WO2021246065A1 - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
WO2021246065A1
WO2021246065A1 PCT/JP2021/015824 JP2021015824W WO2021246065A1 WO 2021246065 A1 WO2021246065 A1 WO 2021246065A1 JP 2021015824 W JP2021015824 W JP 2021015824W WO 2021246065 A1 WO2021246065 A1 WO 2021246065A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner lens
light source
light
optical axis
lighting device
Prior art date
Application number
PCT/JP2021/015824
Other languages
French (fr)
Japanese (ja)
Inventor
愛 王
剛 安達
良平 高山
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021246065A1 publication Critical patent/WO2021246065A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions

Definitions

  • the present invention relates to a lighting device.
  • the reflector type lighting device is a light source such as an LED (Light Emitting Diode), a reflector that reflects the light of the light source, and a mechanical shade that switches the vertical lower and upper optical paths in the usage state of the light from the reflector. It is equipped with a unit and a lens that collects light that has passed through the shade unit.
  • LED Light Emitting Diode
  • Japanese Unexamined Patent Publication No. 2018-186068 Japanese Unexamined Patent Publication No. 2015-14405 Japanese Unexamined Patent Publication No. 2017-10789 International Publication No. 2015/022848 Japanese Unexamined Patent Publication No. 2018-55907
  • the present invention has been made in view of the above, and is suitable for forming a part of a lighting device suitable for miniaturization without the need for a reflector or a shade portion, and a lighting device suitable for each of a high beam and a low beam.
  • the purpose is to provide.
  • the lighting device includes a light source, an inner lens for a high beam, and an outer lens.
  • the light source has an optical axis in the horizontal direction in the used state.
  • the inner lens for the high beam is arranged in front of the optical axis of the light source.
  • the outer lens is arranged in front of the inner lens on the optical axis.
  • the inner lens has a convex portion at the tip facing the outer lens.
  • the convex portion has a shape in which the center is located on the focal curve of the outer lens and gradually moves away from the focal curve as the distance from the center with respect to the optical axis increases.
  • the lighting device according to one aspect of the present invention is suitable for forming a part of a lighting device that does not require a reflector or a shade portion and is suitable for miniaturization, and can provide a lighting device suitable for each of a high beam and a low beam. can.
  • FIG. 1A is a side view of a main part of a lighting device according to an embodiment.
  • FIG. 1B is a plan view of a main part of the lighting device.
  • FIG. 2A is a side view of the inner lens for the high beam.
  • FIG. 2B is a plan view of the inner lens for the high beam.
  • FIG. 2C is a front view of the inner lens for the high beam.
  • FIG. 2D is a rear view of the inner lens for the high beam.
  • FIG. 2E is a bottom view of the inner lens for the high beam.
  • FIG. 3 is a diagram showing an example of arrangement of the inner lens for the high beam with respect to the focal curved surface of the outer lens.
  • FIG. 4A is a plan view showing an example of the shape pattern of the emission surface of the inner lens for the high beam.
  • FIG. 4B is a side view showing an example of the shape pattern of the emission surface of the inner lens for the high beam.
  • FIG. 5A is a diagram showing an example of a high beam projected light according to a comparative example.
  • FIG. 5B is a diagram showing an example of the projected light of the high beam according to the embodiment.
  • FIG. 6A is a plan view showing another example of the emission surface of the inner lens for the high beam.
  • FIG. 6B is a side view showing another example of the emission surface of the inner lens for the high beam.
  • FIG. 7 is a diagram showing an example of the operation of the overhead function.
  • FIG. 8 is a diagram showing an example of a notch provided in the plate.
  • FIG. 9 is a diagram showing an example of a low beam projected light to which an overhead function is added.
  • FIG. 10 is a diagram showing an example of another method for realizing the overhead function.
  • FIG. 11 is a perspective view of the outer lens.
  • FIG. 12 is a diagram showing an example of refraction of light in the horizontal plane of the outer lens.
  • FIG. 13 is a diagram showing an example of refraction of light in the vertical plane of the outer lens.
  • FIG. 14A is a diagram showing an example of the projected light of the high beam when the tapered cut surface is not provided.
  • FIG. 14B is a diagram showing an example of the projected light of the high beam according to the embodiment.
  • FIG. 14A is a diagram showing an example of the projected light of the high beam when the tapered cut surface is not provided.
  • FIG. 14B is a diagram showing an example of the projected light of the high beam according to the embodiment.
  • FIG. 15A is a diagram showing an example of the projected light of the low beam when the tapered cut surface is not provided.
  • FIG. 15B is a diagram showing an example of a low beam projected light according to an embodiment.
  • FIG. 16A is a side view of an inner lens for a low beam.
  • FIG. 16B is a plan view of the inner lens for the low beam.
  • FIG. 16C is a front view of the inner lens for the low beam.
  • FIG. 16D is a rear view of the inner lens for the low beam.
  • FIG. 16E is a bottom view of the inner lens for the low beam.
  • FIG. 17A is a diagram showing an example of the action of the slipback structure.
  • FIG. 17B is a diagram showing an example of the action of the slipback structure when the L value is shorter.
  • FIG. 18A is a diagram showing an example of a low beam projected light according to a comparative example without slipback.
  • FIG. 18B is a diagram showing an example of a low beam
  • the lighting device according to the embodiment will be described with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • the relationship between the dimensions of each element in the drawing, the ratio of each element, etc. may differ from the reality. Even between the drawings, there may be parts where the relationship and ratio of the dimensions are different from each other. Further, in principle, the contents described in one embodiment or modification are similarly applied to other embodiments or modifications.
  • FIG. 1A is a side view of a main part of the lighting device 1 according to the embodiment.
  • FIG. 1B is a plan view of a main part of the lighting device 1.
  • the XY plane corresponds to the horizontal plane in use and the Z direction corresponds to the vertical direction in use.
  • the X-axis direction is the optical axis direction, and the light is assumed to travel in the negative direction of the X-axis.
  • the horizontal direction in the used state may be simply described as "horizontal direction”
  • the vertical direction in the used state may be simply described as "vertical direction”.
  • a substantially rectangular substrate 2 having a plate surface vertically supported and a horizontal direction as a longitudinal direction has one light source 3 for a high beam and three light sources 4 for a low beam. Is provided, and the optical axes of the light sources 3 and 4 are set in the horizontal direction orthogonal to the plate surface of the substrate 2. Further, the light source 4 for the low beam is arranged above the light source 3 for the high beam in the vertical direction. Since the projected light is turned upside down by the outer lens 8 described later, it is arranged on the lower side for the high beam and on the upper side for the low beam. As the light sources 3 and 4, a point light source using an LED (Light Emitting Diode) or the like is used. Further, in the illustrated example, the number of the light source 3 for the high beam is one, and the number of the light source 4 for the low beam is three, but the present invention is not limited to this.
  • the inner lens 5 for the high beam is arranged in front of the light source 3 for the high beam on the optical axis.
  • An inner lens 6 for a low beam is arranged in front of the light source 4 for a low beam on the optical axis.
  • the inner lens 6 for the low beam is arranged above the inner lens 5 for the high beam in the vertical direction.
  • a flat plate 7 made of aluminum or the like is provided between the inner lens 5 for the high beam and the inner lens 6 for the low beam, but the plate 7 may be omitted.
  • the outer lens 8 is arranged in front of the inner lens 5 for the high beam and the inner lens 6 for the low beam on the optical axis. Details of each lens will be described later. Further, the substrate 2, the inner lenses 5, 6, the plate 7, and the outer lens 8 are supported in a predetermined housing by a support structure (not shown).
  • the lighting device 1 of the present embodiment as compared with the conventional reflector type lighting device, there is no reflector, and the high beam and the low beam are switched by turning off and turning on the light sources 3 and 4, so that the light beam is mechanically switched. Since a large shade portion is not required, the lighting device 1 can be significantly downsized. Further, since the emission surface of the inner lenses 5 and 6 becomes a pseudo light source (pseudo light source) and the pseudo light source is significantly smaller than the reflector, the size of the outer lens 8 that projects the image of the light is also suppressed. From this point as well, the lighting device 1 can be miniaturized.
  • FIG. 2A is a side view of the inner lens 5 for the high beam.
  • FIG. 2B is a plan view of the inner lens 5 for the high beam.
  • FIG. 2C is a front view of the inner lens 5 for the high beam.
  • FIG. 2D is a rear view of the inner lens 5 for the high beam.
  • FIG. 2E is a bottom view of the inner lens 5 for the high beam.
  • the inner lens 5 for the high beam is integrally formed of a material such as transparent resin or glass as a whole, and the entire surface is composed of an optical surface.
  • the inner lens 5 for the high beam includes an incident surface 5a facing the light source 3 (FIGS. 1A and 1B) and an emitting surface 5b facing the outer lens 8.
  • the incident surface 5a is a surface perpendicular to the optical axis.
  • the corner of the exit surface 5b may be a quadrangular shape, a polygonal shape, or an R shape.
  • the emission surface 5b is composed of a tip portion 5c and a peripheral portion 5d around the tip portion 5c, and both of them form a convex-shaped portion facing the outer lens 8.
  • the emission surface 5b may be a flat surface, or may be an arc surface or an nth-order curved surface continuous with the tip portion 5c and the peripheral portion 5d.
  • the vertical thickness of the exit surface 5b is larger than the vertical thickness of the incident surface 5a, which is the thickness of the exit surface 5b required for the size of the projected light and the light source 3 (FIG. 1A, FIG. 1A, This is to match the thickness of the incident surface 5a corresponding to the size of the light emitting portion in FIG. 1B).
  • the light distribution in the vertical direction is set thicker as the projected light of the headlamp.
  • the vertical thickness of the exit surface 5b may be relatively smaller than the vertical thickness of the incident surface 5a.
  • the upper surface 5e of the inner lens 5 is a flat surface, and the lower surface 5f is a tapered curved surface from a thick exit surface 5b to a thin incident surface 5a. Further, the inner lens 5 is provided with a wing portion 5g projecting to the left and right in the horizontal direction with respect to the optical axis. The wing portion 5g is used for fixing the inner lens 5 and the like. An R-plane shape or a C-plane shape may be formed in the connection portion of each surface constituting the inner lens 5.
  • FIG. 3 is a diagram showing an example of the arrangement of the inner lens 5 for the high beam with respect to the focal curved surface FF of the outer lens 8.
  • the outer lens 8 has a focal curved surface FF for adapting to the wide emission surface of the inner lens 6 for a low beam.
  • the emission surface of the inner lens 5 for the high beam as with the inner lens 6 for the low beam, if the entire surface of the emission surface is aligned with the focal curved surface FF, the luminous intensity of the central portion of the projected light disappears and the vehicle travels. It is not preferable as a light distribution characteristic for a high beam because the visibility of the center of the direction is lowered.
  • the central portion of the tip portion 5c is positioned on the focal curved surface FF, and the farther away from the center with respect to the optical axis, the gradually away from the focal curved surface FF.
  • the light distribution characteristics including the gradient of luminous intensity can be controlled by the shape (free curved surface shape) of the convex portion of the exit surface 5b composed of the tip portion 5c and the peripheral portion 5d.
  • the exit surface 5b of the inner lens 5 is separated from the center with respect to the optical axis with respect to the focal curved surface FF even in the vertical plane.
  • the shape gradually separates. That is, it is designed to move away from the focal surface FF in a three-dimensional direction.
  • FIG. 4A is a plan view showing an example of the shape pattern of the emission surface 5b of the inner lens 5 for the high beam.
  • FIG. 4B is a side view showing an example of the shape pattern of the emission surface 5b of the inner lens 5 for the high beam.
  • the peripheral portion 5d of the exit surface 5b has an inwardly concave pattern as shown by the broken line m and an outwardly convex pattern as shown by the broken line n. And can be selected.
  • a straight line connecting the end points of the arcs of the broken lines m and n can be used.
  • the maximum luminous intensity (maximum luminous intensity) moves downward.
  • the pattern of the broken line n having a convex shape to the outside light is easily emitted from the peripheral portion 5d, the internal reflection is reduced, so that the efficiency is high, and the amount of light emitted in the front downward direction of the inner lens 5 is relatively large.
  • the maximum luminous intensity moves upward as the projected light after passing through the outer lens 8.
  • the pattern of the broken line m having a concave shape inward is preferable.
  • FIG. 5A is a diagram showing an example of high beam projected light according to a comparative example.
  • the tip portion 5c and the peripheral portion 5d instead of only the central portion of the tip portion 5c of the inner lens 5 being located on the focal curved surface FF as shown in FIG. 3, the tip portion 5c and the peripheral portion 5d have a concave shape and are on the focal curved surface FF. The concave shape overlaps with.
  • the projected light has substantially the same luminous intensity in the central portion as shown in FIG. 5A.
  • the horizontal line indicates the horizontal line H (the boundary between the road surface on a flat road surface and the scenery above it), and the vertical line indicates the vertical line V (the front of the vertical center line of the vehicle body). ing.
  • FIG. 5B is a diagram showing an example of the projected light of the high beam according to the embodiment.
  • the structure of FIG. 3 forms a gradient of luminous intensity in the central portion, and the visibility of the center in the traveling direction can be improved. .. Further, the maximum luminous intensity bites slightly below the horizontal line H due to the pattern of the broken line m having a concave shape inside FIGS. 4A and 4B. Even with high beams, it is important to illuminate a part of the road surface, and the visibility of the road surface can be improved.
  • the fact that the luminous intensity distribution spreads above the horizontal line H is a basic light distribution characteristic as a high beam, and is realized by the inner lens 5 for the high beam being formed asymmetrically in the vertical direction. .. As a whole, according to the embodiment, a preferable high beam light distribution characteristic can be obtained.
