WO2021248307A1 - Anchor cell selection for non-standalone mode - Google Patents

Anchor cell selection for non-standalone mode Download PDF

Info

Publication number
WO2021248307A1
WO2021248307A1 PCT/CN2020/095090 CN2020095090W WO2021248307A1 WO 2021248307 A1 WO2021248307 A1 WO 2021248307A1 CN 2020095090 W CN2020095090 W CN 2020095090W WO 2021248307 A1 WO2021248307 A1 WO 2021248307A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
priority
cells
base stations
anchor
Prior art date
Application number
PCT/CN2020/095090
Other languages
French (fr)
Inventor
Yuankun ZHU
Chaofeng HUI
Fojian ZHANG
Jian Li
Pan JIANG
Zhuoqi XU
Shouxin XU
Qi Wang
Gang Liu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/095090 priority Critical patent/WO2021248307A1/en
Publication of WO2021248307A1 publication Critical patent/WO2021248307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the following relates generally to wireless communications and more specifically to anchor cell selection for non-standalone mode.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may perform cell selection and reselection according to cells on a neighbor cell list. For example, a UE may camp on a cell that corresponds to a radio access technology (RAT) and supports standalone operation.
  • RAT radio access technology
  • Current techniques for cell reselection for efficient use of standalone and non-standalone cells of the same or different RATs may be inefficient and fail to utilize preferred RATs or resources, which may degrade system performance.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support anchor cell selection for non-standalone (NSA) mode.
  • the described techniques provide for improving data transmission rates by prioritizing cells of a first radio access technology (RAT) that support non-standalone cells of second RAT.
  • RAT radio access technology
  • preferential cell selection or reselection to 4G (e.g., Long Term Evolution (LTE) ) cells that serve as anchor cells for a non-standalone 5G (e.g., New Radio (NR) ) cell may improve utilization of the 5G non-standalone cells.
  • 4G e.g., Long Term Evolution (LTE)
  • 5G e.g., New Radio (NR)
  • a 5G capable UE may modify the priority of a 5G-anchor LTE cell and/or increase the measured received power (e.g., reference signal received power (RSRP) ) of the 5G-anchor cell to prioritize cells that support operating in NSA mode.
  • RSRP reference signal received power
  • a UE may identify a set of cells associated with respective base stations, and each of the cells may be associated with a priority.
  • the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority.
  • the UE may perform one or more measurements of the at least one cell based on the modified priority.
  • a method of wireless communication at a UE is described.
  • the method may include identifying a set of cells associated with respective base stations, each of the cells associated with a priority, modifying the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determining whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the apparatus may include means for identifying a set of cells associated with respective base stations, each of the cells associated with a priority, modifying the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determining whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements of the at least one cell based on the modified priority.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from performing one or more measurements of the at least one cell based on the modified priority.
  • a first cell and a second cell in the set of cells may be associated with a first radio access technology, and where the first cell serves as an anchor cell for an additional cell associated with a second radio access technology, and where modifying the priority of the at least one cell further may include operations, features, means, or instructions for modifying the priority of the first cell such that the modified priority of the first cell may be greater than the priority of the second cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for modifying one or more measurements of the first cell based on the first cell serving as the anchor cell for the additional cell associated with the second radio access technology.
  • modifying the one or more measurements of the at least one cell may include operations, features, means, or instructions for identifying a power compensation value, and increasing the one or more measurements of the at least one cell by the power compensation value.
  • the power compensation value may be based on a preconfigured value.
  • FIG. 1 illustrates an example of a system for wireless communications that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a flow diagram that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • FIGs. 9 through 11 show flowcharts illustrating methods that support anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • a wireless communications network may support multiple radio access technologies (RATs) .
  • a user equipment UE may attach to a cell that corresponds to a RAT based on a priority of the cell and/or a received power of the cell. The priority of the cell and/or the received power of the cell may prevent the UE from attaching to an alternative cell, but the alternative cell may be associated with increased data transmission rates and decreased communication latency.
  • a fifth generation (5G) capable UE may camp on a first cell (e.g., a non-5G-anchor Long Term Evolution (LTE) cell) and within the coverage area of a second cell (e.g., a 5G-anchor LTE cell) .
  • LTE non-5G-anchor Long Term Evolution
  • the priority of the 5G-anchor LTE cell may be lower than the priority of the non-5G-anchor LTE cell, so the UE may stay camped on the non-5G-anchor LTE cell. In some additional or alternative cases, the UE may stay camped on the non-5G-anchor LTE cell based on the received power of the non-5G-anchor LTE cell being higher than the received power of the 5G-anchor LTE cell.
  • a UE may alter the priority of a cell and/or alter the received power of a cell to improve system performance. For example, a UE may identify a set of cells (e.g., neighbor cells) and adjust the priority of at least one of the cells in the identified set of cells. The UE may adjust the priority of a 5G-anchor LTE cell, and the priority may be adjusted such that it is higher than the priority of a non-5G-anchor LTE cell. The UE may additionally or alternatively increase the received power (e.g., reference signal received power (RSRP) ) of a 5G-anchor LTE cell, and the received power may be increased by a static or dynamic compensation value.
  • RSRP reference signal received power
  • the UE may alter the priority of a cell that corresponds to a first RAT (e.g., a 4G technology, an LTE technology) and is associated with a base station based on the base station serving an additional cell that corresponds to a second RAT (e.g., a 5G technology, a new radio (NR) technology) .
  • the UE may determine whether to perform measurements of the cell that corresponds to the first RAT based on the altered priority. For example, the UE may perform a neighbor cell measurement procedure based on the altered priority of the cell. Modifying the priority of a cell and/or increasing the received power of a cell to may improve data transmission rates, decrease system latency, and increase scheduling flexibility.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described with respect to a flow diagram and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to anchor cell selection for non-standalone mode.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may prioritize a 5G-anchor cell over a cell that is not a 5G-anchor cell.
  • the UE 115 may modify the priority and/or the received power of a 5G-anchor cell, which may improve data transmission rates.
