習する予測モデルを含む予測システムであって、
     予測段階で前記予測モデルに与える各入力項目の入力値を与える入力部と、前記予測モデルの各入力項目が前記予測モデルで求められる予測値に及ぼす影響を示す感度係数を算出する感度係数算出部と、各入力項目の入力値に関する前記学習データの統計値からの乖離度を示す距離係数を算出する距離係数算出部と、前記感度係数と前記距離係数の値から学習範囲外指標を算出する学習範囲外指標算出部と、前記感度係数と前記距離係数のいずれか又は双方、あるいは前記学習範囲外指標の値を数値あるいは図として表示する表示部と、を備えたことを特徴とする予測システム。
    It is a prediction system that includes a prediction model that learns using learning data at the learning stage.
    An input unit that gives an input value of each input item given to the prediction model at the prediction stage, and a sensitivity coefficient calculation unit that calculates a sensitivity coefficient that indicates the influence of each input item of the prediction model on the prediction value obtained by the prediction model. And the distance coefficient calculation unit that calculates the distance coefficient indicating the degree of deviation from the statistical value of the learning data regarding the input value of each input item, and the learning that calculates the out-of-learning index from the sensitivity coefficient and the value of the distance coefficient. A prediction system including a out-of-range index calculation unit and a display unit that displays the value of the out-of-range index, either or both of the sensitivity coefficient and the distance coefficient, or the value of the out-of-range index as a numerical value or a figure.
  2.  請求項1に記載の予測システムであって、
     各入力項目の入力値を正規化する入力値正規化演算部と、各入力項目に関する前記学習データの統計値を正規化する統計値正規化演算部を備え、
     少なくとも前記感度係数算出部あるいは前記距離係数算出部のいずれかで前記感度係数あるいは前記距離係数を算出するために正規化後の入力値と正規化後の学習データの統計値を与えることを特徴とする予測システム。
    The prediction system according to claim 1.
    It is equipped with an input value normalization calculation unit that normalizes the input value of each input item, and a statistical value normalization calculation unit that normalizes the statistical value of the training data for each input item.
    It is characterized in that at least either the sensitivity coefficient calculation unit or the distance coefficient calculation unit gives the input value after normalization and the statistical value of the training data after normalization in order to calculate the sensitivity coefficient or the distance coefficient. Prediction system to do.
  3.  請求項1または請求項2に記載の予測システムであって、
     前記学習範囲外指標算出部では、各入力項目の前記感度係数と前記距離係数の積を全入力項目について加算して前記学習範囲外指標を算出することを特徴とする予測システム。
    The prediction system according to claim 1 or 2.
    The out-of-learning index calculation unit is a prediction system characterized in that the product of the sensitivity coefficient and the distance coefficient of each input item is added for all input items to calculate the out-of-learning index.
  4.  請求項1または請求項2に記載の予測システムであって、
     前記学習範囲外指標算出部は、各入力項目の前記感度係数と前記距離係数の積の絶対値を全入力項目について加算して前記学習範囲外指標を算出することを特徴とする予測システム。
    The prediction system according to claim 1 or 2.
    The out-of-learning index calculation unit is a prediction system characterized in that the out-of-learning index is calculated by adding the absolute value of the product of the sensitivity coefficient and the distance coefficient of each input item for all input items.
  5.  請求項1から請求項4のいずれか1項に記載の予測システムであって、
     前記距離係数算出部に与えられる統計値として大小2つ以上の統計値を用い、そのうち最大となる統計値よりも入力項目の値が大きい場合には大きいほど距離係数の値が大きくなり、最小となる統計値よりも入力項目の値が小さい場合には小さいほど距離係数の値が小さくなり、最小となる統計値と最大となる統計値の間に入力項目の値がある場合には、入力項目の値が最小となる統計値と等しいときの距離係数の値および入力項目の値が最大となる統計値と等しいときの距離係数の値の間の値となる距離係数を与えることを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 4.
