WO2022014011A1 - Object detecting equipment and object detecting method - Google Patents

Object detecting equipment and object detecting method Download PDF

Info

Publication number
WO2022014011A1
WO2022014011A1 PCT/JP2020/027685 JP2020027685W WO2022014011A1 WO 2022014011 A1 WO2022014011 A1 WO 2022014011A1 JP 2020027685 W JP2020027685 W JP 2020027685W WO 2022014011 A1 WO2022014011 A1 WO 2022014011A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
unit
synchronization signal
synchronization
Prior art date
Application number
PCT/JP2020/027685
Other languages
French (fr)
Japanese (ja)
Inventor
正行 有吉
慎吾 山之内
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022536070A priority Critical patent/JP7464126B2/en
Priority to PCT/JP2020/027685 priority patent/WO2022014011A1/en
Publication of WO2022014011A1 publication Critical patent/WO2022014011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Definitions

  • the present invention relates to an object detection device and an object detection method for recognizing or identifying the existence of an object by irradiating the object with radio waves and detecting the radio waves reflected or radiated by the object.
  • radio waves microwaves, millimeter waves, terahertz waves, etc.
  • Devices and sensing technology that image and inspect articles such as under clothes and inside bags by utilizing the ability to transmit radio waves have been put into practical use.
  • a related technique is disclosed in Patent Document 1.
  • Patent Document 1 discloses an imaging device (object detection device) using radio waves, in which a transmitting device that transmits radio waves and a receiving device that receives radio waves are physically separated.
  • Patent Document 1 discloses a configuration in which the transmitting device 301 and the receiving device 306 are physically separated as shown in the conceptual diagram of FIG. 23.
  • the transmitting apparatus 301 transmitting antenna 302 1, 302 2, ..., toward the radio 304 to the object 303 from one or more antennas 302 m of the 302 M transmission do.
  • the radio wave 304 is reflected by the object 303, and reflected waves 305 1 , 305 2 , ..., 305 N are generated.
  • the generated reflected waves 305 1 , 305 2 , ..., 305 N are received by the receiving antennas 307 1 , 307 2 , ..., 307 N provided in the receiving device 306.
  • the amplitude of the radio wave reflected by the object 303 is calculated based on the reflected waves 305 1 , 305 2 , ..., 305 N received by the receiving device 306.
  • an image of the object 303 can be obtained.
  • the transmitting device 301 and the receiving device 306 are connected to the same oscillating unit 401, and the detection signal generated by the same oscillating unit 401 is received.
  • the transmitter 301 transmits the radio wave that carries the detection signal generated by the oscillator 401 by the transmitting antenna 302 via the transmitter 404.
  • the transmitter 404 is implemented by an IC or a module.
  • the receiving device 306 includes a receiving antenna 307, a receiver 405 including a mixer 402, and a data transfer unit 403.
  • the receiver 405 is implemented by an IC or a module.
  • the mixer 402 in the receiving device 306 mixes the reflected wave 305 from the object 303 received by the receiving antenna 307 and the detection signal generated by the oscillating unit 401 to obtain an intermediate frequency signal (hereinafter, “IF”). (Intermediate Frequency) signal "may be written.) Is generated.
  • the IF signal generated by the mixer 402 is output to the data transfer unit 403.
  • the IF signal output to the data transfer unit 403 is used for calculating the amplitude of the radio wave reflected by the object 303 and generating an image of the object 303.
  • a cable that connects the oscillator 401 and each of the transmitter 404 and the receiver 405 and transmits a signal is represented by a double line.
  • the detection signal carried by the radio wave transmitted from the transmitting device and the detection signal used for generating the IF signal in the receiving device are the same generated by the same oscillator.
  • the present inventors have studied a configuration in which a detection signal carried by a radio wave transmitted from a transmitting device and a detection signal used for generating an IF signal in the receiving device are generated by separate oscillators. did. By adopting this configuration, the above problem is solved. However, when adopting this configuration, it is necessary to synchronize the processing of the transmitting device and the receiving device.
  • the present invention has a configuration in which a detection signal carried by radio waves transmitted from a transmitting device and a detection signal used for generating an IF signal in the receiving device are generated by separate oscillating units, and the transmitting device and the receiving device are used.
  • An object of the present invention is to provide a technique for synchronizing processing with an apparatus.
  • the present invention It is an object detection device for detecting objects by radio waves. It is equipped with a transmitting means and a receiving means.
  • the transmission means is A transmitting antenna that transmits radio waves, and The transmission antenna transmits a radio wave that carries a predetermined detection signal at a synchronization signal transmission process that transmits a radio wave that carries a synchronization signal at a preset reference timing from the transmission antenna and a transmission timing that is determined based on the reference timing.
  • Transmission oscillation means that executes detection signal transmission processing to be transmitted from Have
  • the receiving means The receiving antenna that receives radio waves and A synchronization signal detection means for detecting the synchronization signal from the radio waves received by the reception antenna, and A receive oscillation means that generates a receive local oscillation signal based on the timing at which the synchronization signal is detected, and a receive oscillation means.
  • a receiver that generates an intermediate frequency signal based on the detected signal detected from the radio waves received by the receiving antenna and the received local oscillation signal.
  • An arithmetic means for generating an image based on the intermediate frequency signal, and An object detection device having the above is provided.
  • the transmission means is Synchronous signal transmission processing to transmit radio waves that carry a synchronization signal from a transmission antenna at a preset reference timing, and radio waves that carry a predetermined detection signal from the transmission antenna at a transmission timing determined based on the reference timing.
  • Executes the detection signal transmission process to be transmitted The receiving means
  • the synchronization signal is detected from the radio waves received by the receiving antenna, and the synchronization signal is detected.
  • a received local oscillation signal is generated based on the timing at which the synchronization signal is detected.
  • An intermediate frequency signal is generated based on the detection signal detected from the radio waves received by the reception antenna and the reception local oscillation signal.
  • An object detection method for generating an image based on the intermediate frequency signal is provided.
  • the transmitting device in a configuration in which a detection signal carried by a radio wave transmitted from a transmitting device and a detection signal used for generating an IF signal in the receiving device are generated by separate oscillators, the transmitting device is used.
  • a technology for synchronizing the processing between the receiver and the receiver is realized.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the object detection device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a method of controlling the frequency of a radio wave transmitted by a transmitting unit in the present embodiment.
  • FIG. 3 is a diagram illustrating an example of a method of controlling the frequency of a radio wave transmitted by a transmitting unit in the present embodiment.
  • FIG. 4 is a diagram illustrating an example of a control method of a detection signal transmitted by the transmitting unit and a LO signal generated by the receiving unit in the present embodiment.
  • FIG. 5 is an example of a flowchart showing an object detection method according to the present embodiment.
  • FIG. 6 is an example of a flowchart showing the object detection method in the present embodiment.
  • FIG. 5 is an example of a flowchart showing an object detection method according to the present embodiment.
  • FIG. 7 is an example of a flowchart showing the object detection method in the present embodiment.
  • FIG. 8 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the object by the conventional method.
  • FIG. 9 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the object in the present embodiment.
  • FIG. 10 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment.
  • FIG. 11 is a configuration diagram showing an example of the hardware configuration of the object detection device of the present embodiment.
  • FIG. 12 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment.
  • FIG. 13 is an example of a flowchart showing the object detection method according to the present embodiment.
  • FIG. 10 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment.
  • FIG. 11 is a configuration diagram showing an example of the hardware configuration of the object detection device of the present embodiment.
  • FIG. 12 is
  • FIG. 14 is an example of a flowchart showing the object detection method according to the present embodiment.
  • FIG. 15 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment.
  • FIG. 16 is a diagram illustrating an example of a method of controlling the frequency of radio waves transmitted by the transmitting unit in the present embodiment.
  • FIG. 17 is an example of a sequence diagram showing an object detection method according to the present embodiment.
  • FIG. 18 is an example of a sequence diagram showing an object detection method according to the present embodiment.
  • FIG. 19 is an example of a sequence diagram showing an object detection method according to the present embodiment.
  • FIG. 20 is an example of a sequence diagram showing an object detection method according to the present embodiment.
  • FIG. 21 is an example of a sequence diagram showing an object detection method according to the present embodiment.
  • FIG. 21 is an example of a sequence diagram showing an object detection method according to the present embodiment.
  • FIG. 22 is a diagram illustrating an example of a method for controlling the frequency of radio waves transmitted by the transmitting unit in the present embodiment.
  • FIG. 23 is a configuration diagram showing an example of the configuration of the object detection device of the comparative example.
  • FIG. 24 is a configuration diagram showing an example of the configuration of the object detection device of the comparative example.
  • the object detection device 1000 in the first embodiment shown in FIG. 1 is a device for detecting an object by radio waves. As shown in FIG. 1, the object detection device 1000 includes a transmission unit 1001 and a reception unit 1101.
  • the transmission unit 1001 transmits a radio wave that carries a detection signal toward an object to be detected (hereinafter referred to as an "object") 1201.
  • the receiving unit 1101 receives the radio wave reflected by the object 1201 or the radio wave radiated from the object 1201.
  • the transmission unit 1001 includes a transmission antenna 1002, a transmitter 1004 including a transmission oscillation unit 1003, and a control unit 1005. It is desirable that the transmitter antenna 1002 and the transmitter 1004 are integrally mounted by an IC or a module.
  • the transmitter 1004 provided with the transmission oscillation unit 1003 and the transmission antenna 1002 are mounted by an IC or a module, and the transmission oscillation unit 1003 and the transmission antenna 1002 are connected by wiring in the IC or the module. do.
  • the wiring cable for supplying radio waves becomes unnecessary.
  • the wiring cable for supplying radio waves is not required in the transmission unit 1001, so that the device cost can be reduced and the housing size can be reduced.
  • the transmission oscillation unit 1003 in the transmitter 1004 outputs radio waves toward the transmission antenna 1002.
  • the transmitter 1004 may have a function of amplifying or attenuating the radio wave output from the transmission oscillation unit 1003 to a predetermined value.
  • the transmitting antenna 1002 transmits the radio wave output from the transmitter 1004 toward the object 1201. At this time, the transmission of the radio wave from the transmitting antenna 1002 may be performed in a time division manner in which the transmitting antennas 1002 1 , 1002 2 , ..., 1002 N are switched.
  • control unit 1005 controls the transmission oscillation unit 1003 in the transmitter 1004. Specifically, the control unit 1005 controls the amplitude and frequency of the radio wave output from the transmission oscillation unit 1003.
  • the receiving unit 1101 includes a receiving antenna 1102, a receiving oscillation unit 1103, a receiver 1104 including a mixer 1105, a data transfer unit 1106, a calculation unit 1107, a synchronization signal detection unit 1109, and a control unit 1110. There is. It is desirable that the receiving antenna 1102 and the receiver 1104 are integrally mounted by an IC or a module. Further, the arithmetic unit 1107 may be physically and / or logically separated from the receiving unit 1101, or may be physically and logically integrated.
  • the receiving antenna 1102 receives radio waves.
  • the receiving antenna 1102 receives radio waves reflected by the object 1201 and radio waves radiated from the object 1201.
  • the radio waves reflected by the object 1201 and the radio waves radiated from the object 1201 are collectively referred to as "radio waves from the object 1201".
  • the radio wave from the object 1201 may be received by a plurality of receiving antennas 1102 1 , 1102 2 , ... 1102 N.
  • the radio wave received by the receiving antenna 1102 is output to the receiver 1104.
  • the receiving oscillation unit 1103 outputs a local oscillation signal (Local Oscillator signal, hereinafter referred to as "LO signal") toward the receiver 1104.
  • the reception oscillation unit 1103 generates a signal by the same algorithm as the transmission oscillation unit 1003. Therefore, the detection signal generated by the transmission oscillation unit 1003 and the LO signal generated by the reception oscillation unit 1103 have the same contents. Further, by aligning the signal generation timings in the synchronization processing, the transmission oscillation unit 1003 and the reception oscillation unit 1103 are configured to generate the same signal at the same timing.
  • a wiring cable for radio wave supply is used for the connection between the reception oscillator 1103 and the receiver 1104 shown by the double line in FIG.
  • the mixer 1105 in the receiver 1104 mixes the radio wave output from the receiving antenna 1102 and the LO signal output from the receiving oscillation unit 1103 to generate an intermediate frequency signal (IF signal) and generate it.
  • the IF signal is output to the data transfer unit 1106.
  • the data transfer unit 1106 outputs an IF signal to the arithmetic unit 1107.
  • the data transfer unit 1106 may convert the IF signal output from the receiver 1104 into a digital signal and output it to the calculation unit 1107.
  • the calculation unit 1107 calculates the distribution of radio waves from the object 1201 based on the IF signal output from the data transfer unit 1106. Further, an image of the object 1201 is generated based on the distribution of radio waves from the object 1201. The details of the operation of the calculation unit 1107 will be described in the section [Device operation] described later.
  • control unit 1110 controls the receiving oscillation unit 1103. Specifically, the control unit 1110 controls the amplitude and frequency of the LO signal output from the reception oscillation unit 1103.
  • the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101 are separately provided (physical). It is divided into objective and logical).
  • the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101 are separately provided eliminates the need for a wiring cable between the transmission unit 1001 and the reception unit 1101. Since there is no wiring cable between the transmitting unit 1001 and the receiving unit 1101, which is an area through which pedestrians pass, the wiring cable does not obstruct the passage of pedestrians in the first embodiment. Further, since there is no wiring cable between the transmitting unit 1001 and the receiving unit 1101, it is possible to flexibly change the positional relationship between the transmitting unit 1001 and the receiving unit 1101.
  • the frequency 1301 of the detection signal carried by the radio wave transmitted from the transmission unit 1001 may be swept.
  • the control unit 1005 in the transmission unit 1001 controls the transmission oscillation unit 1003 so as to sweep the frequency 1301 of the detection signal.
  • the method of sweeping the frequency 1301 of the detection signal may be a stepped frequency continuous wave (SFW) method of sweeping at discrete frequency values according to time.
  • the method of sweeping the frequency 1301 of the detection signal may be a frequency modulation continuous wave (FMCW) method in which the frequency 1301 is swept with a continuous frequency value according to the time.
  • FMCW frequency modulation continuous wave
  • the object detection device 1000 of the first embodiment performs the following synchronization processing in order to generate the detection signal and the LO signal of the same frequency at the same timing.
  • the transmitting unit 1001 transmits a radio wave carrying a synchronization signal toward the receiving unit 1101.
  • the control unit 1005 controls the transmission oscillation unit 1003 in the transmitter 1004 to generate a radio wave that carries a synchronization signal.
  • the transmitter 1004 outputs a radio wave carrying a synchronization signal to the transmitting antenna 1002.
  • the transmission antenna 1002 transmits radio waves that carry the synchronization signal from the transmission unit 1001.
  • the receiving unit 1101 receives the radio wave that carries the synchronization signal at the receiving antenna 1102.
  • the radio wave received by the receiving antenna 1102 is output to the synchronization signal detection unit 1109.
  • the synchronization signal detection unit 1109 demodulates the radio wave and detects the synchronization signal.
  • the synchronization signal detection unit 1109 outputs the detected synchronization signal to the control unit 1110.
  • the control unit 1110 controls the reception oscillation unit 1103 based on the synchronization signal output from the synchronization signal detection unit 1109.
  • the transmission unit 1001 a radio wave carrying a synchronization signal, and transmits to the receiving unit 1101. Then, the receiving unit 1101 receives the radio wave, demodulates the radio wave, and detects the synchronization signal. Since the speed of the radio wave is high and the time required for the reception unit 1101 to detect the synchronization signal is sufficiently short, the timing at which the transmission unit 1001 transmits the radio wave carrying the synchronization signal and the reception unit 1101 transmit the synchronization signal. the detected timing may be regarded as the same time t t.
  • Transmission unit 1001 at the timing of time t s1 the predetermined time set in advance from the time t t has passed, starts the sweep of the frequency 1301 of the detection signal from a predetermined value.
  • the receiving unit 110 at the timing of time t s1 the predetermined time set in advance from the time t t has passed, starts the sweep of the frequency 1302 of the LO signal from a predetermined value.
  • the transmitting unit 1001 and the receiving unit 1101 generate a detection signal and an LO signal by the same algorithm. Therefore, by aligning the signal generation timings in the synchronization process, the transmission unit 1001 and the reception unit 1101 generate signals of the same frequency at the same timing.
  • the synchronization process will be described in more detail in the following embodiments.
  • the first embodiment it is possible to generate an IF signal necessary for generating an image of an object 1201 in a state where there is no wiring between the transmitting unit 1001 and the receiving unit 1101.
  • the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 is controlled. Is difficult.
  • the phase of the detection signal transmitted from the transmission unit 1001 is the reception oscillation in the reception unit 1101. It fluctuates regardless of the phase of the LO signal output from unit 1103.
  • Such fluctuations in the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 cause the image of the object 1201 to be disturbed.
  • the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates. Also, an image generation method for stably generating a correct image of the object 1201 is provided.
  • FIG. 5 is a flow chart showing the operation of the object detection device according to the first embodiment of the present invention. Further, in the first embodiment, the object detection method is implemented by operating the object detection device 1000. Therefore, the description of the object detection method in the first embodiment is replaced with the following description of the operation of the object detection device 1000.
  • the synchronization signal is transmitted from the transmission unit 1001 (step A1).
  • the receiving unit 1101 receives the synchronization signal transmitted from the transmitting unit 1001 (step A2).
  • the transmission / reception of the synchronization signal in steps A1 and A2 is output from the frequency 1301 of the detection signal transmitted from the transmission unit 1001 and the reception oscillation unit 1103 in the reception unit 1101 as described in the section of [Device Configuration]. It is a synchronization process for matching the frequency 1302 of the LO signal to be performed. The details of the synchronization process will be described in the following embodiments.
  • the transmission unit 1001 transmits a radio wave that carries a detection signal toward the object 1201 (step A3).
  • the radio wave from the object 1201 is received by each receiving antenna 1102 of the receiving unit 1101 (step A4).
  • an IF signal is generated from the radio waves received by each receiving antenna 1102 of the receiving unit 1101 (step A5).
  • the calculation unit 1107 calculates the distribution (image) of the radio wave from the object 1201 based on the IF signal (step A6).
  • object detection using this image can be performed.
  • Means for detecting an object from an image are widely known. For example, an object can be detected based on the appearance characteristics (shape, size, etc.) of the object in the image. Examples of the object detection method include, but are not limited to, pattern matching and the use of a classifier generated by machine learning.
  • FIG. 6 is a flow chart showing the details of step A6 in which the calculation unit 1107 calculates the distribution (image) of the radio wave from the object 1201 based on the IF signal. As shown in FIG. 6, step A6 in which the calculation unit 1107 calculates the distribution (image) of the radio wave from the object 1201 based on the IF signal is composed of steps B1 to B7.
  • the step A6 for calculating the distribution (image) of the radio wave from the object 1201 based on the IF signal which is shown in detail in FIG. 6, is the detection signal transmitted from the transmission unit 1001 and the LO signal generated in the reception unit 1101. Even if there is an indefinite phase difference that fluctuates at the time of measurement, the distribution (image) of the radio wave from the object 1201 is stably and correctly calculated.
  • step A6 for calculating the distribution (image) of the radio wave from the object 1201 based on the IF signal the calibration parameter peculiar to the measurement system is calculated as a preprocessing before the measurement.
  • Pre-processing before measurement includes step B3 for calculating the wave number axis calibration term and step B6 for calculating the transmitting antenna axis calibration term.
  • step B3 for calculating the wave number axis calibration term and step B6 for calculating the transmitting antenna axis calibration term are performed.
  • step A6 for calculating the distribution (image) of the radio wave from the object 1201 based on the IF signal as the processing at the time of measurement, the error that fluctuates for each measurement is corrected and the object 1201 is used. Generates the distribution (image) of radio waves.
  • the processing at the time of measurement is composed of steps B1 to B2, steps B4 to B5, and step B7.
  • steps B1 to B2, steps B4 to B5, and step B7 while correcting the fluctuation of the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101, the target is simultaneously targeted.
  • Step B1 In step B1 shown in FIG. 6, the IF signals s (m, n, q) output from the data transfer unit 1106 to the calculation unit 1107 are used.
  • m, n, and q represent the number of the transmitting antenna 1002, the number of the receiving antenna 1102, and the number of the wave number, respectively.
  • the frequency 1301 of the detection signal transmitted from the transmission unit 1001 is f
  • k 2 ⁇ f / c between the wave number k and the frequency f, where c is the speed of light.
  • the IF signal is obtained for a set (m, n, q) of a transmitting antenna 1002, a receiving antenna 1102, and a wave number (that is, frequency).
  • the image PRX (m, q, r) is obtained by calculating the correlation sum of the receiving antenna axes based on the following equation (1) using the IF signal s (m, n, q). Generate.
  • r is a position in space.
  • the image PRX (m, q, r) represents the image intensity at the position r in space.
  • the image PRX (m, q, r) is also an amount obtained for each set of the number m of the transmitting antenna 1002 and the number q of the wave number.
  • Rt (m, r) represents the distance between the transmitting antenna 1002 corresponding to the number m and the position r.
  • Rr (n, r) represents the distance between the receiving antenna 1102 corresponding to the number n and the position r.
  • j is an imaginary unit.
  • Step B2 the correction term c ⁇ [WN] (m, q) on the wave number axis of the indefinite phase difference between the detection signal and the LO signal is obtained in step B1 based on the following equation (2). Calculated from RX (m, q, r).
  • Equation (2) q'is a wavenumber different from q, and q'may be arbitrary. It is desirable that the wave numbers k corresponding to q'and q take close values.
  • the reason why the correction term c ⁇ [WN] (m, q) is obtained by the equation (2) will be described.
  • the phase of the detection signal transmitted from the transmission unit 1001 is in the reception unit 1101. It fluctuates regardless of the phase of the LO signal output from the reception oscillation unit 1103 of.
  • the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal in the reception unit 1101 can be expressed by a phase ⁇ (m, q) that randomly fluctuates with respect to the transmission number m and the wave number q.
  • the phase ⁇ is the number of the receiving antenna 1102. It has no dependency on n. Due to this randomly fluctuating phase ⁇ (m, q), the phase of the image PRX (m, q, r) is shifted by ⁇ (m, q).
  • PRX PRX (m, q, r) and PRX (m, q', r) having different wavenumbers q.
  • Step B3 In the next step B3, the wave number axis calibration term c A [WN] (m, q) is calculated before the measurement. The detailed procedure of this step B3 will be described later in FIG.
  • Step B4 In the next step B4, the image PRX (m, q, r) obtained in step B1, the correction term c ⁇ [WN] (m, q) obtained in step B2, and the calibration term c obtained in step B3.
  • the image P WN (m, r) is generated by the correlation sum of the wavenumber axes in the following equation (3).
  • Step B5 In the next step B5, the correction term c [Delta] [theta] on the transmit antenna axis indefinite phase difference detection signal and the LO signal [TX] (m)
  • m' is an antenna number different from m, and m'may be arbitrarily taken. It is desirable that the transmitting antennas corresponding to m'and m are located close to each other.
  • the equation (4) is the same as the equation (2), with the correction term c ⁇ under the condition of maximizing the absolute value of P WN (m, r) + P WN (m', r) c ⁇ [TX] (m). [TX] (m) has been determined.
  • Step B6 In the next step B6, the transmitting antenna axis calibration term c A [TX] (m) is calculated before the measurement. The detailed procedure of this step B6 will be described later in FIG.
  • Step B7 In the next step B7, the image P WN (m, r) obtained in step B4, the correction term c ⁇ [TX] (m) obtained in step B5, and the calibration term c A [TX] obtained in step B6.
  • the image P (r) is generated by the correlation sum of the wavenumber axes in the following equation (5).
  • the image P (r) given by the equation (5) is an object obtained by correcting the randomly fluctuating phase difference ⁇ (m, q) between the detection signal transmitted from the transmission unit 1001 and the LO signal in the reception unit 1101. It is an image showing the distribution of radio waves from the object 1201.
  • FIG. 7 shows step B3 in which the wave number axis calibration term c A [WN] (m, q) is calculated before measurement, and step B6 in which the transmit antenna axis calibration term c A [TX] (m) is calculated before measurement. It is a flow chart which showed the details.
  • the flow chart shown in FIG. 7 is composed of steps C0 to C6. It should be noted that each step shown in FIG. 7 is performed by numerical calculation, not by actual measurement. However, the arrangement of the transmitting antenna 1002 used in the actual measurement, the arrangement of the receiving antenna 1102, and the setting of the frequency 1301 of the detection signal transmitted from the transmitting unit 1001 are also used in the numerical calculation performed in each step of FIG.
  • step C0 In step C0 shown in FIG. 7, the IF signal s (m, n, q) when the calibration object is the object 1201 is numerically calculated based on the following equation (6).
  • ⁇ (r) is the reflection intensity of the calibration object at the position r. It is desirable to use a plate-shaped reflector as large as possible for the calibration object.
  • Rt (m, r) represents the distance between the transmitting antenna 1002 corresponding to the number m and the position r.
  • Rr (n, r) represents the distance between the receiving antenna 1102 corresponding to the number n and the position r.
  • k (q) represents the wave number k corresponding to the number q.
  • step C1 the image PRX (m, q, r) is calculated based on the equation (1) as in step B1 by using the IF signal obtained by the equation (6).
  • step C2 the correction term c ⁇ [WN] (m, q) is corrected based on the equation (2) as in step B2, using the image PRX (m, q, r) calculated in step C1. calculate.
  • step C3 the wave number axis calibration term c A [WN] (m, q) is calculated from the correction term c ⁇ [WN] (m, q) obtained in step C2 based on the following equation (7). calculate.
  • step C4 Next, in step C3, the image PRX (m, q, r) obtained in step C1, the correction term c ⁇ [WN] (m, q) obtained in step C2, and the wave number axis obtained in step C3.
  • the image P WN (m, r) is calculated based on the equation (3) as in step B4.
  • step C5 the correction term c ⁇ [TX] (m) is calculated based on the equation (4) as in step B5, using the image P WN (m, r) calculated in step C4.
  • step C6 the wave number axis calibration term c A [TX] (m) is calculated from the correction term c ⁇ [TX] (m) obtained in step C5 based on the following equation (8).
  • FIG. 8 shows a conventional image generation method in which correction and calibration are not performed when the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates.
  • An example of generating an image of a square object 1201 is shown.
  • the position of the object 1201 is shown in the broken line in the center of the image, but the actually obtained image of the object 1201 is greatly deviated from the original square.
