WO2021237399A1 - Methods and apparatus for improving radio frequency resource availability - Google Patents

Methods and apparatus for improving radio frequency resource availability Download PDF

Info

Publication number
WO2021237399A1
WO2021237399A1 PCT/CN2020/092042 CN2020092042W WO2021237399A1 WO 2021237399 A1 WO2021237399 A1 WO 2021237399A1 CN 2020092042 W CN2020092042 W CN 2020092042W WO 2021237399 A1 WO2021237399 A1 WO 2021237399A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
channel quality
connection
dds
threshold
Prior art date
Application number
PCT/CN2020/092042
Other languages
French (fr)
Inventor
Guojing LIU
Dongsheng Wang
Chaofeng HUI
Dunfa SHI
Fojian ZHANG
Xiaomeng Lu
Xuesong Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/092042 priority Critical patent/WO2021237399A1/en
Publication of WO2021237399A1 publication Critical patent/WO2021237399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs

Definitions

  • aspects of the present disclosure relate generally to wireless communications, and more particularly, to apparatuses and methods for improving radio frequency resource availability.
  • Wireless communication networks are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on.
  • These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
  • CDMA code-division multiple access
  • TDMA time-division multiple access
  • FDMA frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • 5G communications technology may include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which may allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • URLLC ultra-reliable-low latency communications
  • massive machine type communications which may allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • a user equipment may be connected to a first cell (or base station (BS) ) via a first subscription and to a second cell (or BS) via a second subscription.
  • the first subscription may be a default data subscription (DDS) and the second subscription may be a non-DDS.
  • DDS data subscription
  • the non-DDS a second coverage area of the second cell may overlap with a third coverage area of a third cell.
  • the UE may switch back and forth between connecting to the second cell and the third cell.
  • the UE diverts radio frequency (RF) resources which may lead to instability to the connection with the first subscription. Therefore, improvements may be desirable.
  • RF radio frequency
  • aspects of the present disclosure include methods for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) , receiving one or more reference signals from the second cell, determining a channel quality associated with the second cell based on the one or more reference signals, determining whether the channel quality is lower than a threshold, determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  • DDS Evolved Universal Terrestrial Radio Access
  • NR New Radio
  • a user equipment having a memory comprising instructions, a transceiver, and one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establish a second connection, to a second cell, associated with a non-default data subscription (DDS) , receive one or more reference signals from the second cell, receive one or more reference signals from the second cell, determine a channel quality associated with the second cell based on the one or more reference signals, determine whether the channel quality is lower than a threshold, determine whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establish a third connection, to a third cell, associated with the non-DDS based at least in
  • E-UTRA Evolve
  • An aspect of the present disclosure includes a user equipment (UE) including means for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, means for establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) , means for receiving one or more reference signals from the second cell, means for determining a channel quality associated with the second cell based on the one or more reference signals, means for determining whether the channel quality is lower than a threshold, means for determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and means for establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • NR New Radio
  • Some aspects of the present disclosure include non-transitory computer readable media having instructions stored therein that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establish a second connection, to a second cell, associated with a non-default data subscription (DDS) , receive one or more reference signals from the second cell, receive one or more reference signals from the second cell, determine a channel quality associated with the second cell based on the one or more reference signals, determine whether the channel quality is lower than a threshold, determine whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network
  • FIG. 2 is a schematic diagram of an example of a user equipment
  • FIG. 3 is a schematic diagram of an example of a base station
  • Fig. 4 illustrates an example of an environment for a UE to prevent a non-default data subscription (non-DDS) to consume radio frequency (RF) resource allocated for DDS according to aspects of the present disclosure
  • Fig. 5 illustrates an example of a process for performing reselection according to aspects of the present disclosure
  • Fig. 6 illustrates an example of a method for performing reselection process associated with a non-DDS of a UE according to aspects of the present disclosure.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that may be accessed by a computer.
  • such computer-readable media may comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that may be used to store computer executable code in the form of instructions or data structures that may be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that may be used to store computer executable code in the form of instructions or data structures that may be accessed by a computer.
  • a UE may be connected to an anchoring cell via dual connectivity for a default data subscription (DDS) and a first a non-DDS cell via a non-DDS connection.
  • DDS default data subscription
  • the non-DDS may trigger multiple cell reselection processes that causes the UE to toggle between connecting to the first non-DDS cell and a second non-DDS cell.
  • the multiple cell reselection processes may cause the UE to divert radio frequency (RF) resources away from the DDS and toward the non-DDS.
  • RF radio frequency
  • the UE may evaluate a channel quality associated with the wireless connection between the UE and the first cell. If the channel quality is greater than or equal to a certain threshold, the UE may camp on the first cell and may prevent the toggling between the first cell and the second cell. As a result, the RF resources may be allocated to the DDS without allocating to the non-DDS.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes at least one BS 105, UEs 110, an Evolved Packet Core (EPC) 160, and a 5G Core (5GC) 190.
  • the BS 105 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the UE 110 may include a determination component 224 that determines whether one or more channel conditions are met.
  • the communication component 222 and the determination component 224 may be implemented using hardware, software, or a combination of hardware and software.
  • the BS 105 may include a communication component 322 configured to communicate with the UE 110.
  • the communication component 322 may be implemented using hardware, software, or a combination of hardware and software.
  • a BS 105 configured for 4G Long-Term Evolution (LTE) may interface with the EPC 160 through backhaul links interfaces 132 (e.g., S1, X2, Internet Protocol (IP) , or flex interfaces) .
  • LTE Long-Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunications System
  • a BS 105 configured for 5G NR may interface with 5GC 190 through backhaul links interfaces 134 (e.g., S1, X2, Internet Protocol (IP) , or flex interface) .
  • NG-RAN Next Generation RAN
  • the BS 105 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the BS 105 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over the backhaul links interfaces 134.
  • the backhaul links 132, 134 may be wired or wireless.
  • the BS 105 may wirelessly communicate with the UEs 110. Each of the BS 105 may provide communication coverage for a respective geographic coverage area 130. There may be overlapping geographic coverage areas 130. For example, the small cell 105' may have a coverage area 130' that overlaps the coverage area 130 of one or more macro BS 105.
  • a network that includes both small cell and macro cells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the BS 105 and the UEs 110 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 110 to a BS 105 and/or downlink (DL) (also referred to as forward link) transmissions from a BS 105 to a UE 110.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the BS 105 /UEs 110 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 105' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 105' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 105', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a BS 105 may include an eNB, gNodeB (gNB) , or other type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 110.
  • mmW millimeter wave
  • mmW millimeter wave
  • near mmW frequencies in communication with the UE 110.
  • the gNB 180 When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station.
  • Extremely high frequency (EHF) is part of the radio frequency (RF) in the electromagnetic spectrum.
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 110 to compensate for the path loss and short range.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 110 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a packet switched (PS) Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the BS 105 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 110 and the 5GC 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • the BS 105 may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, an access point, an access node, a radio transceiver, a NodeB, eNodeB (eNB) , gNB, Home NodeB, a Home eNodeB, a relay, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the BS 105 provides an access point to the EPC 160 or 5GC 190 for a UE 110.
  • Examples of UEs 110 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 110 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 110 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • one example of an implementation of the UE 110 may include a modem 220 having the communication component 222 and the determination component 224.
  • the UE 110 may include a determination component 224 that determines whether one or more channel conditions are met.
  • the UE 110 may include a variety of components, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with the modem 220 and the communication component 222 to enable one or more of the functions described herein related to communicating with the BS 105.
  • the one or more processors 212, modem 220, memory 216, transceiver 202, RF front end 288 and one or more antennas 265, may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
  • the one or more antennas 265 may include one or more antennas, antenna elements and/or antenna arrays.
  • the one or more processors 212 may include the modem 220 that uses one or more modem processors.
  • the various functions related to the communication component 222 and the determination component 224 may be included in the modem 220 and/or processors 212 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiving device processor, or a transceiver processor associated with transceiver 202.
  • the modem 220 may configure the UE 110 along with the processors 212. In other aspects, some of the features of the one or more processors 212 and/or the modem 220 associated with the communication component 222 may be performed by transceiver 202.
  • the memory 216 may be configured to store data used and/or local versions of application 275. Also, the memory 216 may be configured to store data used herein and/or local versions of the communication component 222 and the determination component 224, and/or one or more of the subcomponents being executed by at least one processor 212.
  • Memory 216 may include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 222 and the determination component 224, and/or one or more of the subcomponents, and/or data associated therewith, when UE 110 is operating at least one processor 212 to execute the communication component 222 and the determination component 224, and/or one or more of the subcomponents.
  • Transceiver 202 may include at least one receiver 206 and at least one transmitter 208.
  • Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • Receiver 206 may be, for example, a RF receiving device.
  • the receiver 206 may receive signals transmitted by at least one BS 105.
  • Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
  • UE 110 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one BS 105 or wireless transmissions transmitted by UE 110.
  • RF front end 288 may be coupled with one or more antennas 265 and may include one or more low-noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • LNA 290 may amplify a received signal at a desired output level.
