WO2022000235A1 - Precoding for joint sensing and communication services - Google Patents

Precoding for joint sensing and communication services Download PDF

Info

Publication number
WO2022000235A1
WO2022000235A1 PCT/CN2020/099135 CN2020099135W WO2022000235A1 WO 2022000235 A1 WO2022000235 A1 WO 2022000235A1 CN 2020099135 W CN2020099135 W CN 2020099135W WO 2022000235 A1 WO2022000235 A1 WO 2022000235A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing signal
indication
precoding
transmitted
multiple slots
Prior art date
Application number
PCT/CN2020/099135
Other languages
French (fr)
Inventor
Qiaoyu Li
Hao Xu
Yu Zhang
Chao Wei
Jing Dai
Min Huang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/099135 priority Critical patent/WO2022000235A1/en
Priority to US17/998,213 priority patent/US20230224696A1/en
Priority to EP21832964.7A priority patent/EP4173372A1/en
Priority to PCT/CN2021/097827 priority patent/WO2022001560A1/en
Priority to CN202180045351.2A priority patent/CN115868209A/en
Publication of WO2022000235A1 publication Critical patent/WO2022000235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for precoding for joint sensing and communication services.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a user equipment includes: receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • a method of wireless communication performed by a UE includes: receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • a method of wireless communication performed by a base station includes: transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • a method of wireless communication performed by a base station includes: transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • a user equipment for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • a user equipment for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and determine a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • a base station for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • a base station for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and receive an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to: receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to: receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and determine a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to: transmit a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to: transmit an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and receive an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • an apparatus for wireless communication includes: means for receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and means for receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • an apparatus for wireless communication includes: means for receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and means for determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • an apparatus for wireless communication includes: means for transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and means for transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  • an apparatus for wireless communication includes: means for transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and means for receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of space division multiplexing sensing signals and communication signals, in accordance with various aspects of the present disclosure.
  • Figs. 4-6 are diagrams illustrating examples associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
  • Figs. 7-10 are diagrams illustrating example processes associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-10.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-10.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with precoding for joint sensing and communication services, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; means for receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding; and/or the like.
  • UE 120 may include means for receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal, means for determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; means for transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding; and/or the like.
  • base station 110 may include means for transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal, means for receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Some wireless networks may use nodes, such as base stations, to jointly perform sensing services and communication services (e.g., joint SensComm services) .
  • the sensing services may include object detection that may be used, for example, to improve the communication services or to improve other services.
  • a UE that receives a sensing signal (e.g., a target detection signal, an object detection signal, a radio detection and ranging (radar) signal, and/or the like) may use the sensing signal to detect objects for services such as assisted driving and/or steering of a vehicle (e.g., to avoid collisions) .
  • a sensing signal e.g., a target detection signal, an object detection signal, a radio detection and ranging (radar) signal, and/or the like
  • radar radio detection and ranging
  • Jointly performing sensing services and communication services may support a synergistic design of communications systems and sensing systems (e.g., object detection systems, radar systems, and/or the like) that may use a common spectrum and/or common components.
  • sensing signals and communication signals may have different characteristics, which may cause difficulty for managing interference between the sensing signals and the communication signals.
  • communication signals may use OFDM waveforms
  • sensing signals may use impulsive signals, frequency-modulated continuous waveforms (FMCW) , phase-modulated continuous waveforms (PMCW) , and/or the like.
  • Differences in characteristics of sensing services and communication services may cause difficulty for managing interference between the sensing signals and the communication signals and/or to maintain integrity of the sensing service and/or the communication service.
  • precoding for a communication signal may be adjusted slot-by-slot to improve a signal-to-interference-plus-noise ratio (SINR) .
  • SINR signal-to-interference-plus-noise ratio
  • Sensing services may be improved by maintaining a constant precoding for transmissions of sensing signals over multiple slots. For example, maintaining a constant precoding for multiple slots may improve resolution of object detection.
  • only signals having a same precoding may be coherently used for Doppler estimation, and coherent Doppler estimation may require sensing signals transmitted for a duration that is longer than a slot of the communication signals.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • SDM space division duplexing
  • using SDM may allow a transmitting node to be spatially selective, to transmit the one or more communication signals and the one or more sensing signals using different beams to reduce interference without lowering Doppler resolution of the one or more sensing signals, degrading range resolution, and/or introducing scheduling restrictions as described when using FDM or SDM.
  • Fig. 3 is a diagram illustrating an example 300 of SDM sensing signals and communication signals, in accordance with various aspects of the present disclosure.
  • a base station may transmit signals for reception by a first UE, a second UE, and/or the like.
  • the base station, the first UE, and the second UE may be part of a wireless network.
  • the base station may transmit one or more sensing signals for reception by the first UE.
  • the one or more sensing signals may be used to detect an object based at least in part on the one or more signals interacting with the object between transmission of the one or more signals by the base station and reception of the one or more signals by the first UE.
  • the object may cause reflection, refraction, a Doppler effect, and/or the like to the one or more signals.
  • the base station may transmit one or more communication signals to the second UE.
  • the base station may transmit one or more physical downlink control channel (PDCCH) communications, physical downlink shared channel (PDSCH) communications, reference signals, and/or the like.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the one or more sensing signals may cause interference with the one or more communication signals, and/or the one or more communication signals may cause interference with the one or more sensing signals.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • a node e.g., a base station
  • SDM short term evolution
  • a node using SDM may have difficulty managing interference between sensing signals and communication signals based at least in part on, for example, different characteristics of the sensing signals and the communication signals.
  • the node may transmit communication signals that may be improved by modifying precoding slot-by-slot.
  • modifying the precoding slot-by-slot may degrade resolution of object detection and/or Doppler detection for a UE that is using a sensing service.
  • a base station may provide an indication of precoding, relative to one or more previous sensing signals and/or one or more subsequent sensing signals, for a sensing signal.
  • the UE may receive an indication that precoding is fixed for multiple slots (e.g., based at least in part on the sensing service having a higher priority than the communication service) .
  • the UE may receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal.
  • the UE may use sensing signals that use a same precoding to perform sensing (e.g., object detection) . Based at least in part on using sensing signals that use the same precoding to perform sensing, the UE may avoid or reduce resolution degradation of object detection and/or degradation of Doppler detection.
  • Fig. 4 is a diagram illustrating an example 400 associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
  • a base station e.g., base station 110
  • UE e.g., UE 120
  • the base station and the UE may be part of a wireless network (e.g., wireless network 100) .
