WO2021246417A1 - Power transaction support system, power transaction support method, and program - Google Patents

Power transaction support system, power transaction support method, and program Download PDF

Info

Publication number
WO2021246417A1
WO2021246417A1 PCT/JP2021/020898 JP2021020898W WO2021246417A1 WO 2021246417 A1 WO2021246417 A1 WO 2021246417A1 JP 2021020898 W JP2021020898 W JP 2021020898W WO 2021246417 A1 WO2021246417 A1 WO 2021246417A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
power generation
transaction
account
Prior art date
Application number
PCT/JP2021/020898
Other languages
French (fr)
Japanese (ja)
Inventor
英司 大石
成也 三宅
秀太 真野
雄介 鈴木
龍一 飛峪
詢 森本
プラニアル アレックサンドル
Original Assignee
みんな電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by みんな電力株式会社 filed Critical みんな電力株式会社
Publication of WO2021246417A1 publication Critical patent/WO2021246417A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to an electric power transaction support system, an electric power transaction support method and a program.
  • blockchain technology distributed ledger technology
  • cryptocurrency transaction information (hereinafter referred to as "transaction"
  • the transmitted transactions are verified for authenticity by a terminal called a miner, and when approved, they are grouped into blocks and recorded in a ledger called a blockchain.
  • mining is performed by a miner, and then blocks are added to the blockchain to prevent transaction tampering.
  • Patent Document 1 discloses a technique for increasing the degree of guarantee of authenticity of transaction information using such a blockchain. Further, Patent Document 2 proposes a technique for realizing a mechanism for proving green power by using an electronic signature technique.
  • renewable energy power By the way, in recent years, there is an increasing need among companies and local governments to actively use renewable energy power (hereinafter referred to as “renewable energy power”). It can be presumed that the background is that the report to CDP (Carbon Disclosure Project), which discloses the company's efforts toward climate change, is directly linked to the evaluation of shareholders including institutional investors. .. Here, “traceability (specification of power source)” is required for the usage requirement of renewable energy, but such a technology does not exist yet. That is, once the generated power enters the power network (transmission network), it is assimilated with other power, so that it is no longer possible to specify the power generation source.
  • CDP Carbon Disclosure Project
  • an object of the present invention is to provide a technique that can guarantee the traceability of renewable energy power.
  • the main invention of the present invention for solving the above problems is a system that supports a power transaction between a plurality of power plants and a plurality of consumers, and power is generated at each of the power plants.
  • a supply amount acquisition unit that acquires the supply amount transmitted to a predetermined power network
  • a token issuing unit that issues tokens according to the supply amount to the first account of the power plant in the blockchain, and the above.
  • the demand amount acquisition unit that acquires the demand amount received from the power network and the power transmission amount that is considered to have been sent from the power plant to the consumer for each group of the power plant and the consumer are determined.
  • the power transmission amount determination unit and each of the power plants and the second accounts of the plurality of consumers in the group are the destinations, and the first account is the sender, and each customer. It is characterized by comprising a transaction issuing unit for issuing a transaction for transferring the amount of the token according to the power transmission amount of the above.
  • the traceability of renewable energy power can be guaranteed.
  • FIG. 1 It is an image diagram which shows the electric power sale processing by a power generation apparatus. It is a figure which shows the whole structure example of the electric power transaction support system which concerns on one Embodiment of this invention. It is a figure which shows the hardware configuration example of the computer used for the management server 20, the worker apparatus 30, the node which forms the blockchain network 10, and the like. It is a figure which shows the software configuration example of management server 20. It is a figure which shows an example of the matching result by the matching processing unit 213. It is a figure which shows the software configuration example of a worker apparatus 30. It is a figure explaining the operation of the electric power transaction support system of this embodiment.
  • the present invention includes, for example, the following configuration.
  • [Item 1] A system that supports power transactions between multiple power plants and multiple consumers. For each of the power plants, a supply amount acquisition unit that acquires the amount of power transmitted to a predetermined power network among the electric power generated at the power plant, and A token issuer that issues tokens according to the amount of supply to the first account of the power plant in the blockchain, For each of the consumers, a demand quantity acquisition unit that acquires the demand quantity received from the power network, and a demand quantity acquisition unit. A power transmission amount determination unit that determines the amount of power transmitted from the power plant to the consumer for each group of the power plant and the consumer.
  • the electric power transaction support system according to item 1. It is configured to include a server device and multiple worker devices.
  • the worker device includes the transaction issuing unit.
  • the server device is a request transmission unit that distributes requests specifying the amount of the token corresponding to the power transmission plant, the plurality of consumers, and the transmission amount corresponding to the consumers, and transmits the requests to the plurality of worker devices. Equipped with The transaction issuing unit issues the transaction in response to the request.
  • a power transaction support system featuring. [Item 3] The electric power transaction support system described in item 2. The worker device shall be deployed in multiple regions. A power transaction support system featuring. [Item 4] The electric power transaction support system according to any one of items 1 to 3. The transaction issuing unit issues a plurality of transactions in parallel. A power transaction support system featuring. [Item 5] A way to support power transactions between multiple power plants and multiple consumers.
  • the computer For each of the power plants, a step of acquiring the amount of power transmitted to a predetermined power network among the electric power generated by the power plant, and A token issuer that issues tokens according to the amount of supply to the first account of the power plant in the blockchain, For each of the consumers, a step of acquiring the amount of demand received from the power network, and A power transmission amount determination unit that determines the amount of power transmitted from the power plant to the consumer for each group of the power plant and the consumer. For each of the power plants, the power plant and the second accounts of the plurality of consumers in the group are each as the destination, the first account is the sender, and the power transmission amount for each consumer is increased.
  • the step of issuing a transaction to transfer the amount of the token and A power transaction support method characterized by executing.
  • the power plant and the second accounts of the plurality of consumers in the group are each as the destination, the first account is the sender, and the power transmission amount for each consumer is increased.
  • the step of issuing a transaction to transfer the amount of the token, and A program to execute.
  • FIG. 1 is an image diagram showing a process of selling electric power by a power generation device.
  • the liberalization of electric power transactions has progressed, and for example, as shown in FIG. 1, the electric power generated by a plurality of power plants 1 may be sold to a plurality of consumers 2 via a power transmission network 3. It became possible. A power plant and a consumer (or an electric power company that intervenes between them) may conclude a power purchase agreement (PPA).
  • PPA power purchase agreement
  • the electric power generated by each power plant enters the transmission network 3, it is difficult to trace it at present. Therefore, it is difficult to realize PPA when using a power transmission network.
  • traceable electric power transaction that is, a virtual PPA is realized between a plurality of power plants 1 and a plurality of consumers 2.
  • a specific power plant such as a power plant 1 in the hometown, a power plant 1 in a disaster area, or a power plant 1 of a famous company.
  • electric power procurement from such a specific power plant 1 is virtually realized.
  • the number of tokens per 1kWh can be set arbitrarily.
  • the accounts of the power plant 1 and the consumer 2 can be specified by, for example, the wallets of each.
  • the amount of electric power received from the power transmission network 3 by the consumer 2 is matched with the amount of electric power generated by the power plant 1 and transmitted to the power transmission network 3.
  • a virtual PPA in which the consumer 2 receives an electric charge from a specific power plant 1 is managed and used.
  • the electric energy (demand) received from the network 3 is acquired, and the electric energy from the power plant 1 is apportioned among a plurality of consumers 2 who have a PPA with the same power plant 1.
  • the amount of electric energy (supply amount) supplied from the power plant 1 to the consumer 2 can be calculated.
  • the apportionment can be performed, for example, at the ratio of the electric energy contracted by PPA.
  • tokens corresponding to the supply amount are sent from the account of the power plant 1 to the account of the consumer 2.
  • it becomes possible to trace the transaction of electric power in a pseudo manner and it is possible to grasp that the electric power provided by the specific power plant 1 is pseudo-directly sold to the specific consumer 2. This makes it possible to realize a virtual PPA.
  • FIG. 2 is a diagram showing an overall configuration example of the electric power transaction support system according to the embodiment of the present invention.
  • the electric power transaction support system of the present embodiment includes a blockchain network 10, a management server 20, and a plurality of worker devices 30.