  • FIG. 9 when the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates, correction and calibration are performed based on the first embodiment.
  • an image of the object 1201 is generated at the position of the object 1201 (inside the broken line in the center of the image) without being greatly collapsed.
  • FIG. 10 shows a diagram of the device configuration in the first modification of the first embodiment.
  • the transmitting unit 1001 and the receiving unit 1101 are housed in different housings, but as in the modified example 1 of the present embodiment 1 shown in FIG.
  • the transmitting unit 1001 and the receiving unit 1101 may be housed in the same housing and used as the object detection device 1000.
  • the transmitting antenna 1002 connected to the transmitter 1004 and the receiving antenna 1102 connected to the receiver 1104 are separated.
  • the transmitter 1004 and the receiver 1104 may be connected to the same antenna via a switch or an isolator for switching transmission / reception, and may share the same antenna for transmission / reception.
  • FIG. 11 is a block diagram showing an example of a computer that realizes the object detection device 1000 according to the first embodiment.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
  • the CPU 111 expands the program (code) in the first embodiment stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to perform various operations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program according to the first embodiment is provided in a state of being stored in a computer-readable recording medium 120.
  • the program in the first embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-.
  • CF CompactFlash (registered trademark)
  • SD Secure Digital
  • magnetic recording medium such as a flexible disk
  • CD- CompactDiskReadOnlyMemory
  • optical recording media such as ROM (CompactDiskReadOnlyMemory).
  • the object detection device in the first embodiment can be realized by using the hardware corresponding to each part instead of the computer in which the program is installed. Further, the object detection device may be partially realized by a program and the rest may be realized by hardware.
  • the effect of the first embodiment will be described.
  • the detection signal transmitted from the transmission unit 1001 and the reception oscillation unit in the reception unit 1101 are used.
  • an image generation method for stably generating a correct image of the object 1201 is provided. This provides an object detection device capable of separating the oscillating unit that generates the radio wave transmitted from the transmitting device and the oscillating unit that generates the LO signal in the receiving device.
  • the object detection device of the first embodiment can eliminate the wiring between the transmitting unit and the receiving unit, solve the problem of hindering the passage of pedestrians, and flexibly change the positional relationship between the transmitting device and the receiving device. It will be possible to change. In addition, the number of wiring cables for supplying radio waves can be reduced, and the problems of cost and housing size can be solved.
  • Examplementation 2 [Device configuration] The configuration of the object detection device according to the second embodiment will be described with reference to FIG.
  • the components of the second embodiment shown in FIG. 12 are the same as the components of the first embodiment shown in FIG. However, in the first embodiment, the oscillation unit in the transmission unit 1001 is separated into a plurality of transmission oscillation units 1003 1 , 1003 2 , 1003 M , whereas in the second embodiment, a single transmission oscillation unit is used. It is implemented in 1003.
  • the oscillating unit in the receiving unit 1101 is mounted by a single receiving oscillating unit 1103, whereas in the second embodiment, a plurality of receiving oscillating units 1103 1 , 1103 2 , 1103 are mounted. It is separated into M.
  • the mounting by a single oscillating unit and the mounting by a plurality of oscillating units are exchanged for transmission and reception.
  • the radio wave supply cable shown by the double wire is used for the connection between the transmission oscillator 1003 and the transmitter 1004.
  • the wiring cable for supplying radio waves is not required in the receiving unit 1101, so that the device cost can be reduced and the housing size can be reduced.
  • the device operation in the second embodiment is carried out according to the flow chart shown in FIG. Since the device operation according to FIG. 5 is common to the first and second embodiments, the description thereof will be omitted.
  • FIG. 13 shows a flow chart showing the details of step A6 in the flow chart shown in FIG. 5 among the device operations in the second embodiment.
  • the steps in the flow diagram 13 in the second embodiment are described in the present invention.
  • the steps in the flow diagram 6 in the first embodiment are changed as follows. Specifically, the processing for the transmitting antenna and the processing for the receiving antenna are exchanged in the first and second embodiments.
  • step B1 in the first embodiment generates an image from the IF signal by the correlation sum of the receiving antenna axes
  • step B1'in the second embodiment an image is generated from the IF signal by the correlation sum of the transmitting antenna axes. do.
  • step B6 in the first embodiment calculates the transmitting antenna axis calibration term
  • step B6'in the second embodiment calculates the receiving antenna axis calibration term
  • step B7 in the first embodiment generates an image by the correlation sum of the transmitting antenna axes
  • step B7'in the second embodiment generates an image by the correlation sum of the receiving antenna axes.
  • FIG. 14 shows a flow chart showing the details of steps B3 and B6'in the flow chart shown in FIG. 13 among the device operations in the second embodiment.
  • the steps in the flow diagram 14 in the second embodiment are described in the present invention.
  • the steps in the flow diagram 7 in the first embodiment are changed as follows. Specifically, the processing for the transmitting antenna and the processing for the receiving antenna are exchanged in the first and second embodiments.
  • step C1 in the first embodiment generates an image from the IF signal by the correlation sum of the receiving antenna axes
  • step C1'in the second embodiment an image is generated from the IF signal by the correlation sum of the transmitting antenna axes. do.
  • step C5 in the first embodiment calculates the correction term for the transmitting antenna shaft
  • step C5'in the second embodiment calculates the correction term for the receiving antenna shaft
  • step C6 in the first embodiment calculates the transmitting antenna axis calibration term
  • step C6'in the second embodiment calculates the receiving antenna axis calibration term
  • the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates due to the device operation in the second embodiment. Even in such a case, an image generation method for stably generating a correct image of the object 1201 is provided.
  • FIG. 15 shows a diagram of the device configuration in the first modification of the second embodiment.
  • the transmitting unit 1001 and the receiving unit 1101 are housed in different housings, but as in the modified example 1 of the second embodiment shown in FIG.
  • the transmitting unit 1001 and the receiving unit 1101 may be housed in the same housing and used as the object detection device 1000.
  • the transmitting antenna 1002 connected to the transmitter 1004 and the receiving antenna 1102 connected to the receiver 1104 are separated.
  • the transmitter 1004 and the receiver 1104 may be connected to the same antenna via a switch or an isolator for switching transmission / reception, and may share the same antenna for transmission / reception.
  • the synchronization process is a process for ensuring that the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 become signals of the same frequency at the same timing.
  • the transmission oscillation unit 1003 of the transmission unit 1001 executes the synchronization signal transmission process and the detection signal transmission process based on the control of the control unit 1005.
  • the transmission oscillation unit 1003 causes the transmission antenna 1002 to transmit radio waves that carry the synchronous signal at a preset reference timing.
  • radio waves carrying the detection signal are transmitted from the transmission antenna 1002.
  • FIG. 16 shows an example of a time change in the frequency of the radio wave transmitted by the transmission oscillation unit 1003.
  • the horizontal axis is time and the vertical axis is frequency.
  • the transmission oscillation unit 1003 executes a synchronization signal transmission process for transmitting a synchronization signal before the detection signal transmission process for transmitting the detection signal. As shown in the figure, the transmission oscillation unit 1003 can execute the synchronization signal transmission process before executing the detection signal transmission process, and then repeatedly execute the synchronization signal transmission process. The transmission oscillation unit 1003 executes the detection signal transmission process during the plurality of synchronization signal transmission processes. The transmission oscillation unit 1003 may execute only the first synchronization signal transmission processing, and may not execute the subsequent synchronization signal transmission processing.
  • Examples of the synchronous signal include a pulse signal (unmodulated), a modulated signal, a predetermined sequence signal (PN sequence, unique word, etc.) and the like.
  • the modulated signal is a signal whose frequency and amplitude are modulated.
  • the synchronization signal and the detection signal can be distinguished from each other based on at least one of the amplitude and frequency of the radio wave.
  • the synchronization signal may be a signal having a frequency outside the sweep region of the detection signal (the range from the minimum frequency to the maximum frequency taken by the detection signal).
  • the synchronization signal may be a signal having a frequency within the sweep region of the detection signal and not adopted in the detection signal.
  • the synchronization signal may have a frequency adopted in the detection signal. In this case, the synchronization signal and the detection signal can be distinguished from each other by the amplitude, the signal pattern, and the like.
  • any of the plurality of transmitting antennas 1002 may transmit the synchronization signal.
  • the transmission antenna 1002 that transmits the synchronization signal in advance may be fixed or may vary. In the latter case, the transmitting antenna 1002 that transmits the synchronization signal is selected from the plurality of transmitting antennas 1002 by any means.
  • the transmission oscillation unit 1003 transmits the detection signal while changing the frequency by a predetermined algorithm. Then, the transmission oscillation unit 1003 transmits a predetermined detection signal from the transmission antenna 1002 at the transmission timing determined based on the reference timing.
  • the method of specifying the reference timing is a design matter, and any method can be adopted. For example, a method using the timing at which the value of the second (taking a value of 0 to 59) of the time indicated by hours, minutes, and seconds becomes "0" as a reference timing is exemplified, but the present invention is not limited to this.
  • the time t t0 and the time t t1 are the reference timings.
  • the synchronization signal is transmitted at this reference timing.
  • the transmission timing is a timing at which a predetermined time has elapsed from the reference timing, and is, for example, the time t 1s1 or the time t 2s1 in FIG.
  • the sweep of the frequency of the detection signal is started from a predetermined value at this transmission timing.
  • the synchronization signal detection unit 1109 of the reception unit 1101 detects the synchronization signal from the radio waves received by the reception antenna 1102.
  • the synchronization signal detection unit 1109 detects the synchronization signal based on the frequency, amplitude, these patterns, and the like of the radio wave.
  • the reception oscillation unit 1103 generates an LO signal based on the timing at which the synchronization signal is detected.
  • the reception oscillation unit 1103 generates a sweep signal (LO signal) whose frequency changes by the same algorithm as the generation of the detection signal.
  • the reception oscillation unit 1103 starts generating the LO signal from the timing when a predetermined time has elapsed from the timing when the synchronization signal is detected. That is, the sweep of the frequency of the LO signal is started from a predetermined value at the timing when a predetermined time has elapsed from the timing when the synchronization signal is detected.
  • the reference timing at which the transmitting unit 1001 transmits the radio wave carrying the synchronization signal and the timing at which the receiving unit 1101 detects the synchronization signal can be regarded as the same time.
  • the receiving unit 1101 may further have an acknowledgment means for transmitting an acknowledgment signal to that effect to the transmitting unit 1001.
  • the receiving unit 1101 includes a transmitting antenna
  • the transmitting unit 1001 includes a receiving antenna.
  • the transmission unit 1001 executes the initialization process immediately after the startup or in response to the initialization instruction input from the user.
  • the transmission unit 1001 sets the reference timing by any means (S10).
  • the reference timing is exemplified, but is not limited to, for example, the timing when the value of the second (taking a value of 0 to 59) of the time indicated by the hour, minute, and second becomes "0".
  • the transmission unit 1001 After the initialization process, the transmission unit 1001 performs the initial synchronization process.
  • the initial synchronization process is the first synchronization process performed after the initialization process.
  • the transmission unit 1001 In the initial synchronization process, when the reference timing set in the initialization process arrives, the transmission unit 1001 generates a synchronization signal and transmits radio waves that carry the synchronization signal (S11, S12).
  • the receiving unit 1101 When the receiving unit 1101 receives the radio wave, it demodulates the radio wave and detects the synchronization signal (S13). When the synchronization signal is successfully detected, the receiving unit 1101 extracts and sets the timing at which the synchronization signal is detected as the reference timing (S14). Then, the receiving unit 1101 generates an affirmative signal (ACK) (S15), and transmits the radio wave carrying the affirmative signal toward the transmitting unit 1001 (S16).
  • ACK affirmative signal
  • the transmission unit 1001 When the transmission unit 1001 receives the radio wave, it demodulates the radio wave and detects an affirmative signal. Then, it is determined that the initial synchronization process is completed in response to the reception of the affirmative signal (S17).
  • the transmission unit 1001 generates a detection signal based on the reference timing set in the initialization process, and transmits a radio wave carrying the detection signal (S30, S32). Specifically, the transmission unit 1001 generates a sweep signal (detection signal) whose frequency changes by a predetermined algorithm, and transmits a radio wave carrying the detection signal. Then, the transmission unit 1001 generates a predetermined detection signal at a timing when a predetermined time has elapsed from the reference timing.
  • the predetermined detection signal is a detection signal having a predetermined frequency, and is, for example, a signal having a frequency initially set in a sweep signal (detection signal) whose frequency changes by a predetermined algorithm.
  • the receiving unit 1101 generates an LO signal based on the reference timing extracted in the initial synchronization process (S31). Specifically, the receiving unit 1101 generates a sweep signal (LO signal) whose frequency changes by a predetermined algorithm. The algorithm for generating the detection signal and the algorithm for generating the LO signal are the same. Then, the receiving unit 1101 generates a predetermined LO signal at the timing when a predetermined time has elapsed from the reference timing.
  • the predetermined LO signal is an LO signal having a predetermined frequency, and is, for example, a signal having a frequency initially set in a sweep signal (LO signal) whose frequency changes by a predetermined algorithm.
  • the receiving unit 1101 demodulates the radio wave and detects the detection signal (S33). Then, the receiving unit 1101 generates an IF signal based on the detection signal and the LO signal (S34), and generates an image based on the IF signal (S35). The details of these processes are as described in the first and second embodiments.
  • the transmission unit 1001 and the reception unit 1101 repeat the process.
  • the object detection device 1000 When the timing for executing the second and subsequent synchronization processes arrives, the object detection device 1000 performs the synchronization holding process shown in the figure.
  • the timing for executing the second and subsequent synchronization processes may be the timing at which a predetermined time has elapsed from the timing at which the previous synchronization process was executed, or may be other.
  • the content of the synchronization retention process is the same as the initial synchronization process described using the sequence diagrams of FIGS. 17 and 18.
  • the transmission unit 1001 sequentially transmits a plurality of synchronization signals at predetermined time intervals in each synchronization processing (synchronization signal transmission processing each time). Can be sent.
  • the transmission unit 1001 may sequentially transmit a predetermined number of synchronization signals, or may repeatedly transmit synchronization signals until a positive signal is received from the reception unit 1101.
  • the receiving unit 1101 can detect the synchronization signal in each synchronization process and increase the probability that the synchronization process will succeed.
  • the object detection device 100 of the fourth embodiment has a function of executing the following processes 1 or 2.
  • the receiving unit 1101 sets the timing at which the synchronization signal is detected as the reference timing. Further, the receiving unit 1101 transmits a radio wave carrying a positive signal indicating that to that effect to the transmitting unit 1001 at the timing when the detection is successful.
  • the transmission unit 1001 corrects the set reference timing based on the reception timing of the affirmative signal.
  • the transmission unit 1001 when the transmission unit 1001 receives the affirmative signal, it specifies which of the plurality of synchronization signals is detected based on the reception timing of the affirmative signal. For example, the transmission unit 1001 may determine that the synchronization signal transmitted immediately before the reception timing of the affirmative signal has been detected by the reception unit 1101. In this case, for example, the transmission interval of the plurality of synchronization signals is set to be longer than the time required from the transmission of the synchronization signal to the reception of the affirmative signal corresponding to the detection of the synchronization signal.
  • the transmission unit 1001 corrects the set reference timing based on the timing at which the specified synchronization signal is transmitted. Initially, the timing at which the first synchronization signal is transmitted is the reference timing. The synchronization signal transmitted thereafter is transmitted after a predetermined time has elapsed from the reference timing.
  • the transmitting unit 1001 When the first synchronization signal is detected by the receiving unit 1101 and the corresponding affirmative signal is received, the reference timing is not changed and remains as it is. However, when the second and subsequent synchronization signals are detected by the receiving unit 1101 and the corresponding affirmative signal is received, the transmitting unit 1001 resets the reference timing. For example, when the time difference between the timing at which the first synchronization signal is transmitted and the timing at which the detected synchronization signal is transmitted is T seconds, the transmission unit 1001 sets a new reference timing after T seconds of the set reference timing. Set as.
  • the receiving unit 1101 sets the timing at which the synchronization signal is detected as the reference timing.
  • the deviation between the reference timing set by the reception unit 1101 and the reference timing set by the transmission unit 1001 is eliminated, and these timings are mutually aligned. Match.
  • the plurality of synchronization signals transmitted in each synchronization signal transmission process can be distinguished from each other based on at least one of the amplitude and frequency of the radio wave. For example, it may be possible to identify the number of the transmitted synchronization signal.
  • the receiving unit 1101 When the receiving unit 1101 succeeds in detecting any one of the plurality of synchronized signals, the receiving unit 1101 specifies which of the plurality of synchronized signals is detected based on at least one of the amplitude and frequency of the radio wave. Then, the receiving unit 1101 sets the timing at which a predetermined time s has elapsed from the timing at which the synchronization signal is received as the reference timing, and generates the LO signal based on the reference timing.
  • the predetermined time s is the time difference between the timing at which the first synchronization signal is transmitted and the timing at which the detected synchronization signal is transmitted, and varies depending on which synchronization signal is detected.
  • the receiving unit 1101 stores in advance information indicating the correspondence relationship between each of the plurality of synchronization signals transmitted in each synchronization signal transmission process and the predetermined time s. Then, the receiving unit 1101 refers to the information and specifies a predetermined time s corresponding to the detected synchronization signal.
  • the same effects as those of the first to third embodiments are realized. Further, by sequentially transmitting a plurality of synchronization signals in each synchronization process, the receiving unit 1101 can detect the synchronization signal and increase the probability that the synchronization process will succeed.
  • the object detection device 1000 of the fourth embodiment can alleviate the problem of image deterioration by executing the above processing example 1 or 2.
  • reception unit 1101 of the fifth embodiment fails to detect the synchronization signal in a certain synchronization process
  • the reception unit 1101 stores the detection signal detected from the radio waves received thereafter in the storage means in the own device. Keep it. Then, when the synchronization signal is successfully detected in the subsequent synchronization processing, an IF signal is generated based on the LO signal generated based on the timing at which the synchronization signal is received and the detection signal stored before that. An image is generated based on the IF signal.
  • the object detection device 1000 performs the initial synchronization process before executing the process of transmitting and receiving the detection signal to generate an image. Therefore, if the detection signal is detected without the synchronization signal being detected, the receiving unit 1101 can determine that the detection of the synchronization signal in the initial synchronization processing has failed. Then, the receiving unit 1101 continues to store the received detection signal in the storage means until the synchronization processing is successful.
  • the receiving unit 1101 may hold information indicating the timing at which the second and subsequent synchronization processes are executed.
  • the timing at which the second and subsequent synchronization processes are executed is indicated by, for example, the elapsed time from the timing at which the previous synchronization process was executed.
  • the receiving unit 1101 specifies the timing of the next synchronization processing based on the information and the timing of the synchronization processing performed last time. Then, if the synchronization signal is not detected even after a predetermined time has elapsed from the timing of the next synchronization processing, the receiving unit 1101 can determine that the synchronization signal detection has failed.
  • the same effects as those of the first to fourth embodiments are realized. Further, according to the object detection device 1000 of the fifth embodiment, when the synchronization processing of a certain time fails, the detection signal received after that is stored, and the reference timing extracted by the subsequent successful synchronization processing is stored. It is possible to generate an image by processing the detection signal stored based on the above. Therefore, if any of the plurality of synchronization processes is successful, the detection signals transmitted and received before and after that can be appropriately processed, and an image with less deterioration can be generated.
  • the receiving unit 1101 of the sixth embodiment receives radio waves by a plurality of receiving antennas 1102. Then, when the synchronization signal is detected from the radio waves received by each of the plurality of receiving antennas 1101, the receiving unit 1101 selects one synchronization signal satisfying a predetermined condition, and based on the timing at which the selected synchronization signal is received. Generate an LO signal.
  • the predetermined condition is, for example, "the earliest received synchronization signal”.
  • the same effects as those of the first to fifth embodiments are realized.
  • an appropriate one is selected from the synchronization signals detected from the radio waves received by each of the plurality of receiving antennas 1102, and the LO signal is generated.
  • the predetermined condition is, for example, "the earliest received synchronization signal”.
  • the synchronization process can be performed based on the synchronization signal directly delivered from the transmission unit 1001 to the reception unit 1101 without being reflected by another object. As a result, the accuracy of synchronization processing is improved.
  • the transmission means is A transmitting antenna that transmits radio waves, and The transmission antenna transmits a radio wave that carries a predetermined detection signal at a synchronization signal transmission process that transmits a radio wave that carries a synchronization signal at a preset reference timing from the transmission antenna and a transmission timing that is determined based on the reference timing.
  • Transmission oscillation means that executes detection signal transmission processing to be transmitted from Have
  • the receiving means The receiving antenna that receives radio waves and A synchronization signal detection means for detecting the synchronization signal from the radio waves received by the reception antenna, and A receive oscillation means that generates a receive local oscillation signal based on the timing at which the synchronization signal is detected, and a receive oscillation means.
  • a receiver that generates an intermediate frequency signal based on the detected signal detected from the radio waves received by the receiving antenna and the received local oscillation signal.
  • An arithmetic means for generating an image based on the intermediate frequency signal, and Object detection device with. 2.
  • the object detection device wherein the synchronization signal and the detection signal can be distinguished from each other based on at least one of the amplitude and frequency of radio waves. 3. 3. The object detection device according to 1 or 2, wherein the receiving means further includes an acknowledgment means for transmitting an acknowledgment signal indicating the synchronization signal to the transmitting means when the synchronization signal is successfully detected. 4. The object detection device according to any one of 1 to 3, wherein the transmission oscillation means repeatedly performs the synchronization signal transmission process. 5. The receiving means If the detection of the synchronization signal fails, the detection signal detected from the radio waves received by the receiving antenna after that is stored.
  • the intermediate frequency signal is generated based on the received local oscillation signal generated based on the timing at which the synchronization signal is received and the stored detection signal. 4.
  • the object detection device according to 4 which generates an image based on the intermediate frequency signal. 6.
  • the transmitting means sequentially transmits a plurality of the synchronized signals in each of the synchronized signal transmission processes. When the receiving means succeeds in detecting any one of the plurality of synchronization signals, the receiving means transmits an affirmative signal indicating that fact to the transmitting means at the timing when the detection is successful.
  • the object detection device according to any one of 1 to 5, wherein the transmission means modifies the reference timing set based on the reception timing of the affirmative signal. 7.
  • the transmitting means sequentially transmits a plurality of the synchronized signals in each of the synchronized signal transmission processes, and the plurality of synchronized signals carried by radio waves can be distinguished from each other based on at least one of the amplitude and frequency of the radio waves. And When the receiving means succeeds in detecting any one of the plurality of synchronization signals, the receiving means identifies which of the plurality of synchronization signals is detected based on at least one of the amplitude and frequency of the radio wave, and the above-mentioned.
  • the object detection device according to any one of 1 to 5, which generates the received local oscillation signal based on the timing at which the time corresponding to the synchronization signal specified from the timing at which the synchronization signal is received has elapsed. 8.
  • the receiving means Radio waves are received by the multiple receiving antennas, When the synchronization signal is detected from the radio waves received by each of the plurality of receiving antennas, one synchronization signal satisfying a predetermined condition is selected, and the reception local area is based on the timing at which the selected synchronization signal is received.
  • the object detection device according to any one of 1 to 7, which generates an oscillation signal. 9. 8. The object detection device according to 8, wherein the predetermined condition is the synchronization signal received earliest. 10. It is an object detection method executed by an object detection device that has a transmission means and a reception means and is used to detect an object by radio waves.
  • the transmission means is Synchronous signal transmission processing to transmit radio waves that carry a synchronization signal from a transmission antenna at a preset reference timing, and radio waves that carry a predetermined detection signal from the transmission antenna at a transmission timing determined based on the reference timing. Executes the detection signal transmission process to be transmitted,
  • the receiving means The synchronization signal is detected from the radio waves received by the receiving antenna, and the synchronization signal is detected.
  • a received local oscillation signal is generated based on the timing at which the synchronization signal is detected.
  • An intermediate frequency signal is generated based on the detection signal detected from the radio waves received by the reception antenna and the reception local oscillation signal.
  • An object detection method that generates an image based on the intermediate frequency signal.