  • each LNA 290 may have a specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular LNA 290 and the specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level.
  • each PA 298 may have specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular PA 298 and the specified gain value based on a desired gain value for a particular application.
  • one or more filters 296 may be used by RF front end 288 to filter a received signal to obtain an input RF signal.
  • a respective filter 296 may be used to filter an output from a respective PA 298 to produce an output signal for transmission.
  • each filter 296 may be coupled with a specific LNA 290 and/or PA 298.
  • RF front end 288 may use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
  • transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288.
  • transceiver may be tuned to operate at specified frequencies such that UE 110 may communicate with, for example, one or more BS 105 or one or more cells associated with one or more BS 105.
  • the modem 220 may configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 110 and the communication protocol used by the modem 220.
  • the modem 220 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202.
  • the modem 220 may be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • the modem 220 may be multimode and be configured to support multiple operating networks and communications protocols.
  • the modem 220 may control one or more components of UE 110 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration may be based on the mode of the modem and the frequency band in use.
  • the modem configuration may be based on UE configuration information associated with UE 110 as provided by the network.
  • one example of an implementation of the BS 105 may include a modem 320 having the communication component 322.
  • the BS 105 may include a communication component 322 configured to communicate with the UE 110.
  • the BS 105 may include a variety of components, including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with the modem 320 and the communication component 322 to enable one or more of the functions described herein related to communicating with the UE 110.
  • the one or more processors 312, modem 320, memory 316, transceiver 302, RF front end 388 and one or more antennas 365 may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
  • the one or more processors 312 may include the modem 320 that uses one or more modem processors.
  • the various functions related to the communication component 322 may be included in the modem 320 and/or processors 312 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 312 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiving device processor, or a transceiver processor associated with transceiver 302.
  • the modem 320 may configure the BS 105 and processors 312. In other aspects, some of the features of the one or more processors 312 and/or the modem 320 associated with the communication component 322 may be performed by transceiver 302.
  • the memory 316 may be configured to store data used herein and/or local versions of applications 375. Also, the memory 316 may be configured to store data used herein and/or local versions of the communication component 322, and/or one or more of the subcomponents being executed by at least one processor 312.
  • Memory 316 may include any type of computer-readable medium usable by a computer or at least one processor 312, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 316 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 322, and/or one or more of the subcomponents, and/or data associated therewith, when the BS 105 is operating at least one processor 312 to execute the communication component 322, and/or one or more of the subcomponents.
  • Transceiver 302 may include at least one receiver 306 and at least one transmitter 308.
  • the at least one receiver 306 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • the receiver 306 may be, for example, a RF receiving device.
  • receiver 306 may receive signals transmitted by the UE 110.
  • Transmitter 308 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 308 may including, but is not limited to, an RF transmitter.
  • the BS 105 may include RF front end 388, which may operate in communication with one or more antennas 365 and transceiver 302 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by other BS 105 or wireless transmissions transmitted by UE 110.
  • RF front end 388 may be coupled with one or more antennas 365 and may include one or more low-noise amplifiers (LNAs) 390, one or more switches 392, one or more power amplifiers (PAs) 398, and one or more filters 396 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • LNA 390 may amplify a received signal at a desired output level.
  • each LNA 390 may have a specified minimum and maximum gain values.
  • RF front end 388 may use one or more switches 392 to select a particular LNA 390 and the specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 398 may be used by RF front end 388 to amplify a signal for an RF output at a desired output power level.
  • each PA 398 may have specified minimum and maximum gain values.
  • RF front end 388 may use one or more switches 392 to select a particular PA 398 and the specified gain value based on a desired gain value for a particular application.
  • one or more filters 396 may be used by RF front end 388 to filter a received signal to obtain an input RF signal.
  • a respective filter 396 may be used to filter an output from a respective PA 398 to produce an output signal for transmission.
  • each filter 396 may be coupled with a specific LNA 390 and/or PA 398.
  • RF front end 388 may use one or more switches 392 to select a transmit or receive path using a specified filter 396, LNA 390, and/or PA 398, based on a configuration as specified by transceiver 302 and/or processor 312.
  • transceiver 302 may be configured to transmit and receive wireless signals through one or more antennas 365 via RF front end 388.
  • transceiver may be tuned to operate at specified frequencies such that BS 105 may communicate with, for example, the UE 110 or one or more cells associated with one or more BS 105.
  • the modem 320 may configure transceiver 302 to operate at a specified frequency and power level based on the base station configuration of the BS 105 and the communication protocol used by the modem 320.
  • the modem 320 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 302 such that the digital data is sent and received using transceiver 302.
  • the modem 320 may be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • the modem 320 may be multimode and be configured to support multiple operating networks and communications protocols.
  • the modem 320 may control one or more components of the BS 105 (e.g., RF front end 388, transceiver 302) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration may be based on the mode of the modem and the frequency band in use.
  • the modem configuration may be based on base station configuration associated with the BS 105.
  • an environment 400 may include an anchor BS 105a associated with an anchor cell 410a.
  • the anchor cell 410a may be associated with the DDS.
  • the anchor BS 105a may include an anchor cell coverage area 130a.
  • the anchor cell 410a may operate using an anchor cell technology (e.g., NR, LTE, GSM, UTRA, Wi-Fi, etc. ) .
  • the environment 400 may include a first BS 105b associated with a first cell 410b.
  • the first BS 105b may include a first coverage area 130b.
  • the first cell 410b may operate using a first technology same or different than the anchor cell technology.
  • the first technology may include NR, LTE, GSM, UTRA, Wi-Fi, etc.
  • the environment 400 may include a second BS 105c associated with a second cell 410c.
  • the second BS 105c may include a second coverage area 130c.
  • the second cell 410c may operate using a second technology same or different than the anchor cell technology.
  • the first technology may include NR, LTE, GSM, UTRA, Wi-Fi, etc.
  • the environment 400 may include the UE 110 within the anchor cell coverage area 130a, the first coverage area 130b, and the second coverage area 130c.
  • the UE 110 may communicate with the anchor BS 105a via the anchor communication links 120a, and one or more of the first BS 105b via the first communication links 120b and/or the second BS 105c via the second communication links 120c.
  • the anchor cell 410a, the first cell 410b, and the second cell 410c may communicate with each other via the backhaul links 132, 134.
  • the anchor cell 410a may include the anchor BS 105a.
  • the anchor cell 410a may include the anchor BS 105a and one or more additional base stations.
  • the UE 110 may be wirelessly connected to the anchor BS 105a of the anchor cell 410a.
  • the anchor cell 410a may be the master cell or the master cell group for the UE 110.
  • the UE 110 may be operating in E-UTRA NR dual connectivity (ENDC) mode.
  • the UE 110 may be camping on the anchor cell 410a (e.g., an LTE anchor cell) while connected to a secondary cell (e.g., 5G, not shown) .
  • the anchor cell 410a may be associated with a DDS for the UE 110.
  • the first cell 410b and/or the second cell 410c may be associated with a non-DDS.
  • the UE 110 may allocate RF resources (e.g., the one or more antennas 265, the RF front end 288 and the subcomponents of the RF front end 288, etc. ) to the DDS and the non-DDS.
  • RF resources e.g., the one or more antennas 265, the
  • the UE 110 may be wireless connected to the first cell 410b associated with the non-DDS. Prior to a non-DDS reselection process (the UE 110 selecting the second cell 410c over the first cell 410b, discussed below) the first cell 410b may transmit one or more reference signals (RSs) via the first BS 105b. The UE 110 may receive the one or more reference signals. The UE 110 may determine the channel quality using at least one of a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , a reference signal strength indication (RSSI) , a signal to noise ratio (SNR) , or a signal to interference plus noise ratio (SINR) .
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • RSSI reference signal strength indication
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • the UE 110 may measure the RSRP based on the average power level of power levels of the one or more reference signals. In another example, the UE 110 may measure the RSSI based on the total power of the one or more reference signals. In some examples, the UE 110 may measure the RSRQ based on the RSRP and the RSSI. In certain examples, the UE 110 may measure the SINR based on the received powers of the signal, the noise, and the interference. Other measurements may also be used to measure the channel quality between the UE 110 and the first cell 410a.
  • the UE 110 may compare at least one of the RSRP, RSRQ, RSSI, SNR, and/or SINR to one or more threshold values.
  • One or more of the anchor BS 105a or the first BS 105b may transmit one or more threshold values to the UE 110.
  • the one or more threshold values may be stored in the memory 216 of the UE 110.
  • the UE 110 may compare the measured channel quality to a corresponding threshold.
  • the UE 110 may remain connected to the first cell 410b, or to evaluate a reselection condition to connect to another cell, e.g., the second cell 410c.
  • the UE 110 may compare the RSRP with a threshold RSRP (RSRP Thresh ) . If the RSRP is greater than or equal to the RSRP Thresh (e.g., RSRP ⁇ -105 decibel milliwatts (dBm) ) , the UE 110 may determine to remain in the first cell 410b for the non-DDS. Alternatively or additionally, the UE 110 may compare the SNR with a threshold SNR (SNR Thresh ) . If the SNR is greater than or equal to the SNR Thresh (e.g., SNR ⁇ 10 decibel (dB) ) , the UE 110 may determine to remain in the first cell 410b.
  • SNR Thresh threshold SNR
  • the UE 110 may engage in the non-DDS reselection process regardless of the channel quality of the connection between the UE 110 and the first cell 410b.
  • the UE 110 may engage in the non-DDS reselection process when the channel quality falls below a certain threshold.
  • the UE 110 may prevent diverting RF resources allocated for connection to the anchor cell 410a associated with the DDS to the reselection process associated with the non-DDS. This reduces the disruption to the DDS connection between the UE 110 and the anchor cell 410a.
  • the UE 110 may determine to evaluate a reselection condition.
  • the SNR is less than the SNR Thresh (e.g., SNR ⁇ 10 decibel (dB) ) , the UE 110 may determine to evaluate the reselection condition.
  • the UE 110 may measure the serving cell ranking criterion (R s ) for the serving cell (i.e., the first cell 410b) and the neighboring cell ranking criterion (R n ) for the neighboring cell (i.e., the second cell 410c) . If R S ⁇ R n (i.e., cell ranking criterion of the first cell 410b is greater than or equal to the cell ranking criterion of the second cell 410c) , the UE 110 may remain in the first cell 410b.
  • R s serving cell ranking criterion
  • R n neighboring cell ranking criterion
  • the UE 110 may transmit a tracking area update request to the first cell 410b to initiate the reselection process associated with the non-DDS.
  • R s may be calculated based on the RSRP measurement quantity associated with the first cell 410b (Q meas, s ) , the hysteresis (Q Hyst ) , and the temporary offset (Qoffset temp ) .