  • the blockchain network 10, the management server 20, and the plurality of worker devices 30 are connected to each other so as to be able to communicate with each other via the communication network.
  • the communication network is, for example, the Internet, and is constructed of a public telephone line network, a mobile phone line network, a wireless communication path, Ethernet (registered trademark), and the like.
  • the blockchain network 10 is composed of a plurality of computer nodes that are communicably connected to each other by P2P (Peer to Peer) communication, and manages a blockchain that records token transactions as transactions.
  • P2P Peer to Peer
  • the configuration of the blockchain network 10 is assumed to be used for a general blockchain, and detailed description thereof will be omitted here.
  • the management server 20 is a computer that manages the history of transactions related to virtual PPA between the power plant 1 and the consumer 2, and is realized by, for example, a personal computer, a workstation, or a virtual computer by cloud computing. To. As described above, the management server 20 manages the flow of power related to the virtual PPA as the flow of tokens in the blockchain network 10.
  • the worker device 30 is a computer that issues a transaction, and is realized by, for example, a personal computer, a workstation, or a virtual computer by cloud computing. A plurality of worker devices 30 are arranged. Further, the worker device 30 is deployed in a plurality of regions (areas in which computers are arranged). In the present embodiment, the worker device 30 issues a transaction in response to a request from the management server 20 and transmits the transaction to the blockchain network 10.
  • a plurality of worker devices 30 issue transactions in parallel.
  • transactions are sequentially issued in series, but as in the present embodiment, by issuing transactions using the worker device 30 in parallel, a large number of transactions corresponding to a large number of transactions are issued. Can be issued efficiently.
  • FIG. 3 is a diagram showing an example of hardware configuration of a computer used for a management server 20, a worker device 30, a node forming a blockchain network 10, and the like.
  • the configuration shown in the figure is an example, and may have other configurations.
  • the computer includes a CPU 101, a memory 102, a storage device 103, a communication interface 104, an input device 105, and an output device 106.
  • the storage device 103 stores various data and programs, such as a hard disk drive, a solid state drive, and a flash memory.
  • the communication interface 104 is an interface for connecting to a communication network, for example, an adapter for connecting to Ethernet (registered trademark), a modem for connecting to a public telephone network, a wireless communication device for performing wireless communication, and the like.
  • the input device 105 is, for example, a keyboard, a mouse, a touch panel, a button, a microphone, or the like for inputting data.
  • the output device 106 is, for example, a display, a printer, a speaker, or the like that outputs data.
  • FIG. 4 is a diagram showing a software configuration example of the management server 20.
  • the management server 20 includes a demand amount acquisition unit 211, a power generation amount acquisition unit 212, a matching processing unit 213, a request transmission unit 214, and a supplier storage unit 231.
  • the demand amount acquisition unit 211, the power generation amount acquisition unit 212, the matching processing unit 213, and the request transmission unit 214 are executed by the CPU 101 reading the program stored in the storage device 103 into the memory 102 in the management server 20.
  • the supplier storage unit 231 can be realized as a part of the storage area provided by the memory 102 of the management server 20 and the storage device 103.
  • the demand amount acquisition unit 211 acquires the demand amount of electric power by the consumer 2.
  • the demand amount acquisition unit 211 can acquire the demand amount received from the power transmission network 3 from, for example, a smart meter arranged in a facility such as a residence, a factory, or a store of the consumer 2.
  • the demand amount acquisition unit 211 shall acquire the demand amount for each predetermined unit time (for example, 15 minutes, 30 minutes, etc.).
  • the power generation amount acquisition unit 212 acquires the power generation amount from the power plant 1.
  • the power generation amount acquisition unit 212 can acquire the power generation amount (the amount of power transmitted from the power plant 1 to the power transmission network 3) from, for example, a smart meter arranged in the power plant 1.
  • the power generation amount acquisition unit 212 shall acquire the power generation amount for each predetermined unit time.
  • the supplier storage unit 231 stores information (hereinafter referred to as supplier information) that associates the consumer 2 with the power plant 1 that is the source of the electric power related to the virtual PPA of the consumer 2.
  • supplier information can include the power plant 1 and the contracted electric energy in association with the consumer 2.
  • the supplier information may include the priority of the power plant 1 corresponding to the consumer 2.
  • the matching processing unit 213 matches the power plant 1 with the consumer 2.
  • the matching processing unit 213 is based on the demand amount acquired by the demand amount acquisition unit 211, the power generation amount acquired by the power generation amount acquisition unit 212, and the supplier information, and the demand among the power plant 1, the consumer 2, and the power generation amount.
  • the amount of supply supplied to the person 2 can be determined.
  • the matching processing unit 213 reads out the supplier information corresponding to the power plant 1 for each power plant 1, prorates the power generation amount using the contracted electric energy of the read supplier information, and obtains the supplier information.
  • the supply amount for the consumer 2 can be calculated.
  • FIG. 5 is a diagram showing an example of the result of matching by the matching processing unit 213. As in the example of FIG. 5, the power supply can be calculated for the set of the power plant 1 and the consumer 2.
  • the request transmission unit 214 performs a process for issuing a transaction for transferring a token according to a matching result.
  • the request transmission unit 214 sets the supply amount of the power plant 1, the consumer 2, and the power plant 1 to the consumer 2 to the worker device 30.
  • a request including information associated with the above (hereinafter referred to as transaction information) is transmitted to the worker device 30.
  • the request transmission unit 214 selects the power plant 1, extracts the pair of the matched power plant 1 and the consumer 2, and the one corresponding to the selected power plant 1, and collects all the extracted pairs. ,
  • the power plant 1, the plurality of consumers 2 to be supplied from the power plant 1, and the supply amount to the consumers 2 can be included in the request.
  • FIG. 6 is a diagram showing a software configuration example of the worker device 30.
  • the worker device 30 includes a request receiving unit 311 and a transaction issuing unit 312.
  • the request receiving unit 311 receives the above-mentioned request from the management server 20.
  • the transaction issuing unit 312 issues a transaction in response to a request and sends it to the blockchain network 10.
  • the request includes a plurality of consumers 2 who are power supply destinations from the power plant 1 and the amount of power supplied to the consumers 2 in association with the power plant 1. Therefore, the transaction issuing unit 312 transmits the number of tokens corresponding to the amount of power supplied for each consumer 2, with the account of one power plant 1 as the transmission source and the accounts of a plurality of consumers 2 as the transmission destinations.
  • a so-called one-to-N transaction is issued and transmitted to the blockchain network 5.
  • the blockchain network 5 is an implementation system capable of processing one-to-N transactions. As a result, it is possible to collectively issue transactions related to virtual PPA for all transmission destinations (consumer 2) from the power plant 1 and issue a one-to-N transaction for transferring the corresponding tokens.
  • FIG. 7 is a diagram illustrating the operation of the electric power transaction support system of the present embodiment.
  • the management server 20 performs matching between the power plant 1 and the consumer 2 (S321), collects the transactions corresponding to each power plant 1 from the matching result (see FIG. 5) (S322), and summarizes the transactions, that is, the transactions.
  • the request including the transaction information obtained by extracting the one corresponding to one power plant 1 from the matching result is distributed and transmitted to the worker device 30 (S323).
  • the management server 20 can create a request for each of the plurality of power plants 1 and send the created request to different worker devices 30.
  • the account of one set power plant 1 is set as the transmission source in response to the request, and the account of the consumer 2 corresponds to the transmission destination and the amount of power supplied for each of the plurality of consumers 2.
  • a one-to-N transaction set with the amount of tokens set as the amount of tokens to be transferred is issued and transmitted to the blockchain network 10 (S324).
  • the electric power transaction support system of the present embodiment it is possible to realize a virtual PPA by matching a plurality of power plants 1 with a plurality of consumers 2. Further, by managing the token corresponding to the transaction related to the virtual PPA on the blockchain network 10, it becomes possible to manage the bilateral transaction of electric power without tampering. Further, according to the electric power transaction support system of the present embodiment, when an electric power transaction is performed with one power plant 1 as a supply source and a plurality of consumers 2 as supply destinations, a one-to-N transaction corresponding to this is performed. By issuing the transaction, it is possible to efficiently process the transaction for the blockchain network 10.
  • the distributed worker device 30 can issue a transaction, the processing load of the management server 20 that performs matching processing can be reduced, and efficient transaction issuing processing can be performed, and the transaction can be issued. You can save time. Further, by distributing the worker device 30 across a plurality of regions, it is possible to avoid a delay in transaction processing due to a network load.