  • a UE may perform a cell reselection based on the modified priority and/or modified received power, which may support the UE in operating in a mode that support increased data transmission rates (e.g., operating in NSA mode) .
  • a UE 115 may identify a set of cells associated with respective base stations, and each of the cells may be associated with a priority.
  • the UE 115 may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority.
  • the UE 115 may perform one or more measurements of the at least one cell based on the modified priority.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communication system 100.
  • Wireless communications system 200 may include UE 115-a, which may be an example of a UE 115 as described with reference to FIG. 1.
  • Wireless communications system 200 may include base station 105-a and base station 105-b, which may be examples of base stations 105 as described with reference to FIG. 1.
  • Each base station 105 may be associated with one or more cells 205, and UE 115-a may perform a cell priority modification procedure 210 to modify the priority of a cell 205.
  • UE 115-a may be associated with (e.g., camped on) cell 205-c of base station 105-b, and cell 205-c may be a non-5G-anchor LTE cell.
  • UE 115-a may identify a set of cells that are each associated with a priority and a respective base station, and UE 115-a may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base station. For example UE 115-a may identify cell 205-a as well as cell 205-c, and UE 115-a may modify the priority of cell 205-a based on information related to additional cells served by base station 105-a.
  • the information may indicate that an additional cell (e.g., cell 205-b) is a 5G cell.
  • Cell 205-a may thus serve as an LTE anchor cell for the 5G cell 205-b.
  • UE 115-a may determine or identify the information related to additional cells served by the base station 105 based on a lookup table or a configuration of UE 115-a.
  • the at least one cell may correspond to a 5G-anchor LTE cell
  • UE 115-a may perform a cell priority modification procedure 210 to alter the priority of the 5G-anchor LTE cell such that the priority of the 5G-anchor LTE cell is higher than the priority of non-5G-anchor LTE cells.
  • cell 205-a may correspond to a non-standalone (NSA) -anchor cell and/or a 5G-anchor LTE cell
  • UE 115-a may increase the priority of cell 205-a such that the priority of cell 205-a is higher than the priority of cell 205-c.
  • NSA non-standalone
  • UE 115-a may decrease the priority of cell 205-c such that the priority of cell 205-c is lower than the priority of cell 205-a.
  • UE 115-a may adjust the priority of non-5G-anchor LTE cells to be no higher than a cell priority of 6 (e.g., on a range of cell priorities from 1-7) .
  • UE 115-a may additionally or alternatively adjust the priority of 5G-anchor LTE cells to be a cell priority of 7, which may support performing measurements (e.g., power measurements, RSRP measurements, etc. ) of 5G-anchor neighbor cells.
  • UE 115-a may adjust the measured power (e.g., the RSRP) of 5G-anchor LTE cells. For example, UE 115-a may increase the measured power of cell 205-a by a compensation value, which may support fast cell reselection from a cell that does not support NSA mode (e.g., cell 205-c) to a cell that does support NSA mode (e.g., cell 205-a) . In some cases, UE 115-a may increase the measured power of cell 205-a by a default compensation value of 6 decibels (dB) .
  • dB decibels
  • UE 115-a may increase the measurement power of cell 205-a by a compensation value that is based on the measurement power of cell 205-a, a number of devices connected to cell 205-a, a number of devices connected to base station 105-a, the coverage area of cell 205-a, or any combination thereof.
  • FIG. 3 illustrates an example of a flow diagram 300 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • flow diagram 300 may implement aspects of wireless communication system 100.
  • the steps described in the flow diagram may be performed by UE (e.g., a 5G capable UE, a UE that supports NSA operation, etc. ) .
  • a UE may perform procedure 305-a, procedure 305-b, or both.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all.
  • steps may include additional features not mentioned below, or further steps may be added.
  • a UE may be camped on a non-5G-anchor cell.
  • the UE may be camped on an LTE cell that does not support a second cell operating in an NSA mode.
  • the UE may scan the serving cell and neighbor cell list.
  • the serving cell may correspond to the cell the UE is camped on, and the neighbor cell list may correspond to a list of cells that the UE may be configured to connect to, if available.
  • the UE may identify if a cell is associated with a 5G anchor band.
  • the cell may be the serving cell or a cell that is part of the neighbor cell list. If the cell does belong to the 5G anchor band, the UE may set the band priority at 325. In some cases, the UE may set the band priority to a highest value of a priority range (e.g., a value of 7 on a priority range of 1-7) , while in some additional or alternative cases, the UE may set the band priority such that it is higher than the priority of non-5G anchor bands. If the cell does not belong to the 5G anchor band, the UE may limit the band priority at 330. In some cases, the UE may limit the band priority to be less than or equal to 6, while in some additional or alternative cases, the UE may set the band priority such that it is lower than the priority of 5G anchor bands.
  • a priority range e.g., a value of 7 on a priority range of 1-7
  • the UE may limit the band priority at 330.
  • the UE may perform cell measurements of the neighbor cells and/or the serving cell.
  • the cell measurements may be based on modified band priority (e.g., as set at 325 based on the cell belonging to a 5G anchor band) .
  • Modifying the band priority of cells that are associated with 5G anchor bands may ensure that 5G anchor cells receive a high priority and that measurements for 5G anchor neighbor cells are performed, which may be used as part of a cell reselection evaluation.
  • measurements of neighbor cells may be enabled for cells of higher priority than a current cell (e.g., a cell the UE is currently camped on) .
  • the UE may determine whether a cell belongs to the 5G anchor band. If the cell does belong to the 5G anchor band, the UE may increase the RSRP of the cell by a static or a dynamic value at 345. If the cell does not belong to the 5G anchor band, the UE may refrain from increasing the RSRP of the cell, and may instead evaluate cell reselection at 350. In some cases, the cell reselection evaluation at 350 may be based on a modified RSRP value (e.g., as increased at 345 based on the cell belonging to a 5G anchor band) . In some cases, increasing the RSRP of a 5G anchor cell may support cell reselection to a 5G anchor cell.
  • a modified RSRP value e.g., as increased at 345 based on the cell belonging to a 5G anchor band
  • FIG. 4 illustrates an example of a process flow 400 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communication system 100.
  • the process flow 400 includes UE 115-b, base station 105-c, and base station 105-d, which may be examples of the corresponding devices described with reference FIGs 1 through 3.
  • UE 115-b may perform a cell priority modification procedure and/or a received power modification procedure to support cell selection for non-standalone mode.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • UE 115-b may be camped on a first cell served by base station 105-c.
  • UE 115-b may be a 5G capable UE (e.g., a UE that supports 5G operating in an NSA mode)
  • the first cell that UE 115-b is camped on may be a 4G cell (e.g., a non-5G-anchor LTE cell) .
  • UE 115-b may identify a set of cells associated with respective base stations, where each cell may be associated with a priority.