  • FIG. 6A is a plan view showing another example of the emission surface 5b of the inner lens 5 for the high beam.
  • FIG. 6B is a side view showing another example of the emission surface 5b of the inner lens 5 for the high beam.
  • the convex portion of the exit surface 5b composed of the tip portion 5c and the peripheral portion 5d is composed of a stepped surface.
  • the tip portion 5c is set as the first step and the peripheral portion 5d is set as the second step, and the number of steps is 2, but the number of steps may be further increased. By increasing the number of steps, it approaches a curved surface.
  • a polygonal shape may be used instead of the stepped shape.
  • the tip portion 5c and the peripheral portion 5d constituting the exit surface 5b of the inner lens 5 for the high beam are smooth surfaces.
  • fine prism processing or grain processing may be applied to all or part of the material. This can improve the sudden change in the gradient of luminosity.
  • fine prism processing or grain processing may be applied to all or a part of the incident surface 5a of the inner lens 5 for the high beam.
  • the prism processing for example, one having a V-shaped cross section and extending uniformly in the thickness direction is used.
  • FIG. 7 is a diagram showing an example of the operation of the overhead function.
  • the overhead function is a low beam, but the light in the high beam region is simultaneously irradiated.
  • it is required to realize an overhead function in order to improve the visibility of signs and the like.
  • the high beam light and the low beam light are individually irradiated to each region, so that the above overhead function can be realized. It's not easy.
  • FIG. 7 in the present embodiment, a part of the light emitted from the low beam light source 4 is incident on the high beam inner lens 5, and the light emitted from the high beam inner lens 5 is used for the low beam.
  • the overhead function is realized by superimposing it on the light emitted from the inner lens 6 of the above.
  • the light incident on the inner lens 6 for the low beam and the inner lens 5 for the high beam through the air layer from the light source 4 for the low beam is shown by a broken line with an arrow, but other light paths. There are the following two. One is a path in which the light emitted from the low beam light source 4 is directly incident on the high beam inner lens 5.
  • the other is a path in which the light emitted from the low beam light source 4 is reflected on the incident surface 6a of the low beam inner lens 6 and further reflected on the substrate 2 to be incident on the high beam inner lens 5. .. Of these three light paths, the light in the path indicated by the broken line with an arrow in FIG. 7 is controlled by the plate 7. The details of the structure of the inner lens 6 will be described later.
  • FIG. 8 is a diagram showing an example of a notch 7b provided in the plate 7.
  • the light source 4 for the low beam to the inner lens for the low beam.
  • the amount of light incident on the inner lens 5 for the high beam through the 6 and the air layer is adjusted.
  • the light incident on the high beam inner lens 5 from the low beam light source 4 through the low beam inner lens 6 is the high beam inner lens 5 and the low beam inner lens 5 even when the plate 7 does not exist. Since it varies depending on the distance from the lens 6, the plate 7 can be eliminated if the distance between the inner lenses 5 and 6 can be appropriately controlled.
  • the adjustment by the notch 7b of the plate 7 and the adjustment of the distance between the inner lenses 5 and 6 may be used in combination.
  • FIG. 9 is a diagram showing an example of a low beam projected light to which an overhead function is added.
  • the overhead portion OH is a portion of light superimposed by the overhead function.
  • FIG. 10 is a diagram showing an example of another method for realizing the overhead function.
  • a part of the light from the low beam light source 4 is guided to the high beam inner lens 5 with the high beam light source 3 turned off.
  • the light source 4 for the low beam is turned on and the light source 3 for the high beam is slightly turned on (for example, a few percent or less of the complete lighting). This can be achieved by supplying a smaller current to the LEDs constituting the light source 3 for the high beam than when the lights are completely lit.
  • the overhead function can be adjusted by the value of the current supplied to the LED constituting the light source 3 for the high beam. In this case, it is not necessary to adjust the amount of light by the notch 7b (FIG. 8) of the plate 7, but the method of FIG. 7 and the method of FIG. 10 may be used in combination.
  • FIG. 11 is a perspective view of the outer lens 8.
  • the outer lens 8 is a substantially hemispherical lens that is laid on its side, the lower half of the hemisphere on the cut surface side is a flat surface 8a, and the apex of the upper half is at the center of the circle of the cut surface. Therefore, a tapered cut surface 8b that is convex on the incident side is formed.
  • the tapered cut surface 8b that is convex on the incident side is not limited to the curved surface that is convex on the incident side.
  • FIG. 12 is a diagram showing an example of refraction of light in the horizontal plane of the outer lens 8.
  • FIG. 13 is a diagram showing an example of refraction of light in the vertical plane of the outer lens 8.
  • the light incident on the outer lens 8 is refracted by the tapered cut surface 8b of the outer lens 8 toward the optical axis side (center side) as shown by the solid line with an arrow (taper cut surface 8b). If there is no light, the light is a broken line with an arrow).
  • the angle and max luminosity can be controlled. With such a function, for example, the following light distribution characteristics can be obtained.
  • FIG. 14A is a diagram showing an example of the projected light of the high beam when the tapered cut surface is not provided.
  • FIG. 14B is a diagram showing an example of the projected light of the high beam according to the embodiment.
  • a portion having a high luminous intensity (a portion drawn in white in the figure) is generated on the left and right other than the center, but the taper cut surface is provided.
  • the portions having high luminous intensity are gathered in the center, and the visibility of the center in the traveling direction can be improved. Further, the max luminous intensity can be controlled slightly below the horizontal line H.
  • FIG. 15A is a diagram showing an example of low beam projected light when the tapered cut surface is not provided.
  • FIG. 15B is a diagram showing an example of a low beam projected light according to an embodiment.
  • the central portion having high luminous intensity is long in the vertical direction, but in FIG. 15B showing the embodiment in which the tapered cut surface is provided, the central portion having high luminous intensity is provided. The portion of is shortened in the vertical direction, the spot feeling is improved, and the visibility can be improved.
  • the upper half of the incident surface of the outer lens 8 is provided with a curved surface that is convex on the incident side represented by the tapered cut surface 8b, but the curved surface that is convex on the incident side is incident. It may be provided on the lower half of the surface, or may be provided on a part of the incident surface such as a fan shape. This is because the light from the exit surfaces 5b and 6b of the inner lenses 5 and 6 placed on the substantially focal point of the outer lens 8 passes through the entire surface of the incident surface of the outer lens 8.
  • the ratio of the curved surface that is convex to the incident side with respect to the entire incident surface corresponds to the ratio of the light that is refracted inward in the horizontal plane and the vertical plane among the light that passes through the entire surface of the incident surface.
  • FIG. 16A is a side view of the inner lens 6 for the low beam.
  • FIG. 16B is a plan view of the inner lens 6 for the low beam.
  • FIG. 16C is a front view of the inner lens 6 for a low beam.
  • FIG. 16D is a rear view of the inner lens 6 for a low beam.
  • FIG. 16E is a bottom view of the inner lens 6 for the low beam.
  • the inner lens 6 for low beam is integrally formed of a material such as transparent resin or glass as a whole, and the entire surface is composed of an optical surface.
  • the low beam inner lens 6 includes an incident surface 6a facing the light source 4 (FIGS. 1A and 1B) and an emitting surface 6b facing the outer lens 8.
  • the incident surface 6a is a surface perpendicular to the optical axis.
  • the exit surface 6b is a curved surface having a shape along the focal curved surface (focal curve) of the outer lens 8.
  • the height of the central portion (thickness in the vertical direction) of the exit surface 6b is the highest, and the height is lowered toward both ends.
  • the shape of the exit surface 6b in front view may be a circle, a polygon, an n-th order curve, or the like.
  • the shape of the emission surface 6b is set according to the required shape of the projected light. Further, either or both of the incident surface 6a and the exit surface 6b may be a smooth surface, or may be entirely or partially subjected to fine prism processing or grain processing. This makes it possible to smooth out sudden changes in luminous intensity.
  • the upper surface of the inner lens 6 connected to the incident surface 6a is a flat portion 6c, and the end portion of the flat portion 6c opposite to the incident surface 6a is connected to an inclined portion 6d rising toward the upper portion of the exit surface 6b.
  • These parts are also called slipback structures.
  • the surfaces of the flat portion 6c and the inclined portion 6d constituting the slipback structure may be smooth surfaces, or may be entirely or partially subjected to fine prism processing or grain processing. This makes it possible to adjust the reflection of light inside the inner lens 6.
  • the bottom surface 6e of the inner lens 6 is flat. Ear portions 6f are provided at both ends of the exit surface 6b. The selvage portion 6f is used for fixing the inner lens 6 and the like.
  • FIG. 17A is a diagram showing an example of the action of the slipback structure.
  • FIG. 17B is a diagram showing an example of the action of the slipback structure when the L value is shorter.
  • the width (L value) of the flat portion 6c in the optical axis direction is L1
  • a part of the light incident from the incident surface 6a is reflected on the inner surface of the flat portion 6c, and then the bottom surface 6e. It is reflected by and reaches the exit surface 6b.
  • the light reflected on the side of the flat portion 6c far from the incident surface 6a is collected near the bottom of the emitting surface 6b.
  • FIG. 18A is a diagram showing an example of low beam projected light according to a comparative example without slipback.
  • FIG. 18B is a diagram showing an example of a low beam projected light according to an embodiment.
  • the luminosity of the lower region R of the projected light is insufficient. If the luminosity of the lower part is insufficient in this way, the front side of the driver on the road surface becomes dark, which is dangerous in terms of driving.
  • the luminosity of the lower part is supplemented and the safety can be enhanced.
  • the lighting device has a light source having an optical axis in the horizontal direction in the used state, an inner lens for a high beam arranged in front of the optical axis of the light source, and an inner lens on the optical axis.
  • the inner lens has a convex portion at the tip facing the outer lens, and the convex portion has an optical axis whose center is located on the focal curve of the outer lens.
  • the farther away from the center the more gradually away from the focal curve.
  • the convex portion is composed of a continuous curved surface or a stepped surface. This makes it possible to control the light distribution characteristics in various ways.
  • the inner lens is asymmetrical in the vertical direction in the used state, and has a concave curved portion in the horizontal direction left and right in the used state and below the vertical direction in the used state around the tip of the convex portion. This makes it possible to obtain a light distribution suitable for a high beam.
  • the inner lens is thicker in the vertical direction on the exit side than on the enter side. This makes it possible to handle a light source of a small size.
  • the convex portion and / or the incident surface of the inner lens is a smooth surface, or is partially or partially subjected to fine prism processing or grain processing. This can improve the sudden change in the gradient of luminosity.
  • a light source having an optical axis in the horizontal direction in the used state, an inner lens for a low beam arranged in front of the optical axis of the light source, and an outer lens arranged in front of the optical axis of the inner lens.
  • the inner lens is connected to the portion where the vertical vertical thickness is constant on the incoming light side and the end portion on the exit side of the portion where this thickness is constant, and the vertical vertical thickness is connected to the exit side. It has a portion where the thickness becomes large.
  • the light distribution to the lower part of the projected light of the low beam is adjusted by the width in the optical axis direction of the part having a constant thickness. As a result, it is possible to easily adjust the luminous intensity in front of the driver on the road surface.
  • the portion having a constant thickness and the portion having a large thickness are smooth surfaces, or are partially or partially subjected to fine prism processing or grain processing. As a result, the reflection of light inside the inner lens can be adjusted, and the luminous intensity in front of the driver on the road surface can be adjusted.
  • the entrance surface and the exit surface of the inner lens are smooth surfaces, or all or part of them are finely prismatic or textured. This can improve the sudden change in the gradient of luminosity.
  • a second inner lens for a low beam which is arranged on the upper side in the vertical direction in the usage state of the above, and an outer lens which is arranged in front of the optical axis of the first inner lens and the second inner lens.
  • the light emitted from the first inner lens is superimposed on the light emitted from the second inner lens based on the incident light from the second light source or the first light source to the first inner lens.
  • the second light source is transferred to the first inner lens. Adjust the amount of incident light. This makes it possible to easily adjust the degree of overhead function.
  • the amount of light incident on the first inner lens from the second light source is adjusted by the distance between the first inner lens and the second inner lens. This makes it possible to easily adjust the degree of overhead function.
  • the amount of light incident on the first inner lens from the first light source is adjusted according to the lighting state of the first light source. This makes it possible to easily adjust the degree of overhead function.
  • a curved surface that is convex on the incident side is formed on a part of the incident surface of the outer lens.
  • the curved surface is a tapered cut surface that is convex on the incident side. As a result, the outer lens can be easily manufactured.
  • the present invention is not limited to the above embodiments.
  • the present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • 1 lighting device 2 substrate, 3, 4 light source, 5, 6 inner lens, 5a incident surface, 5b exit surface, 5c tip, 5d peripheral, 5e upper surface, 5f lower surface, 5g wing, 6a incident surface, 6b emission Surface, 6c flat part, 6d inclined part, 6e bottom surface, 6f ear part, 7 plate, 7a curved part, 7b notch, 8 outer lens, 8a flat surface, 8b taper cut surface, H horizontal line, V vertical line, FF focus Curved surface, OH overhead part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

