WO2021253210A1 - Methods and apparatus for space-frequency-time diversity - Google Patents

Methods and apparatus for space-frequency-time diversity Download PDF

Info

Publication number
WO2021253210A1
WO2021253210A1 PCT/CN2020/096271 CN2020096271W WO2021253210A1 WO 2021253210 A1 WO2021253210 A1 WO 2021253210A1 CN 2020096271 W CN2020096271 W CN 2020096271W WO 2021253210 A1 WO2021253210 A1 WO 2021253210A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading
sequences
message
symbols
preferences
Prior art date
Application number
PCT/CN2020/096271
Other languages
French (fr)
Inventor
Qiaoyu Li
Yu Zhang
Hao Xu
Liangming WU
Chenxi HAO
Kangqi LIU
Chao Wei
Min Huang
Wei XI
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/096271 priority Critical patent/WO2021253210A1/en
Publication of WO2021253210A1 publication Critical patent/WO2021253210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0006Combination with other multiplexing techniques with CDM/CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0016Combination with other multiplexing techniques with FDM/FDMA and TDM/TDMA

Definitions

  • aspects of the present disclosure relate generally to wireless communications, and more particularly, to apparatuses and methods for space-frequency-time diversity.
  • Wireless communication networks are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on.
  • These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
  • CDMA code-division multiple access
  • TDMA time-division multiple access
  • FDMA frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • 5G communications technology may include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which may allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • URLLC ultra-reliable-low latency communications
  • massive machine type communications which may allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • diversifying transmission between a transmitting device (e.g., a user equipment (UE) ) and a receiving device may reduce undesirable effects such as fading.
  • the configuration associated with the diversifying transmission may be transmitted by a base station (BS) .
  • BS base station
  • the undesirable effects may be exacerbated during high-Doppler transmission scenarios, where the time-domain diversity may be further reduced. Therefore, improvements may be desirable.
  • aspects of the present disclosure include methods by a transmitting device for generating a plurality of modulated symbols, generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, summing the plurality of component sum sequences into a sum sequence, reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • a transmitting device having a memory comprising instructions, a transceiver, and one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to generate a plurality of modulated symbols, generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, sum the plurality of component sum sequences into a sum sequence, reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmit the plurality of modulated symbols based on the mapping to a receiving device
  • DMRS de
  • An aspect of the present disclosure includes a transmitting device including means for generating a plurality of modulated symbols, means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, means for summing the plurality of component sum sequences into a sum sequence, means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • Some aspects of the present disclosure include non-transitory computer readable media having instructions stored therein that, when executed by one or more processors of a transmitting device, cause the one or more processors to generate a plurality of modulated symbols, generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, sum the plurality of component sum sequences into a sum sequence, reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmit the plurality of modulated symbols based on the mapping to a receiving device.
  • DMRS demodulation reference signal
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network
  • FIG. 2 is a schematic diagram of an example of a user equipment
  • FIG. 3 is a schematic diagram of an example of a base station
  • FIG. 4 illustrates an example of a flow diagram of a method for diversifying symbols according to aspects of the present disclosure
  • FIG. 5 illustrates an example of a flow diagram of a method for diversifying symbols according to aspects of the present disclosure
  • FIG. 6 illustrates an example of a method for diversifying transmission according to aspects of the present disclosure.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that may be used to store computer executable code in the form of instructions or data structures that may be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that may be used to store computer executable code in the form of instructions or data structures that may be accessed by a computer.
  • the modulated resource elements (REs) of concatenated code blocks (CBs) may be mapped to virtual resource blocks (VRBs) in the order of layer, frequency, and then time.
  • VRBs virtual resource blocks
  • coded bits with respect to the same CB may span a larger bandwidth, leading to a high frequency domain (FD) diversity within the CB.
  • the VRB to physical resource block (PRB) interleaving may be supported with a rectangular interleaver.
  • the rectangular interleaver may distribute the coded bits with respect to the same CB to different FD resources to improve the FD diversity.
  • using the layer/frequency/time sequential mapping may be undesirable during high-Doppler transmission scenarios because the coded bits may experience diminished time-domain (TD) diversity (e.g., when the number of CBs within a transport block is large such that each CB may occupy one orthogonal frequency division multiplexing (OFDM) symbol) .
  • TD time-domain
  • OFDM orthogonal frequency division multiplexing
  • the mapping may not offer full spatial diversity.
  • open-loop FD precoder cycling may be used to provide spatial diversity, it may not provide the optimum diversity order. FD diversity introduced by multi-path may be broken.
  • Each symbol s k may be multiplied by a spreading sequence (having a length of N t N RE N sym ) , where N t is the number of layers or demodulation reference signal (DMRS) ports, N RE is the number of RE per symbol allocated by the BS, and N sym is the number of OFDM symbols allocated by the BS.
  • DMRS demodulation reference signal
  • the spreading sequence c k may be re-shaped into a N t ⁇ N RE ⁇ N sym cube C k , where each dimension represents the spreading vectors for respective layers/DMRS-ports, REs, and OFDM symbols.
  • the spread symbol sequences are added together, resulting in a sum-sequence having a length of N t N RE N sym .
  • the sum-sequence s sum may be re-shaped into a N t ⁇ N RE ⁇ N sym cube S sum , where each dimension represents the sum-sequence for respective layers/DMRS-ports, REs, and OFDM symbols. Entries in the sum-sequence s sum may be mapped onto respective layers/DMRS-ports, REs, and OFDM symbols, according to the dimensions represented by the cube S sum .
  • the spreading sequences can be predetermined or configured/indicated by at least one of a radio resource control (RRC) message, a medium access control (MAC) control element (CE) , and/or a downlink control information (DCI) message.
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • one or more of the following conditions may be predetermined or RRC/MAC-CE/DCI configured/indicated: the number of modulation symbols ⁇ spreading sequence length (i.e., K ⁇ N t ⁇ N RE ⁇ N sym ) , certain entries of a certain spreading sequence c k are 0’s (i.e., s k is not spread onto certain layer (s) /tone (s) /symbols) , and/or certain spread dimensions may be disabled (e.g., layer-frequency spreading without time spreading) .
  • the number of modulation symbols ⁇ spreading sequence length i.e., K ⁇ N t ⁇ N RE ⁇ N sym
  • certain entries of a certain spreading sequence c k are 0’s (i.e., s k is not spread onto certain layer (s) /tone (s) /symbols)
  • certain spread dimensions may be disabled (e.g., layer-frequency spreading without time spreading)
  • some REs in one or more layers may be reserved or used by other signals, in this case, rate-matching of the spread sum-sequences may be implemented.
  • the entry in the sum-sequence s sum corresponding to the rate-matching RE may be skipped from mapping to the resources grid.
  • the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid, with a reduced power, where the power reduction level may be predetermined or configured/indicated by RRC/MAC-CE/CSI.
  • the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid without any change.
  • Techniques in the second and third example above may be implemented when the multiplexed signal comprises joint design with the spreading sequence, such that both signals may be interference-cancelled at the transmitting device.
  • the spreading may directly take those PRBs/OFDM-symbols into account (e.g., the spreading sequence length may consider the number of OFDM-symbols excluding DMRS symbols) .
  • the transmitting device may signal spreading preferences.
  • the preferences may be signaled via one or more of an uplink control information (UCI) message, a physical uplink shared channel (PUSCH) message, a MAC-CE, a channel state information (CSI) message, and/or a RRC message.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • CSI channel state information
  • RRC Radio Resource Control Protocol
  • Examples of the spreading preferences include spreading sequences (e.g., how many entries are preferred to be zero, where the entries with zero should be allocated, etc. ) , whether one or more dimensions should be disabled, and/or a preferred multiplexing/spreading ratio, (e.g., a preferred value of ) .
  • the transmitting device may determine the preferences based on CSI measurements.
  • a reported channel quality indicator (CQI) may be based on the reported spreading preferences.
  • CQI reported channel quality indicator
  • the transmitting device may use the spreading sequences to map the modulated symbols throughout a "cube" of resources spanned by the layers, the TD symbols, and the REs.
  • the mapping introduced by the spreading sequences may introduce spatial, frequency, and/or time diversity.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes at least one BS 105, UEs 110, an Evolved Packet Core (EPC) 160, and a 5G Core (5GC) 190.
  • the BS 105 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the UE 110 may include a modem 220.
  • the UE 110 may include a communication component 222 configured to communicate with the BS 105 via a cellular network, a Wi-Fi network, or other wireless and wired networks.
  • the UE 110 may include a generation component 224 that generates modulation symbols and/or component sum sequences.
  • the UE 110 may include a summer 226 that adds the component sum sequences to produce a sum sequence.
  • the UE 110 may include a reshaping component 228 that reshapes the sum sequence into a geometric shape (e.g., cuboid) .
  • the UE 110 may include a mapper 230 that maps the sum sequence to resources.
  • the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230 may be implemented using hardware, software, or a combination of hardware and software.
  • the BS 105 may include a modem 320.
  • the BS 105 may include a communication component 322 configured to communicate with the UE 110.
  • the communication component 322 may be implemented using hardware, software, or a combination of hardware and software.
  • a BS 105 configured for 4G Long-Term Evolution (LTE) may interface with the EPC 160 through backhaul links interfaces 132 (e.g., S1, X2, Internet Protocol (IP) , or flex interfaces) .
  • LTE Long-Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunications System
  • a BS 105 configured for 5G NR may interface with 5GC 190 through backhaul links interfaces 134 (e.g., S1, X2, Internet Protocol (IP) , or flex interface) .
  • NG-RAN Next Generation RAN
  • the BS 105 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the BS 105 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over the backhaul links interfaces 134.
  • the backhaul links 132, 134 may be wired or wireless.
  • the BS 105 may wirelessly communicate with the UEs 110. Each of the BS 105 may provide communication coverage for a respective geographic coverage area 130. There may be overlapping geographic coverage areas 130. For example, the small cell 105' may have a coverage area 130' that overlaps the coverage area 130 of one or more macro BS 105.
  • a network that includes both small cell and macro cells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the BS 105 and the UEs 110 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 110 to a BS 105 and/or downlink (DL) (also referred to as forward link) transmissions from a BS 105 to a UE 110.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the BS 105 /UEs 110 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 105' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 105' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 105', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a BS 105 may include an eNB, gNodeB (gNB) , or other type of base station.
  • Some base stations, such as gNB 180 may operate in one or more frequency bands within the electromagnetic spectrum.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a "Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a "millimeter wave” (mmW) band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a "millimeter wave” band.
  • EHF extremely high frequency
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • Communications using the mmW radio frequency band have extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 110 to compensate for the path loss and short range.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 110 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a packet switched (PS) Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the BS 105 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 110 and the 5GC 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • the BS 105 may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, an access point, an access node, a radio transceiver, a NodeB, eNodeB (eNB) , gNB, Home NodeB, a Home eNodeB, a relay, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the BS 105 provides an access point to the EPC 160 or 5GC 190 for a UE 110.
  • Examples of UEs 110 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 110 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 110 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • one example of an implementation of the UE 110 may include a modem 220 having the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230.
  • the UE 110 may include a communication component 222 configured to communicate with the BS 105 via a cellular network, a Wi-Fi network, or other wireless and wired networks.
