WO2022009436A1 - Light source for multimodal nonlinear optical microscope - Google Patents

Light source for multimodal nonlinear optical microscope Download PDF

Info

Publication number
WO2022009436A1
WO2022009436A1 PCT/JP2020/027162 JP2020027162W WO2022009436A1 WO 2022009436 A1 WO2022009436 A1 WO 2022009436A1 JP 2020027162 W JP2020027162 W JP 2020027162W WO 2022009436 A1 WO2022009436 A1 WO 2022009436A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pulse train
light source
light
nonlinear optical
Prior art date
Application number
PCT/JP2020/027162
Other languages
French (fr)
Japanese (ja)
Inventor
茂雄 石橋
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022534883A priority Critical patent/JP7328598B2/en
Priority to PCT/JP2020/027162 priority patent/WO2022009436A1/en
Publication of WO2022009436A1 publication Critical patent/WO2022009436A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the disclosure of the present application detects Second Harmonic Generation (SHG), Third Harmonic Generation (THG), Coherent Anti-Stokes Raman Scattering (CARS), and the like. It relates to a light source used in a nonlinear spectroscopy and a nonlinear optical microscope.
  • SHG Second Harmonic Generation
  • TSG Third Harmonic Generation
  • CARS Coherent Anti-Stokes Raman Scattering
  • Raman scattering spectroscopy is widely used in many academic fields such as chemistry, biology, medicine, pharmacy, agriculture, and physics as a means of obtaining vibration information such as molecules, crystals, and amorphous structures. It is also widely used in medicine and industry.
  • Spontaneous Raman scattering is a phenomenon in which scattered light having a frequency shifted by the frequency of molecular vibration or lattice vibration with respect to incident light is generated. Since this scattered light has a very weak power with respect to the original incident light power, it is necessary to use a light source having a high power as the incident light in order to obtain the scattered light that can be measured by the detector.
  • Non-Patent Document 1 With the development of the pulsed laser used as a light source, the development of CARS measurement is remarkable, and the effect is remarkable especially when acquiring a microscope image.
  • a pulsed laser with high instantaneous power is used as a light source, not only CARS but also SHG and THG can be detected at the same time, so such an experimental configuration is called a multimodal nonlinear optical microscope.
  • Many uses of the multimodal nonlinear optical microscope have been proposed in life science, medicine and pharmacy, and further development is desired (see Non-Patent Document 1).
  • the first region is a region of 1800 cm -1 wave number 500 cm -1 called fingerprint region, second region, carbon hydrogen (C-H) bonds, nitrogen-hydrogen (N-H) bond, or a region of 3100 cm -1 wave number 2800 cm -1 due to oxygen-hydrogen (O-H) bond (see non-Patent Document 1).
  • C-H carbon hydrogen
  • N-H nitrogen-hydrogen
  • O-H oxygen-hydrogen
  • FIG. 1 is a diagram showing a configuration of a light source of a conventional multimodal nonlinear optical microscope described in Non-Patent Document 1.
  • the conventional light source shown in FIG. 1 includes a composite light source 101 and a photonic crystal fiber 104.
  • Compound light source 101, Nd: YVO 4 is constituted by a laser and Yb-doped glass fiber amplifiers, wavelength 1.06 .mu.m, the pulse width is 85 ps, pulse energy 1 .mu.J, repetition frequency to generate picosecond pulses of 0.82MHz ..
  • the generated picosecond pulse is divided into two systems for energy and output from the composite light source 101.
  • One system of bifurcated picosecond pulses is input to the microscope 102.
  • the other system of bifurcated picosecond pulses is input to the photonic crystal fiber 104.
  • the photonic crystal fiber 104 includes wideband light having a wavelength of 1.1 ⁇ m to 1.7 ⁇ m, and generates and outputs supercontinuum light 105 having a pulse energy of 2 ⁇ J.
  • a multimodal nonlinear optical microscope image is obtained by inputting two systems of light of the picosecond pulse train 103 and the supercontinuum light 105 into the microscope 102 at the same timing and irradiating the sample to be measured.
  • CARS is generated by irradiating a sample with two systems of light, a picosecond pulse train 103 and a supercontinuum light 105.
  • SHG and THG are generated by irradiating a sample with a picosecond pulse train 103 having a wavelength of 1.06 ⁇ m, respectively.
  • FIG. 2 is a diagram showing an energy diagram of a molecule of a sample to be measured when measuring CARS spectroscopy.
  • the measurement target is measured by incident pump light 106 (angular frequency ⁇ 1 ), Stokes light 107 (angular frequency ⁇ 2 ), and probe light 108 (angular frequency ⁇ 3).
  • CARS light 109 angular frequency ⁇ CARS ) corresponding to the angular frequency ⁇ of the vibration mode 110 of the molecule is generated.
  • incident pump light 106 angular frequency ⁇ 1
  • Stokes light 107 angular frequency ⁇ 2
  • probe light 108 angular frequency ⁇ 3
  • the total average power of the light of the two systems of the picosecond pulse train 103 and the super-continue light 105 output from the light source shown in FIG. 1 becomes 2.5 W, and these lights are input to the microscope 102 without being attenuated.
  • the sample to be measured was damaged. Therefore, it is necessary to improve the measurement so that the measurement by the multimodal nonlinear optical microscope can be performed with high sensitivity even when the sample is irradiated with the light of low average power.
  • An object of the disclosure of the present application is to improve the conversion efficiency of SHG and THG by reducing the duty ratio, which is the product of the repetition frequency and the pulse width, as a light source of a multimodal nonlinear optical microscope for detecting SHG, THG and CARS, for example. It is an object of the present invention to provide a light source capable of reducing the average power of light input to a nonlinear optical microscope.
  • one embodiment of the present invention is a light source used for spectroscopic measurement or spectroscopic microscopic image acquisition.
  • Spectroscopic measurements or spectroscopic microscopic image acquisition may include signal measurements by coherent traman scattering and signal measurements by at least one or both of the second and third harmonic generations.
  • the light sources are a mode-synchronized laser configured to output a femtosecond pulse train with a center wavelength of ⁇ s , a stationary oscillating solid-state laser configured to output continuous light with a wavelength of ⁇ p, and continuous light and femtoseconds.
  • Difference frequency generation conversion of the center wavelength ⁇ c consisting of picosecond pulses in one of the two systems in which the femtosecond pulse train is divided in terms of power by generating the difference frequency with one of the two systems in which the pulse train is divided in terms of power.
  • It includes a second-order nonlinear optical element that converts to an optical pulse train and outputs it, and a glass fiber amplifier that amplifies the differential frequency generation conversion optical pulse train.
  • This light source is configured to output the amplified differential frequency generation conversion light pulse train and the remaining one of the femtosecond pulse trains.
  • the steady-state oscillating solid-state laser of this light source is configured to output continuous light having a wavelength of ⁇ p that satisfies Equation 3 described later.
  • the configuration of the light source of one embodiment reduces the duty ratio, which is the product of the repetition frequency and the pulse width, resulting in higher conversion efficiency of SHG and THG and reduction of the average power of light input to the nonlinear optical microscope.
  • FIG. 1 is a schematic diagram showing a light source for a conventional multimodal nonlinear optical microscope.
  • FIG. 2 is a diagram showing an energy diagram of a molecule to be measured in coherent anti-Stokes Raman scattering.
  • FIG. 3 is a schematic diagram showing a light source for a multimodal nonlinear optical microscope according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a light source for a multimodal nonlinear optical microscope according to an embodiment of the present invention.
  • the light sources shown in FIG. 3 are a mode-synchronized laser 1 configured to output a femtosecond pulse train 5 having a center wavelength of ⁇ s , a beam splitter 10 that divides the femtosecond pulse train 5 into two systems with respect to power, and an equation described later.
  • a stationary oscillating solid-state laser 4 configured to output continuous light 6 having a wavelength ⁇ p that satisfies 3 and a continuous light 6 are transmitted and reflected by one of the bifurcated femtosecond pulse trains 5.
  • FIG. 3 also shows a multimodal nonlinear optical microscope 2.
  • the picosecond pulse train 3 which is the differential frequency generation conversion optical pulse train 8 amplified by the glass fiber amplifier 9, is configured to output together with the other of the femtosecond pulse train 5 bifurcated by the beam splitter 10.
  • the other of the picosecond pulse train 3 and the bifurcated femtosecond pulse train 5 output from the light source according to the present embodiment is input to the multimodal nonlinear optical microscope 2.
  • the mode-synchronized laser 1 provides one crystal or ceramic selected from Cr 4+ : YAG, Cr forsterite, Ti sapphire, Cr: LiSAF, Cr: LiCAF, Cr: ZnSe, Cr: ZnS, and the like. It can be configured using a mode-synchronized laser as a laser medium. In another embodiment, the mode-synchronized laser 1 uses a mode-synchronized laser using a YAG crystal or ceramics supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, Ho, etc. as a laser medium. It may be configured.