    Two or more large and small statistical values are used as the statistical values given to the distance coefficient calculation unit, and when the value of the input item is larger than the maximum statistical value, the larger the value, the larger the distance coefficient value, and the minimum. If the value of the input item is smaller than the statistic value, the value of the distance coefficient becomes smaller as it is smaller, and if the value of the input item is between the minimum statistic value and the maximum statistic value, the input item It is characterized by giving the value of the distance coefficient when the value of is equal to the minimum statistical value and the value of the distance coefficient when the value of the input item is equal to the maximum statistical value. Prediction system.
  6.  請求項5に記載の予測システムであって、
     前記距離係数算出部に与えられる統計値のうち最大となるものに、学習データの最大値、正規化後の学習データの最大値、学習データの平均値に標準偏差の定数倍を加えた値、正規化後の平均値に標準偏差の定数倍を加えた値、のいずれかを用い、距離係数算出部に与えられる統計値のうち最小となるものに、学習データの最小値、正規化後の学習データの最小値、学習データの平均値から標準偏差の定数倍を減じた値、正規化後の学習データの平均値から標準偏差の定数倍を減じた値、のいずれかを用いることを特徴とする予測システム。
    The prediction system according to claim 5.
    The maximum value of the statistical values given to the distance coefficient calculation unit, the maximum value of the training data, the maximum value of the training data after normalization, the average value of the training data plus a constant multiple of the standard deviation, Using either the normalized average value plus a constant multiple of the standard deviation, the minimum statistical value given to the distance coefficient calculation unit is the minimum value of the training data and the normalized value. It is characterized by using either the minimum value of the training data, the value obtained by subtracting the constant multiple of the standard deviation from the average value of the training data, or the value obtained by subtracting the constant multiple of the standard deviation from the average value of the normalized training data. Prediction system.
  7.  請求項1から請求項4のいずれか1項に記載の予測システムであって、
     前記距離係数算出部に与えられる統計値として1つの値を用い、その統計値に比べて入力項目の値が大きい場合には大きく離れるほど距離係数の値が大きくなり、その統計値に比べて入力項目の値が小さい場合には小さいほど距離係数の値が小さくなることを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 4.
    One value is used as the statistical value given to the distance coefficient calculation unit, and when the value of the input item is larger than the statistical value, the value of the distance coefficient becomes larger as the distance increases, and the value is input compared to the statistical value. A prediction system characterized in that when the value of an item is small, the value of the distance coefficient becomes smaller as the value of the item becomes smaller.
  8.  請求項7に記載の予測システムであって、
     前記距離係数算出部に与えられる統計値として、平均値、最頻値、中央値のうちいずれかを用いることを特徴とする予測システム。
    The prediction system according to claim 7.
    A prediction system characterized in that any one of a mean value, a mode value, and a median value is used as a statistical value given to the distance coefficient calculation unit.
  9.  請求項1から請求項8のいずれか1項に記載の予測システムであって、
     前記表示部は、過去に算出した前記学習範囲外指標の値も数値あるいは図として表示することを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 8.
    The display unit is a prediction system characterized in that the value of the index outside the learning range calculated in the past is also displayed as a numerical value or a figure.
  10.  請求項1から請求項9のいずれか1項に記載の予測システムであって、
     前記表示部は、一軸が時間、もう一軸を学習範囲外指標の値とし、過去の値に対して大小を視認できるグラフとして表示することを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 9.
    The display unit is a prediction system characterized in that one axis is time and the other axis is the value of an index outside the learning range, and the magnitude is visually recognizable with respect to the past value.
  11.  請求項1から請求項10のいずれか1項に記載の予測システムであって、
     前記表示部には、一軸が時間、もう一軸を過去の実測値および予測値としたグラフも表示できることを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 10.