  • the UE may be configured to use one or more sensing signals from the base station to support a sensing service.
  • the base station may also support a communication service.
  • the base station may transmit, and the UE may receive, configuration information.
  • the UE may receive the configuration information from another device (e.g., from another base station, another UE, and/or the like) , from a specification of a communication standard, and/or the like.
  • the UE may receive the configuration information via one or more of radio resource control (RRC) signaling, medium access control (MAC) signaling (e.g., MAC control elements (MAC CEs) ) , and/or the like.
  • RRC radio resource control
  • MAC medium access control
  • the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE) for selection by the UE, explicit configuration information for the UE to use to configure the UE, and/or the like.
  • the configuration information may indicate that the UE is to receive an indication of a configuration or indication that indicates a precoding that is fixed for multiple slots.
  • the configuration information may indicate that the UE is to use multiple iterations of a sensing signal for the multiple slots to determine one or more object detection parameters.
  • the configuration information may indicate that the UE is to use the multiple iterations of the sensing signal to determine a Doppler estimation and/or a location of an object.
  • the UE may configure the UE for communicating with the base station and/or for using the sensing service.
  • the UE may configure the UE based at least in part on the configuration information.
  • the UE may be configured to perform one or more operations described herein.
  • the base station may transmit, and the UE may receive, an indication and/or configuration information that indicates a precoding that is fixed for multiple slots.
  • the indication and/or configuration information may indicate that the base station is to transmit one or more iterations of the sensing signal via the multiple slots.
  • the UE may receive the indication and/or configuration information via one or more of downlink control information (DCI) , one or more MAC CEs, or RRC signaling.
  • the indication and/or configuration information may include a semi-persistent scheduling (SPS) grant.
  • the sensing signal may be associated with a waveform that includes a signal transmitted via an ultra-wide bandwidth, an impulsive signal, a signal transmitted using FMCW, a signal transmitted using PMCW, and/or the like.
  • the indication and/or configuration information may indicate to receive multiple iterations of one or more additional sensing signals via the multiple slots using one or more additional precodings that are fixed for the multiple slots.
  • an additional indication and/or additional configuration information may indicate to receive multiple iterations of one or more additional sensing signals via the multiple slots using one or more additional precodings that are fixed for the multiple slots.
  • a respective additional sensing signal may have a fixed respective precoding for the multiple slots.
  • the additional precoding may be time division duplexed with the sensing signal within the multiple slots.
  • the sensing signal and the one or more additional sensing signals may be received as a sweeping process in which the UE may receive the sensing signal and the one or more additional sensing signals sequentially during the multiple slots.
  • the base station may transmit, and the UE may receive, multiple iterations of the sensing signal based at least in part on the indication and/or configuration information.
  • the UE may receive the one or more iterations of the sensing signal based at least in part on applying the precoding.
  • the UE may also receive multiple iterations of the additional sensing signals based at least in part on the indication and/or configuration information or the additional indication and/or additional configuration information.
  • the UE may determine a Doppler estimation and/or a location of an object based at least in part on the sensing signal. For example, the UE may determine the Doppler estimation and/or the location of the object based at least in part on receiving the multiple iterations of the sensing signal via the multiple slots and/or receiving the multiple iterations of the additional sensing signals via the multiple slots. In some aspects, the UE may use the Doppler estimation and/or the location of the object as input for an operation such as driving and/or steering a vehicle, selecting a beam for communicating with the base station or wireless communication device, performing a mapping operation, and/or the like.
  • an operation such as driving and/or steering a vehicle, selecting a beam for communicating with the base station or wireless communication device, performing a mapping operation, and/or the like.
  • the UE may transmit, and the base station may receive, an indication of the Doppler estimation and/or the location of the object.
  • the UE may transmit the indication using one or more of a MAC CE, a physical uplink control channel (PUCCH) message, a channel state information (CSI) report, an enhanced CSI report, and/or the like.
  • the UE may use the sensing signals over the multiple slots to determine one or more object detection parameters, and may avoid or reduce resolution degradation of object detection and/or degradation of Doppler detection.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
  • a base station e.g., base station 110
  • UE e.g., UE 120
  • the base station and the UE may be part of a wireless network (e.g., wireless network 100) .
  • the UE may be configured to use one or more sensing signals from the base station to support a sensing service.
  • the base station may also support a communication service.
  • the base station may transmit, and the UE may receive, configuration information.
  • the UE may receive the configuration information from another device (e.g., from another base station, another UE, and/or the like) , from a specification of a communication standard, and/or the like.
  • the UE may receive the configuration information via one or more of RRC signaling, MAC signaling (e.g., MAC CEs) , and/or the like.
  • the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE) for selection by the UE, explicit configuration information for the UE to use to configure the UE, and/or the like.
  • the configuration information may indicate that the UE is to receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal. In some aspects, the indication may identify one or more previous sensing signals and/or one or more subsequent sensing signals that use the same precoding.
  • the configuration information may indicate that the UE is to use multiple iterations of a sensing signal for the multiple slots to determine one or more object detection parameters. For example, the configuration information may indicate that the UE is to use the multiple iterations of the sensing signal to determine a Doppler estimation and/or a location of an object.
  • the UE may configure the UE for communicating with the base station and/or for using the sensing service.
  • the UE may configure the UE based at least in part on the configuration information.
  • the UE may be configured to perform one or more operations described herein.
  • the base station may transmit, and the UE may receive, an indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal may indicate that the base station has already transmitted one or more sensing signals and/or will transmit one or more sensing signals using the same precoding.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal may include an indication of a number of consecutive previous sensing signals transmitted using the same precoding, an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding, and/or the like.
  • the indication may include an identification of the previous sensing signal that used the same precoding and/or identification of the subsequent sensing signal that is to be transmitted using the same precoding.
  • the identification may include an index (e.g., a slot index) associated with the previous sensing signal or the subsequent sensing signal.
  • the UE may receive the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal before receiving the sensing signal, simultaneously with receiving the sensing signal, and/or after receiving the sensing signal.
  • the UE may receive the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal via one or more of DCI (e.g., a dynamic resource grant) , one or more MAC CEs (e.g., a dynamic indication) , or RRC signaling (e.g. a configured grant) .
  • DCI e.g., a dynamic resource grant
  • MAC CEs e.g., a dynamic indication
  • RRC signaling e.g. a configured grant
  • the base station may transmit, and the UE may receive, one or more iterations of the sensing signal based at least in part on a resource grant.
  • the UE may receive the one or more iterations of the sensing signal based at least in part on applying an indicated precoding.
  • the UE may determine the indicated precoding based at least in part on the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal.
  • the UE may determine a Doppler estimation and/or a location of an object based at least in part on the sensing signal. For example, the UE may determine the Doppler estimation and/or the location of the object based at least in part on receiving the multiple iterations of the sensing signal via multiple slots, as indicated via the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal. In some aspects, the UE may use the Doppler estimation and/or the location of the object as input for an operation such as driving and/or steering a vehicle, selecting a beam for communicating with the base station or wireless communication device, performing a mapping operation, and/or the like.
  • an operation such as driving and/or steering a vehicle, selecting a beam for communicating with the base station or wireless communication device, performing a mapping operation, and/or the like.
  • the UE may transmit, and the base station may receive, an indication of the Doppler estimation and/or the location of the object.
  • the UE may transmit the indication using one or more of a MAC CE, a physical uplink control channel (PUCCH) message, a CSI report, an enhanced CSI report, and/or the like.
  • the UE may use the multiple sensing signals to determine one or more object detection parameters, and may avoid or reduce resolution degradation of object detection and/or degradation of Doppler detection.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating examples 600 associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
  • a base station may transmit, and a UE may receive, sets of sensing signals having a same precoding.
  • set 1 includes multiple iterations of a sensing signal transmitted using a first precoding (e.g., associated with a first beam direction) .
  • the UE may receive the set 1 of sensing signals and determine one or more object detection parameters associated with set 1, such as a Doppler estimation and/or a location of an object.
  • Set 2 includes multiple iterations of a sensing signal transmitted using a second precoding (e.g., associated with a second beam direction) .
  • the UE may receive the set 2 of sensing signals and determine one or more object detection parameters associated with set 2.
  • Set 3 includes multiple iterations of a sensing signal transmitted using a third precoding (e.g., associated with a third beam direction) .
  • the UE may receive the set 3 of sensing signals and determine one or more object detection parameters associated with set 3. In this way, the UE may determine the one or more object detection parameters for different intervals of time using a fixed precoder for each of the intervals.
  • the UE may receive one or more indications of the configurations shown by reference number 605. For example, the UE may receive an indication for each of the sets of slots in a single indication or in multiple indications. The UE may use the indication of the configurations to configure the UE to receive the sensing signals according to the configurations. In other words, the UE may be configured to receive a periodic sensing signal (e.g., having a waveform that includes a pulse, FMCW, PMCW, OFDM, and/or the like) lasting for multiple slots (e.g., 100 slots) at each instance, and the precoding of the sensing signal may remain fixed during the multiple slots.
  • a periodic sensing signal e.g., having a waveform that includes a pulse, FMCW, PMCW, OFDM, and/or the like
  • a base station may transmit, and a UE may receive, sets of multiple sensing signals having corresponding precodings.
  • set 1 includes multiple iterations of a first sensing signal transmitted using a first precoding (e.g., associated with a first beam direction) , multiple iterations of a second sensing signal transmitted using a second precoding (e.g., associated with a second beam direction) , and multiple iterations of a third sensing signal transmitted using a third precoding (e.g., associated with a third beam direction) .
  • the base station may indicate to change precoding for one or more of the sensing signals between set 1, set 2, and/or set 3.
  • the base station may change precoding for each of the sensing signals between sets, for none of the sensing signals between sets, or for some of the sensing signals between sets.
  • the UE may receive one or more indications of the configurations shown by reference number 610. For example, the UE may receive an indication for each of the sets of slots in a single indication or in multiple indications. The UE may use the indication of the configurations to configure the UE to receive the sensing signals according to the configurations. In other words, the UE may be configured to monitor multiple sensing signals having different precodings at each instance, with the precodings of respective signals staying the same across multiple instances.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with precoding for joint sensing and communication services.
  • the UE e.g., UE 120 and/or the like
  • process 700 may include receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots (block 710) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • process 700 may include receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding (block 720) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the sensing signal is associated with a waveform that includes one or more of: a signal transmitted via an ultra-wide bandwidth, an impulsive signal, a signal transmitted using a frequency-modulated continuous wave, or a signal transmitted using a time-modulated continuous wave.
  • the configuration or indication includes an SPS grant.
  • the configuration or indication indicates to receive multiple iterations of an additional sensing signal via the multiple slots using an additional precoding that is fixed for the multiple slots, and process 700 further includes receiving the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
  • process 700 includes receiving an additional configuration or indication, to receive multiple iterations of an additional sensing signal via the multiple slots, that indicates an additional precoding that is fixed for the multiple slots; and receiving the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
  • process 700 includes determining a Doppler estimation of an object based at least in part on receiving the multiple iterations of the sensing signal via the multiple slots.
  • process 700 includes transmitting an indication of a Doppler estimation of an object based at least in part on receiving the multiple iterations of the sensing signal via the multiple slots.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with precoding for joint sensing and communication services.
  • the UE e.g., UE 120 and/or the like
  • process 800 may include receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal (block 810) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • process 800 may include determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal (block 820) .
  • the UE e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • receiving the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes receiving the indication via one or more of: DCI, one or more MAC CEs, or RRC signaling.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes an identification of the previous sensing signal that used the same precoding.
  • receiving the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes receiving the indication before receiving the sensing signal, or receiving the indication after receiving the sensing signal.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of a number of consecutive previous sensing signals transmitted using the same precoding, or an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of multiple previous sensing signals transmitted using the same precoding, or an indication of multiple subsequent sensing signals to be transmitted using the same precoding.
  • process 800 includes transmitting an indication of the Doppler estimation associated with the object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 900 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with precoding for joint sensing and communication services.
  • the base station e.g., base station 110 and/or the like
  • process 900 may include transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots (block 910) .
  • the base station e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like
  • process 900 may include transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding (block 920) .
  • the base station e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the sensing signal is associated with a waveform that includes one or more of: a signal transmitted via an ultra-wide bandwidth, an impulsive signal, a signal transmitted using a frequency-modulated continuous wave, or a signal transmitted using a time-modulated continuous wave.
  • the configuration or indication includes a SPS grant.
  • the configuration or indication indicates for the UE to receive multiple iterations of an additional sensing signal via the multiple slots using an additional precoding that is fixed for the multiple slots, and process 900 further includes transmitting the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
  • process 900 includes receiving an indication of a Doppler estimation of an object based at least in part on the multiple iterations of the sensing signal.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 1000 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with precoding for joint sensing and communication services.
  • the base station e.g., base station 110 and/or the like
  • process 1000 may include transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal (block 1010) .
  • the base station e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like
  • process 1000 may include receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal (block 1020) .
  • the base station e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like
  • Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • transmitting the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal includes transmitting the indication via one or more of: DCI, one or more MAC CEs, or RRC signaling.
  • the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal includes an identification of the previous sensing signal that used the same precoding.
  • transmitting the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal includes transmitting the indication before receiving the sensing signal, or transmitting the indication after receiving the sensing signal.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of a number of consecutive previous sensing signals transmitted using the same precoding, or an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding.
  • the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of multiple previous sensing signals transmitted using the same precoding, or an indication of multiple subsequent sensing signals to be transmitted using the same precoding.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding. Numerous other aspects are provided.