  • the UE 110 may include a generation component 224 that generates modulation symbols and/or component sum sequences.
  • the UE 110 may include a summer 226 that adds the component sum sequences to produce a sum sequence.
  • the UE 110 may include a reshaping component 228 that reshapes the sum sequence into a geometric shape (e.g., cuboid) .
  • the UE 110 may include a mapper 230 that maps the sum sequence to resources.
  • the UE 110 may include a variety of components, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with the modem 220 and the communication component 222 to enable one or more of the functions described herein related to communicating with the BS 105.
  • the one or more processors 212, modem 220, memory 216, transceiver 202, RF front end 288 and one or more antennas 265, may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
  • the one or more antennas 265 may include one or more antennas, antenna elements and/or antenna arrays.
  • the one or more processors 212 may include the modem 220 that uses one or more modem processors.
  • the various functions related to the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230 may be included in the modem 220 and/or processors 212 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receive processor, or a transceiver processor associated with transceiver 202. Additionally, the modem 220 may configure the UE 110 along with the processors 212. In other aspects, some of the features of the one or more processors 212 and/or the modem 220 associated with the communication component 222 may be performed by transceiver 202.
  • the memory 216 may be configured to store data used and/or local versions of application 275. Also, the memory 216 may be configured to store data used herein and/or local versions of the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more of the subcomponents being executed by at least one processor 212.
  • Memory 216 may include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more of the subcomponents, and/or data associated therewith, when UE 110 is operating at least one processor 212 to execute the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more of the subcomponents.
  • Transceiver 202 may include at least one receiver 206 and at least one transmitter 208.
  • Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • Receiver 206 may be, for example, a RF receiving device.
  • the receiver 206 may receive signals transmitted by at least one BS 105.
  • Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
  • UE 110 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one BS 105 or wireless transmissions transmitted by UE 110.
  • RF front end 288 may be coupled with one or more antennas 265 and may include one or more low-noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • LNA 290 may amplify a received signal at a desired output level.
  • each LNA 290 may have a specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular LNA 290 and the specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level.
  • each PA 298 may have specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular PA 298 and the specified gain value based on a desired gain value for a particular application.
  • one or more filters 296 may be used by RF front end 288 to filter a received signal to obtain an input RF signal.
  • a respective filter 296 may be used to filter an output from a respective PA 298 to produce an output signal for transmission.
  • each filter 296 may be coupled with a specific LNA 290 and/or PA 298.
  • RF front end 288 may use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
  • transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288.
  • transceiver may be tuned to operate at specified frequencies such that UE 110 may communicate with, for example, one or more BS 105 or one or more cells associated with one or more BS 105.
  • the modem 220 may configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 110 and the communication protocol used by the modem 220.
  • the modem 220 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202.
  • the modem 220 may be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • the modem 220 may be multimode and be configured to support multiple operating networks and communications protocols.
  • the modem 220 may control one or more components of UE 110 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration may be based on the mode of the modem and the frequency band in use.
  • the modem configuration may be based on UE configuration information associated with UE 110 as provided by the network.
  • one example of an implementation of the BS 105 may include a modem 320 having the communication component 322.
  • the BS 105 may include a communication component 322 configured to communicate with the UE 110.
  • the BS 105 may include a variety of components, including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with the modem 320 and the communication component 322 to enable one or more of the functions described herein related to communicating with the UE 110.
  • the one or more processors 312, modem 320, memory 316, transceiver 302, RF front end 388 and one or more antennas 365 may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
  • the one or more processors 312 may include the modem 320 that uses one or more modem processors.
  • the various functions related to the communication component 322 may be included in the modem 320 and/or processors 312 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 312 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receive device processor, or a transceiver processor associated with transceiver 302.
  • the modem 320 may configure the BS 105 and processors 312. In other aspects, some of the features of the one or more processors 312 and/or the modem 320 associated with the communication component 322 may be performed by transceiver 302.
  • the memory 316 may be configured to store data used herein and/or local versions of applications 375. Also, the memory 316 may be configured to store data used herein and/or local versions of the communication component 322, and/or one or more of the subcomponents being executed by at least one processor 312.
  • Memory 316 may include any type of computer-readable medium usable by a computer or at least one processor 312, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 316 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 322, and/or one or more of the subcomponents, and/or data associated therewith, when the BS 105 is operating at least one processor 312 to execute the communication component 322, and/or one or more of the subcomponents.
  • Transceiver 302 may include at least one receiver 306 and at least one transmitter 308.
  • the at least one receiver 306 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • the receiver 306 may be, for example, a RF receiving device.
  • receiver 306 may receive signals transmitted by the UE 110.
  • Transmitter 308 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 308 may including, but is not limited to, an RF transmitter.
  • the BS 105 may include RF front end 388, which may operate in communication with one or more antennas 365 and transceiver 302 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by other BS 105 or wireless transmissions transmitted by UE 110.
  • RF front end 388 may be coupled with one or more antennas 365 and may include one or more low-noise amplifiers (LNAs) 390, one or more switches 392, one or more power amplifiers (PAs) 398, and one or more filters 396 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • LNA 390 may amplify a received signal at a desired output level.
  • each LNA 390 may have a specified minimum and maximum gain values.
  • RF front end 388 may use one or more switches 392 to select a particular LNA 390 and the specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 398 may be used by RF front end 388 to amplify a signal for an RF output at a desired output power level.
  • each PA 398 may have specified minimum and maximum gain values.
  • RF front end 388 may use one or more switches 392 to select a particular PA 398 and the specified gain value based on a desired gain value for a particular application.
  • one or more filters 396 may be used by RF front end 388 to filter a received signal to obtain an input RF signal.
  • a respective filter 396 may be used to filter an output from a respective PA 398 to produce an output signal for transmission.
  • each filter 396 may be coupled with a specific LNA 390 and/or PA 398.
  • RF front end 388 may use one or more switches 392 to select a transmit or receive path using a specified filter 396, LNA 390, and/or PA 398, based on a configuration as specified by transceiver 302 and/or processor 312.
  • transceiver 302 may be configured to transmit and receive wireless signals through one or more antennas 365 via RF front end 388.
  • transceiver may be tuned to operate at specified frequencies such that BS 105 may communicate with, for example, the UE 110 or one or more cells associated with one or more BS 105.
  • the modem 320 may configure transceiver 302 to operate at a specified frequency and power level based on the base station configuration of the BS 105 and the communication protocol used by the modem 320.
  • the modem 320 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 302 such that the digital data is sent and received using transceiver 302.
  • the modem 320 may be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • the modem 320 may be multimode and be configured to support multiple operating networks and communications protocols.
  • the modem 320 may control one or more components of the BS 105 (e.g., RF front end 388, transceiver 302) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration may be based on the mode of the modem and the frequency band in use.
  • the modem configuration may be based on base station configuration associated with the BS 105.
  • FIG. 4 illustrates an example of a flow diagram of a method for diversifying symbols.
  • the methods of the flow diagram may be performed by one or more of the processor 212, the memory 216, the transceiver 202, the antennas 265, the RF front end 288, the modem 220 or the subcomponents of the devices listed above.
  • a diagram 400 may indicate a method to diversify time domain (TD) symbols by mapping the TD symbols to resources spanning spatial, frequency, and time domains.
  • the diagram 400 may include modulated symbols 410 (e.g., data symbols) to be transmitted by a transmitting device (e.g., the UE 110 of FIG. 1) .
  • the method of the diagram 400 may multiply each of the modulated symbols 410 (e.g., data symbols 410-1, 410-2...410-m) by each of spreading sequences 420 (e.g., spreading sequence 420-1, 420-2...420-m) to generate component sum sequences.
  • the variable m may be a positive integer.
  • the set of modulated symbols may include K symbols.
  • Each symbol s k may be multiplied by a spreading sequence (having a length of N t N RE N sym ) , where N t is the number of layers or demodulation reference signal (DMRS) ports, N RE is the number of RE per symbol allocated by a BS (e.g., a gNB receiving the modulated symbols) , and N sym is the number of orthogonal frequency division modulation (OFDM) symbols allocated by the BS.
  • DMRS demodulation reference signal
  • the spreading sequence c k may be re-shaped into a N t ⁇ N RE ⁇ N sym cube C k , where each dimension represents the spreading vectors for the respective number of layers or DMRS-ports, number of REs per symbols, and number of OFDM symbols.
  • the diagram 400 may include a summer 430 (such as the summer 236) that adds some or all of the component sum sequences to generate a sum sequence.
  • the spread symbol sequences are added together, resulting in a sum sequence having a length of N t N RE N sym .
  • the diagram 400 may include a mapper 440 that performs signal processing (S/P) to map entries of the sum sequence onto resources spanned by a cuboid.
  • the cuboid may include dimensions spanned by frequency, time, and space.
  • the sum sequence s sum may be re-shaped into a N t ⁇ N RE ⁇ N sym cube S sum , where each dimension represents the sum sequence for respective number of layers or DMRS-ports, number of REs per symbols, and number of OFDM symbols (explained below) .
  • the diagram 400 may include chip-groups 450 (e.g., chip-group 450-1, chip-group 450-2...chip-group-n) .
  • Each chip-group (e.g., chip-group 450-1, chip-group 450-2...chip-group-n) of the chip-groups 450 may represent a layer or DMRS-port.
  • the variable n may be a positive integer associated with some or all the layers of the transmitting device.
  • the diagram 400 may optionally include inverse Fast Fourier Transform (iFFT) operators 460 that perform iFFT to generate the time domain (TD) symbols in the chip-groups 450.
  • the diagram 400 may optionally include cyclic prefix (CP) operators 470 that add one or more cyclic prefixes to the TD symbols.
  • the diagram 400 may include layers 480. Each of the layers 480 may be configured to transmit the TD symbols (and/or CPs) associated with each chip-group (e.g., chip-group 450-1, chip-group 450-2...chip-group-n) of the chip-groups 450.
  • the layers 480 may be associated with data streams between the transmitting device and a receiving device. Each of the layers 480 may be transmitted by an antenna, antenna configuration, and/or antenna array.
  • FIG. 5 illustrates an example diagram of a method for diversifying symbols.
  • the methods of the flow diagram may be performed by one or more of the processor 212, the memory 216, the transceiver 202, the antennas 265, the RF front end 288, the modem 220 or the subcomponents of the devices listed above.
  • the diagram 500 may illustrate a method that includes multiplying the modulation symbols 510 by the spreading sequences 520 to generate the chip-groups 530. The portions of each of the modulation symbols 510 may be spread across one or more of the chip-groups 530.
  • Each of the spreading sequences 520 may be reshaped into a cube 522. Each of the spreading sequences 520 may be represented by a vector 524.
  • the cube 522 may have a dimension of N t ⁇ N RE ⁇ N sym .
  • the spreading sequences can be predetermined or configured/indicated by at least one of a radio resource control (RRC) message, a medium access control (MAC) control element (CE) , and/or a downlink control information (DCI) message.
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the transmitting device e.g., the UE 110
  • the BS 105 may transmit the spreading sequences to the transmitting device via an RRC message, a MAC CE, and/or a DCI message to provide the spreading sequences to the transmitting device and/or to update the existing spreading sequences stored in the transmitting device.