An illumination device (1) according to the present embodiment is provided with a light source (3), a high-beam inner lens (5), and an outer lens (8). The light source (3) has an optical axis in the horizontal direction when in use. The high-beam inner lens (5) is disposed forward along the optical axis of the light source (3). The outer lens (8) is disposed forward along the optical axis of the inner lens (5). The inner lens (5) has a convex section at the tip facing the outer lens (8). The convex section is shaped such that the center thereof is located on the focal curve of the outer lens (8), and so as to gradually separate from the focal curve as the optical axis separates from the center.

Description

照明装置Lighting equipment
 本発明は、照明装置に関する。 The present invention relates to a lighting device.
 従来、例えば二輪車用のバイファンクション(ハイビームおよびロービームの2つの機能に対応)のヘッドランプ等の照明装置としては、リフレクタ式が一般的であった。リフレクタ式の照明装置は、LED(Light Emitting Diode)等の光源と、光源の光を反射するリフレクタと、リフレクタからの光の使用状態における垂直方向の下側と上側の光路を切り替える機械式のシェード部と、シェード部を通過した光を集光させるレンズとを備えている。 Conventionally, as a lighting device such as a bi-function (corresponding to two functions of high beam and low beam) headlamps for motorcycles, a reflector type has been generally used. The reflector type lighting device is a light source such as an LED (Light Emitting Diode), a reflector that reflects the light of the light source, and a mechanical shade that switches the vertical lower and upper optical paths in the usage state of the light from the reflector. It is equipped with a unit and a lens that collects light that has passed through the shade unit.
 一方、ヘッドランプ装置、車両用前照灯または車両用灯具等についての開示がある(特許文献1~5等を参照)。 On the other hand, there are disclosures about headlamp devices, vehicle headlights, vehicle lighting equipment, etc. (see Patent Documents 1 to 5 and the like).
特開2018-186068号公報Japanese Unexamined Patent Publication No. 2018-186068 特開2015-144059号公報Japanese Unexamined Patent Publication No. 2015-14405 特開2017-10789号公報Japanese Unexamined Patent Publication No. 2017-10789 国際公開第2015/022848号International Publication No. 2015/022848 特開2018-55907号公報Japanese Unexamined Patent Publication No. 2018-55907
 しかしながら、前述のリフレクタ式の照明装置は、リフレクタおよびシェード部とともにレンズにも比較的大きなサイズを要することから小型化が困難であり、リフレクタやシェード部が不要で小型化に適した照明装置が求められていた。 However, it is difficult to miniaturize the above-mentioned reflector-type lighting device because the lens requires a relatively large size together with the reflector and the shade portion, and a lighting device suitable for miniaturization without the need for a reflector or a shade portion is required. Was being done.
 また、ハイビームとロービームとでは要求される配光特性に違いがあり、更に、二輪車用についても要求される配光特性に特有のものがある。 In addition, there are differences in the required light distribution characteristics between high beam and low beam, and there are also those that are unique to the required light distribution characteristics for motorcycles.
 本発明は、上記に鑑みてなされたものであって、リフレクタやシェード部が不要で小型化に適した照明装置の一部を構成するのに適し、ハイビームとロービームのそれぞれに適した照明装置を提供することを目的とする。 The present invention has been made in view of the above, and is suitable for forming a part of a lighting device suitable for miniaturization without the need for a reflector or a shade portion, and a lighting device suitable for each of a high beam and a low beam. The purpose is to provide.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る照明装置は、光源と、ハイビーム用のインナーレンズと、アウターレンズとを備える。前記光源は、使用状態における水平方向に光軸を有する。前記ハイビーム用のインナーレンズは、前記光源の光軸上の前方に配置される。前記アウターレンズは、前記インナーレンズの光軸上の前方に配置される。前記インナーレンズは、前記アウターレンズに対向する先端に凸形状部を有する。前記凸形状部は、中央が前記アウターレンズの焦点曲線上に位置するとともに、光軸に対して中央から離れるほど前記焦点曲線上から徐々に離れる形状である。 In order to solve the above-mentioned problems and achieve the object, the lighting device according to one aspect of the present invention includes a light source, an inner lens for a high beam, and an outer lens. The light source has an optical axis in the horizontal direction in the used state. The inner lens for the high beam is arranged in front of the optical axis of the light source. The outer lens is arranged in front of the inner lens on the optical axis. The inner lens has a convex portion at the tip facing the outer lens. The convex portion has a shape in which the center is located on the focal curve of the outer lens and gradually moves away from the focal curve as the distance from the center with respect to the optical axis increases.
 本発明の一態様に係る照明装置は、リフレクタやシェード部が不要で小型化に適した照明装置の一部を構成するのに適し、ハイビームとロービームのそれぞれに適した照明装置を提供することができる。 The lighting device according to one aspect of the present invention is suitable for forming a part of a lighting device that does not require a reflector or a shade portion and is suitable for miniaturization, and can provide a lighting device suitable for each of a high beam and a low beam. can.
図1Aは、一実施形態にかかる照明装置の要部の側面図である。FIG. 1A is a side view of a main part of a lighting device according to an embodiment. 図1Bは、照明装置の要部の平面図である。FIG. 1B is a plan view of a main part of the lighting device. 図2Aは、ハイビーム用のインナーレンズの側面図である。FIG. 2A is a side view of the inner lens for the high beam. 図2Bは、ハイビーム用のインナーレンズの平面図である。FIG. 2B is a plan view of the inner lens for the high beam. 図2Cは、ハイビーム用のインナーレンズの正面図である。FIG. 2C is a front view of the inner lens for the high beam. 図2Dは、ハイビーム用のインナーレンズの背面図である。FIG. 2D is a rear view of the inner lens for the high beam. 図2Eは、ハイビーム用のインナーレンズの底面図である。FIG. 2E is a bottom view of the inner lens for the high beam. 図3は、アウターレンズの焦点曲面に対するハイビーム用のインナーレンズの配置の例を示す図である。FIG. 3 is a diagram showing an example of arrangement of the inner lens for the high beam with respect to the focal curved surface of the outer lens. 図4Aは、ハイビーム用のインナーレンズの出射面の形状パターンの例を示す平面図である。FIG. 4A is a plan view showing an example of the shape pattern of the emission surface of the inner lens for the high beam. 図4Bは、ハイビーム用のインナーレンズの出射面の形状パターンの例を示す側面図である。FIG. 4B is a side view showing an example of the shape pattern of the emission surface of the inner lens for the high beam. 図5Aは、比較例によるハイビームの投影光の例を示す図である。FIG. 5A is a diagram showing an example of a high beam projected light according to a comparative example. 図5Bは、実施形態によるハイビームの投影光の例を示す図である。FIG. 5B is a diagram showing an example of the projected light of the high beam according to the embodiment. 図6Aは、ハイビーム用のインナーレンズの出射面の他の例を示す平面図である。FIG. 6A is a plan view showing another example of the emission surface of the inner lens for the high beam. 図6Bは、ハイビーム用のインナーレンズの出射面の他の例を示す側面図である。FIG. 6B is a side view showing another example of the emission surface of the inner lens for the high beam. 図7は、オーバーヘッド機能の作用の例を示す図である。FIG. 7 is a diagram showing an example of the operation of the overhead function. 図8は、プレートに設けられる切欠の例を示す図である。FIG. 8 is a diagram showing an example of a notch provided in the plate. 図9は、オーバーヘッド機能が付加されたロービームの投影光の例を示す図である。FIG. 9 is a diagram showing an example of a low beam projected light to which an overhead function is added. 図10は、オーバーヘッド機能を実現する他の手法の例を示す図である。FIG. 10 is a diagram showing an example of another method for realizing the overhead function. 図11は、アウターレンズの斜視図である。FIG. 11 is a perspective view of the outer lens. 図12は、アウターレンズの水平面内における光の屈折の例を示す図である。FIG. 12 is a diagram showing an example of refraction of light in the horizontal plane of the outer lens. 図13は、アウターレンズの垂直面内における光の屈折の例を示す図である。FIG. 13 is a diagram showing an example of refraction of light in the vertical plane of the outer lens. 図14Aは、テーパカット面が設けられていない場合のハイビームの投影光の例を示す図である。FIG. 14A is a diagram showing an example of the projected light of the high beam when the tapered cut surface is not provided. 図14Bは、実施形態によるハイビームの投影光の例を示す図である。FIG. 14B is a diagram showing an example of the projected light of the high beam according to the embodiment. 図15Aは、テーパカット面が設けられていない場合のロービームの投影光の例を示す図である。FIG. 15A is a diagram showing an example of the projected light of the low beam when the tapered cut surface is not provided. 図15Bは、実施形態によるロービームの投影光の例を示す図である。FIG. 15B is a diagram showing an example of a low beam projected light according to an embodiment. 図16Aは、ロービーム用のインナーレンズの側面図である。FIG. 16A is a side view of an inner lens for a low beam. 図16Bは、ロービーム用のインナーレンズの平面図である。FIG. 16B is a plan view of the inner lens for the low beam. 図16Cは、ロービーム用のインナーレンズの正面図である。FIG. 16C is a front view of the inner lens for the low beam. 図16Dは、ロービーム用のインナーレンズの背面図である。FIG. 16D is a rear view of the inner lens for the low beam. 図16Eは、ロービーム用のインナーレンズの底面図である。FIG. 16E is a bottom view of the inner lens for the low beam. 図17Aは、スリップバック構造の作用の例を示す図である。FIG. 17A is a diagram showing an example of the action of the slipback structure. 図17Bは、L値がより短い場合のスリップバック構造の作用の例を示す図である。FIG. 17B is a diagram showing an example of the action of the slipback structure when the L value is shorter. 図18Aは、スリップバックのない比較例によるロービームの投影光の例を示す図である。FIG. 18A is a diagram showing an example of a low beam projected light according to a comparative example without slipback. 図18Bは、実施形態によるロービームの投影光の例を示す図である。FIG. 18B is a diagram showing an example of a low beam projected light according to an embodiment.
 以下、実施形態に係る照明装置について図面を参照して説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、1つの実施形態や変形例に記載された内容は、原則として他の実施形態や変形例にも同様に適用される。 Hereinafter, the lighting device according to the embodiment will be described with reference to the drawings. The present invention is not limited to this embodiment. In addition, the relationship between the dimensions of each element in the drawing, the ratio of each element, etc. may differ from the reality. Even between the drawings, there may be parts where the relationship and ratio of the dimensions are different from each other. Further, in principle, the contents described in one embodiment or modification are similarly applied to other embodiments or modifications.
 図1Aは、一実施形態にかかる照明装置1の要部の側面図である。図1Bは、照明装置1の要部の平面図である。便宜上、X-Y平面が使用状態における水平面に対応し、Z方向は使用状態における垂直方向に対応している。また、X軸方向を光軸方向としており、X軸の負方向に光が進むものとしている。なお、以下では、使用状態における水平方向を単に「水平方向」と記載し、使用状態における垂直方向を単に「垂直方向」と記載する場合がある。 FIG. 1A is a side view of a main part of the lighting device 1 according to the embodiment. FIG. 1B is a plan view of a main part of the lighting device 1. For convenience, the XY plane corresponds to the horizontal plane in use and the Z direction corresponds to the vertical direction in use. Further, the X-axis direction is the optical axis direction, and the light is assumed to travel in the negative direction of the X-axis. In the following, the horizontal direction in the used state may be simply described as "horizontal direction", and the vertical direction in the used state may be simply described as "vertical direction".
 図1Aおよび図1Bにおいて、板面が垂直に支持され、水平方向を長手方向とする略長方形状の基板2には、ハイビーム用の1個の光源3と、ロービーム用の3個の光源4とが設けられ、光源3、4の光軸は基板2の板面に直交する水平方向に設定されている。また、ロービーム用の光源4はハイビーム用の光源3の垂直方向の上側に配置されている。後述するアウターレンズ8により投影光の上下が反転するため、ハイビーム用は下側、ロービーム用は上側に配置されている。光源3、4は、LED(Light Emitting Diode)等による点状光源が用いられている。また、図示の例では、ハイビーム用の光源3としては1個、ロービーム用の光源4としては3個とされているが、これに限られない。 In FIGS. 1A and 1B, a substantially rectangular substrate 2 having a plate surface vertically supported and a horizontal direction as a longitudinal direction has one light source 3 for a high beam and three light sources 4 for a low beam. Is provided, and the optical axes of the light sources 3 and 4 are set in the horizontal direction orthogonal to the plate surface of the substrate 2. Further, the light source 4 for the low beam is arranged above the light source 3 for the high beam in the vertical direction. Since the projected light is turned upside down by the outer lens 8 described later, it is arranged on the lower side for the high beam and on the upper side for the low beam. As the light sources 3 and 4, a point light source using an LED (Light Emitting Diode) or the like is used. Further, in the illustrated example, the number of the light source 3 for the high beam is one, and the number of the light source 4 for the low beam is three, but the present invention is not limited to this.
 ハイビーム用の光源3の光軸上の前方には、ハイビーム用のインナーレンズ5が配置されている。ロービーム用の光源4の光軸上の前方には、ロービーム用のインナーレンズ6が配置されている。ロービーム用のインナーレンズ6は、ハイビーム用のインナーレンズ5の垂直方向の上側に配置されている。なお、図示の例では、ハイビーム用のインナーレンズ5とロービーム用のインナーレンズ6との間にアルミニウム等による平板状のプレート7が設けられているが、プレート7は省略される場合もある。ハイビーム用のインナーレンズ5およびロービーム用のインナーレンズ6の光軸上の前方には、アウターレンズ8が配置されている。各レンズの詳細については後述する。また、基板2、インナーレンズ5、6、プレート7およびアウターレンズ8は、図示しない支持構造により所定の筐体内に支持される。 The inner lens 5 for the high beam is arranged in front of the light source 3 for the high beam on the optical axis. An inner lens 6 for a low beam is arranged in front of the light source 4 for a low beam on the optical axis. The inner lens 6 for the low beam is arranged above the inner lens 5 for the high beam in the vertical direction. In the illustrated example, a flat plate 7 made of aluminum or the like is provided between the inner lens 5 for the high beam and the inner lens 6 for the low beam, but the plate 7 may be omitted. The outer lens 8 is arranged in front of the inner lens 5 for the high beam and the inner lens 6 for the low beam on the optical axis. Details of each lens will be described later. Further, the substrate 2, the inner lenses 5, 6, the plate 7, and the outer lens 8 are supported in a predetermined housing by a support structure (not shown).