  • each configured neighbor cell may be associated with a priority that may be included in neighbor cell information configuring the neighbor cells.
  • the set of cells may include a number of cells served by base station 105-c and/or a number of cells served by base station 105-d.
  • UE 115-b may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations.
  • the information related to additional cells served by the respective base stations may be publicly or privately available.
  • the UE 115-b may be preconfigured with a list of bands or cells that serve as anchor bands or cells for 5G cells, or may receive the information in system information or RRC signaling.
  • a second cell may be served by base station 105-d, and UE 115-b may modify the priority of the second cell based on the base station 105-d also serving a 5G NSA-mode cell (e.g., the second cell may be a 5G-anchor LTE cell) .
  • 5G NSA-mode cell e.g., the second cell may be a 5G-anchor LTE cell
  • the UE 115-b may modify the priority of 5G-anchor cells as well as non-5G-anchor cells.
  • the first cell may have an indicated cell priority of 7 (e.g., in a cell priority range of 1-7) and the second cell may have an indicated cell priority of 6.
  • the UE 115-b may modify the cell priority of the non-5G-anchor cells to be lower than any 5G-anchor cells, and may thus modify the cell priority of the first cell to be 6 and the second cell to be 7.
  • UE 115-b may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • UE 115-b may perform measurements of cells that are associated with a priority that exceeds a threshold or the priority of the current cell (e.g., the cell the UE is camped on) .
  • the UE 115-b may only perform measurements of neighbor cells with a higher priority if the current cell the UE is camped on has an RSRP higher than a threshold.
  • the RSRP of the first cell may be -60 decibel milliwatts (dBm) and a threshold for measuring other cells with the same or lower priority may be -70 dBm.
  • the UE 115-b would not perform measurements on the second cell.
  • the modified priorities of the first cell (e.g., 6) and second cell (e.g., 7) the UE 115-b may proceed to perform measurements on the second cell.
  • UE 115-b may receive a reference signal from base station 105-d, and UE 115-b may measure the reference signal based on the modified priority. In some cases, UE 115-b may increase the measured received power of the reference signal. For example, if base station 105-d supports a 5G-anchor LTE cell (e.g., an NSA-anchor cell) , UE 115-b may increase the received power of reference signal by a compensation value. For example, a measured RSRP of the second cell may be -90 dBm, and a threshold for switching to a cell having a higher priority may be -85 dBm.
  • 5G-anchor LTE cell e.g., an NSA-anchor cell
  • the UE 115-b may not perform cell reselection to the second cell. However, the UE 115-b may increase the measured RSRP of the second cell by a compensation value of 6 dBm, making the compensated RSRP equal to -84 dBm. Thus, the second cell may satisfy the threshold for reselection to a cell with a higher priority (e.g., the modified priority of the second cell higher than the first cell) .
  • a higher priority e.g., the modified priority of the second cell higher than the first cell
  • UE 115-b may perform a cell reselection evaluation procedure.
  • the cell reselection evaluation procedure may be based on the increased measured received power of the reference signal and/or the modified priority of the at least one cell.
  • UE 115-b may select and connect to base station 105-d as part of the cell reselection evaluation procedure.
  • the cell reselection evaluation procedure may support cell reselection from a non-5G-anchor cell to a 5G-anchor cell, which may improve system performance.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to anchor cell selection for non-standalone mode, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 630.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to anchor cell selection for non-standalone mode, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a cell identifier 620 and a cell priority processor 625.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the cell identifier 620 may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
  • the cell priority processor 625 may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the transmitter 630 may transmit signals generated by other components of the device 605.
  • the transmitter 630 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 630 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 630 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a cell identifier 710, a cell priority processor 715, and a measurement component 720. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the cell identifier 710 may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
  • the cell priority processor 715 may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations.
  • the cell priority processor 715 may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the cell priority processor 715 may modify the priority of the first cell such that the modified priority of the first cell is greater than the priority of the second cell.
  • the measurement component 720 may perform one or more measurements of the at least one cell based on the modified priority.
  • the measurement component 720 may refrain from performing one or more measurements of the at least one cell based on the modified priority.
  • the measurement component 720 may modify one or more measurements of the first cell based on the first cell serving as the anchor cell for the additional cell associated with the second radio access technology.
  • the measurement component 720 may identify a power compensation value.
  • the measurement component 720 may increase the one or more measurements of the at least one cell by the power compensation value.
  • the power compensation value is based on a preconfigured value.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include RAM and ROM.
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic input output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input output system
  • the processor 840 may include a programmable hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting anchor cell selection for non-standalone mode) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a cell identifier as described with reference to FIGs. 5 through 8.
  • the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
  • the UE may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a cell identifier as described with reference to FIGs. 5 through 8.
  • the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
  • the UE may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
  • the UE may perform one or more measurements of the at least one cell based on the modified priority.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a measurement component as described with reference to FIGs. 5 through 8.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a cell identifier as described with reference to FIGs. 5 through 8.
  • the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
  • the UE may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
  • the UE may refrain from performing one or more measurements of the at least one cell based on the modified priority.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a measurement component as described with reference to FIGs. 5 through 8.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify a set of cells associated with respective base stations, and each of the cells may be associated with a priority. The UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority. The UE may perform one or more measurements of the at least one cell based on the modified priority.

Description

ANCHOR CELL SELECTION FOR NON-STANDALONE MODE
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to anchor cell selection for non-standalone mode.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE may perform cell selection and reselection according to cells on a neighbor cell list. For example, a UE may camp on a cell that corresponds to a radio access technology (RAT) and supports standalone operation. Current techniques for cell reselection for efficient use of standalone and non-standalone cells of the same or different RATs may be inefficient and fail to utilize preferred RATs or resources, which may degrade system performance.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support anchor cell selection for non-standalone (NSA) mode. Generally, the described techniques provide for improving data transmission rates by prioritizing cells of a first radio access technology (RAT) that support non-standalone cells of second RAT. For  example, preferential cell selection or reselection to 4G (e.g., Long Term Evolution (LTE) ) cells that serve as anchor cells for a non-standalone 5G (e.g., New Radio (NR) ) cell may improve utilization of the 5G non-standalone cells. A 5G capable UE may modify the priority of a 5G-anchor LTE cell and/or increase the measured received power (e.g., reference signal received power (RSRP) ) of the 5G-anchor cell to prioritize cells that support operating in NSA mode.
For example, a UE may identify a set of cells associated with respective base stations, and each of the cells may be associated with a priority. The UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority. The UE may perform one or more measurements of the at least one cell based on the modified priority.
A method of wireless communication at a UE is described. The method may include identifying a set of cells associated with respective base stations, each of the cells associated with a priority, modifying the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determining whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for identifying a set of cells associated with respective base stations, each of the cells associated with a priority, modifying the priority of at least one cell in the set of cells based on information related to additional cells served by the respective  base stations, and determining whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing one or more measurements of the at least one cell based on the modified priority.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from performing one or more measurements of the at least one cell based on the modified priority.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a first cell and a second cell in the set of cells may be associated with a first radio access technology, and where the first cell serves as an anchor cell for an additional cell associated with a second radio access technology, and where modifying the priority of the at least one cell further may include operations, features, means, or instructions for modifying the priority of the first cell such that the modified priority of the first cell may be greater than the priority of the second cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for modifying one or more measurements of the first cell based on the first cell serving as the anchor cell for the additional cell associated with the second radio access technology.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, modifying the one or more measurements of the at least one cell may include operations, features, means, or instructions for identifying a power  compensation value, and increasing the one or more measurements of the at least one cell by the power compensation value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the power compensation value may be based on a preconfigured value.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a flow diagram that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
FIGs. 9 through 11 show flowcharts illustrating methods that support anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A wireless communications network may support multiple radio access technologies (RATs) . In some cases, a user equipment (UE) may attach to a cell that corresponds to a RAT based on a priority of the cell and/or a received power of the cell. The  priority of the cell and/or the received power of the cell may prevent the UE from attaching to an alternative cell, but the alternative cell may be associated with increased data transmission rates and decreased communication latency. A fifth generation (5G) capable UE may camp on a first cell (e.g., a non-5G-anchor Long Term Evolution (LTE) cell) and within the coverage area of a second cell (e.g., a 5G-anchor LTE cell) . In some examples, the priority of the 5G-anchor LTE cell may be lower than the priority of the non-5G-anchor LTE cell, so the UE may stay camped on the non-5G-anchor LTE cell. In some additional or alternative cases, the UE may stay camped on the non-5G-anchor LTE cell based on the received power of the non-5G-anchor LTE cell being higher than the received power of the 5G-anchor LTE cell.
According to aspects described herein, a UE may alter the priority of a cell and/or alter the received power of a cell to improve system performance. For example, a UE may identify a set of cells (e.g., neighbor cells) and adjust the priority of at least one of the cells in the identified set of cells. The UE may adjust the priority of a 5G-anchor LTE cell, and the priority may be adjusted such that it is higher than the priority of a non-5G-anchor LTE cell. The UE may additionally or alternatively increase the received power (e.g., reference signal received power (RSRP) ) of a 5G-anchor LTE cell, and the received power may be increased by a static or dynamic compensation value.
In some cases, the UE may alter the priority of a cell that corresponds to a first RAT (e.g., a 4G technology, an LTE technology) and is associated with a base station based on the base station serving an additional cell that corresponds to a second RAT (e.g., a 5G technology, a new radio (NR) technology) . The UE may determine whether to perform measurements of the cell that corresponds to the first RAT based on the altered priority. For example, the UE may perform a neighbor cell measurement procedure based on the altered priority of the cell. Modifying the priority of a cell and/or increasing the received power of a cell to may improve data transmission rates, decrease system latency, and increase scheduling flexibility.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described with respect to a flow diagram and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to anchor cell selection for non-standalone mode.
FIG. 1 illustrates an example of a wireless communications system 100 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly  (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using  carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/(Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of  symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an  identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared  to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such  as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular  orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although  these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio  bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