  • one or more of the following conditions may be predetermined or configured/indicated by at least one of a RRC message, MAC-CE, and/or DCI message: the length of each of the modulation symbol is less than or equal to the spreading sequence length (i.e., K ⁇ N t ⁇ N RE ⁇ N sym ) , certain entries of a certain spreading sequence c k are 0’s (i.e., s k is not spread onto certain layer (s) /tone (s) /symbols) , and/or certain spread dimensions may be disabled (e.g., layer-frequency spreading without time spreading) .
  • the spreading sequence length i.e., K ⁇ N t ⁇ N RE ⁇ N sym
  • certain entries of a certain spreading sequence c k are 0’s (i.e., s k is not spread onto certain layer (s) /tone (s) /symbols)
  • certain spread dimensions may be disabled (e.g
  • the transmitting device may store a rule indicating that the length of each of the modulation symbols 510 is less than or equal to the length of each of the spreading sequences 520.
  • the BS 105 may transmit a configuration indicating that the frequency dimension may be disabled. This means that the spreading sequences may spread the modulation symbols onto layers and time domains without spreading onto the frequency domain.
  • the chip-groups 530-1, 530-2, 530-3, 530-4 may be arranged for transmission as shown in a configuration 540.
  • the first chip-group 530-1 may be transmitted via a first layer (i.e., data stream)
  • the second chip-group 530-2 may be transmitted via a second layer, and so forth and so on.
  • Each chip-group 530-1, 530-2, 530-3, 530-4 may span across one or more symbols, one or more frequencies, and/or one layer.
  • some REs in one or more layers may be reserved or used by other signals, in this case, rate-matching of the spread sum-sequences are needed.
  • the entry in the sum-sequence s sum corresponding to the rate-matching RE may be skipped from mapping to the resources grid (i.e. the spreading sequences may be arranged such that the modulation symbols are not mapped onto the rate-matching RE) .
  • the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid, with a reduced power, where the power reduction level may be predetermined or configured/indicated by RRC/MAC-CE/CSI.
  • the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid without any change.
  • Techniques in the second and third example above may be implemented when the multiplexed signal comprises joint design with the spreading sequence, such that both signals may be interference-cancelled at the transmitting device.
  • the spreading may directly take those PRBs/OFDM-symbols into account (e.g., the spreading sequence length may consider the number of OFDM-symbols excluding DMRS symbols) .
  • the transmitting device may the signal spreading preferences to the BS 105.
  • the preferences may be signaled via one or more of an uplink control information (UCI) message, a physical uplink shared channel (PUSCH) message, a MAC-CE, a channel state information (CSI) message, and/or a RRC message.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • CSI channel state information
  • RRC Radio Resource Control information
  • the spreading preferences may include spreading sequences (e.g., how many entries are preferred to be zero, where the entries with zero should be allocated, etc.
  • the transmitting device may determine the preferences based on CSI measurements.
  • a reported channel quality indicator (CQI) may be based on the reported spreading preferences.
  • FIG. 6 illustrates an example of a method for diversifying transmission.
  • a method 600 may be performed by the one or more of the processor 212, the memory 216, the applications 275, the modem 220, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more other components of the UE 110 in the wireless communication network 100.
  • the method 600 may generate a plurality of modulated symbols.
  • the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may generate a plurality of modulated symbols as described above.
  • the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for generating a plurality of modulated symbols.
  • the method 600 may generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences.
  • the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences as described above.
  • the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences.
  • the method 600 may sum the plurality of component sum sequences into a sum sequence.
  • the summer 226, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may sum the plurality of component sum sequences into a sum sequence.
  • the summer 226, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for summing the plurality of component sum sequences into a sum sequence.
  • the method 600 may reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • the reshaping component 228, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols as described above.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • the reshaping component 228, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • the method 600 may map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources.
  • the mapper 230, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources as described above.
  • the mapper 230, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources.
  • the method 600 may transmit the plurality of modulated symbols based on the mapping to a receiving device.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may transmit the plurality of modulated symbols based on the mapping to a receiving device.
  • the communication component 222 may send the digital signals to the transceiver 202 or the transmitter 208.
  • the transceiver 202 or the transmitter 208 may convert the digital signals to electrical signals and send to the RF front end 288.
  • the RF front end 288 may filter and/or amplify the electrical signals.
  • the RF front end 288 may send the electrical signals as electro-magnetic signals via the one or more antennas 265.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  • the method 600 may further include any of the methods above, wherein each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  • the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and setting the one or more entries of the plurality of spreading sequences to zero.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K ⁇ N T N RE N Sym , where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • RRC radio resource configuration
  • CE medium access control element
  • DCI downlink control information
  • the method 600 may further include any of the methods above, further comprising receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • the method 600 may further include any of the methods above, wherein mapping the plurality of sum sequences comprises rate matching a subset of the plurality of REs.
  • the method 600 may further include any of the methods above, wherein rate matching comprises skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  • the method 600 may further include any of the methods above, wherein rate matching comprises reducing transmission power associated with the subset of the plurality of REs.
  • the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • the method 600 may further include any of the methods above, further comprising determining one or more spreading preferences, and transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  • the method 600 may further include any of the methods above, wherein transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • MAC medium access control
  • CE control element
  • RRC radio resource configuration
  • the method 600 may further include any of the methods above, wherein the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • K is a length of a symbol of the plurality of modulation symbols
  • N T is the number of the plurality of layers or DMRS ports
  • N RE is the number of the plurality of REs
  • N Sym is the number of the plurality of TD symbols.
  • the method 600 may further include any of the methods above, wherein determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement, and transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
  • determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement
  • transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
  • CSI channel state information
  • the method 600 may further include any of the methods above, wherein the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  • the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • aspects of the present disclosure include methods by a transmitting device for generating a plurality of modulated symbols, generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, summing the plurality of component sum sequences into a sum sequence, reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  • any of the methods above further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and setting the one or more entries of the plurality of spreading sequences to zero.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • any of the methods above further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K ⁇ N T N RE N Sym , where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • RRC radio resource configuration
  • MAC medium access control
  • CE medium access control element
  • DCI downlink control information
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • mapping the plurality of sum sequences comprises rate matching a subset of the plurality of REs.
  • rate matching comprises skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  • rate matching comprises reducing transmission power associated with the subset of the plurality of REs.
  • Radio resource configuration RRC
  • MAC medium access control
  • CE CE
  • DCI downlink control information
  • any of the methods above further comprising determining one or more spreading preferences, and transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  • transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • MAC medium access control
  • CE control element
  • RRC radio resource configuration
  • the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement
  • transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
  • CSI channel state information
  • the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  • Radio resource configuration RRC
  • MAC medium access control
  • CE CE
  • DCI downlink control information
  • a transmitting device having a memory comprising instructions, a transceiver, and one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to generate a plurality of modulated symbols, generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, sum the plurality of component sum sequences into a sum sequence, reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmit the plurality of modulated symbols based on the mapping to a receiving device
  • DMRS de
  • each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  • the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and set the one or more entries of the plurality of spreading sequences to zero.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K ⁇ N T N RE N Sym , where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • the one or more processors are further configured to receive the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • mapping the plurality of sum sequences comprises rate match a subset of the plurality of REs.
  • rate matching comprises skip the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  • rate matching comprises reduce transmission power associated with the subset of the plurality of REs.
  • the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • the one or more processors are further configured to determine one or more spreading preferences, and transmit prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • MAC medium access control
  • CE control element
  • RRC radio resource configuration
  • the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement, and transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
  • CSI channel state information
  • the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  • the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • An aspect of the present disclosure includes a transmitting device including means for generating a plurality of modulated symbols, means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, means for summing the plurality of component sum sequences into a sum sequence, means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  • DMRS demodulation reference signal
  • REs resource elements
  • TD time-domain
  • each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  • any of the transmitting devices above further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and setting the one or more entries of the plurality of spreading sequences to zero.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • any of the transmitting devices above further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K ⁇ N T N RE N Sym , where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • RRC radio resource configuration
  • MAC medium access control
  • DCI downlink control information
  • any of the transmitting devices above further comprising receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • means for mapping the plurality of sum sequences comprises rate matching a subset of the plurality of REs.
  • means for rate matching comprises skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  • means for rate matching comprises reducing transmission power associated with the subset of the plurality of REs.
  • any of the transmitting devices above further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  • RRC radio resource configuration
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • any of the transmitting devices above further comprising/wherein determining one or more spreading preferences, and transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  • means for transmitting the one or more spreading preferences comprises means for transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • MAC medium access control
  • CE control element
  • RRC radio resource configuration
  • the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  • means for determining the one or more spreading preferences comprises means for determining the one or more spreading preferences based on a channel state information (CSI) measurement
  • means for transmitting the one or more spreading preferences comprises means for transmitting the one or more spreading preferences in a CSI report.
  • CSI channel state information
  • the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Aspects of the present disclosure include methods, apparatuses, and computer readable media for generating a plurality of modulated symbols, generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, summing the plurality of component sum sequences into a sum sequence, reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmitting the plurality of modulated symbols based on the mapping to a receiving device.