  • the mode-synchronized laser 1 is a mode-synchronized laser using a crystal or ceramics of YVO 4 supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, Ho and the like as a laser medium. It may be configured using.
  • the mode-synchronized laser 1 is a mode-synchronized laser using a glass (bulk and fiber) supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, Ho and the like as a laser medium. May be configured using.
  • a mode-synchronized laser using a semiconductor crystal as a laser medium may be used.
  • the shape of the gain medium constituting the mode-synchronized laser 1 can be a rod, a disk, or a fiber.
  • the beam splitter 10 can be configured with a half mirror or beam splitter cube that splits the power of the input light into two, reflects one and transmits the other.
  • the stationary oscillating solid-state laser 4 uses a glass fiber laser, a bulk-shaped single crystal laser, a bulk-shaped ceramics laser, a waveguide-type single crystal laser, a waveguide-type ceramics laser, or a semiconductor laser. Can be configured.
  • the mirror 11 can be configured using a dichroic mirror that reflects light of a predetermined wavelength and transmits light of another wavelength.
  • the second-order nonlinear optical element 7 can be configured by using periodic polarization inversion lithium niobate, periodic polarization inversion lithium tantalate, or periodic polarization inversion KTP, which satisfies the formula 4 described below.
  • the glass fiber amplifier 9 can be configured by using a glass fiber amplifier to which one rare earth ion selected from Yb, Er, Nd, Tm, Ho and the like is added.
  • Light source of the present embodiment can be used as a light source at the time of observing the region of 3100 cm -1 wave number 2800 cm -1 in CARS spectroscopy of multimodal nonlinear optical microscope.
  • the light source of the present embodiment uses a mode-synchronized laser using a Cr 4+ : YAG laser as a laser medium as the mode-synchronized laser 1, and a periodic polarization inversion lithium niobate (PPLN) as the second-order nonlinear optical element 7. It is configured by using a Yb-added glass fiber amplifier (YbFA) as 9, and using a CW solid-state laser that oscillates at a single wavelength of 0.612 ⁇ m as a constant wave (CW) solid-state laser 4.
  • YbFA Yb-added glass fiber amplifier
  • the Cr 4+ : YAG laser as the mode-synchronized laser 1 oscillates in mode-synchronization and outputs a femtosecond pulse train 5 having a center wavelength of 1.5 ⁇ m, a pulse width of 40 fs, and a repetition frequency of 80 MHz (see Non-Patent Document 3).
  • the femtosecond pulse train 5 is split into two by the beam splitter 10.
  • One of the bifurcated femtosecond pulse trains is reflected by the mirror 11 and input to the PPLN 7 to generate the picosecond pulse train 3 at a different frequency.
  • the other of the bifurcated femtosecond pulse trains 5 is input to the nonlinear optical microscope 2.
  • the bifurcated femtosecond pulse trains 5 each have a pulse energy of about 1 nJ.
  • the CW solid-state laser 4 outputs continuous (CW) light 6 having a single wavelength of 0.612 ⁇ m.
  • the CW light 6 passes through the mirror 11 and is input to the PPLN 7 in order to generate a picosecond pulse train 3 at a different frequency.
  • the CW light 6 is input to the PPLN 7 coaxially from the same direction as the excitation light for generating the difference frequency and the femtosecond pulse train 5 as the signal light.
  • the pulse energy of the conversion light (difference frequency generation conversion light pulse train 8) generated from the CW light 6 and the femtosecond pulse train 5 in the PPLN 7 can be calculated as follows.
  • the abnormal optical refractive index of the PPLN used is calculated by the following equation 1 with the wavelength as ⁇ ( ⁇ m) (see Non-Patent Document 4).
  • Non-Patent Document 5 describes the usable length (Pulse-width-preservation length: L ⁇ ) in the case of SHG. Since the excitation light is the CW light 6 in the differential frequency generation in the PPLN 7 in the present embodiment, the same calculation formula, that is, the formula 2 can be used for L ⁇ .
  • ⁇ c is the pulse width (half-value full width) of the converted light (difference frequency generation converted light pulse train 8)
  • v gt is the group velocity of the converted light
  • v gs is the signal light (femto second pulse train 5).
  • Group velocity Calculated from Equation 1, the wavelength of the signal light (femtosecond pulse train 5) is 1.50 ⁇ m, the wavelength of the converted light (difference frequency generation converted light pulse train 8) is 1.04 ⁇ m, and the group speed of the two lights in PPLN7.
  • L ⁇ is calculated to be 0.012 m for a pulse width of 1 ps of the converted light generated by the difference between the two.
  • ⁇ c , ⁇ s , and ⁇ p are wavelengths of the conversion light (difference frequency generation conversion light pulse train 8), the signal light (femtosecond pulse train 5), and the excitation light (CW light 6), respectively, and are as follows. Equation 3 is satisfied.
  • Efficiency of difference frequency generation eta (% / W) is the converted light (difference frequency generation converted optical pulse train 8), the signal light (femtosecond pulse train 5), and each P c the power of the excitation light (CW light 6), P If s and P p (W) are set, the equation 5 is obtained.
  • Equation 6 the efficiency ⁇ (% / W) of differential frequency generation can be expressed as Equation 6.
  • C LN is a constant with respect to PPLN 7
  • L is the length (m) of PPLN 7
  • a eff is the beam cross-sectional area (femtosecond pulse train 5) of excitation light (CW light 6) and signal light (femtosecond pulse train 5) in PPLN 7. ⁇ m 2 ).
  • ⁇ c 2.3 ⁇ m
  • ⁇ s 1.58 ⁇ m
  • ⁇ p 0.937 ⁇ m
  • L 0.05 m
  • the signal light (femtosecond pulse train 5) input to the PPLN 7 has a pulse width of 40 fs and a pulse energy of 1 nJ as described above.
  • a pulse of 1 ps is generated due to the difference in the group velocity between the signal light (femtosecond pulse train 5) and the conversion light (difference frequency generation conversion light pulse train 8) described above. Therefore, the signal light needs to be calculated as a pulse of 1 ps, and the pulse energy is equivalent to 0.04 nJ. Since the output of the CW light 6 is 0.1 W, the pulse energy of the converted light (difference frequency generation converted light pulse train 8) is 10 fJ when calculated from the equation 5.
  • the wavelength of 1.04 ⁇ m of the converted light is included in the gain band of the Yb-added glass fiber amplifier (YbFA) constituting the glass fiber amplifier 9.
  • YbFA Yb-added glass fiber amplifier
  • the other optical path length of the bifurcated femtosecond pulse train 5 between the beam splitter 10 and the nonlinear optical microscope 2 or the picosecond pulse train 3 may be adjusted.
  • Peak intensity I ⁇ ⁇ 0 (W / m 2 ), pulse width ⁇ (s), repetition frequency rep (Hz), average power P ⁇ ⁇ av (W), and oscillation wavelength ⁇ ( ⁇ m) ( ⁇ 2 ⁇ c ⁇ -1 , c: light speed).
  • the duty ratio D is defined by the following equation 7.
  • the beam focal area A is set to the minimum possible value, it will be proportional to the square of the oscillation wavelength ⁇ , and can be expressed by the following equation 8.
  • ⁇ -4 D -2 may be examined in THG
  • ⁇ -2 D -1 may be examined in SHG.
  • the superiority of the light source in this embodiment is clear. Even if the average power of the optical pulse input to the nonlinear optical microscope is the same, the instantaneous power of the optical pulse increases by reducing the duty ratio, which is the product of the repetition frequency and the pulse width. Therefore, wavelength conversion of SHG and THG. Higher efficiency. Therefore, it is possible to reduce the average power of the input light pulse required to obtain the same SHG and THG signal power.
  • a light source having a configuration in which a mode-synchronized laser 1 using a Cr 4+ : YAG laser and a glass fiber amplifier 9 using a Yb-added glass fiber amplifier (YbFA) are combined is shown as an example.
  • any of the above-mentioned mode-synchronized lasers using various crystals, ceramics, glass, or semiconductor crystals as a laser medium can be used, if necessary.
  • the laser medium of the mode-synchronized laser any of bulk shape, disk shape, and fiber shape may be used.
  • any of the above-mentioned glass fiber amplifiers to which various rare earth ions are added can be used, if necessary.
  • the wavelengths of the CW solid-state laser 4 and the second-order nonlinear optical element 7 are selected according to the equation 3, and as a result, the difference frequency generation conversion optical pulse train 8 generated by the difference frequency generation from the femtosecond pulse train 5 from the mode-synchronized laser 1 is generated.
  • the wavelength is converted within the gain band of the glass fiber amplifier 9.
  • the CW solid-state laser 4 and the second-order nonlinear optical element 7 can be configured by using any of the various lasers and nonlinear optics described above, if necessary.
  • the second-order nonlinear optical element 7 shall be configured by using other materials such as the periodic polarization inversion lithium tantalate and the periodic polarization inversion KTP. Can be done. Further, the inversion period ⁇ can be adjusted by using a second-order nonlinear optical element 7 having a fan-out type periodic polarization inversion structure so as to cope with the wavelength fluctuation of the CW solid-state laser 4.
  • the light source of this embodiment can also be used for spectroscopic measurement and spectroscopic microscopic image acquisition by coherent Raman scattering other than CARS (for example, induced Raman gain and induced Raman loss).
  • coherent Raman scattering other than CARS (for example, induced Raman gain and induced Raman loss).