Abstract

Object detecting equipment (1000) has a transmission unit (1001) and a reception unit (1101). The transmission unit (1001) transmits a synchronization signal at a reference timing established in advance and also transmits a predetermined detection signal at a transmission timing determined on the basis of the reference timing. The reception unit (1101) generates, upon detection of the synchronization signals from among received radio waves, receipt local oscillation signals on the basis of the timings of detection of the synchronization signals, generates intermediate frequency signals on the basis of the receipt local oscillation signals, and generates an image on the basis of the intermediate frequency signals.

Description

物体検知装置及び物体検知方法Object detection device and object detection method
 本発明は、電波を対象物に照射し、対象物にて反射ないし放射された電波を検知する事で対象物の存在を認識ないし識別するための物体検知装置および物体検知方法に関する。 The present invention relates to an object detection device and an object detection method for recognizing or identifying the existence of an object by irradiating the object with radio waves and detecting the radio waves reflected or radiated by the object.
 電波(マイクロ波、ミリ波、テラヘルツ波など)は、光と異なり、物体を透過する能力が優れている。電波の透過能力を活用し、衣服下や鞄内等の物品を画像化して検査する装置及びセンシング技術が実用化されている。関連する技術が、特許文献1に開示されている。 Unlike light, radio waves (microwaves, millimeter waves, terahertz waves, etc.) have an excellent ability to pass through objects. Devices and sensing technology that image and inspect articles such as under clothes and inside bags by utilizing the ability to transmit radio waves have been put into practical use. A related technique is disclosed in Patent Document 1.
 特許文献1は、電波を用いたイメージング装置(物体検知装置)であって、電波を送信する送信装置と、電波を受信する受信装置とを物理的に分けた構成を開示している。 Patent Document 1 discloses an imaging device (object detection device) using radio waves, in which a transmitting device that transmits radio waves and a receiving device that receives radio waves are physically separated.
 具体的には、特許文献1は、図23の概念図で示すように、送信装置301と受信装置306が物理的に分かれた構成を開示している。図23で示したイメージング装置では、送信装置301が、送信アンテナ302、302、・・・、302の内の1つもしくは複数のアンテナ302から電波304を対象物303に向けて送信する。電波304は対象物303において反射され、反射波305、305、・・・、305が発生する。発生した反射波305、305、・・・、305は受信装置306が備える受信アンテナ307、307、・・・、307において受信される。そして、受信装置306で受信された反射波305、305、・・・、305に基づいて、対象物303で反射された電波の振幅が算出される。その電波の振幅の分布を画像化する事で、対象物303の像を得る事ができる。 Specifically, Patent Document 1 discloses a configuration in which the transmitting device 301 and the receiving device 306 are physically separated as shown in the conceptual diagram of FIG. 23. In imaging apparatus shown in FIG. 23, the transmitting apparatus 301, transmitting antenna 302 1, 302 2, ..., toward the radio 304 to the object 303 from one or more antennas 302 m of the 302 M transmission do. The radio wave 304 is reflected by the object 303, and reflected waves 305 1 , 305 2 , ..., 305 N are generated. The generated reflected waves 305 1 , 305 2 , ..., 305 N are received by the receiving antennas 307 1 , 307 2 , ..., 307 N provided in the receiving device 306. Then, the amplitude of the radio wave reflected by the object 303 is calculated based on the reflected waves 305 1 , 305 2 , ..., 305 N received by the receiving device 306. By imaging the distribution of the amplitude of the radio wave, an image of the object 303 can be obtained.
 この構成の場合、図24の概念図で示すように、送信装置301と受信装置306は同一の発振部401に接続され、同一の発振部401が生成した検知信号を受信する。 In the case of this configuration, as shown in the conceptual diagram of FIG. 24, the transmitting device 301 and the receiving device 306 are connected to the same oscillating unit 401, and the detection signal generated by the same oscillating unit 401 is received.
 送信装置301は、発振部401で生成された検知信号を搬送する電波を、送信機404を経由して送信アンテナ302で送信する。送信機404はICないしモジュールで実装される。 The transmitter 301 transmits the radio wave that carries the detection signal generated by the oscillator 401 by the transmitting antenna 302 via the transmitter 404. The transmitter 404 is implemented by an IC or a module.
 受信装置306は、受信アンテナ307と、ミキサ402を含む受信機405と、データ転送部403を備えている。受信機405はICないしモジュールで実装される。受信装置306内のミキサ402は、受信アンテナ307で受信した対象物303からの反射波305と、発振部401で生成された検知信号と、をミキシングする事で、中間周波数信号(以下、「IF(Intermediate Frequency)信号」と表記する場合がある。)を生成する。ミキサ402において生成されたIF信号はデータ転送部403へ出力される。データ転送部403へ出力されたIF信号は、対象物303で反射された電波の振幅の算出及び対象物303の像の生成に用いられる。図24では、発振部401と、送信機404および受信機405各々とを接続し、信号を伝達するケーブルを二重線で表記している。 The receiving device 306 includes a receiving antenna 307, a receiver 405 including a mixer 402, and a data transfer unit 403. The receiver 405 is implemented by an IC or a module. The mixer 402 in the receiving device 306 mixes the reflected wave 305 from the object 303 received by the receiving antenna 307 and the detection signal generated by the oscillating unit 401 to obtain an intermediate frequency signal (hereinafter, “IF”). (Intermediate Frequency) signal "may be written.) Is generated. The IF signal generated by the mixer 402 is output to the data transfer unit 403. The IF signal output to the data transfer unit 403 is used for calculating the amplitude of the radio wave reflected by the object 303 and generating an image of the object 303. In FIG. 24, a cable that connects the oscillator 401 and each of the transmitter 404 and the receiver 405 and transmits a signal is represented by a double line.
 送信装置から送信される電波で搬送される検知信号、及び、受信装置でIF信号の生成のために使用される検知信号として、同一の発振部で生成された同一の信号を用いる事で、送信装置及び受信装置が使用する検知信号の位相差の変動を無くし、位相差の変動に起因する対象物303の像の画質劣化を抑制できる。 Transmission by using the same signal generated by the same oscillator as the detection signal carried by the radio wave transmitted from the transmitting device and the detection signal used to generate the IF signal in the receiving device. It is possible to eliminate the fluctuation of the phase difference of the detection signal used by the device and the receiving device, and suppress the deterioration of the image quality of the image of the object 303 due to the fluctuation of the phase difference.
特許第5358053号Patent No. 5358053
 図24に示すように、送信装置から送信される電波で搬送される検知信号、及び、受信装置でIF信号の生成のために使用される検知信号として、同一の発振部で生成された同一の信号を用いる場合、送信装置及び受信装置各々を、配線ケーブルを介して同一の発振部に接続する必要がある。この場合、「配線ケーブルが歩行者の邪魔になる」、「送信装置及び受信装置の配置の仕方が配線ケーブルにより制限される」等の問題が発生し得る。 As shown in FIG. 24, the detection signal carried by the radio wave transmitted from the transmitting device and the detection signal used for generating the IF signal in the receiving device are the same generated by the same oscillator. When using a signal, it is necessary to connect each of the transmitting device and the receiving device to the same oscillator via a wiring cable. In this case, problems such as "the wiring cable interferes with the pedestrian" and "the arrangement of the transmitting device and the receiving device is restricted by the wiring cable" may occur.
 そこで、本発明者らは、送信装置から送信される電波で搬送される検知信号、及び、受信装置でIF信号の生成のために使用される検知信号を別々の発振部で生成する構成を検討した。この構成を採用することで、上記問題が解決される。しかし、この構成を採用する場合、送信装置と受信装置との処理を同期させる必要がある。 Therefore, the present inventors have studied a configuration in which a detection signal carried by a radio wave transmitted from a transmitting device and a detection signal used for generating an IF signal in the receiving device are generated by separate oscillators. did. By adopting this configuration, the above problem is solved. However, when adopting this configuration, it is necessary to synchronize the processing of the transmitting device and the receiving device.
 本発明は、送信装置から送信される電波で搬送される検知信号、及び、受信装置でIF信号の生成のために使用される検知信号を別々の発振部で生成する構成において、送信装置と受信装置との処理を同期させる技術を提供することを課題とする。 The present invention has a configuration in which a detection signal carried by radio waves transmitted from a transmitting device and a detection signal used for generating an IF signal in the receiving device are generated by separate oscillating units, and the transmitting device and the receiving device are used. An object of the present invention is to provide a technique for synchronizing processing with an apparatus.
 本発明によれば、
 電波によって物体を検知するための物体検知装置であって、
 送信手段と、受信手段とを備え、
 前記送信手段は、
  電波を送信する送信アンテナと、
  予め設定された基準タイミングで同期信号を搬送する電波を前記送信アンテナから送信させる同期信号送信処理、及び、前記基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を搬送する電波を前記送信アンテナから送信させる検知信号送信処理を実行する送信発振手段と、
を有し、
 前記受信手段は、
  電波を受信する受信アンテナと、
  前記受信アンテナが受信した電波の中から前記同期信号を検出する同期信号検出手段と、
  前記同期信号を検出したタイミングに基づき、受信局所発振信号を生成する受信発振手段と、
  前記受信アンテナが受信した電波の中から検出された前記検知信号と、前記受信局所発振信号とに基づき中間周波数信号を生成する受信機と、
  前記中間周波数信号に基づき画像を生成する演算手段と、
を有する物体検知装置が提供される。
According to the present invention
It is an object detection device for detecting objects by radio waves.
It is equipped with a transmitting means and a receiving means.
The transmission means is
A transmitting antenna that transmits radio waves, and
The transmission antenna transmits a radio wave that carries a predetermined detection signal at a synchronization signal transmission process that transmits a radio wave that carries a synchronization signal at a preset reference timing from the transmission antenna and a transmission timing that is determined based on the reference timing. Transmission oscillation means that executes detection signal transmission processing to be transmitted from
Have,
The receiving means
The receiving antenna that receives radio waves and
A synchronization signal detection means for detecting the synchronization signal from the radio waves received by the reception antenna, and
A receive oscillation means that generates a receive local oscillation signal based on the timing at which the synchronization signal is detected, and a receive oscillation means.
A receiver that generates an intermediate frequency signal based on the detected signal detected from the radio waves received by the receiving antenna and the received local oscillation signal.
An arithmetic means for generating an image based on the intermediate frequency signal, and
An object detection device having the above is provided.
 また、本発明によれば、
 送信手段と受信手段とを備え、電波によって物体を検知するための物体検知装置が実行する物体検知方法であって、
 前記送信手段は、
  予め設定された基準タイミングで同期信号を搬送する電波を送信アンテナから送信させる同期信号送信処理、及び、前記基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を搬送する電波を前記送信アンテナから送信させる検知信号送信処理を実行し、
 前記受信手段は、
  受信アンテナが受信した電波の中から前記同期信号を検出し、
  前記同期信号を検出したタイミングに基づき、受信局所発振信号を生成し、
  前記受信アンテナが受信した電波の中から検出された前記検知信号と、前記受信局所発振信号とに基づき中間周波数信号を生成し、
  前記中間周波数信号に基づき画像を生成する物体検知方法が提供される。
Further, according to the present invention,
It is an object detection method executed by an object detection device that has a transmission means and a reception means and is used to detect an object by radio waves.
The transmission means is
Synchronous signal transmission processing to transmit radio waves that carry a synchronization signal from a transmission antenna at a preset reference timing, and radio waves that carry a predetermined detection signal from the transmission antenna at a transmission timing determined based on the reference timing. Executes the detection signal transmission process to be transmitted,
The receiving means
The synchronization signal is detected from the radio waves received by the receiving antenna, and the synchronization signal is detected.
A received local oscillation signal is generated based on the timing at which the synchronization signal is detected.
An intermediate frequency signal is generated based on the detection signal detected from the radio waves received by the reception antenna and the reception local oscillation signal.
An object detection method for generating an image based on the intermediate frequency signal is provided.
 本発明によれば、送信装置から送信される電波で搬送される検知信号、及び、受信装置でIF信号の生成のために使用される検知信号を別々の発振部で生成する構成において、送信装置と受信装置との処理を同期させる技術が実現される。 According to the present invention, in a configuration in which a detection signal carried by a radio wave transmitted from a transmitting device and a detection signal used for generating an IF signal in the receiving device are generated by separate oscillators, the transmitting device is used. A technology for synchronizing the processing between the receiver and the receiver is realized.
図1は、本実施の形態における物体検知装置の構成の一例を示した構成図である。FIG. 1 is a configuration diagram showing an example of the configuration of the object detection device according to the present embodiment. 図2は、本実施の形態における送信部が送信する電波の周波数の制御方法の一例を説明する図である。FIG. 2 is a diagram illustrating an example of a method of controlling the frequency of a radio wave transmitted by a transmitting unit in the present embodiment. 図3は、本実施の形態における送信部が送信する電波の周波数の制御方法の一例を説明する図である。FIG. 3 is a diagram illustrating an example of a method of controlling the frequency of a radio wave transmitted by a transmitting unit in the present embodiment. 図4は、本実施の形態における送信部が送信する検知信号及び受信部が生成するLO信号の制御方法の一例を説明する図である。FIG. 4 is a diagram illustrating an example of a control method of a detection signal transmitted by the transmitting unit and a LO signal generated by the receiving unit in the present embodiment. 図5は、本実施の形態における物体検知方法を示すフローチャートの一例である。FIG. 5 is an example of a flowchart showing an object detection method according to the present embodiment. 図6は、本実施の形態における物体検知方法を示すフローチャートの一例である。FIG. 6 is an example of a flowchart showing the object detection method in the present embodiment. 図7は、本実施の形態における物体検知方法を示すフローチャートの一例である。FIG. 7 is an example of a flowchart showing the object detection method in the present embodiment. 図8は、従来の方式で対象物からの反射波の電波振幅分布を画像化した結果を示す図である。FIG. 8 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the object by the conventional method. 図9は、本実施の形態で対象物からの反射波の電波振幅分布を画像化した結果を示す図である。FIG. 9 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the object in the present embodiment. 図10は、本実施の形態の物体検知装置の構成の一例を示した構成図である。FIG. 10 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment. 図11は、本実施の形態の物体検知装置のハードウェア構成の一例を示した構成図である。FIG. 11 is a configuration diagram showing an example of the hardware configuration of the object detection device of the present embodiment. 図12は、本実施の形態の物体検知装置の構成の一例を示した構成図である。FIG. 12 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment. 図13は、本実施の形態における物体検知方法を示すフローチャートの一例である。FIG. 13 is an example of a flowchart showing the object detection method according to the present embodiment. 図14は、本実施の形態における物体検知方法を示すフローチャートの一例である。FIG. 14 is an example of a flowchart showing the object detection method according to the present embodiment. 図15は、本実施の形態の物体検知装置の構成の一例を示した構成図である。FIG. 15 is a configuration diagram showing an example of the configuration of the object detection device of the present embodiment. 図16は、本実施の形態における送信部が送信する電波の周波数の制御方法の一例を説明する図である。FIG. 16 is a diagram illustrating an example of a method of controlling the frequency of radio waves transmitted by the transmitting unit in the present embodiment. 図17は、本実施の形態における物体検知方法を示すシーケンス図の一例である。FIG. 17 is an example of a sequence diagram showing an object detection method according to the present embodiment. 図18は、本実施の形態における物体検知方法を示すシーケンス図の一例である。FIG. 18 is an example of a sequence diagram showing an object detection method according to the present embodiment. 図19は、本実施の形態における物体検知方法を示すシーケンス図の一例である。FIG. 19 is an example of a sequence diagram showing an object detection method according to the present embodiment. 図20は、本実施の形態における物体検知方法を示すシーケンス図の一例である。FIG. 20 is an example of a sequence diagram showing an object detection method according to the present embodiment. 図21は、本実施の形態における物体検知方法を示すシーケンス図の一例である。FIG. 21 is an example of a sequence diagram showing an object detection method according to the present embodiment. 図22は、本実施の形態における送信部が送信する電波の周波数の制御方法の一例を説明する図である。FIG. 22 is a diagram illustrating an example of a method for controlling the frequency of radio waves transmitted by the transmitting unit in the present embodiment. 図23は、比較例の物体検知装置の構成の一例を示した構成図である。FIG. 23 is a configuration diagram showing an example of the configuration of the object detection device of the comparative example. 図24は、比較例の物体検知装置の構成の一例を示した構成図である。FIG. 24 is a configuration diagram showing an example of the configuration of the object detection device of the comparative example.
 以下、本発明の好適な実施形態について添付図を参照して説明する。なお、以降に示す各図面において、同一または相当部分の部位については、同一符号を付して示すこととし、その説明は繰り返さないことにする。 Hereinafter, preferred embodiments of the present invention will be described with reference to the attached drawings. In each of the drawings shown below, the same or corresponding parts will be indicated by the same reference numerals, and the description thereof will not be repeated.
(本実施の形態1)
[装置構成]
 最初に、図1を用いて、本実施の形態1における物体検知装置の構成について説明する。
(Embodiment 1 of the present embodiment)
[Device configuration]
First, the configuration of the object detection device according to the first embodiment will be described with reference to FIG.
 図1に示す本実施の形態1における物体検知装置1000は、電波によって物体を検知するための装置である。図1に示すように、物体検知装置1000は、送信部1001と、受信部1101とを備えている。 The object detection device 1000 in the first embodiment shown in FIG. 1 is a device for detecting an object by radio waves. As shown in FIG. 1, the object detection device 1000 includes a transmission unit 1001 and a reception unit 1101.
 送信部1001は、検知対象となる物体(以下、「対象物」と表記する)1201に向けて、検知信号を搬送する電波を送信する。受信部1101は、対象物1201にて反射された電波又は対象物1201から放射された電波を受信する。 The transmission unit 1001 transmits a radio wave that carries a detection signal toward an object to be detected (hereinafter referred to as an "object") 1201. The receiving unit 1101 receives the radio wave reflected by the object 1201 or the radio wave radiated from the object 1201.
 送信部1001は、送信アンテナ1002と、送信発振部1003を備えた送信機1004と、制御部1005とを備えている。送信アンテナ1002と送信機1004はICないしモジュールで一体化して実装する事が望ましい。本実施の形態1では、送信発振部1003を備えた送信機1004と送信アンテナ1002はICないしモジュールで実装し、送信発振部1003と送信アンテナ1002の接続はICないしモジュール内の配線で行うこととする。この場合、電波供給用の配線ケーブルは不要となる。従来の物体検知装置と異なり、本実施の形態1では送信部1001内で電波供給用の配線ケーブルが不要なため、装置コストの低減および筐体サイズの小型化を実現できる。 The transmission unit 1001 includes a transmission antenna 1002, a transmitter 1004 including a transmission oscillation unit 1003, and a control unit 1005. It is desirable that the transmitter antenna 1002 and the transmitter 1004 are integrally mounted by an IC or a module. In the first embodiment, the transmitter 1004 provided with the transmission oscillation unit 1003 and the transmission antenna 1002 are mounted by an IC or a module, and the transmission oscillation unit 1003 and the transmission antenna 1002 are connected by wiring in the IC or the module. do. In this case, the wiring cable for supplying radio waves becomes unnecessary. Unlike the conventional object detection device, in the first embodiment, the wiring cable for supplying radio waves is not required in the transmission unit 1001, so that the device cost can be reduced and the housing size can be reduced.
 送信部1001において、送信機1004内の送信発振部1003は電波を送信アンテナ1002に向けて出力する。送信機1004は、送信発振部1003から出力された電波を所定値に増幅もしくは減衰する機能を備えていてもよい。送信アンテナ1002は、送信機1004から出力された電波を対象物1201に向けて送信する。この時、送信アンテナ1002からの電波の送信は、送信アンテナ1002、1002、・・・、1002を切り替える時分割で行ってもよい。 In the transmission unit 1001, the transmission oscillation unit 1003 in the transmitter 1004 outputs radio waves toward the transmission antenna 1002. The transmitter 1004 may have a function of amplifying or attenuating the radio wave output from the transmission oscillation unit 1003 to a predetermined value. The transmitting antenna 1002 transmits the radio wave output from the transmitter 1004 toward the object 1201. At this time, the transmission of the radio wave from the transmitting antenna 1002 may be performed in a time division manner in which the transmitting antennas 1002 1 , 1002 2 , ..., 1002 N are switched.
 送信部1001において、制御部1005は、送信機1004内の送信発振部1003の制御を行う。具体的には、制御部1005は、送信発振部1003から出力される電波の振幅や周波数の制御を行う。 In the transmitter 1001, the control unit 1005 controls the transmission oscillation unit 1003 in the transmitter 1004. Specifically, the control unit 1005 controls the amplitude and frequency of the radio wave output from the transmission oscillation unit 1003.
 受信部1101は、受信アンテナ1102と、受信発振部1103と、ミキサ1105を含む受信機1104と、データ転送部1106と、演算部1107と、同期信号検出部1109と、制御部1110とを備えている。受信アンテナ1102と受信機1104はICないしモジュールで一体化して実装する事が望ましい。また演算部1107は、受信部1101と物理的及び/又は論理的に分かれて構成されてもよいし、物理的及び論理的に一体となって構成されてもよい。 The receiving unit 1101 includes a receiving antenna 1102, a receiving oscillation unit 1103, a receiver 1104 including a mixer 1105, a data transfer unit 1106, a calculation unit 1107, a synchronization signal detection unit 1109, and a control unit 1110. There is. It is desirable that the receiving antenna 1102 and the receiver 1104 are integrally mounted by an IC or a module. Further, the arithmetic unit 1107 may be physically and / or logically separated from the receiving unit 1101, or may be physically and logically integrated.
 受信部1101において、受信アンテナ1102は電波を受信する。例えば、受信アンテナ1102は、対象物1201にて反射された電波や対象物1201から放射された電波を受信する。以下、対象物1201にて反射された電波や対象物1201から放射された電波をまとめて、「対象物1201からの電波」という。この時、対象物1201からの電波は、複数の受信アンテナ1102、1102、・・・、1102で受信してもよい。受信アンテナ1102で受信された電波は、受信機1104に出力される。 In the receiving unit 1101, the receiving antenna 1102 receives radio waves. For example, the receiving antenna 1102 receives radio waves reflected by the object 1201 and radio waves radiated from the object 1201. Hereinafter, the radio waves reflected by the object 1201 and the radio waves radiated from the object 1201 are collectively referred to as "radio waves from the object 1201". At this time, the radio wave from the object 1201 may be received by a plurality of receiving antennas 1102 1 , 1102 2 , ... 1102 N. The radio wave received by the receiving antenna 1102 is output to the receiver 1104.
 受信部1101において、受信発振部1103は局所発振信号(Local Oscillator信号、以下「LO信号」と表記)を受信機1104に向けて出力する。受信発振部1103は、送信発振部1003と同じアルゴリズムで信号を生成する。このため、送信発振部1003が生成する検知信号と、受信発振部1103が生成するLO信号は同じ内容となる。また、同期処理で信号の生成タイミングを揃えることで、送信発振部1003と受信発振部1103は同じタイミングで同じ信号を生成するようになっている。図1内において二重線で示した受信発振部1103と受信機1104の接続は、電波供給用の配線ケーブルを用いる。 In the receiving unit 1101, the receiving oscillation unit 1103 outputs a local oscillation signal (Local Oscillator signal, hereinafter referred to as "LO signal") toward the receiver 1104. The reception oscillation unit 1103 generates a signal by the same algorithm as the transmission oscillation unit 1003. Therefore, the detection signal generated by the transmission oscillation unit 1003 and the LO signal generated by the reception oscillation unit 1103 have the same contents. Further, by aligning the signal generation timings in the synchronization processing, the transmission oscillation unit 1003 and the reception oscillation unit 1103 are configured to generate the same signal at the same timing. A wiring cable for radio wave supply is used for the connection between the reception oscillator 1103 and the receiver 1104 shown by the double line in FIG.
 受信部1101において、受信機1104内のミキサ1105は、受信アンテナ1102から出力された電波と、受信発振部1103から出力されたLO信号をミキシングして中間周波数信号(IF信号)を生成し、生成したIF信号をデータ転送部1106に出力する。 In the receiving unit 1101, the mixer 1105 in the receiver 1104 mixes the radio wave output from the receiving antenna 1102 and the LO signal output from the receiving oscillation unit 1103 to generate an intermediate frequency signal (IF signal) and generate it. The IF signal is output to the data transfer unit 1106.
 受信部1101において、データ転送部1106は、演算部1107に向けてIF信号を出力する。データ転送部1106は、受信機1104から出力されたIF信号を、アナログ信号からデジタル信号に変換して、演算部1107に出力してもよい。 In the receiving unit 1101, the data transfer unit 1106 outputs an IF signal to the arithmetic unit 1107. The data transfer unit 1106 may convert the IF signal output from the receiver 1104 into a digital signal and output it to the calculation unit 1107.
 演算部1107は、データ転送部1106から出力されたIF信号に基づいて対象物1201からの電波の分布を計算する。さらに、対象物1201からの電波の分布に基づいて対象物1201の像を生成する。演算部1107の動作の詳細は、後述の[装置動作]の項において説明する。 The calculation unit 1107 calculates the distribution of radio waves from the object 1201 based on the IF signal output from the data transfer unit 1106. Further, an image of the object 1201 is generated based on the distribution of radio waves from the object 1201. The details of the operation of the calculation unit 1107 will be described in the section [Device operation] described later.
 受信部1101において、制御部1110は、受信発振部1103の制御を行う。具体的には、制御部1110は、受信発振部1103から出力されるLO信号の振幅や周波数の制御を行う。 In the receiving unit 1101, the control unit 1110 controls the receiving oscillation unit 1103. Specifically, the control unit 1110 controls the amplitude and frequency of the LO signal output from the reception oscillation unit 1103.
 本実施の形態1は、図23及び図24で示した比較例の形態と異なり、送信部1001の送信発振部1003と、受信部1101の受信発振部1103とが別々に設けられている(物理的及び論理的に分かれている)という特徴がある。 In the first embodiment, unlike the form of the comparative example shown in FIGS. 23 and 24, the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101 are separately provided (physical). It is divided into objective and logical).
 送信部1001の送信発振部1003と、受信部1101の受信発振部1103とを別々に設けるという特徴により、送信部1001と受信部1101の間の配線ケーブルが不要になっている。歩行者が通過する領域である送信部1001と受信部1101の間に配線ケーブルがないため、本実施の形態1では配線ケーブルにより歩行者の通過を妨げる事がない。また送信部1001と受信部1101の間に配線ケーブルが無いため、送信部1001と受信部1101の位置関係を柔軟に変更する事も可能である。 The feature that the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101 are separately provided eliminates the need for a wiring cable between the transmission unit 1001 and the reception unit 1101. Since there is no wiring cable between the transmitting unit 1001 and the receiving unit 1101, which is an area through which pedestrians pass, the wiring cable does not obstruct the passage of pedestrians in the first embodiment. Further, since there is no wiring cable between the transmitting unit 1001 and the receiving unit 1101, it is possible to flexibly change the positional relationship between the transmitting unit 1001 and the receiving unit 1101.
 本実施の形態1において、送信部1001から送信される電波で搬送される検知信号の周波数1301はスイープしてもよい。この時、送信部1001内の制御部1005は、検知信号の周波数1301をスイープするように送信発振部1003を制御する。 In the first embodiment, the frequency 1301 of the detection signal carried by the radio wave transmitted from the transmission unit 1001 may be swept. At this time, the control unit 1005 in the transmission unit 1001 controls the transmission oscillation unit 1003 so as to sweep the frequency 1301 of the detection signal.
 検知信号の周波数1301をスイープさせる方法は、図2で示すように、時間に応じて離散的な周波数値でスイープするstepped frequency continuous wave(SFCW)方式でも良い。もしくは、検知信号の周波数1301をスイープさせる方法は、図3で示すように、時間に応じて連続的な周波数値でスイープするfrequency modulation continuous wave (FMCW)方式でも良い。 As shown in FIG. 2, the method of sweeping the frequency 1301 of the detection signal may be a stepped frequency continuous wave (SFW) method of sweeping at discrete frequency values according to time. Alternatively, as shown in FIG. 3, the method of sweeping the frequency 1301 of the detection signal may be a frequency modulation continuous wave (FMCW) method in which the frequency 1301 is swept with a continuous frequency value according to the time.
 なお、検知信号の周波数1301をスイープさせる場合、受信発振部1103で生成されるLO信号の周波数1302も同様にスイープさせる。そして、本実施の形態1の物体検知装置1000は、同じタイミングで同じ周波数の検知信号及びLO信号が生成されるようにするために、以下の同期処理を行う。 When sweeping the frequency 1301 of the detection signal, the frequency 1302 of the LO signal generated by the reception oscillation unit 1103 is also swept in the same manner. Then, the object detection device 1000 of the first embodiment performs the following synchronization processing in order to generate the detection signal and the LO signal of the same frequency at the same timing.