UE 115 may prioritize a 5G-anchor cell over a cell that is not a 5G-anchor cell. In some cases, the UE 115 may modify the priority and/or the received power of a 5G-anchor cell, which may improve data transmission rates. For example, a UE may perform a cell reselection based on the modified priority and/or modified received power, which may support the UE in operating in a mode that support increased data transmission rates (e.g., operating in NSA mode) .
For example, a UE 115 may identify a set of cells associated with respective base stations, and each of the cells may be associated with a priority. The UE 115 may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority. The UE 115 may perform one or more measurements of the at least one cell based on the modified priority.
FIG. 2 illustrates an example of a wireless communications system 200 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communication system 100. Wireless communications system 200 may include UE 115-a, which may be an example of a UE 115 as described with reference to FIG.  1. Wireless communications system 200 may include base station 105-a and base station 105-b, which may be examples of base stations 105 as described with reference to FIG. 1. Each base station 105 may be associated with one or more cells 205, and UE 115-a may perform a cell priority modification procedure 210 to modify the priority of a cell 205.
UE 115-a may be associated with (e.g., camped on) cell 205-c of base station 105-b, and cell 205-c may be a non-5G-anchor LTE cell. UE 115-a may identify a set of cells that are each associated with a priority and a respective base station, and UE 115-a may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base station. For example UE 115-a may identify cell 205-a as well as cell 205-c, and UE 115-a may modify the priority of cell 205-a based on information related to additional cells served by base station 105-a. The information may indicate that an additional cell (e.g., cell 205-b) is a 5G cell. Cell 205-a may thus serve as an LTE anchor cell for the 5G cell 205-b. In some cases, UE 115-a may determine or identify the information related to additional cells served by the base station 105 based on a lookup table or a configuration of UE 115-a.
In some cases, the at least one cell may correspond to a 5G-anchor LTE cell, and UE 115-a may perform a cell priority modification procedure 210 to alter the priority of the 5G-anchor LTE cell such that the priority of the 5G-anchor LTE cell is higher than the priority of non-5G-anchor LTE cells. In some examples, cell 205-a may correspond to a non-standalone (NSA) -anchor cell and/or a 5G-anchor LTE cell, and UE 115-a may increase the priority of cell 205-a such that the priority of cell 205-a is higher than the priority of cell 205-c. In some additional or alternative examples, UE 115-a may decrease the priority of cell 205-c such that the priority of cell 205-c is lower than the priority of cell 205-a. For example, UE 115-a may adjust the priority of non-5G-anchor LTE cells to be no higher than a cell priority of 6 (e.g., on a range of cell priorities from 1-7) . UE 115-a may additionally or alternatively adjust the priority of 5G-anchor LTE cells to be a cell priority of 7, which may support performing measurements (e.g., power measurements, RSRP measurements, etc. ) of 5G-anchor neighbor cells.
In some cases, UE 115-a may adjust the measured power (e.g., the RSRP) of 5G-anchor LTE cells. For example, UE 115-a may increase the measured power of cell 205-a by a compensation value, which may support fast cell reselection from a cell that does not  support NSA mode (e.g., cell 205-c) to a cell that does support NSA mode (e.g., cell 205-a) . In some cases, UE 115-a may increase the measured power of cell 205-a by a default compensation value of 6 decibels (dB) . In some additional cases, UE 115-a may increase the measurement power of cell 205-a by a compensation value that is based on the measurement power of cell 205-a, a number of devices connected to cell 205-a, a number of devices connected to base station 105-a, the coverage area of cell 205-a, or any combination thereof.
FIG. 3 illustrates an example of a flow diagram 300 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. In some examples, flow diagram 300 may implement aspects of wireless communication system 100. The steps described in the flow diagram may be performed by UE (e.g., a 5G capable UE, a UE that supports NSA operation, etc. ) . In some cases, a UE may perform procedure 305-a, procedure 305-b, or both. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 310, a UE may be camped on a non-5G-anchor cell. For example, the UE may be camped on an LTE cell that does not support a second cell operating in an NSA mode. At 315, the UE may scan the serving cell and neighbor cell list. The serving cell may correspond to the cell the UE is camped on, and the neighbor cell list may correspond to a list of cells that the UE may be configured to connect to, if available.
At 320, the UE may identify if a cell is associated with a 5G anchor band. The cell may be the serving cell or a cell that is part of the neighbor cell list. If the cell does belong to the 5G anchor band, the UE may set the band priority at 325. In some cases, the UE may set the band priority to a highest value of a priority range (e.g., a value of 7 on a priority range of 1-7) , while in some additional or alternative cases, the UE may set the band priority such that it is higher than the priority of non-5G anchor bands. If the cell does not belong to the 5G anchor band, the UE may limit the band priority at 330. In some cases, the UE may limit the band priority to be less than or equal to 6, while in some additional or alternative cases, the UE may set the band priority such that it is lower than the priority of 5G anchor bands.
At 335, the UE may perform cell measurements of the neighbor cells and/or the serving cell. In some cases, the cell measurements may be based on modified band priority  (e.g., as set at 325 based on the cell belonging to a 5G anchor band) . Modifying the band priority of cells that are associated with 5G anchor bands may ensure that 5G anchor cells receive a high priority and that measurements for 5G anchor neighbor cells are performed, which may be used as part of a cell reselection evaluation. For example, measurements of neighbor cells may be enabled for cells of higher priority than a current cell (e.g., a cell the UE is currently camped on) .
At 340, the UE may determine whether a cell belongs to the 5G anchor band. If the cell does belong to the 5G anchor band, the UE may increase the RSRP of the cell by a static or a dynamic value at 345. If the cell does not belong to the 5G anchor band, the UE may refrain from increasing the RSRP of the cell, and may instead evaluate cell reselection at 350. In some cases, the cell reselection evaluation at 350 may be based on a modified RSRP value (e.g., as increased at 345 based on the cell belonging to a 5G anchor band) . In some cases, increasing the RSRP of a 5G anchor cell may support cell reselection to a 5G anchor cell.
