WO2021245792A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2021245792A1
WO2021245792A1 PCT/JP2020/021791 JP2020021791W WO2021245792A1 WO 2021245792 A1 WO2021245792 A1 WO 2021245792A1 JP 2020021791 W JP2020021791 W JP 2020021791W WO 2021245792 A1 WO2021245792 A1 WO 2021245792A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
cleaning
control device
parameter
cooling
Prior art date
Application number
PCT/JP2020/021791
Other languages
French (fr)
Japanese (ja)
Inventor
歩 江上
英希 大野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022529179A priority Critical patent/JPWO2021245792A1/ja
Priority to PCT/JP2020/021791 priority patent/WO2021245792A1/en
Publication of WO2021245792A1 publication Critical patent/WO2021245792A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • This disclosure relates to a cooling device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-0760330
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-0760330
  • a cleaning device for the unit cooler is disclosed.
  • the above technology describes the structure for improving the cleaning effect, and there is room for improvement in optimizing the cleaning timing. Since the cooling function is stopped during cleaning, for example, in a method of performing cleaning at a fixed cycle or at a fixed time, if the cleaning frequency is too high, the temperature of the cooling target space may rise. Further, if the cleaning frequency is too low, dust and the like adhering to the heat exchange unit may not flow out and stay there, and the cooling capacity may decrease.
  • the purpose of this disclosure is to disclose a cooling device with an optimized cleaning frequency.
  • the cooling device of the present disclosure includes an evaporator, a sensor for acquiring parameters indicating the heat exchange performance of the evaporator, a cleaning device for cleaning the evaporator, and a control device for controlling the cleaning device.
  • the control device is configured to activate the cleaning device if the value of the parameter indicates a heat exchange performance that is lower than the reference state.
  • cleaning can be started at the optimum timing.
  • unnecessary cleaning can be eliminated and the original cooling capacity of the cooling device can be maintained.
  • FIG. 1 is a functional block diagram showing the configuration of the cooling device 100 of the present embodiment.
  • the cooling device 100 includes a compressor 1, a condenser 2, an expansion valve 3, a unit cooler 4 (heat exchange unit), a cleaning device 5, a control device 10, and a remote controller. 20 and.
  • a refrigerant is sealed in the cooling device 100.
  • the refrigerant circulates in the order of the compressor 1, the condenser 2, the expansion valve 3, and the unit cooler 4.
  • the unit cooler 4 includes an evaporator 41, a fan 44, and a drain pan 45.
  • the unit cooler 4 incorporates a cleaning device 5 that defrosts and cleans the evaporator 41.
  • the cleaning device 5 includes a water supply source 30, an on-off valve 32, and a cleaning pipe 34.
  • the cleaning pipe 34 is formed with a water supply port Win to which cleaning water is supplied and a plurality of nozzles Nz1 for injecting cleaning water.
  • the fan 44 forms an airflow Wd that passes through the evaporator 41.
  • the drain pan 45 receives water droplets from the evaporator 41. The water droplets that have fallen on the drain pan 45 are drained from a water pipe (not shown).
  • the on-off valve 32 is connected between the water supply source 30 and the water supply port Win.
  • the on-off valve 32 When the on-off valve 32 is opened, cleaning water is supplied from the water supply source 30 to the cleaning pipe 34, and automatic cleaning of the inside of the unit cooler 4 is started.
  • the on-off valve 32 When the on-off valve 32 is closed, the automatic cleaning is completed.
  • the water supply source 30 includes a pump (not shown) that generates the water pressure required for injecting the washing water from the plurality of nozzles Nz1.
  • the water supply port Win may be connected to a water faucet.
  • the water supply source 30 does not have to include a pump.
  • the control device 10 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time.
  • the control device 10 controls the opening degree of the expansion valve 3 so that the degree of superheat of the refrigerant flowing out of the evaporator 41 is within a desired range.
  • the control device 10 controls the amount of air blown per unit time of the fan 44.
  • the control device 10 controls the on-off valve 32.
  • the remote controller 20 receives an operation from the user and transmits a signal indicating the operation to the control device 10.
  • the control device 10 receives a signal from the remote controller 20 and controls the cooling device 100.
  • the control device 10 stops the compressor 1 and defrosts the evaporator 41 (off-cycle defrost) by blowing air from the fan 44.
  • the defrosting condition for example, a condition that a certain time has passed since the previous defrosting operation can be mentioned.
  • the defrosting method and defrosting conditions are not limited to the above, and may be performed by other methods.
  • the control device 10 includes a processing circuit 11, a memory 12, and an input / output unit 13.
  • the processing circuit 11 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 12.
  • the processing circuit 11 is a CPU, the function of the control device 10 is realized by software.
  • the software is described as a program and stored in the memory 12.
  • the processing circuit 11 reads and executes the program stored in the memory 12.
  • the memory 12 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.
  • the CPU is a central processing device, a processing device, a computing device, and the like. , Microprocessor, microcontroller, processor, or DSP (Digital Signal Processor).
  • FIG. 2 is a ph diagram showing a refrigeration cycle when a cooling operation is performed in an environment that does not require cleaning.
  • the refrigeration cycle C1 in the normal operation state is shown by a solid line
  • the refrigeration cycle C2 in the frosted state after a lapse of time is shown by a broken line.
  • the refrigerant circulates at the condensation pressure PH and the evaporation pressure PL1.
  • the refrigerating cycle C2 in the frosted state, since frost is attached to the evaporator 41, the air volume is lowered and the heat transfer coefficient is lowered. Therefore, in the refrigeration cycle C2, the evaporation temperature is lowered in order to maintain the temperature inside the refrigerator. Since the refrigerant in the evaporator 41 is in the two-phase region, the pressure decreases as the temperature decreases. Therefore, in the refrigeration cycle C2, the evaporation pressure drops from PL1 to PL2. As a result, the efficiency of the refrigeration cycle deteriorates, and the performance as a cooling device deteriorates.
  • the conventional unit cooler is equipped with a defrosting operation function to prevent capacity deterioration due to frost formation.
  • a defrosting operation function to prevent capacity deterioration due to frost formation.
  • dust or the like is accumulated on the evaporator 41, and the performance of the cooling device may not be restored only by executing the defrosting operation.
  • FIG. 3 is a ph diagram showing a refrigeration cycle when a cooling operation is performed for a certain period of time in a place where dust is likely to accumulate on the evaporator.
  • the unit cooler When the unit cooler is in a place where dust is likely to accumulate, it will frost from a non-frosted state and also adhere to the unit cooler, so that the evaporator 41 will be in a state of having dust and frost. .. In the refrigeration cycle C2 at this time, the evaporation pressure drops from PL1 to PL2 as in the case of FIG.
  • FIG. 4 is a diagram for explaining a sensor used for detecting the cleaning start timing.
  • a sensor 52 for detecting the room temperature RT which is the temperature of the air in the cooling target space.
  • a sensor 54 for detecting the evaporation temperature ET of the refrigerant is provided on the refrigerant inlet side of the evaporator 41, or a sensor 51 for detecting the evaporation pressure PL is provided at the refrigerant outlet of the evaporator 41.
  • the timing of starting cleaning is determined using the parameter TD.
  • the evaporation temperature ET there are two methods for measuring the evaporation temperature ET: a method of measuring by the temperature sensor 54 on the inlet side and a method of converting the evaporation temperature ET into the saturated gas temperature from the pressure sensor 51 on the outlet side.
  • the room temperature RT may be measured by the temperature sensor 52, but a fixed value which is a target temperature may be adopted.
  • the setting of the room temperature RT used for calculating the parameter TD is appropriately changed depending on the site environment.
  • the parameter TD will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a diagram showing changes in the parameter TD when cleaning is not performed.
  • the time t0 to t1, t2 to t3, and t4 are the periods during which the cooling operation is executed, and the times t1 to t2 and t3 to t4 are the periods during which the defrosting operation is executed.
  • the waveform W1 is a waveform showing a change in the parameter TD at a place where dust is likely to accumulate on the surface of the evaporator 41.
  • the waveform W2 is a waveform showing a change in the parameter TD at a place where dust does not accumulate on the surface of the evaporator 41.
  • the parameter TD returns to the initial setting value TD0 after defrosting, but in the waveform W1, the parameter TD is set even after defrosting because the dust is not removed even after defrosting and gradually accumulates. It will gradually increase.
  • the parameter TD is measured for a certain period of time, and if it returns to the original value, it means that no dust has adhered. It is presumed that the performance of the cooler is deteriorated as in the refrigeration cycle C3 of 3.
  • FIG. 6 is a diagram showing changes in the parameter TD when cleaning is performed.
  • times t10 to t11 and t12 to t13 are periods during which the cooling operation is executed
  • times t11 to t12 and t13 to t14 are periods during which the defrosting operation is executed.
  • the defrosting operation will start.
  • the parameter TD increases as the cooling operation is continued.
  • the cooling operation is started in a state where the TD is larger than the initial setting value TD0.
  • the waveform W11 has the same waveform as the waveform W1 in FIG. 5 because the cleaning start using the parameter TD is not executed.
  • the waveform W12 is a waveform when the cleaning start determination using the parameter TD is executed.
  • the parameter TD is measured for a certain period of time ⁇ t after the defrosting operation is completed. At that time, if the parameter TD does not exceed the threshold value TDth (time t12 to t12A), cleaning is not performed, but if the parameter TD exceeds the threshold value TDth (time t14), cleaning is performed. (Times t14 to t15), the parameter TD returns to the initial setting value TD0, and after the time t15, the cooling operation in which the cooling performance is restored is restarted.
  • FIG. 7 is a flowchart for explaining the control for determining the start of cleaning. The process of the flowchart of FIG. 7 is repeatedly executed for a certain period of time when the defrosting operation is completed.
  • step S1 the control device 10 calculates the parameter TD by the above-mentioned equation (1), and determines whether or not the parameter TD exceeds the threshold value TDth.
  • the control device 10 opens the on-off valve 32 and starts the cleaning operation of the evaporator 41 by the cleaning device 5 in step S2. Then, when a certain period of time elapses and the cleaning is completed in step S3, the cooling operation is resumed.
  • FIG. 8 is a flowchart for explaining a first modification of the control for determining the start of cleaning. Steps S11 to S13 of FIG. 8 are the same processes as steps S1 to S3 of FIG. 7, respectively.
  • step S13 the parameter TD is measured again in step S14, and when the parameter TD does not return to the threshold value TDth or less (NO in S14), in steps S12 and S13 again. Perform cleaning. In this way, the control device 10 repeatedly performs cleaning until the parameter TD becomes equal to or less than the threshold value TDth.
  • the cooling capacity of the cooling device can be reliably returned to a state close to the initial state.
  • FIG. 9 is a flowchart for explaining a second modification of the control for determining the start of cleaning.
  • step S21 the control device 10 calculates the parameter TD according to the above equation (1), counts the number of consecutive times that the parameter TD exceeds the threshold value TDth, and determines whether or not the number of times has reached X or more. Judge.
  • the cleaning operation is not executed and the cooling operation is returned.
  • Steps S22 and S23 of FIG. 9 are the same processes as steps S2 and S3 of FIG. 7, respectively.
  • the control device 10 measures the parameter TD again in step S24 after the cleaning in step S23 is completed, and compares it with the threshold value TDth.
  • the control device 10 determines whether or not the number of consecutive times determined as TD> TDth is Y or more. ..
  • the control device 10 performs cleaning again in steps S22 and S23. In this way, the control device 10 repeatedly performs cleaning until the parameter TD becomes equal to or less than the threshold value TDth. Therefore, even in the modified example shown in FIG. 9, the cooling capacity of the cooling device can be reliably returned to the initial state.
  • the control device 10 may have a failure other than dirt adhesion, so the display unit of the remote controller 20 or the like is used. And raise an alarm to the user.
  • the user can confirm from this alarm whether defrosting or cleaning is not performed properly and there is no abnormality in the unit.
  • FIG. 10 is a diagram for explaining a modified example of the method for determining the start of cleaning.
  • the parameter TD is used to determine the start of cleaning, but it may be detected that dirt has adhered to the evaporator 41 by another method.
  • the cooling device 100A of the modified example includes a fan 44 for supplying air in the cooling target space to the evaporator 41.
  • the parameter used in the cooling device 100A is the flow rate F of air passing through the ventilation gap formed on the surface of the evaporator 41.
  • the air flow rate F is detected by the air volume sensor 55.
  • the control device 10 is configured to operate the cleaning device 5 when the flow rate F becomes smaller than the threshold value Fth.
  • the control device 10 may start cleaning.
  • the cooling device 100 of the present disclosure includes an evaporator 41, sensors 51 and 52 for acquiring parameters indicating the heat exchange performance of the evaporator 41, and a cleaning device for cleaning the evaporator 41. 5 and a control device 10 for controlling the cleaning device 5.
  • the control device 10 is configured to operate the cleaning device 5 when the value of the parameter shows a heat exchange performance lower than the reference state. As a result, cleaning can be started at the optimum timing. By optimizing the cleaning timing, unnecessary cleaning can be eliminated and the original cooling capacity of the unit cooler can be maintained. In addition, since the frequency of stopping the cooling operation is reduced, it is possible to realize a cooling device having excellent energy saving.
  • the control device 10 determines the value of the parameter acquired by using the sensor 51 or 52 after performing the defrosting operation for removing the frost adhering to the evaporator 41.
  • the cleaning device 5 is configured to operate.
  • the parameter TD is the difference between the temperature RT of the air in the cooling target space where the refrigerant exchanges heat in the evaporator 41 and the evaporation temperature ET of the refrigerant in the evaporator 41.
  • the control device is configured to operate the cleaning device 5 when the parameter TD becomes larger than the threshold value TDth.
  • the senor includes a sensor 52 for measuring the temperature RT of air, a sensor 54 for measuring the temperature ET of the refrigerant passing through the evaporator 41, or a sensor 51 for measuring the pressure PL. ..
  • the cooling device 100A further includes a fan 44 for supplying air in the cooling target space to the evaporator 41.
  • the parameter used in the cooling device 100A is the flow rate F of air passing through the ventilation gap formed on the surface of the evaporator 41.
  • the air flow rate F is detected by the air volume sensor 55.
  • the control device 10 is configured to operate the cleaning device 5 when the flow rate F becomes smaller than the threshold value Fth.
  • the air volume F is used as the parameter instead of the parameter TD
  • the threshold value Fth is used instead of the threshold value TDth.
  • control device 10 is configured to repeatedly operate the cleaning device 5 until the heat exchange performance of the evaporator 41 increases from the reference state. By doing so, the cooling capacity of the cooling device can be reliably restored by cleaning.
  • the control device 10 uses the cleaning device 5 in a state where the heat exchange performance of the evaporator 41 is once lowered from the reference state and then the heat exchange performance remains lower than the reference state.
  • the number of times of repeated operation is equal to or greater than the determination value Y, a warning is given to the user. By doing so, if the cooling capacity is not restored by automatic cleaning, the user can inspect and repair the cooling device.
  • 1 Compressor 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Unit cooler, 5 Cleaning device, 10 Control device, 11 Processing circuit, 12 Memory, 13 Input / output section, 20 Remote controller, 30 Water supply source, 32 On-off valve, 34 Cleaning Piping, 41 evaporator, 44 fan, 45 drain pan, 51 pressure sensor, 52, 54 temperature sensor, 55 air volume sensor, 100, 100A cooling device, Nz1 nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

This cooling device (100) comprises: an evaporator (41); a sensor (51, 52) that acquires a parameter indicating a heat exchange performance of the evaporator (41); a cleaning device (5) that cleans the evaporator (41); and a control device (10) that controls the cleaning device (5). The control device (10) is configured to activate the cleaning device (5) in cases where the value of the parameter indicates that the heat exchange performance of the evaporator (41) has dropped below a reference state.

Description

冷却装置Cooling system
 本開示は、冷却装置に関する。 This disclosure relates to a cooling device.
 従来、洗浄機能を有する冷却装置が知られている。たとえば、特開2008-076030号公報(特許文献1)には、特別な駆動手段を用いることなく、熱交換ユニットに対して噴射ノズルを回転させて熱交換ユニットを均一的に洗浄することができるユニットクーラの洗浄装置が開示されている。 Conventionally, a cooling device having a cleaning function is known. For example, in Japanese Patent Application Laid-Open No. 2008-0760330 (Patent Document 1), the heat exchange unit can be uniformly cleaned by rotating the injection nozzle with respect to the heat exchange unit without using a special driving means. A cleaning device for the unit cooler is disclosed.
特開2008-076030号公報Japanese Unexamined Patent Publication No. 2008-0760330
 上記技術は、洗浄効果の向上のための構造についての記載であり、洗浄タイミングの最適化について改善の余地がある。洗浄中は冷却機能を停止させるため、たとえば一定周期や一定時間で洗浄を行なう方法では、洗浄頻度が多すぎると冷却対象空間の温度が上昇してしまう恐れがある。また、洗浄頻度が少なすぎると熱交換ユニットに付着したごみ等が流れ切らずに滞留し、冷却能力が低下する恐れがある。 The above technology describes the structure for improving the cleaning effect, and there is room for improvement in optimizing the cleaning timing. Since the cooling function is stopped during cleaning, for example, in a method of performing cleaning at a fixed cycle or at a fixed time, if the cleaning frequency is too high, the temperature of the cooling target space may rise. Further, if the cleaning frequency is too low, dust and the like adhering to the heat exchange unit may not flow out and stay there, and the cooling capacity may decrease.
 本開示は、洗浄頻度が最適化された冷却装置について開示することを目的とする。 The purpose of this disclosure is to disclose a cooling device with an optimized cleaning frequency.
 本開示の冷却装置は、蒸発器と、蒸発器の熱交換性能を示すパラメータを取得するセンサと、蒸発器を洗浄する洗浄装置と、洗浄装置を制御する制御装置とを備える。制御装置は、パラメータの値が、基準状態よりも低下した熱交換性能を示す場合には、洗浄装置を作動させるように構成される。 The cooling device of the present disclosure includes an evaporator, a sensor for acquiring parameters indicating the heat exchange performance of the evaporator, a cleaning device for cleaning the evaporator, and a control device for controlling the cleaning device. The control device is configured to activate the cleaning device if the value of the parameter indicates a heat exchange performance that is lower than the reference state.
 本開示の冷却装置によれば、最適なタイミングで洗浄開始することができる。洗浄タイミングの最適化を実現することで、無駄な洗浄をなくし、冷却装置本来の冷却能力を維持できる。 According to the cooling device of the present disclosure, cleaning can be started at the optimum timing. By optimizing the cleaning timing, unnecessary cleaning can be eliminated and the original cooling capacity of the cooling device can be maintained.
本実施の形態の冷却装置100の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the cooling apparatus 100 of this embodiment. 洗浄不要な環境で冷却運転を行なう場合の冷凍サイクルを示したp-h線図である。It is a ph diagram which showed the refrigerating cycle in the case of performing a cooling operation in an environment which does not require cleaning. 蒸発器にごみが堆積しやすい場所で、冷却運転を一定時間行なった時の冷凍サイクルを示したp-h線図である。It is a ph diagram showing a refrigerating cycle when a cooling operation is performed for a certain period of time in a place where dust is likely to accumulate in an evaporator. 洗浄開始タイミングの検知に使用するセンサを説明するための図である。It is a figure for demonstrating the sensor used for detecting the cleaning start timing. 洗浄を行なわない場合のパラメータTDの変化を示した図である。It is a figure which showed the change of the parameter TD when cleaning is not performed. 洗浄を行なう場合のパラメータTDの変化を示した図である。It is a figure which showed the change of the parameter TD in the case of performing cleaning. 洗浄開始の判定を行なう制御を説明するためのフローチャートである。It is a flowchart for demonstrating the control which performs the determination of the washing start. 洗浄開始の判定を行なう制御の第1変形例を説明するためのフローチャートである。It is a flowchart for demonstrating the 1st modification of the control which determines the start of cleaning. 洗浄開始の判定を行なう制御の第2変形例を説明するためのフローチャートである。It is a flowchart for demonstrating the 2nd modification of the control which determines the start of cleaning. 洗浄の開始の判定方法の変形例について説明するための図である。It is a figure for demonstrating the modification of the method of determining the start of cleaning.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated. In the figure below, the relationship between the sizes of each component may differ from the actual one.
 図1は、本実施の形態の冷却装置100の構成を示す機能ブロック図である。図1に示されるように、冷却装置100は、圧縮機1と、凝縮器2と、膨張弁3と、ユニットクーラ4(熱交換ユニット)と、洗浄装置5と、制御装置10と、リモートコントローラ20とを備える。冷却装置100には、冷媒が封入されている。当該冷媒は、圧縮機1、凝縮器2、膨張弁3、およびユニットクーラ4の順に循環する。 FIG. 1 is a functional block diagram showing the configuration of the cooling device 100 of the present embodiment. As shown in FIG. 1, the cooling device 100 includes a compressor 1, a condenser 2, an expansion valve 3, a unit cooler 4 (heat exchange unit), a cleaning device 5, a control device 10, and a remote controller. 20 and. A refrigerant is sealed in the cooling device 100. The refrigerant circulates in the order of the compressor 1, the condenser 2, the expansion valve 3, and the unit cooler 4.
 ユニットクーラ4は、蒸発器41と、ファン44と、ドレンパン45とを含む。
 ユニットクーラ4には、蒸発器41の除霜と洗浄を行なう洗浄装置5が組み込まれている。
The unit cooler 4 includes an evaporator 41, a fan 44, and a drain pan 45.
The unit cooler 4 incorporates a cleaning device 5 that defrosts and cleans the evaporator 41.
 洗浄装置5は、給水源30と、開閉弁32と、洗浄配管34とを含む。洗浄配管34には、洗浄水が供給される給水口Win、および洗浄水を噴射する複数のノズルNz1が形成されている。ファン44は、蒸発器41を通過する気流Wdを形成する。ドレンパン45は、蒸発器41からの水滴を受ける。ドレンパン45に落下した水滴は、図示しない配水管から排水される。 The cleaning device 5 includes a water supply source 30, an on-off valve 32, and a cleaning pipe 34. The cleaning pipe 34 is formed with a water supply port Win to which cleaning water is supplied and a plurality of nozzles Nz1 for injecting cleaning water. The fan 44 forms an airflow Wd that passes through the evaporator 41. The drain pan 45 receives water droplets from the evaporator 41. The water droplets that have fallen on the drain pan 45 are drained from a water pipe (not shown).
 開閉弁32は、給水源30と給水口Winとの間に接続されている。開閉弁32が開かれることにより、給水源30から洗浄水が洗浄配管34に供給され、ユニットクーラ4の内部の自動洗浄が開始される。開閉弁32が閉じられることにより、自動洗浄が終了する。給水源30は、複数のノズルNz1からの洗浄水の噴射に必要な水圧を発生するポンプ(不図示)を含む。給水口Winは、水道の蛇口に接続されてもよい。なお、給水源30は、ポンプを含んでいなくてもよい。 The on-off valve 32 is connected between the water supply source 30 and the water supply port Win. When the on-off valve 32 is opened, cleaning water is supplied from the water supply source 30 to the cleaning pipe 34, and automatic cleaning of the inside of the unit cooler 4 is started. When the on-off valve 32 is closed, the automatic cleaning is completed. The water supply source 30 includes a pump (not shown) that generates the water pressure required for injecting the washing water from the plurality of nozzles Nz1. The water supply port Win may be connected to a water faucet. The water supply source 30 does not have to include a pump.
 制御装置10は、圧縮機1の駆動周波数を制御して、圧縮機1が単位時間当たりに吐出する冷媒量を制御する。制御装置10は、蒸発器41から流出する冷媒の過熱度が所望の範囲となるように、膨張弁3の開度を制御する。制御装置10は、ファン44の単位時間当たりの送風量を制御する。制御装置10は、開閉弁32を制御する。リモートコントローラ20は、ユーザからの操作を受けて、制御装置10に当該操作を示す信号を送信する。制御装置10は、リモートコントローラ20からの信号を受けて、冷却装置100を制御する。 The control device 10 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time. The control device 10 controls the opening degree of the expansion valve 3 so that the degree of superheat of the refrigerant flowing out of the evaporator 41 is within a desired range. The control device 10 controls the amount of air blown per unit time of the fan 44. The control device 10 controls the on-off valve 32. The remote controller 20 receives an operation from the user and transmits a signal indicating the operation to the control device 10. The control device 10 receives a signal from the remote controller 20 and controls the cooling device 100.
 制御装置10は、除霜条件が成立した場合、圧縮機1を停止して、ファン44の送風による蒸発器41の除霜(オフサイクルデフロスト)を行なう。除霜条件としては、たとえば、前回の除霜運転から一定の時間が経過したという条件を挙げることができる。なお、除霜の方法および除霜条件については、上記に限定されず、他の方法で行なわれても良い。 When the defrosting condition is satisfied, the control device 10 stops the compressor 1 and defrosts the evaporator 41 (off-cycle defrost) by blowing air from the fan 44. As the defrosting condition, for example, a condition that a certain time has passed since the previous defrosting operation can be mentioned. The defrosting method and defrosting conditions are not limited to the above, and may be performed by other methods.
 制御装置10は、処理回路11と、メモリ12と、入出力部13とを含む。処理回路11は、専用のハードウェアであってもよいし、メモリ12に格納されるプログラムを実行するCPU(Central Processing Unit)であってもよい。処理回路11がCPUの場合、制御装置10の機能は、ソフトウェアにより実現される。ソフトウェアはプログラムとして記述され、メモリ12に格納される。処理回路11は、メモリ12に記憶されたプログラムを読み出して実行する。メモリ12には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が含まれる。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。 The control device 10 includes a processing circuit 11, a memory 12, and an input / output unit 13. The processing circuit 11 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 12. When the processing circuit 11 is a CPU, the function of the control device 10 is realized by software. The software is described as a program and stored in the memory 12. The processing circuit 11 reads and executes the program stored in the memory 12. The memory 12 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc. The CPU is a central processing device, a processing device, a computing device, and the like. , Microprocessor, microcontroller, processor, or DSP (Digital Signal Processor).
 図2は、洗浄不要な環境で冷却運転を行なう場合の冷凍サイクルを示したp-h線図である。 FIG. 2 is a ph diagram showing a refrigeration cycle when a cooling operation is performed in an environment that does not require cleaning.
 通常運転状態の冷凍サイクルC1を実線で示し、時間が経過し着霜状態になった場合の冷凍サイクルC2を破線で示す。 The refrigeration cycle C1 in the normal operation state is shown by a solid line, and the refrigeration cycle C2 in the frosted state after a lapse of time is shown by a broken line.
 冷凍サイクルC1は、凝縮圧力PH、蒸発圧力PL1で冷媒が循環する。一方、着霜状態での冷凍サイクルC2では、蒸発器41に霜が付着しているため、風量が低下し、熱伝達率が低下する。このため、冷凍サイクルC2では、庫内温度を維持するために蒸発温度が低下する。蒸発器41中の冷媒は二相領域であるので、温度が低下すると圧力も低下する関係にある。したがって、冷凍サイクルC2では、蒸発圧力がPL1からPL2に低下する。その結果、冷凍サイクルの効率が悪化し、冷却装置としての性能が低下する。 In the refrigeration cycle C1, the refrigerant circulates at the condensation pressure PH and the evaporation pressure PL1. On the other hand, in the refrigerating cycle C2 in the frosted state, since frost is attached to the evaporator 41, the air volume is lowered and the heat transfer coefficient is lowered. Therefore, in the refrigeration cycle C2, the evaporation temperature is lowered in order to maintain the temperature inside the refrigerator. Since the refrigerant in the evaporator 41 is in the two-phase region, the pressure decreases as the temperature decreases. Therefore, in the refrigeration cycle C2, the evaporation pressure drops from PL1 to PL2. As a result, the efficiency of the refrigeration cycle deteriorates, and the performance as a cooling device deteriorates.
 そのため従来のユニットクーラには、着霜による能力低下を防ぐために除霜運転機能が備わっている。一方、食品工場などでは、蒸発器41に粉塵等のごみが堆積し、除霜運転を実行するだけでは冷却装置の性能が回復しない場合がある。 Therefore, the conventional unit cooler is equipped with a defrosting operation function to prevent capacity deterioration due to frost formation. On the other hand, in a food factory or the like, dust or the like is accumulated on the evaporator 41, and the performance of the cooling device may not be restored only by executing the defrosting operation.
 図3は、蒸発器にごみが堆積しやすい場所で、冷却運転を一定時間行なった時の冷凍サイクルを示したp-h線図である。 FIG. 3 is a ph diagram showing a refrigeration cycle when a cooling operation is performed for a certain period of time in a place where dust is likely to accumulate on the evaporator.
 ごみが堆積しやすい場所でのユニットクーラは、冷却運転を行なっていると、無着霜状態から着霜するとともに、ごみも付着するため、蒸発器41にはごみと霜が付いた状態になる。このときの冷凍サイクルC2でも図2の場合と同様に、蒸発圧力がPL1からPL2に低下している。 When the unit cooler is in a place where dust is likely to accumulate, it will frost from a non-frosted state and also adhere to the unit cooler, so that the evaporator 41 will be in a state of having dust and frost. .. In the refrigeration cycle C2 at this time, the evaporation pressure drops from PL1 to PL2 as in the case of FIG.
 ごみと霜が付いた状態で従来の除霜運転を行なっても、ごみは堆積したままになるため、除霜運転後には、図3の冷凍サイクルC3のようになり、蒸発圧力はPL3となって、PL1まで回復しない。したがって、除霜運転を行なうだけでは本来の冷却装置の性能を維持することは難しい。 Even if the conventional defrosting operation is performed with dust and frost attached, the dust remains accumulated. Therefore, after the defrosting operation, the refrigeration cycle C3 in FIG. 3 is obtained, and the evaporation pressure becomes PL3. And it does not recover to PL1. Therefore, it is difficult to maintain the original performance of the cooling device only by performing the defrosting operation.
 この冷却能力の低下を防ぐために、蒸発器41に付着したごみを洗浄する。以下に、洗浄開始タイミングの検知方法について説明する。 In order to prevent this decrease in cooling capacity, the dust adhering to the evaporator 41 is washed. The method of detecting the cleaning start timing will be described below.
 図4は、洗浄開始タイミングの検知に使用するセンサを説明するための図である。図4に示すように、冷却対象空間の空気の温度である庫内温度RTを検出するセンサ52を設ける。さらに、蒸発器41の冷媒入口側に冷媒の蒸発温度ETを検出するセンサ54を設けるか、または蒸発器41の冷媒出口に蒸発圧力PLを検出するセンサ51を設ける。 FIG. 4 is a diagram for explaining a sensor used for detecting the cleaning start timing. As shown in FIG. 4, a sensor 52 for detecting the room temperature RT, which is the temperature of the air in the cooling target space, is provided. Further, a sensor 54 for detecting the evaporation temperature ET of the refrigerant is provided on the refrigerant inlet side of the evaporator 41, or a sensor 51 for detecting the evaporation pressure PL is provided at the refrigerant outlet of the evaporator 41.
 本実施の形態では、パラメータTDを用いて洗浄開始のタイミングを判定する。パラメータTDは、以下の式(1)で算出される。
TD=RT-ET  …(1)
 そして、除霜後に、パラメータTDを算出し、洗浄の要否を判定する。
In the present embodiment, the timing of starting cleaning is determined using the parameter TD. The parameter TD is calculated by the following equation (1).
TD = RT-ET ... (1)
Then, after defrosting, the parameter TD is calculated to determine the necessity of cleaning.
 蒸発温度ETの測定方法は、図4に記載するように、入口側の温度センサ54によって測定する方法と、出口側の圧力センサ51から飽和ガス温度に換算して求める方法がある。庫内温度RTは、温度センサ52で測定しても良いが、目標温度である固定値を採用しても良い。パラメータTDの算出に用いる庫内温度RTの設定は、現場環境によって適宜変更される。以下、図5、図6を用いてパラメータTDについて説明する。 As shown in FIG. 4, there are two methods for measuring the evaporation temperature ET: a method of measuring by the temperature sensor 54 on the inlet side and a method of converting the evaporation temperature ET into the saturated gas temperature from the pressure sensor 51 on the outlet side. The room temperature RT may be measured by the temperature sensor 52, but a fixed value which is a target temperature may be adopted. The setting of the room temperature RT used for calculating the parameter TD is appropriately changed depending on the site environment. Hereinafter, the parameter TD will be described with reference to FIGS. 5 and 6.
 図5は、洗浄を行なわない場合のパラメータTDの変化を示した図である。図5において時刻t0~t1、t2~t3、t4以降は冷却運転が実行される期間であり、時刻t1~t2、t3~t4は除霜運転が実行される期間である。 FIG. 5 is a diagram showing changes in the parameter TD when cleaning is not performed. In FIG. 5, the time t0 to t1, t2 to t3, and t4 are the periods during which the cooling operation is executed, and the times t1 to t2 and t3 to t4 are the periods during which the defrosting operation is executed.
 波形W1は、ごみが蒸発器41の表面に堆積しやすい場所でのパラメータTDの変化を示す波形である。波形W2は、ごみが蒸発器41の表面に堆積しない場所でのパラメータTDの変化を示す波形である。 The waveform W1 is a waveform showing a change in the parameter TD at a place where dust is likely to accumulate on the surface of the evaporator 41. The waveform W2 is a waveform showing a change in the parameter TD at a place where dust does not accumulate on the surface of the evaporator 41.
 波形W2では、除霜後には、パラメータTDは初期設定値TD0に戻っているが、波形W1では除霜してもごみは除去されずに次第に堆積していくため、除霜後でもパラメータTDは次第に増加していく。 In the waveform W2, the parameter TD returns to the initial setting value TD0 after defrosting, but in the waveform W1, the parameter TD is set even after defrosting because the dust is not removed even after defrosting and gradually accumulates. It will gradually increase.
 すなわち、除霜後、一定時間パラメータTDを測定し、もとの値に戻ればごみが付着していないことになるが、ごみが付着したままだとTDが初期設定値TD0に戻らず、図3の冷凍サイクルC3のように、クーラの性能が低下していると推測される。 That is, after defrosting, the parameter TD is measured for a certain period of time, and if it returns to the original value, it means that no dust has adhered. It is presumed that the performance of the cooler is deteriorated as in the refrigeration cycle C3 of 3.
 図6は、洗浄を行なう場合のパラメータTDの変化を示した図である。図6において時刻t10~t11、t12~t13は冷却運転が実行される期間であり、時刻t11~t12、t13~t14は除霜運転が実行される期間である。 FIG. 6 is a diagram showing changes in the parameter TD when cleaning is performed. In FIG. 6, times t10 to t11 and t12 to t13 are periods during which the cooling operation is executed, and times t11 to t12 and t13 to t14 are periods during which the defrosting operation is executed.
 一定時間冷却運転を続けていると、除霜運転が開始される。パラメータTDは、冷却運転を続けるほど大きくなる。ごみが堆積しやすい現場での冷却-除霜運転では、除霜が完了し冷却運転を再開する際、TDが初期設定値TD0よりも大きい状態で冷却運転が開始される。 If the cooling operation is continued for a certain period of time, the defrosting operation will start. The parameter TD increases as the cooling operation is continued. In the cooling-defrosting operation at the site where dust is likely to accumulate, when the defrosting is completed and the cooling operation is restarted, the cooling operation is started in a state where the TD is larger than the initial setting value TD0.
 波形W11は、パラメータTDを用いた洗浄開始を実行しないので図5の波形W1と同じ波形になる。 The waveform W11 has the same waveform as the waveform W1 in FIG. 5 because the cleaning start using the parameter TD is not executed.
 波形W12は、パラメータTDを用いた洗浄開始判定を実行する場合の波形である。波形W12では、除霜運転終了後にパラメータTDを一定時間Δtの間測定する。そのとき、パラメータTDがしきい値TDthを超えない場合(時刻t12~t12A)は、洗浄は行なわれないが、パラメータTDがしきい値TDthを超えていた場合(時刻t14)、洗浄が行なわれ(時刻t14~t15)、パラメータTDは初期設定値TD0に戻り、時刻t15以降は、冷却性能が回復した冷却運転が再開される。 The waveform W12 is a waveform when the cleaning start determination using the parameter TD is executed. In the waveform W12, the parameter TD is measured for a certain period of time Δt after the defrosting operation is completed. At that time, if the parameter TD does not exceed the threshold value TDth (time t12 to t12A), cleaning is not performed, but if the parameter TD exceeds the threshold value TDth (time t14), cleaning is performed. (Times t14 to t15), the parameter TD returns to the initial setting value TD0, and after the time t15, the cooling operation in which the cooling performance is restored is restarted.
 図7は、洗浄開始の判定を行なう制御を説明するためのフローチャートである。図7のフローチャートの処理は、除霜運転が終了した場合に一定時間中は繰返して実行される。 FIG. 7 is a flowchart for explaining the control for determining the start of cleaning. The process of the flowchart of FIG. 7 is repeatedly executed for a certain period of time when the defrosting operation is completed.
 ステップS1では、制御装置10は、既出の式(1)によってパラメータTDを算出し、パラメータTDがしきい値TDthを超えるか否かを判断する。 In step S1, the control device 10 calculates the parameter TD by the above-mentioned equation (1), and determines whether or not the parameter TD exceeds the threshold value TDth.
 パラメータTDがしきい値TDthを超えていない場合(S1でNO)、洗浄運転は実行されずに冷却運転に戻る。 If the parameter TD does not exceed the threshold value TDth (NO in S1), the cleaning operation is not executed and the cooling operation is returned.
 一方、パラメータTDがしきい値TDthを超えている場合(S1でYES)、制御装置10は、ステップS2において、開閉弁32を開いて洗浄装置5による蒸発器41の洗浄運転を開始する。そして、一定時間が経過しステップS3において洗浄が終了すると、冷却運転に戻る。 On the other hand, when the parameter TD exceeds the threshold value TDth (YES in S1), the control device 10 opens the on-off valve 32 and starts the cleaning operation of the evaporator 41 by the cleaning device 5 in step S2. Then, when a certain period of time elapses and the cleaning is completed in step S3, the cooling operation is resumed.
 (変形例の説明)
 図8は、洗浄開始の判定を行なう制御の第1変形例を説明するためのフローチャートである。図8のステップS11~S13は、それぞれ図7のステップS1~S3と同様な処理である。
(Explanation of modification)
FIG. 8 is a flowchart for explaining a first modification of the control for determining the start of cleaning. Steps S11 to S13 of FIG. 8 are the same processes as steps S1 to S3 of FIG. 7, respectively.
 図8に示す処理では、ステップS13の洗浄終了後に、ステップS14において再度パラメータTDを測定し、パラメータTDがしきい値TDth以下に戻っていなかった場合(S14でNO)、再度ステップS12,S13で洗浄を行なう。こうして、制御装置10は、パラメータTDがしきい値TDth以下になるまで繰り返し洗浄を実行する。 In the process shown in FIG. 8, after the cleaning in step S13 is completed, the parameter TD is measured again in step S14, and when the parameter TD does not return to the threshold value TDth or less (NO in S14), in steps S12 and S13 again. Perform cleaning. In this way, the control device 10 repeatedly performs cleaning until the parameter TD becomes equal to or less than the threshold value TDth.
 図8に示した変形例では、しきい値TDthを適切に設定すれば、初期の状態に近い状態まで冷却装置の冷却能力を確実に戻すことができる。 In the modified example shown in FIG. 8, if the threshold value TDth is set appropriately, the cooling capacity of the cooling device can be reliably returned to a state close to the initial state.
 図9は、洗浄開始の判定を行なう制御の第2変形例を説明するためのフローチャートである。 FIG. 9 is a flowchart for explaining a second modification of the control for determining the start of cleaning.
 ステップS21では、制御装置10は、既出の式(1)によってパラメータTDを算出し、パラメータTDがしきい値TDthを超えたことが連続する回数を計数し、回数がX回以上となったか否かを判断する。 In step S21, the control device 10 calculates the parameter TD according to the above equation (1), counts the number of consecutive times that the parameter TD exceeds the threshold value TDth, and determines whether or not the number of times has reached X or more. Judge.
 パラメータTDがしきい値TDthを超えた連続回数がX回未満の場合には(S21でNO)、洗浄運転は実行されずに冷却運転に戻る。 If the number of consecutive times the parameter TD exceeds the threshold value TDth is less than X times (NO in S21), the cleaning operation is not executed and the cooling operation is returned.
 一方、パラメータTDがしきい値TDthを超えた回数がX回以上連続した場合(S1でYES)、制御装置10は、ステップS22、S23で洗浄処理を実行する。図9のステップS22,S23は、それぞれ図7のステップS2,S3と同様な処理である。 On the other hand, when the number of times the parameter TD exceeds the threshold value TDth is X or more consecutively (YES in S1), the control device 10 executes the cleaning process in steps S22 and S23. Steps S22 and S23 of FIG. 9 are the same processes as steps S2 and S3 of FIG. 7, respectively.
 図9に示す処理では、制御装置10は、ステップS23の洗浄終了後に、ステップS24において再度パラメータTDを測定し、しきい値TDthと比較する。パラメータTDがしきい値TDthを超えている場合には(S24でYES)、ステップS25において、制御装置10は、TD>TDthと判定された連続回数がY回以上であるか否かを判断する。 In the process shown in FIG. 9, the control device 10 measures the parameter TD again in step S24 after the cleaning in step S23 is completed, and compares it with the threshold value TDth. When the parameter TD exceeds the threshold value TDth (YES in S24), in step S25, the control device 10 determines whether or not the number of consecutive times determined as TD> TDth is Y or more. ..
 TD>TDthと判定された連続回数がY回以上でない場合(S25でNO)、制御装置10は、再度ステップS22,S23で洗浄を行なう。こうして、制御装置10は、パラメータTDがしきい値TDth以下になるまで繰り返し洗浄を実行する。したがって、図9に示した変形例でも、確実に冷却装置の冷却能力を初期の状態に戻すことができる。 If the number of consecutive times for which TD> TDth is determined is not Y or more (NO in S25), the control device 10 performs cleaning again in steps S22 and S23. In this way, the control device 10 repeatedly performs cleaning until the parameter TD becomes equal to or less than the threshold value TDth. Therefore, even in the modified example shown in FIG. 9, the cooling capacity of the cooling device can be reliably returned to the initial state.
 ただし、TD>TDthと判定された連続回数がY回以上である場合(S25でYES)、制御装置10は、汚れ付着以外の故障の可能性があるため、リモートコントローラ20の表示部などを利用してユーザにアラームを発する。 However, when the number of consecutive times when TD> TDth is determined is Y or more (YES in S25), the control device 10 may have a failure other than dirt adhesion, so the display unit of the remote controller 20 or the like is used. And raise an alarm to the user.
 ユーザは、このアラームにより、除霜や洗浄が適切に行なわれず、ユニット内に異常が出ていないか確認することができる。 The user can confirm from this alarm whether defrosting or cleaning is not performed properly and there is no abnormality in the unit.
 図10は、洗浄の開始の判定方法の変形例について説明するための図である。図5~図9では、パラメータTDを用いて、洗浄開始の判定を行なっていたが、他の方法で蒸発器41に汚れが付着したことを検出しても良い。 FIG. 10 is a diagram for explaining a modified example of the method for determining the start of cleaning. In FIGS. 5 to 9, the parameter TD is used to determine the start of cleaning, but it may be detected that dirt has adhered to the evaporator 41 by another method.
 図10に示したように、変形例の冷却装置100Aは、蒸発器41に冷却対象空間の空気を供給するためのファン44を備える。冷却装置100Aで使用されるパラメータは、蒸発器41の表面に形成された通風隙間を通過する空気の流量Fである。空気の流量Fは、風量センサ55で検出される。制御装置10は、流量Fがしきい値Fthよりも小さくなった場合に洗浄装置5を作動させるように構成される。 As shown in FIG. 10, the cooling device 100A of the modified example includes a fan 44 for supplying air in the cooling target space to the evaporator 41. The parameter used in the cooling device 100A is the flow rate F of air passing through the ventilation gap formed on the surface of the evaporator 41. The air flow rate F is detected by the air volume sensor 55. The control device 10 is configured to operate the cleaning device 5 when the flow rate F becomes smaller than the threshold value Fth.
 蒸発器41の熱交換フィンに粉塵等が付着した場合には、蒸発器41を通過する風量が減少する。そこで、図10に示すように、風量センサ55をユニットクーラ4の通風路に配置し、予め定めた回転速度でファン44を回した場合に風量が判定しきい値よりも減少したことをトリガとして制御装置10が洗浄を開始するようにしても良い。 When dust or the like adheres to the heat exchange fins of the evaporator 41, the amount of air passing through the evaporator 41 decreases. Therefore, as shown in FIG. 10, when the air volume sensor 55 is arranged in the ventilation path of the unit cooler 4 and the fan 44 is rotated at a predetermined rotation speed, the air volume is reduced from the determination threshold value as a trigger. The control device 10 may start cleaning.
 (まとめ)
 以上の実施の形態について、再び図面を参照して総括する。
(summary)
The above embodiments will be summarized again with reference to the drawings.
 図1および図7に示すように、本開示の冷却装置100は、蒸発器41と、蒸発器41の熱交換性能を示すパラメータを取得するセンサ51,52と、蒸発器41を洗浄する洗浄装置5と、洗浄装置5を制御する制御装置10とを備える。制御装置10は、パラメータの値が、基準状態よりも低下した熱交換性能を示す場合には、洗浄装置5を作動させるように構成される。これにより、最適なタイミングで洗浄開始することができる。洗浄タイミングの最適化を実現することで、無駄な洗浄をなくし、ユニットクーラ本来の冷却能力を維持できる。また、冷却運転を停止させる頻度も少なくなるため、省エネルギー性に優れた冷却装置を実現できる。 As shown in FIGS. 1 and 7, the cooling device 100 of the present disclosure includes an evaporator 41, sensors 51 and 52 for acquiring parameters indicating the heat exchange performance of the evaporator 41, and a cleaning device for cleaning the evaporator 41. 5 and a control device 10 for controlling the cleaning device 5. The control device 10 is configured to operate the cleaning device 5 when the value of the parameter shows a heat exchange performance lower than the reference state. As a result, cleaning can be started at the optimum timing. By optimizing the cleaning timing, unnecessary cleaning can be eliminated and the original cooling capacity of the unit cooler can be maintained. In addition, since the frequency of stopping the cooling operation is reduced, it is possible to realize a cooling device having excellent energy saving.
 好ましくは、図6、図7に示すように、制御装置10は、蒸発器41に付着した霜を除去する除霜運転を実行した後に、センサ51または52を用いて取得したパラメータの値が、基準状態よりも低下した蒸発器41の熱交換性能を示す場合には、洗浄装置5を作動させるように構成される。 Preferably, as shown in FIGS. 6 and 7, the control device 10 determines the value of the parameter acquired by using the sensor 51 or 52 after performing the defrosting operation for removing the frost adhering to the evaporator 41. When the heat exchange performance of the evaporator 41 is lower than the reference state, the cleaning device 5 is configured to operate.
 好ましくは、図6に示すように、パラメータTDは、蒸発器41において冷媒が熱交換する冷却対象空間の空気の温度RTと蒸発器41における冷媒の蒸発温度ETとの差である。制御装置は、パラメータTDがしきい値TDthよりも大きくなった場合に洗浄装置5を作動させるように構成される。 Preferably, as shown in FIG. 6, the parameter TD is the difference between the temperature RT of the air in the cooling target space where the refrigerant exchanges heat in the evaporator 41 and the evaporation temperature ET of the refrigerant in the evaporator 41. The control device is configured to operate the cleaning device 5 when the parameter TD becomes larger than the threshold value TDth.
 より好ましくは、図4に示すように、センサは、空気の温度RTを測定するセンサ52と、蒸発器41を通過する冷媒の温度ETを測定するセンサ54または圧力PLを測定するセンサ51を含む。 More preferably, as shown in FIG. 4, the sensor includes a sensor 52 for measuring the temperature RT of air, a sensor 54 for measuring the temperature ET of the refrigerant passing through the evaporator 41, or a sensor 51 for measuring the pressure PL. ..
 好ましくは、図10に示したように、冷却装置100Aは、蒸発器41に冷却対象空間の空気を供給するためのファン44をさらに備える。冷却装置100Aで使用されるパラメータは、蒸発器41の表面に形成された通風隙間を通過する空気の流量Fである。空気の流量Fは、風量センサ55で検出される。制御装置10は、流量Fがしきい値Fthよりも小さくなった場合に洗浄装置5を作動させるように構成される。この場合、図7、図8、図9において、パラメータとしてパラメータTDに代えて風量Fが使用され、しきい値TDthに代えてしきい値Fthが使用される。 Preferably, as shown in FIG. 10, the cooling device 100A further includes a fan 44 for supplying air in the cooling target space to the evaporator 41. The parameter used in the cooling device 100A is the flow rate F of air passing through the ventilation gap formed on the surface of the evaporator 41. The air flow rate F is detected by the air volume sensor 55. The control device 10 is configured to operate the cleaning device 5 when the flow rate F becomes smaller than the threshold value Fth. In this case, in FIGS. 7, 8 and 9, the air volume F is used as the parameter instead of the parameter TD, and the threshold value Fth is used instead of the threshold value TDth.
 好ましくは、図8に示すように、制御装置10は、蒸発器41の熱交換性能が基準状態よりも増加するまで、繰り返し洗浄装置5を作動させるように構成される。このようにすることによって、洗浄によって冷却装置の冷却能力を確実に復活させることができる。 Preferably, as shown in FIG. 8, the control device 10 is configured to repeatedly operate the cleaning device 5 until the heat exchange performance of the evaporator 41 increases from the reference state. By doing so, the cooling capacity of the cooling device can be reliably restored by cleaning.
 より好ましくは、図9に示すように、制御装置10は、蒸発器41の熱交換性能が基準状態よりも一旦低下してから熱交換性能が基準状態より低下したままの状態で洗浄装置5を繰り返し作動させた回数が判定値Y以上である場合には、ユーザに警告を行なうように構成される。このようにすることによって、自動洗浄では冷却能力が回復しない場合には、ユーザは点検して冷却装置を修理することができる。 More preferably, as shown in FIG. 9, the control device 10 uses the cleaning device 5 in a state where the heat exchange performance of the evaporator 41 is once lowered from the reference state and then the heat exchange performance remains lower than the reference state. When the number of times of repeated operation is equal to or greater than the determination value Y, a warning is given to the user. By doing so, if the cooling capacity is not restored by automatic cleaning, the user can inspect and repair the cooling device.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 1 圧縮機、2 凝縮器、3 膨張弁、4 ユニットクーラ、5 洗浄装置、10 制御装置、11 処理回路、12 メモリ、13 入出力部、20 リモートコントローラ、30 給水源、32 開閉弁、34 洗浄配管、41 蒸発器、44 ファン、45 ドレンパン、51 圧力センサ、52,54 温度センサ、55 風量センサ、100,100A 冷却装置、Nz1 ノズル。 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Unit cooler, 5 Cleaning device, 10 Control device, 11 Processing circuit, 12 Memory, 13 Input / output section, 20 Remote controller, 30 Water supply source, 32 On-off valve, 34 Cleaning Piping, 41 evaporator, 44 fan, 45 drain pan, 51 pressure sensor, 52, 54 temperature sensor, 55 air volume sensor, 100, 100A cooling device, Nz1 nozzle.

Claims (7)

  1.  蒸発器と、
     前記蒸発器の熱交換性能を示すパラメータを取得するセンサと、
     前記蒸発器を洗浄する洗浄装置と、
     前記洗浄装置を制御する制御装置とを備え、
     前記制御装置は、前記パラメータの値が、基準状態よりも低下した熱交換性能を示す場合には、前記洗浄装置を作動させるように構成される、冷却装置。
    With an evaporator,
    A sensor that acquires parameters indicating the heat exchange performance of the evaporator, and
    A cleaning device for cleaning the evaporator and
    A control device for controlling the cleaning device is provided.
    The control device is a cooling device configured to operate the cleaning device when the value of the parameter indicates a heat exchange performance lower than the reference state.
  2.  前記制御装置は、前記制御装置は、前記蒸発器に付着した霜を除去する除霜運転を実行した後に前記センサを用いて取得したパラメータの値が、前記基準状態よりも低下した熱交換性能を示す場合には、前記洗浄装置を作動させるように構成される、請求項1に記載の冷却装置。 The control device has a heat exchange performance in which the value of the parameter acquired by the control device using the sensor after executing the defrosting operation for removing the frost adhering to the evaporator is lower than the reference state. The cooling device according to claim 1, which is configured to operate the cleaning device when shown.
  3.  前記パラメータは、前記蒸発器において冷媒が熱交換する冷却対象空間の空気の温度と前記蒸発器における前記冷媒の蒸発温度との差であり、
     前記制御装置は、前記差がしきい値よりも大きくなった場合に前記洗浄装置を作動させるように構成される、請求項1または2に記載の冷却装置。
    The parameter is the difference between the temperature of the air in the cooling target space where the refrigerant exchanges heat in the evaporator and the evaporation temperature of the refrigerant in the evaporator.
    The cooling device according to claim 1 or 2, wherein the control device is configured to operate the cleaning device when the difference becomes larger than a threshold value.
  4.  前記センサは、
     前記空気の温度を測定する第1センサと、
     前記蒸発器を通過する前記冷媒の温度または圧力を測定する第2センサとを含む、請求項3に記載の冷却装置。
    The sensor is
    The first sensor that measures the temperature of the air and
    The cooling device according to claim 3, further comprising a second sensor for measuring the temperature or pressure of the refrigerant passing through the evaporator.
  5.  前記蒸発器に冷却対象空間の空気を供給するためのファンをさらに備え、
     前記パラメータは、前記蒸発器の表面に形成された通風隙間を通過する空気の流量であり、
     前記制御装置は、前記流量がしきい値よりも小さくなった場合に前記洗浄装置を作動させるように構成される、請求項1または2に記載の冷却装置。
    The evaporator is further equipped with a fan for supplying air in the space to be cooled.
    The parameter is the flow rate of air passing through the ventilation gap formed on the surface of the evaporator.
    The cooling device according to claim 1 or 2, wherein the control device is configured to operate the cleaning device when the flow rate becomes smaller than a threshold value.
  6.  前記制御装置は、前記熱交換性能が前記基準状態よりも増加するまで、繰り返し前記洗浄装置を作動させるように構成される、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the control device is configured to repeatedly operate the cleaning device until the heat exchange performance increases from the reference state.
  7.  前記制御装置は、前記熱交換性能が前記基準状態よりも一旦低下してから前記熱交換性能が前記基準状態より低下したままの状態で前記洗浄装置を繰り返し作動させた回数が判定値以上である場合には、ユーザに警告を行なうように構成される、請求項6に記載の冷却装置。 In the control device, the number of times the cleaning device is repeatedly operated while the heat exchange performance is once lower than the reference state and then the heat exchange performance is lower than the reference state is equal to or greater than the determination value. The cooling device according to claim 6, wherein the cooling device is configured to warn the user in the case of a case.
PCT/JP2020/021791 2020-06-02 2020-06-02 Cooling device WO2021245792A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022529179A JPWO2021245792A1 (en) 2020-06-02 2020-06-02
PCT/JP2020/021791 WO2021245792A1 (en) 2020-06-02 2020-06-02 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021791 WO2021245792A1 (en) 2020-06-02 2020-06-02 Cooling device

Publications (1)

Publication Number Publication Date
WO2021245792A1 true WO2021245792A1 (en) 2021-12-09

Family

ID=78831000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021791 WO2021245792A1 (en) 2020-06-02 2020-06-02 Cooling device

Country Status (2)

Country Link
JP (1) JPWO2021245792A1 (en)
WO (1) WO2021245792A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198236A (en) * 1993-12-10 1995-08-01 Copeland Corp Air flow interruption detecting method in heat pump system
JP2002147907A (en) * 2000-11-13 2002-05-22 Daikin Ind Ltd Refrigerating plant
US6467282B1 (en) * 2000-09-27 2002-10-22 Patrick D. French Frost sensor for use in defrost controls for refrigeration
JP2006038362A (en) * 2004-07-28 2006-02-09 Daikin Ind Ltd Freezing device
JP2010127568A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Abnormality detection device and refrigerating cycle device including the same
JP2010175247A (en) * 2006-03-23 2010-08-12 Daikin Ind Ltd Refrigeration system and analyzer of the same
JP2012007885A (en) * 2011-09-16 2012-01-12 Mitsubishi Electric Corp Frost deposit detection device
JP2012532306A (en) * 2009-07-07 2012-12-13 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト Heat exchange system and method of operating a heat exchange system
JP2016109419A (en) * 2014-12-05 2016-06-20 ダイキン工業株式会社 Freezer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117734A (en) * 1992-10-05 1994-04-28 Hitachi Ltd Heat exchanger
JP5534789B2 (en) * 2009-11-30 2014-07-02 三菱電機株式会社 Cooling system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198236A (en) * 1993-12-10 1995-08-01 Copeland Corp Air flow interruption detecting method in heat pump system
US6467282B1 (en) * 2000-09-27 2002-10-22 Patrick D. French Frost sensor for use in defrost controls for refrigeration
JP2002147907A (en) * 2000-11-13 2002-05-22 Daikin Ind Ltd Refrigerating plant
JP2006038362A (en) * 2004-07-28 2006-02-09 Daikin Ind Ltd Freezing device
JP2010175247A (en) * 2006-03-23 2010-08-12 Daikin Ind Ltd Refrigeration system and analyzer of the same
JP2010127568A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Abnormality detection device and refrigerating cycle device including the same
JP2012532306A (en) * 2009-07-07 2012-12-13 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト Heat exchange system and method of operating a heat exchange system
JP2012007885A (en) * 2011-09-16 2012-01-12 Mitsubishi Electric Corp Frost deposit detection device
JP2016109419A (en) * 2014-12-05 2016-06-20 ダイキン工業株式会社 Freezer

Also Published As

Publication number Publication date
JPWO2021245792A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
EP2840324B1 (en) Outdoor unit of air conditioner and air conditioner
JP2012207803A (en) Control method of air conditioner
JP2012057869A (en) Air conditioner
CN110207433B (en) Defrosting control method, control device, heat pump system and storage medium
TWI650188B (en) air conditioner
JP6749507B1 (en) Air conditioner
WO2023284197A1 (en) In-pipe self-cleaning control method for outdoor heat exchanger
CN112189120B (en) Method for terminating defrosting of evaporator
JP2008138914A (en) Refrigerating device and method of returning refrigerating machine oil
WO2023279614A1 (en) Indoor heat exchanger in-tube self-cleaning control method
WO2021245792A1 (en) Cooling device
JP2018035981A (en) Air conditioner
WO2021002087A1 (en) Air conditioner
JP2018071893A (en) Air conditioner
JPWO2019239493A1 (en) Air conditioner
JP4298388B2 (en) Air conditioner and control method of air conditioner
JP2016065699A (en) Refrigeration cycle device
JPH11257718A (en) Method of controlling air conditioner
EP3604953B1 (en) Air conditioner
WO2021245791A1 (en) Cooling device
JPH0755236A (en) Air conditioner
WO2021186490A1 (en) Air conditioner
JP2001324248A (en) Defrosting controller for freezing apparatus
WO2023284198A1 (en) Control method for in-pipe self-cleaning of indoor heat exchanger
WO2022162776A1 (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939163

Country of ref document: EP

Kind code of ref document: A1