    A prediction system characterized in that a graph in which one axis is time and the other axis is past measured values and predicted values can also be displayed on the display unit.
  12.  請求項1から請求項10のいずれか1項に記載の予測システムであって、
     前記表示部には、一軸が時間、もう一軸を実測値と予測値の差分である予測誤差としたグラフも表示できることを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 10.
    The prediction system is characterized in that the display unit can also display a graph in which one axis is time and the other axis is a prediction error which is a difference between a measured value and a predicted value.
  13.  請求項1から請求項10のいずれか1項に記載の予測システムであって、
     前記表示部には、一軸が過去の実測値に対する予測値の予測誤差、もう一軸が学習範囲外指標である相関図も表示できることを特徴とする予測システム。
    The prediction system according to any one of claims 1 to 10.
    The display unit is characterized in that one axis can display a prediction error of a predicted value with respect to a past measured value, and the other axis can display a correlation diagram which is an index outside the learning range.
  14.  学習段階において学習データを用いて学習する予測モデルによる予測を行うための予測方法であって、
     予測段階において、前記予測モデルに与える各入力項目の入力値を得、前記予測モデルの各入力項目が前記予測モデルで求められる予測値に及ぼす影響を示す感度係数を算出し、各入力項目の入力値に関する前記学習データの統計値からの乖離度を示す距離係数を算出し、前記感度係数と前記距離係数の値から学習範囲外指標を算出し、前記感度係数と前記距離係数のいずれか又は双方、あるいは前記学習範囲外指標の値を数値あるいは図として表示する表ことを特徴とする予測方法。
    It is a prediction method for making predictions by a prediction model that learns using learning data at the learning stage.
    In the prediction stage, the input value of each input item given to the prediction model is obtained, the sensitivity coefficient indicating the influence of each input item of the prediction model on the prediction value obtained by the prediction model is calculated, and the input of each input item is calculated. A distance coefficient indicating the degree of deviation from the statistical value of the training data regarding the value is calculated, an index outside the learning range is calculated from the sensitivity coefficient and the value of the distance coefficient, and either or both of the sensitivity coefficient and the distance coefficient are calculated. , Or a prediction method comprising a table displaying the value of the index outside the learning range as a numerical value or a figure.
  15.  学習段階において学習データを用いて学習する予測モデルを含む予測システムで使用される表示装置であって、
     表示装置には、前記予測モデルに与える各入力項目の入力値が前記予測モデルで求められる予測値に及ぼす影響を示す感度係数と、各入力項目の入力値に関する前記学習データの統計値からの乖離度を示す距離係数と、前記感度係数と前記距離係数の値から算出された学習範囲外指標について、前記感度係数と前記距離係数のいずれか又は双方、あるいは前記学習範囲外指標の値を数値あるいは図として表示することを特徴とする表示装置。
    A display device used in a prediction system that includes a prediction model that learns using training data in the learning stage.
    The display device has a sensitivity coefficient indicating the influence of the input value of each input item given to the prediction model on the prediction value obtained by the prediction model, and a deviation from the statistical value of the training data regarding the input value of each input item. With respect to the distance coefficient indicating the degree and the out-of-learning index calculated from the sensitivity coefficient and the value of the distance coefficient, either or both of the sensitivity coefficient and the distance coefficient, or the value of the out-of-learning index is numerically or A display device characterized by displaying as a figure.
PCT/JP2021/015566 2020-07-21 2021-04-15 Prediction system, prediction method, and display device WO2022018912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020124393A JP7436313B2 (en) 2020-07-21 2020-07-21 Prediction system, prediction method, and display device
JP2020-124393 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022018912A1 true WO2022018912A1 (en) 2022-01-27