Description

METHODS AND APPARATUS FOR SPACE-FREQUENCY-TIME DIVERSITY BACKGROUND
Aspects of the present disclosure relate generally to wireless communications, and more particularly, to apparatuses and methods for space-frequency-time diversity.
Wireless communication networks are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. For example, a fifth generation (5G) wireless communications technology (which may be referred to as new radio (NR) ) is envisaged to expand and support diverse usage scenarios and applications with respect to current mobile network generations. In an aspect, 5G communications technology may include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which may allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information. As the demand for mobile broadband access continues to increase, however, further improvements in NR communications technology and beyond may be desired.
In a wireless communication network, diversifying transmission between a transmitting device (e.g., a user equipment (UE) ) and a receiving device may reduce undesirable effects such as fading. The configuration associated with the diversifying transmission may be transmitted by a base station (BS) . The undesirable effects may be exacerbated during high-Doppler transmission scenarios, where the time-domain diversity may be further reduced. Therefore, improvements may be desirable.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Aspects of the present disclosure include methods by a transmitting device for generating a plurality of modulated symbols, generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, summing the plurality of component sum sequences into a sum sequence, reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmitting the plurality of modulated symbols based on the mapping to a receiving device.
Other aspects of the present disclosure include a transmitting device having a memory comprising instructions, a transceiver, and one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to generate a plurality of modulated symbols, generate a plurality of component sum sequences by multiplying each of the plurality of modulated  symbols by a corresponding spreading sequence of a plurality of spreading sequences, sum the plurality of component sum sequences into a sum sequence, reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmit the plurality of modulated symbols based on the mapping to a receiving device.
An aspect of the present disclosure includes a transmitting device including means for generating a plurality of modulated symbols, means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, means for summing the plurality of component sum sequences into a sum sequence, means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
Some aspects of the present disclosure include non-transitory computer readable media having instructions stored therein that, when executed by one or more processors of a transmitting device, cause the one or more processors to generate a plurality of modulated symbols, generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, sum the plurality of component sum sequences into a sum sequence, reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, map the sum sequences to resources defined by the cuboid, wherein each of the plurality of  spreading sequences is associated with a corresponding subset of the resources, and transmit the plurality of modulated symbols based on the mapping to a receiving device.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network;
FIG. 2 is a schematic diagram of an example of a user equipment;
FIG. 3 is a schematic diagram of an example of a base station;
FIG. 4 illustrates an example of a flow diagram of a method for diversifying symbols according to aspects of the present disclosure;
FIG. 5 illustrates an example of a flow diagram of a method for diversifying symbols according to aspects of the present disclosure; and
FIG. 6 illustrates an example of a method for diversifying transmission according to aspects of the present disclosure.
An appendix, the contents of which are incorporated in their entireties, is attached.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The  detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as "elements" ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a "processing system" that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in  software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that may be used to store computer executable code in the form of instructions or data structures that may be accessed by a computer.
In one implementation, the modulated resource elements (REs) of concatenated code blocks (CBs) may be mapped to virtual resource blocks (VRBs) in the order of layer, frequency, and then time. When the transmitted number of CBs is large and the scheduled bandwidth is also large, coded bits with respect to the same CB may span a larger bandwidth, leading to a high frequency domain (FD) diversity within the CB. The VRB to physical resource block (PRB) interleaving may be supported with a rectangular interleaver. The rectangular interleaver may distribute the coded bits with respect to the same CB to different FD resources to improve the FD diversity.
In some implementations, using the layer/frequency/time sequential mapping may be undesirable during high-Doppler transmission scenarios because the coded bits may experience diminished time-domain (TD) diversity (e.g., when the number of CBs within a transport block is large such that each CB may occupy one orthogonal frequency division multiplexing (OFDM) symbol) . Further, when the base station (BS) has no or outdated channel state information (CSI) in high-Doppler transmission scenarios, the mapping may not offer full spatial diversity. Although open-loop FD precoder cycling may be used to provide spatial diversity, it may not provide the optimum diversity order. FD diversity introduced by multi-path may be broken.
In one aspect of the present disclosure, a set of modulated symbols s = [s 1, s 2, …, s K] T may be spread onto space-frequency-time resources. Each symbol s k may be multiplied by a spreading sequence
Figure PCTCN2020096271-appb-000001
 (having  a length of N tN REN sym) , where N t is the number of layers or demodulation reference signal (DMRS) ports, N RE is the number of RE per symbol allocated by the BS, and N sym is the number of OFDM symbols allocated by the BS. The spreading sequence c k may be re-shaped into a N t×N RE×N sym cube C k, where each dimension represents the spreading vectors for respective layers/DMRS-ports, REs, and OFDM symbols. The spread symbol sequences are added together, resulting in a sum-sequence
Figure PCTCN2020096271-appb-000002
Figure PCTCN2020096271-appb-000003
having a length of N tN REN sym. The sum-sequence s sum may be re-shaped into a N t×N RE×N sym cube S sum, where each dimension represents the sum-sequence for respective layers/DMRS-ports, REs, and OFDM symbols. Entries in the sum-sequence s sum may be mapped onto respective layers/DMRS-ports, REs, and OFDM symbols, according to the dimensions represented by the cube S sum.
In certain aspects, the spreading sequences can be predetermined or configured/indicated by at least one of a radio resource control (RRC) message, a medium access control (MAC) control element (CE) , and/or a downlink control information (DCI) message. Further, one or more of the following conditions may be predetermined or RRC/MAC-CE/DCI configured/indicated: the number of modulation symbols ≤spreading sequence length (i.e., K≤N t×N RE×N sym) , certain entries of a certain spreading sequence c k are 0’s (i.e., s k is not spread onto certain layer (s) /tone (s) /symbols) , and/or certain spread dimensions may be disabled (e.g., layer-frequency spreading without time spreading) .
In an aspect of the present disclosure, some REs in one or more layers may be reserved or used by other signals, in this case, rate-matching of the spread sum-sequences may be implemented. In a first example, the entry in the sum-sequence s sum corresponding to the rate-matching RE may be skipped from mapping to the resources grid. In a second example, the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid, with a reduced power, where the power reduction level may be predetermined or configured/indicated by RRC/MAC-CE/CSI. In a third example, The entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid without  any change. Techniques in the second and third example above may be implemented when the multiplexed signal comprises joint design with the spreading sequence, such that both signals may be interference-cancelled at the transmitting device. For the case where some or an entire PRB or OFDM-symbol is reserved by other signals, the spreading may directly take those PRBs/OFDM-symbols into account (e.g., the spreading sequence length may consider the number of OFDM-symbols excluding DMRS symbols) .
In some aspects, the transmitting device, (e.g., such as the UE) may signal spreading preferences. The preferences may be signaled via one or more of an uplink control information (UCI) message, a physical uplink shared channel (PUSCH) message, a MAC-CE, a channel state information (CSI) message, and/or a RRC message. Examples of the spreading preferences include spreading sequences (e.g., how many entries are preferred to be zero, where the entries with zero should be allocated, etc. ) , whether one or more dimensions should be disabled, and/or a preferred multiplexing/spreading ratio, (e.g., a preferred value of
Figure PCTCN2020096271-appb-000004
) . The transmitting device may determine the preferences based on CSI measurements. A reported channel quality indicator (CQI) may be based on the reported spreading preferences.
In some aspects, the transmitting device may use the spreading sequences to map the modulated symbols throughout a "cube" of resources spanned by the layers, the TD symbols, and the REs. The mapping introduced by the spreading sequences may introduce spatial, frequency, and/or time diversity.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes at least one BS 105, UEs 110, an Evolved Packet Core (EPC) 160, and a 5G Core (5GC) 190. The BS 105 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells include base stations. The small cells include femtocells, picocells, and microcells. The UE 110 may include a modem 220. In one implementation, the UE 110 may include a communication component 222 configured to communicate with the BS 105 via a cellular network, a Wi-Fi network, or other wireless and wired networks. The  UE 110 may include a generation component 224 that generates modulation symbols and/or component sum sequences. The UE 110 may include a summer 226 that adds the component sum sequences to produce a sum sequence. The UE 110 may include a reshaping component 228 that reshapes the sum sequence into a geometric shape (e.g., cuboid) . The UE 110 may include a mapper 230 that maps the sum sequence to resources. In some implementations, the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230 may be implemented using hardware, software, or a combination of hardware and software. The BS 105 may include a modem 320. In some implementations, the BS 105 may include a communication component 322 configured to communicate with the UE 110. In some implementations, the communication component 322 may be implemented using hardware, software, or a combination of hardware and software.
BS 105 configured for 4G Long-Term Evolution (LTE) (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links interfaces 132 (e.g., S1, X2, Internet Protocol (IP) , or flex interfaces) . A BS 105 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links interfaces 134 (e.g., S1, X2, Internet Protocol (IP) , or flex interface) . In addition to other functions, the BS 105 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The BS 105 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over the backhaul links interfaces 134. The backhaul links 132, 134 may be wired or wireless.
The BS 105 may wirelessly communicate with the UEs 110. Each of the BS 105 may provide communication coverage for a respective geographic coverage area 130. There may be overlapping geographic coverage areas 130. For example, the small cell 105' may have a coverage area 130' that overlaps the coverage area 130 of one or more macro BS 105. A network that includes both small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the BS 105 and the UEs 110 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 110 to a BS 105 and/or downlink (DL) (also referred to as forward link) transmissions from a BS 105 to a UE 110. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The BS 105 /UEs 110 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Y x MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 110 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth,  ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 105' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 105' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 105', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
BS 105, whether a small cell 105' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or other type of base station. Some base stations, such as gNB 180 may operate in one or more frequency bands within the electromagnetic spectrum. The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a "Sub-6 GHz" band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a "millimeter wave" (mmW) band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a "millimeter wave" band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term "sub-6 GHz" or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that  the term "millimeter wave" or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band. Communications using the mmW radio frequency band have extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 110 to compensate for the path loss and short range.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 110 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a packet switched (PS) Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the BS 105 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 110 and the 5GC 190. Generally, the AMF 192 provides QoS flow and  session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The BS 105 may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, an access point, an access node, a radio transceiver, a NodeB, eNodeB (eNB) , gNB, Home NodeB, a Home eNodeB, a relay, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The BS 105 provides an access point to the EPC 160 or 5GC 190 for a UE 110. Examples of UEs 110 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 110 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 110 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring to FIG. 2, one example of an implementation of the UE 110 may include a modem 220 having the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230. In one implementation, the UE 110 may include a communication component 222 configured to communicate with the BS 105 via a cellular network, a Wi-Fi network, or other wireless and wired networks. The UE 110 may include a generation component 224 that generates  modulation symbols and/or component sum sequences. The UE 110 may include a summer 226 that adds the component sum sequences to produce a sum sequence. The UE 110 may include a reshaping component 228 that reshapes the sum sequence into a geometric shape (e.g., cuboid) . The UE 110 may include a mapper 230 that maps the sum sequence to resources.
In some implementations, the UE 110 may include a variety of components, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with the modem 220 and the communication component 222 to enable one or more of the functions described herein related to communicating with the BS 105. Further, the one or more processors 212, modem 220, memory 216, transceiver 202, RF front end 288 and one or more antennas 265, may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies. The one or more antennas 265 may include one or more antennas, antenna elements and/or antenna arrays.
In an aspect, the one or more processors 212 may include the modem 220 that uses one or more modem processors. The various functions related to the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230 may be included in the modem 220 and/or processors 212 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receive processor, or a transceiver processor associated with transceiver 202. Additionally, the modem 220 may configure the UE 110 along with the processors 212. In other aspects, some of the features of the one or more processors 212 and/or the modem 220 associated with the communication component 222 may be performed by transceiver 202.
The memory 216 may be configured to store data used and/or local versions of application 275. Also, the memory 216 may be configured to store data used herein  and/or local versions of the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more of the subcomponents being executed by at least one processor 212. Memory 216 may include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more of the subcomponents, and/or data associated therewith, when UE 110 is operating at least one processor 212 to execute the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more of the subcomponents.
Transceiver 202 may include at least one receiver 206 and at least one transmitter 208. Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . Receiver 206 may be, for example, a RF receiving device. In an aspect, the receiver 206 may receive signals transmitted by at least one BS 105. Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, UE 110 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one BS 105 or wireless transmissions transmitted by UE 110. RF front end 288 may be coupled with one or more antennas 265 and may include one or more low-noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
In an aspect, LNA 290 may amplify a received signal at a desired output level. In an aspect, each LNA 290 may have a specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular LNA 290 and the specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 298 may have specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular PA 298 and the specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 296 may be used by RF front end 288 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 296 may be used to filter an output from a respective PA 298 to produce an output signal for transmission. In an aspect, each filter 296 may be coupled with a specific LNA 290 and/or PA 298. In an aspect, RF front end 288 may use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
As such, transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288. In an aspect, transceiver may be tuned to operate at specified frequencies such that UE 110 may communicate with, for example, one or more BS 105 or one or more cells associated with one or more BS 105. In an aspect, for example, the modem 220 may configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 110 and the communication protocol used by the modem 220.
In an aspect, the modem 220 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202. In an aspect, the modem 220 may be multiband and be configured to support multiple frequency bands for a specific communications protocol. In an aspect, the modem 220 may be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, the modem 220  may control one or more components of UE 110 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration may be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration may be based on UE configuration information associated with UE 110 as provided by the network.
Referring to FIG. 3, one example of an implementation of the BS 105 may include a modem 320 having the communication component 322. In some implementations, the BS 105 may include a communication component 322 configured to communicate with the UE 110.
In some implementations, the BS 105 may include a variety of components, including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with the modem 320 and the communication component 322 to enable one or more of the functions described herein related to communicating with the UE 110. Further, the one or more processors 312, modem 320, memory 316, transceiver 302, RF front end 388 and one or more antennas 365, may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
In an aspect, the one or more processors 312 may include the modem 320 that uses one or more modem processors. The various functions related to the communication component 322 may be included in the modem 320 and/or processors 312 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 312 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receive device processor, or a transceiver processor associated with transceiver 302. Additionally, the modem 320 may configure the BS 105 and processors 312. In other aspects, some of the features of the one or more processors  312 and/or the modem 320 associated with the communication component 322 may be performed by transceiver 302.
The memory 316 may be configured to store data used herein and/or local versions of applications 375. Also, the memory 316 may be configured to store data used herein and/or local versions of the communication component 322, and/or one or more of the subcomponents being executed by at least one processor 312. Memory 316 may include any type of computer-readable medium usable by a computer or at least one processor 312, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 316 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 322, and/or one or more of the subcomponents, and/or data associated therewith, when the BS 105 is operating at least one processor 312 to execute the communication component 322, and/or one or more of the subcomponents.
Transceiver 302 may include at least one receiver 306 and at least one transmitter 308. The at least one receiver 306 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . The receiver 306 may be, for example, a RF receiving device. In an aspect, receiver 306 may receive signals transmitted by the UE 110. Transmitter 308 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 308 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, the BS 105 may include RF front end 388, which may operate in communication with one or more antennas 365 and transceiver 302 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by other BS 105 or wireless transmissions transmitted by UE 110. RF front end 388 may be coupled with one or more antennas 365 and may include one or more low-noise amplifiers (LNAs) 390, one or more switches 392, one or more power  amplifiers (PAs) 398, and one or more filters 396 for transmitting and receiving RF signals.
In an aspect, LNA 390 may amplify a received signal at a desired output level. In an aspect, each LNA 390 may have a specified minimum and maximum gain values. In an aspect, RF front end 388 may use one or more switches 392 to select a particular LNA 390 and the specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 398 may be used by RF front end 388 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 398 may have specified minimum and maximum gain values. In an aspect, RF front end 388 may use one or more switches 392 to select a particular PA 398 and the specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 396 may be used by RF front end 388 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 396 may be used to filter an output from a respective PA 398 to produce an output signal for transmission. In an aspect, each filter 396 may be coupled with a specific LNA 390 and/or PA 398. In an aspect, RF front end 388 may use one or more switches 392 to select a transmit or receive path using a specified filter 396, LNA 390, and/or PA 398, based on a configuration as specified by transceiver 302 and/or processor 312.
As such, transceiver 302 may be configured to transmit and receive wireless signals through one or more antennas 365 via RF front end 388. In an aspect, transceiver may be tuned to operate at specified frequencies such that BS 105 may communicate with, for example, the UE 110 or one or more cells associated with one or more BS 105. In an aspect, for example, the modem 320 may configure transceiver 302 to operate at a specified frequency and power level based on the base station configuration of the BS 105 and the communication protocol used by the modem 320.
In an aspect, the modem 320 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 302 such that the digital data is sent and received using transceiver 302. In an aspect, the modem 320 may be multiband and be configured to support multiple frequency bands for a specific communications  protocol. In an aspect, the modem 320 may be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, the modem 320 may control one or more components of the BS 105 (e.g., RF front end 388, transceiver 302) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration may be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration may be based on base station configuration associated with the BS 105.
FIG. 4 illustrates an example of a flow diagram of a method for diversifying symbols. The methods of the flow diagram may be performed by one or more of the processor 212, the memory 216, the transceiver 202, the antennas 265, the RF front end 288, the modem 220 or the subcomponents of the devices listed above. In some implementations, a diagram 400 may indicate a method to diversify time domain (TD) symbols by mapping the TD symbols to resources spanning spatial, frequency, and time domains. The diagram 400 may include modulated symbols 410 (e.g., data symbols) to be transmitted by a transmitting device (e.g., the UE 110 of FIG. 1) . The method of the diagram 400 may multiply each of the modulated symbols 410 (e.g., data symbols 410-1, 410-2…410-m) by each of spreading sequences 420 (e.g., spreading sequence 420-1, 420-2…420-m) to generate component sum sequences. The variable m may be a positive integer.
In one aspect of the present disclosure, a set of modulated symbols s = [s 1, s 2, …, s KT may be spread onto space-frequency-time resources. In one example, the set of modulated symbols may include K symbols. Each symbol s k may be multiplied by a spreading sequence
Figure PCTCN2020096271-appb-000005
 (having a length of N tN REN sym) , where N t is the number of layers or demodulation reference signal (DMRS) ports, N RE is the number of RE per symbol allocated by a BS (e.g., a gNB receiving the modulated symbols) , and N sym is the number of orthogonal frequency division modulation (OFDM) symbols allocated by the BS. The spreading sequence c k may be re-shaped into a N t×N RE×N sym cube C k, where each dimension represents the  spreading vectors for the respective number of layers or DMRS-ports, number of REs per symbols, and number of OFDM symbols.
In some implementations, the diagram 400 may include a summer 430 (such as the summer 236) that adds some or all of the component sum sequences to generate a sum sequence. In one aspect of the present disclosure, the spread symbol sequences are added together, resulting in a sum sequence
Figure PCTCN2020096271-appb-000006
having a length of N tN REN sym.
In some instances, the diagram 400 may include a mapper 440 that performs signal processing (S/P) to map entries of the sum sequence onto resources spanned by a cuboid. The cuboid may include dimensions spanned by frequency, time, and space. In some aspects of the present disclosure, the sum sequence s sum may be re-shaped into a N t×N RE×N sym cube S sum, where each dimension represents the sum sequence for respective number of layers or DMRS-ports, number of REs per symbols, and number of OFDM symbols (explained below) .
In an implementation, the diagram 400 may include chip-groups 450 (e.g., chip-group 450-1, chip-group 450-2…chip-group-n) . Each chip-group (e.g., chip-group 450-1, chip-group 450-2…chip-group-n) of the chip-groups 450 may represent a layer or DMRS-port. The variable n may be a positive integer associated with some or all the layers of the transmitting device.
In some aspects of the present disclosure, the diagram 400 may optionally include inverse Fast Fourier Transform (iFFT) operators 460 that perform iFFT to generate the time domain (TD) symbols in the chip-groups 450. The diagram 400 may optionally include cyclic prefix (CP) operators 470 that add one or more cyclic prefixes to the TD symbols. The diagram 400 may include layers 480. Each of the layers 480 may be configured to transmit the TD symbols (and/or CPs) associated with each chip-group (e.g., chip-group 450-1, chip-group 450-2…chip-group-n) of the chip-groups 450. In some implementation, the layers 480 may be associated with data streams between the transmitting device and a receiving device. Each of the layers 480 may be transmitted by an antenna, antenna configuration, and/or antenna array.
FIG. 5 illustrates an example diagram of a method for diversifying symbols. The methods of the flow diagram may be performed by one or more of the processor 212, the memory 216, the transceiver 202, the antennas 265, the RF front end 288, the modem 220 or the subcomponents of the devices listed above. In some aspects, the diagram 500 may illustrate a method that includes multiplying the modulation symbols 510 by the spreading sequences 520 to generate the chip-groups 530. The portions of each of the modulation symbols 510 may be spread across one or more of the chip-groups 530. Each of the spreading sequences 520 may be reshaped into a cube 522. Each of the spreading sequences 520 may be represented by a vector 524. In some aspects of the present disclosure, the cube 522 may have a dimension of N t×N RE×N sym.
In certain aspects, the spreading sequences can be predetermined or configured/indicated by at least one of a radio resource control (RRC) message, a medium access control (MAC) control element (CE) , and/or a downlink control information (DCI) message. For example, the transmitting device (e.g., the UE 110) may store the spreading sequences in one or more memory devices internally (e.g., the memory 216) . Alternatively or additionally, the BS 105 may transmit the spreading sequences to the transmitting device via an RRC message, a MAC CE, and/or a DCI message to provide the spreading sequences to the transmitting device and/or to update the existing spreading sequences stored in the transmitting device.
In some aspects, one or more of the following conditions may be predetermined or configured/indicated by at least one of a RRC message, MAC-CE, and/or DCI message: the length of each of the modulation symbol is less than or equal to the spreading sequence length (i.e., K≤N t×N RE×N sym) , certain entries of a certain spreading sequence c k are 0’s (i.e., s k is not spread onto certain layer (s) /tone (s) /symbols) , and/or certain spread dimensions may be disabled (e.g., layer-frequency spreading without time spreading) . For example, the transmitting device may store a rule indicating that the length of each of the modulation symbols 510 is less than or equal to the length of each of the spreading sequences 520. Alternatively or additionally, the BS 105 may transmit a configuration indicating that the frequency dimension may be disabled. This means that  the spreading sequences may spread the modulation symbols onto layers and time domains without spreading onto the frequency domain.
In certain aspects, the chip-groups 530-1, 530-2, 530-3, 530-4 may be arranged for transmission as shown in a configuration 540. The first chip-group 530-1 may be transmitted via a first layer (i.e., data stream) , the second chip-group 530-2 may be transmitted via a second layer, and so forth and so on. Each chip-group 530-1, 530-2, 530-3, 530-4 may span across one or more symbols, one or more frequencies, and/or one layer.
In an aspect of the present disclosure, some REs in one or more layers may be reserved or used by other signals, in this case, rate-matching of the spread sum-sequences are needed. In a first example, the entry in the sum-sequence s sum corresponding to the rate-matching RE may be skipped from mapping to the resources grid (i.e. the spreading sequences may be arranged such that the modulation symbols are not mapped onto the rate-matching RE) . In a second example, the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid, with a reduced power, where the power reduction level may be predetermined or configured/indicated by RRC/MAC-CE/CSI. In a third example, the entry in the sum-sequence s sum corresponding to the rate-matching RE may be mapped to the resources grid without any change. Techniques in the second and third example above may be implemented when the multiplexed signal comprises joint design with the spreading sequence, such that both signals may be interference-cancelled at the transmitting device. For the case where some or an entire PRB or OFDM-symbol is reserved by other signals, the spreading may directly take those PRBs/OFDM-symbols into account (e.g., the spreading sequence length may consider the number of OFDM-symbols excluding DMRS symbols) .
In some aspects, the transmitting device, (e.g., such as the UE 110 ) may the signal spreading preferences to the BS 105. The preferences may be signaled via one or more of an uplink control information (UCI) message, a physical uplink shared channel (PUSCH) message, a MAC-CE, a channel state information (CSI) message, and/or a RRC message. Examples of the spreading preferences may include spreading sequences (e.g.,  how many entries are preferred to be zero, where the entries with zero should be allocated, etc. ) , whether one or more dimensions should be disabled, and/or a preferred multiplexing/spreading ratio, (e.g., a preferred value of
Figure PCTCN2020096271-appb-000007
) , where K is the length of each of the modulation symbols 510 and N t×N RE×N sym is the length of each of the spreading sequences 520. The transmitting device may determine the preferences based on CSI measurements. A reported channel quality indicator (CQI) may be based on the reported spreading preferences.
FIG. 6 illustrates an example of a method for diversifying transmission. For example, a method 600 may be performed by the one or more of the processor 212, the memory 216, the applications 275, the modem 220, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the communication component 222, the generation component 224, the summer 226, the reshaping component 228, and/or the mapper 230, and/or one or more other components of the UE 110 in the wireless communication network 100.
At block 605, the method 600 may generate a plurality of modulated symbols. For example, the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may generate a plurality of modulated symbols as described above.
In certain implementations, the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for generating a plurality of modulated symbols.
At block 610, the method 600 may generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences. For example, the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences as described above.
In certain implementations, the generation component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences.
At block 615, the method 600 may sum the plurality of component sum sequences into a sum sequence. For example, the summer 226, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may sum the plurality of component sum sequences into a sum sequence.
In certain implementations, the summer 226, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for summing the plurality of component sum sequences into a sum sequence.
At block 620, the method 600 may reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols. For example, the reshaping component 228, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols as described above.
In certain implementations, the reshaping component 228, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols.
At block 625, the method 600 may map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources. For example, the mapper 230, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may map the sum sequences to resources defined by the  cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources as described above.
In certain implementations, the mapper 230, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources.
At block 630, the method 600 may transmit the plurality of modulated symbols based on the mapping to a receiving device. For example, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may transmit the plurality of modulated symbols based on the mapping to a receiving device. The communication component 222 may send the digital signals to the transceiver 202 or the transmitter 208. The transceiver 202 or the transmitter 208 may convert the digital signals to electrical signals and send to the RF front end 288. The RF front end 288 may filter and/or amplify the electrical signals. The RF front end 288 may send the electrical signals as electro-magnetic signals via the one or more antennas 265.
In certain implementations, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control  information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and setting the one or more entries of the plurality of spreading sequences to zero.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein mapping the plurality of sum sequences comprises rate matching a subset of the plurality of REs.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein rate matching comprises skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein rate matching comprises reducing transmission power associated with the subset of the plurality of REs.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising determining one or more spreading preferences, and  transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation
Figure PCTCN2020096271-appb-000008
where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement, and transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
ADDITIONAL IMPLEMENTATIONS
Aspects of the present disclosure include methods by a transmitting device for generating a plurality of modulated symbols, generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, summing the plurality of component sum sequences into a sum sequence, reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmitting the plurality of modulated symbols based on the mapping to a receiving device.
Any of the methods above, wherein each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
Any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and setting the one or more entries of the plurality of spreading sequences to zero.
Any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Any of the methods above, further comprising receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
Any of the methods above, wherein mapping the plurality of sum sequences comprises rate matching a subset of the plurality of REs.
Any of the methods above, wherein rate matching comprises skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
Any of the methods above, wherein rate matching comprises reducing transmission power associated with the subset of the plurality of REs.
Any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
Any of the methods above, further comprising determining one or more spreading preferences, and transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
Any of the methods above, wherein transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
Any of the methods above, wherein the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation
Figure PCTCN2020096271-appb-000009
where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Any of the methods above, wherein determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement, and transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
Any of the methods above, wherein the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
Any of the methods above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
Other aspects of the present disclosure include a transmitting device having a memory comprising instructions, a transceiver, and one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to generate a plurality of modulated symbols, generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, sum the plurality of component sum sequences into a sum sequence, reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources, and transmit the plurality of modulated symbols based on the mapping to a receiving device.
Any of the transmitting devices above, wherein each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
Any of the transmitting devices above, wherein the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and set the one or more entries of the plurality of spreading sequences to zero.
Any of the transmitting devices above, wherein the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Any of the transmitting devices above, wherein the one or more processors are further configured to receive the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
Any of the transmitting devices above, wherein mapping the plurality of sum sequences comprises rate match a subset of the plurality of REs.
Any of the transmitting devices above, wherein rate matching comprises skip the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
Any of the transmitting devices above, wherein rate matching comprises reduce transmission power associated with the subset of the plurality of REs.
Any of the transmitting devices above, wherein the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
Any of the transmitting devices above, wherein the one or more processors are further configured to determine one or more spreading preferences, and transmit prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
Any of the transmitting devices above, wherein transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
Any of the transmitting devices above, wherein the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation 
Figure PCTCN2020096271-appb-000010
where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Any of the transmitting devices above, wherein determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement, and transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
Any of the transmitting devices above, wherein the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
Any of the transmitting devices above, wherein the one or more processors are further configured to receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
An aspect of the present disclosure includes a transmitting device including means for generating a plurality of modulated symbols, means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences, means for summing the plurality of component sum sequences into a sum sequence, means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols, means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of  spreading sequences is associated with a corresponding subset of the resources, and means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
Any of the transmitting devices above, wherein each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
Any of the transmitting devices above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero, and setting the one or more entries of the plurality of spreading sequences to zero.
Any of the transmitting devices above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Any of the transmitting devices above, further comprising receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
Any of the transmitting devices above, wherein means for mapping the plurality of sum sequences comprises rate matching a subset of the plurality of REs.
Any of the transmitting devices above, wherein means for rate matching comprises skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
Any of the transmitting devices above, wherein means for rate matching comprises reducing transmission power associated with the subset of the plurality of REs.
Any of the transmitting devices above, further comprising receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
Any of the transmitting devices above, further comprising/wherein determining one or more spreading preferences, and transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
Any of the transmitting devices above, wherein means for transmitting the one or more spreading preferences comprises means for transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
Any of the transmitting devices above, wherein the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation 
Figure PCTCN2020096271-appb-000011
where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
Any of the transmitting devices above, wherein means for determining the one or more spreading preferences comprises means for determining the one or more spreading preferences based on a channel state information (CSI) measurement, and means for transmitting the one or more spreading preferences comprises means for transmitting the one or more spreading preferences in a CSI report.
Any of the transmitting devices above, wherein the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
Figure PCTCN2020096271-appb-000012
Figure PCTCN2020096271-appb-000013
Figure PCTCN2020096271-appb-000014
Figure PCTCN2020096271-appb-000015
Figure PCTCN2020096271-appb-000016
Figure PCTCN2020096271-appb-000017
Figure PCTCN2020096271-appb-000018