  • R n may be derived from the RSRP measurement quantity associated with the second cell 410c (Q meas, n ) , the offset (Qoffset) , and Qoffset temp . For intra-frequency reselection, Qoffset equals to Qoffset s, n (offset between the first cell 410b and the second cell 410c, if valid) , otherwise Qoffset equals to zero.
  • Qoffset s, n Q offset s, n plus the frequency specific offset for equal priority frequencies (Qoffset frequency , if valid) , otherwise this equals to Qoffset frequency .
  • R s Q meas, s + Q Hyst –Qoffset temp
  • R n Q meas, n -Qoffset –Qoffset temp .
  • the reselection process may trigger a tracking area update associated with the UE 110.
  • the reselection process may cause the UE 110 to connect to the second cell 410c.
  • the reselection process may require the UE 110 to allocate some or all RF resources utilized by the anchor cell 410a to the reselection process.
  • the UE 110 may evaluate the reselection condition with the second cell 410c as the serving cell and the first cell 410b as the neighboring cell.
  • the UE 110 may determine if R S ⁇ R n (i.e., cell ranking criterion of the second cell 410c is greater than or equal to the cell ranking criterion of the first cell 410b) , the UE 110 may remain in the second cell 410c. If R S ⁇ R n (i.e., cell ranking criterion of the second cell 410c is less than the cell ranking criterion of the first cell 410b) , the UE 110 may transmit a tracking area update request to the second cell 410c to initiate the reselection process associated with the non-DDS (as described above) . The reselection process may cause the UE 110 to connect to the first cell 410b.
  • R S ⁇ R n i.e., cell ranking criterion of the second cell 410c is greater than or equal to the cell ranking criterion of the first cell 410b
  • the alternating connections to the first cell 410b and the second cell 410c may cause a “ping-pong” effect, which is when the UE 110 switches back and forth between connecting to the first cell 410b and the second cell 410c.
  • the ping-pong effect may cause the UE 110 to divert the RF resources to the non-DDS instead of the DDS.
  • Fig. 5 illustrates an example of a process for performing reselection.
  • the process 500 may be performed by the UE 110 (including the DDS subscription 502 and the non-DDS subscription 504) , the first cell 410b, and the second cell 410c.
  • the UE 110 may be connected to the anchor cell 410a (Fig. 4) for the DDS and to the first cell 410b for the non-DDS.
  • the UE 110 may be operating in E-UTRA NR dual connectivity (ENDC) mode.
  • the UE 110 may be camping on the anchor cell 410a (e.g., an LTE anchor cell) while connected to a secondary cell (e.g., 5G, not shown) for the DDS and on the first cell 410b (e.g., an LTE cell) for the non-DDS.
  • the anchor cell 410a e.g., an LTE anchor cell
  • a secondary cell e.g., 5G, not shown
  • the first cell 410b e.g., an LTE cell
  • the non-DDS sub 504 of the UE 110 may determine whether the channel quality is lower than the threshold. For example, the UE 110 may receive a number of RSs from the first cell 410b and the second cell 410c. The UE 110 may measure, based on the number of RSs, at least one of the RSRP, RSRQ, RSSI, SNR and/or SINR associated with each of the first cell410b and the second cell 410c. In one aspect, the UE 110 may compare the RSRP with a threshold RSRP (RSRP Thresh ) .
  • RSRP Thresh threshold RSRP
  • the UE 110 may determine to maintain the non-DDS connection with the first cell 410b. Alternatively or additionally, the UE 110 may compare the SNR with a threshold SNR (SNR Thresh ) . If the SNR is greater than or equal to the SNR Thresh (e.g., SNR ⁇ 10 dB) , the UE 110 may determine to maintain the non-DDS connection with the first cell 410b.
  • the threshold values e.g., RSRP Thresh or SNR Thresh ) may be stored in the UE 110 or transmitted by the first cell 410a.
  • the UE 110 may determine to evaluate a reselection condition.
  • the SNR is less than the SNR Thresh (e.g., SNR ⁇ 10 dB)
  • the UE 110 may determine to evaluate the reselection condition.
  • the non-DDS sub 504 of the UE 110 may determine whether the reselection condition is met.
  • the UE 110 may measure the serving cell ranking criterion (R s ) for the serving cell (i.e., the first cell 410b) and the neighboring cell ranking criterion (R n ) for the neighboring cell (i.e., the second cell 410c) . If R S ⁇ R n (i.e., cell ranking criterion of the first cell 410b is greater than or equal to the cell ranking criterion of the second cell 410c) , the UE 110 may remain in the first cell 410b.
  • the UE 110 may initiate the reselection process associated with the non-DDS.
  • R s may be calculated based on the RSRP measurement quantity associated with the first cell 410b (Q meas, s ) , the hysteresis (Q Hyst ) , and the temporary offset (Qoffset temp ) .
  • R n may be derived from the RSRP measurement quantity associated with the second cell 410c (Q meas, n ) , the offset (Qoffset) , and Qoffset temp . For intra-frequency reselection, Qoffset equals to Qoffset s, n (offset between the first cell 410b and the second cell 410c, if valid) , otherwise Qoffset equals to zero.
  • Qoffset s, n Q offset s, n plus the frequency specific offset for equal priority frequencies (Qoffset frequency , if valid) , otherwise this equals to Qoffset frequency .
  • R s Q meas, s + Q Hyst –Qoffset temp
  • R n Q meas, n -Qoffset –Qoffset temp .
  • the non-DDS sub 504 of the UE 110, the first cell 410b, and the second cell 410c may perform the reselection process.
  • the UE 110 may transmit a tracking area update request to the first cell 410b.
  • the first cell 410b and the second cell 410c may perform the tracking area update.
  • the UE 110 may subsequently establish wireless communication connection with the second cell 410c.
  • the non-DDS sub 504 of the UE 110 may evaluate the reselection condition with the second cell 410c as the serving cell and the first cell 410b as the neighboring cell. For example, the UE 110 may determine if R S ⁇ R n (i.e., cell ranking criterion of the second cell 410c is greater than or equal to the cell ranking criterion of the first cell 410b) , the UE 110 may remain in the second cell 410c.
  • R S ⁇ R n i.e., cell ranking criterion of the second cell 410c is greater than or equal to the cell ranking criterion of the first cell 410b
  • the UE 110 may transmit a tracking area update request to the second cell 410c to initiate the reselection process associated with the non-DDS (as described above) .
  • the reselection process may cause the UE 110 to revert back to the first cell 410b.
  • the non-DDS sub 504 of the UE 110, the first cell 410b, and the second cell 410c may perform the reselection process.
  • the UE 110 may transmit a tracking area update request to the second cell 410c.
  • the first cell 410b and the second cell 410c may perform the tracking area update.
  • the UE 110 may subsequently establish wireless communication connection with the first cell 410b.
  • Fig. 6 illustrates an example of a method for performing reselection process associated with a non-DDS of a UE.
  • a method 600 may be performed by the one or more of the processor 212, the memory 216, the applications 275, the modem 220, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the communication component 222 and the determination component 224, and/or one or more other components of the UE 110 in the wireless communication network 100.
  • the method 600 may establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode.
  • DDS data subscription
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • NR New Radio
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode as described above.
  • DDS data subscription
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • NR New Radio
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode.
  • DDS data subscription
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • NR New Radio
  • the method 600 may establish a second connection, to a second cell, associated with a non-default data subscription (DDS) .
  • DDS non-default data subscription
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may establish a second connection, to a second cell, associated with a non-default data subscription (DDS) as described above.
  • DDS non-default data subscription
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) .
  • DDS non-default data subscription
  • the method 600 may receive one or more reference signals from the second cell.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may receive one or more reference signals from the second cell.
  • the RF front end 288 may receive the electrical signals converted from electro-magnetic signals.
  • the RF front end 288 may filter and/or amplify the electrical signals.
  • the transceiver 202 or the receiver 206 may convert the electrical signals to digital signals, and send the digital signals to the communication component 222.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for receiving one or more reference signals from the second cell.
  • the method 600 may determine a channel quality associated with the second cell based on the one or more reference signals.
  • the determination component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may determine a channel quality associated with the second cell based on the one or more reference signals.
  • the determination component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for determining a channel quality associated with the second cell based on the one or more reference signals.
  • the method 600 may determine whether the channel quality is lower than a threshold.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may determine whether the channel quality is lower than a threshold.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for determining whether the channel quality is lower than a threshold.
  • the method 600 may establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied as described above.
  • the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  • the method 600 may further include any of the methods above, further comprising maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the channel quality being higher than or equal to the threshold.
  • the method 600 may further include any of the methods above, further comprising maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the reselection condition being not satisfied.
  • the method 600 may further include any of the methods above, wherein the channel quality comprises a reference signal received power (RSRP) or a signal to noise ratio (SNR) .
  • RSRP reference signal received power
  • SNR signal to noise ratio
  • the method 600 may further include any of the methods above, wherein determining whether the channel quality is lower than the threshold comprises determining whether the RSRP is less than -105 decibel milliwatts.
  • the method 600 may further include any of the methods above, wherein determining whether the channel quality is lower than the threshold comprises determining whether the SNR is less than 10 decibel.
  • the method 600 may further include any of the methods above, wherein the reselection condition is satisfied when R S ⁇ R n .
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM , etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM TM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • 3GPP LTE and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band.
  • LTE Long Term Evolution
  • LTE terminology is used in much of the description below, although the techniques may be applicable other next generation communication systems.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
  • a specially-programmed device such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a FPGA or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • a specially-programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a specially-programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above may be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium may be any available medium that may be accessed by a general purpose or special purpose computer.
  • computer-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • non-DDS sub may preempt RF resource when ping-pong reselection between two Tracking area.
  • RF resource For DSDS, non-DDS sub may preempt RF resource when ping-pong reselection between two Tracking area.
  • ping-pong reselection could happen between cell1 and cell2
  • RSRP ⁇ RSRP ⁇ threshold_RSRP (e.g. -105dbm) or
  • sub2 will handling reselection to cell2 by evaluate below cell-ranking criterion.
  • the cell-ranking criterion R s for serving cell and R n for neighbouring cells is defined by:
  • the UE shall perform ranking of all cells that fulfil the cell selection criterion S, but may exclude all CSG cells that are known by the UE not to be CSG member cells.
  • the cells shall be ranked according to the R criteria specified above, deriving Q meas, n and Q meas, s and calculating the R values using averaged RSRP results.
  • the UE shall perform cell reselection to that cell. If this cell is found to be not-suitable, the UE shall behave according to subclause 5.2.4.4.
  • the UE shall reselect the new cell, only if the following conditions are met:
  • the new cell is better ranked than the serving cell during a time interval Treselection RAT ;