Abstract

Provided is a light source for use in a multimodal nonlinear optical microscope 2. The present invention comprises a mode-locked laser (1) configured so as to output a femtosecond pulse train (5) having a central wavelength λs, a steady-state oscillation solid-state laser (4) configured so as to output continuous light (6) having a wavelength λp, a secondary nonlinear optical element (7) for outputting a difference frequency generation converted optical pulse train (8) having a frequency λc comprising picosecond pulses by difference frequency generation between the continuous light (6) and a portion of the femtosecond pulse train (5), and a glass fiber amplifier (9) for amplifying the difference frequency generation converted optical pulse train (8). The steady-state oscillation solid-state laser (4) is configured so as to output continuous light (6) having a wavelength λp that satisfies the expression 1/λc=1/λp–1/λs.

Description

マルチモーダル非線形光学顕微鏡用光源Light source for multimodal nonlinear optical microscope
 本願開示は、第二高調波発生(Second Harmonic Generation:SHG)、第三高調波発生(Third Harmonic Generation:THG)及びコヒーレント・アンチストークス・ラマン散乱(Coherent Anti-Stokes Raman Scattering:CARS)などを検出する非線形分光法及び非線形光学顕微鏡に用いられる光源に関する。 The disclosure of the present application detects Second Harmonic Generation (SHG), Third Harmonic Generation (THG), Coherent Anti-Stokes Raman Scattering (CARS), and the like. It relates to a light source used in a nonlinear spectroscopy and a nonlinear optical microscope.
 ラマン散乱分光法は、分子、結晶、アモルファス構造などの振動情報を得る手段として、化学、生物学、医学、薬学、農学、及び物理学などの多くの学術分野に於いて広く用いられており、また医療や産業に於いても広く用いられている。自発ラマン散乱は、入射光に対して分子振動又は格子振動の周波数だけシフトした周波数の散乱光を生じる現象である。この散乱光は元の入射光パワーに対してごく弱いパワーしか持たないので、検出器により測定可能な散乱光を得るためには入射光として高いパワーを持つ光源を使用する必要がある。しかしほとんどの測定試料は照射可能な単位面積当たりパワーに上限があり、それを超えると変質もしくは破壊される。多くの場合上限に相当するパワーの光源を用いても散乱光は弱く、高いSN比の信号を取得するにはCARS測定に比べ著しく長い測定時間が必要である。これに対しCARSは瞬時パワーが高い光源による非線形光学過程であるため、自発ラマン散乱に比べて、同等レベルのパワーの光源を用いた場合に格段にラマン散乱光のパワーが強く、その結果として短い時間での測定が可能である。 Raman scattering spectroscopy is widely used in many academic fields such as chemistry, biology, medicine, pharmacy, agriculture, and physics as a means of obtaining vibration information such as molecules, crystals, and amorphous structures. It is also widely used in medicine and industry. Spontaneous Raman scattering is a phenomenon in which scattered light having a frequency shifted by the frequency of molecular vibration or lattice vibration with respect to incident light is generated. Since this scattered light has a very weak power with respect to the original incident light power, it is necessary to use a light source having a high power as the incident light in order to obtain the scattered light that can be measured by the detector. However, most measurement samples have an upper limit on the power per unit area that can be irradiated, and if it exceeds that, it will be altered or destroyed. In many cases, the scattered light is weak even when a light source having a power corresponding to the upper limit is used, and a significantly longer measurement time is required than the CARS measurement in order to acquire a signal having a high SN ratio. On the other hand, since CARS is a nonlinear optical process using a light source with high instantaneous power, the power of Raman scattered light is much stronger and shorter as a result when a light source with the same level of power is used as compared with spontaneous Raman scattering. It is possible to measure in time.
 光源として使用するパルスレーザーの開発に伴いCARS測定の発展は著しく、特に顕微鏡画像を取得する場合、その効果は顕著である。瞬時パワーの高いパルスレーザーを光源に用いる場合、CARSのみならずSHG、THGも同時に検出できるためそのような実験構成はマルチモーダル非線形光学顕微鏡と呼ばれる。マルチモーダル非線形光学顕微鏡は、生命科学、医学及び薬学において多くの利用方法が提唱され、さらなる開発が望まれている(非特許文献1参照)。 With the development of the pulsed laser used as a light source, the development of CARS measurement is remarkable, and the effect is remarkable especially when acquiring a microscope image. When a pulsed laser with high instantaneous power is used as a light source, not only CARS but also SHG and THG can be detected at the same time, so such an experimental configuration is called a multimodal nonlinear optical microscope. Many uses of the multimodal nonlinear optical microscope have been proposed in life science, medicine and pharmacy, and further development is desired (see Non-Patent Document 1).
 生物をラマン散乱分光の測定対象とする場合に重要な波数領域が2つあり、1つめの領域は指紋領域と呼ばれる波数500cm-1から1800cm-1の領域であり、2つめの領域は、炭素・水素(C-H)結合、窒素・水素(N-H)結合、又は酸素・水素(O-H)結合による波数2800cm-1から3100cm-1の領域である(非特許文献1参照)。CARS分光を測定する場合には、上記の領域の波数に対応した波数の差を持つ2つの波長の光(2つの光の波長の差が上記の領域の波数に対応した波数となっている)を被測定対象に入射する。 There are two important wavenumber region when the measured Raman scattering spectroscopy of biological, The first region is a region of 1800 cm -1 wave number 500 cm -1 called fingerprint region, second region, carbon hydrogen (C-H) bonds, nitrogen-hydrogen (N-H) bond, or a region of 3100 cm -1 wave number 2800 cm -1 due to oxygen-hydrogen (O-H) bond (see non-Patent Document 1). When measuring CARS spectroscopy, light with two wavelengths having a wavenumber difference corresponding to the wavenumber in the above region (the difference between the wavelengths of the two lights is the wavenumber corresponding to the wavenumber in the above region). Is incident on the object to be measured.
 図1は、非特許文献1に記述されている従来のマルチモーダル非線形光学顕微鏡の光源の構成を示す図である。図1に示す従来の光源は、複合光源101と、フォトニッククリスタルファイバー104とを含む。複合光源101は、Nd:YVOレーザーとYb添加ガラスファイバー増幅器とにより構成され、波長が1.06μm、パルス幅が85ps、パルスエネルギーが1μJ、繰り返し周波数が0.82MHzのピコ秒パルスを生成する。生成されたピコ秒パルスはエネルギーについて二系統に分割され、複合光源101から出力される。二分岐されたピコ秒パルスの一系統は顕微鏡102へ入力される。二分岐されたピコ秒パルスの他の系統はフォトニッククリスタルファイバー104に入力される。フォトニッククリスタルファイバー104は、波長1.1μmから1.7μmまでの広帯域の光を含み、パルスエネルギーが2μJのスーパーコンティニューム光105を発生し出力する。ピコ秒パルス列103及びスーパーコンティニューム光105の二系統の光がタイミングを合わせて顕微鏡102に入力されて測定対象の試料に照射されることで、マルチモーダル非線形光学顕微鏡像が得られる。CARSはピコ秒パルス列103及びスーパーコンティニューム光105の二系統の光を試料に照射することで発生する。SHG及びTHGはそれぞれ波長1.06μmのピコ秒パルス列103を試料に照射することで発生する。 FIG. 1 is a diagram showing a configuration of a light source of a conventional multimodal nonlinear optical microscope described in Non-Patent Document 1. The conventional light source shown in FIG. 1 includes a composite light source 101 and a photonic crystal fiber 104. Compound light source 101, Nd: YVO 4 is constituted by a laser and Yb-doped glass fiber amplifiers, wavelength 1.06 .mu.m, the pulse width is 85 ps, pulse energy 1 .mu.J, repetition frequency to generate picosecond pulses of 0.82MHz .. The generated picosecond pulse is divided into two systems for energy and output from the composite light source 101. One system of bifurcated picosecond pulses is input to the microscope 102. The other system of bifurcated picosecond pulses is input to the photonic crystal fiber 104. The photonic crystal fiber 104 includes wideband light having a wavelength of 1.1 μm to 1.7 μm, and generates and outputs supercontinuum light 105 having a pulse energy of 2 μJ. A multimodal nonlinear optical microscope image is obtained by inputting two systems of light of the picosecond pulse train 103 and the supercontinuum light 105 into the microscope 102 at the same timing and irradiating the sample to be measured. CARS is generated by irradiating a sample with two systems of light, a picosecond pulse train 103 and a supercontinuum light 105. SHG and THG are generated by irradiating a sample with a picosecond pulse train 103 having a wavelength of 1.06 μm, respectively.
 図2は、CARS分光を測定する場合における測定対象であるサンプルの分子のエネルギーダイアグラムを示す図である。図2に示すようにCARS分光を測定する場合、ポンプ光106(角周波数ω)、ストークス光107(角周波数ω)、プローブ光108(角周波数ω)を入射することによって測定対象の分子の持つ振動モード110の角振動数Ωに対応するCARS光109(角周波数ωCARS)が発生する。図1に示す従来例では、ピコ秒パルス列103をポンプ光106及びプローブ光108(ω=ω)として用い、広帯域のスーパーコンティニューム光105をストークス光107として用いるため、多数の振動モード110が励振され、広帯域のCARS光109を測定することができる(非特許文献2参照)。 FIG. 2 is a diagram showing an energy diagram of a molecule of a sample to be measured when measuring CARS spectroscopy. As shown in FIG. 2, when measuring CARS spectroscopy, the measurement target is measured by incident pump light 106 (angular frequency ω 1 ), Stokes light 107 (angular frequency ω 2 ), and probe light 108 (angular frequency ω 3). CARS light 109 (angular frequency ω CARS ) corresponding to the angular frequency Ω of the vibration mode 110 of the molecule is generated. In the conventional example shown in FIG. 1, since the picosecond pulse train 103 is used as the pump light 106 and the probe light 108 (ω 1 = ω 3 ) and the wideband super continuation light 105 is used as the Stokes light 107, a large number of vibration modes 110 are used. Is excited, and the wideband CARS light 109 can be measured (see Non-Patent Document 2).