Claims (60)

  1. A method of wireless communication by a transmitting device in a network, comprising:
    generating a plurality of modulated symbols;
    generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences;
    summing the plurality of component sum sequences into a sum sequence;
    reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols;
    mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources; and
    transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  2. The method of claim 1, wherein:
    each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  3. The method of claim 1, further comprising:
    receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero; and
    setting the one or more entries of the plurality of spreading sequences to zero.
  4. The method of claim 1, further comprising:
    receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  5. The method of claim 1, further comprising:
    receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  6. The method of claim 1, wherein mapping the plurality of sum sequences comprises:
    rate matching a subset of the plurality of REs.
  7. The method of claim 6, wherein rate matching comprises:
    skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  8. The method of claim 6, wherein rate matching comprises:
    reducing transmission power associated with the subset of the plurality of REs.
  9. The method of claim 8, further comprising:
    receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  10. The method of claim 1, further comprising:
    determining one or more spreading preferences; and
    transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  11. The method of claim 10, wherein transmitting the one or more spreading preferences comprises:
    transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  12. The method of claim 10, wherein:
    the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation
    Figure PCTCN2020096271-appb-100001
    where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  13. The method of claim 10, wherein:
    determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement; and
    transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
  14. The method of claim 1, wherein:
    the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  15. The method of claim 1, further comprising:
    receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
  16. A transmitting device, comprising:
    a memory comprising instructions;
    a transceiver; and
    one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute the instructions to:
    generate a plurality of modulated symbols;
    generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences;
    sum the plurality of component sum sequences into a sum sequence;
    reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols;
    map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources; and
    transmit the plurality of modulated symbols based on the mapping to a receiving device.
  17. The transmitting device of claim 16, wherein:
    each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  18. The transmitting device of claim 16, wherein the one or more processors are further configured to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero; and
    set the one or more entries of the plurality of spreading sequences to zero.
  19. The transmitting device of claim 16, wherein the one or more processors are further configured to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  20. The transmitting device of claim 16, wherein the one or more processors are further configured to:
    receive the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  21. The transmitting device of claim 16, wherein mapping the plurality of sum sequences comprises:
    rate match a subset of the plurality of REs.
  22. The transmitting device of claim 21, wherein rate matching comprises:
    skip the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  23. The transmitting device of claim 21, wherein rate matching comprises:
    reduce transmission power associated with the subset of the plurality of REs.
  24. The transmitting device of claim 23, wherein the one or more processors are further configured to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  25. The transmitting device of claim 16, wherein the one or more processors are further configured to:
    determine one or more spreading preferences; and
    transmit prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  26. The transmitting device of claim 25, wherein:
    transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  27. The transmitting device of claim 25, wherein:
    the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of  zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation
    Figure PCTCN2020096271-appb-100002
    where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  28. The transmitting device of claim 25, wherein:
    determining the one or more spreading preferences comprises determining the one or more spreading preferences based on a channel state information (CSI) measurement; and
    transmitting the one or more spreading preferences comprises transmitting the one or more spreading preferences in a CSI report.
  29. The transmitting device of claim 16, wherein:
    the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  30. The transmitting device of claim 16, wherein the one or more processors are further configured to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
  31. A non-transitory computer readable medium having instructions stored therein that, when executed by one or more processors of a transmitting device, cause the one or more processors to:
    generate a plurality of modulated symbols;
    generate a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences;
    sum the plurality of component sum sequences into a sum sequence;
    reshape the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols;
    map the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources; and
    transmit the plurality of modulated symbols based on the mapping to a receiving device.
  32. The non-transitory computer readable medium of claim 31, wherein:
    each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  33. The non-transitory computer readable medium of claim 31, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero; and
    set the one or more entries of the plurality of spreading sequences to zero.
  34. The non-transitory computer readable medium of claim 31, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  35. The non-transitory computer readable medium of claim 31, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    receive the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  36. The non-transitory computer readable medium of claim 31, wherein the instructions for mapping further comprises instructions, when executed by the one or more processors, cause the one or more processors to:
    rate match a subset of the plurality of REs.
  37. The non-transitory computer readable medium of claim 36, wherein the instructions for rate matching further comprises instructions, when executed by the one or more processors, cause the one or more processors to:
    skip the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  38. The non-transitory computer readable medium of claim 36, wherein the instructions for rate matching further comprises instructions, when executed by the one or more processors, cause the one or more processors to:
    reduce transmission power associated with the subset of the plurality of REs.
  39. The non-transitory computer readable medium of claim 38, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  40. The non-transitory computer readable medium of claim 31, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    determine one or more spreading preferences; and
    transmit prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  41. The non-transitory computer readable medium of claim 40, wherein the instructions for transmitting the one or more spreading preferences further comprises instructions, when executed by the one or more processors, cause the one or more processors to:
    transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  42. The non-transitory computer readable medium of claim 40, wherein:
    the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation
    Figure PCTCN2020096271-appb-100003
    where K is a length of a symbol of  the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  43. The non-transitory computer readable medium of claim 40, wherein:
    the instructions for determining the one or more spreading preferences further comprises instructions, when executed by the one or more processors, cause the one or more processors to determine the one or more spreading preferences based on a channel state information (CSI) measurement; and
    the instructions for transmitting the one or more spreading preferences further comprises instructions, when executed by the one or more processors, cause the one or more processors to transmit the one or more spreading preferences in a CSI report.
  44. The non-transitory computer readable medium of claim 31, wherein:
    the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  45. The non-transitory computer readable medium of claim 31, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    receive a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
  46. A transmitting device, comprising:
    means for generating a plurality of modulated symbols;
    means for generating a plurality of component sum sequences by multiplying each of the plurality of modulated symbols by a corresponding spreading sequence of a plurality of spreading sequences;
    means for summing the plurality of component sum sequences into a sum sequence;
    means for reshaping the sum sequence into a cuboid defined by a number of a plurality of layers or demodulation reference signal (DMRS) ports, a number of resource elements (REs) per symbol, and a number of a plurality of time-domain (TD) symbols;
    means for mapping the sum sequences to resources defined by the cuboid, wherein each of the plurality of spreading sequences is associated with a corresponding subset of the resources; and
    means for transmitting the plurality of modulated symbols based on the mapping to a receiving device.
  47. The transmitting device of claim 46, wherein:
    each of the plurality of spreading sequences has a length equaling to a product of the number of the plurality of layers or DMRS ports, the number of the plurality of REs, and the number of the plurality of TD symbols.
  48. The transmitting device of claim 46, further comprising:
    means for receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more entries of the plurality of spreading sequences to be set to zero; and
    means for setting the one or more entries of the plurality of spreading sequences to zero.
  49. The transmitting device of claim 46, further comprising:
    means for receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating K≤N TN REN Sym, where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is  the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  50. The transmitting device of claim 46, further comprising:
    means for receiving the plurality of spreading sequences via a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message.
  51. The transmitting device of claim 46, wherein means for mapping the plurality of sum sequences comprises:
    means for rate matching a subset of the plurality of REs.
  52. The transmitting device of claim 51, wherein means for rate matching comprises:
    means for skipping the subset of the plurality of the REs when mapping the plurality of sum sequences to the resources.
  53. The transmitting device of claim 51, wherein means for rate matching comprises:
    means for reducing transmission power associated with the subset of the plurality of REs.
  54. The transmitting device of claim 53, further comprising:
    means for receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating a power reduction level associated with the reducing transmission power.
  55. The transmitting device of claim 46, further comprising/wherein:
    means for determining one or more spreading preferences; and transmitting, prior to receiving the plurality of spreading sequences, the one or more spreading preferences to a base station.
  56. The transmitting device of claim 55, wherein means for transmitting the one or more spreading preferences comprises:
    means for transmitting the one or more spreading preferences in an uplink control information (UCI) message, physical uplink shared channel (PUSCH) message, medium access control (MAC) control element (CE) , or a radio resource configuration (RRC) message.
  57. The transmitting device of claim 55, wherein:
    the one or more spreading preferences comprise at least one of a preferred value of zero for one or more entries of the plurality of spreading sequences, one or more preferred resource locations for the one or more entries having the preferred value of zero, one or more preferred disabled dimensions, or a preferred multiplexing to spreading ratio defined by an equation
    Figure PCTCN2020096271-appb-100004
    where K is a length of a symbol of the plurality of modulation symbols, N T is the number of the plurality of layers or DMRS ports, N RE is the number of the plurality of REs, and N Sym is the number of the plurality of TD symbols.
  58. The transmitting device of claim 55, wherein:
    means for determining the one or more spreading preferences comprises means for determining the one or more spreading preferences based on a channel state information (CSI) measurement; and
    means for transmitting the one or more spreading preferences comprises means for transmitting the one or more spreading preferences in a CSI report.
  59. The transmitting device of claim 46, wherein:
    the resources comprises at least one of the plurality of layers or DMRS ports, the number of REs per symbol, and the plurality of TD symbols.
  60. The transmitting device of claim 46, further comprising:
    means for receiving a radio resource configuration (RRC) message, a medium access control (MAC) control element (CE) , or a downlink control information (DCI) message indicating one or more disabled dimensions.
PCT/CN2020/096271 2020-06-16 2020-06-16 Methods and apparatus for space-frequency-time diversity WO2021253210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096271 WO2021253210A1 (en) 2020-06-16 2020-06-16 Methods and apparatus for space-frequency-time diversity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096271 WO2021253210A1 (en) 2020-06-16 2020-06-16 Methods and apparatus for space-frequency-time diversity

Publications (1)

Publication Number Publication Date
WO2021253210A1 true WO2021253210A1 (en) 2021-12-23

Family

ID=79269017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096271 WO2021253210A1 (en) 2020-06-16 2020-06-16 Methods and apparatus for space-frequency-time diversity

Country Status (1)

Country Link
WO (1) WO2021253210A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196253A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Mechanisms for reduced density csi-rs
US20180367274A1 (en) * 2016-02-03 2018-12-20 Huawei Technologies Co., Ltd. Method and apparatus for transmitting pilot signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180367274A1 (en) * 2016-02-03 2018-12-20 Huawei Technologies Co., Ltd. Method and apparatus for transmitting pilot signal
WO2017196253A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Mechanisms for reduced density csi-rs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT.: "Discussion on codeword mapping", 3GPP DRAFT; R1-1707468, vol. RAN WG1, 6 May 2017 (2017-05-06), Hangzhou, China, pages 1 - 5, XP051261816 *
MEDIATEK INC: "Codeword mapping in NR.", 3GPP DRAFT; R1-1713688 LAYER MAPPING FINAL, vol. RAN WG1, 20 August 2017 (2017-08-20), Prague, Czech, pages 1 - 5, XP051316488 *
ZTE: "CW/CB to resource mapping and interleaving.", 3GPP DRAFT; R1-1707111 CODEWORD TO LAYER MAPPING AND INTERLEAVING, vol. RAN WG1, 7 May 2017 (2017-05-07), Hangzhou P R China, pages 1 - 5, XP051262902 *

Similar Documents

Publication Publication Date Title
CN111742506B (en) Effective DL-CINR measurement and reporting method, device and readable medium in NB IOT
US11930488B2 (en) Techniques for signaling uplink transmission configuration indicator states
KR20230050324A (en) Sidelink Carrier Aggregation Setup, Enabling and Disabling
WO2019068262A1 (en) Encoding and resource allocation for control information in physical channel
EP4014354A1 (en) Evaluation period for beam failure detection and candidate beam detection in multi-beam nr-u
CN114642021A (en) SFN transmission procedure for FR2
US11844120B2 (en) Methods and apparatus for determining physical cell identification
US11765705B2 (en) Methods and apparatus for configuring RB sets
US11356972B2 (en) PRS sequence initialization
US10779193B2 (en) Transmissions in a half duplex based wireless communication system
WO2021253210A1 (en) Methods and apparatus for space-frequency-time diversity
JP2023538824A (en) Beamforming circuit for multiple antennas
CN115836486A (en) Techniques for dynamic downlink and uplink quasi-co-location relationship reporting
CN114731627A (en) Techniques for dynamic sidelink waveform selection
CN115004814A (en) Method and apparatus for reference signal association
US12003979B2 (en) Methods and apparatus for base station signaling for interference estimation
US11683209B2 (en) Methods and apparatus for signaling guard symbols in integrated access and backhauling
US20230136038A1 (en) Methods and apparatus for base station signaling for interference estimation
US11785609B2 (en) Techniques for indicating lack of data for transmission
US11690047B2 (en) Methods and apparatus for configuring intra-slot time-division multiplexed transport blocks
WO2023142017A1 (en) Methods and apparatus for multiple sidelink channel occupancy time sharing
US20220393841A1 (en) Downlink framework for distributed mimo receivers
US20240155520A1 (en) Signal transmission over unlicensed spectrum
IL292217A (en) Two-step user equipment assisted code block mapping adaptation
CN118140438A (en) Method and apparatus for base station signaling for interference estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941233

Country of ref document: EP

Kind code of ref document: A1