 本実施の形態1では、送信部1001は同期信号を搬送する電波を、受信部1101に向けて送信する。送信部1001内における具体的な動作としては、制御部1005は送信機1004内の送信発振部1003に同期信号を搬送する電波を生成するように制御を行う。送信機1004は同期信号を搬送する電波を送信アンテナ1002に出力する。送信アンテナ1002は、同期信号を搬送する電波を送信部1001から送信する。 In the first embodiment, the transmitting unit 1001 transmits a radio wave carrying a synchronization signal toward the receiving unit 1101. As a specific operation in the transmission unit 1001, the control unit 1005 controls the transmission oscillation unit 1003 in the transmitter 1004 to generate a radio wave that carries a synchronization signal. The transmitter 1004 outputs a radio wave carrying a synchronization signal to the transmitting antenna 1002. The transmission antenna 1002 transmits radio waves that carry the synchronization signal from the transmission unit 1001.
 受信部1101は受信アンテナ1102において同期信号を搬送する電波を受信する。受信アンテナ1102において受信された電波は、同期信号検出部1109へ出力される。同期信号検出部1109はその電波を復調して同期信号を検出する。同期信号検出部1109は検出した同期信号を制御部1110に出力する。制御部1110は、同期信号検出部1109から出力された同期信号に基づいて、受信発振部1103の制御を行う。なお、受信アンテナ1102、1102、・・・、1102の内、1つでも同期信号を搬送する電波を受信した場合、上記の動作が実施される構成とすることができる。 The receiving unit 1101 receives the radio wave that carries the synchronization signal at the receiving antenna 1102. The radio wave received by the receiving antenna 1102 is output to the synchronization signal detection unit 1109. The synchronization signal detection unit 1109 demodulates the radio wave and detects the synchronization signal. The synchronization signal detection unit 1109 outputs the detected synchronization signal to the control unit 1110. The control unit 1110 controls the reception oscillation unit 1103 based on the synchronization signal output from the synchronization signal detection unit 1109. When any one of the receiving antennas 1102 1, 1102 2 , ... 1102 N receives a radio wave that carries a synchronization signal, the above operation can be performed.
 例えば、図4で示した時刻tのタイミングで、送信部1001は同期信号を搬送する電波を、受信部1101に向けて送信する。そして、受信部1101は、その電波を受信し、その電波を復調して同期信号を検出する。なお、電波の速度は速く、また、受信部1101での同期信号の検出に要する時間も十分小さいため、送信部1001が同期信号を搬送する電波を送信したタイミングと、受信部1101が同期信号を検出したタイミングとは同じ時刻tとみなすことができる。 For example, at time t t shown in FIG. 4, the transmission unit 1001 a radio wave carrying a synchronization signal, and transmits to the receiving unit 1101. Then, the receiving unit 1101 receives the radio wave, demodulates the radio wave, and detects the synchronization signal. Since the speed of the radio wave is high and the time required for the reception unit 1101 to detect the synchronization signal is sufficiently short, the timing at which the transmission unit 1001 transmits the radio wave carrying the synchronization signal and the reception unit 1101 transmit the synchronization signal. the detected timing may be regarded as the same time t t.
 送信部1001は、時刻tから予め定められた所定時間が経過した時刻ts1のタイミングにおいて、検知信号の周波数1301のスイープを所定値から開始する。同様に、受信部1101は、時刻tから予め定められた所定時間が経過した時刻ts1のタイミングにおいて、LO信号の周波数1302のスイープを所定値から開始する。なお、送信部1001と受信部1101は、同じアルゴリズムで検知信号及びLO信号を生成する。このため、当該同期処理で信号の生成タイミングを揃えることで、送信部1001と受信部1101は同じタイミングで同じ周波数の信号を生成することになる。なお、以下の実施の形態で、当該同期処理をより詳細に説明する。 Transmission unit 1001, at the timing of time t s1 the predetermined time set in advance from the time t t has passed, starts the sweep of the frequency 1301 of the detection signal from a predetermined value. Similarly, the receiving unit 1101, at the timing of time t s1 the predetermined time set in advance from the time t t has passed, starts the sweep of the frequency 1302 of the LO signal from a predetermined value. The transmitting unit 1001 and the receiving unit 1101 generate a detection signal and an LO signal by the same algorithm. Therefore, by aligning the signal generation timings in the synchronization process, the transmission unit 1001 and the reception unit 1101 generate signals of the same frequency at the same timing. The synchronization process will be described in more detail in the following embodiments.
 本実施の形態1では、送信部1001と受信部1101の間に配線が無い状態で、対象物1201の像を生成するために必要なIF信号を生成する事ができる。 In the first embodiment, it is possible to generate an IF signal necessary for generating an image of an object 1201 in a state where there is no wiring between the transmitting unit 1001 and the receiving unit 1101.
 ただし、図1で示した物体検知装置1000の装置構成のみでは、送信部1001から送信される検知信号と、受信部1101内の受信発振部1103から出力されるLO信号の位相差を制御する事が困難である。例えば、送信部1001内の送信機1004を切り替えた際や、送信部1001から送信する検知信号の周波数を切り替えた際、送信部1001から送信する検知信号の位相が、受信部1101内の受信発振部1103から出力されるLO信号の位相と無関係に変動する。このような送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差の変動は、対象物1201の像を乱す要因となる。 However, only in the device configuration of the object detection device 1000 shown in FIG. 1, the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 is controlled. Is difficult. For example, when the transmitter 1004 in the transmission unit 1001 is switched or the frequency of the detection signal transmitted from the transmission unit 1001 is switched, the phase of the detection signal transmitted from the transmission unit 1001 is the reception oscillation in the reception unit 1101. It fluctuates regardless of the phase of the LO signal output from unit 1103. Such fluctuations in the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 cause the image of the object 1201 to be disturbed.
 本実施の形態1では、以下の[装置動作]において説明するとおり、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合においても、対象物1201の正しい像を安定して生成するための像生成手法を提供する。 In the first embodiment, as described in the following [Device operation], the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates. Also, an image generation method for stably generating a correct image of the object 1201 is provided.
[装置動作]
 図5は、本発明の実施の形態1における物体検知装置の動作を示すフロー図である。また、本実施の形態1では、物体検知装置1000を動作させることによって、物体検知方法が実施される。よって、本実施の形態1における物体検知方法の説明は、以下の物体検知装置1000の動作説明に代える。
[Device operation]
FIG. 5 is a flow chart showing the operation of the object detection device according to the first embodiment of the present invention. Further, in the first embodiment, the object detection method is implemented by operating the object detection device 1000. Therefore, the description of the object detection method in the first embodiment is replaced with the following description of the operation of the object detection device 1000.
 図5で示すように、最初に、送信部1001から同期信号を送信する(ステップA1)。 As shown in FIG. 5, first, the synchronization signal is transmitted from the transmission unit 1001 (step A1).
 次に、受信部1101が、送信部1001から送信された同期信号を受信する(ステップA2)。 Next, the receiving unit 1101 receives the synchronization signal transmitted from the transmitting unit 1001 (step A2).
 ステップA1及びステップA2における同期信号の送受信は、[装置構成]の項で説明しているとおり、送信部1001から送信される検知信号の周波数1301と、受信部1101内の受信発振部1103から出力されるLO信号の周波数1302を一致させるための同期処理である。同期処理の詳細は、以下の実施の形態で説明する。 The transmission / reception of the synchronization signal in steps A1 and A2 is output from the frequency 1301 of the detection signal transmitted from the transmission unit 1001 and the reception oscillation unit 1103 in the reception unit 1101 as described in the section of [Device Configuration]. It is a synchronization process for matching the frequency 1302 of the LO signal to be performed. The details of the synchronization process will be described in the following embodiments.
 同期処理が完了後、送信部1001が対象物1201に向けて検知信号を搬送する電波を送信する(ステップA3)。 After the synchronization process is completed, the transmission unit 1001 transmits a radio wave that carries a detection signal toward the object 1201 (step A3).
 次に、対象物1201からの電波を受信部1101の各受信アンテナ1102で受信する(ステップA4)。 Next, the radio wave from the object 1201 is received by each receiving antenna 1102 of the receiving unit 1101 (step A4).
 次に、受信部1101の各受信アンテナ1102で受信した電波からIF信号を生成する(ステップA5)。 Next, an IF signal is generated from the radio waves received by each receiving antenna 1102 of the receiving unit 1101 (step A5).
 次に、演算部1107において、IF信号に基づき対象物1201からの電波の分布(像)を計算する(ステップA6)。その後、この画像を用いた物体検出を行うことができる。画像から物体を検出する手段は広く知られている。例えば、画像に写る物体の外観の特徴(形状、大きさ等)に基づき、物体を検出することができる。物体検出の手法としては、パターンマッチングや、機械学習で生成されたクラス分類器の利用などが例示されるが、これらに限定されない。 Next, the calculation unit 1107 calculates the distribution (image) of the radio wave from the object 1201 based on the IF signal (step A6). After that, object detection using this image can be performed. Means for detecting an object from an image are widely known. For example, an object can be detected based on the appearance characteristics (shape, size, etc.) of the object in the image. Examples of the object detection method include, but are not limited to, pattern matching and the use of a classifier generated by machine learning.
 図6は、演算部1107においてIF信号に基づき対象物1201からの電波の分布(像)を計算するステップA6の詳細を示したフロー図である。図6で示すように、演算部1107においてIF信号に基づき対象物1201からの電波の分布(像)を計算するステップA6は、ステップB1からB7で構成される。 FIG. 6 is a flow chart showing the details of step A6 in which the calculation unit 1107 calculates the distribution (image) of the radio wave from the object 1201 based on the IF signal. As shown in FIG. 6, step A6 in which the calculation unit 1107 calculates the distribution (image) of the radio wave from the object 1201 based on the IF signal is composed of steps B1 to B7.
 図6で詳細を示した、IF信号に基づき対象物1201からの電波の分布(像)を計算するステップA6は、送信部1001から送信される検知信号と受信部1101内で生成されるLO信号の間に、測定時に変動する不定な位相差がある場合でも、対象物1201からの電波の分布(像)を安定して正しく算出する事を特徴とする。 The step A6 for calculating the distribution (image) of the radio wave from the object 1201 based on the IF signal, which is shown in detail in FIG. 6, is the detection signal transmitted from the transmission unit 1001 and the LO signal generated in the reception unit 1101. Even if there is an indefinite phase difference that fluctuates at the time of measurement, the distribution (image) of the radio wave from the object 1201 is stably and correctly calculated.
 図6で示すように、IF信号に基づき対象物1201からの電波の分布(像)を計算するステップA6では、測定前の事前処理として、測定系固有の較正パラメータの計算を行う。測定前の事前処理としては、波数軸較正項の計算を行うステップB3と、送信アンテナ軸較正項の計算を行うステップB6がある。 As shown in FIG. 6, in step A6 for calculating the distribution (image) of the radio wave from the object 1201 based on the IF signal, the calibration parameter peculiar to the measurement system is calculated as a preprocessing before the measurement. Pre-processing before measurement includes step B3 for calculating the wave number axis calibration term and step B6 for calculating the transmitting antenna axis calibration term.
 本実施の形態1では、送信部1001から送信する検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する問題とは別に、送信アンテナ1002の配置と、受信アンテナ1102の配置と、送信部1001から送信される検知信号の周波数1301の設定に応じた、固定的な誤差が発生する。この固定的な誤差を較正するために、波数軸較正項の計算を行うステップB3と、送信アンテナ軸較正項の計算を行うステップB6を行う。 In the first embodiment, apart from the problem that the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates, the arrangement of the transmission antenna 1002 and the reception A fixed error occurs depending on the arrangement of the antenna 1102 and the setting of the frequency 1301 of the detection signal transmitted from the transmission unit 1001. In order to calibrate this fixed error, step B3 for calculating the wave number axis calibration term and step B6 for calculating the transmitting antenna axis calibration term are performed.
 また図6で示すように、IF信号に基づき対象物1201からの電波の分布(像)を計算するステップA6では、測定時の処理として、測定毎に変動する誤差の補正及び対象物1201からの電波の分布(像)の生成を行う。測定時の処理は、ステップB1~B2及びステップB4~B5及びステップB7で構成される。ステップB1~B2及びステップB4~B5及びステップB7では、送信部1001から送信する検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差の変動を補正しながら、同時に対象物1201からの電波の分布(像)を生成する。 Further, as shown in FIG. 6, in step A6 for calculating the distribution (image) of the radio wave from the object 1201 based on the IF signal, as the processing at the time of measurement, the error that fluctuates for each measurement is corrected and the object 1201 is used. Generates the distribution (image) of radio waves. The processing at the time of measurement is composed of steps B1 to B2, steps B4 to B5, and step B7. In steps B1 to B2, steps B4 to B5, and step B7, while correcting the fluctuation of the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101, the target is simultaneously targeted. Generates a distribution (image) of radio waves from object 1201.
 続いて、図6で示したステップの詳細について説明する。 Next, the details of the steps shown in FIG. 6 will be described.
[ステップB1]
 図6で示したステップB1では、データ転送部1106から演算部1107に出力されたIF信号s(m,n,q)を用いる。ここで、m、n、qは、それぞれ送信アンテナ1002の番号、受信アンテナ1102の番号、波数の番号を表す。送信部1001から送信される検知信号の周波数1301をfとした時、波数kと周波数fの間には、cを光速としてk=2πf/cの関係がある。IF信号は、送信アンテナ1002と、受信アンテナ1102と、波数(すなわち周波数)の組(m,n,q)に対して得られるものとする。ステップB1では、IF信号s(m,n,q)を用いて、以下の式(1)に基づいて受信アンテナ軸の相関和を計算する事で、画像PRX(m,q,r)を生成する。
[Step B1]
In step B1 shown in FIG. 6, the IF signals s (m, n, q) output from the data transfer unit 1106 to the calculation unit 1107 are used. Here, m, n, and q represent the number of the transmitting antenna 1002, the number of the receiving antenna 1102, and the number of the wave number, respectively. When the frequency 1301 of the detection signal transmitted from the transmission unit 1001 is f, there is a relationship of k = 2πf / c between the wave number k and the frequency f, where c is the speed of light. It is assumed that the IF signal is obtained for a set (m, n, q) of a transmitting antenna 1002, a receiving antenna 1102, and a wave number (that is, frequency). In step B1, the image PRX (m, q, r) is obtained by calculating the correlation sum of the receiving antenna axes based on the following equation (1) using the IF signal s (m, n, q). Generate.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
  式(1)において、rは空間上の位置である。画像PRX(m,q,r)は空間上の位置rにおける像強度を表す。また画像PRX(m,q,r)は、送信アンテナ1002の番号mと、波数の番号qの組毎に得られる量でもある。Rt(m,r)は番号mに対応する送信アンテナ1002と位置rの距離を表す。また、Rr(n,r)は番号nに対応する受信アンテナ1102と位置rの距離を表す。jは虚数単位である。 In equation (1), r is a position in space. The image PRX (m, q, r) represents the image intensity at the position r in space. The image PRX (m, q, r) is also an amount obtained for each set of the number m of the transmitting antenna 1002 and the number q of the wave number. Rt (m, r) represents the distance between the transmitting antenna 1002 corresponding to the number m and the position r. Further, Rr (n, r) represents the distance between the receiving antenna 1102 corresponding to the number n and the position r. j is an imaginary unit.
[ステップB2]
 次のステップB2では、検知信号とLO信号の不定位相差の波数軸上の補正項cΔθ[WN](m,q)を、以下の式(2)に基づいてステップB1で得た画像PRX(m,q,r)から計算する。
[Step B2]
In the next step B2, the correction term c Δθ [WN] (m, q) on the wave number axis of the indefinite phase difference between the detection signal and the LO signal is obtained in step B1 based on the following equation (2). Calculated from RX (m, q, r).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、q'はqとは異なる波数番号で、q'は任意に取ってよい。なお、q'とqに対応する波数kは近い値を取る事が望ましい。 In equation (2), q'is a wavenumber different from q, and q'may be arbitrary. It is desirable that the wave numbers k corresponding to q'and q take close values.
 以下では、補正項cΔθ[WN](m,q)が式(2)で得られる理由について説明する。すでに述べたとおり、送信部1001内の送信機1004を切り替えた際や、送信部1001から送信する検知信号の周波数を切り替えた際、送信部1001から送信する検知信号の位相が、受信部1101内の受信発振部1103から出力されるLO信号の位相と無関係に変動する。この時、送信部1001から送信する検知信号と、受信部1101内のLO信号の位相差は、送信番号mと波数番号qに対してランダムに変動する位相Δθ(m,q)で表現できる。なお、図1に示した受信部1101において、複数の受信機1104、1104、1104に対し共通の受信発振部1103からLO信号が供給されているため、位相Δθが受信アンテナ1102の番号nに対して依存性を持つ事は無い。このランダムに変動する位相Δθ(m,q)により、画像PRX(m,q,r)の位相は、Δθ(m,q)だけシフトする。ここで、波数番号qが異なる2つの画像PRX(m,q,r)とPRX(m,q',r)を考える。ランダムに変動する位相Δθ(m,q)が無い場合、2つの画像PRX(m,q,r)とPRX(m,q',r)の位相はあまり変化しない。この事から、PRX(m,q',r)に補正項cΔθ[WN](m,q)を掛けて位相補正をした場合、PRX(m,q,r)とPRX(m,q',r)cΔθ[WN](m,q)の位相は一致する事が望ましい。またPRX(m,q,r)とPRX(m,q',r)cΔθ[WN](m,q)の位相が一致する場合、PRX(m,q,r)+PRX(m,q',r)cΔθ[WN](m,q)の絶対値は最大になる。PRX(m,q,r)+PRX(m,q',r)cΔθ[WN](m,q)の絶対値を最大化する条件で補正項cΔθ[WN](m,q)を決定した結果が、式(2)で与えられる。 Hereinafter, the reason why the correction term c Δθ [WN] (m, q) is obtained by the equation (2) will be described. As described above, when the transmitter 1004 in the transmission unit 1001 is switched or the frequency of the detection signal transmitted from the transmission unit 1001 is switched, the phase of the detection signal transmitted from the transmission unit 1001 is in the reception unit 1101. It fluctuates regardless of the phase of the LO signal output from the reception oscillation unit 1103 of. At this time, the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal in the reception unit 1101 can be expressed by a phase Δθ (m, q) that randomly fluctuates with respect to the transmission number m and the wave number q. In the receiving unit 1101 shown in FIG. 1, since the LO signal is supplied from the common receiving oscillation unit 1103 to the plurality of receivers 11041 1 , 1104 2 , and 1104 N, the phase Δθ is the number of the receiving antenna 1102. It has no dependency on n. Due to this randomly fluctuating phase Δθ (m, q), the phase of the image PRX (m, q, r) is shifted by Δθ (m, q). Here, consider two images PRX (m, q, r) and PRX (m, q', r) having different wavenumbers q. In the absence of the randomly fluctuating phase Δθ (m, q), the phases of the two images PRX (m, q, r) and PRX (m, q', r) do not change much. From this, P RX (m, q ' , r) correction term c [Delta] [theta] in [WN] (m, q) when the phase correction by multiplying, P RX (m, q, r) and P RX (m , Q', r) c Δθ [WN] (m, q) It is desirable that the phases match. If the phases of PRX (m, q, r) and PRX (m, q', r) c Δθ [WN] (m, q) match, then PRX (m, q, r) + PRX ( The absolute value of m, q', r) c Δθ [WN] (m, q) is maximized. PRX (m, q, r) + PRX (m, q', r) c Δθ [WN] The correction term c Δθ [WN] (m, q) under the condition of maximizing the absolute value of (m, q). The result of determining is given by the equation (2).
[ステップB3]
 次のステップB3では、波数軸較正項cA[WN](m,q)を測定前に計算しておく。このステップB3の詳細手順は図7において後述する。
[Step B3]
In the next step B3, the wave number axis calibration term c A [WN] (m, q) is calculated before the measurement. The detailed procedure of this step B3 will be described later in FIG.
[ステップB4]
 次のステップB4では、ステップB1で得た画像PRX(m,q,r)と、ステップB2で得た補正項cΔθ[WN](m,q)と、ステップB3で得た較正項cA[WN](m,q)の3つを用いて、以下の式(3)に波数軸の相関和で画像PWN(m,r)を生成する。
[Step B4]
In the next step B4, the image PRX (m, q, r) obtained in step B1, the correction term c Δθ [WN] (m, q) obtained in step B2, and the calibration term c obtained in step B3. Using the three A [WN] (m, q), the image P WN (m, r) is generated by the correlation sum of the wavenumber axes in the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
[ステップB5]
 次のステップB5では、検出信号とLO信号の不定位相差の送信アンテナ軸上の補正項cΔθ[TX](m)を、以下の式(4)に基づいてステップB4で得た画像PWN(m,r)から計算する。
[Step B5]
In the next step B5, the correction term c [Delta] [theta] on the transmit antenna axis indefinite phase difference detection signal and the LO signal [TX] (m) The following image P WN obtained in step B4 based on equation (4) Calculate from (m, r).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、m'はmとは異なるアンテナ番号で、m'は任意に取ってよい。なお、m'とmに対応する送信アンテナは互いに近い位置にある事が望ましい。式(4)は、式(2)と同様に、PWN(m,r)+PWN(m',r)cΔθ[TX](m)の絶対値を最大化する条件で補正項cΔθ[TX](m)を決定している。 In the formula (4), m'is an antenna number different from m, and m'may be arbitrarily taken. It is desirable that the transmitting antennas corresponding to m'and m are located close to each other. The equation (4) is the same as the equation (2), with the correction term c Δθ under the condition of maximizing the absolute value of P WN (m, r) + P WN (m', r) c Δθ [TX] (m). [TX] (m) has been determined.
[ステップB6]
 次のステップB6では、送信アンテナ軸較正項cA[TX](m)を測定前に計算しておく。このステップB6の詳細手順は図7において後述する。
[Step B6]
In the next step B6, the transmitting antenna axis calibration term c A [TX] (m) is calculated before the measurement. The detailed procedure of this step B6 will be described later in FIG.
[ステップB7]
 次のステップB7では、ステップB4で得た画像PWN(m,r)と、ステップB5で得た補正項cΔθ[TX](m)と、ステップB6で得た較正項cA[TX](m)の3つを用いて、以下の式(5)に波数軸の相関和で画像P(r)を生成する。
[Step B7]
In the next step B7, the image P WN (m, r) obtained in step B4, the correction term c Δθ [TX] (m) obtained in step B5, and the calibration term c A [TX] obtained in step B6. Using the three (m), the image P (r) is generated by the correlation sum of the wavenumber axes in the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)で与えられる画像P(r)が、送信部1001から送信する検知信号と受信部1101内のLO信号のランダムに変動する位相差Δθ(m,q)を補正して得られる対象物1201からの電波の分布を示す像となる。 The image P (r) given by the equation (5) is an object obtained by correcting the randomly fluctuating phase difference Δθ (m, q) between the detection signal transmitted from the transmission unit 1001 and the LO signal in the reception unit 1101. It is an image showing the distribution of radio waves from the object 1201.
 図7は、波数軸較正項cA[WN](m,q)を測定前に計算するステップB3と、送信アンテナ軸較正項cA[TX](m)を測定前に計算するステップB6の詳細を示したフロー図である。図7で示したフロー図は、ステップC0からステップC6で構成される。なお、図7で示した各ステップは、実際の測定ではなく、数値計算により行う。ただし、実際の測定で用いる送信アンテナ1002の配置と、受信アンテナ1102の配置と、送信部1001から送信される検知信号の周波数1301の設定を、図7の各ステップで行う数値計算においても用いる。 FIG. 7 shows step B3 in which the wave number axis calibration term c A [WN] (m, q) is calculated before measurement, and step B6 in which the transmit antenna axis calibration term c A [TX] (m) is calculated before measurement. It is a flow chart which showed the details. The flow chart shown in FIG. 7 is composed of steps C0 to C6. It should be noted that each step shown in FIG. 7 is performed by numerical calculation, not by actual measurement. However, the arrangement of the transmitting antenna 1002 used in the actual measurement, the arrangement of the receiving antenna 1102, and the setting of the frequency 1301 of the detection signal transmitted from the transmitting unit 1001 are also used in the numerical calculation performed in each step of FIG.
 続いて、図7で示したステップの詳細について説明する。 Next, the details of the steps shown in FIG. 7 will be described.
[ステップC0]
 図7で示したステップC0では、較正用対象物を対象物1201とした場合のIF信号s(m,n,q)を、以下の式(6)に基づいて数値計算する。
[Step C0]
In step C0 shown in FIG. 7, the IF signal s (m, n, q) when the calibration object is the object 1201 is numerically calculated based on the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)において、σ(r)は、位置rにおける較正用対象物の反射強度である。較正用対象物は、可能な限り大きな板状の反射体を用いる事が望ましい。また、式(6)において、Rt(m,r)は番号mに対応する送信アンテナ1002と位置rの距離を表す。また、Rr(n,r)は番号nに対応する受信アンテナ1102と位置rの距離を表す。また、k(q)は番号qに対応する波数kを表す。 In equation (6), σ (r) is the reflection intensity of the calibration object at the position r. It is desirable to use a plate-shaped reflector as large as possible for the calibration object. Further, in the equation (6), Rt (m, r) represents the distance between the transmitting antenna 1002 corresponding to the number m and the position r. Further, Rr (n, r) represents the distance between the receiving antenna 1102 corresponding to the number n and the position r. Further, k (q) represents the wave number k corresponding to the number q.
[ステップC1]
 次に、ステップC1では式(6)で得たIF信号を用いて、ステップB1と同じく式(1)に基づいて画像PRX(m,q,r)を計算する。
[Step C1]
Next, in step C1, the image PRX (m, q, r) is calculated based on the equation (1) as in step B1 by using the IF signal obtained by the equation (6).
[ステップC2]
 次に、ステップC2では、ステップC1で計算した画像PRX(m,q,r)を用いて、ステップB2と同じく式(2)に基づいて補正項cΔθ[WN](m,q)を計算する。
[Step C2]
Next, in step C2, the correction term c Δθ [WN] (m, q) is corrected based on the equation (2) as in step B2, using the image PRX (m, q, r) calculated in step C1. calculate.
[ステップC3]
 次に、ステップC3では、ステップC2で得た補正項cΔθ[WN](m,q)から、以下の式(7)に基づいて波数軸較正項cA[WN](m,q)を計算する。
[Step C3]
Next, in step C3, the wave number axis calibration term c A [WN] (m, q) is calculated from the correction term c Δθ [WN] (m, q) obtained in step C2 based on the following equation (7). calculate.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)で計算された波数軸較正項cA[WN](m,q)が、図6のステップB3において使用される。 The wavenumber axis calibration term c A [WN] (m, q) calculated by equation (7) is used in step B3 of FIG.
[ステップC4]
 次に、ステップC3では、ステップC1で得た画像PRX(m,q,r)と、ステップC2で得た補正項cΔθ[WN](m,q)と、ステップC3で得た波数軸較正項cA[WN](m,q)を用いて、ステップB4と同じく式(3)に基づいて画像PWN(m,r)を計算する。
[Step C4]
Next, in step C3, the image PRX (m, q, r) obtained in step C1, the correction term c Δθ [WN] (m, q) obtained in step C2, and the wave number axis obtained in step C3. Using the calibration term c A [WN] (m, q), the image P WN (m, r) is calculated based on the equation (3) as in step B4.
[ステップC5]
 次に、ステップC5では、ステップC4で計算した画像PWN(m,r)を用いて、ステップB5と同じく式(4)に基づいて補正項cΔθ[TX](m)を計算する。
[Step C5]
Next, in step C5, the correction term c Δθ [TX] (m) is calculated based on the equation (4) as in step B5, using the image P WN (m, r) calculated in step C4.
[ステップC6]
 次に、ステップC6では、ステップC5で得た補正項cΔθ[TX](m)から、以下の式(8)に基づいて波数軸較正項cA[TX](m)を計算する。
[Step C6]
Next, in step C6, the wave number axis calibration term c A [TX] (m) is calculated from the correction term c Δθ [TX] (m) obtained in step C5 based on the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)で計算された波数軸較正項cA[TX](m)が、図6のステップB6において使用される。 The wave number axis calibration term c A [TX] (m) calculated by the equation (8) is used in step B6 of FIG.
 装置動作の説明は以上である。上記の装置動作により、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合においても、対象物1201の正しい像を安定して生成するための像生成手法が提供される。 This concludes the explanation of device operation. Even when the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates due to the above device operation, the correct image of the object 1201 is stabilized. An image generation method for generating the image is provided.
 なお、上記で説明した補正項cΔθ[WN](m,q)及びcΔθ[TX](m)と、較正項cA[WN](m,q)及びcA[TX](m)が引数m及びqによらず全て1の場合が、補正及び較正を行わない従来の像生成手法に該当する。 The correction terms c Δθ [WN] (m, q) and c Δθ [TX] (m) described above, and the calibration terms c A [WN] (m, q) and c A [TX] (m). Is all 1 regardless of the arguments m and q, which corresponds to the conventional image generation method without correction and calibration.
 図8に、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合において、補正及び較正を行わない従来の像生成手法で正方形の対象物1201の画像を生成した例を示す。図8では画像中央の破線内が対象物1201の位置を表しているが、実際に得られた対象物1201の像は元の正方形から大きく崩れている。 FIG. 8 shows a conventional image generation method in which correction and calibration are not performed when the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates. An example of generating an image of a square object 1201 is shown. In FIG. 8, the position of the object 1201 is shown in the broken line in the center of the image, but the actually obtained image of the object 1201 is greatly deviated from the original square.
 図9に、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合において、本実施の形態1に基づいて補正及び較正を実施した像生成手法で正方形の対象物1201の画像を生成した例を示す。図9では、対象物1201の位置(画像中央の破線内)に、大きく崩れる事なく対象物1201の像が生成されている。 In FIG. 9, when the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates, correction and calibration are performed based on the first embodiment. An example in which an image of a square object 1201 is generated by the image generation method carried out is shown. In FIG. 9, an image of the object 1201 is generated at the position of the object 1201 (inside the broken line in the center of the image) without being greatly collapsed.
(本実施の形態1の変形例1)
 図10に本実施の形態1の変形例1における装置構成の図を示す。図1で示した本実施の形態1の装置構成では送信部1001と受信部1101は別の筐体に収められていたが、図10で示した本実施の形態1の変形例1のように、送信部1001と受信部1101を同じ筐体に収めて物体検知装置1000として使用しても良い。
(Modification 1 of the first embodiment)
FIG. 10 shows a diagram of the device configuration in the first modification of the first embodiment. In the apparatus configuration of the first embodiment shown in FIG. 1, the transmitting unit 1001 and the receiving unit 1101 are housed in different housings, but as in the modified example 1 of the present embodiment 1 shown in FIG. The transmitting unit 1001 and the receiving unit 1101 may be housed in the same housing and used as the object detection device 1000.