 しかしながら、図1に示す光源から出力されるピコ秒パルス列103及びスーパーコンティニューム光105の二系統の光の合計平均パワーが2.5Wになり、これらの光を減衰させずに顕微鏡102に入力する場合は測定対象である試料にダメージを与える場合もあった。そのため、低い平均パワーの光をサンプルに照射した場合でもマルチモーダル非線形光学顕微鏡による測定が高い感度で行えるよう改良する必要があった。 However, the total average power of the light of the two systems of the picosecond pulse train 103 and the super-continue light 105 output from the light source shown in FIG. 1 becomes 2.5 W, and these lights are input to the microscope 102 without being attenuated. In some cases, the sample to be measured was damaged. Therefore, it is necessary to improve the measurement so that the measurement by the multimodal nonlinear optical microscope can be performed with high sensitivity even when the sample is irradiated with the light of low average power.
 本願開示の目的は、例えばSHG、THG及びCARSを検出する、マルチモーダル非線形光学顕微鏡の光源として、繰返し周波数とパルス幅の積であるデューティ比を低減することにより、SHG及びTHGの変換効率を高めて、非線形光学顕微鏡に入力する光の平均パワーの削減を可能にする光源を提供することにある。 An object of the disclosure of the present application is to improve the conversion efficiency of SHG and THG by reducing the duty ratio, which is the product of the repetition frequency and the pulse width, as a light source of a multimodal nonlinear optical microscope for detecting SHG, THG and CARS, for example. It is an object of the present invention to provide a light source capable of reducing the average power of light input to a nonlinear optical microscope.
 このような目的を達成するために、本発明の一実施形態は、分光測定又は分光顕微鏡画像取得に使用する光源である。分光測定又は分光顕微鏡画像取得は、コヒーレントラマン散乱による信号測定、並びに第二高調波発生及び第三高調波発生の少なくとも一方もしくは両方による信号測定を含み得る。この光源は、中心波長λのフェムト秒パルス列を出力するように構成されたモード同期レーザーと、波長λの連続光を出力するように構成された定常発振固体レーザーと、連続光とフェムト秒パルス列をパワーについて分割した二系統の中の一系統との差周波発生によって、フェムト秒パルス列をパワーについて分割した二系統の中の一系統をピコ秒パルスからなる中心波長λの差周波発生変換光パルス列に変換して出力する二次非線形光学素子と、差周波発生変換光パルス列を増幅するガラスファイバー増幅器と、を備える。この光源は、増幅された差周波発生変換光パルス列及び前記フェムト秒パルス列の残りの一系統を出力するように構成されている。この光源の定常発振固体レーザーは後述する式3を満たす波長λの連続光を出力するように構成されている。 In order to achieve such an object, one embodiment of the present invention is a light source used for spectroscopic measurement or spectroscopic microscopic image acquisition. Spectroscopic measurements or spectroscopic microscopic image acquisition may include signal measurements by coherent traman scattering and signal measurements by at least one or both of the second and third harmonic generations. The light sources are a mode-synchronized laser configured to output a femtosecond pulse train with a center wavelength of λ s , a stationary oscillating solid-state laser configured to output continuous light with a wavelength of λ p, and continuous light and femtoseconds. Difference frequency generation conversion of the center wavelength λ c consisting of picosecond pulses in one of the two systems in which the femtosecond pulse train is divided in terms of power by generating the difference frequency with one of the two systems in which the pulse train is divided in terms of power. It includes a second-order nonlinear optical element that converts to an optical pulse train and outputs it, and a glass fiber amplifier that amplifies the differential frequency generation conversion optical pulse train. This light source is configured to output the amplified differential frequency generation conversion light pulse train and the remaining one of the femtosecond pulse trains. The steady-state oscillating solid-state laser of this light source is configured to output continuous light having a wavelength of λ p that satisfies Equation 3 described later.
 一実施形態の光源の構成により、繰返し周波数とパルス幅の積であるデューティ比が低減される結果として、SHG及びTHGの変換効率が高まり、非線形光学顕微鏡に入力する光の平均パワーの削減を可能にする光源を提供することができる。 The configuration of the light source of one embodiment reduces the duty ratio, which is the product of the repetition frequency and the pulse width, resulting in higher conversion efficiency of SHG and THG and reduction of the average power of light input to the nonlinear optical microscope. Can provide a light source.
図1は、従来のマルチモーダル非線形光学顕微鏡用の光源を示す模式図である。FIG. 1 is a schematic diagram showing a light source for a conventional multimodal nonlinear optical microscope. 図2は、コヒーレント・アンチストークス・ラマン散乱における測定対象分子のエネルギーダイアグラムを示す図である。FIG. 2 is a diagram showing an energy diagram of a molecule to be measured in coherent anti-Stokes Raman scattering. 図3は、本発明の一実施形態におけるマルチモーダル非線形光学顕微鏡用の光源を示す模式図である。FIG. 3 is a schematic diagram showing a light source for a multimodal nonlinear optical microscope according to an embodiment of the present invention.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。以下の説明で用いる数値及び材料は、例示であり、本願発明の要旨を逸脱しない範囲で他の数値及び材料を用いて本願発明を実施することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The numerical values and materials used in the following description are examples, and the present invention can be carried out using other numerical values and materials without departing from the gist of the present invention.
 図3は、本発明の一実施形態におけるマルチモーダル非線形光学顕微鏡用の光源を示す模式図である。図3に示す光源は、中心波長λのフェムト秒パルス列5を出力するように構成されたモード同期レーザー1と、フェムト秒パルス列5をパワーについて二系統に分割するビームスプリッタ10と、後述する式3を満たす波長λの連続光6を出力するように構成された定常発振固体レーザー4と、連続光6を透過し、二分岐されたフェムト秒パルス列5の一方を反射して、連続光6及びフェムト秒パルス列5の一方を同一軸上に出力するミラー11と、連続光6とフェムト秒パルス列5の一方との差周波発生によって、フェムト秒パルス列5の一方をピコ秒パルスからなる中心波長λの差周波発生変換光パルス列8に変換して出力する二次非線形光学素子7と、差周波発生変換光パルス列8を増幅するガラスファイバー増幅器9と、を備える。図3には、マルチモーダル非線形光学顕微鏡2も示されている。 FIG. 3 is a schematic diagram showing a light source for a multimodal nonlinear optical microscope according to an embodiment of the present invention. The light sources shown in FIG. 3 are a mode-synchronized laser 1 configured to output a femtosecond pulse train 5 having a center wavelength of λ s , a beam splitter 10 that divides the femtosecond pulse train 5 into two systems with respect to power, and an equation described later. A stationary oscillating solid-state laser 4 configured to output continuous light 6 having a wavelength λ p that satisfies 3 and a continuous light 6 are transmitted and reflected by one of the bifurcated femtosecond pulse trains 5. And the center wavelength λ consisting of a picosecond pulse on one of the femtosecond pulse trains 5 due to the generation of a difference frequency between the mirror 11 that outputs one of the femtosecond pulse trains 5 on the same axis and one of the continuous light 6 and the femtosecond pulse train 5. A second-order nonlinear optical element 7 that converts and outputs the difference frequency generation conversion optical pulse train 8 of c, and a glass fiber amplifier 9 that amplifies the difference frequency generation conversion light pulse train 8 are provided. FIG. 3 also shows a multimodal nonlinear optical microscope 2.
 ガラスファイバー増幅器9により増幅された差周波発生変換光パルス列8であるピコ秒パルス列3は、ビームスプリッタ10により二分岐されたフェムト秒パルス列5の他方と共に出力するように構成されている。本実施形態による光源から出力されたピコ秒パルス列3及び二分岐されたフェムト秒パルス列5の他方がマルチモーダル非線形光学顕微鏡2へ入力される。以上の構成により、繰返し周波数とパルス幅の積であるデューティ比が低減される結果として、SHG及びTHGの変換効率が高まり、非線形光学顕微鏡に入力する光の平均パワーの削減を可能にすることができる。 The picosecond pulse train 3, which is the differential frequency generation conversion optical pulse train 8 amplified by the glass fiber amplifier 9, is configured to output together with the other of the femtosecond pulse train 5 bifurcated by the beam splitter 10. The other of the picosecond pulse train 3 and the bifurcated femtosecond pulse train 5 output from the light source according to the present embodiment is input to the multimodal nonlinear optical microscope 2. With the above configuration, as a result of reducing the duty ratio, which is the product of the repetition frequency and the pulse width, the conversion efficiency of SHG and THG is increased, and it is possible to reduce the average power of the light input to the nonlinear optical microscope. can.