Abstract

Aspects of the present disclosure include methods, apparatuses, and computer readable media for establishing a first connection, to a first cell, associated with a default data subscription (DDS), wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establishing a second connection, to a second cell, associated with a non-default data subscription (DDS), receiving one or more reference signals from the second cell, determining a channel quality associated with the second cell based on the one or more reference signals, determining whether the channel quality is lower than a threshold, determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.

Description

METHODS AND APPARATUS FOR IMPROVING RADIO FREQUENCY RESOURCE AVAILABILITY BACKGROUND
Aspects of the present disclosure relate generally to wireless communications, and more particularly, to apparatuses and methods for improving radio frequency resource availability.
Wireless communication networks are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. For example, a fifth generation (5G) wireless communications technology (which may be referred to as new radio (NR) ) is envisaged to expand and support diverse usage scenarios and applications with respect to current mobile network generations. In an aspect, 5G communications technology may include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which may allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information. As the demand for mobile broadband access continues to increase, however, further improvements in NR communications technology and beyond may be desired.
In a wireless communication network, a user equipment may be connected to a first cell (or base station (BS) ) via a first subscription and to a second cell (or BS) via a second subscription. The first subscription may be a default data subscription (DDS) and the second subscription may be a non-DDS. However, for the non-DDS, a second coverage area of the second cell may overlap with a third coverage area of a third cell. Depending on the qualities of the communication channels between the UE and the second cell and the UE and the third cell, the UE may switch back and forth between connecting to the second cell and the third cell. Each time the UE switched between the second cell and third cell, the UE diverts radio frequency (RF) resources which may lead to instability to the connection with the first subscription. Therefore, improvements may be desirable.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Aspects of the present disclosure include methods for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) , receiving one or more reference signals from the second cell, determining a channel quality associated with the second cell based on the one or more reference signals, determining whether the channel quality is lower than a threshold, determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
Other aspects of the present disclosure include a user equipment (UE) having a memory comprising instructions, a transceiver, and one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establish a second connection, to a second cell, associated with a non-default data subscription (DDS) , receive one or more reference signals from the second cell, receive one or more reference signals from the second cell, determine a channel quality associated with the second cell based on the one or more reference signals, determine whether the channel quality is lower than a threshold, determine whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
An aspect of the present disclosure includes a user equipment (UE) including means for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, means for establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) , means for receiving one or more reference signals from the second cell, means for determining a channel quality associated with the second cell based on the one or more reference signals, means for determining whether the channel quality is lower than a threshold, means for determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and means for establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
Some aspects of the present disclosure include non-transitory computer readable media having instructions stored therein that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is  operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode, establish a second connection, to a second cell, associated with a non-default data subscription (DDS) , receive one or more reference signals from the second cell, receive one or more reference signals from the second cell, determine a channel quality associated with the second cell based on the one or more reference signals, determine whether the channel quality is lower than a threshold, determine whether a reselection condition is satisfied in response to the channel quality being lower than the threshold, and establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network;
FIG. 2 is a schematic diagram of an example of a user equipment;
FIG. 3 is a schematic diagram of an example of a base station;
Fig. 4 illustrates an example of an environment for a UE to prevent a non-default data subscription (non-DDS) to consume radio frequency (RF) resource allocated for DDS according to aspects of the present disclosure;
Fig. 5 illustrates an example of a process for performing reselection according to aspects of the present disclosure; and
Fig. 6 illustrates an example of a method for performing reselection process associated with a non-DDS of a UE according to aspects of the present disclosure.
An appendix, the contents of which are incorporated in their entireties, is attached.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system  may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that may be accessed by a computer. By way of example, and not limitation, such computer-readable media may comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that may be used to store computer executable code in the form of instructions or data structures that may be accessed by a computer.
In some implementations, a UE may be connected to an anchoring cell via dual connectivity for a default data subscription (DDS) and a first a non-DDS cell via a non-DDS connection. When the UE encounters multiple tracking areas of multiple cells, the non-DDS may trigger multiple cell reselection processes that causes the UE to toggle between connecting to the first non-DDS cell and a second non-DDS cell. The multiple cell reselection processes may cause the UE to divert radio frequency (RF) resources away from the DDS and toward the non-DDS. The diversion of the RF resources may cause instability with the DDS connection.
In an aspect of the present disclosure, the UE may evaluate a channel quality associated with the wireless connection between the UE and the first cell. If the channel quality is greater than or equal to a certain threshold, the UE may camp on the first cell and may prevent the toggling between the first cell and the second cell. As a result, the RF resources may be allocated to the DDS without allocating to the non-DDS.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes at least one BS 105, UEs 110, an Evolved Packet Core (EPC) 160, and a 5G Core (5GC) 190. The BS 105 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells include base stations. The small cells include femtocells, picocells, and microcells. In some implementations, the UE 110 may include a determination component 224 that determines whether one or more channel conditions are met. In some implementations, the communication component 222 and the determination component 224 may be implemented using hardware, software, or a combination of hardware and software. In some implementations, the BS 105 may include a communication component 322 configured to communicate with the UE 110. In some implementations, the communication component 322 may be implemented using hardware, software, or a combination of hardware and software.
BS 105 configured for 4G Long-Term Evolution (LTE) (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links interfaces 132 (e.g., S1, X2, Internet Protocol (IP) , or flex interfaces) . A BS 105 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links interfaces 134 (e.g., S1, X2, Internet Protocol (IP) , or flex interface) . In addition to other functions, the BS 105 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The BS 105 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each  other over the backhaul links interfaces 134. The backhaul links 132, 134 may be wired or wireless.
The BS 105 may wirelessly communicate with the UEs 110. Each of the BS 105 may provide communication coverage for a respective geographic coverage area 130. There may be overlapping geographic coverage areas 130. For example, the small cell 105' may have a coverage area 130' that overlaps the coverage area 130 of one or more macro BS 105. A network that includes both small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the BS 105 and the UEs 110 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 110 to a BS 105 and/or downlink (DL) (also referred to as forward link) transmissions from a BS 105 to a UE 110. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The BS 105 /UEs 110 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Y x MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 110 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless  D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 105' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 105' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 105', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
BS 105, whether a small cell 105' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or other type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 110. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the radio frequency (RF) in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 110 to compensate for the path loss and short range.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data  Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 110 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a packet switched (PS) Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the BS 105 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 110 and the 5GC 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The BS 105 may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, an access point, an access node, a radio transceiver, a NodeB, eNodeB (eNB) , gNB, Home NodeB, a Home eNodeB,  a relay, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The BS 105 provides an access point to the EPC 160 or 5GC 190 for a UE 110. Examples of UEs 110 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 110 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 110 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring to FIG. 2, one example of an implementation of the UE 110 may include a modem 220 having the communication component 222 and the determination component 224. In some implementations, the UE 110 may include a determination component 224 that determines whether one or more channel conditions are met.
In some implementations, the UE 110 may include a variety of components, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with the modem 220 and the communication component 222 to enable one or more of the functions described herein related to communicating with the BS 105. Further, the one or more processors 212, modem 220, memory 216, transceiver 202, RF front end 288 and one or more antennas 265, may be configured to support voice and/or data calls (simultaneously or non-simultaneously) in one or more radio access technologies. The one or more antennas 265 may include one or more antennas, antenna elements and/or antenna arrays.
In an aspect, the one or more processors 212 may include the modem 220 that uses one or more modem processors. The various functions related to the communication component 222 and the determination component 224 may be included in the modem 220 and/or processors 212 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiving device processor, or a transceiver processor associated with transceiver 202. Additionally, the modem 220 may configure the UE 110 along with the processors 212. In other aspects, some of the features of the one or more processors 212 and/or the modem 220 associated with the communication component 222 may be performed by transceiver 202.
The memory 216 may be configured to store data used and/or local versions of application 275. Also, the memory 216 may be configured to store data used herein and/or local versions of the communication component 222 and the determination component 224, and/or one or more of the subcomponents being executed by at least one processor 212. Memory 216 may include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 222 and the determination component 224, and/or one or more of the subcomponents, and/or data associated therewith, when UE 110 is operating at least one processor 212 to execute the communication component 222 and the determination component 224, and/or one or more of the subcomponents.
Transceiver 202 may include at least one receiver 206 and at least one transmitter 208. Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . Receiver 206 may be, for example, a RF  receiving device. In an aspect, the receiver 206 may receive signals transmitted by at least one BS 105. Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, UE 110 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one BS 105 or wireless transmissions transmitted by UE 110. RF front end 288 may be coupled with one or more antennas 265 and may include one or more low-noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
In an aspect, LNA 290 may amplify a received signal at a desired output level. In an aspect, each LNA 290 may have a specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular LNA 290 and the specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 298 may have specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular PA 298 and the specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 296 may be used by RF front end 288 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 296 may be used to filter an output from a respective PA 298 to produce an output signal for transmission. In an aspect, each filter 296 may be coupled with a specific LNA 290 and/or PA 298. In an aspect, RF front end 288 may use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
As such, transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288. In an aspect, transceiver may be tuned to operate at specified frequencies such that UE 110 may communicate with, for example, one or more BS 105 or one or more cells associated with one or more BS 105. In an aspect, for example, the modem 220 may configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 110 and the communication protocol used by the modem 220.
In an aspect, the modem 220 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202. In an aspect, the modem 220 may be multiband and be configured to support multiple frequency bands for a specific communications protocol. In an aspect, the modem 220 may be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, the modem 220 may control one or more components of UE 110 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration may be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration may be based on UE configuration information associated with UE 110 as provided by the network.
Referring to FIG. 3, one example of an implementation of the BS 105 may include a modem 320 having the communication component 322. In some implementations, the BS 105 may include a communication component 322 configured to communicate with the UE 110.
In some implementations, the BS 105 may include a variety of components, including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with the modem 320 and the communication component 322 to enable one or more of the functions described herein related to communicating with the UE 110. Further, the one or more processors 312, modem 320, memory 316, transceiver 302, RF front end 388 and one or more antennas 365, may be configured to support voice and/or  data calls (simultaneously or non-simultaneously) in one or more radio access technologies.
In an aspect, the one or more processors 312 may include the modem 320 that uses one or more modem processors. The various functions related to the communication component 322 may be included in the modem 320 and/or processors 312 and, in an aspect, may be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 312 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiving device processor, or a transceiver processor associated with transceiver 302. Additionally, the modem 320 may configure the BS 105 and processors 312. In other aspects, some of the features of the one or more processors 312 and/or the modem 320 associated with the communication component 322 may be performed by transceiver 302.
The memory 316 may be configured to store data used herein and/or local versions of applications 375. Also, the memory 316 may be configured to store data used herein and/or local versions of the communication component 322, and/or one or more of the subcomponents being executed by at least one processor 312. Memory 316 may include any type of computer-readable medium usable by a computer or at least one processor 312, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 316 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining the communication component 322, and/or one or more of the subcomponents, and/or data associated therewith, when the BS 105 is operating at least one processor 312 to execute the communication component 322, and/or one or more of the subcomponents.
Transceiver 302 may include at least one receiver 306 and at least one transmitter 308. The at least one receiver 306 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . The receiver 306 may be, for  example, a RF receiving device. In an aspect, receiver 306 may receive signals transmitted by the UE 110. Transmitter 308 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 308 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, the BS 105 may include RF front end 388, which may operate in communication with one or more antennas 365 and transceiver 302 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by other BS 105 or wireless transmissions transmitted by UE 110. RF front end 388 may be coupled with one or more antennas 365 and may include one or more low-noise amplifiers (LNAs) 390, one or more switches 392, one or more power amplifiers (PAs) 398, and one or more filters 396 for transmitting and receiving RF signals.
In an aspect, LNA 390 may amplify a received signal at a desired output level. In an aspect, each LNA 390 may have a specified minimum and maximum gain values. In an aspect, RF front end 388 may use one or more switches 392 to select a particular LNA 390 and the specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 398 may be used by RF front end 388 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 398 may have specified minimum and maximum gain values. In an aspect, RF front end 388 may use one or more switches 392 to select a particular PA 398 and the specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 396 may be used by RF front end 388 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 396 may be used to filter an output from a respective PA 398 to produce an output signal for transmission. In an aspect, each filter 396 may be coupled with a specific LNA 390 and/or PA 398. In an aspect, RF front end 388 may use one or more switches 392 to select a transmit or receive path using a specified filter 396, LNA 390, and/or PA 398, based on a configuration as specified by transceiver 302 and/or processor 312.
As such, transceiver 302 may be configured to transmit and receive wireless signals through one or more antennas 365 via RF front end 388. In an aspect, transceiver may be tuned to operate at specified frequencies such that BS 105 may communicate with, for example, the UE 110 or one or more cells associated with one or more BS 105. In an aspect, for example, the modem 320 may configure transceiver 302 to operate at a specified frequency and power level based on the base station configuration of the BS 105 and the communication protocol used by the modem 320.
In an aspect, the modem 320 may be a multiband-multimode modem, which may process digital data and communicate with transceiver 302 such that the digital data is sent and received using transceiver 302. In an aspect, the modem 320 may be multiband and be configured to support multiple frequency bands for a specific communications protocol. In an aspect, the modem 320 may be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, the modem 320 may control one or more components of the BS 105 (e.g., RF front end 388, transceiver 302) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration may be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration may be based on base station configuration associated with the BS 105.
Fig. 4 illustrates an example of an environment for a UE to prevent a non-default data subscription (non-DDS) to consume radio frequency (RF) resource allocated for DDS. In some implementations, an environment 400 may include an anchor BS 105a associated with an anchor cell 410a. The anchor cell 410a may be associated with the DDS. The anchor BS 105a may include an anchor cell coverage area 130a. The anchor cell 410a may operate using an anchor cell technology (e.g., NR, LTE, GSM, UTRA, Wi-Fi, etc. ) . The environment 400 may include a first BS 105b associated with a first cell 410b. The first BS 105b may include a first coverage area 130b. The first cell 410b may operate using a first technology same or different than the anchor cell technology. For example, the first technology may include NR, LTE, GSM, UTRA, Wi-Fi, etc. The environment 400 may include a second BS 105c associated with a second cell 410c. The second BS 105c may include a second coverage area 130c. The second cell 410c may  operate using a second technology same or different than the anchor cell technology. For example, the first technology may include NR, LTE, GSM, UTRA, Wi-Fi, etc. The environment 400 may include the UE 110 within the anchor cell coverage area 130a, the first coverage area 130b, and the second coverage area 130c. The UE 110 may communicate with the anchor BS 105a via the anchor communication links 120a, and one or more of the first BS 105b via the first communication links 120b and/or the second BS 105c via the second communication links 120c. The anchor cell 410a, the first cell 410b, and the second cell 410c may communicate with each other via the backhaul links 132, 134.
In one implementation, the anchor cell 410a may include the anchor BS 105a. Alternatively, the anchor cell 410a may include the anchor BS 105a and one or more additional base stations.
During operation, in some implementations, the UE 110 may be wirelessly connected to the anchor BS 105a of the anchor cell 410a. The anchor cell 410a may be the master cell or the master cell group for the UE 110. In some instances, the UE 110 may be operating in E-UTRA NR dual connectivity (ENDC) mode. For example, the UE 110 may be camping on the anchor cell 410a (e.g., an LTE anchor cell) while connected to a secondary cell (e.g., 5G, not shown) . In one aspect of the present disclosure, the anchor cell 410a may be associated with a DDS for the UE 110. The first cell 410b and/or the second cell 410c may be associated with a non-DDS. The UE 110 may allocate RF resources (e.g., the one or more antennas 265, the RF front end 288 and the subcomponents of the RF front end 288, etc. ) to the DDS and the non-DDS.
In one aspect of the present disclosure, the UE 110 may be wireless connected to the first cell 410b associated with the non-DDS. Prior to a non-DDS reselection process (the UE 110 selecting the second cell 410c over the first cell 410b, discussed below) the first cell 410b may transmit one or more reference signals (RSs) via the first BS 105b. The UE 110 may receive the one or more reference signals. The UE 110 may determine the channel quality using at least one of a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , a reference signal strength indication (RSSI) , a signal to noise ratio (SNR) , or a signal to interference plus noise ratio (SINR) . In an  example, the UE 110 may measure the RSRP based on the average power level of power levels of the one or more reference signals. In another example, the UE 110 may measure the RSSI based on the total power of the one or more reference signals. In some examples, the UE 110 may measure the RSRQ based on the RSRP and the RSSI. In certain examples, the UE 110 may measure the SINR based on the received powers of the signal, the noise, and the interference. Other measurements may also be used to measure the channel quality between the UE 110 and the first cell 410a.
In certain aspects of the present disclosure, the UE 110 may compare at least one of the RSRP, RSRQ, RSSI, SNR, and/or SINR to one or more threshold values. One or more of the anchor BS 105a or the first BS 105b may transmit one or more threshold values to the UE 110. The one or more threshold values may be stored in the memory 216 of the UE 110. The UE 110 may compare the measured channel quality to a corresponding threshold. Depending on the comparison, the UE 110 may remain connected to the first cell 410b, or to evaluate a reselection condition to connect to another cell, e.g., the second cell 410c. In one aspect, the UE 110 may compare the RSRP with a threshold RSRP (RSRP Thresh) . If the RSRP is greater than or equal to the RSRP Thresh (e.g., RSRP ≥ -105 decibel milliwatts (dBm) ) , the UE 110 may determine to remain in the first cell 410b for the non-DDS. Alternatively or additionally, the UE 110 may compare the SNR with a threshold SNR (SNR Thresh) . If the SNR is greater than or equal to the SNR Thresh (e.g., SNR ≥ 10 decibel (dB) ) , the UE 110 may determine to remain in the first cell 410b.
Without the channel quality determination step, the UE 110 may engage in the non-DDS reselection process regardless of the channel quality of the connection between the UE 110 and the first cell 410b. With the addition of the channel quality determination step, the UE 110 may engage in the non-DDS reselection process when the channel quality falls below a certain threshold. By remaining in the first cell 410b, the UE 110 may prevent diverting RF resources allocated for connection to the anchor cell 410a associated with the DDS to the reselection process associated with the non-DDS. This reduces the disruption to the DDS connection between the UE 110 and the anchor cell 410a.
In some aspects, if the RSRP is less than the RSRP Thresh (e.g., RSRP < -105 dBm) , the UE 110 may determine to evaluate a reselection condition. Alternatively or additionally, the SNR is less than the SNR Thresh (e.g., SNR < 10 decibel (dB) ) , the UE 110 may determine to evaluate the reselection condition.
In some aspects, if the UE 110 determines to evaluate the reselection condition, the UE 110 may measure the serving cell ranking criterion (R s) for the serving cell (i.e., the first cell 410b) and the neighboring cell ranking criterion (R n) for the neighboring cell (i.e., the second cell 410c) . If R S ≥ R n (i.e., cell ranking criterion of the first cell 410b is greater than or equal to the cell ranking criterion of the second cell 410c) , the UE 110 may remain in the first cell 410b. If R S < R n (i.e., cell ranking criterion of the first cell 410b is less than the cell ranking criterion of the second cell 410c) , the UE 110 may transmit a tracking area update request to the first cell 410b to initiate the reselection process associated with the non-DDS.
In some implementations, R s may be calculated based on the RSRP measurement quantity associated with the first cell 410b (Q meas, s) , the hysteresis (Q Hyst) , and the temporary offset (Qoffset temp) . R n may be derived from the RSRP measurement quantity associated with the second cell 410c (Q meas, n) , the offset (Qoffset) , and Qoffset temp. For intra-frequency reselection, Qoffset equals to Qoffset s, n (offset between the first cell 410b and the second cell 410c, if valid) , otherwise Qoffset equals to zero. For inter-frequency, Qoffset s, n equals to Qoffset s, n plus the frequency specific offset for equal priority frequencies (Qoffset frequency, if valid) , otherwise this equals to Qoffset frequency. In one example, R s = Q meas, s+ Q Hyst –Qoffset temp and R n = Q meas, n -Qoffset –Qoffset temp.
In some implementations, the reselection process may trigger a tracking area update associated with the UE 110. The reselection process may cause the UE 110 to connect to the second cell 410c. The reselection process may require the UE 110 to allocate some or all RF resources utilized by the anchor cell 410a to the reselection process. After the UE 110 connects to the second cell 410c, the UE 110 may evaluate the reselection condition with the second cell 410c as the serving cell and the first cell 410b as the neighboring cell. For example, the UE 110 may determine if R S ≥ R n (i.e., cell ranking criterion of the second cell 410c is greater than or equal to the cell ranking  criterion of the first cell 410b) , the UE 110 may remain in the second cell 410c. If R S <R n (i.e., cell ranking criterion of the second cell 410c is less than the cell ranking criterion of the first cell 410b) , the UE 110 may transmit a tracking area update request to the second cell 410c to initiate the reselection process associated with the non-DDS (as described above) . The reselection process may cause the UE 110 to connect to the first cell 410b.
In some implementations, the alternating connections to the first cell 410b and the second cell 410c may cause a “ping-pong” effect, which is when the UE 110 switches back and forth between connecting to the first cell 410b and the second cell 410c. The ping-pong effect may cause the UE 110 to divert the RF resources to the non-DDS instead of the DDS.
Fig. 5 illustrates an example of a process for performing reselection. In some implementations, the process 500 may be performed by the UE 110 (including the DDS subscription 502 and the non-DDS subscription 504) , the first cell 410b, and the second cell 410c. At 510, the UE 110 may be connected to the anchor cell 410a (Fig. 4) for the DDS and to the first cell 410b for the non-DDS. In some instances, the UE 110 may be operating in E-UTRA NR dual connectivity (ENDC) mode. For example, the UE 110 may be camping on the anchor cell 410a (e.g., an LTE anchor cell) while connected to a secondary cell (e.g., 5G, not shown) for the DDS and on the first cell 410b (e.g., an LTE cell) for the non-DDS.
At 512, the non-DDS sub 504 of the UE 110 may determine whether the channel quality is lower than the threshold. For example, the UE 110 may receive a number of RSs from the first cell 410b and the second cell 410c. The UE 110 may measure, based on the number of RSs, at least one of the RSRP, RSRQ, RSSI, SNR and/or SINR associated with each of the first cell410b and the second cell 410c. In one aspect, the UE 110 may compare the RSRP with a threshold RSRP (RSRP Thresh) . If the RSRP is greater than or equal to the RSRP Thresh (e.g., RSRP ≥ -105 dBm) , the UE 110 may determine to maintain the non-DDS connection with the first cell 410b. Alternatively or additionally, the UE 110 may compare the SNR with a threshold SNR (SNR Thresh) . If the SNR is greater than or equal to the SNR Thresh (e.g., SNR ≥ 10 dB) , the UE 110 may determine to  maintain the non-DDS connection with the first cell 410b. The threshold values (e.g., RSRP Thresh or SNR Thresh) may be stored in the UE 110 or transmitted by the first cell 410a.
In some aspects, if the RSRP is less than the RSRP Thresh (e.g., RSRP < -105 dBm) , the UE 110 may determine to evaluate a reselection condition. Alternatively or additionally, the SNR is less than the SNR Thresh (e.g., SNR < 10 dB) , the UE 110 may determine to evaluate the reselection condition.
At 514, in some implementations, the non-DDS sub 504 of the UE 110 may determine whether the reselection condition is met. In certain aspects, the UE 110 may measure the serving cell ranking criterion (R s) for the serving cell (i.e., the first cell 410b) and the neighboring cell ranking criterion (R n) for the neighboring cell (i.e., the second cell 410c) . If R S ≥ R n (i.e., cell ranking criterion of the first cell 410b is greater than or equal to the cell ranking criterion of the second cell 410c) , the UE 110 may remain in the first cell 410b. If R S < R n (i.e., cell ranking criterion of the first cell 410b is less than the cell ranking criterion of the second cell 410c) , the UE 110 may initiate the reselection process associated with the non-DDS.
In some implementations, R s may be calculated based on the RSRP measurement quantity associated with the first cell 410b (Q meas, s) , the hysteresis (Q Hyst) , and the temporary offset (Qoffset temp) . R n may be derived from the RSRP measurement quantity associated with the second cell 410c (Q meas, n) , the offset (Qoffset) , and Qoffset temp. For intra-frequency reselection, Qoffset equals to Qoffset s, n (offset between the first cell 410b and the second cell 410c, if valid) , otherwise Qoffset equals to zero. For inter-frequency, Qoffset s, n equals to Qoffset s, n plus the frequency specific offset for equal priority frequencies (Qoffset frequency, if valid) , otherwise this equals to Qoffset frequency. In one example, R s = Q meas, s+ Q Hyst –Qoffset temp and R n = Q meas, n -Qoffset –Qoffset temp.
At 516, in certain examples, the non-DDS sub 504 of the UE 110, the first cell 410b, and the second cell 410c may perform the reselection process. During the reselection process, the UE 110 may transmit a tracking area update request to the first cell 410b. The first cell 410b and the second cell 410c may perform the tracking area update. The UE 110 may subsequently establish wireless communication connection with the second cell 410c.
At 518, in some examples, the non-DDS sub 504 of the UE 110 may evaluate the reselection condition with the second cell 410c as the serving cell and the first cell 410b as the neighboring cell. For example, the UE 110 may determine if R S ≥ R n (i.e., cell ranking criterion of the second cell 410c is greater than or equal to the cell ranking criterion of the first cell 410b) , the UE 110 may remain in the second cell 410c. If R S <R n (i.e., cell ranking criterion of the second cell 410c is less than the cell ranking criterion of the first cell 410b) , the UE 110 may transmit a tracking area update request to the second cell 410c to initiate the reselection process associated with the non-DDS (as described above) . The reselection process may cause the UE 110 to revert back to the first cell 410b.
At 520, in some instances, the non-DDS sub 504 of the UE 110, the first cell 410b, and the second cell 410c may perform the reselection process. During the reselection process, the UE 110 may transmit a tracking area update request to the second cell 410c. The first cell 410b and the second cell 410c may perform the tracking area update. The UE 110 may subsequently establish wireless communication connection with the first cell 410b.
Fig. 6 illustrates an example of a method for performing reselection process associated with a non-DDS of a UE. For example, a method 600 may be performed by the one or more of the processor 212, the memory 216, the applications 275, the modem 220, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the communication component 222 and the determination component 224, and/or one or more other components of the UE 110 in the wireless communication network 100.
At block 605, the method 600 may establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode. For example, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial  Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode as described above.
In certain implementations, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode.
At block 610, the method 600 may establish a second connection, to a second cell, associated with a non-default data subscription (DDS) . For example, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may establish a second connection, to a second cell, associated with a non-default data subscription (DDS) as described above.
In certain implementations, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) .
At block 615, the method 600 may receive one or more reference signals from the second cell. For example, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may receive one or more reference signals from the second cell. The RF front end 288 may receive the electrical signals converted from electro-magnetic signals. The RF front end 288 may filter and/or amplify the electrical signals. The transceiver 202 or the receiver 206 may convert the electrical signals to digital signals, and send the digital signals to the communication component 222.
In certain implementations, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for receiving one or more reference signals from the second cell.
At block 620, the method 600 may determine a channel quality associated with the second cell based on the one or more reference signals. For example, the determination component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may determine a channel quality associated with the second cell based on the one or more reference signals.
In certain implementations, the determination component 224, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for determining a channel quality associated with the second cell based on the one or more reference signals.
At block 625, the method 600 may determine whether the channel quality is lower than a threshold. For example the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may determine whether the channel quality is lower than a threshold.
In certain implementations, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for determining whether the channel quality is lower than a threshold.
At block 630, the method 600 may establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied. For example, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 of the UE 110 may establish a third connection, to a third  cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied as described above.
In certain implementations, the communication component 222, the transceiver 202, the receiver 206, the transmitter 208, the RF front end 288, the subcomponents of the RF front end 288, the processor 212, the memory 216, the modem 220, and/or the applications 275 may be configured to and/or may define means for establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the channel quality being higher than or equal to the threshold.
Alternatively or additionally, the method 600 may further include any of the methods above, further comprising maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the reselection condition being not satisfied.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein the channel quality comprises a reference signal received power (RSRP) or a signal to noise ratio (SNR) .
Alternatively or additionally, the method 600 may further include any of the methods above, wherein determining whether the channel quality is lower than the threshold comprises determining whether the RSRP is less than -105 decibel milliwatts.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein determining whether the channel quality is lower than the threshold comprises determining whether the SNR is less than 10 decibel.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein the reselection condition is satisfied when R S < R n.
Alternatively or additionally, the method 600 may further include any of the methods above, wherein R S = Q meas, s+ Q Hyst –Qoffset temp, and R n = Q meas, n -Qoffset –Qoffset temp.
The above detailed description set forth above in connection with the appended drawings describes examples and does not represent the only examples that may be implemented or that are within the scope of the claims. The term “example, ” when used in this description, means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. For example, changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Also, various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in other examples. In some instances, well-known structures and apparatuses are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
It should be noted that the techniques described herein may be used for various wireless communication networks such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other systems. The terms “system” and “network” are often used interchangeably. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . 3GPP LTE and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization  named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band. The description herein, however, describes an LTE/LTE-Asystem or 5G system for purposes of example, and LTE terminology is used in much of the description below, although the techniques may be applicable other next generation communication systems.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a specially-programmed device, such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a FPGA or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein. A specially-programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A specially-programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and  appended claims. For example, due to the nature of software, functions described above may be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available medium that may be accessed by a general purpose or special purpose computer. By way of example, and not limitation, computer-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The previous description of the disclosure is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the common principles defined herein may  be applied to other variations without departing from the spirit or scope of the disclosure. Furthermore, although elements of the described aspects may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, all or a portion of any aspect may be utilized with all or a portion of any other aspect, unless stated otherwise. Thus, the disclosure is not to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Method to improve RF availability over NR5G DDS sub
DESCRIPTION:
For DSDS, non-DDS sub may preempt RF resource when ping-pong reselection between two Tracking area. To make sure device is capable to stably get RF resource for NR5G DDS sub,
This invent introduces a new mechanism to reduce the impaction for DDS sub NSA 5G service due to non-DDS sub’s frequent TAU signaling in crossing TAC ping-pong reselection scenario.
Design:
- DDS sub1 register on LTE anchor cell and SCG added to get NSA 5G service
- Non DDS sub2 register on LTE cell1,
- sub2 reselection to LTE cell2 on Intra-frequency or equal priority inter-frequency because below cell-ranking criteria is meet
○ cell2’s Rn > cell1’s Rs
- sub 2 trigger TAU Request because cell1 and cell2 belongs to different Tracking Area.
- Sub2 reselection to LTE cell1 because below criteria is meet
○ Cell1’s Rn > cell2’s Rs
- Again TAU trigger
- Due to possibly receiving signal varying in live network or back and forth mobility, ping-pong reselection could happen between cell1 and cell2
- This design cause DDS sub1 can not stably get NSA NR5G service because RF is occupied by non-DDS sub2 for frequently TAU trigger
Description:
- DDS sub register on LTE anchor cell and SCG added to get NSA 5G service
- Non DDS sub2 register on LTE cell1,
- Before sub2 handling reselection to LTE cell2 on Intra-frequency or equal priority inter-frequency, device firstly evaluate cell1’s RSRP OR SNR
○ RSRP < threshold_RSRP (e.g. -105dbm) or
○ SNR < threshold_SNR (e.g. 10db)
- If above criteria are met, sub2 will handling reselection to cell2 by evaluate below cell-ranking criterion.
○ cell2’s Rn > cell1’s Rs
- This design will be helpful DDS sub1 stably get RF resource and NSA NR5G service
Invention Chart:
Figure PCTCN2020092042-appb-000001
Example Implementation:
5.2.4.6 Intra-frequency and equal priority inter-frequency Cell Reselection criteria
The cell-ranking criterion R s for serving cell and R n for neighbouring cells is defined by:
Figure PCTCN2020092042-appb-000002
where:
Figure PCTCN2020092042-appb-000003
The UE shall perform ranking of all cells that fulfil the cell selection criterion S, but may exclude all CSG cells that are known by the UE not to be CSG member cells.
The cells shall be ranked according to the R criteria specified above, deriving Q meas, n and Q meas, sand calculating the R values using averaged RSRP results.
If a cell is ranked as the best cell the UE shall perform cell reselection to that cell. If this cell is found to be not-suitable, the UE shall behave according to subclause 5.2.4.4.
In all cases, the UE shall reselect the new cell, only if the following conditions are met:
- the new cell is better ranked than the serving cell during a time interval Treselection RAT;
- more than 1 second has elapsed since the UE camped on the current serving cell.
5.2.4.7 Cell reselection parameters in system information broadcasts
Qoffset frequency
Frequency specific offset for equal priority E-UTRAN frequencies.
Qoffset temp
This specifies the additional offset to be used for cell selection and re-selection. It is temporarily used in case the RRC Connection Establishment fails on the cell as specified in [3] .
Q hyst
This specifies the hysteresis value for ranking criteria.

Claims (32)

  1. A method of wireless communication by a user equipment (UE) in a network, comprising:
    establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode;
    establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) ;
    receiving one or more reference signals from the second cell;
    determining a channel quality associated with the second cell based on the one or more reference signals;
    determining whether the channel quality is lower than a threshold;
    determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold; and
    establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  2. The method of claim 1, further comprising:
    maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the channel quality being higher than or equal to the threshold.
  3. The method of claim 1, further comprising:
    maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the reselection condition being not satisfied.
  4. The method of claim 1, wherein:
    the channel quality comprises a reference signal received power (RSRP) or a signal to noise ratio (SNR) .
  5. The method of claim 1, wherein determining whether the channel quality is lower than the threshold comprises:
    determining whether the RSRP is less than -105 decibel milliwatts.
  6. The method of claim 1, wherein determining whether the channel quality is lower than the threshold comprises:
    determining whether the SNR is less than 10 decibel.
  7. The method of claim 1, wherein:
    the reselection condition is satisfied when
    R S < R n.
  8. The method of claim 1, wherein:
    R S = Q meas, s+ Q Hyst –Qoffset temp; and
    R n = Q meas, n -Qoffset –Qoffset temp.
  9. A user equipment (UE) , comprising:
    a memory comprising instructions;
    a transceiver; and
    one or more processors operatively coupled with the memory and the transceiver, the one or more processors configured to execute instructions in the memory to:
    establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode;
    establish a second connection, to a second cell, associated with a non-default data subscription (DDS) ;
    receive one or more reference signals from the second cell;
    determine a channel quality associated with the second cell based on the one or more reference signals;
    determine whether the channel quality is lower than a threshold;
    determine whether a reselection condition is satisfied in response to the channel quality being lower than the threshold; and
    establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  10. The user equipment (UE) of claim 11, wherein the one or more processors are further configured to:
    maintain the second connection to the second cell without establishing the third connection to the third cell in response to the channel quality being higher than or equal to the threshold.
  11. The user equipment (UE) of claim 11, wherein the one or more processors are further configured to:
    maintain the second connection to the second cell without establishing the third connection to the third cell in response to the reselection condition being not satisfied.
  12. The user equipment (UE) of claim 11, wherein:
    the channel quality comprises a reference signal received power (RSRP) or a signal to noise ratio (SNR) .
  13. The user equipment (UE) of claim 12, wherein determining whether the channel quality is lower than the threshold comprises:
    determine whether the RSRP is less than -105 decibel milliwatts.
  14. The user equipment (UE) of claim 12, wherein determining whether the channel quality is lower than the threshold comprises:
    determine whether the SNR is less than 10 decibel.
  15. The user equipment (UE) of claim 11, wherein:
    the reselection condition is satisfied when
    R S < R n.
  16. The user equipment (UE) of claim 15, wherein:
    R S = Q meas, s+ Q Hyst –Qoffset temp; and
    R n = Q meas, n -Qoffset –Qoffset temp.
  17. A non-transitory computer readable medium having instructions stored therein that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    establish a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode;
    establish a second connection, to a second cell, associated with a non-default data subscription (DDS) ;
    receive one or more reference signals from the second cell;
    determine a channel quality associated with the second cell based on the one or more reference signals;
    determine whether the channel quality is lower than a threshold;
    determine whether a reselection condition is satisfied in response to the channel quality being lower than the threshold; and
    establish a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  18. The non-transitory computer readable medium of claim 21, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    maintain the second connection to the second cell without establishing the third connection to the third cell in response to the channel quality being higher than or equal to the threshold.
  19. The non-transitory computer readable medium of claim 21, further comprising instructions, when executed by the one or more processors, cause the one or more processors to:
    maintain the second connection to the second cell without establishing the third connection to the third cell in response to the reselection condition being not satisfied.
  20. The non-transitory computer readable medium of claim 21, wherein:
    the channel quality comprises a reference signal received power (RSRP) or a signal to noise ratio (SNR) .
  21. The non-transitory computer readable medium of claim 21, wherein the instructions for determining whether the channel quality is lower than the threshold comprises instructions, when executed by the one or more processors, cause the one or more processors to:
    determine whether the RSRP is less than -105 decibel milliwatts.
  22. The non-transitory computer readable medium of claim 21, wherein the instructions for determining whether the channel quality is lower than the threshold comprises instructions, when executed by the one or more processors, cause the one or more processors to:
    determine whether the SNR is less than 10 decibel.
  23. The non-transitory computer readable medium of claim 21, wherein:
    the reselection condition is satisfied when
    R S < R n.
  24. The non-transitory computer readable medium of claim 21, wherein:
    R S = Q meas, s+ Q Hyst –Qoffset temp; and
    R n = Q meas, n -Qoffset –Qoffset temp.
  25. A user equipment (UE) , comprising:
    means for establishing a first connection, to a first cell, associated with a default data subscription (DDS) , wherein the UE is operating in Evolved Universal Terrestrial Radio Access (E-UTRA) New Radio (NR) dual connectivity (ENDC) mode:
    means for establishing a second connection, to a second cell, associated with a non-default data subscription (DDS) ;
    means for receiving one or more reference signals from the second cell;
    means for determining a channel quality associated with the second cell based on the one or more reference signals;
    means for determining whether the channel quality is lower than a threshold;
    means for determining whether a reselection condition is satisfied in response to the channel quality being lower than the threshold; and
    means for establishing a third connection, to a third cell, associated with the non-DDS based at least in part on the determination that the reselection condition being satisfied.
  26. The UE of claim 31, further comprising:
    means for maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the channel quality being higher than or equal to the threshold.
  27. The UE of claim 31, further comprising:
    means for maintaining the second connection to the second cell without establishing the third connection to the third cell in response to the reselection condition being not satisfied.
  28. The UE of claim 31, wherein:
    the channel quality comprises a reference signal received power (RSRP) or a signal to noise ratio (SNR) .
  29. The UE of claim 31, wherein determining whether the channel quality is lower than the threshold comprises:
    means for determining whether the RSRP is less than -105 decibel milliwatts.
  30. The UE of claim 31, wherein determining whether the channel quality is lower than the threshold comprises:
    means for determining whether the SNR is less than 10 decibel.
  31. The UE of claim 31, wherein:
    the reselection condition is satisfied when;
    R S < R n.
  32. The UE of claim 31, wherein:
    R S = Q meas, s+ Q Hyst –Qoffset temp; and
    R n = Q meas, n -Qoffset –Qoffset temp.
PCT/CN2020/092042 2020-05-25 2020-05-25 Methods and apparatus for improving radio frequency resource availability WO2021237399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092042 WO2021237399A1 (en) 2020-05-25 2020-05-25 Methods and apparatus for improving radio frequency resource availability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092042 WO2021237399A1 (en) 2020-05-25 2020-05-25 Methods and apparatus for improving radio frequency resource availability

Publications (1)

Publication Number Publication Date
WO2021237399A1 true WO2021237399A1 (en) 2021-12-02

Family

ID=78745172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092042 WO2021237399A1 (en) 2020-05-25 2020-05-25 Methods and apparatus for improving radio frequency resource availability

Country Status (1)

Country Link
WO (1) WO2021237399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204961A1 (en) * 2022-04-19 2023-10-26 Qualcomm Incorporated Joint cell selection for dual subscription dual active (dsda) operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090280A1 (en) * 2015-12-31 2019-03-21 Qualcomm Incorporated Scheduling request throttling for multi subscriber identity module (sim) wireless communication device
US20190223093A1 (en) * 2016-08-16 2019-07-18 Idac Holdings, Inc. Network slice reselection
CN110073689A (en) * 2016-08-03 2019-07-30 三星电子株式会社 Method for the cell reselection under the idle mode of next generation mobile communication system
CN111148097A (en) * 2018-11-02 2020-05-12 华为技术有限公司 Communication method, communication device and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090280A1 (en) * 2015-12-31 2019-03-21 Qualcomm Incorporated Scheduling request throttling for multi subscriber identity module (sim) wireless communication device
CN110073689A (en) * 2016-08-03 2019-07-30 三星电子株式会社 Method for the cell reselection under the idle mode of next generation mobile communication system
US20190223093A1 (en) * 2016-08-16 2019-07-18 Idac Holdings, Inc. Network slice reselection
CN111148097A (en) * 2018-11-02 2020-05-12 华为技术有限公司 Communication method, communication device and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204961A1 (en) * 2022-04-19 2023-10-26 Qualcomm Incorporated Joint cell selection for dual subscription dual active (dsda) operation

Similar Documents

Publication Publication Date Title
WO2022006808A1 (en) Techniques for conditional handover of remote and relay user equipments
US20230027425A1 (en) Techniques for maintaining multicast and/or broadcast service wireless communications
US11924895B2 (en) Techniques for new radio layer two relay
US11510274B2 (en) Proactive wake-up beam management for connected mode discontinuous reception (C-DRX) operation
US11805459B2 (en) Techniques for radio access technology (RAT) fallback in wireless communications
US20230275802A1 (en) Techniques for radio link failure recovery and beam failure recovery on secondary cell group in dormancy state
WO2021237399A1 (en) Methods and apparatus for improving radio frequency resource availability
US11758458B2 (en) Techniques for managing base station beam panic for new radio technologies
US11765705B2 (en) Methods and apparatus for configuring RB sets
US11736957B2 (en) Techniques for dynamic downlink and uplink quasi co-location relationship reporting
EP4098049A1 (en) Methods and apparatus for reference signal associations
WO2021232181A1 (en) Methods and apparatus for improving handover
US11825359B2 (en) Techniques for using simultaneous connectivity for mobility of integrated access and backhaul nodes
US20230232400A1 (en) Techniques for configuring supplementary downlink support for half-duplex ue
WO2022213236A1 (en) Techniques for sidelink and uplink full duplex communication with multiple transmission and reception points
WO2022021071A1 (en) Methods and apparatus for negotiating averaging window in low latency communications
US20230189166A1 (en) Methods and apparatus for determining maximum power reduction for uplink transmission
WO2022188389A1 (en) Method and apparatus for reporting coherent mimo capability
US20220046489A1 (en) Techniques for supporting user plane integrity protection in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938352

Country of ref document: EP

Kind code of ref document: A1