FIG. 4 illustrates an example of a process flow 400 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of wireless communication system 100. The process flow 400 includes UE 115-b, base station 105-c, and base station 105-d, which may be examples of the corresponding devices described with reference FIGs 1 through 3. UE 115-b may perform a cell priority modification procedure and/or a received power modification procedure to support cell selection for non-standalone mode. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 405, UE 115-b may be camped on a first cell served by base station 105-c. In some cases, UE 115-b may be a 5G capable UE (e.g., a UE that supports 5G operating in an NSA mode) , and the first cell that UE 115-b is camped on may be a 4G cell (e.g., a non-5G-anchor LTE cell) .
At 410, UE 115-b may identify a set of cells associated with respective base stations, where each cell may be associated with a priority. For example, each configured neighbor cell may be associated with a priority that may be included in neighbor cell  information configuring the neighbor cells. The set of cells may include a number of cells served by base station 105-c and/or a number of cells served by base station 105-d.
At 415, UE 115-b may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations. The information related to additional cells served by the respective base stations may be publicly or privately available. For example, the UE 115-b may be preconfigured with a list of bands or cells that serve as anchor bands or cells for 5G cells, or may receive the information in system information or RRC signaling. In some cases, a second cell may be served by base station 105-d, and UE 115-b may modify the priority of the second cell based on the base station 105-d also serving a 5G NSA-mode cell (e.g., the second cell may be a 5G-anchor LTE cell) . In some cases, the UE 115-b may modify the priority of 5G-anchor cells as well as non-5G-anchor cells. For example, the first cell may have an indicated cell priority of 7 (e.g., in a cell priority range of 1-7) and the second cell may have an indicated cell priority of 6. The UE 115-b may modify the cell priority of the non-5G-anchor cells to be lower than any 5G-anchor cells, and may thus modify the cell priority of the first cell to be 6 and the second cell to be 7.
At 420, UE 115-b may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority. In some cases, UE 115-b may perform measurements of cells that are associated with a priority that exceeds a threshold or the priority of the current cell (e.g., the cell the UE is camped on) . For example, the UE 115-b may only perform measurements of neighbor cells with a higher priority if the current cell the UE is camped on has an RSRP higher than a threshold. For example, the RSRP of the first cell (non-5G-anchor cell) may be -60 decibel milliwatts (dBm) and a threshold for measuring other cells with the same or lower priority may be -70 dBm. Thus, with the indicated priorities of the first cell (e.g., 7) and second cell (e.g., 6) , the UE 115-b would not perform measurements on the second cell. However, with the modified priorities of the first cell (e.g., 6) and second cell (e.g., 7) , the UE 115-b may proceed to perform measurements on the second cell.
At 425, UE 115-b may receive a reference signal from base station 105-d, and UE 115-b may measure the reference signal based on the modified priority. In some cases, UE 115-b may increase the measured received power of the reference signal. For example, if base  station 105-d supports a 5G-anchor LTE cell (e.g., an NSA-anchor cell) , UE 115-b may increase the received power of reference signal by a compensation value. For example, a measured RSRP of the second cell may be -90 dBm, and a threshold for switching to a cell having a higher priority may be -85 dBm. Thus, based on the measured RSRP of the second cell, the UE 115-b may not perform cell reselection to the second cell. However, the UE 115-b may increase the measured RSRP of the second cell by a compensation value of 6 dBm, making the compensated RSRP equal to -84 dBm. Thus, the second cell may satisfy the threshold for reselection to a cell with a higher priority (e.g., the modified priority of the second cell higher than the first cell) .
At 430, UE 115-b may perform a cell reselection evaluation procedure. The cell reselection evaluation procedure may be based on the increased measured received power of the reference signal and/or the modified priority of the at least one cell. In some cases, UE 115-b may select and connect to base station 105-d as part of the cell reselection evaluation procedure. The cell reselection evaluation procedure may support cell reselection from a non-5G-anchor cell to a 5G-anchor cell, which may improve system performance.
FIG. 5 shows a block diagram 500 of a device 505 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to anchor cell selection for non-standalone mode, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one  cell for cell reselection based on the modified priority. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 630. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to anchor cell selection for non-standalone mode, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a cell identifier 620 and a cell priority processor 625. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The cell identifier 620 may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
The cell priority processor 625 may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
The transmitter 630 may transmit signals generated by other components of the device 605. In some examples, the transmitter 630 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 630 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 630 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a cell identifier 710, a cell priority processor 715, and a measurement component 720. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The cell identifier 710 may identify a set of cells associated with respective base stations, each of the cells associated with a priority.
The cell priority processor 715 may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations.
In some examples, the cell priority processor 715 may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
In some examples, the cell priority processor 715 may modify the priority of the first cell such that the modified priority of the first cell is greater than the priority of the second cell.
The measurement component 720 may perform one or more measurements of the at least one cell based on the modified priority.
In some examples, the measurement component 720 may refrain from performing one or more measurements of the at least one cell based on the modified priority.
In some examples, the measurement component 720 may modify one or more measurements of the first cell based on the first cell serving as the anchor cell for the additional cell associated with the second radio access technology.
In some examples, the measurement component 720 may identify a power compensation value.
In some examples, the measurement component 720 may increase the one or more measurements of the at least one cell by the power compensation value.
In some cases, the power compensation value is based on a preconfigured value.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815,  a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may identify a set of cells associated with respective base stations, each of the cells associated with a priority, modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations, and determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020095090-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include RAM and ROM. The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a basic input output system (BIOS) which  may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include a programmable hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting anchor cell selection for non-standalone mode) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a flowchart illustrating a method 900 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 905, the UE may identify a set of cells associated with respective base stations, each of the cells associated with a priority. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a cell identifier as described with reference to FIGs. 5 through 8.
At 910, the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations. The  operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
At 915, the UE may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
FIG. 10 shows a flowchart illustrating a method 1000 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1005, the UE may identify a set of cells associated with respective base stations, each of the cells associated with a priority. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a cell identifier as described with reference to FIGs. 5 through 8.
At 1010, the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
At 1015, the UE may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
At 1020, the UE may perform one or more measurements of the at least one cell based on the modified priority. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a measurement component as described with reference to FIGs. 5 through 8.
FIG. 11 shows a flowchart illustrating a method 1100 that supports anchor cell selection for non-standalone mode in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1105, the UE may identify a set of cells associated with respective base stations, each of the cells associated with a priority. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a cell identifier as described with reference to FIGs. 5 through 8.
At 1110, the UE may modify the priority of at least one cell in the set of cells based on information related to additional cells served by the respective base stations. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
At 1115, the UE may determine whether to perform measurements of the at least one cell for cell reselection based on the modified priority. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a cell priority processor as described with reference to FIGs. 5 through 8.
At 1120, the UE may refrain from performing one or more measurements of the at least one cell based on the modified priority. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of  1120 may be performed by a measurement component as described with reference to FIGs. 5 through 8.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software  executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example  step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (10)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    identifying a set of cells associated with respective base stations, each of the cells associated with a priority;
    modifying the priority of at least one cell in the set of cells based at least in part on information related to additional cells served by the respective base stations; and
    determining whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority.
  2. The method of claim 1, further comprising:
    performing one or more measurements of the at least one cell based at least in part on the modified priority.
  3. The method of claim 1, further comprising:
    refraining from performing one or more measurements of the at least one cell based at least in part on the modified priority.
  4. The method of claim 1, wherein a first cell and a second cell in the set of cells are associated with a first radio access technology, and wherein the first cell serves as an anchor cell for an additional cell associated with a second radio access technology, and wherein modifying the priority of the at least one cell further comprises:
    modifying the priority of the first cell such that the modified priority of the first cell is greater than the priority of the second cell.
  5. The method of claim 4, wherein the UE is camped on the second cell and the second cell does not serve as an anchor for a cell associated with the second radio access technology, the method further comprising:
    modifying one or more measurements of the first cell based at least in part on the first cell serving as the anchor cell for the additional cell associated with the second radio access technology.
  6. The method of claim 5, wherein modifying the one or more measurements of the at least one cell comprises:
    identifying a power compensation value; and
    increasing the one or more measurements of the at least one cell by the power compensation value.
  7. The method of claim 6, wherein the power compensation value is based at least in part on a preconfigured value.
  8. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a set of cells associated with respective base stations, each of the cells associated with a priority;
    modify the priority of at least one cell in the set of cells based at least in part on information related to additional cells served by the respective base stations; and
    determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority.
  9. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for identifying a set of cells associated with respective base stations, each of the cells associated with a priority;
    means for modifying the priority of at least one cell in the set of cells based at least in part on information related to additional cells served by the respective base stations; and
    means for determining whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority.
  10. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    identify a set of cells associated with respective base stations, each of the cells associated with a priority;
    modify the priority of at least one cell in the set of cells based at least in part on information related to additional cells served by the respective base stations; and
    determine whether to perform measurements of the at least one cell for cell reselection based at least in part on the modified priority.
PCT/CN2020/095090 2020-06-09 2020-06-09 Anchor cell selection for non-standalone mode WO2021248307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095090 WO2021248307A1 (en) 2020-06-09 2020-06-09 Anchor cell selection for non-standalone mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095090 WO2021248307A1 (en) 2020-06-09 2020-06-09 Anchor cell selection for non-standalone mode