Family

ID=79729358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015566 WO2022018912A1 (en) 2020-07-21 2021-04-15 Prediction system, prediction method, and display device

Country Status (2)

Country Link
JP (1) JP7436313B2 (en)
WO (1) WO2022018912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220383723A1 (en) * 2021-05-28 2022-12-01 Yokogawa Electric Corporation Information processing device, alarm prediction method, and computer-readable recording medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240587A (en) * 1995-03-03 1996-09-17 Nippon Steel Corp Method for estimation of material of thick steel plate utilizing neural network
WO2007080688A1 (en) * 2006-01-13 2007-07-19 Jfe Steel Corporation Prediction formula making device and prediction formula making method
JP2008112288A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP2010527486A (en) * 2007-05-15 2010-08-12 フィッシャー−ローズマウント システムズ, インコーポレイテッド Automatic maintenance estimation in plant environment
JP2010282547A (en) * 2009-06-08 2010-12-16 Fuji Electric Systems Co Ltd Input variable selection support apparatus
JP2011039762A (en) * 2009-08-11 2011-02-24 Kobe Steel Ltd Output value prediction method and device, and program for the method
JP2011185880A (en) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
JP2016148963A (en) * 2015-02-12 2016-08-18 株式会社日立製作所 Failure sign diagnostic system and failure sign diagnostic method
JP2018010521A (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Product state prediction device, product state control device, product state prediction method and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240587A (en) * 1995-03-03 1996-09-17 Nippon Steel Corp Method for estimation of material of thick steel plate utilizing neural network
WO2007080688A1 (en) * 2006-01-13 2007-07-19 Jfe Steel Corporation Prediction formula making device and prediction formula making method
JP2008112288A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product
JP2010527486A (en) * 2007-05-15 2010-08-12 フィッシャー−ローズマウント システムズ, インコーポレイテッド Automatic maintenance estimation in plant environment
JP2010282547A (en) * 2009-06-08 2010-12-16 Fuji Electric Systems Co Ltd Input variable selection support apparatus
JP2011039762A (en) * 2009-08-11 2011-02-24 Kobe Steel Ltd Output value prediction method and device, and program for the method
JP2011185880A (en) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
JP2016148963A (en) * 2015-02-12 2016-08-18 株式会社日立製作所 Failure sign diagnostic system and failure sign diagnostic method
JP2018010521A (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Product state prediction device, product state control device, product state prediction method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220383723A1 (en) * 2021-05-28 2022-12-01 Yokogawa Electric Corporation Information processing device, alarm prediction method, and computer-readable recording medium
US11893869B2 (en) * 2021-05-28 2024-02-06 Yokogawa Electric Corporation Information processing device, alarm prediction method, and computer-readable recording medium

Also Published As

Publication number Publication date
JP2022021042A (en) 2022-02-02
JP7436313B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
Yeong et al. Economic and economic statistical designs of the synthetic X chart using loss functions
US20130151179A1 (en) Automated monitoring for changes in energy consumption patterns
JP2019521444A (en) Computer system and method for dynamic construction and on-line deployment of a motion-centric first principles process model for predictive analysis
CN107301570B (en) Traffic prediction method, abnormal traffic detection device and electronic equipment
CN116346864B (en) Ultrasonic metering compensation method, system and medium based on intelligent gas Internet of things
CN104952753A (en) Measurement Sampling Method
US20190164102A1 (en) Operational improvement effect calculation device, operational improvement effect calculation method and recording medium
WO2022018912A1 (en) Prediction system, prediction method, and display device
CN107644148B (en) On-orbit satellite abnormal state monitoring method and system based on multi-parameter association
CN115167323B (en) Industrial control equipment feedback information instruction transmission system based on digital factory
CN115130658B (en) Reservoir landslide displacement prediction method and device based on nonlinear combination model
CN115587532A (en) Method and system for monitoring abnormity of energy consumption working condition of industrial building and storage medium
JP2014035282A (en) Abnormality diagnostic device
JP3765985B2 (en) Instrument evaluation system
US20220004154A1 (en) Information processing apparatus
WO2021140942A1 (en) Diagnosing device, diagnosing method, and program
WO2022070656A1 (en) Abnormality detection model assessment system and assessment method
JP2008305229A (en) Demand forecast method and device
WO2021130983A1 (en) Data collection and analysis system, data collection and analysis device, machine learning device, and data collection and analysis method
Craigmile et al. Modeling and detection of respiratory-related outbreak signatures
Grenyer et al. An Uncertainty Quantification and Aggregation Framework for System Performance Assessment in Industrial Maintenance
US20240012175A1 (en) Apparatus and method for calculating sensible temperature in consideration of outdoor ground heating and heatwave warning apparatus and method based on sensible temperature in consideration of outdoor ground heating
JP7314969B2 (en) Zirconia oxygen concentration meter maintenance method, maintenance system, and zirconia oxygen concentration meter
RU2764359C1 (en) Device for diagnosing condition of equipment (options), method for diagnosing condition of equipment and system for diagnosing condition of equipment (options)
JP7489157B1 (en) Output method, output device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845752

Country of ref document: EP

Kind code of ref document: A1