Abstract

This system supports power transactions between a plurality of power plants and a plurality of customers and is characterized by comprising: a supply amount acquiring unit for acquiring, for each of the power plants, a supply amount transmitted to a predetermined power network among the power generated in a power plant; a token issuing unit for issuing a token in accordance with the supply amount to a first account of a power plant in a blockchain; a demand amount acquiring unit for acquiring, for each of the customers, a demand amount received from the power network; a power transmission amount determination unit for determining a power transmission amount regarded as being transmitted from a power plant to a customer with respect to each pair of the power plant and the customer; and a transaction issuing unit for issuing, with respect to each of the power plants, a transaction for transferring an amount of token according to the power transmission amount for each of the customers by setting each of the second accounts of the plurality of customers paired with the power plants as a destination and each of the first accounts as a source.

Description

電力取引支援システム、電力取引支援方法及びプログラムElectricity transaction support system, electric power transaction support method and program
 本発明は、電力取引支援システム、電力取引支援方法及びプログラムに関する。 The present invention relates to an electric power transaction support system, an electric power transaction support method and a program.
 近年、ハッシュ関数と公開鍵暗号方式とを用いて、取引情報の真正性を担保した「ブロックチェーン技術(分散型台帳技術)」が様々な分野で利用されようとしている。一例として、暗号通貨の取引においては、暗号通貨の取引情報(以下、「トランザクション」という。)は、暗号通貨を利用する全端末に対してブロードキャストされる。送信されたトランザクションは、マイナー(採掘者)と呼ばれる端末によって真正性が検証され、承認されるとブロックにまとめられ、ブロックチェーンと呼ばれる台帳に記録される。暗号通貨による取引では、マイナーにマイニング(採掘)と呼ばれる計算処理を行わせてから、ブロックチェーンにブロックを追加することによって、トランザクションの改ざんを防いでいる。 In recent years, "blockchain technology (distributed ledger technology)" that guarantees the authenticity of transaction information using hash functions and public key cryptosystems is about to be used in various fields. As an example, in a cryptocurrency transaction, cryptocurrency transaction information (hereinafter referred to as "transaction") is broadcast to all terminals using the cryptocurrency. The transmitted transactions are verified for authenticity by a terminal called a miner, and when approved, they are grouped into blocks and recorded in a ledger called a blockchain. In cryptocurrency transactions, mining is performed by a miner, and then blocks are added to the blockchain to prevent transaction tampering.
 特許文献1には、このようなブロックチェーンを利用した取引情報の真正性の保証度を高める技術が開示されている。また、特許文献2には、電子署名技術を利用し、グリーン電力であることを証明する仕組みを実現する技術が提案されている。 Patent Document 1 discloses a technique for increasing the degree of guarantee of authenticity of transaction information using such a blockchain. Further, Patent Document 2 proposes a technique for realizing a mechanism for proving green power by using an electronic signature technique.
特開2017-207860号公報Japanese Unexamined Patent Publication No. 2017-207860 特開2011-175556号公報Japanese Unexamined Patent Publication No. 2011-175556
 ところで、近年、企業、自治体の間で、再生可能エネルギー電力(以下「再エネ電力」という)を積極的に利用するニーズが高まっている。背景には、企業の気候変動への取り組みを開示するCDP(カーボン・ディスクロージャー・プロジェクト)への報告が、機関投資家をはじめとした株主評価に直結することなどが起因しているものと推定できる。ここで、再エネ電力の利用要件には「トレーサビリティ(電源特定)」が求められるが、このような技術はまだ存在していない。即ち、発電した電力が一度電力ネットワーク(送電ネットワーク)に入ってしまうと、他の電力と同化してしまうことから、もはや発電元を特定することは不可能となる。 By the way, in recent years, there is an increasing need among companies and local governments to actively use renewable energy power (hereinafter referred to as "renewable energy power"). It can be presumed that the background is that the report to CDP (Carbon Disclosure Project), which discloses the company's efforts toward climate change, is directly linked to the evaluation of shareholders including institutional investors. .. Here, "traceability (specification of power source)" is required for the usage requirement of renewable energy, but such a technology does not exist yet. That is, once the generated power enters the power network (transmission network), it is assimilated with other power, so that it is no longer possible to specify the power generation source.
 そこで、本発明は、再エネ電力のトレーサビリティを担保し得る技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique that can guarantee the traceability of renewable energy power.
 上記課題を解決するための本発明の主たる発明は、複数の発電所と複数の需要者との間の電力取引を支援するシステムであって、前記発電所のそれぞれについて、前記発電所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得する供給量取得部と、ブロックチェーンにおける前記発電所の第1アカウントに前記供給量に応じたトークンを発行するトークン発行部と、前記需要者のそれぞれについて、前記電力ネットワークから受電した需要量を取得する需要量取得部と、前記発電所及び前記需要者の組ごとに前記発電所から前記需要者に送られたとみなす送電量を決定する送電量決定部と、前記発電所ごとに、前記発電所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とし、前記需要者ごとの前記送電量に応じた前記トークンの量を移転させるトランザクションを発行するトランザクション発行部と、を備えることを特徴とする。 The main invention of the present invention for solving the above problems is a system that supports a power transaction between a plurality of power plants and a plurality of consumers, and power is generated at each of the power plants. A supply amount acquisition unit that acquires the supply amount transmitted to a predetermined power network, a token issuing unit that issues tokens according to the supply amount to the first account of the power plant in the blockchain, and the above. For each of the consumers, the demand amount acquisition unit that acquires the demand amount received from the power network and the power transmission amount that is considered to have been sent from the power plant to the consumer for each group of the power plant and the consumer are determined. The power transmission amount determination unit and each of the power plants and the second accounts of the plurality of consumers in the group are the destinations, and the first account is the sender, and each customer. It is characterized by comprising a transaction issuing unit for issuing a transaction for transferring the amount of the token according to the power transmission amount of the above.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed in the present application and solutions thereof will be clarified by the columns and drawings of the embodiments of the invention.
 本発明によれば、再エネ電力のトレーサビリティを担保することができる。 According to the present invention, the traceability of renewable energy power can be guaranteed.
発電装置による電力の売電処理を示すイメージ図である。It is an image diagram which shows the electric power sale processing by a power generation apparatus. 本発明の一実施形態に係る電力取引支援システムの全体構成例を示す図である。It is a figure which shows the whole structure example of the electric power transaction support system which concerns on one Embodiment of this invention. 管理サーバ20、ワーカー装置30、ブロックチェーンネットワーク10を形成するノードなどに用いられるコンピュータのハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the computer used for the management server 20, the worker apparatus 30, the node which forms the blockchain network 10, and the like. 管理サーバ20のソフトウェア構成例を示す図である。It is a figure which shows the software configuration example of management server 20. マッチング処理部213によるマッチングの結果の一例を示す図である。It is a figure which shows an example of the matching result by the matching processing unit 213. ワーカー装置30のソフトウェア構成例を示す図である。It is a figure which shows the software configuration example of a worker apparatus 30. 本実施形態の電力取引支援システムの動作を説明する図である。It is a figure explaining the operation of the electric power transaction support system of this embodiment.
<発明の概要>
 本発明の実施形態の内容を列記して説明する。本発明は、たとえば、以下のような構成を備える。
[項目1]
 複数の発電所と複数の需要者との間の電力取引を支援するシステムであって、
 前記発電所のそれぞれについて、前記発電所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得する供給量取得部と、
 ブロックチェーンにおける前記発電所の第1アカウントに前記供給量に応じたトークンを発行するトークン発行部と、
 前記需要者のそれぞれについて、前記電力ネットワークから受電した需要量を取得する需要量取得部と、
 前記発電所及び前記需要者の組ごとに前記発電所から前記需要者に送られたとみなす送電量を決定する送電量決定部と、
 前記発電所ごとに、前記発電所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とし、前記需要者ごとの前記送電量に応じた前記トークンの量を移転させるトランザクションを発行するトランザクション発行部と、
 を備えることを特徴とする電力取引支援システム。
[項目2]
 項目1に記載の電力取引支援システムであって、
 サーバ装置と、複数のワーカー装置とを含んで構成され、
 前記ワーカー装置は、前記トランザクション発行部を備え、
 前記サーバ装置は、前記発電所ならびに前記複数の需要者及び前記需要者に対応する前記送電量に対応する前記トークンの量を指定したリクエストを分散させて前記複数のワーカー装置に送信するリクエスト送信部を備え、
 前記トランザクション発行部は、前記リクエストに応じて、前記トランザクションを発行すること、
 を特徴とする電力取引支援システム。
[項目3]
 項目2に記載の電力取引支援システムであって、
 前記ワーカー装置は、複数のリージョンに配備されること、
 を特徴とする電力取引支援システム。
[項目4]
 項目1乃至3のいずれか1項に記載の電力取引支援システムであって、
 前記トランザクション発行部は、複数のトランザクションを並列に発行すること、
 を特徴とする電力取引支援システム。
[項目5]
 複数の発電所と複数の需要者との間の電力取引を支援する方法であって、
 コンピュータが、
 前記発電所のそれぞれについて、前記発電所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得するステップと、
 ブロックチェーンにおける前記発電所の第1アカウントに前記供給量に応じたトークンを発行するトークン発行部と、
 前記需要者のそれぞれについて、前記電力ネットワークから受電した需要量を取得するステップと、
 前記発電所及び前記需要者の組ごとに前記発電所から前記需要者に送られたとみなす送電量を決定する送電量決定部と、
 前記発電所ごとに、前記発電所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とし、前記需要者ごとの前記送電量に応じた前記トークンの量を移転させるトランザクションを発行するステップと、
 を実行することを特徴とする電力取引支援方法。
[項目6]
 複数の発電所と複数の需要者との間の電力取引を支援するためのプログラムであって、
 コンピュータに、