 図1Aおよび図1Bにおいて、照明装置1をハイビームのモードで動作させる場合、ハイビーム用の光源3を点灯させ、ロービーム用の光源4を消灯させる。これにより、ハイビーム用の光源3から出た光はハイビーム用のインナーレンズ5およびアウターレンズ8を通して照明装置1の前方に投影される。また、照明装置1をロービームのモードで動作させる場合、ハイビーム用の光源3を消灯させ、ロービーム用の光源4を点灯させる。これにより、ロービーム用の光源4から出た光はロービーム用のインナーレンズ6およびアウターレンズ8を通して照明装置1の前方に投影される。なお、後述するように、ロービーム用の光源4から出た光の一部はハイビーム用のインナーレンズ5を通った後にアウターレンズ8側に出射して重畳され、いわゆるオーバーヘッド機能を実現する。 In FIGS. 1A and 1B, when the lighting device 1 is operated in the high beam mode, the high beam light source 3 is turned on and the low beam light source 4 is turned off. As a result, the light emitted from the high beam light source 3 is projected to the front of the illuminating device 1 through the high beam inner lens 5 and the outer lens 8. Further, when the lighting device 1 is operated in the low beam mode, the light source 3 for the high beam is turned off and the light source 4 for the low beam is turned on. As a result, the light emitted from the low beam light source 4 is projected to the front of the illuminating device 1 through the low beam inner lens 6 and the outer lens 8. As will be described later, a part of the light emitted from the low beam light source 4 passes through the high beam inner lens 5 and then is emitted to the outer lens 8 side to be superimposed, thereby realizing a so-called overhead function.
 本実施形態の照明装置1によれば、従来のリフレクタ式の照明装置と比較して、リフレクタが存在しないとともに、光源3、4の消灯・点灯によりハイビームとロービームの切り替えが行われるために機械的なシェード部が必要ないため、照明装置1の大幅な小型化が可能となる。また、インナーレンズ5、6の出射面が疑似的な光源(疑似光源)となり、疑似光源がリフレクタに比べて大幅に小さいために、その光の像を投影するアウターレンズ8のサイズも抑えられ、この点からも照明装置1の小型化が可能となる。 According to the lighting device 1 of the present embodiment, as compared with the conventional reflector type lighting device, there is no reflector, and the high beam and the low beam are switched by turning off and turning on the light sources 3 and 4, so that the light beam is mechanically switched. Since a large shade portion is not required, the lighting device 1 can be significantly downsized. Further, since the emission surface of the inner lenses 5 and 6 becomes a pseudo light source (pseudo light source) and the pseudo light source is significantly smaller than the reflector, the size of the outer lens 8 that projects the image of the light is also suppressed. From this point as well, the lighting device 1 can be miniaturized.
 図2Aは、ハイビーム用のインナーレンズ5の側面図である。図2Bは、ハイビーム用のインナーレンズ5の平面図である。図2Cは、ハイビーム用のインナーレンズ5の正面図である。図2Dは、ハイビーム用のインナーレンズ5の背面図である。図2Eは、ハイビーム用のインナーレンズ5の底面図である。 FIG. 2A is a side view of the inner lens 5 for the high beam. FIG. 2B is a plan view of the inner lens 5 for the high beam. FIG. 2C is a front view of the inner lens 5 for the high beam. FIG. 2D is a rear view of the inner lens 5 for the high beam. FIG. 2E is a bottom view of the inner lens 5 for the high beam.
 図2A~図2Eにおいて、ハイビーム用のインナーレンズ5は、全体が透明な樹脂、ガラス等の素材により一体に形成されており、全面が光学面で構成されている。ハイビーム用のインナーレンズ5は、光源3(図1A、図1B)に対向する入射面5aと、アウターレンズ8に対向する出射面5bとを備えている。入射面5aは、光軸に対して直交する垂直な面となっている。出射面5bのコーナは、四角形状、多角形状、R形状のいずれでもよい。 In FIGS. 2A to 2E, the inner lens 5 for the high beam is integrally formed of a material such as transparent resin or glass as a whole, and the entire surface is composed of an optical surface. The inner lens 5 for the high beam includes an incident surface 5a facing the light source 3 (FIGS. 1A and 1B) and an emitting surface 5b facing the outer lens 8. The incident surface 5a is a surface perpendicular to the optical axis. The corner of the exit surface 5b may be a quadrangular shape, a polygonal shape, or an R shape.
 出射面5bは、先端部5cとその周囲の周辺部5dとから構成されており、両者により、アウターレンズ8に対向する凸形状部を構成している。出射面5bは、平面でもよいし、先端部5cと周辺部5dとで連続した円弧面またはn次曲面としてもよい。出射面5bの垂直方向の厚みは、入射面5aの垂直方向の厚みよりも大きくなっているが、これは投影光のサイズに対して必要な出射面5bの厚みと、光源3(図1A、図1B)の発光部分のサイズに対応する入射面5aの厚みとを整合させるためである。二輪車は四輪車に比べて車体の横方向の幅が小さいため、ヘッドランプの投影光としても縦方向の配光が厚めに設定される。光源3の発光部分のサイズが相対的に大きい場合は、出射面5bの垂直方向の厚みが入射面5aの垂直方向の厚みよりも相対的に小さくなる場合もある。 The emission surface 5b is composed of a tip portion 5c and a peripheral portion 5d around the tip portion 5c, and both of them form a convex-shaped portion facing the outer lens 8. The emission surface 5b may be a flat surface, or may be an arc surface or an nth-order curved surface continuous with the tip portion 5c and the peripheral portion 5d. The vertical thickness of the exit surface 5b is larger than the vertical thickness of the incident surface 5a, which is the thickness of the exit surface 5b required for the size of the projected light and the light source 3 (FIG. 1A, FIG. 1A, This is to match the thickness of the incident surface 5a corresponding to the size of the light emitting portion in FIG. 1B). Since the width of the two-wheeled vehicle in the horizontal direction is smaller than that of the four-wheeled vehicle, the light distribution in the vertical direction is set thicker as the projected light of the headlamp. When the size of the light emitting portion of the light source 3 is relatively large, the vertical thickness of the exit surface 5b may be relatively smaller than the vertical thickness of the incident surface 5a.
 インナーレンズ5の上面5eは平面となっており、下面5fは、厚みのある出射面5bから薄い入射面5aに向かうテーパ状の曲面となっている。また、インナーレンズ5には、光軸に向かって水平方向の左右に張り出す翼部5gが設けられている。翼部5gはインナーレンズ5の固定等に用いられる。なお、インナーレンズ5を構成する各面の接続部には、R面形状またはC面形状を入れてもよい。 The upper surface 5e of the inner lens 5 is a flat surface, and the lower surface 5f is a tapered curved surface from a thick exit surface 5b to a thin incident surface 5a. Further, the inner lens 5 is provided with a wing portion 5g projecting to the left and right in the horizontal direction with respect to the optical axis. The wing portion 5g is used for fixing the inner lens 5 and the like. An R-plane shape or a C-plane shape may be formed in the connection portion of each surface constituting the inner lens 5.
 図3は、アウターレンズ8の焦点曲面FFに対するハイビーム用のインナーレンズ5の配置の例を示す図である。アウターレンズ8は、ロービーム用のインナーレンズ6の横幅の広い出射面に適合させるための焦点曲面FFを有している。ハイビーム用のインナーレンズ5の出射面についても、ロービーム用のインナーレンズ6と同様に、出射面の全面を焦点曲面FFに沿わせてしまうと、投影光の中央部分の光度に勾配がなくなり、走行方向の中心の視認性が低下してしまうため、ハイビーム用の配光特性として好ましくない。 FIG. 3 is a diagram showing an example of the arrangement of the inner lens 5 for the high beam with respect to the focal curved surface FF of the outer lens 8. The outer lens 8 has a focal curved surface FF for adapting to the wide emission surface of the inner lens 6 for a low beam. As for the emission surface of the inner lens 5 for the high beam, as with the inner lens 6 for the low beam, if the entire surface of the emission surface is aligned with the focal curved surface FF, the luminous intensity of the central portion of the projected light disappears and the vehicle travels. It is not preferable as a light distribution characteristic for a high beam because the visibility of the center of the direction is lowered.
 そのため、図3に示されるように、焦点曲面FF上に先端部5cの中央部だけを位置させ、光軸に対して中央から離れるほど焦点曲面FF上から徐々に離れるようになっている。これにより、先端部5cの中央を中心とした光度の勾配が得られる。光度の勾配を含めた配光特性は、先端部5cおよび周辺部5dから構成される出射面5bの凸形状部の形状(自由曲面形状)により制御が可能である。なお、図3では水平面内でのインナーレンズ5の配置が示されているが、垂直面内においても、インナーレンズ5の出射面5bは焦点曲面FFに対して、光軸に対して中央から離れるほど徐々に離れる形状となっている。すなわち、3次元の方向で焦点曲面FFから離れるようになっている。 Therefore, as shown in FIG. 3, only the central portion of the tip portion 5c is positioned on the focal curved surface FF, and the farther away from the center with respect to the optical axis, the gradually away from the focal curved surface FF. As a result, a gradient of luminous intensity centered on the center of the tip portion 5c can be obtained. The light distribution characteristics including the gradient of luminous intensity can be controlled by the shape (free curved surface shape) of the convex portion of the exit surface 5b composed of the tip portion 5c and the peripheral portion 5d. Although the arrangement of the inner lens 5 in the horizontal plane is shown in FIG. 3, the exit surface 5b of the inner lens 5 is separated from the center with respect to the optical axis with respect to the focal curved surface FF even in the vertical plane. The shape gradually separates. That is, it is designed to move away from the focal surface FF in a three-dimensional direction.
 図4Aは、ハイビーム用のインナーレンズ5の出射面5bの形状パターンの例を示す平面図である。図4Bは、ハイビーム用のインナーレンズ5の出射面5bの形状パターンの例を示す側面図である。図4Aおよび図4Bにおいて、出射面5bのうちの周辺部5dの部分は、破線mで示されるような内側に凹形状となるパターンと、破線nで示されるような外側に凸形状となるパターンとが選択できる。両者の中間として、破線m、nの円弧の端点をつなぐ直線とすることもできる。 FIG. 4A is a plan view showing an example of the shape pattern of the emission surface 5b of the inner lens 5 for the high beam. FIG. 4B is a side view showing an example of the shape pattern of the emission surface 5b of the inner lens 5 for the high beam. In FIGS. 4A and 4B, the peripheral portion 5d of the exit surface 5b has an inwardly concave pattern as shown by the broken line m and an outwardly convex pattern as shown by the broken line n. And can be selected. As an intermediate between the two, a straight line connecting the end points of the arcs of the broken lines m and n can be used.
 内側に凹形状となる破線mのパターンでは、インナーレンズ5の内部での反射が起こりやすくなり、効率は若干低下するが、インナーレンズ5の前方下方向に出る光の量が相対的に少なくなり、アウターレンズ8を通った後の投影光としてはマックス光度(最大光度)が下側に移動する。外側に凸形状となる破線nのパターンでは、周辺部5dから光が出やすくなり、内部の反射が少なくなるため効率は高くなり、インナーレンズ5の前方下方向に出る光の量が相対的に多くなり、アウターレンズ8を通った後の投影光としてはマックス光度が上側に移動する。バイファンクションにおけるハイビーム用としては、内側に凹形状となる破線mのパターンが好ましいものとなる。 In the pattern of the broken line m having a concave shape inward, reflection is likely to occur inside the inner lens 5, and the efficiency is slightly reduced, but the amount of light emitted in the front downward direction of the inner lens 5 is relatively small. As the projected light after passing through the outer lens 8, the maximum luminous intensity (maximum luminous intensity) moves downward. In the pattern of the broken line n having a convex shape to the outside, light is easily emitted from the peripheral portion 5d, the internal reflection is reduced, so that the efficiency is high, and the amount of light emitted in the front downward direction of the inner lens 5 is relatively large. As the amount increases, the maximum luminous intensity moves upward as the projected light after passing through the outer lens 8. For the high beam in the bi-function, the pattern of the broken line m having a concave shape inward is preferable.
 図5Aは、比較例によるハイビームの投影光の例を示す図である。比較例としては、図3のようにインナーレンズ5の先端部5cの中央部だけが焦点曲面FF上に位置するのに代えて、先端部5cおよび周辺部5dが凹形状となり、焦点曲面FF上に凹形状が重なるものとしている。この場合、投影光は、図5Aのように、中央部分がほぼ同じ光度になっている。なお、図中の横方向の線は水平ラインH(平坦な路面での路面とその上の景色との境界)、縦方向の線は垂直ラインV(車体の縦の中心線の正面)を示している。 FIG. 5A is a diagram showing an example of high beam projected light according to a comparative example. As a comparative example, instead of only the central portion of the tip portion 5c of the inner lens 5 being located on the focal curved surface FF as shown in FIG. 3, the tip portion 5c and the peripheral portion 5d have a concave shape and are on the focal curved surface FF. The concave shape overlaps with. In this case, the projected light has substantially the same luminous intensity in the central portion as shown in FIG. 5A. In the figure, the horizontal line indicates the horizontal line H (the boundary between the road surface on a flat road surface and the scenery above it), and the vertical line indicates the vertical line V (the front of the vertical center line of the vehicle body). ing.
 図5Bは、実施形態によるハイビームの投影光の例を示す図であり、図3の構造により、中央部分に光度の勾配が形成されており、走行方向の中心の視認性を向上させることができる。また、図4Aおよび図4Bの内側に凹形状となる破線mのパターンにより、マックス光度が水平ラインHよりも若干下に食い込んでいる。ハイビームであっても、路面の一部を照らすことは重要であり、路面の視認性を高めることができる。なお、水平ラインHの上側に光度分布が広がるのは、ハイビームとしての基本的な配光特性であり、ハイビーム用のインナーレンズ5が垂直方向に非対象に形成されていることにより実現されている。総じて、実施形態によれば、ハイビームの配光特性として好ましいものが得られる。 FIG. 5B is a diagram showing an example of the projected light of the high beam according to the embodiment. The structure of FIG. 3 forms a gradient of luminous intensity in the central portion, and the visibility of the center in the traveling direction can be improved. .. Further, the maximum luminous intensity bites slightly below the horizontal line H due to the pattern of the broken line m having a concave shape inside FIGS. 4A and 4B. Even with high beams, it is important to illuminate a part of the road surface, and the visibility of the road surface can be improved. The fact that the luminous intensity distribution spreads above the horizontal line H is a basic light distribution characteristic as a high beam, and is realized by the inner lens 5 for the high beam being formed asymmetrically in the vertical direction. .. As a whole, according to the embodiment, a preferable high beam light distribution characteristic can be obtained.
 図6Aは、ハイビーム用のインナーレンズ5の出射面5bの他の例を示す平面図である。図6Bは、ハイビーム用のインナーレンズ5の出射面5bの他の例を示す側面図である。図6Aおよび図6Bにおいて、先端部5cおよび周辺部5dから構成される出射面5bの凸形状部は、階段状の面から構成されている。図示の例では、先端部5cを1段目、周辺部5dを2段目として、段数が2の例を示しているが、段数は更に増やしてもよい。段数を大きくすることで、曲面に近づく。また、階段状の形状に代えて、多角形の形状としてもよい。 FIG. 6A is a plan view showing another example of the emission surface 5b of the inner lens 5 for the high beam. FIG. 6B is a side view showing another example of the emission surface 5b of the inner lens 5 for the high beam. In FIGS. 6A and 6B, the convex portion of the exit surface 5b composed of the tip portion 5c and the peripheral portion 5d is composed of a stepped surface. In the illustrated example, the tip portion 5c is set as the first step and the peripheral portion 5d is set as the second step, and the number of steps is 2, but the number of steps may be further increased. By increasing the number of steps, it approaches a curved surface. Further, instead of the stepped shape, a polygonal shape may be used.