 一実装形態では、モード同期レーザー1は、Cr4+:YAG、Crフォルステライト、Tiサファイア、Cr:LiSAF、Cr:LiCAF、Cr:ZnSe、及びCr:ZnSなどから選択される1つの結晶又はセラミクスをレーザー媒体としたモード同期レーザーを用いて構成することができる。他の実装形態では、モード同期レーザー1は、Yb、Er、Nd、Tm、及びHoなどから選択される1つの希土類イオンを添加したYAGの結晶又はセラミクスをレーザー媒体としたモード同期レーザーを用いて構成してもよい。さらに他の実装形態では、モード同期レーザー1は、Yb、Er、Nd、Tm、及びHoなどから選択される1つの希土類イオンを添加したYVOの結晶又はセラミクスをレーザー媒体としたモード同期レーザーを用いて構成してもよい。さらにまた他の実施形態では、モード同期レーザー1は、Yb、Er、Nd、Tm、及びHoなどから選択される1つの希土類イオンを添加したガラス(バルク及びファイバー)をレーザー媒体としたモード同期レーザーを用いて構成してもよい。また、他の実装形態では、半導体結晶をレーザー媒体としたモード同期レーザーを用いて構成してもよい。 In one embodiment, the mode-synchronized laser 1 provides one crystal or ceramic selected from Cr 4+ : YAG, Cr forsterite, Ti sapphire, Cr: LiSAF, Cr: LiCAF, Cr: ZnSe, Cr: ZnS, and the like. It can be configured using a mode-synchronized laser as a laser medium. In another embodiment, the mode-synchronized laser 1 uses a mode-synchronized laser using a YAG crystal or ceramics supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, Ho, etc. as a laser medium. It may be configured. In still another embodiment, the mode-synchronized laser 1 is a mode-synchronized laser using a crystal or ceramics of YVO 4 supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, Ho and the like as a laser medium. It may be configured using. In yet another embodiment, the mode-synchronized laser 1 is a mode-synchronized laser using a glass (bulk and fiber) supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, Ho and the like as a laser medium. May be configured using. Further, in another mounting embodiment, a mode-synchronized laser using a semiconductor crystal as a laser medium may be used.
 一実施形態では、モード同期レーザー1を構成するゲイン媒体の形状は、ロッド、ディスク、又はファイバーとすることができる。 In one embodiment, the shape of the gain medium constituting the mode-synchronized laser 1 can be a rod, a disk, or a fiber.
 一実施形態では、ビームスプリッタ10は、入力された光のパワーを2つに分離して、一方を反射し、他方を透過する、ハーフミラー又はビームスプリッタキューブを用いて構成することができる。 In one embodiment, the beam splitter 10 can be configured with a half mirror or beam splitter cube that splits the power of the input light into two, reflects one and transmits the other.
 一実施形態では、定常発振固体レーザー4は、ガラスファイバーレーザー、バルク形状の単結晶レーザー、バルク形状のセラミクスレーザー、導波路型の単結晶レーザー、導波路型のセラミクスレーザー、又は半導体レーザーを用いて構成することができる。 In one embodiment, the stationary oscillating solid-state laser 4 uses a glass fiber laser, a bulk-shaped single crystal laser, a bulk-shaped ceramics laser, a waveguide-type single crystal laser, a waveguide-type ceramics laser, or a semiconductor laser. Can be configured.
 一実施形態では、ミラー11は、所定の波長の光を反射し、他の波長の光を透過する、ダイロックミラーを用いて構成することができる。 In one embodiment, the mirror 11 can be configured using a dichroic mirror that reflects light of a predetermined wavelength and transmits light of another wavelength.
 一実施形態では、二次非線形光学素子7は、以下に説明する式4を満たす、周期分極反転ニオブ酸リチウム、周期分極反転タンタル酸リチウム、又は周期分極反転KTPを用いて構成することができる。 In one embodiment, the second-order nonlinear optical element 7 can be configured by using periodic polarization inversion lithium niobate, periodic polarization inversion lithium tantalate, or periodic polarization inversion KTP, which satisfies the formula 4 described below.
 一実施形態では、ガラスファイバー増幅器9は、Yb、Er、Nd、Tm、及びHoなどから選択される1つの希土類イオンを添加したガラスファイバー増幅器を用いて構成することができる。 In one embodiment, the glass fiber amplifier 9 can be configured by using a glass fiber amplifier to which one rare earth ion selected from Yb, Er, Nd, Tm, Ho and the like is added.
 本実施形態の光源は、マルチモーダル非線形光学顕微鏡のCARS分光において波数2800cm-1から3100cm-1の領域を観察する際の光源として用いることができる。 Light source of the present embodiment can be used as a light source at the time of observing the region of 3100 cm -1 wave number 2800 cm -1 in CARS spectroscopy of multimodal nonlinear optical microscope.
 本実施形態の光源は、モード同期レーザー1としてCr4+:YAGレーザーをレーザー媒体としたモード同期レーザーを用い、二次非線形光学素子7として周期分極反転ニオブ酸リチウム(PPLN)を用い、ガラスファイバー増幅器9としてYb添加ガラスファイバー増幅器(YbFA)を用い、及び定常発振(Continuous Wave:CW)固体レーザー4として単一波長0.612μmにおいて発振するCW固体レーザーを用いて構成するものとする。 The light source of the present embodiment uses a mode-synchronized laser using a Cr 4+ : YAG laser as a laser medium as the mode-synchronized laser 1, and a periodic polarization inversion lithium niobate (PPLN) as the second-order nonlinear optical element 7. It is configured by using a Yb-added glass fiber amplifier (YbFA) as 9, and using a CW solid-state laser that oscillates at a single wavelength of 0.612 μm as a constant wave (CW) solid-state laser 4.
 モード同期レーザー1としてのCr4+:YAGレーザーは、モード同期発振し、中心波長1.5μm、パルス幅40fs、繰返し周波数80MHzのフェムト秒パルス列5を出力する(非特許文献3参照)。フェムト秒パルス列5はビームスプリッタ10で2つに分岐される。二分岐されたフェムト秒パルス列の一方は、ミラー11で反射されて、ピコ秒パルス列3を差周波発生させるためPPLN7に入力される。二分岐されたフェムト秒パルス列5の他方は、非線形光学顕微鏡2へ入力される。二分岐されたフェムト秒パルス列5はそれぞれ1nJ程度のパルスエネルギーである。 The Cr 4+ : YAG laser as the mode-synchronized laser 1 oscillates in mode-synchronization and outputs a femtosecond pulse train 5 having a center wavelength of 1.5 μm, a pulse width of 40 fs, and a repetition frequency of 80 MHz (see Non-Patent Document 3). The femtosecond pulse train 5 is split into two by the beam splitter 10. One of the bifurcated femtosecond pulse trains is reflected by the mirror 11 and input to the PPLN 7 to generate the picosecond pulse train 3 at a different frequency. The other of the bifurcated femtosecond pulse trains 5 is input to the nonlinear optical microscope 2. The bifurcated femtosecond pulse trains 5 each have a pulse energy of about 1 nJ.
 CW固体レーザー4は、単一波長0.612μmの連続(CW)光6を出力する。CW光6は、ミラー11を透過して、ピコ秒パルス列3を差周波発生させるためPPLN7に入力される。 The CW solid-state laser 4 outputs continuous (CW) light 6 having a single wavelength of 0.612 μm. The CW light 6 passes through the mirror 11 and is input to the PPLN 7 in order to generate a picosecond pulse train 3 at a different frequency.
 CW光6は差周波発生の励起光として、フェムト秒パルス列5は信号光として、それぞれ同じ方向から同軸でPPLN7に入力される。PPLN7においてCW光6及びフェムト秒パルス列5から差周波発生する変換光(差周波発生変換光パルス列8)のパルスエネルギーは以下のように計算できる。 The CW light 6 is input to the PPLN 7 coaxially from the same direction as the excitation light for generating the difference frequency and the femtosecond pulse train 5 as the signal light. The pulse energy of the conversion light (difference frequency generation conversion light pulse train 8) generated from the CW light 6 and the femtosecond pulse train 5 in the PPLN 7 can be calculated as follows.
 まず、使用するPPLNの異常光屈折率は、波長をλ(μm)として次の式1で計算される(非特許文献4参照)。 First, the abnormal optical refractive index of the PPLN used is calculated by the following equation 1 with the wavelength as λ (μm) (see Non-Patent Document 4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 CW光6とフェムト秒パルス列5の差周波を取ってピコ秒パルス列を発生する場合、PPLN7内での両パルスの波長の違いから生じる群速度の差により使用可能なPPLNの長さが制限される。非特許文献5に、SHGの場合の使用可能長さ(Pulse-width-preservation length:Lτ)が記載されている。本実施形態におけるPPLN7における差周波発生では励起光がCW光6であるためLτについて同じ計算式、すなわち式2を用いることができる。 When the picosecond pulse train is generated by taking the difference frequency between the CW light 6 and the femtosecond pulse train 5, the length of the PPLN that can be used is limited by the difference in the group velocity caused by the difference in the wavelengths of both pulses in the PPLN7. .. Non-Patent Document 5 describes the usable length (Pulse-width-preservation length: L τ ) in the case of SHG. Since the excitation light is the CW light 6 in the differential frequency generation in the PPLN 7 in the present embodiment, the same calculation formula, that is, the formula 2 can be used for L τ.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、τは変換光(差周波発生変換光パルス列8)のパルス幅(半値全幅)であり、vgcは変換光の群速度であり、vgsは信号光(フェムト秒パルス列5)の群速度である。式1から計算すると、信号光(フェムト秒パルス列5)の波長が1.50μm、変換光(差周波発生変換光パルス列8)の波長が1.04μm、及びPPLN7内での2つの光の群速度の差により生じる変換光のパルス幅が1psに対し、Lτは0.012mと計算される。 Here, τ c is the pulse width (half-value full width) of the converted light (difference frequency generation converted light pulse train 8), v gt is the group velocity of the converted light, and v gs is the signal light (femto second pulse train 5). Group velocity. Calculated from Equation 1, the wavelength of the signal light (femtosecond pulse train 5) is 1.50 μm, the wavelength of the converted light (difference frequency generation converted light pulse train 8) is 1.04 μm, and the group speed of the two lights in PPLN7. L τ is calculated to be 0.012 m for a pulse width of 1 ps of the converted light generated by the difference between the two.