Description

PRECODING FOR JOINT SENSING AND COMMUNICATION SERVICES
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for precoding for joint sensing and communication services.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the  uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a user equipment (UE) includes: receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, a method of wireless communication performed by a UE includes: receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, a method of wireless communication performed by a base station includes: transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, a method of wireless communication performed by a base station includes: transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, a user equipment for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, a user equipment for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and determine a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, a base station for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, a base station for wireless communication includes: a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and receive an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that,  when executed by one or more processors of a user equipment, cause the one or more processors to: receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to: receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and determine a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to: transmit a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, a non-transitory computer-readable medium storing one or more instructions for wireless communication includes: one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to: transmit an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and  receive an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, an apparatus for wireless communication includes: means for receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and means for receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, an apparatus for wireless communication includes: means for receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and means for determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
In some aspects, an apparatus for wireless communication includes: means for transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and means for transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
In some aspects, an apparatus for wireless communication includes: means for transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal; and means for receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is  transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the  description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of space division multiplexing sensing signals and communication signals, in accordance with various aspects of the present disclosure.
Figs. 4-6 are diagrams illustrating examples associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
Figs. 7-10 are diagrams illustrating example processes associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect  of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station  (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of  backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a  laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate  on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union  (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for  reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term "controller/processor" may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received  signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-10.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to  controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-10.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with precoding for joint sensing and communication services, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other  processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; means for receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding; and/or the like. In some aspects, UE 120 may include means for receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal, means for determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; means for transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding; and/or the like. In some aspects, base station 110 may include means for transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal, means for receiving an indication of a Doppler estimation  associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Some wireless networks may use nodes, such as base stations, to jointly perform sensing services and communication services (e.g., joint SensComm services) . The sensing services may include object detection that may be used, for example, to improve the communication services or to improve other services. For example, a UE that receives a sensing signal (e.g., a target detection signal, an object detection signal, a radio detection and ranging (radar) signal, and/or the like) may use the sensing signal to detect objects for services such as assisted driving and/or steering of a vehicle (e.g., to avoid collisions) .
Jointly performing sensing services and communication services may support a synergistic design of communications systems and sensing systems (e.g., object  detection systems, radar systems, and/or the like) that may use a common spectrum and/or common components. However, sensing signals and communication signals may have different characteristics, which may cause difficulty for managing interference between the sensing signals and the communication signals. For example, communication signals may use OFDM waveforms, and sensing signals may use impulsive signals, frequency-modulated continuous waveforms (FMCW) , phase-modulated continuous waveforms (PMCW) , and/or the like.
Differences in characteristics of sensing services and communication services may cause difficulty for managing interference between the sensing signals and the communication signals and/or to maintain integrity of the sensing service and/or the communication service. For example, precoding for a communication signal may be adjusted slot-by-slot to improve a signal-to-interference-plus-noise ratio (SINR) . Sensing services may be improved by maintaining a constant precoding for transmissions of sensing signals over multiple slots. For example, maintaining a constant precoding for multiple slots may improve resolution of object detection. In some examples, only signals having a same precoding may be coherently used for Doppler estimation, and coherent Doppler estimation may require sensing signals transmitted for a duration that is longer than a slot of the communication signals.
Using time division multiplexing (TDM) and/or frequency division multiplexing (FDM) to transmit the communication signals and the sensing signals may reduce interference between the communication signals and the sensing signals. However, using TDM may lower Doppler resolution of the one or more sensing signals and may cause scheduling restrictions for the one or more communication signals (e.g., to avoid simultaneous transmissions) . Similarly, using FDM may cause scheduling restrictions for the one or more communication signals (e.g., to avoid using same or  related frequencies) and/or may degrade range resolution of the one or more sensing signals.
Although using space division duplexing (SDM) may cause difficulty for managing interference between the sensing signals and the communication signals and/or to maintain integrity of the sensing service and/or the communication service, using SDM may allow a transmitting node to be spatially selective, to transmit the one or more communication signals and the one or more sensing signals using different beams to reduce interference without lowering Doppler resolution of the one or more sensing signals, degrading range resolution, and/or introducing scheduling restrictions as described when using FDM or SDM.
Fig. 3 is a diagram illustrating an example 300 of SDM sensing signals and communication signals, in accordance with various aspects of the present disclosure. As shown in Fig. 3, a base station may transmit signals for reception by a first UE, a second UE, and/or the like. The base station, the first UE, and the second UE may be part of a wireless network.
As shown by reference number 305, the base station may transmit one or more sensing signals for reception by the first UE. The one or more sensing signals may be used to detect an object based at least in part on the one or more signals interacting with the object between transmission of the one or more signals by the base station and reception of the one or more signals by the first UE. For example, the object may cause reflection, refraction, a Doppler effect, and/or the like to the one or more signals.
As shown by reference number 310, the base station may transmit one or more communication signals to the second UE. For example, the base station may transmit one or more physical downlink control channel (PDCCH) communications, physical downlink shared channel (PDSCH) communications, reference signals, and/or the like.
As shown by reference number 315, the one or more sensing signals may cause interference with the one or more communication signals, and/or the one or more communication signals may cause interference with the one or more sensing signals.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
As described above, a node (e.g., a base station) that jointly performs sensing services and communication services using SDM may provide advantages over TDM and FDM, such as improved Doppler resolution, range resolution, and scheduling. However, a node using SDM may have difficulty managing interference between sensing signals and communication signals based at least in part on, for example, different characteristics of the sensing signals and the communication signals. For example, the node may transmit communication signals that may be improved by modifying precoding slot-by-slot. However, modifying the precoding slot-by-slot may degrade resolution of object detection and/or Doppler detection for a UE that is using a sensing service.
As described herein, a base station (e.g., a node that transmits signals associated with a communication service and a sensing service) may provide an indication of precoding, relative to one or more previous sensing signals and/or one or more subsequent sensing signals, for a sensing signal. In some aspects, the UE may receive an indication that precoding is fixed for multiple slots (e.g., based at least in part on the sensing service having a higher priority than the communication service) . In some aspects, the UE may receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal. In this way, the UE may use sensing signals that use a same precoding to perform sensing (e.g., object detection) . Based at least in part on using sensing signals  that use the same precoding to perform sensing, the UE may avoid or reduce resolution degradation of object detection and/or degradation of Doppler detection.
Fig. 4 is a diagram illustrating an example 400 associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure. As shown in Fig. 4, a base station (e.g., base station 110) may communicate with a UE (e.g., UE 120) . The base station and the UE may be part of a wireless network (e.g., wireless network 100) . In some aspects, the UE may be configured to use one or more sensing signals from the base station to support a sensing service. The base station may also support a communication service.
As shown by reference number 405, the base station may transmit, and the UE may receive, configuration information. In some aspects, the UE may receive the configuration information from another device (e.g., from another base station, another UE, and/or the like) , from a specification of a communication standard, and/or the like. In some aspects, the UE may receive the configuration information via one or more of radio resource control (RRC) signaling, medium access control (MAC) signaling (e.g., MAC control elements (MAC CEs) ) , and/or the like. In some aspects, the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE) for selection by the UE, explicit configuration information for the UE to use to configure the UE, and/or the like.
In some aspects, the configuration information may indicate that the UE is to receive an indication of a configuration or indication that indicates a precoding that is fixed for multiple slots. The configuration information may indicate that the UE is to use multiple iterations of a sensing signal for the multiple slots to determine one or more object detection parameters. For example, the configuration information may  indicate that the UE is to use the multiple iterations of the sensing signal to determine a Doppler estimation and/or a location of an object.
As shown by reference number 410, the UE may configure the UE for communicating with the base station and/or for using the sensing service. In some aspects, the UE may configure the UE based at least in part on the configuration information. In some aspects, the UE may be configured to perform one or more operations described herein.
As shown by reference number 415, the base station may transmit, and the UE may receive, an indication and/or configuration information that indicates a precoding that is fixed for multiple slots. In some aspects, the indication and/or configuration information may indicate that the base station is to transmit one or more iterations of the sensing signal via the multiple slots. In some aspects, the UE may receive the indication and/or configuration information via one or more of downlink control information (DCI) , one or more MAC CEs, or RRC signaling. In some aspects, the indication and/or configuration information may include a semi-persistent scheduling (SPS) grant. In some aspects, the sensing signal may be associated with a waveform that includes a signal transmitted via an ultra-wide bandwidth, an impulsive signal, a signal transmitted using FMCW, a signal transmitted using PMCW, and/or the like.
In some aspects, the indication and/or configuration information may indicate to receive multiple iterations of one or more additional sensing signals via the multiple slots using one or more additional precodings that are fixed for the multiple slots. In some aspects, an additional indication and/or additional configuration information may indicate to receive multiple iterations of one or more additional sensing signals via the multiple slots using one or more additional precodings that are fixed for the multiple slots. A respective additional sensing signal may have a fixed respective precoding for  the multiple slots. In some aspects, the additional precoding may be time division duplexed with the sensing signal within the multiple slots. In some aspects, the sensing signal and the one or more additional sensing signals may be received as a sweeping process in which the UE may receive the sensing signal and the one or more additional sensing signals sequentially during the multiple slots.
As shown by reference number 420, the base station may transmit, and the UE may receive, multiple iterations of the sensing signal based at least in part on the indication and/or configuration information. The UE may receive the one or more iterations of the sensing signal based at least in part on applying the precoding. In some aspects, the UE may also receive multiple iterations of the additional sensing signals based at least in part on the indication and/or configuration information or the additional indication and/or additional configuration information.
As shown by reference number 425, the UE may determine a Doppler estimation and/or a location of an object based at least in part on the sensing signal. For example, the UE may determine the Doppler estimation and/or the location of the object based at least in part on receiving the multiple iterations of the sensing signal via the multiple slots and/or receiving the multiple iterations of the additional sensing signals via the multiple slots. In some aspects, the UE may use the Doppler estimation and/or the location of the object as input for an operation such as driving and/or steering a vehicle, selecting a beam for communicating with the base station or wireless communication device, performing a mapping operation, and/or the like.
As shown by reference number 430, the UE may transmit, and the base station may receive, an indication of the Doppler estimation and/or the location of the object. In some aspects the UE may transmit the indication using one or more of a MAC CE, a  physical uplink control channel (PUCCH) message, a channel state information (CSI) report, an enhanced CSI report, and/or the like.
Based at least in part on using sensing signals over multiple slots that use the same precoding to perform sensing, the UE may use the sensing signals over the multiple slots to determine one or more object detection parameters, and may avoid or reduce resolution degradation of object detection and/or degradation of Doppler detection.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure. As shown in Fig. 5, a base station (e.g., base station 110) may communicate with a UE (e.g., UE 120) . The base station and the UE may be part of a wireless network (e.g., wireless network 100) . In some aspects, the UE may be configured to use one or more sensing signals from the base station to support a sensing service. The base station may also support a communication service.
As shown by reference number 505, the base station may transmit, and the UE may receive, configuration information. In some aspects, the UE may receive the configuration information from another device (e.g., from another base station, another UE, and/or the like) , from a specification of a communication standard, and/or the like. In some aspects, the UE may receive the configuration information via one or more of RRC signaling, MAC signaling (e.g., MAC CEs) , and/or the like. In some aspects, the configuration information may include an indication of one or more configuration parameters (e.g., already known to the UE) for selection by the UE, explicit configuration information for the UE to use to configure the UE, and/or the like.
In some aspects, the configuration information may indicate that the UE is to receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal. In some aspects, the indication may identify one or more previous sensing signals and/or one or more subsequent sensing signals that use the same precoding. The configuration information may indicate that the UE is to use multiple iterations of a sensing signal for the multiple slots to determine one or more object detection parameters. For example, the configuration information may indicate that the UE is to use the multiple iterations of the sensing signal to determine a Doppler estimation and/or a location of an object.
As shown by reference number 510, the UE may configure the UE for communicating with the base station and/or for using the sensing service. In some aspects, the UE may configure the UE based at least in part on the configuration information. In some aspects, the UE may be configured to perform one or more operations described herein.
As shown by reference number 515, the base station may transmit, and the UE may receive, an indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal. In some aspects, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal may indicate that the base station has already transmitted one or more sensing signals and/or will transmit one or more sensing signals using the same precoding.
In some aspects, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal may include an indication of a number of consecutive previous sensing signals  transmitted using the same precoding, an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding, and/or the like.
In some aspects, the indication may include an identification of the previous sensing signal that used the same precoding and/or identification of the subsequent sensing signal that is to be transmitted using the same precoding. The identification may include an index (e.g., a slot index) associated with the previous sensing signal or the subsequent sensing signal.
In some aspects, the UE may receive the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal before receiving the sensing signal, simultaneously with receiving the sensing signal, and/or after receiving the sensing signal.
In some aspects, the UE may receive the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal via one or more of DCI (e.g., a dynamic resource grant) , one or more MAC CEs (e.g., a dynamic indication) , or RRC signaling (e.g. a configured grant) .
As shown by reference number 520, the base station may transmit, and the UE may receive, one or more iterations of the sensing signal based at least in part on a resource grant. The UE may receive the one or more iterations of the sensing signal based at least in part on applying an indicated precoding. The UE may determine the indicated precoding based at least in part on the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal.
As shown by reference number 525, the UE may determine a Doppler estimation and/or a location of an object based at least in part on the sensing signal. For example, the UE may determine the Doppler estimation and/or the location of the object  based at least in part on receiving the multiple iterations of the sensing signal via multiple slots, as indicated via the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal. In some aspects, the UE may use the Doppler estimation and/or the location of the object as input for an operation such as driving and/or steering a vehicle, selecting a beam for communicating with the base station or wireless communication device, performing a mapping operation, and/or the like.
As shown by reference number 530, the UE may transmit, and the base station may receive, an indication of the Doppler estimation and/or the location of the object. In some aspects, the UE may transmit the indication using one or more of a MAC CE, a physical uplink control channel (PUCCH) message, a CSI report, an enhanced CSI report, and/or the like.
Based at least in part on receiving an indication of multiple sensing signals that use the same precoding to perform sensing, the UE may use the multiple sensing signals to determine one or more object detection parameters, and may avoid or reduce resolution degradation of object detection and/or degradation of Doppler detection.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating examples 600 associated with precoding for joint sensing and communication services, in accordance with various aspects of the present disclosure.
As shown by reference number 605, a base station may transmit, and a UE may receive, sets of sensing signals having a same precoding. For example, set 1 includes multiple iterations of a sensing signal transmitted using a first precoding (e.g., associated with a first beam direction) . The UE may receive the set 1 of sensing signals  and determine one or more object detection parameters associated with set 1, such as a Doppler estimation and/or a location of an object. Set 2 includes multiple iterations of a sensing signal transmitted using a second precoding (e.g., associated with a second beam direction) . The UE may receive the set 2 of sensing signals and determine one or more object detection parameters associated with set 2. Set 3 includes multiple iterations of a sensing signal transmitted using a third precoding (e.g., associated with a third beam direction) . The UE may receive the set 3 of sensing signals and determine one or more object detection parameters associated with set 3. In this way, the UE may determine the one or more object detection parameters for different intervals of time using a fixed precoder for each of the intervals.
In some aspects, the UE may receive one or more indications of the configurations shown by reference number 605. For example, the UE may receive an indication for each of the sets of slots in a single indication or in multiple indications. The UE may use the indication of the configurations to configure the UE to receive the sensing signals according to the configurations. In other words, the UE may be configured to receive a periodic sensing signal (e.g., having a waveform that includes a pulse, FMCW, PMCW, OFDM, and/or the like) lasting for multiple slots (e.g., 100 slots) at each instance, and the precoding of the sensing signal may remain fixed during the multiple slots.
As shown by reference number 610, a base station may transmit, and a UE may receive, sets of multiple sensing signals having corresponding precodings. For example, set 1 includes multiple iterations of a first sensing signal transmitted using a first precoding (e.g., associated with a first beam direction) , multiple iterations of a second sensing signal transmitted using a second precoding (e.g., associated with a second beam direction) , and multiple iterations of a third sensing signal transmitted  using a third precoding (e.g., associated with a third beam direction) . In some aspects, the base station may indicate to change precoding for one or more of the sensing signals between set 1, set 2, and/or set 3. For example, the base station may change precoding for each of the sensing signals between sets, for none of the sensing signals between sets, or for some of the sensing signals between sets.
In some aspects, the UE may receive one or more indications of the configurations shown by reference number 610. For example, the UE may receive an indication for each of the sets of slots in a single indication or in multiple indications. The UE may use the indication of the configurations to configure the UE to receive the sensing signals according to the configurations. In other words, the UE may be configured to monitor multiple sensing signals having different precodings at each instance, with the precodings of respective signals staying the same across multiple instances.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 700 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with precoding for joint sensing and communication services.
As shown in Fig. 7, in some aspects, process 700 may include receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots (block 710) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding (block 720) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the sensing signal is associated with a waveform that includes one or more of: a signal transmitted via an ultra-wide bandwidth, an impulsive signal, a signal transmitted using a frequency-modulated continuous wave, or a signal transmitted using a time-modulated continuous wave.
In a second aspect, alone or in combination with the first aspect, the configuration or indication includes an SPS grant.
In a third aspect, alone or in combination with one or more of the first and second aspects, the configuration or indication indicates to receive multiple iterations of an additional sensing signal via the multiple slots using an additional precoding that is fixed for the multiple slots, and process 700 further includes receiving the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 700 includes receiving an additional configuration or indication, to receive multiple iterations of an additional sensing signal via the multiple slots, that indicates an additional precoding that is fixed for the multiple slots; and  receiving the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 700 includes determining a Doppler estimation of an object based at least in part on receiving the multiple iterations of the sensing signal via the multiple slots.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 700 includes transmitting an indication of a Doppler estimation of an object based at least in part on receiving the multiple iterations of the sensing signal via the multiple slots.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 800 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with precoding for joint sensing and communication services.
As shown in Fig. 8, in some aspects, process 800 may include receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal (block 810) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may receive an indication of whether a sensing signal is transmitted using a same  precoding as a previous sensing signal or a subsequent sensing signal, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include determining a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal (block 820) . For example, the UE (e.g., using receive processor 258, controller/processor 280, memory 282, and/or the like) may determine a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, receiving the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes receiving the indication via one or more of: DCI, one or more MAC CEs, or RRC signaling.
In a second aspect, alone or in combination with the first aspect, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes an identification of the previous sensing signal that used the same precoding.
In a third aspect, alone or in combination with one or more of the first and second aspects, receiving the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing  signal includes receiving the indication before receiving the sensing signal, or receiving the indication after receiving the sensing signal.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of a number of consecutive previous sensing signals transmitted using the same precoding, or an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of multiple previous sensing signals transmitted using the same precoding, or an indication of multiple subsequent sensing signals to be transmitted using the same precoding.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 800 includes transmitting an indication of the Doppler estimation associated with the object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure.  Example process 900 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with precoding for joint sensing and communication services.
As shown in Fig. 9, in some aspects, process 900 may include transmitting a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots (block 910) . For example, the base station (e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like) may transmit a configuration or indication, for a UE to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding (block 920) . For example, the base station (e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like) may transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the sensing signal is associated with a waveform that includes one or more of: a signal transmitted via an ultra-wide bandwidth, an impulsive signal, a signal transmitted using a frequency-modulated continuous wave, or a signal transmitted using a time-modulated continuous wave.
In a second aspect, alone or in combination with the first aspect, the configuration or indication includes a SPS grant.
In a third aspect, alone or in combination with one or more of the first and second aspects, the configuration or indication indicates for the UE to receive multiple iterations of an additional sensing signal via the multiple slots using an additional precoding that is fixed for the multiple slots, and process 900 further includes transmitting the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 900 includes receiving an indication of a Doppler estimation of an object based at least in part on the multiple iterations of the sensing signal.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 1000 is an example where the base station (e.g., base station 110 and/or the like) performs operations associated with precoding for joint sensing and communication services.
As shown in Fig. 10, in some aspects, process 1000 may include transmitting an indication of whether a sensing signal is transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal (block 1010) . For example, the base station (e.g., using transmit processor 220, controller/processor 240, memory 242, and/or the like) may transmit an indication of whether a sensing signal is  transmitted to a UE using a same precoding as a previous sensing signal or a subsequent sensing signal, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include receiving an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal (block 1020) . For example, the base station (e.g., using receive processor 238, controller/processor 240, memory 242, and/or the like) may receive an indication of a Doppler estimation associated with an object based at least in part on the sensing signal and the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal, as described above.
Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, transmitting the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal includes transmitting the indication via one or more of: DCI, one or more MAC CEs, or RRC signaling.
In a second aspect, alone or in combination with the first aspect, the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal includes an identification of the previous sensing signal that used the same precoding.
In a third aspect, alone or in combination with one or more of the first and second aspects, transmitting the indication of whether the sensing signal is transmitted  to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal includes transmitting the indication before receiving the sensing signal, or transmitting the indication after receiving the sensing signal.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of a number of consecutive previous sensing signals transmitted using the same precoding, or an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal includes one or more of: an indication of multiple previous sensing signals transmitted using the same precoding, or an indication of multiple subsequent sensing signals to be transmitted using the same precoding.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a  processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (33)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  2. The method of claim 1, wherein the sensing signal is associated with a waveform that includes one or more of:
    a signal transmitted via an ultra-wide bandwidth,
    an impulsive signal,
    a signal transmitted using a frequency-modulated continuous wave, or
    a signal transmitted using a time-modulated continuous wave.
  3. The method of claim 1, wherein the configuration or indication comprises a semi-persistent scheduling grant.
  4. The method of claim 1, wherein the configuration or indication indicates to receive multiple iterations of an additional sensing signal via the multiple slots using an additional precoding that is fixed for the multiple slots, and
    wherein the method further comprises:
    receiving the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
  5. The method of claim 1, further comprising:
    receiving an additional configuration or additional indication, to receive multiple iterations of an additional sensing signal via the multiple slots, that indicates an additional precoding that is fixed for the multiple slots; and
    receiving the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
  6. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    receiving the sensing signal.
  7. The method of claim 6, wherein receiving the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises:
    receiving the indication via one or more of:
    downlink control information,
    one or more medium access control control elements, or
    radio resource control signaling.
  8. The method of claim 6, wherein the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises:
    an identification of the previous sensing signal that used the same precoding.
  9. The method of claim 6, wherein receiving the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises:
    receiving the indication before receiving the sensing signal, or
    receiving the indication after receiving the sensing signal.
  10. The method of claim 6, wherein the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises one or more of:
    an indication of a number of consecutive previous sensing signals transmitted using the same precoding, or
    an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding.
  11. The method of claim 6, wherein the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises one or more of:
    an indication of multiple previous sensing signals transmitted using the same precoding, or
    an indication of multiple subsequent sensing signals to be transmitted using the same precoding.
  12. A method of wireless communication performed by a base station, comprising:
    transmitting a configuration or indication, for a user equipment (UE) to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  13. The method of claim 12, wherein the sensing signal is associated with a waveform that includes one or more of:
    a signal transmitted via an ultra-wide bandwidth,
    an impulsive signal,
    a signal transmitted using a frequency-modulated continuous wave, or
    a signal transmitted using a time-modulated continuous wave.
  14. The method of claim 12, wherein the configuration or indication comprises a semi-persistent scheduling grant.
  15. The method of claim 12, wherein the configuration or indication indicates for the UE to receive multiple iterations of an additional sensing signal via the multiple slots using an additional precoding that is fixed for the multiple slots, and
    wherein the method further comprises:
    transmitting the multiple iterations of the additional sensing signal via the multiple slots based at least in part on the additional precoding.
  16. A method of wireless communication performed by a base station, comprising:
    transmitting an indication of whether a sensing signal is transmitted to a user equipment (UE) using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    transmitting the sensing signal.
  17. The method of claim 16, wherein transmitting the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal comprises:
    transmitting the indication via one or more of:
    downlink control information,
    one or more medium access control control elements, or
    radio resource control signaling.
  18. The method of claim 16, wherein the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal comprises:
    an identification of the previous sensing signal that used the same precoding.
  19. The method of claim 16, wherein transmitting the indication of whether the sensing signal is transmitted to the UE using the same precoding as the previous sensing signal or the subsequent sensing signal comprises:
    transmitting the indication before receiving the sensing signal, or
    transmitting the indication after receiving the sensing signal.
  20. The method of claim 16, wherein the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises one or more of:
    an indication of a number of consecutive previous sensing signals transmitted using the same precoding, or
    an indication of a number of consecutive subsequent sensing signals to be transmitted using the same precoding.
  21. The method of claim 16, wherein the indication of whether the sensing signal is transmitted using the same precoding as the previous sensing signal or the subsequent sensing signal comprises one or more of:
    an indication of multiple previous sensing signals transmitted using the same precoding, or
    an indication of multiple subsequent sensing signals to be transmitted using the same precoding.
  22. A user equipment for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  23. A user equipment for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    receiving the sensing signal.
  24. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit a configuration or indication, for a user equipment (UE) to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  25. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit an indication of whether a sensing signal is transmitted to a user equipment (UE) using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    transmit the sensing signal.
  26. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to:
    receive a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    receive the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  27. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to:
    receive an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    receive the sensing signal.
  28. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    transmit a configuration or indication, for a user equipment (UE) to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    transmit, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  29. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    transmit an indication of whether a sensing signal is transmitted to a user equipment (UE) using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    transmit the sensing signal.
  30. An apparatus for wireless communication, comprising:
    means for receiving a configuration or indication, to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    means for receiving the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  31. An apparatus for wireless communication, comprising:
    means for receiving an indication of whether a sensing signal is transmitted using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    means for receiving the sensing signal.
  32. An apparatus for wireless communication, comprising:
    means for transmitting a configuration or indication, for a user equipment (UE) to receive multiple iterations of a sensing signal via multiple slots, that indicates a precoding that is fixed for the multiple slots; and
    means for transmitting, to the UE, the multiple iterations of the sensing signal via the multiple slots based at least in part on the precoding.
  33. An apparatus for wireless communication, comprising:
    means for transmitting an indication of whether a sensing signal is transmitted to a user equipment (UE) using a same precoding as a previous sensing signal or a subsequent sensing signal; and
    means for transmitting the sensing signal.
PCT/CN2020/099135 2020-06-30 2020-06-30 Precoding for joint sensing and communication services WO2022000235A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/099135 WO2022000235A1 (en) 2020-06-30 2020-06-30 Precoding for joint sensing and communication services
US17/998,213 US20230224696A1 (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services
EP21832964.7A EP4173372A1 (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services
PCT/CN2021/097827 WO2022001560A1 (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services
CN202180045351.2A CN115868209A (en) 2020-06-30 2021-06-02 Precoding for joint sensing and communication services