 また、図2A~図2Eおよび変形例の図4A、図4B、図6A、図6Bにおいて、ハイビーム用のインナーレンズ5の出射面5bを構成する先端部5cおよび周辺部5dは、平滑面であるか、または、全部または一部に微細なプリズム加工やシボ加工が施されるようにしてもよい。これにより、光度の勾配が急激に変化するのを改善することができる。また、ハイビーム用のインナーレンズ5の入射面5aの全部または一部に微細なプリズム加工やシボ加工が施されるようにしてもよい。プリズム加工としては、例えば、断面がV字形で厚み方向に一様に伸びるものが用いられる。 Further, in FIGS. 2A to 2E and FIGS. 4A, 4B, 6A, and 6B of the modified examples, the tip portion 5c and the peripheral portion 5d constituting the exit surface 5b of the inner lens 5 for the high beam are smooth surfaces. Alternatively, fine prism processing or grain processing may be applied to all or part of the material. This can improve the sudden change in the gradient of luminosity. Further, fine prism processing or grain processing may be applied to all or a part of the incident surface 5a of the inner lens 5 for the high beam. As the prism processing, for example, one having a V-shaped cross section and extending uniformly in the thickness direction is used.
 次に、図7は、オーバーヘッド機能の作用の例を示す図である。オーバーヘッド機能とは、ロービームではあるが、ハイビームの領域の光が同時に照射されるものである。特に、二輪車においては、標識等の視認性を高めるために、オーバーヘッド機能の実現が要求されている。一般に、ハイビーム用のインナーレンズとロービーム用のインナーレンズとが重ねて配置された構造では、ハイビームの光とロービームの光とは個別にそれぞれの領域に照射されるため、上記のオーバーヘッド機能の実現は容易ではない。 Next, FIG. 7 is a diagram showing an example of the operation of the overhead function. The overhead function is a low beam, but the light in the high beam region is simultaneously irradiated. In particular, in motorcycles, it is required to realize an overhead function in order to improve the visibility of signs and the like. Generally, in a structure in which an inner lens for a high beam and an inner lens for a low beam are arranged so as to overlap each other, the high beam light and the low beam light are individually irradiated to each region, so that the above overhead function can be realized. It's not easy.
 図7において、本実施形態では、ロービーム用の光源4から出射された光の一部がハイビーム用のインナーレンズ5に入射されるようにし、ハイビーム用のインナーレンズ5から出射される光をロービーム用のインナーレンズ6から出射される光に重畳させるようにして、オーバーヘッド機能を実現している。なお、図7では、ロービーム用の光源4からロービーム用のインナーレンズ6および空気層を通してハイビーム用のインナーレンズ5に入射される光が矢印付の破線で示されているが、その他の光の経路として次の2つがある。一つは、ロービーム用の光源4から出射された光が直接にハイビーム用のインナーレンズ5に入射される経路である。もう一つは、ロービーム用の光源4から出射された光がロービーム用のインナーレンズ6の入射面6aに反射し、更に基板2に反射してハイビーム用のインナーレンズ5に入射される経路である。これら3つの光の経路のうち、図7において矢印付の破線で示される経路の光が、プレート7によって制御されるようになっている。なお、インナーレンズ6の構造の詳細については後述する。 In FIG. 7, in the present embodiment, a part of the light emitted from the low beam light source 4 is incident on the high beam inner lens 5, and the light emitted from the high beam inner lens 5 is used for the low beam. The overhead function is realized by superimposing it on the light emitted from the inner lens 6 of the above. In FIG. 7, the light incident on the inner lens 6 for the low beam and the inner lens 5 for the high beam through the air layer from the light source 4 for the low beam is shown by a broken line with an arrow, but other light paths. There are the following two. One is a path in which the light emitted from the low beam light source 4 is directly incident on the high beam inner lens 5. The other is a path in which the light emitted from the low beam light source 4 is reflected on the incident surface 6a of the low beam inner lens 6 and further reflected on the substrate 2 to be incident on the high beam inner lens 5. .. Of these three light paths, the light in the path indicated by the broken line with an arrow in FIG. 7 is controlled by the plate 7. The details of the structure of the inner lens 6 will be described later.
 図8は、プレート7に設けられる切欠7bの例を示す図である。図8において、ハイビーム用のインナーレンズ5の入射面5a側の輪郭に沿って設けられた切欠7bの光軸方向の長さNを調整することで、ロービーム用の光源4からロービーム用のインナーレンズ6および空気層を通してハイビーム用のインナーレンズ5へ入射される光の量が調整される。なお、ロービーム用の光源4からロービーム用のインナーレンズ6を通してハイビーム用のインナーレンズ5に入射される光は、プレート7が存在しない場合であっても、ハイビーム用のインナーレンズ5とロービーム用のインナーレンズ6との間隔によって変わるため、インナーレンズ5、6の間隔が適切に制御できる場合には、プレート7を不要とすることができる。なお、プレート7の切欠7bによる調整と、インナーレンズ5、6の間隔の調整とを併用してもよい。 FIG. 8 is a diagram showing an example of a notch 7b provided in the plate 7. In FIG. 8, by adjusting the length N in the optical axis direction of the notch 7b provided along the contour of the inner lens 5 for the high beam on the incident surface 5a side, the light source 4 for the low beam to the inner lens for the low beam. The amount of light incident on the inner lens 5 for the high beam through the 6 and the air layer is adjusted. The light incident on the high beam inner lens 5 from the low beam light source 4 through the low beam inner lens 6 is the high beam inner lens 5 and the low beam inner lens 5 even when the plate 7 does not exist. Since it varies depending on the distance from the lens 6, the plate 7 can be eliminated if the distance between the inner lenses 5 and 6 can be appropriately controlled. The adjustment by the notch 7b of the plate 7 and the adjustment of the distance between the inner lenses 5 and 6 may be used in combination.
 図9は、オーバーヘッド機能が付加されたロービームの投影光の例を示す図である。図9において、オーバーヘッド部分OHは、オーバーヘッド機能により重畳された光の部分である。 FIG. 9 is a diagram showing an example of a low beam projected light to which an overhead function is added. In FIG. 9, the overhead portion OH is a portion of light superimposed by the overhead function.
 図10は、オーバーヘッド機能を実現する他の手法の例を示す図である。図7の例では、ハイビーム用の光源3が消灯した状態で、ロービーム用の光源4からの光の一部をハイビーム用のインナーレンズ5に導くようにしていた。それに対し、図10の例では、ロービーム用の光源4を点灯するとともに、ハイビーム用の光源3をわずかに点灯(例えば、完全な点灯の数パーセント以下)させるようにしている。これは、ハイビーム用の光源3を構成するLEDに、完全な点灯時よりも小さい電流を供給することで実現することができる。これにより、ハイビーム用の光源3を構成するLEDに供給する電流の値によってオーバーヘッド機能の調整が可能となる。この場合、プレート7の切欠7b(図8)による光量の調整は不要となるが、図7の手法と図10の手法とを併用してもよい。 FIG. 10 is a diagram showing an example of another method for realizing the overhead function. In the example of FIG. 7, a part of the light from the low beam light source 4 is guided to the high beam inner lens 5 with the high beam light source 3 turned off. On the other hand, in the example of FIG. 10, the light source 4 for the low beam is turned on and the light source 3 for the high beam is slightly turned on (for example, a few percent or less of the complete lighting). This can be achieved by supplying a smaller current to the LEDs constituting the light source 3 for the high beam than when the lights are completely lit. As a result, the overhead function can be adjusted by the value of the current supplied to the LED constituting the light source 3 for the high beam. In this case, it is not necessary to adjust the amount of light by the notch 7b (FIG. 8) of the plate 7, but the method of FIG. 7 and the method of FIG. 10 may be used in combination.
 次に、図11は、アウターレンズ8の斜視図である。図11において、アウターレンズ8は、横倒しにした略半球状であり、半球の切断面側の下半分は平坦面8aとなっており、上半分には、頂点が切断面の円の中心にあって、入射側に凸となるテーパカット面8bが形成されている。なお、入射側に凸となるテーパカット面8bに限らず、入射側に凸となる曲面としてもよい。 Next, FIG. 11 is a perspective view of the outer lens 8. In FIG. 11, the outer lens 8 is a substantially hemispherical lens that is laid on its side, the lower half of the hemisphere on the cut surface side is a flat surface 8a, and the apex of the upper half is at the center of the circle of the cut surface. Therefore, a tapered cut surface 8b that is convex on the incident side is formed. The tapered cut surface 8b that is convex on the incident side is not limited to the curved surface that is convex on the incident side.
 図12は、アウターレンズ8の水平面内における光の屈折の例を示す図である。図13は、アウターレンズ8の垂直面内における光の屈折の例を示す図である。図12および図13において、アウターレンズ8に入射された光は、アウターレンズ8のテーパカット面8bにより、矢印付の実線のように光軸側(中心側)に屈折される(テーパカット面8bがない場合の光は矢印付の破線)。一般的な非球面レンズだけで光の屈折を調整するのは困難であるが、テーパカット面を設け、テーパの角度を調整することにより光の屈折の調整を容易に行うことができ、配光角およびマックス光度を制御することができる。このような機能により、例えば、以下のような配光特性を得ることができる。 FIG. 12 is a diagram showing an example of refraction of light in the horizontal plane of the outer lens 8. FIG. 13 is a diagram showing an example of refraction of light in the vertical plane of the outer lens 8. In FIGS. 12 and 13, the light incident on the outer lens 8 is refracted by the tapered cut surface 8b of the outer lens 8 toward the optical axis side (center side) as shown by the solid line with an arrow (taper cut surface 8b). If there is no light, the light is a broken line with an arrow). Although it is difficult to adjust the refraction of light only with a general aspherical lens, it is possible to easily adjust the refraction of light by providing a tapered cut surface and adjusting the angle of the taper, and the light distribution. The angle and max luminosity can be controlled. With such a function, for example, the following light distribution characteristics can be obtained.
 図14Aは、テーパカット面が設けられていない場合のハイビームの投影光の例を示す図である。図14Bは、実施形態によるハイビームの投影光の例を示す図である。テーパカット面が設けられていない場合を示す図14Aでは、光度の高い部分(図中に白く描かれた部分)が中央以外の左右にも発生していたが、テーパカット面が設けられた実施形態を示す図14Bでは、光度の高い部分が中央に集まり、走行方向の中心の視認性を高めることができる。また、マックス光度について、水平ラインHのやや下方に制御することができる。 FIG. 14A is a diagram showing an example of the projected light of the high beam when the tapered cut surface is not provided. FIG. 14B is a diagram showing an example of the projected light of the high beam according to the embodiment. In FIG. 14A showing the case where the tapered cut surface is not provided, a portion having a high luminous intensity (a portion drawn in white in the figure) is generated on the left and right other than the center, but the taper cut surface is provided. In FIG. 14B showing the morphology, the portions having high luminous intensity are gathered in the center, and the visibility of the center in the traveling direction can be improved. Further, the max luminous intensity can be controlled slightly below the horizontal line H.
 図15Aは、テーパカット面が設けられていない場合のロービームの投影光の例を示す図である。図15Bは、実施形態によるロービームの投影光の例を示す図である。テーパカット面が設けられていない場合を示す図15Aでは、光度の高い中央の部分が垂直方向に長くなっていたが、テーパカット面が設けられた実施形態を示す図15Bでは、光度の高い中央の部分が垂直方向に短くなり、スポット感が向上し、視認性を向上することができる。 FIG. 15A is a diagram showing an example of low beam projected light when the tapered cut surface is not provided. FIG. 15B is a diagram showing an example of a low beam projected light according to an embodiment. In FIG. 15A showing the case where the tapered cut surface is not provided, the central portion having high luminous intensity is long in the vertical direction, but in FIG. 15B showing the embodiment in which the tapered cut surface is provided, the central portion having high luminous intensity is provided. The portion of is shortened in the vertical direction, the spot feeling is improved, and the visibility can be improved.
 なお、図11では、アウターレンズ8の入射面の上半分に、テーパカット面8bに代表される入射側に凸となる曲面が設けられるものとしたが、入射側に凸となる曲面は、入射面の下半分に設けられるようにしてもよいし、更には、扇型状のように、入射面の一部に設けられるようにしてもよい。これは、アウターレンズ8の略焦点上に置かれたインナーレンズ5、6の出射面5b、6bからの光はアウターレンズ8の入射面の全面を通るからである。そして、入射面全体に対する入射側に凸となる曲面の比率は、入射面の全面を通る光のうち、水平面内および垂直面内において内側に屈折される光の比率に対応することになる。 In FIG. 11, it is assumed that the upper half of the incident surface of the outer lens 8 is provided with a curved surface that is convex on the incident side represented by the tapered cut surface 8b, but the curved surface that is convex on the incident side is incident. It may be provided on the lower half of the surface, or may be provided on a part of the incident surface such as a fan shape. This is because the light from the exit surfaces 5b and 6b of the inner lenses 5 and 6 placed on the substantially focal point of the outer lens 8 passes through the entire surface of the incident surface of the outer lens 8. The ratio of the curved surface that is convex to the incident side with respect to the entire incident surface corresponds to the ratio of the light that is refracted inward in the horizontal plane and the vertical plane among the light that passes through the entire surface of the incident surface.
 次に、図16Aは、ロービーム用のインナーレンズ6の側面図である。図16Bは、ロービーム用のインナーレンズ6の平面図である。図16Cは、ロービーム用のインナーレンズ6の正面図である。図16Dは、ロービーム用のインナーレンズ6の背面図である。図16Eは、ロービーム用のインナーレンズ6の底面図である。 Next, FIG. 16A is a side view of the inner lens 6 for the low beam. FIG. 16B is a plan view of the inner lens 6 for the low beam. FIG. 16C is a front view of the inner lens 6 for a low beam. FIG. 16D is a rear view of the inner lens 6 for a low beam. FIG. 16E is a bottom view of the inner lens 6 for the low beam.
 図16A~図16Eにおいて、ロービーム用のインナーレンズ6は、全体が透明な樹脂、ガラス等の素材により一体に形成されており、全面が光学面で構成されている。ロービーム用のインナーレンズ6は、光源4(図1A、図1B)に対向する入射面6aと、アウターレンズ8に対向する出射面6bとを備えている。入射面6aは、光軸に対して直交する垂直な面となっている。 In FIGS. 16A to 16E, the inner lens 6 for low beam is integrally formed of a material such as transparent resin or glass as a whole, and the entire surface is composed of an optical surface. The low beam inner lens 6 includes an incident surface 6a facing the light source 4 (FIGS. 1A and 1B) and an emitting surface 6b facing the outer lens 8. The incident surface 6a is a surface perpendicular to the optical axis.
 出射面6bは、アウターレンズ8の焦点曲面(焦点曲線)に沿った形の湾曲面となっている。出射面6bは、中央部分の高さ(垂直方向の厚み)が最も高く、両端に向かって低くなっている。出射面6bの正面視での形は、円形、多角形、n次曲線等とすることができる。なお、出射面6bの形状は、要求される投影光の形状に合わせて設定される。また、入射面6aまたは出射面6bのいずれか、または両方は、平滑面であるか、または、全部または一部に微細なプリズム加工やシボ加工が施されてもよい。これにより、光度の急激な変化を平滑化することができる。 The exit surface 6b is a curved surface having a shape along the focal curved surface (focal curve) of the outer lens 8. The height of the central portion (thickness in the vertical direction) of the exit surface 6b is the highest, and the height is lowered toward both ends. The shape of the exit surface 6b in front view may be a circle, a polygon, an n-th order curve, or the like. The shape of the emission surface 6b is set according to the required shape of the projected light. Further, either or both of the incident surface 6a and the exit surface 6b may be a smooth surface, or may be entirely or partially subjected to fine prism processing or grain processing. This makes it possible to smooth out sudden changes in luminous intensity.