 前記発電所のそれぞれについて、前記発電所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得するステップと、
 ブロックチェーンにおける前記発電所の第1アカウントに前記供給量に応じたトークンを発行するトークン発行部と、
 前記需要者のそれぞれについて、前記電力ネットワークをから受電した需要量を取得するステップと、
 前記発電所及び前記需要者の組ごとに前記発電所から前記需要者に送られたとみなす送電量を決定する送電量決定部と、
 前記発電所ごとに、前記発電所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とし、前記需要者ごとの前記送電量に応じた前記トークンの量を移転させるトランザクションを発行するステップと、
 を実行させるためのプログラム。
<Outline of the invention>
The contents of the embodiments of the present invention will be described in a list. The present invention includes, for example, the following configuration.
[Item 1]
A system that supports power transactions between multiple power plants and multiple consumers.
For each of the power plants, a supply amount acquisition unit that acquires the amount of power transmitted to a predetermined power network among the electric power generated at the power plant, and
A token issuer that issues tokens according to the amount of supply to the first account of the power plant in the blockchain,
For each of the consumers, a demand quantity acquisition unit that acquires the demand quantity received from the power network, and a demand quantity acquisition unit.
A power transmission amount determination unit that determines the amount of power transmitted from the power plant to the consumer for each group of the power plant and the consumer.
For each of the power plants, the power plant and the second accounts of the plurality of consumers in the group are each as the destination, the first account is the sender, and the power transmission amount for each consumer is increased. A transaction issuer that issues a transaction that transfers the amount of tokens,
A power transaction support system characterized by being equipped with.
[Item 2]
The electric power transaction support system according to item 1.
It is configured to include a server device and multiple worker devices.
The worker device includes the transaction issuing unit.
The server device is a request transmission unit that distributes requests specifying the amount of the token corresponding to the power transmission plant, the plurality of consumers, and the transmission amount corresponding to the consumers, and transmits the requests to the plurality of worker devices. Equipped with
The transaction issuing unit issues the transaction in response to the request.
A power transaction support system featuring.
[Item 3]
The electric power transaction support system described in item 2.
The worker device shall be deployed in multiple regions.
A power transaction support system featuring.
[Item 4]
The electric power transaction support system according to any one of items 1 to 3.
The transaction issuing unit issues a plurality of transactions in parallel.
A power transaction support system featuring.
[Item 5]
A way to support power transactions between multiple power plants and multiple consumers.
The computer
For each of the power plants, a step of acquiring the amount of power transmitted to a predetermined power network among the electric power generated by the power plant, and
A token issuer that issues tokens according to the amount of supply to the first account of the power plant in the blockchain,
For each of the consumers, a step of acquiring the amount of demand received from the power network, and
A power transmission amount determination unit that determines the amount of power transmitted from the power plant to the consumer for each group of the power plant and the consumer.
For each of the power plants, the power plant and the second accounts of the plurality of consumers in the group are each as the destination, the first account is the sender, and the power transmission amount for each consumer is increased. The step of issuing a transaction to transfer the amount of the token, and
A power transaction support method characterized by executing.
[Item 6]
A program to support electricity transactions between multiple power plants and multiple consumers.
On the computer
For each of the power plants, a step of acquiring the amount of power transmitted to a predetermined power network among the electric power generated by the power plant, and
A token issuer that issues tokens according to the amount of supply to the first account of the power plant in the blockchain,
For each of the consumers, a step of acquiring the demand received from the power network and
A power transmission amount determination unit that determines the amount of power transmitted from the power plant to the consumer for each group of the power plant and the consumer.
For each of the power plants, the power plant and the second accounts of the plurality of consumers in the group are each as the destination, the first account is the sender, and the power transmission amount for each consumer is increased. The step of issuing a transaction to transfer the amount of the token, and
A program to execute.
<実施の形態の詳細>
 以下、本発明の実施の形態によるシステムについて、図面を参照しながら説明する。
<概要>
 図1は、発電装置による電力の売電処理を示すイメージ図である。近年、電力の取引の自由化が進み、例えば、図1に示されるように、複数の発電所1で発電された電力を、送電ネットワーク3を介して、複数の需要者2に販売することも可能になった。発電所と需要者(もしくはその間に介する電気事業者)とが電力販売契約(PPA;Power Purchase Agreement)を締結することもある。しかしながら、個々の発電所が発電した電力は、一度送電ネットワーク3に入ってしまうと、現状ではトレースすることは困難である。したがって、送電ネットワークを利用する場合にはPPAを実現することが困難である。
<Details of the embodiment>
Hereinafter, the system according to the embodiment of the present invention will be described with reference to the drawings.
<Overview>
FIG. 1 is an image diagram showing a process of selling electric power by a power generation device. In recent years, the liberalization of electric power transactions has progressed, and for example, as shown in FIG. 1, the electric power generated by a plurality of power plants 1 may be sold to a plurality of consumers 2 via a power transmission network 3. It became possible. A power plant and a consumer (or an electric power company that intervenes between them) may conclude a power purchase agreement (PPA). However, once the electric power generated by each power plant enters the transmission network 3, it is difficult to trace it at present. Therefore, it is difficult to realize PPA when using a power transmission network.
 本実施形態の電力取引支援システムでは、複数の発電所1と複数の需要者2とにおいて、トレーサビリティを有する電力取引、すなわち仮想的なPPAを実現する。需要者2によっては、たとえば、故郷にある発電所1や、被災地の発電津1、有名企業の発電所1など、特定の発電所1からの電力を調達したいというニーズが存在する。本実施形態の電力取引支援システムでは、そのような特定の発電所1からの電力調達を仮想的に実現する。 In the electric power transaction support system of the present embodiment, traceable electric power transaction, that is, a virtual PPA is realized between a plurality of power plants 1 and a plurality of consumers 2. Depending on the consumer 2, there is a need to procure electric power from a specific power plant 1, such as a power plant 1 in the hometown, a power plant 1 in a disaster area, or a power plant 1 of a famous company. In the electric power transaction support system of the present embodiment, electric power procurement from such a specific power plant 1 is virtually realized.
 具体的には、発電所1が発電した発電量(本実施形態では、送電ネットワーク3に送電した電力量のことを示す。)に対応するトークン(例えば、1kWh=1トークンとすることができる。なお、1kWhあたりのトークン数は任意に設定することができる。)を発行して、ブロックチェーンにおける発電所1のアカウントに登録する。なお、発電所1および需要者2のアカウントは例えばそれぞれが有するウォレットにより特定することが可能である。 Specifically, a token (for example, 1kWh = 1 token) corresponding to the amount of power generated by the power plant 1 (in the present embodiment, the amount of power transmitted to the power transmission network 3) can be set. The number of tokens per 1kWh can be set arbitrarily.) Is issued and registered in the account of power plant 1 in the blockchain. The accounts of the power plant 1 and the consumer 2 can be specified by, for example, the wallets of each.
 そして、需要者2が送電ネットワーク3から受電した電力量と、発電所1が発電して送電ネットワーク3に送電した電力量とのマッチングを行う。マッチングには、例えば、需要者2が特定の発電所1から電量供給を受ける仮想的なPPAを管理しておき、これを用いる。例えば、所定の単位時間(例えば、15分や30分とすることができる。)ごとに、発電所1が発電して送電ネットワーク3に供給した電力量(発電量)と、需要者2が送電ネットワーク3から受電した電力量(需要量)とを取得し、同一の発電所1との間でPPAを結んだ複数の需要者2の間で、発電所1からの発電量を按分して、発電所1から需要者2に対して供給された電力量(供給量)を計算することができる。按分は、例えば、PPAで契約した電力量の割合で行うことができる。 Then, the amount of electric power received from the power transmission network 3 by the consumer 2 is matched with the amount of electric power generated by the power plant 1 and transmitted to the power transmission network 3. For matching, for example, a virtual PPA in which the consumer 2 receives an electric charge from a specific power plant 1 is managed and used. For example, the amount of power (power generation amount) generated by the power plant 1 and supplied to the power transmission network 3 and the power transmission by the consumer 2 every predetermined unit time (for example, 15 minutes or 30 minutes). The electric energy (demand) received from the network 3 is acquired, and the electric energy from the power plant 1 is apportioned among a plurality of consumers 2 who have a PPA with the same power plant 1. The amount of electric energy (supply amount) supplied from the power plant 1 to the consumer 2 can be calculated. The apportionment can be performed, for example, at the ratio of the electric energy contracted by PPA.