Publications (1)

Publication Number Publication Date
WO2021248307A1 true WO2021248307A1 (en) 2021-12-16

Family

ID=78846625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095090 WO2021248307A1 (en) 2020-06-09 2020-06-09 Anchor cell selection for non-standalone mode

Country Status (1)

Country Link
WO (1) WO2021248307A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024299A (en) * 2016-11-04 2018-05-11 华为技术有限公司 A kind of residence reselecting and device
WO2019058092A1 (en) * 2017-09-22 2019-03-28 Arm Limited Method of receiving communications
CN110324822A (en) * 2018-03-29 2019-10-11 中国移动通信有限公司研究院 The method and network side equipment, user terminal of cell selection
US20190373523A1 (en) * 2018-06-01 2019-12-05 Verizon Patent And Licensing Inc. Method and system for anchor cell reselection with multi-rat dual-connectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024299A (en) * 2016-11-04 2018-05-11 华为技术有限公司 A kind of residence reselecting and device
WO2019058092A1 (en) * 2017-09-22 2019-03-28 Arm Limited Method of receiving communications
CN110324822A (en) * 2018-03-29 2019-10-11 中国移动通信有限公司研究院 The method and network side equipment, user terminal of cell selection
US20190373523A1 (en) * 2018-06-01 2019-12-05 Verizon Patent And Licensing Inc. Method and system for anchor cell reselection with multi-rat dual-connectivity

Similar Documents

Publication Publication Date Title
WO2021168848A1 (en) Techniques for selecting and reselecting sidelink relay
WO2021168645A1 (en) Beam switching techniques for uplink transmission
US20210067997A1 (en) Sounding reference signal channel measurement for sidelink communication
US20230291440A1 (en) Methods for measuring and reporting doppler shift
WO2022032522A1 (en) Handling of cross link interference collisions with reference signal measurements
WO2021203410A1 (en) Cross-link interference measurement configuration
US20220038249A1 (en) Techniques for declaring default operating frequencies
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
US20230292261A1 (en) Transmit power control indication for multi-panel transmission
WO2021226956A1 (en) Monitoring for downlink repetitions
US20240056918A1 (en) Vehicle-to-everything cell reselection
US11153000B1 (en) Multi-factor beam selection for channel shaping
US11444720B2 (en) Wireless device transmit and receive capability in sidelink control information
WO2022041115A1 (en) A method for protocol stack sharing in dual connectivity
US20230171699A1 (en) Wake-up signal design for multiple multicast sessions
WO2021248307A1 (en) Anchor cell selection for non-standalone mode
US11711761B2 (en) Techniques for delay reduction and power optimization using a set of antenna modules
US11985604B2 (en) Pathloss reference signal update for multiple beams
US11792836B2 (en) Reporting channel statistics for beam management
US11758592B2 (en) Implicit beam indication
WO2023070359A1 (en) An enhanced ue mechanism to increase the chance for irat redirection
WO2021226916A1 (en) Packet sequence number based network resynchronization
US20220150904A1 (en) Techniques for enhanced handling of network measurements
US20230292317A1 (en) Signaling of a set of resources to support inter user equipment coordination
WO2022061566A1 (en) Resource selection under congested conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939605

Country of ref document: EP

Kind code of ref document: A1