 インナーレンズ6の入射面6aに連なる上面は平坦部6cとなっており、平坦部6cの入射面6aと反対側の端部は、出射面6bの上部に向かってせり上がる傾斜部6dに連なっている。これらの部分はスリップバック構造とも呼ばれる。平坦部6cの光軸方向の幅(L値)を変えることで、ロービームでのマックス光度とマックス光度位置の制御が可能となり、照射エリアを制御することができる。なお、平坦部6cは平面視で光軸方向に一定の幅として描かれているが、光軸に対して左右対称を維持しつつ、中心部と端部とで幅を変えてもよい。スリップバック構造を構成する平坦部6cおよび傾斜部6dの表面は、平滑面とするほか、全部または一部に微細なプリズム加工やシボ加工が施されるようにしてもよい。これにより、インナーレンズ6の内部での光の反射を調整することができる。インナーレンズ6の底面6eは、平坦となっている。出射面6bの両端には、耳部6fが設けられている。耳部6fはインナーレンズ6の固定等に用いられる。 The upper surface of the inner lens 6 connected to the incident surface 6a is a flat portion 6c, and the end portion of the flat portion 6c opposite to the incident surface 6a is connected to an inclined portion 6d rising toward the upper portion of the exit surface 6b. There is. These parts are also called slipback structures. By changing the width (L value) of the flat portion 6c in the optical axis direction, it is possible to control the max luminous intensity and the max luminous intensity position in the low beam, and it is possible to control the irradiation area. Although the flat portion 6c is drawn as a constant width in the optical axis direction in a plan view, the width may be changed between the central portion and the end portion while maintaining left-right symmetry with respect to the optical axis. The surfaces of the flat portion 6c and the inclined portion 6d constituting the slipback structure may be smooth surfaces, or may be entirely or partially subjected to fine prism processing or grain processing. This makes it possible to adjust the reflection of light inside the inner lens 6. The bottom surface 6e of the inner lens 6 is flat. Ear portions 6f are provided at both ends of the exit surface 6b. The selvage portion 6f is used for fixing the inner lens 6 and the like.
 図17Aは、スリップバック構造の作用の例を示す図である。図17Bは、L値がより短い場合のスリップバック構造の作用の例を示す図である。図17Aにおいて、平坦部6cの光軸方向の幅(L値)がL1であるとすると、入射面6aから入射する光のうちの一部が平坦部6cの内面で反射し、続いて底面6eで反射し、出射面6bに到達する。平坦部6cの入射面6aから遠い側で反射した光は出射面6bのボトム付近に集光される。 FIG. 17A is a diagram showing an example of the action of the slipback structure. FIG. 17B is a diagram showing an example of the action of the slipback structure when the L value is shorter. In FIG. 17A, assuming that the width (L value) of the flat portion 6c in the optical axis direction is L1, a part of the light incident from the incident surface 6a is reflected on the inner surface of the flat portion 6c, and then the bottom surface 6e. It is reflected by and reaches the exit surface 6b. The light reflected on the side of the flat portion 6c far from the incident surface 6a is collected near the bottom of the emitting surface 6b.
 一方、図17Bにおいて、平坦部6cの光軸方向の幅(L値)がL1より小さいL2であるとすると、入射面6aから平坦部6cの奥側で反射される光が消失し、出射面6bのボトム付近に集光されていた光が少なくなる。その結果、インナーレンズ6の上部における光度が相対的に増し、投影光においては反転して下部の光度が相対的に上がる。 On the other hand, in FIG. 17B, assuming that the width (L value) of the flat portion 6c in the optical axis direction is L2 smaller than L1, the light reflected from the incident surface 6a on the inner side of the flat portion 6c disappears and the exit surface. The amount of light focused near the bottom of 6b is reduced. As a result, the luminosity in the upper part of the inner lens 6 is relatively increased, and in the projected light, it is inverted and the luminosity in the lower part is relatively increased.
 図18Aは、スリップバックのない比較例によるロービームの投影光の例を示す図である。図18Bは、実施形態によるロービームの投影光の例を示す図である。図18Aの比較例では、投影光のうち下部の領域Rの光度が不足している。このように下部の光度が不足すると、路面の運転手の手前側が暗くなってしまい、走行上、危険である。これに対し、図18Bの実施形態では、下部の光度が補われ、安全性を高めることができる。 FIG. 18A is a diagram showing an example of low beam projected light according to a comparative example without slipback. FIG. 18B is a diagram showing an example of a low beam projected light according to an embodiment. In the comparative example of FIG. 18A, the luminosity of the lower region R of the projected light is insufficient. If the luminosity of the lower part is insufficient in this way, the front side of the driver on the road surface becomes dark, which is dangerous in terms of driving. On the other hand, in the embodiment of FIG. 18B, the luminosity of the lower part is supplemented and the safety can be enhanced.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made as long as the gist of the present invention is not deviated.
 以上のように、実施形態に係る照明装置は、使用状態における水平方向に光軸を有する光源と、光源の光軸上の前方に配置されるハイビーム用のインナーレンズと、インナーレンズの光軸上の前方に配置されるアウターレンズとを備え、インナーレンズは、アウターレンズに対向する先端に凸形状部を有し、凸形状部は、中央がアウターレンズの焦点曲線上に位置するとともに、光軸に対して中央から離れるほど焦点曲線上から徐々に離れる形状である。これにより、リフレクタやシェード部が不要で小型化に適した照明装置の一部を構成するのに適し、ハイビームに適した照明装置を提供することができる。 As described above, the lighting device according to the embodiment has a light source having an optical axis in the horizontal direction in the used state, an inner lens for a high beam arranged in front of the optical axis of the light source, and an inner lens on the optical axis. The inner lens has a convex portion at the tip facing the outer lens, and the convex portion has an optical axis whose center is located on the focal curve of the outer lens. On the other hand, the farther away from the center, the more gradually away from the focal curve. This makes it possible to provide a lighting device suitable for a high beam, which does not require a reflector or a shade portion and is suitable for forming a part of a lighting device suitable for miniaturization.
 また、凸形状部は、連続した曲面または階段状の面から構成される。これにより、配光特性を多様に制御することができる。 Further, the convex portion is composed of a continuous curved surface or a stepped surface. This makes it possible to control the light distribution characteristics in various ways.
 また、インナーレンズは、使用状態における垂直方向の上下に非対称であり、凸形状部の先端の周辺に使用状態における水平方向の左右および使用状態における垂直方向の下に凹面状の湾曲部を有する。これにより、ハイビームに適した配光を得ることができる。 Further, the inner lens is asymmetrical in the vertical direction in the used state, and has a concave curved portion in the horizontal direction left and right in the used state and below the vertical direction in the used state around the tip of the convex portion. This makes it possible to obtain a light distribution suitable for a high beam.
 また、インナーレンズは、入光側よりも出射側の方が使用状態における垂直方向の厚みが大きい。これにより、小さいサイズの光源に対応することができる。 In addition, the inner lens is thicker in the vertical direction on the exit side than on the enter side. This makes it possible to handle a light source of a small size.
 また、インナーレンズの凸形状部および/または入射面は、平滑面であるか、または、全部または一部に微細プリズム加工またはシボ加工が施されている。これにより、光度の勾配が急激に変化するのを改善することができる。 Further, the convex portion and / or the incident surface of the inner lens is a smooth surface, or is partially or partially subjected to fine prism processing or grain processing. This can improve the sudden change in the gradient of luminosity.
 また、使用状態における水平方向に光軸を有する光源と、光源の光軸上の前方に配置されるロービーム用のインナーレンズと、インナーレンズの光軸上の前方に配置されるアウターレンズとを備え、インナーレンズは、入光側において使用状態における垂直方向の上下の厚みが一定の部分と、この厚みが一定の部分の出射側の端部に連なり、出射側において使用状態における垂直方向の上下の厚みが大きくなる部分とを有する。これにより、リフレクタやシェード部が不要で小型化に適した照明装置の一部を構成するのに適し、ロービームに適した照明装置を提供することができる。二輪車のロービームに要求される、路面の運転手の手前の光度の調整を容易に実現することができる。 Further, it includes a light source having an optical axis in the horizontal direction in the used state, an inner lens for a low beam arranged in front of the optical axis of the light source, and an outer lens arranged in front of the optical axis of the inner lens. The inner lens is connected to the portion where the vertical vertical thickness is constant on the incoming light side and the end portion on the exit side of the portion where this thickness is constant, and the vertical vertical thickness is connected to the exit side. It has a portion where the thickness becomes large. This makes it possible to provide a lighting device suitable for a low beam, which does not require a reflector or a shade portion and is suitable for forming a part of a lighting device suitable for miniaturization. It is possible to easily adjust the luminous intensity in front of the driver on the road surface, which is required for the low beam of a two-wheeled vehicle.
 また、厚みが一定の部分の光軸方向の幅により、ロービームの投影光の下側部分への配光が調整される。これにより、路面の運転手の手前の光度の調整を容易に実現することができる。 In addition, the light distribution to the lower part of the projected light of the low beam is adjusted by the width in the optical axis direction of the part having a constant thickness. As a result, it is possible to easily adjust the luminous intensity in front of the driver on the road surface.
 また、厚みが一定の部分および厚みが大きくなる部分は、平滑面であるか、または、全部または一部に微細プリズム加工またはシボ加工が施されている。これにより、インナーレンズの内部での光の反射を調整することができ、路面の運転手の手前の光度の調整を行うことができる。 Further, the portion having a constant thickness and the portion having a large thickness are smooth surfaces, or are partially or partially subjected to fine prism processing or grain processing. As a result, the reflection of light inside the inner lens can be adjusted, and the luminous intensity in front of the driver on the road surface can be adjusted.
 また、インナーレンズの入射面および出射面は、平滑面であるか、または、全部または一部に微細プリズム加工またはシボ加工が施されている。これにより、光度の勾配が急激に変化するのを改善することができる。 Further, the entrance surface and the exit surface of the inner lens are smooth surfaces, or all or part of them are finely prismatic or textured. This can improve the sudden change in the gradient of luminosity.
 また、使用状態における水平方向に光軸を有するハイビーム用の第1の光源と、第1の光源の使用状態における垂直方向の上側に配置される、使用状態における水平方向に光軸を有するロービーム用の第2の光源と、第1の光源の光軸上の前方に配置されるハイビーム用の第1のインナーレンズと、第2の光源の光軸上の前方に配置され、第1のインナーレンズの使用状態における垂直方向の上側に配置されるロービーム用の第2のインナーレンズと、第1のインナーレンズおよび第2のインナーレンズの光軸上の前方に配置されるアウターレンズとを備え、第2の光源または第1の光源から第1のインナーレンズへの光の入射に基づき第1のインナーレンズから出射される光を第2のインナーレンズから出射される光に重畳させる。これにより、リフレクタやシェード部が不要で小型化に適した照明装置の一部を構成するのに適し、ロービームに適した照明装置を提供することができる。すなわち、二輪車のロービームに要求されるオーバーヘッド機能を容易に実現することができる。 Further, a first light source for a high beam having an optical axis in the horizontal direction in the used state and a low beam having an optical axis in the horizontal direction arranged in the upper side in the vertical direction in the used state of the first light source. The second light source, the first inner lens for the high beam arranged in front of the optical axis of the first light source, and the first inner lens arranged in front of the optical axis of the second light source. A second inner lens for a low beam, which is arranged on the upper side in the vertical direction in the usage state of the above, and an outer lens which is arranged in front of the optical axis of the first inner lens and the second inner lens. The light emitted from the first inner lens is superimposed on the light emitted from the second inner lens based on the incident light from the second light source or the first light source to the first inner lens. This makes it possible to provide a lighting device suitable for a low beam, which does not require a reflector or a shade portion and is suitable for forming a part of a lighting device suitable for miniaturization. That is, the overhead function required for the low beam of a two-wheeled vehicle can be easily realized.
 また、第1のインナーレンズと第2のインナーレンズとの間に配置されるプレートの入光側に設けられた切欠の光軸方向の長さにより、第2の光源から第1のインナーレンズへ入射される光の量を調整する。これにより、オーバーヘッド機能の度合いを容易に調整することができる。 Further, due to the length of the notch provided on the incoming light side of the plate arranged between the first inner lens and the second inner lens in the optical axis direction, the second light source is transferred to the first inner lens. Adjust the amount of incident light. This makes it possible to easily adjust the degree of overhead function.
 また、第1のインナーレンズと第2のインナーレンズとの間隔により、第2の光源から第1のインナーレンズへ入射される光の量を調整する。これにより、オーバーヘッド機能の度合いを容易に調整することができる。 Further, the amount of light incident on the first inner lens from the second light source is adjusted by the distance between the first inner lens and the second inner lens. This makes it possible to easily adjust the degree of overhead function.
 また、第1の光源の点灯状態により、第1の光源から第1のインナーレンズへ入射される光の量を調整する。これにより、オーバーヘッド機能の度合いを容易に調整することができる。 Further, the amount of light incident on the first inner lens from the first light source is adjusted according to the lighting state of the first light source. This makes it possible to easily adjust the degree of overhead function.
 また、アウターレンズの入射面の一部には、入射側に凸となる曲面が形成される。これにより、光の屈折の調整を容易に行うことができ、配光角およびマックス光度を制御することができる。 In addition, a curved surface that is convex on the incident side is formed on a part of the incident surface of the outer lens. Thereby, the refraction of light can be easily adjusted, and the light distribution angle and the maximum luminous intensity can be controlled.
 また、曲面は、入射側に凸となるテーパカット面である。これにより、アウターレンズを容易に製造することができる。 The curved surface is a tapered cut surface that is convex on the incident side. As a result, the outer lens can be easily manufactured.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited to the above embodiments. The present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 1 照明装置,2 基板,3、4 光源,5、6 インナーレンズ,5a 入射面,5b 出射面,5c 先端部,5d 周辺部,5e 上面,5f 下面,5g 翼部,6a 入射面,6b 出射面,6c 平坦部,6d 傾斜部,6e 底面,6f 耳部,7 プレート,7a 湾曲部,7b 切欠,8 アウターレンズ,8a 平坦面,8b テーパカット面,H 水平ライン,V 垂直ライン,FF 焦点曲面,OH オーバーヘッド部分 1 lighting device, 2 substrate, 3, 4 light source, 5, 6 inner lens, 5a incident surface, 5b exit surface, 5c tip, 5d peripheral, 5e upper surface, 5f lower surface, 5g wing, 6a incident surface, 6b emission Surface, 6c flat part, 6d inclined part, 6e bottom surface, 6f ear part, 7 plate, 7a curved part, 7b notch, 8 outer lens, 8a flat surface, 8b taper cut surface, H horizontal line, V vertical line, FF focus Curved surface, OH overhead part