 一方で、ブロックチェーンネットワーク上において、供給量に相当するトークンを発電所1のアカウントから需要者2のアカウントに送付するようにする。これにより、電力の取引を疑似的にトレースすることが可能となり、特定の発電所1が提供した電力を特定の需要者2に擬似的に直接販売したと把握することが可能となる。これにより仮想的なPPAを実現することができる。 On the other hand, on the blockchain network, tokens corresponding to the supply amount are sent from the account of the power plant 1 to the account of the consumer 2. As a result, it becomes possible to trace the transaction of electric power in a pseudo manner, and it is possible to grasp that the electric power provided by the specific power plant 1 is pseudo-directly sold to the specific consumer 2. This makes it possible to realize a virtual PPA.
<システム概要>
 図2は、本発明の一実施形態に係る電力取引支援システムの全体構成例を示す図である。本実施形態の電力取引支援システムは、ブロックチェーンネットワーク10、管理サーバ20、及び複数のワーカー装置30を含んで構成される。ブロックチェーンネットワーク10、管理サーバ20、及び複数のワーカー装置30はそれぞれ互いに通信ネットワークを介して通信可能に接続される。通信ネットワークは、たとえばインターネットであり、公衆電話回線網や携帯電話回線網、無線通信路、イーサネット(登録商標)などにより構築される。
<System overview>
FIG. 2 is a diagram showing an overall configuration example of the electric power transaction support system according to the embodiment of the present invention. The electric power transaction support system of the present embodiment includes a blockchain network 10, a management server 20, and a plurality of worker devices 30. The blockchain network 10, the management server 20, and the plurality of worker devices 30 are connected to each other so as to be able to communicate with each other via the communication network. The communication network is, for example, the Internet, and is constructed of a public telephone line network, a mobile phone line network, a wireless communication path, Ethernet (registered trademark), and the like.
 ブロックチェーンネットワーク10は、P2P(Peer to Peer)通信により互いに通信可能に接続された複数のコンピュータノードにより構成され、トークンの取引をトランザクションとして記録するブロックチェーンを管理する。なお、ブロックチェーンネットワーク10の構成は、一般的なブロックチェーンに用いられるものを想定しており、ここでは詳細の説明を省略する。 The blockchain network 10 is composed of a plurality of computer nodes that are communicably connected to each other by P2P (Peer to Peer) communication, and manages a blockchain that records token transactions as transactions. The configuration of the blockchain network 10 is assumed to be used for a general blockchain, and detailed description thereof will be omitted here.
 管理サーバ20は、発電所1と需要者2との間での仮想PPAに係る取引の履歴を管理するコンピュータであり、例えば、パーソナルコンピュータやワークステーション、クラウドコンピューティングによる仮想的なコンピュータにより実現される。管理サーバ20は、上述したように、仮想PPAに係る電力の流れを、ブロックチェーンネットワーク10におけるトークンの流れとして管理する。 The management server 20 is a computer that manages the history of transactions related to virtual PPA between the power plant 1 and the consumer 2, and is realized by, for example, a personal computer, a workstation, or a virtual computer by cloud computing. To. As described above, the management server 20 manages the flow of power related to the virtual PPA as the flow of tokens in the blockchain network 10.
 ワーカー装置30は、トランザクションを発行するコンピュータであり、例えば、パーソナルコンピュータやワークステーション、クラウドコンピューティングによる仮想的なコンピュータにより実現される。ワーカー装置30は、複数配置される。また、ワーカー装置30は、複数のリージョン(コンピュータが配置されるエリア)に配備される。本実施形態では、ワーカー装置30は、管理サーバ20からのリクエストに応じてトランザクションを発行してブロックチェーンネットワーク10に送信する。 The worker device 30 is a computer that issues a transaction, and is realized by, for example, a personal computer, a workstation, or a virtual computer by cloud computing. A plurality of worker devices 30 are arranged. Further, the worker device 30 is deployed in a plurality of regions (areas in which computers are arranged). In the present embodiment, the worker device 30 issues a transaction in response to a request from the management server 20 and transmits the transaction to the blockchain network 10.
 本実施形態の電力取引支援システムでは、仮想PPAに係る取引に対応するトランザクションを発行するにあたり、複数のワーカー装置30が並列でトランザクションを発行するようにしている。通常の取引管理では、順次直列にトランザクションを発行していくところ、本実施形態のように、同時並行的にワーカー装置30を用いてトランザクションを発行することにより、大量の取引に対応する大量のトランザクションを効率的に発行することができる。 In the electric power transaction support system of the present embodiment, when issuing a transaction corresponding to a transaction related to a virtual PPA, a plurality of worker devices 30 issue transactions in parallel. In normal transaction management, transactions are sequentially issued in series, but as in the present embodiment, by issuing transactions using the worker device 30 in parallel, a large number of transactions corresponding to a large number of transactions are issued. Can be issued efficiently.
 図3は、管理サーバ20、ワーカー装置30、ブロックチェーンネットワーク10を形成するノードなどに用いられるコンピュータのハードウェア構成例を示す図である。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。コンピュータは、CPU101、メモリ102、記憶装置103、通信インタフェース104、入力装置105、出力装置106を備える。記憶装置103は、各種のデータやプログラムを記憶する、例えばハードディスクドライブやソリッドステートドライブ、フラッシュメモリなどである。通信インタフェース104は、通信ネットワークに接続するためのインタフェースであり、例えばイーサネット(登録商標)に接続するためのアダプタ、公衆電話回線網に接続するためのモデム、無線通信を行うための無線通信機、シリアル通信のためのUSB(Universal Serial Bus)コネクタやRS232Cコネクタなどである。入力装置105は、データを入力する、例えばキーボードやマウス、タッチパネル、ボタン、マイクロフォンなどである。出力装置106は、データを出力する、例えばディスプレイやプリンタ、スピーカなどである。 FIG. 3 is a diagram showing an example of hardware configuration of a computer used for a management server 20, a worker device 30, a node forming a blockchain network 10, and the like. The configuration shown in the figure is an example, and may have other configurations. The computer includes a CPU 101, a memory 102, a storage device 103, a communication interface 104, an input device 105, and an output device 106. The storage device 103 stores various data and programs, such as a hard disk drive, a solid state drive, and a flash memory. The communication interface 104 is an interface for connecting to a communication network, for example, an adapter for connecting to Ethernet (registered trademark), a modem for connecting to a public telephone network, a wireless communication device for performing wireless communication, and the like. It is a USB (Universal Serial Bus) connector or RS232C connector for serial communication. The input device 105 is, for example, a keyboard, a mouse, a touch panel, a button, a microphone, or the like for inputting data. The output device 106 is, for example, a display, a printer, a speaker, or the like that outputs data.
 図4は、管理サーバ20のソフトウェア構成例を示す図である。管理サーバ20は、需要量取得部211、発電量取得部212、マッチング処理部213、リクエスト送信部214、調達先記憶部231を備える。なお、需要量取得部211、発電量取得部212、マッチング処理部213、リクエスト送信部214は、管理サーバ20においてCPU101が記憶装置103に記憶されているプログラムをメモリ102に読み出して実行することにより実現され、調達先記憶部231は、管理サーバ20のメモリ102及び記憶装置103が提供する記憶領域の一部として実現されうる。 FIG. 4 is a diagram showing a software configuration example of the management server 20. The management server 20 includes a demand amount acquisition unit 211, a power generation amount acquisition unit 212, a matching processing unit 213, a request transmission unit 214, and a supplier storage unit 231. The demand amount acquisition unit 211, the power generation amount acquisition unit 212, the matching processing unit 213, and the request transmission unit 214 are executed by the CPU 101 reading the program stored in the storage device 103 into the memory 102 in the management server 20. Realized, the supplier storage unit 231 can be realized as a part of the storage area provided by the memory 102 of the management server 20 and the storage device 103.
 需要量取得部211は、需要者2による電力の需要量を取得する。需要量取得部211は、例えば、需要者2の住居や工場、店舗等の施設に配置されるスマートメータから、送電ネットワーク3から受電した需要量を取得することができる。需要量取得部211は、所定の単位時間(例えば、15分や30分など)ごとの需要量を取得するものとする。 The demand amount acquisition unit 211 acquires the demand amount of electric power by the consumer 2. The demand amount acquisition unit 211 can acquire the demand amount received from the power transmission network 3 from, for example, a smart meter arranged in a facility such as a residence, a factory, or a store of the consumer 2. The demand amount acquisition unit 211 shall acquire the demand amount for each predetermined unit time (for example, 15 minutes, 30 minutes, etc.).
 発電量取得部212は、発電所1による発電量を取得する。発電量取得部212は、例えば、発電所1に配置されるスマートメータから発電量(発電所1から送電ネットワーク3に送出される電力量)を取得することができる。発電量取得部212は、上記所定の単位時間ごとの発電量を取得するものとする。 The power generation amount acquisition unit 212 acquires the power generation amount from the power plant 1. The power generation amount acquisition unit 212 can acquire the power generation amount (the amount of power transmitted from the power plant 1 to the power transmission network 3) from, for example, a smart meter arranged in the power plant 1. The power generation amount acquisition unit 212 shall acquire the power generation amount for each predetermined unit time.
 調達先記憶部231は、需要者2と、当該需要者2の仮想PPAに係る電力の調達先となる発電所1とを対応づける情報(以下、調達先情報という。)を記憶する。調達先情報は、需要者2に対応付けて、発電所1と、契約電力量とを含むことができる。調達先情報には、需要者2に対応する、発電所1の優先順位を含めるようにしてもよい。 The supplier storage unit 231 stores information (hereinafter referred to as supplier information) that associates the consumer 2 with the power plant 1 that is the source of the electric power related to the virtual PPA of the consumer 2. The supplier information can include the power plant 1 and the contracted electric energy in association with the consumer 2. The supplier information may include the priority of the power plant 1 corresponding to the consumer 2.
 マッチング処理部213は、発電所1と需要者2とのマッチングを行う。マッチング処理部213は、需要量取得部211が取得した需要量、発電量取得部212が取得した発電量、及び調達先情報に基づいて、発電所1、需要者2、及び発電量のうち需要者2に供給された供給量を決定することができる。例えば、マッチング処理部213は、発電所1ごとに、当該発電所1に対応する調達先情報を読み出し、読み出した調達先情報の契約電力量を用いて発電量を按分して、調達先情報の需要者2に対する供給量を計算することができる。図5は、マッチング処理部213によるマッチングの結果の一例を示す図である。図5の例のように、発電所1及び需要者2の組について、供給電力を計算することができる。 The matching processing unit 213 matches the power plant 1 with the consumer 2. The matching processing unit 213 is based on the demand amount acquired by the demand amount acquisition unit 211, the power generation amount acquired by the power generation amount acquisition unit 212, and the supplier information, and the demand among the power plant 1, the consumer 2, and the power generation amount. The amount of supply supplied to the person 2 can be determined. For example, the matching processing unit 213 reads out the supplier information corresponding to the power plant 1 for each power plant 1, prorates the power generation amount using the contracted electric energy of the read supplier information, and obtains the supplier information. The supply amount for the consumer 2 can be calculated. FIG. 5 is a diagram showing an example of the result of matching by the matching processing unit 213. As in the example of FIG. 5, the power supply can be calculated for the set of the power plant 1 and the consumer 2.
 リクエスト送信部214は、マッチング結果に応じたトークンの移転をするためのトランザクションを発行する為の処理を行う。本実施形態では、ワーカー装置30がトランザクションを発行するため、リクエスト送信部214は、ワーカー装置30に対して、発電所1、需要者2及び当該発電所1から当該需要者2への供給量とを対応付けた情報(以下、トランザクション情報という。)を含めたリクエストをワーカー装置30に送信する。リクエスト送信部214は、発電所1を選択して、マッチングされた発電所1と需要者2との組のうち選択した発電所1に対応するものを抽出し、抽出した全ての組をまとめて、発電所1と、当該発電所1からの供給先となる複数の需要者2、及び需要者2に対する供給量とをリクエストに含めることができる。 The request transmission unit 214 performs a process for issuing a transaction for transferring a token according to a matching result. In the present embodiment, since the worker device 30 issues a transaction, the request transmission unit 214 sets the supply amount of the power plant 1, the consumer 2, and the power plant 1 to the consumer 2 to the worker device 30. A request including information associated with the above (hereinafter referred to as transaction information) is transmitted to the worker device 30. The request transmission unit 214 selects the power plant 1, extracts the pair of the matched power plant 1 and the consumer 2, and the one corresponding to the selected power plant 1, and collects all the extracted pairs. , The power plant 1, the plurality of consumers 2 to be supplied from the power plant 1, and the supply amount to the consumers 2 can be included in the request.
 図6は、ワーカー装置30のソフトウェア構成例を示す図である。ワーカー装置30は、リクエスト受信部311及びトランザクション発行部312を備える。 FIG. 6 is a diagram showing a software configuration example of the worker device 30. The worker device 30 includes a request receiving unit 311 and a transaction issuing unit 312.
 リクエスト受信部311は、管理サーバ20から上述したリクエストを受信する。 The request receiving unit 311 receives the above-mentioned request from the management server 20.
 トランザクション発行部312は、リクエストに応じてトランザクションを発行し、ブロックチェーンネットワーク10に送信する。上述したように、リクエストには、発電所1に対応づけて、当該発電所1からの電力提供先となる複数の需要者2及びその需要者2に対する供給電力量が含まれている。そこで、トランザクション発行部312は、1つの発電所1のアカウントを送信元として、複数の需要者2のアカウントを送信先とし、需要者2ごとの供給電力量に対応する数のトークンを送信する、いわゆる1対Nのトランザクションを発行してブロックチェーンネットワーク5に送信する。なお、ブロックチェーンネットワーク5は、1対Nのトランザクションを処理可能な実装系であるものとする。これにより、発電所1からの全ての送電先(需要者2)についての仮想PPAに係る取引をまとめて、対応するトークンの移転を行う1対Nのトランザクションを発行することができる。 The transaction issuing unit 312 issues a transaction in response to a request and sends it to the blockchain network 10. As described above, the request includes a plurality of consumers 2 who are power supply destinations from the power plant 1 and the amount of power supplied to the consumers 2 in association with the power plant 1. Therefore, the transaction issuing unit 312 transmits the number of tokens corresponding to the amount of power supplied for each consumer 2, with the account of one power plant 1 as the transmission source and the accounts of a plurality of consumers 2 as the transmission destinations. A so-called one-to-N transaction is issued and transmitted to the blockchain network 5. It is assumed that the blockchain network 5 is an implementation system capable of processing one-to-N transactions. As a result, it is possible to collectively issue transactions related to virtual PPA for all transmission destinations (consumer 2) from the power plant 1 and issue a one-to-N transaction for transferring the corresponding tokens.
<動作>
 図7は、本実施形態の電力取引支援システムの動作を説明する図である。
<Operation>
FIG. 7 is a diagram illustrating the operation of the electric power transaction support system of the present embodiment.
 管理サーバ20は、発電所1と需要者2とのマッチングを行い(S321)、マッチング結果(図5参照)から発電所1ごとに対応する取引をまとめて(S322)、まとめた取引、すなわち、マッチング結果から1つの発電所1に対応するものを抽出したトランザクション情報を含めたリクエストを分散させてワーカー装置30に送信する(S323)。例えば、管理サーバ20は、複数の発電所1のそれぞれについてリクエストを作成し、作成したリクエストを異なるワーカー装置30に送信することができる。 The management server 20 performs matching between the power plant 1 and the consumer 2 (S321), collects the transactions corresponding to each power plant 1 from the matching result (see FIG. 5) (S322), and summarizes the transactions, that is, the transactions. The request including the transaction information obtained by extracting the one corresponding to one power plant 1 from the matching result is distributed and transmitted to the worker device 30 (S323). For example, the management server 20 can create a request for each of the plurality of power plants 1 and send the created request to different worker devices 30.
 ワーカー装置30では、リクエストに応じて、設定されている1つの発電所1のアカウントを送信元とし、複数の需要者2のそれぞれについて、需要者2のアカウントを送信先、供給電力量に対応するトークンの量を移転するトークンの量として設定した、1対Nのトランザクションを発行して、ブロックチェーンネットワーク10に送信する(S324)。 In the worker device 30, the account of one set power plant 1 is set as the transmission source in response to the request, and the account of the consumer 2 corresponds to the transmission destination and the amount of power supplied for each of the plurality of consumers 2. A one-to-N transaction set with the amount of tokens set as the amount of tokens to be transferred is issued and transmitted to the blockchain network 10 (S324).
 以上のようにして、本実施形態の電力取引支援システムによれば、複数の発電所1と複数の需要者2とをマッチングさせて仮想PPAを実現することができる。また、仮想PPAに係る取引に対応するトークンをブロックチェーンネットワーク10上で管理することにより、改ざん困難に電力の相対取引を管理することが可能となる。さらに、本実施形態の電力取引支援システムによれば、1つの発電所1を供給元として複数の需要者2を供給先とした電力取引が行われるところ、これに対応する1対Nのトランザクションを発行することにより、ブロックチェーンネットワーク10に対するトランザクションの処理を効率的に行うことができる。また、分散させたワーカー装置30によりトランザクションを発行することができるので、マッチング処理を行う管理サーバ20の処理負荷を下げて、効率的なトランザクション発行処理を行うことが可能となり、トランザクションの発行にかかる時間を短縮することができる。また、ワーカー装置30を複数のリージョンに跨がって分散配備することにより、ネットワーク負荷によるトランザクション処理の遅延を回避することができる。 As described above, according to the electric power transaction support system of the present embodiment, it is possible to realize a virtual PPA by matching a plurality of power plants 1 with a plurality of consumers 2. Further, by managing the token corresponding to the transaction related to the virtual PPA on the blockchain network 10, it becomes possible to manage the bilateral transaction of electric power without tampering. Further, according to the electric power transaction support system of the present embodiment, when an electric power transaction is performed with one power plant 1 as a supply source and a plurality of consumers 2 as supply destinations, a one-to-N transaction corresponding to this is performed. By issuing the transaction, it is possible to efficiently process the transaction for the blockchain network 10. Further, since the distributed worker device 30 can issue a transaction, the processing load of the management server 20 that performs matching processing can be reduced, and efficient transaction issuing processing can be performed, and the transaction can be issued. You can save time. Further, by distributing the worker device 30 across a plurality of regions, it is possible to avoid a delay in transaction processing due to a network load.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.
  1   発電所
  2   受領者
  3   送電ネットワーク
  10  ブロックチェーンネットワーク
  20  管理サーバ
  30  ワーカー装置
  211 需要量取得部
  212 発電量取得部
  213 マッチング処理部
  214 リクエスト送信部
  231 調達先記憶部
  311 リクエスト受信部
  312 トランザクション発行部
1 Power plant 2 Recipient 3 Transmission network 10 Blockchain network 20 Management server 30 Worker device 211 Demand amount acquisition unit 212 Power generation amount acquisition unit 213 Matching processing unit 214 Request transmission unit 231 Supplier storage unit 311 Request reception unit 312 Transaction issue unit