 ここで、λ、λ、及びλはそれぞれ、変換光(差周波発生変換光パルス列8)、信号光(フェムト秒パルス列5)、及び励起光(CW光6)の波長であり次の式3を満たす。 Here, λ c , λ s , and λ p are wavelengths of the conversion light (difference frequency generation conversion light pulse train 8), the signal light (femtosecond pulse train 5), and the excitation light (CW light 6), respectively, and are as follows. Equation 3 is satisfied.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 周期分極反転ニオブ酸リチウム(PPLN)7の変換効率を最大にするために反転周期Λに対して、以下の式4で表される位相整合条件を満たすことが要請される(非特許文献6参照)。 In order to maximize the conversion efficiency of the periodic polarization inversion lithium niobate (PPRN) 7, it is required that the inversion period Λ satisfy the phase matching condition represented by the following equation 4 (see Non-Patent Document 6). ).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 差周波発生の効率η(%/W)は、変換光(差周波発生変換光パルス列8)、信号光(フェムト秒パルス列5)、及び励起光(CW光6)のパワーをそれぞれP,P、及びP(W)と置けば、式5となる。 Efficiency of difference frequency generation eta (% / W) is the converted light (difference frequency generation converted optical pulse train 8), the signal light (femtosecond pulse train 5), and each P c the power of the excitation light (CW light 6), P If s and P p (W) are set, the equation 5 is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式4が満たされる場合は、差周波発生の効率η(%/W)は、式6と表すことができる。 When Equation 4 is satisfied, the efficiency η (% / W) of differential frequency generation can be expressed as Equation 6.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、CLNはPPLN7に対する定数であり、LはPPLN7の長さ(m)であり、Aeffは励起光(CW光6)及び信号光(フェムト秒パルス列5)のPPLN7におけるビーム断面積(μm)である。非特許文献6において、λ=2.3μm、λ=1.58μm、λ=0.937μm、L=0.05m、Aeff=8.6×13μm2に対し100%/Wであることが報告されているので、ここからCLN=2.28×10が算出される。 Here, C LN is a constant with respect to PPLN 7, L is the length (m) of PPLN 7, and A eff is the beam cross-sectional area (femtosecond pulse train 5) of excitation light (CW light 6) and signal light (femtosecond pulse train 5) in PPLN 7. μm 2 ). In Non-Patent Document 6, it is 100% / W with respect to λ c = 2.3 μm, λ s = 1.58 μm, λ p = 0.937 μm, L = 0.05 m, and A eff = 8.6 × 13 μm 2. since it has been reported, C LN = 2.28 × 10 8 is calculated from this.
 本実施形態ではLτ=0.012mを下回るL=0.010mのPPLN7を使用する。λ=1.50μm、L=0.010mに対するPPLN7内での最小平均ビーム半径は36μmと計算できる。式6よりλ=1.04μm、λ=1.50μm、λ=0.612μmに対して、η=0.52%/Wと計算される。PPLN7に入力される信号光(フェムト秒パルス列5)は上述のとおりパルス幅40fs、パルスエネルギー1nJである。PPLN7での差周波発生においては上述した信号光(フェムト秒パルス列5)と変換光(差周波発生変換光パルス列8)の群速度の違いから1psのパルスが発生する。したがって信号光は実質1psのパルスとして計算する必要があり、パルスエネルギーは0.04nJ相当となる。CW光6が出力0.1Wであるから、式5より計算すると変換光(差周波発生変換光パルス列8)のパルスエネルギーは10fJとなる。 In this embodiment, PPLN7 having L = 0.010 m, which is less than L τ = 0.012 m, is used. The minimum average beam radius in PPLN7 for λ s = 1.50 μm and L = 0.010 m can be calculated as 36 μm. From Equation 6, η = 0.52% / W is calculated for λ c = 1.04 μm, λ s = 1.50 μm, and λ p = 0.612 μm. The signal light (femtosecond pulse train 5) input to the PPLN 7 has a pulse width of 40 fs and a pulse energy of 1 nJ as described above. In the generation of the difference frequency in the PPLN 7, a pulse of 1 ps is generated due to the difference in the group velocity between the signal light (femtosecond pulse train 5) and the conversion light (difference frequency generation conversion light pulse train 8) described above. Therefore, the signal light needs to be calculated as a pulse of 1 ps, and the pulse energy is equivalent to 0.04 nJ. Since the output of the CW light 6 is 0.1 W, the pulse energy of the converted light (difference frequency generation converted light pulse train 8) is 10 fJ when calculated from the equation 5.
 変換光(差周波発生変換光パルス列8)の波長1.04μmは、ガラスファイバー増幅器9を構成するYb添加ガラスファイバー増幅器(YbFA)のゲイン帯域に含まれる。ガラスファイバー増幅器9を複数台(例えば、2台又は3台)のYbFAを組み合わせることで、60dB程度ゲインを得ることができるので、YbFAからモード同期レーザー1を構成するCr4+:YAGレーザーと同期したパルスエネルギー最大10nJ程度、パルス幅1psのピコ秒パルス列3が出力される。Cr4+:YAGレーザーからのフェムト秒パルス列5のパルス幅40fsは波数に換算すると300cm-1となり、ピコ秒パルス列3とフェムト秒パルス列5とを同期させ非線形光学顕微鏡2に入力することにより波数2800cm-1から3100cm-1の領域について図1を参照して説明した従来例と変わらないCARS画像を得ることができる。SHG及びTHGはそれぞれCr4+:YAGレーザーからのフェムト秒パルスを試料に照射することにより発生する。なお、ピコ秒パルス列3とフェムト秒パルス列5とを同期させるには、ビームスプリッタ10と非線形光学顕微鏡2との間における二分岐されたフェムト秒パルス列5の他方の光路長、もしくはピコ秒パルス列3(ビームスプリッタ10と非線形光学顕微鏡2との間における二分岐されたフェムト秒パルス列5の一方)の光路長を調整すればよい。 The wavelength of 1.04 μm of the converted light (difference frequency generation converted light pulse train 8) is included in the gain band of the Yb-added glass fiber amplifier (YbFA) constituting the glass fiber amplifier 9. By combining a plurality of glass fiber amplifiers 9 (for example, two or three) of YbFA, a gain of about 60 dB can be obtained, so that the YbFA is synchronized with the Cr 4+: YAG laser constituting the mode-synchronized laser 1. A picosecond pulse train 3 having a maximum pulse energy of about 10 nJ and a pulse width of 1 ps is output. Cr 4+: wave number by the input pulse width 40fs femtosecond pulse train 5 from YAG laser becomes 300 cm -1 in terms of wavenumber, the nonlinear optical microscope 2 is synchronized with the picosecond pulse train 3 and the femtosecond pulse train 5 2800 cm - It is possible to obtain a CARS image which is the same as the conventional example described with reference to FIG. 1 for the region of 1 to 3100 cm -1. SHG and THG are generated by irradiating the sample with a femtosecond pulse from a Cr 4+: YAG laser, respectively. In order to synchronize the picosecond pulse train 3 and the femtosecond pulse train 5, the other optical path length of the bifurcated femtosecond pulse train 5 between the beam splitter 10 and the nonlinear optical microscope 2 or the picosecond pulse train 3 ( The optical path length of the bifurcated femtosecond pulse train 5) between the beam splitter 10 and the nonlinear optical microscope 2 may be adjusted.
 ここで光源の入力平均パワーとTHG及びSHGの各信号強度との関係について、従来例と本実施形態を比較する。 Here, the relationship between the input average power of the light source and the signal intensities of THG and SHG will be compared between the conventional example and the present embodiment.
 角周波数ωの光パルスの時刻t、位置x(i=1,2,3)における単位面積当たりの光強度をIω(t,x)(W/m)とおく。ピーク強度Iω・0(W/m)、パルス幅τ(s)、繰り返し周波数frep(Hz)、平均パワーPω・av(W)、及び発振波長λ(μm)とする(λ=2πcω-1,c:光速)。デューティ比Dを次の式7で定義する。 Let I ω (t, x i ) (W / m 2 ) be the light intensity per unit area at the time t and position x i (i = 1, 2, 3) of the light pulse having an angular frequency ω. Peak intensity I ω ・ 0 (W / m 2 ), pulse width τ (s), repetition frequency rep (Hz), average power P ω ・ av (W), and oscillation wavelength λ (μm) (λ = 2πcω -1 , c: light speed). The duty ratio D is defined by the following equation 7.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 またビーム焦点面積Aは、可能な最小値と設定すれば発振波長λの2乗に比例することになり、次の式8のように表すことができる。 If the beam focal area A is set to the minimum possible value, it will be proportional to the square of the oscillation wavelength λ, and can be expressed by the following equation 8.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 その結果、平均パワーに次の式9の比例関係が成り立つ。 As a result, the proportional relationship of the following equation 9 is established for the average power.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 THGの信号パワーP3ω・avは、ピーク強度の3乗,ビーム焦点面積、及びデューティ比の3要素の積に比例するので次の式10が成り立つ。 Since the signal power P 3ω · av of THG is proportional to the product of the cube of the peak intensity, the beam focal area, and the duty ratio, the following equation 10 holds.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、SHGの信号パワーP2ω・avは、ピーク強度の2乗、ビーム焦点面積、及びデューティ比の3要素の積に比例するので次の式11が成り立つ。 Further, since the signal power P 2ω · av of SHG is proportional to the product of the square of the peak intensity, the beam focal area, and the duty ratio, the following equation 11 holds.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 従って、同じ平均パワーを入力した場合の光源の違いによる信号強度の比較は、THGではλ-4-2を調べればよく、SHGではλ-2-1を調べればよい。 Therefore, in order to compare the signal intensities due to the difference in the light source when the same average power is input, λ -4 D -2 may be examined in THG, and λ -2 D -1 may be examined in SHG.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