Claims (15)

  1.  使用状態における水平方向に光軸を有する光源と、
     前記光源の光軸上の前方に配置されるハイビーム用のインナーレンズと、
     前記インナーレンズの光軸上の前方に配置されるアウターレンズと、
    を備え、
     前記インナーレンズは、前記アウターレンズに対向する先端に凸形状部を有し、
     前記凸形状部は、中央が前記アウターレンズの焦点曲線上に位置するとともに、光軸に対して中央から離れるほど前記焦点曲線上から徐々に離れる形状である、
    照明装置。
    A light source that has an optical axis in the horizontal direction in use,
    An inner lens for a high beam arranged in front of the optical axis of the light source, and
    An outer lens arranged in front of the optical axis of the inner lens and
    Equipped with
    The inner lens has a convex portion at the tip facing the outer lens.
    The convex portion has a shape in which the center is located on the focal curve of the outer lens and gradually moves away from the focal curve as the distance from the center with respect to the optical axis increases.
    Lighting device.
  2.  前記凸形状部は、連続した曲面または階段状の面から構成される、
    請求項1に記載の照明装置。
    The convex portion is composed of a continuous curved surface or a stepped surface.
    The lighting device according to claim 1.
  3.  前記インナーレンズは、使用状態における垂直方向の上下に非対称であり、前記凸形状部の先端の周辺に使用状態における水平方向の左右および使用状態における垂直方向の下に凹面状の湾曲部を有する、
    請求項1または2に記載の照明装置。
    The inner lens is asymmetrical vertically up and down in the used state, and has a concave curved portion in the horizontal direction left and right in the used state and below the vertical direction in the used state around the tip of the convex portion.
    The lighting device according to claim 1 or 2.
  4.  前記インナーレンズは、入光側よりも出射側の方が使用状態における垂直方向の厚みが大きい、
    請求項1~3のいずれか一つに記載の照明装置。
    The inner lens has a larger thickness in the vertical direction on the exit side than on the enter side.
    The lighting device according to any one of claims 1 to 3.
  5.  前記インナーレンズの前記凸形状部および/または入射面は、平滑面であるか、または、全部または一部に微細プリズム加工またはシボ加工が施されている、
    請求項1~4のいずれか一つに記載の照明装置。
    The convex portion and / or the incident surface of the inner lens is a smooth surface, or is partially or partially subjected to fine prism processing or grain processing.
    The lighting device according to any one of claims 1 to 4.
  6.  使用状態における水平方向に光軸を有する光源と、
     前記光源の光軸上の前方に配置されるロービーム用のインナーレンズと、
     前記インナーレンズの光軸上の前方に配置されるアウターレンズと、
    を備え、
     前記インナーレンズは、入光側において使用状態における垂直方向の上下の厚みが一定の部分と、該厚みが一定の部分の出射側の端部に連なり、出射側において使用状態における垂直方向の上下の厚みが大きくなる部分とを有する、
    照明装置。
    A light source that has an optical axis in the horizontal direction in use,
    An inner lens for a low beam arranged in front of the optical axis of the light source, and
    An outer lens arranged in front of the optical axis of the inner lens and
    Equipped with
    The inner lens is connected to a portion having a constant vertical thickness in the vertical direction on the incoming light side and an end portion on the emitting side of the portion having a constant thickness in the used state, and is connected to the upper and lower ends in the vertical direction in the used state on the emitting side. Has a portion with an increased thickness,
    Lighting device.
  7.  前記厚みが一定の部分の光軸方向の幅により、ロービームの投影光の下側部分への配光が調整される、
    請求項6に記載の照明装置。
    The width of the portion having a constant thickness in the optical axis direction adjusts the light distribution of the low beam to the lower portion of the projected light.
    The lighting device according to claim 6.
  8.  前記厚みが一定の部分および前記厚みが大きくなる部分は、平滑面であるか、または、全部または一部に微細プリズム加工またはシボ加工が施されている、
    請求項6または7に記載の照明装置。
    The portion having a constant thickness and the portion having a large thickness are smooth surfaces, or are partially or partially subjected to fine prism processing or grain processing.
    The lighting device according to claim 6 or 7.
  9.  前記インナーレンズの入射面および出射面は、平滑面であるか、または、全部または一部に微細プリズム加工またはシボ加工が施されている、
    請求項6~8のいずれか一つに記載の照明装置。
    The entrance surface and the exit surface of the inner lens are smooth surfaces, or are partially or partially subjected to fine prism processing or grain processing.
    The lighting device according to any one of claims 6 to 8.
  10.  使用状態における水平方向に光軸を有するハイビーム用の第1の光源と、
     前記第1の光源の使用状態における垂直方向の上側に配置される、使用状態における水平方向に光軸を有するロービーム用の第2の光源と、
     前記第1の光源の光軸上の前方に配置されるハイビーム用の第1のインナーレンズと、
     前記第2の光源の光軸上の前方に配置され、前記第1のインナーレンズの使用状態における垂直方向の上側に配置されるロービーム用の第2のインナーレンズと、
     前記第1のインナーレンズおよび前記第2のインナーレンズの光軸上の前方に配置されるアウターレンズと、
    を備え、
     前記第2の光源または前記第1の光源から前記第1のインナーレンズへの光の入射に基づき前記第1のインナーレンズから出射される光を前記第2のインナーレンズから出射される光に重畳させる、
    照明装置。
    A first light source for high beams with a horizontal optical axis in use,
    A second light source for a low beam having a horizontal optical axis in the used state, which is arranged on the upper side in the vertical direction in the used state of the first light source.
    A first inner lens for a high beam arranged in front of the optical axis of the first light source, and
    A second inner lens for a low beam, which is arranged in front of the optical axis of the second light source and is arranged on the upper side in the vertical direction in the usage state of the first inner lens.
    An outer lens arranged in front of the first inner lens and the second inner lens on the optical axis,
    Equipped with
    The light emitted from the first inner lens is superimposed on the light emitted from the second inner lens based on the incident light from the second light source or the first light source onto the first inner lens. Let, let
    Lighting device.
  11.  前記第1のインナーレンズと前記第2のインナーレンズとの間に配置されるプレートの入光側に設けられた切欠の光軸方向の長さにより、前記第2の光源から前記第1のインナーレンズへ入射される光の量を調整する、
    請求項10に記載の照明装置。
    The first inner from the second light source is due to the length of the notch provided on the light entrance side of the plate arranged between the first inner lens and the second inner lens in the optical axis direction. Adjust the amount of light incident on the lens,
    The lighting device according to claim 10.
  12.  前記第1のインナーレンズと前記第2のインナーレンズとの間隔により、前記第2の光源から前記第1のインナーレンズへ入射される光の量を調整する、
    請求項10または11に記載の照明装置。
    The amount of light incident on the first inner lens from the second light source is adjusted by the distance between the first inner lens and the second inner lens.
    The lighting device according to claim 10 or 11.
  13.  前記第1の光源の点灯状態により、前記第1の光源から前記第1のインナーレンズへ入射される光の量を調整する、
    請求項10~12のいずれか一つに記載の照明装置。
    The amount of light incident on the first inner lens from the first light source is adjusted according to the lighting state of the first light source.
    The lighting device according to any one of claims 10 to 12.
  14.  前記アウターレンズの入射面の一部には、入射側に凸となる曲面が形成される、
    請求項1~13のいずれか一つに記載の照明装置。
    A curved surface that is convex on the incident side is formed on a part of the incident surface of the outer lens.
    The lighting device according to any one of claims 1 to 13.
  15.  前記曲面は、入射側に凸となるテーパカット面である、
    請求項14に記載の照明装置。
    The curved surface is a tapered cut surface that is convex toward the incident side.
    The lighting device according to claim 14.
PCT/JP2021/015824 2020-06-02 2021-04-19 Illumination device WO2021246065A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020096450 2020-06-02
JP2020-096451 2020-06-02
JP2020-096449 2020-06-02
JP2020-096450 2020-06-02
JP2020096451 2020-06-02
JP2020096449 2020-06-02