Claims (6)

  1.  複数の発電事業所と複数の需要者との間の電力取引を支援するシステムであって、
     前記発電事業所のそれぞれについて、前記発電事業所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得する供給量取得部と、
     ブロックチェーンにおける前記発電事業所の第1アカウントに前記供給量に応じたトークンを発行するトークン発行部と、
     前記需要者のそれぞれについて、前記電力ネットワークから受電した需要量を取得する需要量取得部と、
     前記発電事業所及び前記需要者の組ごとに前記発電事業所から前記需要者に送られたとみなす送電量を決定する送電量決定部と、
     前記発電事業所ごとに、前記発電事業所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とした、前記第1アカウントから前記第2アカウントのそれぞれに前記需要者ごとの前記送電量に応じた前記トークンの量を移転させる、前記ブロックチェーンに対する単独のトランザクションを発行するトランザクション発行部と、
     を備えることを特徴とする電力取引支援システム。
    A system that supports electricity transactions between multiple power generation establishments and multiple consumers.
    For each of the power generation establishments, a supply amount acquisition unit for acquiring the supply amount transmitted to a predetermined power network among the electric power generated by the power generation establishment, and
    A token issuer that issues tokens according to the amount of supply to the first account of the power generation establishment in the blockchain,
    For each of the consumers, a demand quantity acquisition unit that acquires the demand quantity received from the power network, and a demand quantity acquisition unit.
    A power transmission amount determination unit that determines the amount of power transmitted from the power generation establishment to the consumer for each group of the power generation establishment and the consumer.
    For each power generation establishment, the first account to the second account are sent to each of the second accounts of the power generation establishment and the plurality of consumers in the group as the destination, and the first account is the sender. A transaction issuing unit that issues a single transaction to the blockchain, which transfers the amount of the token according to the transmission amount for each consumer to each of the accounts.
    A power transaction support system characterized by being equipped with.
  2.  請求項1に記載の電力取引支援システムであって、
     サーバ装置と、複数のワーカー装置とを含んで構成され、
     前記ワーカー装置は、前記トランザクション発行部を備え、
     前記サーバ装置は、前記発電事業所ならびに前記複数の需要者及び前記需要者に対応する前記送電量に対応する前記トークンの量を指定したリクエストを分散させて前記複数のワーカー装置に送信するリクエスト送信部を備え、
     前記トランザクション発行部は、前記リクエストに応じて、前記トランザクションを発行すること、
     を特徴とする電力取引支援システム。
    The electric power transaction support system according to claim 1.
    It is configured to include a server device and multiple worker devices.
    The worker device includes the transaction issuing unit.
    The server device distributes requests specifying the amount of the token corresponding to the power generation establishment, the plurality of consumers, and the transmission amount corresponding to the consumers, and transmits the request to the plurality of worker devices. Equipped with a part
    The transaction issuing unit issues the transaction in response to the request.
    A power transaction support system featuring.
  3.  請求項2に記載の電力取引支援システムであって、
     前記ワーカー装置は、複数のリージョンに配備されること、
     を特徴とする電力取引支援システム。
    The electric power transaction support system according to claim 2.
    The worker device shall be deployed in multiple regions.
    A power transaction support system featuring.
  4.  請求項1乃至3のいずれか1項に記載の電力取引支援システムであって、
     前記トランザクション発行部は、複数のトランザクションを並列に発行すること、
     を特徴とする電力取引支援システム。
    The electric power transaction support system according to any one of claims 1 to 3.
    The transaction issuing unit issues a plurality of transactions in parallel.
    A power transaction support system featuring.
  5.  複数の発電事業所と複数の需要者との間の電力取引を支援する方法であって、
     コンピュータが、
     前記発電事業所のそれぞれについて、前記発電事業所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得するステップと、
     ブロックチェーンにおける前記発電事業所の第1アカウントに前記供給量に応じたトークンを発行するステップと、
     前記需要者のそれぞれについて、前記電力ネットワークから受電した需要量を取得するステップと、
     前記発電事業所及び前記需要者の組ごとに前記発電事業所から前記需要者に送られたとみなす送電量を決定するステップと、
     前記発電事業所ごとに、前記発電事業所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とした、前記第1アカウントから前記第2アカウントのそれぞれに前記需要者ごとの前記送電量に応じた前記トークンの量を移転させる、前記ブロックチェーンに対する単独のトランザクションを発行するステップと、
     を実行することを特徴とする電力取引支援方法。
    It is a method of supporting electricity transactions between multiple power generation establishments and multiple consumers.
    The computer
    For each of the power generation establishments, a step of acquiring the amount of power transmitted to a predetermined power network among the electric power generated by the power generation establishment, and
    The step of issuing tokens according to the supply amount to the first account of the power generation establishment in the blockchain, and
    For each of the consumers, a step of acquiring the amount of demand received from the power network, and
    A step of determining the amount of power transmitted from the power generation establishment to the consumer for each group of the power generation establishment and the consumer, and
    For each power generation establishment, the first account to the second account are sent to each of the second accounts of the power generation establishment and the plurality of consumers in the group as the destination, and the first account is the sender. A step of issuing a single transaction to the blockchain, which transfers the amount of the token according to the transmission amount for each consumer to each of the accounts.
    A power transaction support method characterized by executing.
  6.  複数の発電事業所と複数の需要者との間の電力取引を支援するためのプログラムであって、
     コンピュータに、
     前記発電事業所のそれぞれについて、前記発電事業所で発電される電力のうち所定の電力ネットワークに送電された供給量を取得するステップと、
     ブロックチェーンにおける前記発電事業所の第1アカウントに前記供給量に応じたトークンを発行するステップと、
     前記需要者のそれぞれについて、前記電力ネットワークをから受電した需要量を取得するステップと、
     前記発電事業所及び前記需要者の組ごとに前記発電事業所から前記需要者に送られたとみなす送電量を決定するステップと、
     前記発電事業所ごとに、前記発電事業所と前記組となる複数の前記需要者の第2アカウントのそれぞれを送付先とし、前記第1アカウントを送付元とした、前記第1アカウントから前記第2アカウントのそれぞれに前記需要者ごとの前記送電量に応じた前記トークンの量を移転させる、前記ブロックチェーンに対する単独のトランザクションを発行するステップと、
     を実行させるためのプログラム。
    A program to support electricity transactions between multiple power generation establishments and multiple consumers.
    On the computer
    For each of the power generation establishments, a step of acquiring the amount of power transmitted to a predetermined power network among the electric power generated by the power generation establishment, and
    The step of issuing tokens according to the supply amount to the first account of the power generation establishment in the blockchain, and
    For each of the consumers, a step of acquiring the demand received from the power network and
    A step of determining the amount of power transmitted from the power generation establishment to the consumer for each group of the power generation establishment and the consumer, and
    For each power generation establishment, the first account to the second account are sent to each of the second accounts of the power generation establishment and the plurality of consumers in the group as the destination, and the first account is the sender. A step of issuing a single transaction to the blockchain, which transfers the amount of the token according to the transmission amount for each consumer to each of the accounts.
    A program to execute.
PCT/JP2021/020898 2020-06-04 2021-06-01 Power transaction support system, power transaction support method, and program WO2021246417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020097716A JP6797450B1 (en) 2020-06-04 2020-06-04 Electric power trading support system, electric power trading support method and program
JP2020-097716 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021246417A1 true WO2021246417A1 (en) 2021-12-09

Family

ID=73646881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020898 WO2021246417A1 (en) 2020-06-04 2021-06-01 Power transaction support system, power transaction support method, and program

Country Status (2)

Country Link
JP (2) JP6797450B1 (en)
WO (1) WO2021246417A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113626876B (en) * 2021-07-22 2023-12-19 三峡大学 Consensus method based on power grid block chain

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031630A (en) * 2014-07-29 2016-03-07 ケイ・アンド・アイ有限会社 Value information system
JP2018106386A (en) * 2016-12-26 2018-07-05 富士通株式会社 Program and information processor and information processing method
JP2019185412A (en) * 2018-04-11 2019-10-24 東京瓦斯株式会社 Power transaction management device, method, and program
JP2020024376A (en) * 2018-08-08 2020-02-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Data protection method, authentication server, data protection system, and data structure
JP2020052452A (en) * 2018-09-21 2020-04-02 富士通株式会社 Power supply apparatus, program and power supply method
JP2020064490A (en) * 2018-10-18 2020-04-23 株式会社豊田中央研究所 Energy transaction management system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675717B2 (en) * 2018-02-21 2020-04-01 みんな電力株式会社 Power trading history generation system
KR102110605B1 (en) * 2018-04-10 2020-05-14 (주)키스톤랩 Method for trading blockchain exchange based real electronic wallet and method for trading the same
JP7222227B2 (en) * 2018-11-29 2023-02-15 富士通株式会社 Power trading device, power trading method and program
JP6630425B1 (en) * 2018-12-03 2020-01-15 みんな電力株式会社 Power trading history generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031630A (en) * 2014-07-29 2016-03-07 ケイ・アンド・アイ有限会社 Value information system
JP2018106386A (en) * 2016-12-26 2018-07-05 富士通株式会社 Program and information processor and information processing method
JP2019185412A (en) * 2018-04-11 2019-10-24 東京瓦斯株式会社 Power transaction management device, method, and program
JP2020024376A (en) * 2018-08-08 2020-02-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Data protection method, authentication server, data protection system, and data structure
JP2020052452A (en) * 2018-09-21 2020-04-02 富士通株式会社 Power supply apparatus, program and power supply method
JP2020064490A (en) * 2018-10-18 2020-04-23 株式会社豊田中央研究所 Energy transaction management system

Also Published As

Publication number Publication date
JP2021190005A (en) 2021-12-13
JP2021190067A (en) 2021-12-13
JP6797450B1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US11568457B2 (en) Control method, controller, data structure, and electric power transaction system
EP3559874B1 (en) Event-driven blockchain workflow processing
US10148533B1 (en) Determining an event history for an event processed by a plurality of communicating servers via a central event data log
KR20200046260A (en) Method and apparatus for managing digital collectable card based block-chain
JP2019133630A (en) Control method, controller, data structure, and electronic transaction system
CN110415042A (en) A kind of discount coupon generates system, method and coupon server
JP2023160858A (en) Control method, power trading system, and program
CN112035879A (en) Information processing method and system for improving confidentiality of automatic logistics of cell
US20230120476A1 (en) Methods and systems for creation and distribution of non-fungible tokens
US20230067556A1 (en) Systems and methods for tokenization, management, trading, settlement, and retirement of renewable energy attributes
WO2016193811A1 (en) Systems and methods for publicly verifiable authorization
CN112613877A (en) Intelligent contract triggering method and device applied to block chain network and related equipment
WO2021246417A1 (en) Power transaction support system, power transaction support method, and program
KR20200119671A (en) method of distributing digital content by the amount of issuance, server performing the method, and computer program
CN110689412A (en) Method, device, server and storage medium for game virtual article transaction based on block chain
KR20210017402A (en) Power Sharing Relay DC Switch for P2P presuming service of domestic electricity surplus and blockchain based presuming service platform
JP6896813B2 (en) Transaction execution method and system
US11481762B2 (en) Methods and apparatus for creating, tracking, and redeeming DLT-enabled digitized tokens from electricity generation
CN110852891B (en) Data processing method and device based on rolling stock and readable storage medium
KR20220037581A (en) Apparatus and method for authenticating power consumption details based on blockchain
JP2008065617A (en) Power transaction system, program of power transaction system, and consumer terminal and supplier terminal for use in power transaction system
US20230224166A1 (en) Systems and Methods for Associating Digital Media Files with External Commodities
CN110826994B (en) Data processing method, device, equipment and storage medium
JP6776396B2 (en) Trading system
WO2021125106A1 (en) Control method, device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817933

Country of ref document: EP

Kind code of ref document: A1