 図10では、送信機1004に接続された送信アンテナ1002と、受信機1104に接続された受信アンテナ1102は分離されている。一方で、送信機1004と受信機1104は、送受信を切り替えるスイッチないしアイソレータを経由して同じアンテナに接続し、送受で同じアンテナを共有してもよい。 In FIG. 10, the transmitting antenna 1002 connected to the transmitter 1004 and the receiving antenna 1102 connected to the receiver 1104 are separated. On the other hand, the transmitter 1004 and the receiver 1104 may be connected to the same antenna via a switch or an isolator for switching transmission / reception, and may share the same antenna for transmission / reception.
 本実施の形態1の変形例1における装置動作は、本実施の形態1おける装置動作と同一なので、説明は省略する。 Since the device operation in the first modification of the first embodiment is the same as the device operation in the first embodiment, the description thereof will be omitted.
[ハードウェア構成]
 ここで、本実施の形態1におけるプログラムを実行することによって、物体検知装置を実現するコンピュータ(演算装置)について図11を用いて説明する。図11は本実施の形態1における物体検知装置1000を実現するコンピュータの一例を示すブロック図である。
[Hardware configuration]
Here, a computer (arithmetic logic unit) that realizes an object detection device by executing the program according to the first embodiment will be described with reference to FIG. FIG. 11 is a block diagram showing an example of a computer that realizes the object detection device 1000 according to the first embodiment.
 図11に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。 As shown in FIG. 11, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
 CPU111は、記憶装置113に格納された、本実施の形態1におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態1におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態1におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。 The CPU 111 expands the program (code) in the first embodiment stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to perform various operations. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the program according to the first embodiment is provided in a state of being stored in a computer-readable recording medium 120. The program in the first embodiment may be distributed on the Internet connected via the communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。 Further, specific examples of the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119. The computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。 Specific examples of the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-. Examples include optical recording media such as ROM (CompactDiskReadOnlyMemory).
 なお、本実施の形態1における物体検知装置は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、物体検知装置は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 The object detection device in the first embodiment can be realized by using the hardware corresponding to each part instead of the computer in which the program is installed. Further, the object detection device may be partially realized by a program and the rest may be realized by hardware.
[効果]
 以下において、本実施の形態1の効果を説明する。本実施の形態1では、送信部1001の送信発振部1003と受信部1101の受信発振部1103で異なる発振器を用いる事で、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合であっても、対象物1201の正しい像を安定して生成するための像生成手法が提供される。この事により、送信装置から送信される電波を生成する発振部と、受信装置内でLO信号を生成する発振部を分離する事が可能な物体検知装置が提供される。
[effect]
Hereinafter, the effect of the first embodiment will be described. In the first embodiment, by using different oscillators for the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101, the detection signal transmitted from the transmission unit 1001 and the reception oscillation unit in the reception unit 1101 are used. Even when the phase difference of the LO signal output from 1103 fluctuates, an image generation method for stably generating a correct image of the object 1201 is provided. This provides an object detection device capable of separating the oscillating unit that generates the radio wave transmitted from the transmitting device and the oscillating unit that generates the LO signal in the receiving device.
 本実施の形態1の物体検知装置により、送信部と受信部の間の配線を無くす事ができ、歩行者の通過を妨げるという課題を解決し、さらに送信装置と受信装置の位置関係を柔軟に変更する事が可能になる。また電波供給用の配線ケーブルの数を削減し、コストと筐体サイズの課題を解決することができる。 The object detection device of the first embodiment can eliminate the wiring between the transmitting unit and the receiving unit, solve the problem of hindering the passage of pedestrians, and flexibly change the positional relationship between the transmitting device and the receiving device. It will be possible to change. In addition, the number of wiring cables for supplying radio waves can be reduced, and the problems of cost and housing size can be solved.
(本実施の形態2)
[装置構成]
 図12を用いて、本実施の形態2における物体検知装置の構成について説明する。
(Implementation 2)
[Device configuration]
The configuration of the object detection device according to the second embodiment will be described with reference to FIG.
 図12に示す本実施の形態2における構成要素は、図1で示した本実施の形態1における構成要素と同一である。ただし、本実施の形態1では送信部1001内の発振部が複数の送信発振部1003、1003,1003に分離していたのに対し、本実施の形態2では単一の送信発振部1003で実装されている。 The components of the second embodiment shown in FIG. 12 are the same as the components of the first embodiment shown in FIG. However, in the first embodiment, the oscillation unit in the transmission unit 1001 is separated into a plurality of transmission oscillation units 1003 1 , 1003 2 , 1003 M , whereas in the second embodiment, a single transmission oscillation unit is used. It is implemented in 1003.
 また、本実施の形態1では受信部1101内の発振部が単一の受信発振部1103で実装していたのに対し、本実施の形態2では複数の受信発振部1103、1103,1103に分離されている。 Further, in the first embodiment, the oscillating unit in the receiving unit 1101 is mounted by a single receiving oscillating unit 1103, whereas in the second embodiment, a plurality of receiving oscillating units 1103 1 , 1103 2 , 1103 are mounted. It is separated into M.
 すなわち、本実施の形態1と2では、送信と受信で、単一の発振部による実装と複数の発振部による実装を入れ替えている。 That is, in the first and second embodiments of the present embodiment, the mounting by a single oscillating unit and the mounting by a plurality of oscillating units are exchanged for transmission and reception.
 本実施の形態2では、送信発振部1003と送信機1004の接続のために、二重線で示した電波供給用ケーブルを使用している。一方で、従来の物体検知装置と異なり、本実施の形態2では受信部1101内で電波供給用の配線ケーブルが不要なため、装置コストの低減および筐体サイズの小型化を実現できる。 In the second embodiment, the radio wave supply cable shown by the double wire is used for the connection between the transmission oscillator 1003 and the transmitter 1004. On the other hand, unlike the conventional object detection device, in the second embodiment, the wiring cable for supplying radio waves is not required in the receiving unit 1101, so that the device cost can be reduced and the housing size can be reduced.
 本実施の形態1と2で、上記以外の違いは無いため、送信発振部1003と受信発振部1103以外の構成要素の説明は省略する。 Since there is no difference other than the above between the first and second embodiments, the description of the components other than the transmission oscillation unit 1003 and the reception oscillation unit 1103 will be omitted.
[装置動作]
 装置動作も、本実施の形態1と2でほぼ共通である。ここでは、本実施の形態2の装置動作で、本実施の形態1の装置動作と異なる要素のみを説明する。
[Device operation]
The operation of the device is also substantially the same in the first and second embodiments. Here, only the elements of the device operation of the second embodiment that are different from the device operation of the first embodiment will be described.
 本実施の形態2における装置動作は、図5で示したフロー図によって実施される。図5による装置動作は、本実施の形態1と2で共通であるため、説明は省略する。 The device operation in the second embodiment is carried out according to the flow chart shown in FIG. Since the device operation according to FIG. 5 is common to the first and second embodiments, the description thereof will be omitted.
 本実施の形態2における装置動作の内、図5で示したフロー図内のステップA6の詳細を示したフロー図を図13に示す。本実施の形態1と2において送信と受信で単一の発振部による実装と複数の発振部による実装を入れ替えた事を反映して、本実施の形態2におけるフロー図13内のステップは、本実施の形態1におけるフロー図6内のステップから以下のように変更される。具体的には、送信アンテナに対する処理と受信アンテナに対する処理を本実施の形態1と2で入れ替える。 FIG. 13 shows a flow chart showing the details of step A6 in the flow chart shown in FIG. 5 among the device operations in the second embodiment. Reflecting the fact that the mounting by a single oscillator and the mounting by a plurality of oscillators are exchanged for transmission and reception in the first and second embodiments, the steps in the flow diagram 13 in the second embodiment are described in the present invention. The steps in the flow diagram 6 in the first embodiment are changed as follows. Specifically, the processing for the transmitting antenna and the processing for the receiving antenna are exchanged in the first and second embodiments.
 本実施の形態1におけるステップB1が受信アンテナ軸の相関和によりIF信号から画像を生成するのに対し、本実施の形態2におけるステップB1'では送信アンテナ軸の相関和によりIF信号から画像を生成する。 While step B1 in the first embodiment generates an image from the IF signal by the correlation sum of the receiving antenna axes, in step B1'in the second embodiment, an image is generated from the IF signal by the correlation sum of the transmitting antenna axes. do.
 本実施の形態1におけるステップB6が送信アンテナ軸較正項の計算を行うのに対し、本実施の形態2におけるステップB6'では受信アンテナ軸較正項の計算を行う。 While step B6 in the first embodiment calculates the transmitting antenna axis calibration term, step B6'in the second embodiment calculates the receiving antenna axis calibration term.
 本実施の形態1におけるステップB7が送信アンテナ軸の相関和で画像を生成するのに対し、本実施の形態2におけるステップB7'では受信アンテナ軸の相関和で画像を生成する。 While step B7 in the first embodiment generates an image by the correlation sum of the transmitting antenna axes, step B7'in the second embodiment generates an image by the correlation sum of the receiving antenna axes.
 本実施の形態2における装置動作の内、図13で示したフロー図内のステップB3及びステップB6'の詳細を示したフロー図を図14に示す。本実施の形態1と2において送信と受信で単一の発振部による実装と複数の発振部による実装を入れ替えた事を反映して、本実施の形態2におけるフロー図14内のステップは、本実施の形態1におけるフロー図7内のステップから以下のように変更される。具体的には、送信アンテナに対する処理と受信アンテナに対する処理を本実施の形態1と2で入れ替える。 FIG. 14 shows a flow chart showing the details of steps B3 and B6'in the flow chart shown in FIG. 13 among the device operations in the second embodiment. Reflecting the fact that the mounting by a single oscillator and the mounting by a plurality of oscillators are exchanged for transmission and reception in the first and second embodiments, the steps in the flow diagram 14 in the second embodiment are described in the present invention. The steps in the flow diagram 7 in the first embodiment are changed as follows. Specifically, the processing for the transmitting antenna and the processing for the receiving antenna are exchanged in the first and second embodiments.
 本実施の形態1におけるステップC1が受信アンテナ軸の相関和によりIF信号から画像を生成するのに対し、本実施の形態2におけるステップC1'では送信アンテナ軸の相関和によりIF信号から画像を生成する。 While step C1 in the first embodiment generates an image from the IF signal by the correlation sum of the receiving antenna axes, in step C1'in the second embodiment, an image is generated from the IF signal by the correlation sum of the transmitting antenna axes. do.
 本実施の形態1におけるステップC5が送信アンテナ軸の補正項の計算を行うのに対し、本実施の形態2におけるステップC5'では受信アンテナ軸の補正項の計算を行う。 While step C5 in the first embodiment calculates the correction term for the transmitting antenna shaft, step C5'in the second embodiment calculates the correction term for the receiving antenna shaft.
 本実施の形態1におけるステップC6が送信アンテナ軸較正項を計算するのに対し、本実施の形態2におけるステップC6'では受信アンテナ軸較正項を計算する。 While step C6 in the first embodiment calculates the transmitting antenna axis calibration term, step C6'in the second embodiment calculates the receiving antenna axis calibration term.
 上記の本実施の形態2における装置動作により、本実施の形態1と同じく、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合においても、対象物1201の正しい像を安定して生成するための像生成手法が提供される。 As in the first embodiment, the phase difference between the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 fluctuates due to the device operation in the second embodiment. Even in such a case, an image generation method for stably generating a correct image of the object 1201 is provided.
(本実施の形態2の変形例1)
 図15に本実施の形態2の変形例1における装置構成の図を示す。図12で示した本実施の形態2の装置構成では送信部1001と受信部1101は別の筐体に収められていたが、図15で示した本実施の形態2の変形例1のように、送信部1001と受信部1101を同じ筐体に収めて物体検知装置1000として使用しても良い。
(Modification 1 of the second embodiment)
FIG. 15 shows a diagram of the device configuration in the first modification of the second embodiment. In the apparatus configuration of the second embodiment shown in FIG. 12, the transmitting unit 1001 and the receiving unit 1101 are housed in different housings, but as in the modified example 1 of the second embodiment shown in FIG. The transmitting unit 1001 and the receiving unit 1101 may be housed in the same housing and used as the object detection device 1000.
 図15では、送信機1004に接続された送信アンテナ1002と、受信機1104に接続された受信アンテナ1102は分離されている。一方で、送信機1004と受信機1104は、送受信を切り替えるスイッチないしアイソレータを経由して同じアンテナに接続し、送受で同じアンテナを共有してもよい。 In FIG. 15, the transmitting antenna 1002 connected to the transmitter 1004 and the receiving antenna 1102 connected to the receiver 1104 are separated. On the other hand, the transmitter 1004 and the receiver 1104 may be connected to the same antenna via a switch or an isolator for switching transmission / reception, and may share the same antenna for transmission / reception.
 本実施の形態2の変形例1における装置動作は、本実施の形態2おける装置動作と同一なので、説明は省略する。 Since the device operation in the first modification of the second embodiment is the same as the device operation in the second embodiment, the description thereof will be omitted.
[ハードウェア構成]
 本実施の形態1と同様である。
[Hardware configuration]
This is the same as the first embodiment.
[効果]
 本実施の形態1と同様である。
[effect]
This is the same as the first embodiment.
(本実施の形態3)
 本実施の形態3では、本実施の形態1及び2で説明した同期処理、すなわち図5のステップA1及びA2の処理がより具体化される。同期処理は、送信部1001から送信される検知信号と受信部1101内の受信発振部1103から出力されるLO信号が同じタイミングで同じ周波数の信号となるようにするための処理である。
(Embodiment 3 of this embodiment)
In the third embodiment, the synchronous processing described in the first and second embodiments, that is, the processing of steps A1 and A2 in FIG. 5 is more embodied. The synchronization process is a process for ensuring that the detection signal transmitted from the transmission unit 1001 and the LO signal output from the reception oscillation unit 1103 in the reception unit 1101 become signals of the same frequency at the same timing.
 物体検知装置1000の機能構成の一例は、図1、図10、図12又は図15で示される。 An example of the functional configuration of the object detection device 1000 is shown in FIGS. 1, 10, 12, or 15.
 送信部1001の送信発振部1003は、制御部1005の制御に基づき、同期信号送信処理及び検知信号送信処理を実行する。 The transmission oscillation unit 1003 of the transmission unit 1001 executes the synchronization signal transmission process and the detection signal transmission process based on the control of the control unit 1005.
 同期信号送信処理では、送信発振部1003は、予め設定された基準タイミングで、同期信号を搬送する電波を送信アンテナ1002から送信させる。検知信号送信処理では、検知信号を搬送する電波を送信アンテナ1002から送信させる。 In the synchronous signal transmission process, the transmission oscillation unit 1003 causes the transmission antenna 1002 to transmit radio waves that carry the synchronous signal at a preset reference timing. In the detection signal transmission process, radio waves carrying the detection signal are transmitted from the transmission antenna 1002.
 以下、図16を用いて、同期信号送信処理及び検知信号送信処理をより詳細に説明する。図16は、送信発振部1003が送信する電波の周波数の時間変化の一例を示す。横軸が時間であり、縦軸が周波数である。 Hereinafter, the synchronization signal transmission process and the detection signal transmission process will be described in more detail with reference to FIG. FIG. 16 shows an example of a time change in the frequency of the radio wave transmitted by the transmission oscillation unit 1003. The horizontal axis is time and the vertical axis is frequency.
 図示するように、送信発振部1003は、検知信号を送信する検知信号送信処理の前に、同期信号を送信する同期信号送信処理を実行する。送信発振部1003は、図示するように、検知信号送信処理を実行する前に同期信号送信処理を実行し、その後、繰り返し同期信号送信処理を実行することができる。送信発振部1003は、複数回の同期信号送信処理の間に、検知信号送信処理を実行する。なお、送信発振部1003は、最初の同期信号送信処理のみを実行し、その後の同期信号送信処理は実行しなくてもよい。 As shown in the figure, the transmission oscillation unit 1003 executes a synchronization signal transmission process for transmitting a synchronization signal before the detection signal transmission process for transmitting the detection signal. As shown in the figure, the transmission oscillation unit 1003 can execute the synchronization signal transmission process before executing the detection signal transmission process, and then repeatedly execute the synchronization signal transmission process. The transmission oscillation unit 1003 executes the detection signal transmission process during the plurality of synchronization signal transmission processes. The transmission oscillation unit 1003 may execute only the first synchronization signal transmission processing, and may not execute the subsequent synchronization signal transmission processing.
 同期信号の例としては、パルス信号(無変調)、変調信号、所定の系列の信号(PN系列、ユニークワード等)等が例示される。変調信号は、周波数や振幅を変調した信号である。 Examples of the synchronous signal include a pulse signal (unmodulated), a modulated signal, a predetermined sequence signal (PN sequence, unique word, etc.) and the like. The modulated signal is a signal whose frequency and amplitude are modulated.
 同期信号と検知信号は、電波の振幅及び周波数の少なくとも一方に基づき互いを識別可能になっている。例えは、同期信号は、検知信号のスイープ領域(検知信号がとる最少周波数から最大周波数までの範囲)の外の周波数の信号であってもよい。その他、図16に示すように、検知信号の周波数が離散的な値をとる場合、同期信号は、検知信号のスイープ領域内であって、検知信号で採用されない周波数の信号であってもよい。その他、同期信号は、検知信号で採用される周波数であってもよい。この場合、振幅や信号のパターン等により、同期信号と検知信号が互いに識別可能になっている。 The synchronization signal and the detection signal can be distinguished from each other based on at least one of the amplitude and frequency of the radio wave. For example, the synchronization signal may be a signal having a frequency outside the sweep region of the detection signal (the range from the minimum frequency to the maximum frequency taken by the detection signal). In addition, as shown in FIG. 16, when the frequency of the detection signal takes a discrete value, the synchronization signal may be a signal having a frequency within the sweep region of the detection signal and not adopted in the detection signal. In addition, the synchronization signal may have a frequency adopted in the detection signal. In this case, the synchronization signal and the detection signal can be distinguished from each other by the amplitude, the signal pattern, and the like.
 なお、複数の送信アンテナ1002のいずれが同期信号を送信してもよい。あらかじめ同期信号を送信する送信アンテナ1002は固定されていてもよいし、変動してもよい。後者の場合、任意の手段で、複数の送信アンテナ1002の中から同期信号を送信する送信アンテナ1002が選択される。 Note that any of the plurality of transmitting antennas 1002 may transmit the synchronization signal. The transmission antenna 1002 that transmits the synchronization signal in advance may be fixed or may vary. In the latter case, the transmitting antenna 1002 that transmits the synchronization signal is selected from the plurality of transmitting antennas 1002 by any means.
 検知信号送信処理では、送信発振部1003は、予め定められたアルゴリズムで周波数を変化させながら検知信号を送信する。そして、送信発振部1003は、基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を送信アンテナ1002から送信させる。 In the detection signal transmission process, the transmission oscillation unit 1003 transmits the detection signal while changing the frequency by a predetermined algorithm. Then, the transmission oscillation unit 1003 transmits a predetermined detection signal from the transmission antenna 1002 at the transmission timing determined based on the reference timing.
 基準タイミングの指定方法は設計的事項であり、あらゆる手法を採用できる。例えば時、分及び秒で示される時刻の秒(0~59の値をとる)の値が「0」になったタイミングを基準タイミングとする手法などが例示されるが、これに限定されない。図16に示す例の場合、時刻tt0や時刻tt1が基準タイミングである。図示するように、この基準タイミングで同期信号が送信される。送信タイミングは、基準タイミングから予め定められた時間が経過したタイミングであり、例えば図16の時刻t1s1や時刻t2s1である。図示するように、この送信タイミングで検知信号の周波数のスイープが所定値から開始される。 The method of specifying the reference timing is a design matter, and any method can be adopted. For example, a method using the timing at which the value of the second (taking a value of 0 to 59) of the time indicated by hours, minutes, and seconds becomes "0" as a reference timing is exemplified, but the present invention is not limited to this. In the case of the example shown in FIG. 16, the time t t0 and the time t t1 are the reference timings. As shown in the figure, the synchronization signal is transmitted at this reference timing. The transmission timing is a timing at which a predetermined time has elapsed from the reference timing, and is, for example, the time t 1s1 or the time t 2s1 in FIG. As shown in the figure, the sweep of the frequency of the detection signal is started from a predetermined value at this transmission timing.
 受信部1101の同期信号検出部1109は、受信アンテナ1102が受信した電波の中から同期信号を検出する。同期信号検出部1109は、電波の周波数、振幅、これらのパターン等に基づき、同期信号を検出する。 The synchronization signal detection unit 1109 of the reception unit 1101 detects the synchronization signal from the radio waves received by the reception antenna 1102. The synchronization signal detection unit 1109 detects the synchronization signal based on the frequency, amplitude, these patterns, and the like of the radio wave.
 受信発振部1103は、同期信号を検出したタイミングに基づき、LO信号を生成する。受信発振部1103は、検知信号の生成と同じアルゴリズムで、周波数が変化するスイープ信号(LO信号)を生成する。 The reception oscillation unit 1103 generates an LO signal based on the timing at which the synchronization signal is detected. The reception oscillation unit 1103 generates a sweep signal (LO signal) whose frequency changes by the same algorithm as the generation of the detection signal.
 受信発振部1103は、同期信号を検出したタイミングから予め定められた時間が経過したタイミングからLO信号の生成を開始する。すなわち、同期信号を検出したタイミングから予め定められた時間が経過したタイミングでLO信号の周波数のスイープが所定値から開始される。なお、本実施の形態1で説明したように、送信部1001が同期信号を搬送する電波を送信した基準タイミングと、受信部1101が同期信号を検出したタイミングとは同じ時刻とみなすことができる。 The reception oscillation unit 1103 starts generating the LO signal from the timing when a predetermined time has elapsed from the timing when the synchronization signal is detected. That is, the sweep of the frequency of the LO signal is started from a predetermined value at the timing when a predetermined time has elapsed from the timing when the synchronization signal is detected. As described in the first embodiment, the reference timing at which the transmitting unit 1001 transmits the radio wave carrying the synchronization signal and the timing at which the receiving unit 1101 detects the synchronization signal can be regarded as the same time.
 なお、受信部1101は、同期信号の検出に成功した場合、その旨を示す肯定信号を送信部1001に送信する肯定応答手段をさらに有してもよい。この場合、受信部1101は送信アンテナを備え、送信部1001は受信アンテナを備える。 If the synchronization signal is successfully detected, the receiving unit 1101 may further have an acknowledgment means for transmitting an acknowledgment signal to that effect to the transmitting unit 1001. In this case, the receiving unit 1101 includes a transmitting antenna, and the transmitting unit 1001 includes a receiving antenna.
 次に、図17のシーケンス図を用いて、物体検知装置1000の最初の同期処理の流れの一例を説明する。 Next, an example of the flow of the first synchronization processing of the object detection device 1000 will be described with reference to the sequence diagram of FIG.
 まず、送信部1001は、起動直後、又は、ユーザからの初期化指示入力に応じて初期化処理を実行する。初期化処理では、送信部1001は、任意の手段で基準タイミングを設定する(S10)。基準タイミングは、例えば時、分及び秒で示される時刻の秒(0~59の値をとる)の値が「0」になったタイミングなどが例示されるが、これに限定されない。 First, the transmission unit 1001 executes the initialization process immediately after the startup or in response to the initialization instruction input from the user. In the initialization process, the transmission unit 1001 sets the reference timing by any means (S10). The reference timing is exemplified, but is not limited to, for example, the timing when the value of the second (taking a value of 0 to 59) of the time indicated by the hour, minute, and second becomes "0".
 初期化処理の後、送信部1001は、初回同期処理を行う。初回同期処理は、初期化処理後に初めて行う同期処理である。 After the initialization process, the transmission unit 1001 performs the initial synchronization process. The initial synchronization process is the first synchronization process performed after the initialization process.
 初回同期処理において、送信部1001は、初期化処理で設定された基準タイミングが到来すると、同期信号を生成し、同期信号を搬送する電波を送信する(S11、S12)。 In the initial synchronization process, when the reference timing set in the initialization process arrives, the transmission unit 1001 generates a synchronization signal and transmits radio waves that carry the synchronization signal (S11, S12).
 受信部1101は、当該電波を受信すると、この電波を復調し、同期信号を検出する(S13)。同期信号の検出に成功すると、受信部1101は、同期信号を検出したタイミングを基準タイミングとして抽出し、設定する(S14)。そして、受信部1101は、肯定信号(ACK)を生成し(S15)、肯定信号を搬送する電波を送信部1001に向けて送信する(S16)。 When the receiving unit 1101 receives the radio wave, it demodulates the radio wave and detects the synchronization signal (S13). When the synchronization signal is successfully detected, the receiving unit 1101 extracts and sets the timing at which the synchronization signal is detected as the reference timing (S14). Then, the receiving unit 1101 generates an affirmative signal (ACK) (S15), and transmits the radio wave carrying the affirmative signal toward the transmitting unit 1001 (S16).
 送信部1001は、当該電波を受信すると、この電波を復調し、肯定信号を検出する。そして、肯定信号の受信に応じて、初回同期処理が完了したと判定する(S17)。 When the transmission unit 1001 receives the radio wave, it demodulates the radio wave and detects an affirmative signal. Then, it is determined that the initial synchronization process is completed in response to the reception of the affirmative signal (S17).
 図18のシーケンス図に、物体検知装置1000の同期処理の流れの他の一例を説明する。当該同期処理は、肯定信号の生成及び送信がない点で、図17のシーケンス図で示す例と異なる。 In the sequence diagram of FIG. 18, another example of the flow of the synchronization processing of the object detection device 1000 will be described. The synchronization process differs from the example shown in the sequence diagram of FIG. 17 in that no affirmative signal is generated and transmitted.
 次に、図19のシーケンス図を用いて、初回同期処理後に行われる画像生成処理の流れの一例を説明する。 Next, an example of the flow of the image generation processing performed after the initial synchronization processing will be described with reference to the sequence diagram of FIG.
 送信部1001は、初期化処理で設定された基準タイミングに基づき検知信号を生成し、当該検知信号を搬送する電波を送信する(S30、S32)。具体的には、送信部1001は、予め定められたアルゴリズムで周波数が変化するスイープ信号(検知信号)を生成し、当該検知信号を搬送する電波を送信する。そして、送信部1001は、基準タイミングから予め定められた時間が経過したタイミングにおいて、所定の検知信号を生成する。所定の検知信号は、所定の周波数の検知信号であり、例えば予め定められたアルゴリズムで周波数が変化するスイープ信号(検知信号)の中の最初に設定される周波数の信号である。 The transmission unit 1001 generates a detection signal based on the reference timing set in the initialization process, and transmits a radio wave carrying the detection signal (S30, S32). Specifically, the transmission unit 1001 generates a sweep signal (detection signal) whose frequency changes by a predetermined algorithm, and transmits a radio wave carrying the detection signal. Then, the transmission unit 1001 generates a predetermined detection signal at a timing when a predetermined time has elapsed from the reference timing. The predetermined detection signal is a detection signal having a predetermined frequency, and is, for example, a signal having a frequency initially set in a sweep signal (detection signal) whose frequency changes by a predetermined algorithm.
 受信部1101は、初回同期処理で抽出した基準タイミングに基づきLO信号を生成する(S31)。具体的には、受信部1101は、予め定められたアルゴリズムで周波数が変化するスイープ信号(LO信号)を生成する。検知信号を生成するアルゴリズムと、LO信号を生成するアルゴリズムは同じである。そして、受信部1101は、基準タイミングから予め定められた時間が経過したタイミングにおいて、所定のLO信号を生成する。所定のLO信号は、所定の周波数のLO信号であり、例えば予め定められたアルゴリズムで周波数が変化するスイープ信号(LO信号)の中の最初に設定される周波数の信号である。 The receiving unit 1101 generates an LO signal based on the reference timing extracted in the initial synchronization process (S31). Specifically, the receiving unit 1101 generates a sweep signal (LO signal) whose frequency changes by a predetermined algorithm. The algorithm for generating the detection signal and the algorithm for generating the LO signal are the same. Then, the receiving unit 1101 generates a predetermined LO signal at the timing when a predetermined time has elapsed from the reference timing. The predetermined LO signal is an LO signal having a predetermined frequency, and is, for example, a signal having a frequency initially set in a sweep signal (LO signal) whose frequency changes by a predetermined algorithm.
 そして、受信部1101は、送信部1001から送信された電波を受信すると、この電波を復調し、検知信号を検出する(S33)。そして、受信部1101は、検知信号とLO信号に基づきIF信号を生成し(S34)、IF信号に基づき画像を生成する(S35)。これらの処理の詳細は、本実施の形態1及び2で説明した通りである。 Then, when the receiving unit 1101 receives the radio wave transmitted from the transmitting unit 1001, the receiving unit 1101 demodulates the radio wave and detects the detection signal (S33). Then, the receiving unit 1101 generates an IF signal based on the detection signal and the LO signal (S34), and generates an image based on the IF signal (S35). The details of these processes are as described in the first and second embodiments.
 画像生成処理では、送信部1001及び受信部1101は、当該処理を繰り返す。 In the image generation process, the transmission unit 1001 and the reception unit 1101 repeat the process.
 次に、図20及び図21のシーケンス図に、物体検知装置1000の2回目以降の同期処理の流れの一例を説明する。これは、物体検知装置1000が同期処理を繰り返し行う場合の処理である。 Next, in the sequence diagrams of FIGS. 20 and 21, an example of the flow of the second and subsequent synchronization processes of the object detection device 1000 will be described. This is a process when the object detection device 1000 repeatedly performs the synchronization process.
 物体検知装置1000は、2回目以降の同期処理を実行するタイミングが到来すると、図示する同期保持処理を行う。2回目以降の同期処理を実行するタイミングは、前回の同期処理を実行したタイミングから所定時間経過したタイミングであってもよいし、その他であってもよい。 When the timing for executing the second and subsequent synchronization processes arrives, the object detection device 1000 performs the synchronization holding process shown in the figure. The timing for executing the second and subsequent synchronization processes may be the timing at which a predetermined time has elapsed from the timing at which the previous synchronization process was executed, or may be other.
 同期保持処理の内容は、図17及び図18のシーケンス図を用いて説明した初回同期処理と同様である。 The content of the synchronization retention process is the same as the initial synchronization process described using the sequence diagrams of FIGS. 17 and 18.
 本実施の形態3の物体検知装置1000のその他の構成は、本実施の形態1及び2と同様である。 Other configurations of the object detection device 1000 of the third embodiment are the same as those of the first and second embodiments.
 本実施の形態3の物体検知装置1000によれば、本実施の形態1及び2と同様の作用効果が実現される。 According to the object detection device 1000 of the third embodiment, the same effects as those of the first and second embodiments are realized.
(本実施の形態4)
 本実施の形態4では、本実施の形態3で説明した同期処理が一部変更される。具体的には、本実施の形態4では、図22に示すように、送信部1001は、各回の同期処理(各回の同期信号送信処理)において、所定の時間間隔で、複数の同期信号を順次送信することができる。例えば、送信部1001は、予め定められた数の同期信号を順次送信してもよいし、受信部1101から肯定信号を受信するまで繰り返し同期信号を送信してもよい。
(Implementation 4)
In the fourth embodiment, the synchronization process described in the third embodiment is partially modified. Specifically, in the fourth embodiment, as shown in FIG. 22, the transmission unit 1001 sequentially transmits a plurality of synchronization signals at predetermined time intervals in each synchronization processing (synchronization signal transmission processing each time). Can be sent. For example, the transmission unit 1001 may sequentially transmit a predetermined number of synchronization signals, or may repeatedly transmit synchronization signals until a positive signal is received from the reception unit 1101.
 このように構成することで、各回の同期処理において受信部1101が同期信号を検出し、同期処理が成功する確率を高めることができる。 With this configuration, the receiving unit 1101 can detect the synchronization signal in each synchronization process and increase the probability that the synchronization process will succeed.
 しかし、このように構成した場合、複数の同期信号の送信タイミングは互いに異なるため、受信部1101が複数の同期信号の中のどの同期信号を検出したかを特定し、その結果に基づき基準タイミングを調整する処理が必要になる。そこで、本実施の形態4の物体検知装置100は、以下の処理1又は2を実行する機能を有する。 However, in this configuration, since the transmission timings of the plurality of synchronization signals are different from each other, it is specified which synchronization signal among the plurality of synchronization signals is detected by the receiving unit 1101, and the reference timing is determined based on the result. Adjustment processing is required. Therefore, the object detection device 100 of the fourth embodiment has a function of executing the following processes 1 or 2.
「処理例1」
 受信部1101は、複数の同期信号の中のいずれかの検出に成功した場合、その同期信号を検出したタイミングを基準タイミングとして設定する。また、受信部1101は、検出に成功したタイミングでその旨を示す肯定信号を搬送する電波を送信部1001に送信する。
"Processing example 1"
When any one of the plurality of synchronization signals is successfully detected, the receiving unit 1101 sets the timing at which the synchronization signal is detected as the reference timing. Further, the receiving unit 1101 transmits a radio wave carrying a positive signal indicating that to that effect to the transmitting unit 1001 at the timing when the detection is successful.
 送信部1001は、肯定信号の受信タイミングに基づき、設定されている基準タイミングを修正する。 The transmission unit 1001 corrects the set reference timing based on the reception timing of the affirmative signal.
 まず、送信部1001は、肯定信号を受信すると、肯定信号の受信タイミングに基づき複数の同期信号の中のいずれが検出されたか特定する。例えば、送信部1001は、肯定信号の受信タイミングの直前に送信した同期信号が受信部1101により検出されたと判断してもよい。この場合、例えば、複数の同期信号の送信間隔は、同期信号を送信後、その同期信号の検出に応じた肯定信号の受信までに要する時間よりも長く設定される。 First, when the transmission unit 1001 receives the affirmative signal, it specifies which of the plurality of synchronization signals is detected based on the reception timing of the affirmative signal. For example, the transmission unit 1001 may determine that the synchronization signal transmitted immediately before the reception timing of the affirmative signal has been detected by the reception unit 1101. In this case, for example, the transmission interval of the plurality of synchronization signals is set to be longer than the time required from the transmission of the synchronization signal to the reception of the affirmative signal corresponding to the detection of the synchronization signal.
 そして、送信部1001は、特定した同期信号を送信したタイミングに基づき、設定されている基準タイミングを修正する。当初は、最初の同期信号を送信するタイミングが、基準タイミングとなっている。その後に送信される同期信号は、基準タイミングから所定時間経過後に送信されている。 Then, the transmission unit 1001 corrects the set reference timing based on the timing at which the specified synchronization signal is transmitted. Initially, the timing at which the first synchronization signal is transmitted is the reference timing. The synchronization signal transmitted thereafter is transmitted after a predetermined time has elapsed from the reference timing.
 最初の同期信号が受信部1101により検出され、それに応じた肯定信号を受信した場合、基準タイミングは変更されずそのままとなる。しかし、2番目以降の同期信号が受信部1101により検出され、それに応じた肯定信号を受信した場合、送信部1001は基準タイミングを設定し直す。例えば、最初の同期信号を送信したタイミングと、検出された同期信号を送信したタイミングの時間差がT秒である場合、送信部1001は設定されている基準タイミングのT秒後を、新たな基準タイミングとして設定する。 When the first synchronization signal is detected by the receiving unit 1101 and the corresponding affirmative signal is received, the reference timing is not changed and remains as it is. However, when the second and subsequent synchronization signals are detected by the receiving unit 1101 and the corresponding affirmative signal is received, the transmitting unit 1001 resets the reference timing. For example, when the time difference between the timing at which the first synchronization signal is transmitted and the timing at which the detected synchronization signal is transmitted is T seconds, the transmission unit 1001 sets a new reference timing after T seconds of the set reference timing. Set as.
 受信部1101は、同期信号を検出したタイミングを基準タイミングとして設定している。上述のような送信部1001による設定されている基準タイミングの修正により、受信部1101が設定した基準タイミングと、送信部1001で設定されている基準タイミングとのズレが解消され、これらのタイミングが互いに一致する。 The receiving unit 1101 sets the timing at which the synchronization signal is detected as the reference timing. By modifying the reference timing set by the transmission unit 1001 as described above, the deviation between the reference timing set by the reception unit 1101 and the reference timing set by the transmission unit 1001 is eliminated, and these timings are mutually aligned. Match.
「処理例2」
 各回の同期信号送信処理で送信される複数の同期信号は、電波の振幅及び周波数の少なくとも一方に基づき互いを識別可能になっている。例えば、何番目に送信された同期信号であるかが識別可能になっていてもよい。
"Processing example 2"
The plurality of synchronization signals transmitted in each synchronization signal transmission process can be distinguished from each other based on at least one of the amplitude and frequency of the radio wave. For example, it may be possible to identify the number of the transmitted synchronization signal.
 受信部1101は、複数の同期信号の中のいずれかの検出に成功した場合、電波の振幅及び周波数の少なくとも一方に基づき複数の同期信号の中のいずれを検出したかを特定する。そして、受信部1101は、同期信号を受信したタイミングから所定時間s経過したタイミングを基準タイミングとして設定し、当該基準タイミングに基づきLO信号を生成する。 When the receiving unit 1101 succeeds in detecting any one of the plurality of synchronized signals, the receiving unit 1101 specifies which of the plurality of synchronized signals is detected based on at least one of the amplitude and frequency of the radio wave. Then, the receiving unit 1101 sets the timing at which a predetermined time s has elapsed from the timing at which the synchronization signal is received as the reference timing, and generates the LO signal based on the reference timing.
 所定時間sは、最初の同期信号を送信したタイミングと、検出された同期信号を送信したタイミングとの時間差であり、どの同期信号を検出したかに応じて変動する。受信部1101は、予め、各回の同期信号送信処理で送信される複数の同期信号各々と、所定時間sとの対応関係を示す情報を記憶している。そして、受信部1101は、当該情報を参照して、検出した同期信号に対応する所定時間sを特定する。 The predetermined time s is the time difference between the timing at which the first synchronization signal is transmitted and the timing at which the detected synchronization signal is transmitted, and varies depending on which synchronization signal is detected. The receiving unit 1101 stores in advance information indicating the correspondence relationship between each of the plurality of synchronization signals transmitted in each synchronization signal transmission process and the predetermined time s. Then, the receiving unit 1101 refers to the information and specifies a predetermined time s corresponding to the detected synchronization signal.
 本実施の形態4の物体検知装置1000のその他の構成は、本実施の形態1乃至3と同様である。 Other configurations of the object detection device 1000 of the fourth embodiment are the same as those of the first to third embodiments.
 本実施の形態4の物体検知装置1000によれば、本実施の形態1乃至3と同様の作用効果が実現される。また、各回の同期処理において複数の同期信号を順次送信することで、受信部1101が同期信号を検出し、同期処理が成功する確率を高めることができる。 According to the object detection device 1000 of the fourth embodiment, the same effects as those of the first to third embodiments are realized. Further, by sequentially transmitting a plurality of synchronization signals in each synchronization process, the receiving unit 1101 can detect the synchronization signal and increase the probability that the synchronization process will succeed.
 しかし、このように構成した場合、複数の同期信号の送信タイミングは互いに異なるため、受信部1101が複数の同期信号の中のどの同期信号を検出したかを特定し、その結果に基づき基準タイミングを調整する処理が必要になる。当該処理を行わなければ、生成される画像が劣化する。本実施の形態4の物体検知装置1000は、上記処理例1又は2を実行することで、当該画像劣化の問題を軽減することができる。 However, in this configuration, since the transmission timings of the plurality of synchronization signals are different from each other, it is specified which synchronization signal among the plurality of synchronization signals is detected by the receiving unit 1101, and the reference timing is determined based on the result. Adjustment processing is required. If this process is not performed, the generated image will be deteriorated. The object detection device 1000 of the fourth embodiment can alleviate the problem of image deterioration by executing the above processing example 1 or 2.
(本実施の形態5)
 本実施の形態5の受信部1101は、ある回の同期処理において同期信号の検出に失敗した場合、それ以降に受信した電波の中から検出された検知信号を自装置内の記憶手段に記憶しておく。そして、その後の回の同期処理において同期信号の検出に成功した場合、同期信号を受信したタイミングに基づき生成されたLO信号と、それ以前に記憶された検知信号とに基づきIF信号を生成し、当該IF信号に基づき画像を生成する。
(Implementation 5)
When the reception unit 1101 of the fifth embodiment fails to detect the synchronization signal in a certain synchronization process, the reception unit 1101 stores the detection signal detected from the radio waves received thereafter in the storage means in the own device. Keep it. Then, when the synchronization signal is successfully detected in the subsequent synchronization processing, an IF signal is generated based on the LO signal generated based on the timing at which the synchronization signal is received and the detection signal stored before that. An image is generated based on the IF signal.
 ここで、同期信号の検出に失敗したことを検出する処理の例について説明する。本実施の形態3で説明したように、物体検知装置1000は、検知信号を送受信して画像を生成する処理を実行する前に、初回同期処理を行う。そこで、受信部1101は、同期信号の検出がないまま検知信号の検出が起きた場合、初回同期処理における同期信号の検出に失敗したと判断することができる。そして、受信部1101は、その後、同期処理に成功するまで、受信した検知信号を記憶手段に記憶し続ける。 Here, an example of a process for detecting that the detection of the synchronization signal has failed will be described. As described in the third embodiment, the object detection device 1000 performs the initial synchronization process before executing the process of transmitting and receiving the detection signal to generate an image. Therefore, if the detection signal is detected without the synchronization signal being detected, the receiving unit 1101 can determine that the detection of the synchronization signal in the initial synchronization processing has failed. Then, the receiving unit 1101 continues to store the received detection signal in the storage means until the synchronization processing is successful.
 また、受信部1101は、2回目以降の同期処理が実行されるタイミングを示す情報を保持しておいてもよい。2回目以降の同期処理が実行されるタイミングは、例えば前回の同期処理が実行されたタイミングからの経過時間で示される。受信部1101は、当該情報と、前回行われた同期処理のタイミングとに基づき、次回の同期処理のタイミングを特定する。そして、受信部1101は、次回の同期処理のタイミングから所定時間経過しても同期信号の検出が起きない場合、同期信号の検出に失敗したと判断することができる。 Further, the receiving unit 1101 may hold information indicating the timing at which the second and subsequent synchronization processes are executed. The timing at which the second and subsequent synchronization processes are executed is indicated by, for example, the elapsed time from the timing at which the previous synchronization process was executed. The receiving unit 1101 specifies the timing of the next synchronization processing based on the information and the timing of the synchronization processing performed last time. Then, if the synchronization signal is not detected even after a predetermined time has elapsed from the timing of the next synchronization processing, the receiving unit 1101 can determine that the synchronization signal detection has failed.
 本実施の形態5の物体検知装置1000のその他の構成は、本実施の形態1乃至4と同様である。 Other configurations of the object detection device 1000 of the fifth embodiment are the same as those of the first to fourth embodiments.
 本実施の形態5の物体検知装置1000によれば、本実施の形態1乃至4と同様の作用効果が実現される。また、本実施の形態5の物体検知装置1000によれば、ある回の同期処理に失敗した場合、その後に受信した検知信号を記憶しておき、その後に成功した同期処理で抽出された基準タイミングに基づき記憶している検知信号を処理して画像を生成することができる。このため、複数回の同期処理のいずれかで成功すれば、それ以前及びそれ以降のいずれで送受信した検知信号も適切に処理し、劣化の少ない画像を生成することができる。 According to the object detection device 1000 of the fifth embodiment, the same effects as those of the first to fourth embodiments are realized. Further, according to the object detection device 1000 of the fifth embodiment, when the synchronization processing of a certain time fails, the detection signal received after that is stored, and the reference timing extracted by the subsequent successful synchronization processing is stored. It is possible to generate an image by processing the detection signal stored based on the above. Therefore, if any of the plurality of synchronization processes is successful, the detection signals transmitted and received before and after that can be appropriately processed, and an image with less deterioration can be generated.
(本実施の形態6)
 本実施の形態6の受信部1101は、複数の受信アンテナ1102で電波を受信する。そして、受信部1101は、複数の受信アンテナ1102各々で受信した電波の中から同期信号が検出された場合、所定条件を満たす1つの同期信号を選択し、選択した同期信号を受信したタイミングに基づきLO信号を生成する。所定条件は、例えば「一番早く受信された同期信号であること」である。
(Implementation 6)
The receiving unit 1101 of the sixth embodiment receives radio waves by a plurality of receiving antennas 1102. Then, when the synchronization signal is detected from the radio waves received by each of the plurality of receiving antennas 1101, the receiving unit 1101 selects one synchronization signal satisfying a predetermined condition, and based on the timing at which the selected synchronization signal is received. Generate an LO signal. The predetermined condition is, for example, "the earliest received synchronization signal".
 本実施の形態6の物体検知装置1000のその他の構成は、本実施の形態1乃至5と同様である。 Other configurations of the object detection device 1000 of the sixth embodiment are the same as those of the first to fifth embodiments.
 本実施の形態5の物体検知装置1000によれば、本実施の形態1乃至5と同様の作用効果が実現される。また、本実施の形態6の物体検知装置1000によれば、複数の受信アンテナ1102各々で受信した電波の中から検出された同期信号の中から、適切な1つを選択し、LO信号の生成に利用することができる。所定条件は、例えば「一番早く受信された同期信号であること」である。この場合、他の物体で反射等することなく直接送信部1001から受信部1101に届いた同期信号に基づき、同期処理を行うことができる。結果、同期処理の精度が向上する。 According to the object detection device 1000 of the fifth embodiment, the same effects as those of the first to fifth embodiments are realized. Further, according to the object detection device 1000 of the sixth embodiment, an appropriate one is selected from the synchronization signals detected from the radio waves received by each of the plurality of receiving antennas 1102, and the LO signal is generated. Can be used for. The predetermined condition is, for example, "the earliest received synchronization signal". In this case, the synchronization process can be performed based on the synchronization signal directly delivered from the transmission unit 1001 to the reception unit 1101 without being reflected by another object. As a result, the accuracy of synchronization processing is improved.
 以上、本発明の好適な実施形態の構成を説明した。しかし、前述の各特許文献等に開示されている内容は、本発明に引用をもって繰り込むことも可能とする。本発明の全開示(特許請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態の変更・調整が可能である。また、本発明の特許請求の範囲の枠内において種々の開示要素の多様な組み合わせあるいは選択も可能である。すなわち、本発明は、特許請求の範囲を含む全開示、技術的思想にしたがって、当業者であればなし得ることが可能な各種変形、修正を含むことは勿論である。 The configuration of a preferred embodiment of the present invention has been described above. However, the contents disclosed in the above-mentioned patent documents and the like can be incorporated into the present invention by citation. Within the framework of the entire disclosure (including the scope of claims) of the present invention, it is possible to change or adjust the embodiment based on the basic technical idea. In addition, various combinations or selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, it goes without saying that the present invention includes various modifications and modifications that can be made by those skilled in the art in accordance with the entire disclosure including the scope of claims and the technical idea.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限定されない。
1. 電波によって物体を検知するための物体検知装置であって、
 送信手段と、受信手段とを備え、
 前記送信手段は、
  電波を送信する送信アンテナと、
  予め設定された基準タイミングで同期信号を搬送する電波を前記送信アンテナから送信させる同期信号送信処理、及び、前記基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を搬送する電波を前記送信アンテナから送信させる検知信号送信処理を実行する送信発振手段と、
を有し、
 前記受信手段は、
  電波を受信する受信アンテナと、
  前記受信アンテナが受信した電波の中から前記同期信号を検出する同期信号検出手段と、
  前記同期信号を検出したタイミングに基づき、受信局所発振信号を生成する受信発振手段と、
  前記受信アンテナが受信した電波の中から検出された前記検知信号と、前記受信局所発振信号とに基づき中間周波数信号を生成する受信機と、
  前記中間周波数信号に基づき画像を生成する演算手段と、
を有する物体検知装置。
2. 前記同期信号及び前記検知信号は、電波の振幅及び周波数の少なくとも一方に基づき互いを識別可能になっている1に記載の物体検知装置。
3. 前記受信手段は、前記同期信号の検出に成功した場合、その旨を示す肯定信号を前記送信手段に送信する肯定応答手段をさらに有する1又は2に記載の物体検知装置。
4. 前記送信発振手段は、前記同期信号送信処理を繰り返し行う1から3のいずれかに記載の物体検知装置。
5. 前記受信手段は、
  前記同期信号の検出に失敗した場合、それ以降に前記受信アンテナが受信した電波の中から検出された前記検知信号を記憶しておき、
  その後に前記同期信号の検出に成功した場合、前記同期信号を受信したタイミングに基づき生成された前記受信局所発振信号と、前記記憶されている前記検知信号とに基づき前記中間周波数信号を生成し、前記中間周波数信号に基づき画像を生成する4に記載の物体検知装置。
6. 前記送信手段は、各回の前記同期信号送信処理で複数の前記同期信号を順次送信し、
 前記受信手段は、複数の前記同期信号の中のいずれかの検出に成功した場合、検出に成功したタイミングでその旨を示す肯定信号を前記送信手段に送信し、
 前記送信手段は、前記肯定信号の受信タイミングに基づき、設定されている前記基準タイミングを修正する1から5のいずれかに記載の物体検知装置。
7. 前記送信手段は、各回の前記同期信号送信処理で複数の前記同期信号を順次送信し、電波で搬送される複数の同期信号は、電波の振幅及び周波数の少なくとも一方に基づき互いを識別可能になっており、
 前記受信手段は、複数の前記同期信号の中のいずれかの検出に成功した場合、電波の振幅及び周波数の少なくとも一方に基づき複数の前記同期信号の中のいずれを検出したかを特定し、前記同期信号を受信したタイミングから特定した前記同期信号に対応する時間が経過したタイミングに基づき、前記受信局所発振信号を生成する1から5のいずれかに記載の物体検知装置。
8. 前記受信手段は、
  複数の前記受信アンテナで電波を受信し、
  複数の前記受信アンテナ各々で受信した電波の中から前記同期信号が検出された場合、所定条件を満たす1つの前記同期信号を選択し、選択した前記同期信号を受信したタイミングに基づき、前記受信局所発振信号を生成する1から7のいずれかに記載の物体検知装置。
9. 前記所定条件は、一番早く受信された前記同期信号であること、である8に記載の物体検知装置。
10. 送信手段と受信手段とを備え、電波によって物体を検知するための物体検知装置が実行する物体検知方法であって、
 前記送信手段は、
  予め設定された基準タイミングで同期信号を搬送する電波を送信アンテナから送信させる同期信号送信処理、及び、前記基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を搬送する電波を前記送信アンテナから送信させる検知信号送信処理を実行し、
 前記受信手段は、
  受信アンテナが受信した電波の中から前記同期信号を検出し、
  前記同期信号を検出したタイミングに基づき、受信局所発振信号を生成し、
  前記受信アンテナが受信した電波の中から検出された前記検知信号と、前記受信局所発振信号とに基づき中間周波数信号を生成し、
  前記中間周波数信号に基づき画像を生成する物体検知方法。
Some or all of the above embodiments may also be described, but not limited to:
1. 1. It is an object detection device for detecting objects by radio waves.
It is equipped with a transmitting means and a receiving means.
The transmission means is
A transmitting antenna that transmits radio waves, and
The transmission antenna transmits a radio wave that carries a predetermined detection signal at a synchronization signal transmission process that transmits a radio wave that carries a synchronization signal at a preset reference timing from the transmission antenna and a transmission timing that is determined based on the reference timing. Transmission oscillation means that executes detection signal transmission processing to be transmitted from
Have,
The receiving means
The receiving antenna that receives radio waves and
A synchronization signal detection means for detecting the synchronization signal from the radio waves received by the reception antenna, and
A receive oscillation means that generates a receive local oscillation signal based on the timing at which the synchronization signal is detected, and a receive oscillation means.
A receiver that generates an intermediate frequency signal based on the detected signal detected from the radio waves received by the receiving antenna and the received local oscillation signal.
An arithmetic means for generating an image based on the intermediate frequency signal, and
Object detection device with.
2. 2. The object detection device according to 1, wherein the synchronization signal and the detection signal can be distinguished from each other based on at least one of the amplitude and frequency of radio waves.
3. 3. The object detection device according to 1 or 2, wherein the receiving means further includes an acknowledgment means for transmitting an acknowledgment signal indicating the synchronization signal to the transmitting means when the synchronization signal is successfully detected.
4. The object detection device according to any one of 1 to 3, wherein the transmission oscillation means repeatedly performs the synchronization signal transmission process.
5. The receiving means
If the detection of the synchronization signal fails, the detection signal detected from the radio waves received by the receiving antenna after that is stored.
After that, when the synchronization signal is successfully detected, the intermediate frequency signal is generated based on the received local oscillation signal generated based on the timing at which the synchronization signal is received and the stored detection signal. 4. The object detection device according to 4, which generates an image based on the intermediate frequency signal.
6. The transmitting means sequentially transmits a plurality of the synchronized signals in each of the synchronized signal transmission processes.
When the receiving means succeeds in detecting any one of the plurality of synchronization signals, the receiving means transmits an affirmative signal indicating that fact to the transmitting means at the timing when the detection is successful.
The object detection device according to any one of 1 to 5, wherein the transmission means modifies the reference timing set based on the reception timing of the affirmative signal.
7. The transmitting means sequentially transmits a plurality of the synchronized signals in each of the synchronized signal transmission processes, and the plurality of synchronized signals carried by radio waves can be distinguished from each other based on at least one of the amplitude and frequency of the radio waves. And
When the receiving means succeeds in detecting any one of the plurality of synchronization signals, the receiving means identifies which of the plurality of synchronization signals is detected based on at least one of the amplitude and frequency of the radio wave, and the above-mentioned. The object detection device according to any one of 1 to 5, which generates the received local oscillation signal based on the timing at which the time corresponding to the synchronization signal specified from the timing at which the synchronization signal is received has elapsed.
8. The receiving means
Radio waves are received by the multiple receiving antennas,
When the synchronization signal is detected from the radio waves received by each of the plurality of receiving antennas, one synchronization signal satisfying a predetermined condition is selected, and the reception local area is based on the timing at which the selected synchronization signal is received. The object detection device according to any one of 1 to 7, which generates an oscillation signal.
9. 8. The object detection device according to 8, wherein the predetermined condition is the synchronization signal received earliest.
10. It is an object detection method executed by an object detection device that has a transmission means and a reception means and is used to detect an object by radio waves.
The transmission means is
Synchronous signal transmission processing to transmit radio waves that carry a synchronization signal from a transmission antenna at a preset reference timing, and radio waves that carry a predetermined detection signal from the transmission antenna at a transmission timing determined based on the reference timing. Executes the detection signal transmission process to be transmitted,
The receiving means
The synchronization signal is detected from the radio waves received by the receiving antenna, and the synchronization signal is detected.
A received local oscillation signal is generated based on the timing at which the synchronization signal is detected.
An intermediate frequency signal is generated based on the detection signal detected from the radio waves received by the reception antenna and the reception local oscillation signal.
An object detection method that generates an image based on the intermediate frequency signal.
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 1000 物体検知装置
 1001 送信部
 1002 送信アンテナ
 1003 送信発振部
 1004 送信機
 1005、1110 制御部
 1101 受信部
 1102 受信アンテナ
 1103 受信発振部
 1104 受信機
 1105 ミキサ
 1106 データ転送部
 1107 演算部
 1109 同期信号検出部
 1201 対象物
 1301 検知信号の周波数
 1302 LO信号の周波数
110 computer 111 CPU
112 Main memory 113 Storage device 114 Input interface 115 Display controller 116 Data reader / writer 117 Communication interface 118 Input device 119 Display device 120 Recording medium 121 Bus 1000 Object detection device 1001 Transmitter 1002 Transmitter antenna 1003 Transmitter oscillator 1004 Transmitter 1005, 1110 Control unit 1101 Receive unit 1102 Receive antenna 1103 Receive oscillation unit 1104 Receiver 1105 Mixer 1106 Data transfer unit 1107 Calculation unit 1109 Synchronous signal detection unit 1201 Object 1301 Detection signal frequency 1302 LO signal frequency