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099135 WO2022000235A1 (en) 2020-06-30 2020-06-30 Precoding for joint sensing and communication services

Publications (1)

Publication Number Publication Date
WO2022000235A1 true WO2022000235A1 (en) 2022-01-06

Family

ID=79317695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099135 WO2022000235A1 (en) 2020-06-30 2020-06-30 Precoding for joint sensing and communication services

Country Status (1)

Country Link
WO (1) WO2022000235A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664723A (en) * 2014-07-29 2017-05-10 华为技术有限公司 Device, network, and method for communications with spatial-specific sensing
WO2018132781A1 (en) * 2017-01-13 2018-07-19 Idac Holdings, Inc. Methods, apparatuses and systems directed to phase-continuous frequency selective precoding
US20180317225A1 (en) * 2017-04-28 2018-11-01 Qualcomm Incorporated Reference signal design for slot aggregation
CN109076542A (en) * 2017-01-09 2018-12-21 联发科技股份有限公司 The interference management method and device of mobile communication
CN110495201A (en) * 2017-02-14 2019-11-22 瑞典爱立信有限公司 Accumulated interference distribution
CN110637494A (en) * 2017-06-09 2019-12-31 中兴通讯股份有限公司 System and method for measuring and controlling cross-link interference in wireless communications
CN110809904A (en) * 2017-07-01 2020-02-18 英特尔公司 Method and apparatus for vehicle radio communication
CN111096050A (en) * 2017-09-11 2020-05-01 高通股份有限公司 Method and apparatus for dynamic Time Division Duplexing (TDD)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664723A (en) * 2014-07-29 2017-05-10 华为技术有限公司 Device, network, and method for communications with spatial-specific sensing
CN109076542A (en) * 2017-01-09 2018-12-21 联发科技股份有限公司 The interference management method and device of mobile communication
WO2018132781A1 (en) * 2017-01-13 2018-07-19 Idac Holdings, Inc. Methods, apparatuses and systems directed to phase-continuous frequency selective precoding
CN110495201A (en) * 2017-02-14 2019-11-22 瑞典爱立信有限公司 Accumulated interference distribution
US20180317225A1 (en) * 2017-04-28 2018-11-01 Qualcomm Incorporated Reference signal design for slot aggregation
CN110637494A (en) * 2017-06-09 2019-12-31 中兴通讯股份有限公司 System and method for measuring and controlling cross-link interference in wireless communications
CN110809904A (en) * 2017-07-01 2020-02-18 英特尔公司 Method and apparatus for vehicle radio communication
CN111096050A (en) * 2017-09-11 2020-05-01 高通股份有限公司 Method and apparatus for dynamic Time Division Duplexing (TDD)

Similar Documents

Publication Publication Date Title
WO2022001560A1 (en) Precoding for joint sensing and communication services
US11705952B2 (en) Periodic channel state information reference signal beam management scheduling
WO2022000229A1 (en) Sensing interference reports
EP4073945A1 (en) Downlink control information based beam and pathloss reference signal configuration activation
KR20220140728A (en) Stop uplink transmission
WO2021127673A1 (en) Techniques for activating a pathloss reference signal
WO2021119644A1 (en) Action time for applying downlink control information based beam and reference signal activation command
US11871422B2 (en) Frequency allocation for channel state information reference signals
WO2022000228A1 (en) Sensing signal configuration and scheduling
WO2022000236A1 (en) Directional sensing signal request
WO2021155404A1 (en) Techniques for indicating a user equipment capability for simultaneous beam update across multiple component carriers
EP4193643A1 (en) Channel state information report type configuration
US11558221B2 (en) Sounding reference signal resource indicator group indication
WO2022000227A1 (en) Channel state information reports and channel state information interference measurement reports associated with joint sensing and communication services
WO2022000235A1 (en) Precoding for joint sensing and communication services
US11621818B2 (en) Transmission configuration indicator state configuration
WO2022141144A1 (en) Time-based application of path loss estimation
WO2022151022A1 (en) Channel state information joint measurements
WO2022205087A1 (en) Beam switching gap based on user equipment capability
WO2022160150A1 (en) Uplink control information cooperation
US20210274471A1 (en) Techniques for selecting resources from resource maps obtained from nearby devices
WO2021115358A1 (en) Quasi-colocation configuration
US20230309143A1 (en) Channel sensing for dynamic frequency selection (dfs)-assisted signals
WO2022000224A1 (en) Backhaul aware bandwidth management
WO2022056664A1 (en) Determining size for downlink control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943527

Country of ref document: EP

Kind code of ref document: A1