 表1に示す通り、従来例に比べ本実施形態では同じ平均パワーを入力した場合に、THGにおいて100倍以上の信号強度を得ることができ、SHGにおいて10倍以上の信号強度を得ることができるので、本実施形態における光源の優位性は明らかである。非線形光学顕微鏡に入力する光パルスの平均パワーが同じであっても、繰り返し周波数とパルス幅の積であるデューティ比を低減することにより光パルスの瞬時パワーが増大するため、SHG及びTHGの波長変換効率が高くなる。したがって、同じSHG及びTHGの信号パワーを得るために必要な入力光パルスの平均パワーを削減することが可能となる。

As shown in Table 1, in the present embodiment, compared to the conventional example, when the same average power is input, a signal strength of 100 times or more can be obtained in THG, and a signal strength of 10 times or more can be obtained in SHG. Therefore, the superiority of the light source in this embodiment is clear. Even if the average power of the optical pulse input to the nonlinear optical microscope is the same, the instantaneous power of the optical pulse increases by reducing the duty ratio, which is the product of the repetition frequency and the pulse width. Therefore, wavelength conversion of SHG and THG. Higher efficiency. Therefore, it is possible to reduce the average power of the input light pulse required to obtain the same SHG and THG signal power.
 本実施形態では、Cr4+:YAGレーザーを用いたモード同期レーザー1とYb添加ガラスファイバー増幅器(YbFA)を用いたガラスファイバー増幅器9とを組み合わせた構成の光源を例として示した。 In this embodiment, a light source having a configuration in which a mode-synchronized laser 1 using a Cr 4+ : YAG laser and a glass fiber amplifier 9 using a Yb-added glass fiber amplifier (YbFA) are combined is shown as an example.
 フェムト秒パルス列5を出力するモード同期レーザー1については、必要に応じて、上述した種々の結晶、セラミクス、ガラス、半導体結晶をレーザー媒体としたモード同期レーザーの何れかを用いることができる。モード同期レーザー1のレーザー媒体として、バルク形状、ディスク形状、及びファイバー形状のいずれを用いてもよい。 As the mode-synchronized laser 1 that outputs the femtosecond pulse train 5, any of the above-mentioned mode-synchronized lasers using various crystals, ceramics, glass, or semiconductor crystals as a laser medium can be used, if necessary. As the laser medium of the mode-synchronized laser 1, any of bulk shape, disk shape, and fiber shape may be used.
 同様に、ガラスファイバー増幅器9についても、必要に応じて、上述した種々の希土類イオンを添加したガラスファイバー増幅器の何れかを用いることができる。 Similarly, for the glass fiber amplifier 9, any of the above-mentioned glass fiber amplifiers to which various rare earth ions are added can be used, if necessary.
 また、CW固体レーザー4及び二次非線形光学素子7の波長は式3に従って選択され、その結果、モード同期レーザー1からのフェムト秒パルス列5との差周波発生により生じる差周波発生変換光パルス列8はガラスファイバー増幅器9のゲイン帯域内に波長変換される。CW固体レーザー4及び二次非線形光学素子7は、必要に応じて上述した種々のレーザー及び非線形光学の何れかを用いて構成することができる。 Further, the wavelengths of the CW solid-state laser 4 and the second-order nonlinear optical element 7 are selected according to the equation 3, and as a result, the difference frequency generation conversion optical pulse train 8 generated by the difference frequency generation from the femtosecond pulse train 5 from the mode-synchronized laser 1 is generated. The wavelength is converted within the gain band of the glass fiber amplifier 9. The CW solid-state laser 4 and the second-order nonlinear optical element 7 can be configured by using any of the various lasers and nonlinear optics described above, if necessary.
 また、二次非線形光学素子7は、式4を満たす、周期分極反転ニオブ酸リチウムを用いる例を説明したが、周期分極反転タンタル酸リチウム及び周期分極反転KTPなど他の材料を用いて構成することができる。また、CW固体レーザー4の波長変動に対応できるようファンアウト型の周期分極反転構造を備えた二次非線形光学素子7を用いることにより反転周期Λを調整することもできる。 Further, although the example of using the periodic polarization inversion lithium niobate satisfying the equation 4 has been described for the second-order nonlinear optical element 7, the second-order nonlinear optical element 7 shall be configured by using other materials such as the periodic polarization inversion lithium tantalate and the periodic polarization inversion KTP. Can be done. Further, the inversion period Λ can be adjusted by using a second-order nonlinear optical element 7 having a fan-out type periodic polarization inversion structure so as to cope with the wavelength fluctuation of the CW solid-state laser 4.
 本実施形態の光源は、CARS以外のコヒーレントラマン散乱(例えば誘導ラマン利得及び誘導ラマン損失)による分光測定及び分光顕微鏡画像取得に用いることもできる。 The light source of this embodiment can also be used for spectroscopic measurement and spectroscopic microscopic image acquisition by coherent Raman scattering other than CARS (for example, induced Raman gain and induced Raman loss).

Claims (7)

  1.  分光測定又は分光顕微鏡画像取得に使用する光源であって、前記分光測定又は前記分光顕微鏡画像取得は、コヒーレントラマン散乱による信号測定、並びに第二高調波発生及び第三高調波発生の少なくとも一方もしくは両方による信号測定を含み、前記光源は、
     中心波長λのフェムト秒パルス列を出力するように構成されたモード同期レーザーと、
     波長λの連続光を出力するように構成された定常発振固体レーザーと、
     前記連続光と前記フェムト秒パルス列をパワーについて分割した二系統の中の一系統との差周波発生によって、前記フェムト秒パルス列をパワーについて分割した二系統の中の一系統をピコ秒パルスからなる中心波長λの差周波発生変換光パルス列に変換して出力する二次非線形光学素子と、
     前記差周波発生変換光パルス列を増幅するガラスファイバー増幅器と、
    を備え、前記増幅された差周波発生変換光パルス列及び前記フェムト秒パルス列の残りの一系統を出力するように構成されており、
     前記定常発振固体レーザーは式Aを満たす前記波長λの連続光を出力するように構成されている、光源。
    Figure JPOXMLDOC01-appb-M000001
    A light source used for spectroscopic measurement or spectroscopic microscopic image acquisition, wherein the spectroscopic measurement or spectroscopic microscopic image acquisition is signal measurement by coherent traman scattering, and at least one or both of second harmonic generation and third harmonic generation. The light source includes a signal measurement by
    A mode-synchronized laser configured to output a femtosecond pulse train with a center wavelength of λ s,
    A steady-state oscillating solid-state laser configured to output continuous light with a wavelength of λ p,
    The center consisting of picosecond pulses in one of the two systems in which the femtosecond pulse train is divided in terms of power due to the generation of a difference frequency between the continuous light and one of the two systems in which the femtosecond pulse train is divided in terms of power. A second-order nonlinear optical element that converts and outputs a differential frequency generation conversion optical pulse train with a wavelength of λ c, and
    A glass fiber amplifier that amplifies the differential frequency generation conversion optical pulse train,
    Is configured to output the amplified differential frequency generation conversion optical pulse train and the remaining one of the femtosecond pulse trains.
    The steady oscillation solid-state laser is configured to output continuous light of the wavelength lambda p that satisfies the expression A, a light source.
    Figure JPOXMLDOC01-appb-M000001
  2.  モード同期レーザーと前記二次非線形光学素子との間に配置された、前記フェムト秒パルス列をパワーについて二系統に分割するビームスプリッタと、
     前記定常発振固体レーザーと前記二次非線形光学素子との間に配置された、前記連続光を透過し、前記フェムト秒パルス列の一部を反射して、前記連続光及び前記フェムト秒パルス列の一部を同一軸上に出力するミラーと、
    をさらに備えた、請求項1に記載の光源。
    A beam splitter that splits the femtosecond pulse train into two systems with respect to power, which is placed between the mode-synchronized laser and the second-order nonlinear optical element.
    A part of the continuous light and the femtosecond pulse train arranged between the stationary oscillating solid-state laser and the second-order nonlinear optical element, transmitting the continuous light and reflecting a part of the femtosecond pulse train. With a mirror that outputs on the same axis,
    The light source according to claim 1, further comprising.
  3.  前記モード同期レーザーは、
     Cr4+:YAG、Crフォルステライト、Tiサファイア、Cr:LiSAF、Cr:LiCAF、Cr:ZnSe、及びCr:ZnSから選択される1つの結晶又はセラミクス、
     Yb、Er、Nd、Tm、及びHoから選択される1つの希土類イオンを添加したYAGの結晶又はセラミクス、
     Yb、Er、Nd、Tm、及びHoから選択される1つの希土類イオンを添加したYVOの結晶又はセラミクス
     Yb、Er、Nd、Tm、及びHoから選択される1つの希土類イオンを添加したガラス、及び
     半導体結晶
    から選択された1つをレーザー媒体としたモード同期レーザーを用いて構成されている、請求項1又は2に記載の光源。
    The mode-synchronized laser is
    One crystal or ceramic selected from Cr 4+ : YAG, Cr forsterite, Ti sapphire, Cr: LiSAF, Cr: LiCAF, Cr: ZnSe, and Cr: ZnS,
    Crystals or ceramics of YAG supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, and Ho.
    Crystals of YVO 4 supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, and Ho or ceramics Glass supplemented with one rare earth ion selected from Yb, Er, Nd, Tm, and Ho. The light source according to claim 1 or 2, which is configured by using a mode-synchronized laser using one selected from semiconductor crystals as a laser medium.
  4.  前記モード同期レーザーを構成するゲイン媒体の形状は、ロッド、ディスク、又はファイバーである、請求項3に記載の光源。 The light source according to claim 3, wherein the shape of the gain medium constituting the mode-synchronized laser is a rod, a disk, or a fiber.
  5.  前記ガラスファイバー増幅器は、Yb、Er、Nd、Tm、及びHoから選択される1つの希土類イオンを添加したガラスファイバー増幅器を用いて構成さている、請求項1から4のいずれか一項に記載の光源。 The invention according to any one of claims 1 to 4, wherein the glass fiber amplifier is configured by using a glass fiber amplifier to which one rare earth ion selected from Yb, Er, Nd, Tm, and Ho is added. light source.
  6.  定常発振固体レーザーは、ガラスファイバーレーザー、バルク形状の単結晶レーザー、バルク形状のセラミクスレーザー、導波路型の単結晶レーザー、導波路型のセラミクスレーザー、又は半導体レーザーを用いて構成されている、請求項1から5の何れか一項に記載の光源。 The steady-state oscillating solid-state laser is composed of a glass fiber laser, a bulk-shaped single crystal laser, a bulk-shaped ceramics laser, a waveguide-type single crystal laser, a waveguide-type ceramics laser, or a semiconductor laser. Item 5. The light source according to any one of Items 1 to 5.
  7.  前記二次非線形光学素子は、周期分極反転ニオブ酸リチウム、周期分極反転タンタル酸リチウム、又は周期分極反転KTPを用いて構成されている、請求項1から6のいずれか一項に記載の光源。 The light source according to any one of claims 1 to 6, wherein the second-order nonlinear optical element is configured by using periodic polarization inversion lithium niobate, periodic polarization inversion lithium tantalate, or periodic polarization inversion KTP.
PCT/JP2020/027162 2020-07-10 2020-07-10 Light source for multimodal nonlinear optical microscope WO2022009436A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022534883A JP7328598B2 (en) 2020-07-10 2020-07-10 Light source for multimodal nonlinear optical microscopy
PCT/JP2020/027162 WO2022009436A1 (en) 2020-07-10 2020-07-10 Light source for multimodal nonlinear optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027162 WO2022009436A1 (en) 2020-07-10 2020-07-10 Light source for multimodal nonlinear optical microscope

Publications (1)

Publication Number Publication Date
WO2022009436A1 true WO2022009436A1 (en) 2022-01-13

Family

ID=79553254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027162 WO2022009436A1 (en) 2020-07-10 2020-07-10 Light source for multimodal nonlinear optical microscope

Country Status (2)

Country Link
JP (1) JP7328598B2 (en)
WO (1) WO2022009436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243052A1 (en) * 2022-06-16 2023-12-21 日本電信電話株式会社 Light source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328405A (en) * 2001-04-27 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> Optical frequency shifter and its control method
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor
EP2982947A1 (en) * 2014-08-08 2016-02-10 Baden-Württemberg Stiftung gGmbH Systems and methods for coherent Raman spectroscopy
JP2016161603A (en) * 2015-02-27 2016-09-05 日本電信電話株式会社 Optical relay transmission system
US20190271595A1 (en) * 2018-03-05 2019-09-05 Ut-Battelle, Llc Vibrational sum frequency generation using shaped near infrared light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328405A (en) * 2001-04-27 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> Optical frequency shifter and its control method
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor
EP2982947A1 (en) * 2014-08-08 2016-02-10 Baden-Württemberg Stiftung gGmbH Systems and methods for coherent Raman spectroscopy
JP2016161603A (en) * 2015-02-27 2016-09-05 日本電信電話株式会社 Optical relay transmission system
US20190271595A1 (en) * 2018-03-05 2019-09-05 Ut-Battelle, Llc Vibrational sum frequency generation using shaped near infrared light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243052A1 (en) * 2022-06-16 2023-12-21 日本電信電話株式会社 Light source

Also Published As

Publication number Publication date
JPWO2022009436A1 (en) 2022-01-13
JP7328598B2 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP2304412B1 (en) System for generating raman vibrational analysis signals
AU2011220332B2 (en) Mid to far infrared diamond Raman laser systems and methods
JP2012237714A (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
CN111712761A (en) Ultrashort pulse laser system with rapidly adjustable center wavelength
Samad et al. Ultrashort laser pulses applications
WO2022009436A1 (en) Light source for multimodal nonlinear optical microscope
Rhoades et al. Dual-comb absorption spectroscopy of molecular CeO in a laser-produced plasma
US11933730B2 (en) Light source
Luo et al. Doppler-free intermodulated fluorescence spectroscopy of 4 he 2 3 p–3 1, 3 d transitions at 588 nm with a 1-w compact laser system
JP2017083508A (en) Light source device, wavelength conversion device and information acquisition device
Cundiff et al. Phase stabilization of mode-locked lasers
Zhang et al. Optical technology for arbitrarily manipulating amplitudes and phases of coaxially propagating highly discrete spectra
WO2023243052A1 (en) Light source
Evmenova et al. Development of robust fiber laser source based on parametric frequency conversion for use in CARS microscopy
JP2723201B2 (en) Optical response speed measuring instrument
Ulvila New method to generate mid-infrared optical frequency combs for molecular spectroscopy
Yang et al. Ultrafast decay of high frequency optical phonon mode in KTiOPO4
Crystal Development of a Widely Tunable All Fiber Laser Source for Raman Spectroscopy/Microscopy
Butler et al. High-power single-cycle mid-infrared transients generated via intra-pulse difference-frequency mixing at 2 μm
Keatings et al. Characterization of microscope objective lenses from 1,400 to 1,650 nm to evaluate performance for long‐wavelength nonlinear microscopy applications
Luke et al. Broadband microresonator-based parametric frequency comb near visible wavelengths
JP2015222276A (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
Pei All-Fiber Optical Parametric Oscillator For Coherent Raman Imaging
Ge Nonlinear Microscopy Based on Femtosecond Fiber Laser
Afanasev Supercontinuum generation in photonic crystal fiber and its spectral dependence on the pump laser power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944165

Country of ref document: EP

Kind code of ref document: A1