Claims (10)

  1.  電波によって物体を検知するための物体検知装置であって、
     送信手段と、受信手段とを備え、
     前記送信手段は、
      電波を送信する送信アンテナと、
      予め設定された基準タイミングで同期信号を搬送する電波を前記送信アンテナから送信させる同期信号送信処理、及び、前記基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を搬送する電波を前記送信アンテナから送信させる検知信号送信処理を実行する送信発振手段と、
    を有し、
     前記受信手段は、
      電波を受信する受信アンテナと、
      前記受信アンテナが受信した電波の中から前記同期信号を検出する同期信号検出手段と、
      前記同期信号を検出したタイミングに基づき、受信局所発振信号を生成する受信発振手段と、
      前記受信アンテナが受信した電波の中から検出された前記検知信号と、前記受信局所発振信号とに基づき中間周波数信号を生成する受信機と、
      前記中間周波数信号に基づき画像を生成する演算手段と、
    を有する物体検知装置。
    It is an object detection device for detecting objects by radio waves.
    It is equipped with a transmitting means and a receiving means.
    The transmission means is
    A transmitting antenna that transmits radio waves, and
    The transmission antenna transmits a radio wave that carries a predetermined detection signal at a synchronization signal transmission process that transmits a radio wave that carries a synchronization signal at a preset reference timing from the transmission antenna and a transmission timing that is determined based on the reference timing. Transmission oscillation means that executes detection signal transmission processing to be transmitted from
    Have,
    The receiving means
    The receiving antenna that receives radio waves and
    A synchronization signal detection means for detecting the synchronization signal from the radio waves received by the reception antenna, and
    A receive oscillation means that generates a receive local oscillation signal based on the timing at which the synchronization signal is detected, and a receive oscillation means.
    A receiver that generates an intermediate frequency signal based on the detected signal detected from the radio waves received by the receiving antenna and the received local oscillation signal.
    An arithmetic means for generating an image based on the intermediate frequency signal, and
    Object detection device with.
  2.  前記同期信号及び前記検知信号は、電波の振幅及び周波数の少なくとも一方に基づき互いを識別可能になっている請求項1に記載の物体検知装置。 The object detection device according to claim 1, wherein the synchronization signal and the detection signal can be distinguished from each other based on at least one of the amplitude and frequency of radio waves.
  3.  前記受信手段は、前記同期信号の検出に成功した場合、その旨を示す肯定信号を前記送信手段に送信する肯定応答手段をさらに有する請求項1又は2に記載の物体検知装置。 The object detection device according to claim 1 or 2, wherein the receiving means further includes an acknowledgment means for transmitting an acknowledgment signal indicating the synchronization signal to the transmitting means when the synchronization signal is successfully detected.
  4.  前記送信発振手段は、前記同期信号送信処理を繰り返し行う請求項1から3のいずれか1項に記載の物体検知装置。 The object detection device according to any one of claims 1 to 3, wherein the transmission oscillation means repeatedly performs the synchronization signal transmission process.
  5.  前記受信手段は、
      前記同期信号の検出に失敗した場合、それ以降に前記受信アンテナが受信した電波の中から検出された前記検知信号を記憶しておき、
      その後に前記同期信号の検出に成功した場合、前記同期信号を受信したタイミングに基づき生成された前記受信局所発振信号と、前記記憶されている前記検知信号とに基づき前記中間周波数信号を生成し、前記中間周波数信号に基づき画像を生成する請求項4に記載の物体検知装置。
    The receiving means
    If the detection of the synchronization signal fails, the detection signal detected from the radio waves received by the receiving antenna after that is stored.
    After that, when the synchronization signal is successfully detected, the intermediate frequency signal is generated based on the received local oscillation signal generated based on the timing at which the synchronization signal is received and the stored detection signal. The object detection device according to claim 4, which generates an image based on the intermediate frequency signal.
  6.  前記送信手段は、各回の前記同期信号送信処理で複数の前記同期信号を順次送信し、
     前記受信手段は、複数の前記同期信号の中のいずれかの検出に成功した場合、検出に成功したタイミングでその旨を示す肯定信号を前記送信手段に送信し、
     前記送信手段は、前記肯定信号の受信タイミングに基づき、設定されている前記基準タイミングを修正する請求項1から5のいずれか1項に記載の物体検知装置。
    The transmitting means sequentially transmits a plurality of the synchronized signals in each of the synchronized signal transmission processes.
    When the receiving means succeeds in detecting any one of the plurality of synchronization signals, the receiving means transmits an affirmative signal indicating that fact to the transmitting means at the timing when the detection is successful.
    The object detection device according to any one of claims 1 to 5, wherein the transmission means modifies the reference timing set based on the reception timing of the affirmative signal.
  7.  前記送信手段は、各回の前記同期信号送信処理で複数の前記同期信号を順次送信し、電波で搬送される複数の同期信号は、電波の振幅及び周波数の少なくとも一方に基づき互いを識別可能になっており、
     前記受信手段は、複数の前記同期信号の中のいずれかの検出に成功した場合、電波の振幅及び周波数の少なくとも一方に基づき複数の前記同期信号の中のいずれを検出したかを特定し、前記同期信号を受信したタイミングから特定した前記同期信号に対応する時間が経過したタイミングに基づき、前記受信局所発振信号を生成する請求項1から5のいずれか1項に記載の物体検知装置。
    The transmitting means sequentially transmits a plurality of the synchronized signals in each of the synchronized signal transmission processes, and the plurality of synchronized signals carried by radio waves can be distinguished from each other based on at least one of the amplitude and frequency of the radio waves. And
    When the receiving means succeeds in detecting any one of the plurality of synchronization signals, the receiving means identifies which of the plurality of synchronization signals is detected based on at least one of the amplitude and frequency of the radio wave, and the above-mentioned. The object detection device according to any one of claims 1 to 5, which generates the received local oscillation signal based on the timing at which the time corresponding to the synchronization signal specified from the timing at which the synchronization signal is received has elapsed.
  8.  前記受信手段は、
      複数の前記受信アンテナで電波を受信し、
      複数の前記受信アンテナ各々で受信した電波の中から前記同期信号が検出された場合、所定条件を満たす1つの前記同期信号を選択し、選択した前記同期信号を受信したタイミングに基づき、前記受信局所発振信号を生成する請求項1から7のいずれか1項に記載の物体検知装置。
    The receiving means
    Radio waves are received by the multiple receiving antennas,
    When the synchronization signal is detected from the radio waves received by each of the plurality of receiving antennas, one synchronization signal satisfying a predetermined condition is selected, and the reception local area is based on the timing at which the selected synchronization signal is received. The object detection device according to any one of claims 1 to 7, which generates an oscillation signal.
  9.  前記所定条件は、一番早く受信された前記同期信号であること、である請求項8に記載の物体検知装置。 The object detection device according to claim 8, wherein the predetermined condition is the synchronization signal received earliest.
  10.  送信手段と受信手段とを備え、電波によって物体を検知するための物体検知装置が実行する物体検知方法であって、
     前記送信手段は、
      予め設定された基準タイミングで同期信号を搬送する電波を送信アンテナから送信させる同期信号送信処理、及び、前記基準タイミングに基づき決定した送信タイミングにおいて、所定の検知信号を搬送する電波を前記送信アンテナから送信させる検知信号送信処理を実行し、
     前記受信手段は、
      受信アンテナが受信した電波の中から前記同期信号を検出し、
      前記同期信号を検出したタイミングに基づき、受信局所発振信号を生成し、
      前記受信アンテナが受信した電波の中から検出された前記検知信号と、前記受信局所発振信号とに基づき中間周波数信号を生成し、
      前記中間周波数信号に基づき画像を生成する物体検知方法。
    It is an object detection method executed by an object detection device that has a transmission means and a reception means and is used to detect an object by radio waves.
    The transmission means is
    Synchronous signal transmission processing to transmit radio waves that carry a synchronization signal from a transmission antenna at a preset reference timing, and radio waves that carry a predetermined detection signal from the transmission antenna at a transmission timing determined based on the reference timing. Executes the detection signal transmission process to be transmitted,
    The receiving means
    The synchronization signal is detected from the radio waves received by the receiving antenna, and the synchronization signal is detected.
    A received local oscillation signal is generated based on the timing at which the synchronization signal is detected.
    An intermediate frequency signal is generated based on the detection signal detected from the radio waves received by the reception antenna and the reception local oscillation signal.
    An object detection method that generates an image based on the intermediate frequency signal.
PCT/JP2020/027685 2020-07-16 2020-07-16 Object detecting equipment and object detecting method WO2022014011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022536070A JP7464126B2 (en) 2020-07-16 2020-07-16 Object detection device and object detection method
PCT/JP2020/027685 WO2022014011A1 (en) 2020-07-16 2020-07-16 Object detecting equipment and object detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027685 WO2022014011A1 (en) 2020-07-16 2020-07-16 Object detecting equipment and object detecting method

Publications (1)

Publication Number Publication Date
WO2022014011A1 true WO2022014011A1 (en) 2022-01-20

Family

ID=79554530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027685 WO2022014011A1 (en) 2020-07-16 2020-07-16 Object detecting equipment and object detecting method

Country Status (2)

Country Link
JP (1) JP7464126B2 (en)
WO (1) WO2022014011A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256085A (en) * 1995-03-17 1996-10-01 Sony Corp Spread spectrum communication system, and transmitter and receiver for the same
JP2016138796A (en) * 2015-01-27 2016-08-04 シャープ株式会社 Object detection sensor and indoor object detection system
JP2016213556A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Wireless communication method and wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329912A (en) 2005-05-30 2006-12-07 Hitachi Ltd Object detection sensor
WO2018025421A1 (en) 2016-08-05 2018-02-08 日本電気株式会社 Object detection apparatus and object detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256085A (en) * 1995-03-17 1996-10-01 Sony Corp Spread spectrum communication system, and transmitter and receiver for the same
JP2016138796A (en) * 2015-01-27 2016-08-04 シャープ株式会社 Object detection sensor and indoor object detection system
JP2016213556A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Wireless communication method and wireless communication system

Also Published As

Publication number Publication date
JPWO2022014011A1 (en) 2022-01-20
JP7464126B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
EP3301470A2 (en) Multi-radar system
JP4652961B2 (en) Serial transfer interface
US20180106903A1 (en) Distance measuring device, distance measuring method, and non-transitory computer-readable storage medium
KR20100076914A (en) Memory device, host device, and sampling clock adjusting method
US8369781B2 (en) IC-tag read-write apparatus
JP5868876B2 (en) Radio tag communication apparatus and program
WO2006064647A1 (en) Radio device and radio tag communication device
CN108111828A (en) Projector equipment bearing calibration, device and projector equipment
US20180070198A1 (en) Near field communication device
JP2000137073A (en) Passive ssr
EP4038503A1 (en) Methods for detecting replay attacks in gnss systems and devices thereof
WO2022014011A1 (en) Object detecting equipment and object detecting method
US10338218B2 (en) Method and apparatus for obtaining vibration information and user equipment
JP4341127B2 (en) Information processing device, IC card and reader / writer
JP2014142722A (en) Wireless tag communication device and program
WO2022014010A1 (en) Object detection device, object detection method, and program
JPH1194931A (en) Radar equipment
KR102483557B1 (en) Near field communication device
US20090046817A1 (en) Receiving apparatus and method
US11658415B2 (en) Antenna module supporting of sensing distance and electronic device including the same
US20070005817A1 (en) Computer system having a wireless input device and coordinate processing method
JP2002048529A (en) Method and device for correcting phase shift between transmitter and receiver
JP2004294223A (en) Phase correction system of phased-array radar
CA3145696A1 (en) Image change detection device and image change detection method
US20220163658A1 (en) System and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945317

Country of ref document: EP

Kind code of ref document: A1