Publications (1)

Publication Number Publication Date
WO2021246065A1 true WO2021246065A1 (en) 2021-12-09

Family

ID=78830338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015824 WO2021246065A1 (en) 2020-06-02 2021-04-19 Illumination device

Country Status (1)

Country Link
WO (1) WO2021246065A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040671A1 (en) * 2013-09-17 2015-03-26 三菱電機株式会社 Vehicle-mounted headlight
JP2017010789A (en) * 2015-06-23 2017-01-12 スタンレー電気株式会社 Vehicle lamp
JP2017016990A (en) * 2015-07-06 2017-01-19 隆達電子股▲ふん▼有限公司 Light guide pillar and vehicle lamp fitting using the same
US20170030543A1 (en) * 2015-07-28 2017-02-02 Valeo Vision Lighting system for motor vehicle headlight
WO2017164328A1 (en) * 2016-03-24 2017-09-28 株式会社小糸製作所 Vehicle lamp, vehicle lamp control system, and vehicle provided with vehicle lamp and vehicle lamp control system
JP2017199660A (en) * 2016-04-11 2017-11-02 ヴァレオ ビジョンValeo Vision Motor vehicle headlight module for emitting light beam
JP2017212037A (en) * 2016-05-23 2017-11-30 スタンレー電気株式会社 Vehicular headlight
WO2020075536A1 (en) * 2018-10-10 2020-04-16 市光工業株式会社 Light guide for vehicles, and lamp for vehicles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040671A1 (en) * 2013-09-17 2015-03-26 三菱電機株式会社 Vehicle-mounted headlight
JP2017010789A (en) * 2015-06-23 2017-01-12 スタンレー電気株式会社 Vehicle lamp
JP2017016990A (en) * 2015-07-06 2017-01-19 隆達電子股▲ふん▼有限公司 Light guide pillar and vehicle lamp fitting using the same
US20170030543A1 (en) * 2015-07-28 2017-02-02 Valeo Vision Lighting system for motor vehicle headlight
WO2017164328A1 (en) * 2016-03-24 2017-09-28 株式会社小糸製作所 Vehicle lamp, vehicle lamp control system, and vehicle provided with vehicle lamp and vehicle lamp control system
JP2017199660A (en) * 2016-04-11 2017-11-02 ヴァレオ ビジョンValeo Vision Motor vehicle headlight module for emitting light beam
JP2017212037A (en) * 2016-05-23 2017-11-30 スタンレー電気株式会社 Vehicular headlight
WO2020075536A1 (en) * 2018-10-10 2020-04-16 市光工業株式会社 Light guide for vehicles, and lamp for vehicles

Similar Documents

Publication Publication Date Title
KR102134329B1 (en) Vehicle lamp
CN112781004B (en) Vehicle lamp
US7607811B2 (en) Lighting unit
US7748879B2 (en) Vehicle lamp
US9765938B2 (en) Vehicle headlamp
US8096689B2 (en) Motor-vehicle headlight
US8226285B2 (en) Vehicle headlamp apparatus
JP6549212B2 (en) Lighting module for car
JP6246437B2 (en) Headlight light source and moving body headlight
WO2015040671A1 (en) Vehicle-mounted headlight
US20100315828A1 (en) Light source and vehicle lamp
EP2159479A2 (en) Vehicle lamp unit
JP6324635B2 (en) Headlight module and headlight device
JP2003317513A (en) Light source unit
JP2003065805A (en) Illumination, and display
JP2016046129A (en) Lens body and vehicular lighting tool
KR20030084635A (en) Light unit
JP3390413B2 (en) head lamp
CN109312903B (en) Vehicle headlamp and vehicle using same
JP2003016813A (en) Projector-type lamp
JP6136219B2 (en) Vehicle headlamp
JP7081917B2 (en) Vehicle lighting
WO2021246065A1 (en) Illumination device
CN114060765A (en) Vehicle lamp
JP2021111446A (en) Vehicular lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP