WO2021235509A1 - Antigen-binding molecule - Google Patents

Antigen-binding molecule Download PDF

Info

Publication number
WO2021235509A1
WO2021235509A1 PCT/JP2021/019099 JP2021019099W WO2021235509A1 WO 2021235509 A1 WO2021235509 A1 WO 2021235509A1 JP 2021019099 W JP2021019099 W JP 2021019099W WO 2021235509 A1 WO2021235509 A1 WO 2021235509A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
molecule
suppressing
binding
complex
Prior art date
Application number
PCT/JP2021/019099
Other languages
French (fr)
Japanese (ja)
Inventor
達也 野中
有起 角田
咲妃 奥出
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Publication of WO2021235509A1 publication Critical patent/WO2021235509A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies

Definitions

  • the present invention includes an antigen-binding molecule, a co-suppressing molecule agonist, a co-suppressing molecule signal activator, a pharmaceutical composition, a detection agent for a complex consisting of a co-suppressing molecule and its ligand, a method for suppressing immunity, and a co-suppressing molecule.
  • the present invention relates to a method for detecting a complex composed of the ligand.
  • Non-Patent Document 1 Pharmacologically targeted drugs that exist at the immunological synapse are attracting attention.
  • therapies targeting co-suppressive molecules are aimed at cancer treatment.
  • antibodies targeting CTLA-4 and PD-1 have been approved by the US Food and Drug Administration (FDA), and clinical trials are underway for treatments that block TIM-3, LAG3, and TIGIT.
  • Non-Patent Document 2 Although the efficacy of agonists for co-suppressive molecules has been shown in mouse models of autoimmune diseases, no agonist has been shown to be effective in human diseases (Non-Patent Document 2).
  • Agonists for PD-1 one of the co-suppressive molecules, have been tested.
  • an antibody called PD-1 AB-6 is disclosed to bind to a ⁇ -sheet with a PD-1 loop composed of PD-1 residues 100-105 (Patent Document 1).
  • the literature discloses that PD-1 AB-6 is designed to provide PD-1 mediated agonists.
  • a substance having specificity for human PD-1 is an excellent substance capable of transmitting a human PD-1 signal (Patent Document 2).
  • Patent Document 2 it has not been experimentally shown whether or not the bispecific antibody having reactivity with PD-1 and CD3 used in the examples of the literature has agonist activity against PD-1.
  • Non-Patent Document 3 Phase 1 of a clinical trial for psoriasis using a PD-1 agonist antibody called CC-90006 is in progress (Non-Patent Document 3). Recently, Phase 1 of a clinical trial targeting autoimmune diseases using ONO-4685, which is a bispecific antibody targeting both PD-1 and CD3, has been started (Non-Patent Documents 4 and 5). ). ONO-4685 acts as a PD-1 agonist by cross-linking PD-1 and CD3 expressed on the same T cell, and cross-links CD3 expressed on a cell expressing PD-1 and another cell. Therefore, it is expected to have an action of damaging T cells (Non-Patent Document 6).
  • the present inventors have created and experimentally confirmed the concept of an antigen-binding molecule targeting an immunological synapse that has potential efficacy against autoimmune diseases.
  • the antigen-binding molecule targets the immunological synapse by specifically binding to a complex consisting of a co-suppressing molecule localized at the immunological synapse and its ligand.
  • the antigen-binding molecule preferably has agonistic activity against the co-suppressing molecule.
  • the antigen-binding molecule can be provided for detection of a complex consisting of a co-suppressing molecule and a ligand thereof, in addition to a drug having an immunosuppressive action based on an agonist activity against the co-suppressing molecule.
  • An antigen-binding molecule containing a first antigen-binding domain.
  • the specific binding of the first antigen-binding domain to the first complex is either the first co-suppressing molecule or the first co-suppressing molecular ligand in the first complex.
  • the antigen-binding molecule of [1] which is an intermolecular force bond with one or both.
  • the antigen-binding molecule of [1] or [2] capable of activating a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present.
  • the immunological synapse is formed between the cells expressing the MHC and the co-suppressing molecular ligand and the T cells expressing the co-suppressing molecule, [3] or [ 4] Antigen-binding molecule.
  • the first antigen-binding domain may bind to a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule, and said first antigen-binding domain.
  • An antigen-binding molecule that has a higher binding activity to either or both.
  • the binding of the first antigen-binding domain to the first complex is either one of the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex, or The antigen-binding molecule of [6], which is an intermolecular force bond with both.
  • the antigen-binding molecule of [6] or [7] capable of activating a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present.
  • the antigen-binding molecule of [8] wherein the activation of T cells can be suppressed by the activation of the first intracellular signal.
  • the immunological synapse is formed between the cells expressing the MHC and the co-suppressing molecular ligand and the T cells expressing the co-suppressing molecule, [8] or [ 9] Antigen-binding molecule.
  • the antigen-binding molecule according to any one of [6] to [10], wherein the binding activity satisfies any one or both of the following (a) and (b): (a) In flow cytometry using a first cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand, the cell of the first co-suppressing molecular ligand.
  • the binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide containing the outer domain or a part thereof is the non-binding activity of the first soluble polypeptide. Higher than in existence; (b) In flow cytometry using a second cell forcibly expressing the first co-suppressing molecular ligand and not forcibly expressing the first co-suppressing molecule, extracellular of the first co-suppressing molecule.
  • the binding activity of the first antigen-binding domain to the second cell in the presence of the second soluble polypeptide containing the domain or a part thereof is the absence of the second soluble polypeptide. Higher than below.
  • [17] The antigen binding according to any one of [14] to [16] capable of activating a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present. molecule.
  • the antigen-binding molecule of [17] wherein the activation of T cells can be suppressed by the activation of the first intracellular signal.
  • the immunological synapse is formed between the cells expressing the MHC and the co-suppressing molecular ligand and the T cells expressing the co-suppressing molecule, [17] or [ 18] antigen-binding molecule.
  • Example 7 The epitope to which the first co-suppressing molecule is PD-1, the first co-suppressing molecular ligand is PD-L1, and the first antigen-binding domain is bound is in Example 7. [1] to [1] to [1] to [1] to which any one of the anti-human PD-L1 / human PD-1 complex protein antibodies shown in Table 1 prepared partially overlaps with the epitope in the first complex to which it binds. 19] Antigen-binding molecule. [21] A third cell expressing the first co-suppressing molecule and capable of measuring the intensity of the first intracellular signal, an antigen-independent T cell receptor activator, and the first co-suppressing molecule.
  • the fourth cell expressing the ligand can contact each other, and the first intracellular signal in the third cell is partially produced by an inhibitory antibody against the first co-suppressing molecular ligand.
  • the intensity of the first intracellular signal in the presence of the antigen-binding molecule is not the same as that of the antigen-binding molecule.
  • the antigen-binding molecule of any of [3] to [5], [8] to [10], and [17] to [19], which is higher than in the presence.
  • the intensity of the second intracellular signal that expresses the T cell receptor and the first co-suppressive molecule and can be activated downstream of the T cell receptor can be measured, and the first one.
  • a fifth cell in which the second intracellular signal can be suppressed by activation of the intracellular signal and a sixth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecular ligand. are used under conditions where they can contact each other, and Suppression of the second intracellular signal in the fifth cell by the first co-suppressing molecular ligand is carried out under conditions where it is partially suppressed by an inhibitory antibody against the first co-suppressing molecular ligand.
  • the intensity of the second intracellular signal in the presence of the antigen-binding molecule is lower than that in the absence of the antigen-binding molecule, [3] to [5], [8] to [10], [ An antigen-binding molecule according to any one of 17] to [19] and [21] to [24].
  • the combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM, and TIGIT.
  • the antigen-binding molecule is a multiple antigen-binding molecule further comprising a second antigen-binding domain. Any of [1] to [28], wherein the second antigen-binding domain can specifically bind to a second co-suppressing molecule capable of forming a second complex with the second co-suppressing molecular ligand. Antigen-binding molecule. [30] The antigen-binding molecule of [29] capable of activating a third intracellular signal downstream of the second co-suppressing molecule at the immunological synapse in which the first complex is present. [31] The antigen-binding molecule of [30], wherein the activation of the third intracellular signal can suppress the second intracellular signal.
  • the binding of the second antigen-binding domain to the second co-suppressing molecule does not compete with the binding of the second co-suppressing molecular ligand to the second co-suppressing molecule.
  • the combination of the second co-suppressing molecule and the second co-suppressing molecular ligand is a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM, and TIGIT.
  • the antigen-binding molecule of any of [29] to [32], which is any combination selected from the group consisting of combinations, combinations of TIM-3 and CEACAM-1, and combinations of TIM-3 and HMGB1.
  • [35] The antigen-binding molecule according to any one of [29] to [34], wherein the first co-suppressing molecule is the same as or different from the second co-suppressing molecule.
  • the epitope in the first co-suppressing molecule to which the first antigen-binding domain binds is the second antigen.
  • the antigen-binding molecule of [35] that does not overlap, or partially or partially overlaps, the epitope in the second co-suppressing molecule to which the binding domain binds.
  • a co-suppressing molecular agonist comprising any of the antigen-binding molecules of [1] to [40].
  • a co-suppressing molecular signal activator containing the antigen-binding molecule according to any one of [1] to [40].
  • a pharmaceutical composition containing the antigen-binding molecule according to any one of [1] to [40].
  • a first complex comprising a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule, which comprises any of the antigen-binding molecules of [1] to [40].
  • Detection agent [46] A method for suppressing immunity, which comprises administering an antigen-binding molecule according to any one of [1] to [40] to a subject. [47] From the first co-suppressing molecule and the first co-suppressing molecular ligand to the first co-suppressing molecule, which comprises contacting the immune cell with any of the antigen-binding molecules of [1] to [40]. First method for detecting a complex. [48] A method for producing an antigen-binding molecule, which comprises culturing a cell containing a nucleic acid encoding the antigen-binding molecule according to any one of [1] to [40].
  • a method for producing an antigen-binding molecule which comprises collecting plasma or blood containing any of the antigen-binding molecules from [1] to [40].
  • the third complex binds the first co-suppressing molecule or a partial polypeptide thereof to the first co-suppressing molecular ligand or a partial polypeptide thereof via a linker or directly by a chemical bond.
  • the method for producing [49] which is one molecule.
  • [51] The method for producing [49] or [50], further comprising obtaining a composition containing the antigen-binding molecule with increased purity from the plasma or the blood.
  • [52] The production method according to any one of [49] to [51], wherein the antigen-binding molecule is a polyclonal antibody.
  • a method for producing an antigen-binding molecule which comprises isolating a cell clone expressing any of the antigen-binding molecules [1] to [40].
  • the third complex binds the first co-suppressing molecule or a partial polypeptide thereof to the first co-suppressing molecular ligand or a partial polypeptide thereof via a linker or directly by a chemical bond.
  • the method for producing [53] which is one molecule.
  • the method for producing [53] or [54] further comprising extracting and isolating the nucleic acid encoding the antigen-binding molecule from the cell clone.
  • the antigen-binding molecule in the present invention targets the immunological synapse by specifically binding to a complex consisting of a co-suppressing molecule localized at the immunological synapse and its ligand, and has agonist activity against the co-suppressing molecule. It can be a therapeutic agent or a candidate for the treatment or prevention of diseases including autoimmune diseases.
  • FIG. 1 shows PD-1 signal induction (SHP-2) of a bispecific antibody containing an anti-PD-1 arm and an anti-CD3 arm as measured by an SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result of recruitment) activity.
  • SHP-2 PD-1 signal induction
  • FIG. 1 shows PD-1 signal induction (SHP-2) of a bispecific antibody containing an anti-PD-1 arm and an anti-CD3 arm as measured by an SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result of recruitment) activity.
  • OKT3 // 949 is a bispecific antibody containing an arm derived from OKT3 and an arm derived from clone 949
  • CE115TR // 949 is a bispecific antibody containing an arm derived from CE115TR and an arm derived from clone 949. Means.
  • FIG. 1 shows PD-1 signal induction (SHP-2) of a bispecific antibody containing an anti-PD
  • FIG. 2 is a diagram showing the results of evaluating the effects of bispecific antibodies containing anti-PD-1 arm and anti-human CD3 arm on the proliferation of human CD4-positive T cells by the T cell proliferation assay.
  • OKT3 / IC17 includes a bispecific antibody containing an arm derived from OKT3 and an arm derived from an anti-KLH antibody
  • OKT3 / PD1-17 (7J13) includes an arm derived from OKT3 and an arm derived from PD1-17.
  • FIG. 3 is a diagram showing the design of the prepared linker-fused human PD-L1 / human PD-1 complex protein.
  • FIG. 4 is a diagram showing the design of the prepared disulfide bond-introduced human PD-L1 / human PD-1 complex protein.
  • SS complex # 1 which is a combination of Y56C variant of human PD-L1 and A132C variant of human PD-1, and SS complex which is a combination of A18C variant of human PD-L1 and G90C variant of human PD-1.
  • FIG. 5 is a diagram showing the results of specificity evaluation of the anti-human PD-L1 / human PD-1 complex antibody.
  • 30 clones LPB0006, LPB0010, LPB0017, LPB0036, LPB0038, LPC0001, LPC0002, LPC0006, LPC0007, LPC0008, LPC0011, LPC0012, LPC0017, LPC0019, LPC0020, LPC0039, LPC0063, LPC0072, LPD unable , LPE0015, LPE0017, LPE0024, LPE0027, LPE0065, LPE0076) were shown to bind to the complex of human PD-L1 bound to human PD-1.
  • FIG. 6 shows the PD-1 signal-induced (SHP-2 recruitment) activity of anti-human PD-1 antibodies (clone949 and PDA0129) as measured by the SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result. “129 homo” is the anti-human PD-1 antibody PDA0129 prepared in Example 9, and “949 homo” is the anti-human PD-1 antibody clone 949 prepared in Example 1.
  • FIG. 7 shows PD-1 signal induction (SHP) of anti-human PD-L1 / human PD-1 complex antibodies (LPC0039 and LPB0006) measured by the SHP-2 recruitment assay system using NanoBRET®.
  • FIG. 8 is a diagram showing the evaluation results of the inhibitory activity of anti-human PD-1 antibodies (clone 949, PDA0129, clone 10, PD1-17) on the binding between human PD-1 and human PD-L1.
  • PD-1 inhibitory antibodies 5C4 and Pembrolizumab were used as positive controls.
  • Anti-KLH anti-KLH antibody
  • FIG. 1 shows the evaluation result of the activity.
  • FIG. 9 shows PD of a bispecific antibody containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm as measured by an SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result of -1 signal induction (SHP-2 recruitment) activity.
  • LPE0024”, “LPB0017”, “LPC0039”, “LPC0020”, and “LPC0017” mean arms from the anti-human PD-L1 / human PD-1 complex antibody prepared in Example 7, and “949” and “129”. Means the arms from the anti-human PD-1 antibodies clone 949 and PDA0129, respectively. It is a figure which shows the continuation of FIG. 9A.
  • FIG. 9A shows the continuation of FIG. 9A.
  • FIG. 10 is a diagram showing the evaluation results of suppression of NFAT activity by a bispecific antibody containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm.
  • “LPB0010”, “LPB0017”, “LPC0039”, “LPE0024”, “LPC0011”, “LPC0020”, “LPC0001”, and “LPB0010” are arms from the anti-human PD-L1 / human PD-1 complex antibody prepared in Example 7. Meaning, "Clone 949" and "PDA0129” mean an arm from an anti-human PD-1 antibody.
  • FIG. 11 is a diagram illustrating the design of each molecular type concept and the function of each arm examined in this embodiment.
  • FIG. 11 is a diagram illustrating the design of each molecular type concept and the function of each arm examined in this embodiment.
  • FIG. 12 is a diagram illustrating the mechanism of action of each molecular type concept examined in this embodiment.
  • FIG. 13 shows a Fab fragment of anti-human PD-L1 / human PD-1 complex antibody LPB0010HCb-G1T7P / LPB0010LCb-k0MTC and human PD-L1 extracellular domain / human PD-1 cells as shown in Example 18. It is a figure which shows the whole structure of the X-ray crystal structure of the complex with the extracellular domain.
  • LPB0010Fab is shown as a ribbon (black: heavy chain, light gray: light chain), and hPD-L1 / hPD-1 complex is shown as a surface representation (gray: hPD-L1, white: hPD-1).
  • FIG. 13 shows a Fab fragment of anti-human PD-L1 / human PD-1 complex antibody LPB0010HCb-G1T7P / LPB0010LCb-k0MTC and human PD-L1 extracellular domain
  • FIG. 14 is a diagram showing the mapping of LPB0010Fab epitopes onto the human PD-L1 extracellular domain / human PD-1 extracellular domain complex crystal structure as shown in Example 18 (gray:). hPD-L1, white: hPD-1). Black highlights indicate amino acids within 4.5 ⁇ of LPB0010Fab.
  • the figure on the left shows the mapping of the interaction interface seen from the front, and the figure on the right shows the mapping seen from the direction rotated 90 degrees in the X-axis direction.
  • FIG. 15A is a diagram showing the mapping of the epitope of LPB0010Fab onto the amino acid sequence of the human PD-L1 extracellular domain (amino acid number: 19-238) as shown in Example 18.
  • FIG. 15B is a diagram showing the mapping of the epitope of LPB0010Fab onto the amino acid sequence of the human PD-1 extracellular domain (amino acid number: 21-167) as shown in Example 18. Black highlights indicate amino acids within 4.5 ⁇ of LPB0010Fab.
  • Section A) shows the top of the two-dimensional averaging of negatively stained electron micrographs of the complex of LPB0010Fab fragment and human PD-L1 extracellular domain / human PD-1 extracellular domain as shown in Example 19. It is a figure which shows the image of 5 classes.
  • FIG. 17 is a two-dimensional negatively stained electron microscope image of a complex of LPC0039Fab fragment and human PD-L1 extracellular domain / human PD-1 extracellular domain (SS complex # 2) as shown in Example 19. It is a figure which shows the image of the top 5 classes of averaging.
  • a "co-inhibitory molecule” is a membrane protein expressed on T cells, and is intracellular that suppresses T cell activity or activation by specific binding of a co-inhibitor molecule ligand expressed on antigen-presenting cells. A molecule that produces a signal.
  • the term "co-suppressing molecular ligand” is a membrane protein expressed on an antigen-presenting cell, and the co-suppressing molecule is applied to T cells by specific binding to the co-suppressing molecule expressed on T cells. Mediated by a molecule that produces an intracellular signal that suppresses the activation or activation of the T cell.
  • the term "complex consisting of a co-suppressing molecule and a co-suppressing molecular ligand” means that the co-suppressing molecular ligand is the co-suppressing molecular ligand when the co-suppressing molecule is a combination capable of binding to the co-suppressing molecular ligand. It refers to a complex formed by those molecules in a state of being bound to the molecule.
  • the "intermolecular force” is mainly an electromagnetic force acting between one molecule and another. Examples of intramolecular forces include ionic interactions, hydrogen bonds, dipole interactions, and van der Waals forces. Intramolecular forces do not include covalent bonds.
  • binding activity is used to describe the strength of intramolecular force. The binding activity of one molecule to another is determined by the sum of the various intramolecular forces that occur between those molecules.
  • FCM Flow cytometry
  • SPR surface plasmon resonance
  • BLI biolayer interference
  • ELISA enzyme-linked immunosorbent assay
  • binding activity is defined by “i) binding activity” in “(b-2) second aspect” described later.
  • an “epitogen” is an antigen-binding molecule, an antigen-binding domain, or an antigen atom that forms an intermolecular force bond with the antigen-binding molecule, antigen-binding domain, or antibody when the antibody binds to the antigen.
  • a region or region group on the surface of a molecule containing a group is also called an antigenic determinant.
  • “Intramolecular three-dimensional structure change” as used herein is a change in one or both of the three-dimensional structure caused by the binding of a co-suppressing molecular ligand to a co-suppressing molecule (Structure, 2015, Vol.23, pp. 2341-2348. And J Biol Chem, 2013, Vol.288, pp.11771-11785.).
  • a protein having a higher-order structure formed to have a physiological function may have a plastic region on the surface of the protein that causes a change in its three-dimensional structure by an intramolecular interaction with another protein.
  • a change in the three-dimensional structure of a protein means a change in the relative positional relationship with other amino acid residues with respect to a specific amino acid residue in a protein having a higher-order structure formed to have a physiological function.
  • the intramolecular conformational change caused by the binding of the co-suppressing molecular ligand to the co-suppressing molecule is assumed.
  • the "arm" of an antibody means a portion of a monovalent antibody similar to a naturally occurring antibody. Specifically, the arm refers to a portion of an antibody in which one heavy chain Fab and one light chain Fab are bound by a disulfide bond.
  • the antibody containing the arm is not limited to a divalent antibody, and may be a monovalent antibody or a multivalent antibody.
  • antibody is used in the broadest sense, and is not limited to, but is not limited to, a monoclonal antibody, a polyclonal antibody, and a multispecific antibody (for example,) as long as it exhibits a desired antigen-binding activity. Includes various antibody structures, including bispecific antibodies) and antibody fragments.
  • Antibody fragment refers to a molecule other than the complete antibody, which comprises a portion of the complete antibody that binds to the antigen to which the complete antibody binds.
  • Examples of antibody fragments are, but are not limited to, Fv, Fab, Fab', Fab'-SH, F (ab') 2 ; Diabody; Linear antibody; Single chain antibody molecule (eg, scFv). ); And contains a multispecific antibody formed from an antibody fragment.
  • the term "Fc region” is used to define the C-terminal region of an immunoglobulin heavy chain that contains at least a portion of the constant region.
  • the term includes the Fc region of a native sequence and the mutant Fc region.
  • the human IgG heavy chain Fc region extends from Cys226 or from Pro230 to the carboxyl terminus of the heavy chain.
  • the C-terminal lysine (Lys447) or glycine-lysine (Gly446-Lys447) in the Fc region may or may not be present.
  • the numbering of amino acid residues in the Fc region or constant region is Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, follow the EU numbering system (also known as the EU index) described in MD 1991.
  • variable domain FR refers to variable domain residues other than hypervariable region (HVR) residues.
  • a variable domain FR usually consists of four FR domains: FR1, FR2, FR3, and FR4. Accordingly, the sequences of HVR and FR usually appear in VH (or VL) in the following order: FR1-H1 (L1) -FR2-H2 (L2) -FR3-H3 (L3) -FR4.
  • an “isolated” antibody is one that has been isolated from its original environmental components.
  • the antibody is subjected to, for example, electrophoresis (eg, SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatograph (eg, ion exchange or reverse phase HPLC). Measured and purified to a purity greater than 95% or 99%. See, for example, Flatman et al., J. Chromatogr. B 848: 79-87 (2007) for a review of methods for assessing antibody purity.
  • electrophoresis eg, SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis
  • chromatograph eg, ion exchange or reverse phase HPLC
  • mutant antibodies eg, mutant antibodies that contain naturally occurring mutations, or mutant antibodies that occur during the manufacture of monoclonal antibody preparations, such variants are usually slightly smaller. Except for the amount present), they are identical and / or bind to the same epitope. In contrast to polyclonal antibody preparations, which typically contain different antibodies against different epitopes, each monoclonal antibody in the monoclonal antibody preparation is for a single determinant on the antigen.
  • the modifier "monoclonal” should not be construed as requiring the production of an antibody by any particular method, indicating the characteristic of the antibody that it is obtained from a substantially homogeneous population of antibodies.
  • the monoclonal antibodies used in accordance with the present invention are, but are not limited to, hybridoma methods, recombinant DNA methods, phage display methods, transgenic animals containing all or part of the human immunoglobulin loci. It may be made by a variety of methods, including methods that utilize, such methods and other exemplary methods for making monoclonal antibodies are described herein.
  • Natural antibody refers to an immunoglobulin molecule with various naturally occurring structures.
  • a native IgG antibody is a heterotetrameric glycoprotein of approximately 150,000 daltons composed of two identical light chains that are disulfide-bonded and two identical heavy chains.
  • VH variable heavy chain domain
  • CH1, CH2, and CH3 constant domains
  • each light chain has a variable region (VL), also called a variable light chain domain or a light chain variable domain, followed by a stationary light chain (CL) domain.
  • VH variable heavy chain domain
  • VL variable region
  • the light chain of an antibody may be assigned to one of two types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequence of its constant domain.
  • variable region refers to the heavy or light chain domain of an antibody involved in binding the antibody to an antigen.
  • the heavy and light chain variable domains of native antibodies are similar, with each domain usually containing four conserved framework regions (FR) and three hypervariable regions (HVR).
  • FR conserved framework regions
  • HVR hypervariable regions
  • an antibody that binds to a particular antigen may be isolated by screening a complementary library of VL or VH domains using the VH or VL domain from the antibody that binds to that antigen, respectively. See, for example, Portolano et al., J. Immunol. 150: 880-887 (1993); Clarkson et al., Nature 352: 624-628 (1991).
  • vector refers to a nucleic acid molecule that can augment another nucleic acid to which it is linked.
  • the term includes a vector as a self-replicating nucleic acid structure and a vector incorporated into the genome of the host cell into which it has been introduced. Certain vectors can result in the expression of nucleic acids to which they are operably linked. Such vectors are also referred to herein as "expression vectors.”
  • the antigen-binding molecule comprises a first antigen-binding domain.
  • the first antigen-binding domain may have any chemical structure as long as it can bind to the first complex, and may be, for example, a low molecular weight compound or a high molecular weight compound. ..
  • the first complex consists of a first co-suppressing molecule and a first co-suppressing molecular ligand.
  • the first co-suppressing molecular ligand is a ligand for the first co-suppressing molecule.
  • the first antigen binding domain may specifically bind to the first complex.
  • the specific binding of the first antigen binding domain to the first complex can be an intermolecular force binding to the first co-suppressing molecule in the first complex, the first. It can be an intermolecular force binding to the first co-suppressing molecular ligand in the complex, or between the molecules of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. It can be a force bond.
  • the specific binding of the first antigen-binding domain to the first complex is preferably an intermolecular force between both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. Can be a bond by.
  • first co-suppressing molecule or the first co-suppressing molecular ligand, as long as the first antigen binding domain is specifically bound to the first complex. Or it means that an intermolecular force can be formed in both.
  • the first antigen-binding domain when the first antigen-binding domain forms an intermolecular force bond with either the first co-suppressing molecule or the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is used. It is assumed that there is an intramolecular conformational change in either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the first co-suppressing molecule. In this case, the first antigen-binding domain specifically recognizes the three-dimensional structure changed by the binding between these two molecules.
  • the first co-suppressing molecular ligand binds to the first co-suppressing molecule, there is a conformational change in one of the first co-suppressing molecule and the first co-suppressing molecular ligand.
  • the first antigen-binding domain recognizes the three-dimensional structure changed by the binding, and binds by intermolecular force to the first co-suppressing molecule or the first co-suppressing molecular ligand that caused the change in the three-dimensional structure. Can form.
  • the first antigen-binding domain recognizes the three-dimensional structure of either the first co-suppressing molecule or the first co-suppressing molecular ligand changed by the binding, and causes the change in the three-dimensional structure.
  • the first co-suppressing molecular ligand when the first antigen-binding domain forms an intermolecular force bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is the first. There may or may not be a conformational change within the molecule of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the co-suppressing molecule. In this case, if a conformational change occurs, the conformation of either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand can occur.
  • the first antigen binding domain recognizes the atomic arrangement peculiar to the first complex and binds by intermolecular force to both the first co-suppressing molecule and the first co-suppressing molecular ligand. Can be formed.
  • the arrangement of all the atoms recognized by the first antigen-binding domain is only the first co-suppressing molecule that does not form the first complex, or the first that does not form the first complex. It does not exist only in the co-suppressing molecular ligand of.
  • the first antigen binding domain may bind to the first complex.
  • the binding activity of the first antigen-binding domain to the first complex is higher than the binding activity to the first co-suppressing molecule that does not form the first complex, the first complex.
  • Forming a first complex with a binding activity to a first co-suppressing molecule that is higher than the binding activity to a first co-suppressing molecule ligand that does not form a body, or that does not form a first complex Higher than both binding activity to the first co-suppressing molecular ligand that is not.
  • the binding activity of the first antigen-binding domain to the first complex preferably forms the first complex and the binding activity to the first co-suppressing molecule that does not form the first complex. Higher than both binding activity to the first co-suppressing molecular ligand that is not.
  • the binding of the first antigen binding domain to the first complex can be an intermolecular force binding to the first co-suppressing molecule in the first complex, the first complex. It can be an intermolecular force binding to the first co-suppressing molecular ligand in, or by an intermolecular force of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. It can be a bond. Binding of the first antigen-binding domain to the first complex is preferably intermolecular force binding of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. Can be.
  • the presence of these various binding embodiments is due to the presence of the first co-suppressing molecule and the first co-suppressing molecule as long as the first antigen binding domain binds to the first complex and has the above-mentioned binding activity. It means that an intermolecular force can be formed on either or both of the ligands.
  • the first antigen-binding domain forms an intermolecular force bond with either the first co-suppressing molecule or the first co-suppressing molecular ligand
  • the first co-suppressing molecular ligand is used. It is assumed that there is an intramolecular conformational change in either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the first co-suppressing molecule. In this case, the first antigen-binding domain is more likely to recognize the three-dimensional structure changed by the binding between these two molecules than the three-dimensional structure before the change due to the binding.
  • the first co-suppressing molecular ligand binds to the first co-suppressing molecule, there is a conformational change in one of the first co-suppressing molecule and the first co-suppressing molecular ligand.
  • the first antigen-binding domain is easier to recognize the three-dimensional structure changed by the binding than the three-dimensional structure before the change, and the first co-suppressing molecule or the first co-suppressing molecule that caused the change in the three-dimensional structure. It is easy to form a bond with a ligand by intermolecular force.
  • the first antigen-binding domain is easier to recognize the three-dimensional structure of either the first co-suppressing molecule or the first co-suppressing molecular ligand altered by the binding, and is easier to recognize than the pre-changed three-dimensional structure. It is easy to form a bond by intermolecular force with the first co-suppressing molecule or the first co-suppressing molecular ligand that has changed the three-dimensional structure.
  • the first co-suppressing molecular ligand is the first.
  • the first antigen-binding domain has an atomic arrangement peculiar to the first complex, an atomic arrangement in the first co-suppressing molecule that does not form the first complex, and a first complex. It is easier to recognize than the arrangement of atoms in the first co-suppressing molecular ligand that does not form, and it is easier to form an intermolecular bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand.
  • the arrangement of all the atoms recognized by the first antigen-binding domain is only the first co-suppressing molecule that does not form the first complex, or the first that does not form the first complex. It does not exist only in the co-suppressing molecular ligand of.
  • binding activity in the embodiment can be measured using a commonly used method for measuring intermolecular binding activity.
  • FCM Flow cytometry
  • SPR surface plasmon resonance
  • BLI biolayer interference
  • ELISA enzyme-linked immunosorbent assay
  • the antigen-binding molecule contains a plurality of the first antigen-binding molecules
  • the antigen-binding activity of the antigen-binding molecule to the first complex is measured by these measurement methods, the antigen-binding molecule to the first complex Avidity is measured.
  • the binding activity is preferably measured by flow cytometry.
  • the first complex is formed on the surface of the cell, so that the binding of the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex
  • the embodiment is closer to the in vivo environment than other measurement methods.
  • the binding activity of the antigen-binding molecule to the first complex measured by flow cytometry easily reflects the environment in the living body.
  • a first cell in which the first co-suppressing molecule is forcibly expressed and the first co-suppressing molecular ligand is not forcibly expressed is used. ..
  • the binding activity of the first antigen-binding domain to the first cell is measured in the presence and absence of the first soluble polypeptide.
  • the binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide is higher than in the absence of the first soluble polypeptide. ..
  • the first cell may be any cell as long as it is an animal-derived cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand.
  • the first cell preferably does not substantially express the first co-suppressing molecular ligand.
  • the first cell more preferably does not express the first co-suppressing molecular ligand.
  • the first cell is preferably a cell that can be suspended and cultured.
  • the first cell type includes cells derived from Chinese hamster ovary cells.
  • the first antigen-binding domain used for the measurement in this example may be contained in the antigen-binding molecule or may be a part of the antigen-binding molecule.
  • the first antigen-binding domain used for the measurement may be added with an amino acid sequence not contained in the antigen-binding molecule.
  • the first soluble polypeptide used for the measurement in this example may be any polypeptide as long as it contains or a part of the extracellular domain of the first co-suppressing molecular ligand and is soluble. ..
  • the extracellular domain of the first co-suppressing molecular ligand comprises an Ig-V-like domain and an Ig-C-like domain.
  • the first soluble polypeptide used for the measurement may contain at least the Ig-V-like domain of the first co-suppressing molecular ligand. That is, the first soluble polypeptide used for the measurement may be any polypeptide as long as it contains the Ig-V-like domain of the first co-suppressing molecular ligand and is soluble. The first soluble polypeptide used for the measurement preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecular ligand.
  • a second cell in which the first co-suppressing molecular ligand is forcibly expressed and the first co-suppressing molecule is not forcibly expressed is used. Is done.
  • the binding activity of the first antigen-binding domain to the second cell is measured in the presence and absence of the second soluble polypeptide.
  • the binding activity of the first antigen-binding domain to the second cell in the presence of the second soluble polypeptide is higher than in the absence of the second soluble polypeptide. ..
  • the second cell may be any cell as long as it is an animal-derived cell that forcibly expresses the first co-suppressing molecular ligand and does not forcibly express the first co-suppressing molecule.
  • the second cell preferably does not substantially express the first co-suppressing molecule.
  • the second cell more preferably does not express the first co-suppressing molecule.
  • the second cell is preferably a cell that can be suspended and cultured.
  • the second type of cell includes cells derived from Chinese hamster ovary cells.
  • the first antigen-binding domain used for the measurement in this example may be contained in the antigen-binding molecule or may be a part of the antigen-binding molecule.
  • the first antigen-binding domain used for the measurement may be added with an amino acid sequence not contained in the antigen-binding molecule.
  • the second soluble polypeptide used for the measurement in this example may be any polypeptide as long as it contains or a part of the extracellular domain of the first co-suppressing molecule and is soluble.
  • the extracellular domain of the first co-suppressive molecule comprises an Ig-V-like domain.
  • the second soluble polypeptide used for the measurement may contain at least the Ig-V-like domain of the first co-suppressing molecule.
  • the second soluble polypeptide used for the measurement may be any polypeptide as long as it contains the Ig-V-like domain of the first co-suppressing molecule and is soluble.
  • the second soluble polypeptide used for the measurement preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecule.
  • binding activity include embodiments that satisfy either or both of the following (a) and (b).
  • (a) In flow cytometry using a first cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand, the cell of the first co-suppressing molecular ligand.
  • the binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide containing the outer domain or a part thereof is the non-binding activity of the first soluble polypeptide. Higher than in existence.
  • the first cell of (a) may be derived from Chinese hamster ovary cells.
  • the second cell in (b) can be derived from Chinese hamster ovary cells. Both the first and second cells can be derived from Chinese hamster ovary cells.
  • "forced expression” is the expression of a foreign protein by genetic recombination in a cell.
  • the flow cytometry may be one commonly used by those skilled in the art, and commercially available flow cytometry may be used.
  • the first soluble polypeptide may be any polypeptide comprising the extracellular domain of the first co-suppressing molecular ligand or a portion thereof, and is preferably soluble.
  • the extracellular domain of the first co-suppressing molecular ligand or a portion thereof preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecular ligand.
  • the second soluble polypeptide may be any polypeptide comprising the extracellular domain of the first co-suppressing molecule or a portion thereof, and is preferably soluble.
  • the extracellular domain of the first co-suppressing molecule or a portion thereof preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecule.
  • the first soluble polypeptide is forcibly expressed in the first cell in the presence of the first soluble polypeptide.
  • a first complex is formed on the first cell surface.
  • the polypeptide comprising the first antigen binding domain (the polypeptide may then be an antigen binding molecule) then binds to the formed first complex. This binding is detected by flow cytometry. Since the first antigen-binding domain specifically binds to the first complex, this binding is not detected in the absence of the first soluble polypeptide.
  • the second soluble polypeptide is forcibly expressed in the second cell in the presence of the second soluble polypeptide.
  • the first complex is formed on the second cell surface.
  • the polypeptide comprising the first antigen binding domain (the polypeptide may then be an antigen binding molecule) then binds to the formed first complex. This binding is detected by flow cytometry. Since the first antigen-binding domain specifically binds to the first complex, this binding is not detected in the absence of the second soluble polypeptide.
  • the binding activity is preferably measured by biolayer interference (BLI).
  • BLI biolayer interference
  • Octet HTX Molecular Devies
  • As the assay buffer at the time of measurement for example, 50 mM phosphoric acid, 150 mM NaCl, 0.05 w / v% P20, pH 7.4 can be used.
  • the temperature condition is 30 ° C.
  • Biosensor for capturing an antibody for example, Protein A Biosensor (ForteBio, Cat. 18-05010) can be used.
  • the antigen-binding molecule of interest can be captured so as to be about 2.5 nm.
  • the first co-suppressing molecule and the first co-suppressing molecular ligand are diluted in the assay buffer with an assay buffer to a final concentration of 1000 nM and used. obtain.
  • the first co-suppressing molecule or the first co-suppressing molecular ligand is added to the running buffer. It can be diluted with assay buffer to a final concentration of 1000 nM and used.
  • the antigen-binding activity of the antigen-binding molecule can be calculated by the following formula 3 from the analysis results using Data Analysis HT 12.0.
  • Antigen binding amount per unit amount of antigen-binding molecule (antigen binding amount (nm) -blank binding amount (nm)) / antigen-binding molecule capture amount (nm)
  • the amount of the antigen-binding molecule bound to the first complex per unit amount of the antigen-binding molecule is only the first co-suppressing molecule per unit amount of the antigen-binding molecule, and the first co-suppression occurs. It is higher than the amount of binding to the molecular ligand alone, or both the first co-suppressing molecule alone and the first co-suppressing molecular ligand alone.
  • the first antigen-binding domain is a first co-suppressing molecule and the first co-suppressing. It may specifically bind to an epitope present in a first complex consisting of a first co-suppressing molecular ligand for a molecule.
  • the entire region of the epitope is preferably not filled with only the first co-suppressing molecule that does not form the first complex, or only the first co-suppressing molecular ligand that does not form the first complex.
  • both a part of the first co-suppressing molecule that does not form the first complex and a part of the first co-suppressing molecular ligand that does not form the first complex are used as epitopes.
  • a three-dimensional structure that does not exist in the first co-suppressing molecule that does not form the first complex but exists in the first co-suppressing molecule that forms the first complex A three-dimensional structure that does not exist in the case of an epitope and in the first co-suppressing molecular ligand that does not form the first complex, but exists in the first co-suppressing molecular ligand that forms the first complex.
  • the case where the three-dimensional structure change described later is used as an epitope, such as the case where is used as an epitope is included.
  • the specific binding of the first antigen binding domain to the epitope can be an intermolecular force binding to the first co-suppressing molecule in the first complex and in the first complex. It can be an intermolecular force binding to the first co-suppressing molecular ligand, or an intermolecular force binding to both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. could be.
  • Specific binding of the first antigen-binding domain to the epitope is preferably by intermolecular force binding of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. could be.
  • the presence of these various binding embodiments is associated with either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand as long as the first antigen binding domain is specifically bound to the epitope. It means that an intermolecular force can be formed.
  • the intramolecular force can be an intramolecular force that occurs between the first antigen binding domain and the epitope.
  • the first antigen-binding domain when the first antigen-binding domain forms an intermolecular force bond with either the first co-suppressing molecule or the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is used. It is assumed that there is an intramolecular conformational change in either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the first co-suppressing molecule. In this case, the first antigen-binding domain specifically recognizes the three-dimensional structure changed by the binding between these two molecules as an epitope.
  • the first co-suppressing molecular ligand binds to the first co-suppressing molecule, there is a conformational change in one of the first co-suppressing molecule and the first co-suppressing molecular ligand.
  • the first antigen-binding domain recognizes the three-dimensional structure changed by the binding as an epitope, and depends on the first co-suppressing molecule or the first co-suppressing molecular ligand that caused the change in the three-dimensional structure and the intermolecular force. Can form a bond.
  • the first antigen-binding domain recognizes the three-dimensional structure of either the first co-suppressing molecule or the first co-suppressing molecular ligand changed by the binding as an epitope, and causes the change in the three-dimensional structure. It can form an intermolecular force bond with a first co-suppressing molecule or a first co-suppressing molecular ligand.
  • the first co-suppressing molecular ligand when the first antigen-binding domain forms an intermolecular force bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is the first. There may or may not be a conformational change within the molecule of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the co-suppressing molecule. In this case, if a conformational change occurs, the conformation of either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand can occur.
  • the first antigen-binding domain recognizes the atomic arrangement peculiar to the first complex as an epitope, and the epitope and molecule in both the first co-suppressing molecule and the first co-suppressing molecular ligand. Intermolecular bonds can be formed.
  • the arrangement of all atoms in the epitope recognized by the first antigen-binding domain is only the first co-suppressing molecule that does not form the first complex, or does not form the first complex. It does not exist only in the first co-suppressing molecular ligand.
  • the antigen-binding molecule is an immune system in which the first complex is present. At the synapse, it can activate a first intracellular signal downstream of the first co-suppressing molecule.
  • the "first intracellular signal downstream of the first co-suppressing molecule” means an intracellular signal generated when the first co-suppressing molecule is activated in a cell expressing the first co-suppressing molecule. do. In T cells, activation of the first intracellular signal may have the function of suppressing the signal from the T cell receptor.
  • T cell activation here refers to the phenotype of T cells that appears when immunity is activated, such as T cell proliferation and differentiation into activated cells, as well as increased production of cytokines that activate immunity. Is. Examples of T cells include CD4 (+) FoxP3 (-) T cells and CD8 (+) T cells.
  • An "immunological synapse” is a ring-shaped structure formed between cells expressing a co-suppressing molecular ligand and cells of the immune system expressing a co-suppressing molecule in close proximity to each other and in contact with each other. Means (Front Immunol 2016 Vol.7 Article 255, Immunology 2011 Vol.133 pp.420-425). Synapses formed between cells expressing a co-suppressing molecular ligand with MHC and T cells expressing a co-suppressing molecule are exemplified as immunological synapses.
  • the intensity of the first intracellular signal generated by activation of the first co-suppressing molecule can be measured by in vitro experiments.
  • the antigen-binding molecule activated the first intracellular signal when the intensity of the first intracellular signal in the presence of the antigen-binding molecule was higher than that in the absence of the antigen-binding molecule. It can be said.
  • a third cell expressing the first co-suppressing molecule and a fourth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecular ligand can contact each other.
  • the measurement system used in the above state is exemplified as the measurement system of the intensity of the first intracellular signal.
  • the third cell is a cell capable of measuring the intensity of the first intracellular signal, which is a downstream intracellular signal generated by the activation of the first co-suppressing molecule.
  • the antigen-binding molecule is the first. It cannot be confirmed that the intracellular signal of the cell was activated. Therefore, in the above embodiment, the measurement of the intensity of the first intracellular signal maximizes the activation of the first intracellular signal in the third cell by the first co-suppressing molecular ligand expressed by the fourth cell. It is done under conditions that have not been reached. In order to make such a condition, a method of partially suppressing the first intracellular signal in the third cell by using an inhibitory antibody against the first co-suppressing molecular ligand in the fourth cell is applied. obtain.
  • a known inhibitory antibody may be applied to the inhibitory antibody against the first co-suppressive molecular ligand.
  • a known inhibitory antibody against PD-L1 As an inhibitory antibody against PD-L1, YW243.55S70 (see US2016 / 0222117 A1; heavy chain variable region SEQ ID NO: 16 and light chain variable region SEQ ID NO: 17) can be used.
  • the third cell can be derived from Jurkat cells.
  • the fourth cell can be derived from Chinese hamster ovary cells.
  • the third cell is derived from Jurkat cells and the fourth cell is derived from Chinese hamster ovary cells.
  • an artificial antigen-presenting cell (# J109A) expressing PD-L1 manufactured by Promega is exemplified.
  • the intensity of the first intracellular signal is directly or indirectly mutual with the intracellular domain of the first co-suppressing molecule, which occurs when the first co-suppressing molecule is activated. It can be measured based on its proximity to the intracellular protein of action.
  • the proximity detection system may be any detection system as long as the proximity between molecules existing in the cell can be observed and the intensity thereof can be quantified. Specific examples include NanoBRET®.
  • the intracellular protein that directly or indirectly interacts with the intracellular domain of the first co-suppressing molecule may be known or newly discovered by an experimenter. good.
  • Dephosphorylation enzyme is exemplified as the intracellular protein. Specifically, when the co-suppressing molecule is PD-1, the dephosphorylating enzyme is exemplified by SHP-2.
  • immune activation signal is suppressed by a first intracellular signal generated by activation of a first co-suppressing molecule. Whether or not it was done can be confirmed by in vitro experiments. In that experiment, it can be said that the antigen-binding molecule suppressed the immune activation signal when the intensity of the immune activation signal in the presence of the antigen-binding molecule was lower than that in the absence of the antigen-binding molecule. ..
  • the immune activation signal is preferably a second intracellular signal that can be activated downstream of the T cell receptor in T cells.
  • a fifth cell expressing the T cell receptor and the first co-suppressing molecule and a sixth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecule ligand.
  • a measurement system used under conditions where the cells can come into contact with each other is exemplified as a second intracellular signal intensity measurement system.
  • the fifth cell can measure the intensity of the second intracellular signal, which is a downstream intracellular signal generated by the activation of the T cell receptor, and the second intracellular signal can be measured by the activation of the first intracellular signal.
  • the sixth cell the fourth cell used in (b-5) above can be utilized.
  • the second intracellular signal is the first co-suppressing molecule of the fifth cell resulting from the binding of the first co-suppressing molecular ligand of the sixth cell.
  • the measurement of the intensity of the second intracellular signal is such that the second intracellular signal in the fifth cell is maximally suppressed by the first co-inhibitory molecular ligand expressed by the sixth cell. It is done under no conditions.
  • a method of partially suppressing the suppression of the second intracellular signal in the fifth cell by using an inhibitory antibody against the first co-suppressing molecular ligand in the sixth cell can be applied.
  • a known inhibitory antibody may be applied to the inhibitory antibody against the first co-suppressive molecular ligand.
  • PD-L1 YW243.55S70
  • YW243.55S70 see US2016 / 0222117 A1; heavy chain variable region SEQ ID NO: 16 and light chain variable region SEQ ID NO: 17
  • the fifth cell can be derived from Jurkat cells.
  • the sixth cell can be derived from Chinese hamster ovary cells.
  • the fifth cell is derived from Jurkat cells and the sixth cell is derived from Chinese hamster ovary cells.
  • an artificial antigen presenting cell (# J109A) expressing PD-L1 of Promega is exemplified.
  • the intensity of the second intracellular signal can be measured based on the transcriptional activity of a transcription factor acting downstream of the T cell receptor signal.
  • the system for measuring transcriptional activity may be by modification or binding of a factor known to act downstream of the T cell receptor signal, or by variability in gene expression.
  • the modification may be a variation in the phosphorylation state of a particular protein.
  • the binding may be an interaction between specific proteins.
  • the variation in gene expression may be a reporter gene assay in which a promoter recognized by a particular transcription factor is fused with a gene encoding a protein having some enzymatic activity.
  • the second intracellular signal is the activity of NFAT, which is a transcription factor
  • a reporter gene fused so that expression of luciferase can be controlled downstream of the NFAT response element is the first.
  • An assay in which a substrate introduced into 5 cells and reacted with luciferase is luminescenceed is exemplified as a reporter gene assay capable of measuring the intensity of a downstream signal of a T cell receptor signal.
  • the first co-suppressing in a first complex to which the first antigen-binding domain can specifically bind can be appropriately selected from a range of co-suppressing molecules known at that time to those seeking to obtain the antigen-binding molecule.
  • the first co-suppressing molecule typically includes PD-1, BTLA, TIGIT, LAG-3, CTLA4, and TIM-3.
  • the first co-suppressing molecular ligand in the first complex can be appropriately selected from a range of co-suppressing molecular ligands known at that time to those who seek to obtain the antigen-binding molecule.
  • the first co-suppressing molecular ligands typically include PD-L1, PD-L2, HVEM, CD155, CD112, MHC class II molecules, CD80, CD86, galectin-9, phosphatidylserine, CEACAM-1, and HMGB1. Will be.
  • the combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is preferably a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM.
  • the combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is a combination of PD-1 and PD-L1.
  • the epitope to which the first antigen-binding domain binds is preferably any one of the anti-human PD-L1 / human PD-1 complex protein antibodies prepared in Table 1 prepared in Example 7. It overlaps in whole or in part with the epitope in the first complex to which it binds.
  • the epitope to which the first antigen-binding domain binds is more preferably an anti-human PD-L1 / human PD-1 complex protein antibody called LPB0010HCb-G1T7P / LPB0010LCb-k0MTC or LPC0039HCd-G1T7P / LPC0039LCd-k0MTC. It completely or partially overlaps with the epitope in the first complex.
  • the antigen binding molecule may further comprise a second antigen binding domain.
  • the antigen-binding molecule is a multispecific antigen-binding molecule that can bind to two or more antigens or epitopes.
  • the second antigen-binding domain can specifically bind to a second co-suppressing molecule that can form a second complex with the second co-suppressing molecular ligand.
  • the second antigen-binding domain may or may not bind to the second complex.
  • the first antigen-binding domain is characterized by binding to the first complex, whereas the second antigen-binding domain may or may not bind to the second complex.
  • the second antigen-binding domain preferably has agonist activity against the second co-suppressing molecule.
  • the second antigen-binding domain may have any chemical structure as long as it has the above-mentioned characteristics, and may be, for example, a low molecular weight compound or a high molecular weight compound. Specific embodiments of the second antigen-binding domain are exemplified in the “(b-10) Other aspects” column described later.
  • the multispecific antigen binding molecule can activate a third intracellular signal downstream of the second co-suppressing molecule at the immunological synapse in which the first complex is present.
  • the intensity of the third intracellular signal can be measured in the same manner as in the above-mentioned "measurement of the intensity of the first intracellular signal" in (b-5).
  • the first co-suppressing molecule is the second co-suppressing molecule and the first co-suppressing molecule in the "measurement of the intensity of the first intracellular signal”.
  • the ligand is replaced by a second co-suppressing molecular ligand, respectively. It is the agonist activity of the second antigen-binding domain on the second co-suppressing molecule that the multispecific antigen-binding molecule can activate the third intracellular signal downstream of the second co-suppressing molecule. preferable.
  • activation of the third intracellular signal can suppress the second intracellular signal.
  • the intensity of the second intracellular signal can be measured in the same manner as in "Measurement of suppression of immune activation signal by the first intracellular signal" in (b-6) above.
  • the binding of the second antigen-binding domain to the second co-suppressing molecule preferably does not compete with the binding of the second co-suppressing molecular ligand to the second co-suppressing molecule.
  • the second co-suppressing molecule to which the second antigen-binding domain can specifically bind is a multispecific antigen. It can be appropriately selected from the range of co-suppressing molecules that can be known at that time by the person who tried to obtain the bound molecule.
  • the second co-suppressing molecule typically includes PD-1, BTLA, TIGIT, LAG-3, CTLA4, and TIM-3.
  • the second co-suppressing molecular ligand capable of forming a second complex with the second co-suppressing molecule is a co-suppressing molecule to the extent known at that time to those seeking to obtain the multispecific antigen binding molecule. It can be appropriately selected from inhibitory molecular ligands. Second co-suppressing molecular ligands typically include PD-L1, PD-L2, HVEM, CD155, CD112, MHC class II molecules, CD80, CD86, galectin-9, phosphatidylserine, CEACAM-1, and HMGB1. Will be.
  • the combination of the second co-suppressing molecule and the second co-suppressing molecular ligand is preferably a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM.
  • one molecule of the first co-suppressing molecule may be present in the first complex, and a plurality of molecules of the first co-suppressing molecule are present. May be.
  • One molecule of the first co-suppressing molecular ligand may be present in the first complex, or a plurality of molecules of the first co-suppressing molecular ligand may be present.
  • the first complex may contain molecules other than the first co-suppressing molecule and the first co-suppressing molecular ligand.
  • the first antigen binding domain can be a variable region of an antibody or a fragment thereof that binds to its antigen of interest.
  • the first antigen-binding domain is preferably a variable region of one antibody or a fragment thereof that binds to the antigen of interest.
  • the "variable region of an antibody or a fragment thereof that binds to a target antigen thereof" in the embodiment means one arm.
  • the first antigen-binding domain can specifically bind to the first complex with only one arm. By doing so, the antigen-binding molecule can localize to the immunological synapse when the first complex is present at the immunological synapse.
  • the second antigen binding domain can be a variable region of the antibody or a fragment thereof that binds to the antigen of interest.
  • the second antigen-binding domain is preferably a variable region of one antibody or a fragment thereof that binds to the antigen of interest.
  • the "variable region of an antibody or a fragment thereof that binds to a target antigen thereof" in the embodiment means one arm.
  • the second antigen-binding domain can specifically bind to the second co-suppressing molecule with only one arm. By such binding, the second antigen binding domain can activate a third intracellular signal.
  • both the first antigen-binding domain and the second antigen-binding domain are the variable region of the antibody or a fragment thereof that binds to the target antigen.
  • the first co-suppressing molecular ligand may be the same as or different from the second co-suppressing molecular ligand.
  • the first co-suppressing molecule may be the same as or different from the second co-suppressing molecule.
  • the first intracellular signal may be the same as or different from the third intracellular signal.
  • the antigen binding molecule may further comprise a constant region of the antibody. At least one residue in the constant region of the antibody may differ from the amino acid residue at the corresponding position in the constant region of the native antibody.
  • the antigen binding molecule can be an antibody or antibody fragment. The antibody is preferably an isolated antibody.
  • the antigen-binding molecule may comprise a polypeptide, sugar chain, or small molecule compound in addition to the first antigen-binding domain, the second antigen-binding domain, and the constant region of the antibody.
  • These configurations may be linked to each other by a linker or a covalent bond, or may exist as a complex by intramolecular force. It is preferred that all configurations are covalently linked, either directly or via a linker.
  • the type of linker is not particularly limited as long as it can be used in medicine.
  • the above-mentioned method for producing an antigen-binding molecule may include culturing cells containing a nucleic acid encoding the antigen-binding molecule.
  • the method for producing an antigen-binding molecule is a third complex comprising a first co-suppressing molecule or a partial polypeptide thereof and a first co-suppressing molecular ligand for the first co-suppressing molecule or a partial polypeptide thereof. It may include immunizing the body against non-human animals.
  • the third complex is obtained by directly binding the first co-suppressing molecule or a partial polypeptide thereof to the first co-suppressing molecular ligand or a partial polypeptide thereof via a linker or by a chemical bond1. It can be a molecule.
  • the linker is not particularly limited as long as it can chemically bind the first co-suppressing molecule or its partial polypeptide to the first co-suppressing molecular ligand or its partial polypeptide.
  • the chemical bond is not particularly limited as long as the third complex can function as an antigen.
  • An example of the chemical bond is a covalent bond. If the chemical bond is a covalent bond, the stability of the third complex is enhanced. Examples of the covalent bond include a disulfide bond utilizing a thiol group existing in the side chain of a cysteine residue.
  • the production method may include collecting plasma or blood containing the antigen-binding molecule from the non-human animal immunized with the third complex.
  • the production method may further comprise obtaining a composition containing the antigen-binding molecule with increased purity from the plasma or blood.
  • the antigen binding molecule can be a polyclonal antibody.
  • the production method may include isolating a cell clone expressing the antigen-binding molecule from a non-human animal immunized with the third complex.
  • the production method may further comprise extracting and isolating the nucleic acid encoding the antigen-binding molecule from the cell clone.
  • the production method may further comprise recombination of the nucleic acid.
  • the production method may further comprise introducing the recombinant nucleic acid into another cell and expressing the antigen-binding molecule in the other cell.
  • the production method may further comprise obtaining a composition containing the expressed antigen binding molecule.
  • the production method may further comprise increasing the purity of the expressed antigen-binding molecule in the composition.
  • co-suppressing molecular agonists are provided.
  • the co-suppressing molecule agonist comprises the antigen-binding molecule described above.
  • the co-suppressive molecule agonist was used unexpectedly as an agonist for a co-suppressive molecule as well as when it was used with the expectation of acting as an agonist for the co-suppressive molecule, but as a result of the use, the co-suppressive molecule It also includes cases where the agonist activity was or was found to be present.
  • a co-suppressing molecular signal activator contains the antigen-binding molecule described above.
  • the co-suppressive molecule signal activator was used with the expectation of acting as an agonist on the co-suppressive molecule, and was unexpectedly used as an agonist on the co-suppressive molecule, but as a result of the use. It also includes cases where the agonist activity was or was found to be possessed against the co-suppressing molecule.
  • compositions are provided in another aspect of the present invention.
  • the pharmaceutical composition may contain the antigen-binding molecule described above.
  • the pharmaceutical composition can be used to treat or prevent a disease resulting from an hyperimmunity. Diseases caused by hyperimmunity include autoimmune diseases.
  • autoimmune disorders refers to a non-malignant disease or disorder that arises from the individual's own tissue and is directed at the individual's own tissue.
  • autoimmune disorders expressly exclude malignant or cancerous disorders or conditions, especially B-cell lymphoma, acute lymphoblastic leukemia (ALL), chronic lymphocytes. Exclude chronic lymphocytic leukemia (CLL), hairy cell leukemia, and chronic myeloblastic leukemia.
  • autoimmune diseases or disorders include, but are not limited to: inflammatory reactions such as inflammatory skin diseases including psoriasis and dermatitis (eg, atopic dermatitis); systemic.
  • Lupus erythematosus and sclerosis Reactions associated with inflammatory bowel disease (eg, Crohn's disease and ulcerative colitis); Lupus erythematosus syndrome (adult respiratory distress syndrome: including ARDS); Dermatitis; Allergic conditions such as meningitis; encephalitis; vegetationitis; colitis; glomerular nephritis; eczema and asthma and other conditions with T cell infiltration and chronic inflammatory reactions; atherosclerosis; leukocyte adhesion failure; joints Rheumatoid; systemic lupus erythematosus (SLE) (including but not limited to lupus erythematosus, skin lupus); diabetes (eg, type I diabetes or insulin-dependent diabetes); polysclerosis; Raynaud's syndrome; autoimmune Immune thyroiditis; Hashimoto thyroiditis; allergic encephalomyelitis; Schegren's syndrome; juvenile-onset diabetes; and cytokines and T lymphocytes typically found
  • the pharmaceutical composition may contain other ingredients.
  • the other ingredients include other active ingredients applied to the disease of interest and pharmaceutically acceptable carriers.
  • the other active ingredient may be appropriately selected depending on the target disease, and is not particularly limited.
  • the pharmaceutically acceptable carrier is not particularly limited, and examples thereof include buffers, excipients, stabilizers, and preservatives.
  • One or more of the other ingredients may be used in the pharmaceutical composition.
  • a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule.
  • Detection agent is provided.
  • the detection agent may contain the antigen-binding molecule described above.
  • the presence of the first complex is not visible visually, but its presence is revealed by the detector.
  • the target to which the detection agent is used is not particularly limited as long as it is suspected that the first complex is present, and is a living body, a tissue in the living body, a sample collected from the living body, or something existing in the living body. It can be a mixture or cells.
  • the detection method may include contacting the above-mentioned antigen-binding molecule with an immune cell.
  • the antigen-presenting cell may be in close proximity to the immune cell.
  • the immune cell may express the first co-suppressing molecule, and the antigen-presenting cell may express the first co-suppressing molecular ligand.
  • the immune cell can be a T cell.
  • the detection method may be applied in vivo or in vitro.
  • the immune cell When the detection method is applied in vitro, the immune cell may be contacted with the antigen-binding molecule alive or may be immobilized on a slide glass. In the detection method, the immune cells may be present in the tissue or may be mixed with one or more cells other than the immune cells.
  • a method of suppressing immunity may comprise administering to the subject the antigen-binding molecule described above.
  • the antigen-binding molecule is administered to the subject.
  • the activation of the T cells is suppressed, and the immunity of the subject is suppressed.
  • the downstream signal of the T cell receptor in the T cell is activated.
  • the first co-suppressing molecular ligand expressed on the antigen-presenting cell binds to the first co-suppressing molecule expressed on the T cell to form the first complex.
  • the antigen-binding molecule binds to the first complex and activates the downstream signal of the first co-suppressing molecule.
  • the mechanism by which the immunity of the subject is suppressed by suppressing the downstream signal of the activated T cell receptor described above by the downstream signal of the activated first co-suppressing molecule. is assumed.
  • the immunological synapse is targeted by specifically binding to a complex consisting of a co-suppressing molecule localized at the immunological synapse and its ligand, and the co-suppressing molecule has agonist activity. Therefore, the antigen-binding molecule can be a therapeutic agent or a candidate for treating or preventing a disease including an autoimmune disease.
  • the antigen-binding molecule has agonist activity against the co-suppressing molecule at the immunological synapse by including at least the first antigen-binding domain.
  • the antigen-binding molecule has remarkable agonist activity against the co-suppressing molecule at the immunological synapse by making it a multiple antigen-binding molecule containing a second antigen-binding domain in addition to the first antigen-binding domain.
  • the first complex contained in the first complex to which the first antigen-binding domain of the above-mentioned antigen-binding molecule specifically binds.
  • the co-suppressing molecule and the first co-suppressing molecular ligand for the first co-suppressing molecule can be replaced with a first co-stimulating molecule and a first co-stimulating molecular ligand for the first co-stimulating molecule, respectively.
  • the antigen-binding molecule obtained in this case is a third antigen that can specifically bind to a fourth complex consisting of a first co-stimulator molecule and a first co-stimulator molecule ligand for the first co-stimulator molecule. Includes combined domain.
  • Such antigen-binding molecules can have agonistic activity against costimulatory molecules and are therefore potential therapeutic candidates for cancer and infectious diseases.
  • the antigen-binding molecule can specifically bind to a second co-stimulator molecule capable of forming a fifth complex with the second co-stimulator molecule ligand in addition to the third antigen-binding domain. It is expected that the multi-antigen binding molecule containing 4 antigen-binding domains will have remarkable agonist activity against the co-stimulating molecule.
  • Example 1 Preparation of a bispecific antibody comprising an anti-human PD-1 antibody, an anti-human CD3 antibody, and an arm derived from the anti-human PD-1 antibody and an arm derived from the anti-CD3 antibody. It was thought that the T cell receptor and PD-1 needed to be co-localized in order to create an agonist that induces an immunosuppressive signal for PD-1 (J. Exp. Med. Vol. 209 No. 6 1201-1217). The present inventors prepared bispecific antibodies consisting of anti-PD-1 arm and anti-CD3 arm, and evaluated their PD-1 immunosuppressive signal-inducing ability.
  • Three types of anti-human PD-1 monoclonal antibody PD1-17 (heavy chain variable region SEQ ID NO: 1 and light chain variable region sequence) that have been suggested to bind to human PD-1 and induce its immunosuppressive signal. Number: 2 (see WO2004 / 056875), as well as heavy chain constant region SEQ ID NO: 11 and light chain constant region SEQ ID NO: 12), antibody949 (clone 949) (heavy chain variable region SEQ ID NO: 3 and light chain variable region).
  • SEQ ID NO: 4 (see WO2011 / 110621), as well as heavy chain constant region SEQ ID NO: 11 and light chain constant region SEQ ID NO: 13), clone 10 (heavy chain variable region SEQ ID NO: 5 and light chain variable region SEQ ID NO: 13).
  • : 6 (see WO2010 / 029435), as well as heavy chain constant region SEQ ID NO: 11, light chain constant region SEQ ID NO: 13) were prepared by methods known to those skilled in the art.
  • anti-human CD3 antibody two types of anti-human CD3 monoclonal antibody OKT3 (heavy chain variable region) known to bind to the CD3 ⁇ chain constituting the T cell receptor and induce an activation signal of the T cell receptor.
  • SEQ ID NO: 7 NCBI Accession: 1SY6_H, GI: 49259178
  • light chain variable region SEQ ID NO: 8 NCBI Accession: 1SY6_L, GI: 49259177
  • heavy chain constant region SEQ ID NO: 14 and light chain constant region SEQ ID NO: 13
  • CE115TR herein, light chain variable region SEQ ID NO: 9, light chain variable region SEQ ID NO: 10, heavy chain constant region SEQ ID NO: 14, light chain constant region SEQ ID NO: 15
  • anti-CD3 arm an anti-human PD-1 antibody-derived arm
  • anti-CD3 arm two types of anti-human CD3 monoclonal antibodies.
  • Arms hereinafter also referred to as "anti-CD3 arm”
  • anti-CD3 arm were combined according to the purpose of the experiment to prepare a bispecific antibody containing an anti-PD-1 arm and an anti-CD3 arm by a method known to those skilled in the art.
  • the bispecific antibody in which the two types of arms are combined is, for example, an arm derived from clone 949, which is an anti-human PD-1, and an arm derived from OKT3, which is an anti-human CD3 antibody.
  • Bispecific antibodies are referred to as "clone 949 / OKT3", “OKT3 / clone 949”, “clone 949 // OKT3” or "OKT3 // clone 949".
  • Example 2 Evaluation of PD-1 signal-inducing activity of bispecific antibodies containing anti-PD-1 arm and anti-CD3 arm (SHP-2 recruitment)
  • the NanoBRET® PD-1 / SHP2 Interaction Assay System (Promega) was used for the evaluation.
  • the inducible activity of the PD-1 signal was determined by the ratio of the fluorescence signal (618 nm) by BRET when PD-1 and SHP2 were in close proximity to the emission (460 nm) derived from the donor SHP2.
  • Antigen-presenting cells Promega, # J109A
  • expressing PD-L1 the day before the assay were placed in F-12 medium (Gibco, 11765-054) containing 10% FBS in 4.0 x 10 4 cells / 100 mL / well 96 well plate. It was sown in (Costar, # 3917) and cultured in a CO 2 incubator at 37 ° C for 16 to 24 hours.
  • HaloTag® nanoBRET® 618 Ligand (Promega, # G980A) was diluted 250-fold with Opti-MEM (Gibco, # 31985-062). The medium of the cultured PD-L1 expressing antigen-presenting cells was removed, and 25 ⁇ L / well of diluted HaloTag® nanoBRET® 618 Ligand was added.
  • PD-L1 inhibitor antibody (YW243.55S70) (see US2016 / 0222117 A1) (may be referred to as "anti-PD-L1" or “PDL1b” in this example and drawing) 0.08 ⁇ g / mL
  • An evaluation sample (40, 8, 1.6 ⁇ g / mL) diluted with Opti-MEM containing Opti-MEM was added at 25 ⁇ L / well.
  • amino acid sequence of the variable region of the PD-L1 inhibitory antibody (YW243.55S70) refer to the description of US2016 / 0222117 A1 (heavy chain variable region SEQ ID NO: 16, light chain variable region SEQ ID NO: 17).
  • the heavy chain constant region is F1332 (SEQ ID NO: 18), which is a modified Fc body based on human IgG1, and the light chain constant region is k0MT (SEQ ID NO: 19), which is a human ⁇ chain constant region. )
  • F1332 SEQ ID NO: 18
  • k0MT SEQ ID NO: 19
  • nanoBRET® Nano-Glo® substrate Promega, # N157A
  • Opti-MEM Opti-MEM
  • Em460 mM and Em618 nm were measured with Envision (PerkinElmer, 2104 EnVision). The obtained values were applied to the following equations 1 and 2 to calculate the BRET Ratio (mBU).
  • Example 3 Evaluation of bispecific antibody containing anti-PD-1 arm and anti-CD3 arm in T cell proliferation assay
  • the bispecific antibody containing anti-PD-1 arm and anti-human CD3 arm is primary CD4 positive.
  • the inhibitory activity on CD4-positive T cells collected from fresh blood collected from healthy subjects is referred to as anti-human CD3 arm and anti-KLH antibody (referred to as "IC17" in the present specification.
  • Derived arm (heavy chain variable region SEQ ID NO: 112, light chain variable region SEQ ID NO: 113, heavy chain constant region SEQ ID NO: 11, and light chain constant region SEQ ID NO: 13) and bispecific.
  • the cells (PBMC) pellets were collected by centrifuging at 500 g for 15 minutes in a centrifuge at 20 ° C.
  • Human CD4 + T Cell Isolation Kit (miltenyi, Cat # 130-096-533) was used to collect human CD4 + T Cell Isolation Kit (miltenyi, Cat # 130-096-533) from the collected PBMC according to the procedure of the kit.
  • the obtained CD4 positive T cells were added to a 96 well round bottom plate at 7.6 x 10 5 cells / well, and 10 ng / mL of IL-2 and the evaluation antibody (20, 5, 1.25, 0.31, 0.08 ⁇ g /). mL) was cultured in the presence. After culturing for 5 days, cell proliferation was evaluated using the Cell Titer-Glo® Luminescent Cell Viability Assay (promega, G7570) according to the procedure of the kit. The results are shown in FIG.
  • bispecific antibodies containing three types of anti-PD-1 arms and anti-human CD3 arms were found to be negative control anti-human CD3 arms and anti-human CD3 arms. Rather, it promoted the proliferation of human CD4-positive T cells compared to bispecific antibodies containing arms derived from anti-KLH antibodies. From this result, it is difficult to suppress the proliferation of CD4 + T cells by bispecific antibodies containing anti-PD-1 arm and anti-human CD3 arm, and to suppress the immune response caused by CD4 + T cells. Was suggested.
  • Example 4 Preparation of human PD-1 extracellular domain protein Based on the gene sequence information (NM_005018) encoding human PD-1 obtained from GenBank, HMM + 38 (base sequence is SEQ ID NO: 20, amino acid), which is an artificially secreted signal sequence for the extracellular domain (P21-Q167). The sequence was added with SEQ ID NO: 21) at the N-terminal. In addition, a linker sequence, a histidine tag, a linker sequence, and a BAP tag (biotinylated tag, GLNDIFEAQKIEWHE) were added to the C-terminal to prepare an expression construct (base sequence: SEQ ID NO: 22, amino acid sequence: SEQ ID NO: 23).
  • the gene of the above design was synthesized and subcloned into an in-house constructed vector (pBEF-OriP) for mammalian cells to obtain an expression vector.
  • pBEF-OriP an in-house constructed vector
  • human PD-1 extracellular domain protein was transiently expressed.
  • the obtained culture supernatant was purified using an AKTA® Avant25 device (GE healthcare) or a Pure25 device (GE healthcare) and a Pure150 device (GE healthcare).
  • the purification method was ion exchange chromatography using HiTrap (registered trademark) Q HP column (GE healthcare) or Q Sepharose FF resin (GE healthcare), and affinity chromatography using HisTrap (registered trademark) HP column (GE healthcare).
  • Superdex® 200 After concentrating the fraction containing human PD-1 extracellular domain protein with an ultrafiltration membrane, Superdex® 200 increase 10/300 column (GE healthcare) or HiLoad 16/600 Superdex® 200 pg column By further increasing the purification purity by gel filtration chromatography (size exclusion chromatography) using (GE healthcare) and removing multimers, a monomer fraction of high-purity human PD-1 extracellular domain protein can be obtained. Obtained.
  • an expression vector of BirA which is a Biotin ligase
  • an expression vector of the human PD-1 extracellular domain protein in Expi293 (registered trademark) F cells is used together with an expression vector of the human PD-1 extracellular domain protein in Expi293 (registered trademark) F cells.
  • Biotin was added to the target protein by introducing it using ExpiFectamine (registered trademark) 293 Transfection Kit. Purification was performed by ion exchange chromatography using a HiTrap (registered trademark) QHP column (GE Healthcare) and affinity chromatography using a HisTrap (registered trademark) HP column (GE Healthcare) in the same procedure as described above.
  • Example 5 Preparation of human PD-L1 extracellular domain protein Based on the gene sequence information (NM_014143) encoding human PD-L1 obtained from GenBank, HMM + 38 (base sequence is SEQ ID NO: 20, amino acid), which is an artificially secreted signal sequence for the extracellular domain (F19-R238).
  • SEQ ID NO: 21 was added to the N-terminal of the sequence, and a linker sequence, histidine tag, linker sequence, and BAP tag (biotinylated tag, GLNDIFEAQKIEWHE) were added to the C-terminal to prepare an expression construct (base sequence is SEQ ID NO: SEQ ID NO: 24, the amino acid sequence is SEQ ID NO: 25).
  • the gene of the above design was synthesized and subcloned into a vector for mammalian cells (pBEF-OriP) to obtain an expression vector.
  • pBEF-OriP a vector for mammalian cells
  • FreeStyle® CHO cells Thermo Fisher
  • human PD-L1 extracellular domain protein was transiently expressed.
  • the obtained culture supernatant was purified using an AKTA® Avant25 device (GE healthcare) or a Pure25 device (GE healthcare) and a Pure150 device (GE healthcare).
  • the purification method was ion exchange chromatography using HiTrap (registered trademark) Q HP column (GE healthcare) or Q Sepharose FF resin (GE healthcare), and affinity chromatography using HisTrap (registered trademark) HP column (GE healthcare).
  • HiLoad 16/600 Superdex® 200 pg column GE healthcare
  • HiLoad 26/600 Superdex® 200 pg A monomer fraction of high-purity human PD-L1 extracellular domain protein by further increasing the purification purity and removing multimers by gel filtration chromatography (size exclusion chromatography) using a column (GE healthcare).
  • the above-purified human PD-L1 extracellular domain protein is mixed with the purified protein of BirA enzyme (biotin ligase) for the Biotin addition reaction.
  • BirA enzyme biotin ligase
  • the final concentrations were 35 ⁇ M for human PD-L1 extracellular domain protein, 10 mM for ATP, 0.825 ⁇ M for BirA enzyme, 50 mM Tris-HCl pH 8.3, 10 mM Mg (OAc) 2 , 0.05 mM Biotin, and mixed. It was reacted by leaving it at 4 degrees for about 16 hours.
  • Example 6 Preparation of human PD-L1 / human PD-1 complex protein (1) Preparation of linker-fused human PD-L1 / human PD-1 complex protein With variable region F19-N131 of human PD-L1 immunoglobulin domain and variable region N33-E146 of human PD-1 immunoglobulin domain By inserting a linker sequence between the two, stabilization as a complex was achieved by bringing the two closer together. The design is shown in FIG. For human PD-1, C93S modification was introduced to remove free cysteine.
  • Linker complex # 1 base sequence: SEQ ID NO: 26, amino acid sequence: SEQ ID NO: 27
  • Linker complex # 2 base sequence: SEQ ID NO: 28, amino acid sequence: SEQ ID NO: 29
  • a signal sequence HMM + 38
  • a linker sequence, histidine tag, linker sequence, and BAP tag GLNDIFEAQKIEWHE
  • GLNDIFEAQKIEWHE BAP tag
  • the above-mentioned purified human PD-L1 / human PD-1 complex protein is purified by the BirA enzyme (biotin ligase). This was done by mixing with protein and performing a Biotin addition reaction. The final concentrations are 25 ⁇ M or 26 ⁇ M for human PD-L1 / human PD-1 complex protein, 10 mM for ATP, 0.825 ⁇ M for BirA enzyme, 50 mM Tris-HCl pH 8.3, 10 mM Mg (OAc) 2, 0.05 mM Biotin. It was mixed so that it would react by leaving it at 4 degrees for about 16 hours.
  • BirA enzyme biotin ligase
  • the residue to be replaced with cysteine was selected from the structural modeling based on the reported structural data of the cocrystal (PDB: 3BIK).
  • the molecular design software the functions of Design Protein tools of Discovery Studio (Dassault Systèmes Co., Ltd.) and Protein Design of MOE (Chemical Computing Group) were used. With these software, C atoms that are close to each other between human PD-L1 and human PD-1 are selected, and residues that can form disulfide bonds by substituting with cysteine from modeling using rotamer are selected. bottom.
  • FIG. 4 illustrates the design of a disulfide bond-introduced human PD-L1 / human PD-1 complex protein.
  • human PD-L1 and human PD-1 are used as heterodimers. We proceeded with expression purification by fusing with Fc including modification of Knobs into Hole, which is a technology that promotes formation.
  • variable region N33-E146 (including C93S modification) of the immunoglobulin domain of human PD-1
  • linker sequence BAP tag (GLNDIFEAQKIEWHE), linker sequence, Precision protease recognition sequence (LEVLFQGP), and linker sequence are linked. It was fused to the N-terminus of the Fc domain of human IgG1 type including the hinge region. Modifications (L235R, G236R, S239K) and Knob modifications (Y349C, T366W) were introduced into the Fc domain to delete the binding activity to the Fc ⁇ receptor and complement C1q. A FLAG tag for purification was added to the C-terminal of the fusion protein containing PD-1 via a linker sequence.
  • HMM + 38 which is an artificial secretory signal sequence, was added to the N-terminal to prepare an expression construct.
  • the base sequence of hPDL1 (Y56C) _BAP_PreSission_hole_His10 used for SS complex # 1 is shown in SEQ ID NO: 30, the amino acid sequence is shown in SEQ ID NO: 31, and the base sequence of hPD1 (A132C) _BAP_PreSission_knob_FLAG is shown in SEQ ID NO: 32. Is shown in SEQ ID NO: 33.
  • the base sequence of hPDL1 (A18C) _BAP_PreSission_hole_His10 used for SS complex # 2 is shown in SEQ ID NO: 34, the amino acid sequence is shown in SEQ ID NO: 35, the base sequence of hPD1 (G90C) _BAP_PreSission_knob_FLAG is shown in SEQ ID NO: 36, and the amino acid sequence is SEQ ID NO: 37.
  • the gene of the above design was synthesized and subcloned into a vector for mammalian cells (pBEF-OriP) to obtain an expression vector.
  • pBEF-OriP a vector for mammalian cells
  • FreeStyle® CHO cells Thermo Fisher
  • the target protein was purified from the obtained culture supernatant by chromatography using an AKTA (registered trademark) 10S device (GE Healthcare) or an AKTA (registered trademark) Avant25 device (GE Healthcare).
  • affinity chromatography using ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich) is performed, and then affinity chromatography using HisTrap (registered trademark) HP column (GE Healthcare) is performed to obtain a heterodimer.
  • HisTrap registered trademark
  • HP column GE Healthcare
  • HiLoad 26/600 Superdex (registered trademark) 200 pg (GE Healthcare) was used. High-purity human PD-L1 / human PD-1 complex protein was obtained by further increasing the purification purity and removing multimers by gel filtration chromatography (size exclusion chromatography).
  • the above-mentioned purified human PD-L1 / human PD-1 complex protein is purified by the BirA enzyme (biotin ligase). This was done by mixing with protein and performing a Biotin addition reaction. The final concentrations are 21 ⁇ M or 22 ⁇ M for human PD-L1 / human PD-1 complex protein, 10 mM for ATP, 0.825 ⁇ M for BirA enzyme, 50 mM Tris-HCl pH 8.3, 10 mM Mg (OAc) 2, 0.05 mM Biotin. It was mixed so that it would react by leaving it at 4 degrees for about 16 hours.
  • BirA enzyme biotin ligase
  • Example 7 Preparation of anti-human PD-L1 / human PD-1 complex protein antibody from rabbit Linker, which is each of the four types of human PD-L1 / human PD-1 complex proteins prepared as described above. Monoclonal antibodies were produced from rabbits using complex # 1, Linker complex # 2, SS complex # 1, and SS complex # 2 as antigens. 12-13 week old NZW rabbits were immunosensitized with each of the four antigens. The antigenic protein solution was mixed with an equal volume of TiterMax Gold adjuvant and administered intradermally to rabbits. Immunization was repeated 4 times at intervals of 1 week or longer.
  • Linker complex # 1 and Linker complex # 2 were administered at 200 ⁇ g / head during the initial immunization and 100 ⁇ g / head during the subsequent immunization.
  • SS complex # 1 and SS complex # 2 were administered at 100 ⁇ g / head at all times of immunization.
  • Mouse Anti-Rabbit IgG-PE (SouthernBiotech, 4090-9) is bound to Anti-mouse IgG MicroBeads (Miltenyi Biotech, 130-048-401). board.
  • sorting was performed using a cell sorter (FACSariaIII, BD).
  • FACSariaIII BD
  • Streptavidin-APC Miltenyi Biotech, 130-106-
  • binding each of the four types of immune antigens human PD-L1 used for immunization / BAP tag of human PD-1 complex protein with biotin added
  • human PD-1 protein (R & D, 1086-PD) fused with human IgG1 type Fc is bound and stained with Goat anti-Human IgG Fc Cross-Adsorbed Secondary Antibody, DyLight 488 (ThermoFisher, SA5-10134).
  • B cells expressing IgG-type antibody by Anti-Rabbit IgG-PE were also selected.
  • B cells that bound to the human PD-L1 / human PD-1 complex protein did not bind to the human PD-1 protein, and expressed IgG-type antibody were recovered.
  • the resulting B cells were seeded at a density of 1 / well on a 384-well plate with 12,500 / well EL4 cells (European Collection of Cell Cultures) and 20-fold diluted activated rabbit T cell conditioned medium, 6 After culturing for ⁇ 12 days, the cells were subjected to antibody screening using the secreted antibody in the B cell culture supernatant.
  • EL4 cells were previously subjected to X-ray irradiation with an irradiation dose of 10 Gy using an X-ray irradiation device MX-160Labo (mediXtec) and subjected to culture.
  • Activated rabbit T cell conditioned medium is RPMI-1640 containing rabbit thymocytes, phytohaemagglutinin M (Roche, Catalog No. 11082132), phorbol 12-millistate 13-acetate (Sigma, Catalog No. P1585) and 2% FBS. Prepared by culturing in medium. After culturing, the culture supernatant of B cells was collected for further evaluation and the cell pellet was cryopreserved.
  • Goat anti-Rabbit IgG H + L
  • Alexa Fluor 488 Thermo Fisher Scientific, A-11034
  • Data analysis was performed using FlowJo software (Tomy Digital-Biolology). From the results of this experiment, it does not bind to the negative control BSA, human PD-1 extracellular domain protein, or human PD-L1 extracellular domain protein, but only to each human PD-L1 / human PD-1 complex protein.
  • B cells that produce antibodies were selected.
  • F1332 is a human IgG1 heavy chain constant region in which the DNA encoding the antibody heavy chain variable region is amplified by reverse transcription PCR using the prepared RNA and the binding activity to the Fc ⁇ receptor and complement C1q is deleted. : 18) was recombined in-frame with the encoding DNA.
  • the DNA encoding the antibody light chain variable region was amplified by reverse transcription PCR, and in the case of the antibody light chain variable region derived from rabbits, k0MTC (SEQ ID NO: 38), which is a modified human ⁇ type light chain constant region, was obtained. It was recombined in-frame with the encoding DNA.
  • an expression vector having the heavy chain and light chain coding sequences of the recombined antibody was prepared, and the mixture was mixed so that the ratio of the heavy chain to the light chain expression vector was 1: 1 (Expi293).
  • the antibody was transiently expressed by introduction into F cells (Thermo Fisher) using the ExpiFectamine (registered trademark) 293 Transfection Kit.
  • Purified antibodies were prepared from the obtained culture supernatant by affinity purification using Protein A and used for subsequent evaluation.
  • Table 1 shows the variable and constant region SEQ ID NOs of the heavy and light chains of 30 clones of the prepared anti-human PD-L1 / human PD-1 complex protein antibody (signal peptide and variable of antibody sequence).
  • the prediction result using the Signal Peptide prediction function of GENETY X-SV / RC software (Ver.15.0.3) was followed.).
  • Example 8 Evaluation of specificity of anti-human PD-L1 / human PD-1 complex antibody
  • the cell surface of 30 clones of the anti-human PD-L1 / human PD-1 complex protein antibody prepared in Example 7 The binding specificity for the human PD-L1 / human PD-1 complex formed above was evaluated. The binding was evaluated using a flow cytometer (iQue Screener, intellicyt). A solution (called FACS buffer) in which BSA was added to D-PBS (-) to a final concentration of 0.1% was used for diluting cells and proteins to be added, and for washing operations.
  • FACS buffer A solution in which BSA was added to D-PBS (-) to a final concentration of 0.1% was used for diluting cells and proteins to be added, and for washing operations.
  • DXB11s cells were used as the parent strain (parent / CHO), and the human PD-L1 gene (base sequence: SEQ ID NO: 110, amino acid sequence: SEQ ID NO: 111) was introduced on the cell membrane surface to introduce human PD-.
  • a stable expression strain hPD-L1 / CHO
  • a full-length human PD-1 gene base sequence: SEQ ID NO: 108, amino acid sequence: SEQ ID NO: 109
  • hPD-L1 / CHO is mixed with 10 ⁇ g / mL soluble human PD-1 extracellular domain (ECD) protein.
  • HPD-1 / CHO was mixed with 10 ⁇ g / mL soluble human PD-L1 extracellular domain (ECD) protein and placed on ice for at least 30 minutes.
  • the efficiency of formation of human PD-L1 / human PD-1 complex protein on the cell surface was determined by the biotectic acid added to the soluble human PD-1 extracellular domain protein and the soluble human PD-L1 extracellular domain protein. It was confirmed by adding Streptavidin-APC (Miltenyi Biotec, 130-106791) and detecting it. Data analysis was performed using FlowJo software (Tomy Digital-Biolology). The obtained combined data are shown in FIG. 5 and Table 2. Multiple antibodies with high binding selectivity to the PD-L1 / PD-1 complex were obtained.
  • Example 9 Preparation of anti-human PD-1 antibody A plurality of anti-human PD-1 antibodies capable of binding to human PD-1 and inducing its immunosuppressive signal were prepared. PD1-17, antibody949 (clone 949), clone 10 described in Example 1 to PDA0129 (heavy chain variable region SEQ ID NO: 99, light chain variable region SEQ ID NO: 100, heavy chain constant region SEQ ID NO: 18, light). Four clones of anti-human PD-1 antibody to which the chain constant region SEQ ID NO: 38) was added were prepared by a method known to those skilled in the art.
  • An anti-human PD-1 monoclonal antibody 5C4 known to inhibit the binding between human PD-1 and human PD-L1 as a positive control for use in the evaluation of the ligand binding inhibitory activity described in Example 11.
  • Region SEQ ID NO: 101 and light chain variable region SEQ ID NO: 102 see WO2006 / 121168
  • heavy chain constant region SEQ ID NO: 105 and light chain constant region SEQ ID NO: 15 and Pembrolizumab (heavy chain variable region SEQ ID NO: 15).
  • Example 10 Evaluation of PD-1 signal-inducing activity of anti-human PD-L1 / human PD-1 complex antibody (SHP-2 recruitment) Whether anti-human PD-1 antibodies (clone949 and PDA0129) have PD-1 signal-inducing activity, interact with the intracellular domain of PD-1 during PD-1 signal induction by the same procedure as in Example 2.
  • SHP2 which is a dephosphorylating enzyme, was used as an index for evaluation.
  • the results of the assay are shown in FIG. It was suggested that the two anti-human PD-1 antibodies do not have clear SHP2 recruitment-inducing activity, i.e., PD-1 signaling-inducing activity.
  • Example 7 Whether the anti-human PD-L1 / human PD-1 complex antibody produced in Example 7 has the PD-1 signal-inducing activity was determined by the same procedure as in Example 2 during PD-1 signal induction. The proximity of SHP2, a dephosphorylating enzyme that interacts with the intracellular domain of -1, was evaluated as an index. The results of the assay are shown in FIG.
  • the anti-human PD-L1 / human PD-1 complex antibody unlike the anti-human PD-1 antibody (clone949 and PDA0129) described above, has an activity of inducing SHP2 recruitment, that is, an activity of inducing PD-1 signal. It has been shown.
  • Example 11 Evaluation of ligand binding inhibitory activity of anti-human PD-1 antibody
  • the human PD- of the anti-human PD-1 antibody (PD1-17, clone 949, clone 10, and PDA0129) prepared in Example 9
  • the inhibitory activity on the binding between 1 and human PD-L1 was evaluated.
  • Evaluation of inhibitory activity is an indicator of whether the binding strength of soluble human PD-L1 extracellular domain (ECD) protein that binds to human PD-1 expressing cells is attenuated in the presence of anti-human PD-1 antibody. Went to.
  • the binding was evaluated using a flow cytometer (iQue Screener, intellicyt).
  • FACS buffer A solution (called FACS buffer) in which BSA was added to D-PBS (-) to a final concentration of 0.1% was used for diluting cells and proteins to be added, and for washing operations.
  • FACS buffer a stable expression strain in which human PD-1 was forcibly expressed on the cell membrane surface by introducing the above-mentioned full-length human PD-1 gene (base sequence: SEQ ID NO: 108, amino acid sequence: SEQ ID NO: 109) (stable expression strain).
  • hPD-1 / CHO was used.
  • a series of staining operations were performed using a V-Bottom 96 Well Cell Culture Plate (costar, 3894).
  • An antibody solution (100 ⁇ L / well) diluted to a concentration of 20, 4, 0.8 ⁇ g / mL with FACS buffer was prepared into 3 x 10 6 cells / mL, and hPD-1 / CHO cells 50 ⁇ L / well (150000 cells / well). The antibody was bound by mixing with well) and placing on ice for 30 minutes. It was then mixed with 10 ⁇ g / mL biotinylated soluble human PD-L1 extracellular domain (ECD) protein and placed on ice for 15 minutes.
  • ECD extracellular domain
  • PD1-17 and clone 10 were antibodies that inhibited the binding of human PD-L1 to human PD-1, while clone 949 and PDA0129 were antibodies that did not inhibit the binding.
  • Example 12 Preparation of PD-1 agonist antibody using anti-human PD-L1 / human PD-1 complex antibody
  • the present inventors have prepared the anti-human PD-L1 / human PD-1 complex described above. Based on the body antibody, we investigated further antibody molecular types with stronger agonist activity against PD-1. Specifically, PD-L1 induced PD at the local immunological synapses and TCR microclusters where the endogenous PD-L1 / PD-1 complex is formed and exerts its immunosuppressive regulatory function. We investigated a molecular concept that could further enhance the immunosuppressive signal of -1. The present inventors considered that bispecific antibodies containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm satisfy the molecular type concept, and evaluated them.
  • Example 9 As the anti-human PD-1 antibody that is the source of the designed bispecific antibody, the four clones PD1-17, antibody949 (clone949), clone10, and PDA0129 described in Example 9 were used. Table 3 summarizes the presence or absence of inhibitory activity of these anti-human PD-1 antibodies shown in Example 11 against the binding of human PD-L1 to human PD-1.
  • the anti-PD-L1 / PD-1 complex antibody that is the source of the bispecific antibody was selected from the 30 clones (Table 1) prepared in Example 7 and used.
  • Table 4 shows the combinations of the anti-PD-1 arm and the anti-PD-L1 / PD-1 complex arm in the prepared bispecific antibody, particularly those used in the later examples.
  • Table 5 shows the variable regions of the heavy and light chains of the antibody that is the source of the bispecific antibody, including the anti-PD-1 arm and anti-PD-L1 / PD-1 complex arm prepared above, and their respective variable regions.
  • the SEQ ID NO: of the constant region is shown (for the boundary between the signal peptide of the antibody sequence and the variable region, the prediction result using the Signal Peptide prediction function of GENETYX-SV / RC software (Ver.15.0.3) was followed.) ..
  • Example 13 Evaluation of PD-1 signal-inducing activity of bispecific antibody containing anti-PD-L1 / PD-1 complex arm and anti-PD-1 arm (SHP-2 recruitment) Whether the bispecific antibody containing the anti-PD-L1 / PD-1 complex arm and the anti-PD-1 arm has the inducing activity of PD-1 signal is determined by the same procedure as in Example 2 of PD-1. The proximity of SHP2, a dephosphorylating enzyme that interacts with the intracellular domain of PD-1 during signal induction, was used as an index. The results of the assay are shown in FIG.
  • bispecific antibodies containing anti-PD-L1 / PD-1 complex arm and anti-PD-1 arm have the activity of inducing SHP2 recruitment, that is, the activity of inducing PD-1 signal.
  • bispecific antibodies using arms derived from anti-PD-1 antibodies, such as antibody 949 (clone 949) and PDA0129, which do not inhibit the binding of PD-1 to PD-L1 can be used to induce SHP2 recruitment. It was found that the activity was remarkably high.
  • Example 14 Evaluation of PD-1 signal-inducing activity using suppression of NFAT activity as an index PD induced by a bispecific antibody containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm Whether the -1 signal has an immunosuppressive function was evaluated using the activity of the transcription factor NFAT, which acts downstream of the T cell receptor signal responsible for immune activation, as an index.
  • NFAT transcription factor
  • the TCR stimulator on PD-L1 aAPC / CHO-K1 cells induces the activation signal of TCR on PD-1 Effector Cell, which causes NFAT activation and luminescence of the reporter gene Luciferase is observed.
  • the activation of NFAT is almost completely suppressed by the induction of PD-1 signal by PD-L1.
  • PD-L1 inhibition of about 30% is applied when the final concentration at which the PD-L1 inhibitory antibody YW243.55S70 is added is 40 ng / mL. In, it was evaluated whether the bispecific antibody induces the suppression of NFAT activation.
  • the reaction was carried out using a Round well 384 Well White Flat Bottom Polystyrene TC-Treated Microplate (Corning, 3826).
  • PD-L1 aAPC / CHO-K1 cells prepared to 2.5 x 10 5 cells / mL were added at 30 ⁇ L / well, incubated overnight at 37 ° C at 5% CO 2 , and then adhered, and then cultured. After removing the supernatant, an antibody solution mixed with bispecific antibody of each concentration was added at 10 ⁇ L / well so that the final concentration of YW243.55S70 was 40 ng / mL.
  • PD-1 Effector Cell prepared to 4.6875 x 10 5 cells / mL was added at 10 ⁇ L / well and incubated at 37 ° C. under 5% CO 2 conditions for 6 hours.
  • the Luciferase substrate solution of the Bio-Glo Luciferase Assay System (Prmega, G7940) was added at 20 ⁇ L / well and allowed to stand at room temperature for 5 minutes, and then the luciferase emission was measured with a microplate reader EnVision Xcite (PerkinElmer).
  • the result of the evaluation is shown in FIG.
  • the generated bispecific antibody containing the anti-PD-L1 / PD-1 complex arm and the anti-PD-1 arm was confirmed in the SHP-2 recruitment assay system using NanoBRET® described above. It was confirmed that not only has SHP2 recruitment activity, but also has a function of suppressing NFAT activity as shown by this assay.
  • Example 15 Design of each molecular type concept and function of each arm, and mechanism of action thereof Specific antibody molecule design of PD-1 agonist antibody and function of each arm examined in the above-mentioned Examples.
  • FIG. 11 shows the estimated mechanism of action in FIG.
  • Both arms of the anti-human PD-L1 / human PD-1 complex antibody (Fig. 11 top and Fig. 12 left) enhance the interaction of PD-L1 with PD-1 in addition to the targeting function to the immunological synapse. By having a function, it was presumed to exert an agonistic action on PD-1 as shown in Example 10.
  • This mechanism of action is not only an anti-complex antibody capable of enhancing the interaction of PD-L1 with PD-1, but also an anti-complex antibody capable of enhancing the interaction of other co-suppressing molecular ligands with other co-suppressing molecules. It can also be applied to complex antibodies.
  • a bispecific antibody comprising an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm (bottom of FIG. 11 and right of FIG. 12)
  • the anti-PD-L1 / PD-1 complex arm is at least immune. It suffices to have a synapse targeting function, and may or may not have a function of enhancing the interaction of PD-L1 with PD-1.
  • the anti-PD-1 arm was presumed to exert an agonistic effect on PD-1.
  • This mechanism of action is not only an anti-complex arm that can enhance the interaction of PD-L1 with PD-1, but also an anti that can enhance the interaction of other co-suppressing molecular ligands with other co-suppressing molecules. It can also be applied to complex arms.
  • Example 16 Preparation of anti-human PD-L1 / human PD-1 complex antibody G1T7P (sequence) of the heavy chain constant region of the anti-human PD-L1 / human PD-1 complex protein antibody prepared in Example 7
  • the gene for the antibody replaced with No .: 114 was produced by a method known to those skilled in the art.
  • the antibody was transiently expressed in mammalian cells by a method known to those skilled in the art using the generated gene encoding the antibody, and was purified by a method known to those skilled in the art as necessary.
  • the combinations of heavy chain variable region, heavy chain constant region, light chain variable region, and light chain constant region of each antibody used for expression are shown in Table 6.
  • Example 17 Evaluation of binding specificity of anti-human PD-L1 / human PD-1 complex antibody Human PD-1, of the anti-human PD-L1 / human PD-1 complex protein antibody prepared in Example 16 Binding activity to human PD-L1 and mixtures thereof was assessed using Octet HTX (Molecular Devies). Evaluation was performed at 30 ° C. using 50 mM phosphoric acid, 150 mM NaCl, 0.05 w / v% P20, pH 7.4 as assay buffer. A Protein A Biosensor (ForteBio, Cat. 18-05010, hereinafter referred to as Pro A biosensor) was used as a biosensor for capturing the antibody.
  • Pro A biosensor Protein A Biosensor
  • Human PD-1 and human PD-L1 used in this measurement were prepared by the methods described in Examples 4 and 5.
  • Human PD-1 and human PD- Each L1 was diluted with assay buffer to a final concentration of 1000 nM and bound to the antibody captured on the biosensor.
  • the chips were regenerated with 10 mM Glycine-HCl (pH 1.5) and the antibody was repeatedly captured and measured.
  • the dissociation constant (K D ) for each antigen of each antibody was calculated using Data Analysis HT 10.0.
  • the binding rate constant k a (L / mol / s) and the dissociation rate constant k dis (1 / s) are calculated by fitting the sensorgrams obtained by the measurement with a 1: 1 binding model.
  • the dissociation constant K D (mol / L) was calculated from that value.
  • the capture amount (nm) and the binding amount to the antigen (nm) of each antibody were calculated using Data Analysis HT 12.0. After dividing the blank binding amount (nm) from this binding amount (nm), the antigen binding amount per unit antibody amount of each antibody was calculated by dividing by the capture amount (nm).
  • the obtained join data is shown in Tables 7 and 8. It was confirmed that each antibody has high binding selectivity for PD-L1 / PD-1 complex.
  • Example 18 Epitope identification by X-ray crystal structure analysis of anti-human PD-L1 / human PD-1 complex antibody Fab fragment, human PD-L1 extracellular domain and human PD-1 extracellular domain complex LPB0010 prepared in Example 16 to prepare a Fab fragment of the anti-human PD-L1 / human PD-1 complex antibody LPB0010HCb-G1T7P / LPB0010LCb-k0MTC (referred to herein as "LPB0010 Fab").
  • Full-length antibody is digested with Endoproteinase Lys-C (Roche) at 35 ° C for 2 hours, then HiTrap® MabSelect® SuRe Column (GE Healthcare), HiTrap for Fc fragment removal and purification. Purified on an AKTAxpress TM device (GE Healthcare) using SP HP column (GE Healthcare) and HiLoad 16/600 Superdex® 75 pg (GE Healthcare).
  • the purified LPB0010Fab is also referred to as a human PD-L1 extracellular domain protein (hereinafter referred to as "hPD-L1_ECD") prepared by the methods of Example 4 and Example 5 in order to prepare a complex sample for crystallization. ) And human PD-1 extracellular domain protein (hereinafter also referred to as “hPD-1_ECD”) in a molar ratio of about 1: 1: 1 and then Superdex® 200 increases 10/300 GL. Purified by AKTApurifier TM 10 device (GEHealthcare) by gel filtration chromatography using (GEHealthcare).
  • fractionated complex fraction was desglycanized with Protein Deglycosylation Mix II (New England Biolabs) at 37 ° C for 4 days, and then equilibrated with 20 mM HEPES buffer pH 7.1, 100 mM sodium chloride (Superdex). Purified with AKTApurifier (trademark) 10 device (GE Healthcare) using 200 increases 10/300 GL (GE Healthcare).
  • the prepared complex was concentrated to 11 mg / mL using an ultrafiltration membrane and crystallized by the sitting drop vapor diffusion method at 20 ° C in combination with the microseeding method.
  • the reservoir solution for crystallization consisted of 20% (w / v) polyethylene glycol 3350 and 0.2 M magnesium sulfate hydrate. Crystals soaked in a reservoir solution supplemented with 25% (v / v) ethylene glycol for a short time were frozen in liquid nitrogen.
  • LPB0010Fab binds to the hPD-L1_ECD / hPD-1_ECD complex in both heavy and light chains in a 1: 1 ratio.
  • 14 and 15 show the epitope mapping of LPB0010Fab on the crystal structure and amino acid sequence of hPD-L1_ECD / hPD-1_ECD, respectively. Amino acids containing one or more atoms located within 4.5 ⁇ of any atom in LPB0010Fab are mapped as epitopes.
  • LPB0010Fab recognizes both hPD-L1_ECD and hPD-1_ECD molecules by multiple regions on the amino acid sequence, and LPB0010Fab recognizes the hPD-L1_ECD / hPD-1_ECD complex. It was clarified that the three-dimensional structure as an epitope is used as an epitope. 13 and 14 were created using PyMOL Version 2.3 (Schrodinger, LLC.) Software.
  • hPD-L1_ECD used for crystallization is amino acid number F19-R238 as shown in Example 5, the crystal structure continues after K136 (Ig-C-like domain). ) Does not see the electron density map. Therefore, a model of the Ig-C-like domain of hPD-L1 has not been constructed, but since the amino acids after K136 extend in the direction opposite to the binding site of LPB0010Fab, it is considered that they are not included in the epitope of LPB0010Fab.
  • Example 19 Epitope evaluation by negative staining electron microscopic analysis of anti-human PD-L1 / human PD-1 complex antibody Fab fragment, human PD-L1 extracellular domain and human PD-1 extracellular domain complex
  • LPB0010HCb-G1T7P / LPB0010LCb-k0MTC and LPC0039HCd-G1T7P / LPC0039LCd-k0MTC full-length antibodies prepared in Example 16 were digested with Endoproteinase Lys-C (Roche) at 35 ° C for 2 hours and then Fc.
  • HiTrap® MabSelect® SuRe Column GE Healthcare
  • HiTrap® SP HP Column GE Healthcare
  • HiLoad 16/600 Superdex® 75 for fragment removal and purification.
  • Purified on an AKTAxpress TM device GE Healthcare
  • pg GE Healthcare
  • the purified LPB0010Fab is mixed with hPD-1_ECD and hPD-L1_ECD prepared by the methods of Example 4 and Example 5 in a molar ratio of about 1: 1: 1, and then 25 mM HEPES buffer pH. It was purified by AKTApurifier (trademark) 10 device (GE Healthcare) by gel filtration chromatography using Superdex (registered trademark) 200 increases 10/300 GL (GE Healthcare) equilibrated with 7.1, 100 mM sodium chloride. A complex fraction of LPB0010Fab and hPD-L1_ECD / hPD-1_ECD was recovered as a sample for negative staining electron microscope analysis.
  • the purified LPC0039Fab is a disulfide bond-introduced human PD-L1 / human PD-1 complex protein SS complex # 2 (hereinafter referred to as “hPD-L1_ECD / hPD-1_ECD SS complex # 2”) prepared by the method of Example 6.
  • Superdex® 200 increment 10/300 GL (GE Healthcare) which was mixed with 25 mM HEPES buffer pH 7.1, 100 mM sodium chloride and then equilibrated with a molar ratio of about 1: 1.
  • AKTApurifier TM 10 device GE Healthcare
  • the applied sample was negatively stained with 2% (w / v) uranyl acetate, and was operated at 120 kV at room temperature with a JEM-1400plus (JEOL Ltd.) electron microscope at a magnification of 60,000 times and a pixel size of 3.058 ⁇ / pixel. The photo was taken under the conditions of (JEOL Ltd.).
  • FIG. 16A shows five typical two-dimensional average images of the complex of LPB0010Fab and hPD-L1_ECD / hPD-1_ECD.
  • LPB0010Fab is bound to the interaction interface between PD-L1 and PD-1 (the region indicated by the arrow in No. 1 and No. 4). Therefore, LPB0010Fab is considered to recognize both PD-L1 and PD-1 molecules as epitopes, which is consistent with the results of X-ray crystallography as shown in Example 18.
  • each average image corresponds to the X-ray crystal structure (Example 18) of the complex of LPB0010Fab and hPD-L1_ECD / hPD-1_ECD.
  • the model structure created by superimposing was used.
  • FIG. 16B is a view of the created three-dimensional structure model viewed from various directions so as to correspond to the images of each class of the two-dimensional averaging of FIG. 16A. From this, it can be clearly seen that the result of the negative staining electron microscope analysis is in agreement with the result of the X-ray crystal structure analysis.
  • FIG. 17 shows five typical two-dimensional average images of a complex of LPC0039Fab and hPD-L1_ECD / hPD-1_ECD S-S complex # 2 (hPD-L1_Ig-C-like domain is not included in the construct).
  • hPD-L1_Ig-C-like domain is not included in the construct.
  • LPC0039Fab is bound to the interaction interface between PD-L1 and PD-1 (the region indicated by the arrow in No. 4), similar to LPB0010Fab. Therefore, it is considered that LPC0039Fab also recognizes both PD-L1 and PD-1 molecules as epitopes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

An antigen-binding molecule that specifically binds to a complex, said complex being composed of a co-suppression molecule localized in an immune synapse and a ligand thereof, and thus targets the immune synapse. Preferably, the antigen-binding molecule has an agonistic activity to the co-suppression molecule. The antigen-binding molecule is usable not only in a medicine having an immunosuppression action based on the agonistic activity to the co-suppression molecule but also for detecting a complex composed of the co-suppression molecule and a ligand thereof.

Description

抗原結合分子Antigen binding molecule
 本発明は、抗原結合分子、共抑制分子アゴニスト、共抑制分子シグナル活性化剤、医薬組成物、共抑制分子とそのリガンドからなる複合体の検出剤、免疫を抑制する方法、および共抑制分子とそのリガンドからなる複合体の検出方法に関する。 The present invention includes an antigen-binding molecule, a co-suppressing molecule agonist, a co-suppressing molecule signal activator, a pharmaceutical composition, a detection agent for a complex consisting of a co-suppressing molecule and its ligand, a method for suppressing immunity, and a co-suppressing molecule. The present invention relates to a method for detecting a complex composed of the ligand.
 免疫シナプスに存在する分子を薬理学的に標的とした医薬が注目されている(非特許文献1)。そのような分子の中でも共抑制分子を標的とした治療は、がん治療を目的としている。たとえばCTLA-4やPD-1を標的にする抗体が米国食品医薬品局(FDA)により承認されているほか、TIM-3、LAG3、そしてTIGITをブロックする治療の臨床試験が行われている。 Pharmacologically targeted drugs that exist at the immunological synapse are attracting attention (Non-Patent Document 1). Among such molecules, therapies targeting co-suppressive molecules are aimed at cancer treatment. For example, antibodies targeting CTLA-4 and PD-1 have been approved by the US Food and Drug Administration (FDA), and clinical trials are underway for treatments that block TIM-3, LAG3, and TIGIT.
 自己免疫疾患のマウスモデルにおいて共抑制分子に対するアゴニストの有効性が示されているが、ヒト疾患で有効性が示されたアゴニストは未だない(非特許文献2)。 Although the efficacy of agonists for co-suppressive molecules has been shown in mouse models of autoimmune diseases, no agonist has been shown to be effective in human diseases (Non-Patent Document 2).
 共抑制分子の一つであるPD-1に対するアゴニストが試されてきている。
 たとえば、PD-1 AB-6と呼ばれる抗体が、PD-1の残基100~105で構成されるPD-1ループを伴うβシートに結合することが開示されている(特許文献1)。該文献には、PD-1 AB-6がPD-1を介したアゴニストを提供するように設計されていることが開示されている。
 また、ヒトPD-1に対する特異性を有する物質が、ヒトPD-1シグナルを伝達することができる優れた物質であることが開示されている(特許文献2)。しかしながら、該文献の実施例で用いられたPD-1とCD3に対する反応性を有する二重特異的抗体がPD-1に対してアゴニスト活性を有するか否かは実験的に示されていない。
Agonists for PD-1, one of the co-suppressive molecules, have been tested.
For example, an antibody called PD-1 AB-6 is disclosed to bind to a β-sheet with a PD-1 loop composed of PD-1 residues 100-105 (Patent Document 1). The literature discloses that PD-1 AB-6 is designed to provide PD-1 mediated agonists.
Further, it is disclosed that a substance having specificity for human PD-1 is an excellent substance capable of transmitting a human PD-1 signal (Patent Document 2). However, it has not been experimentally shown whether or not the bispecific antibody having reactivity with PD-1 and CD3 used in the examples of the literature has agonist activity against PD-1.
 現在、CC-90006と呼ばれるPD-1アゴニスト抗体を用いた、乾癬を対象とした臨床試験のフェーズ1が進められている(非特許文献3)。
 最近、PD-1とCD3の両方を標的とする二重特異的抗体であるONO-4685を用いた、自己免疫疾患を対象とした臨床試験のフェーズ1が開始された(非特許文献4,5)。ONO-4685は、同じT細胞に発現しているPD-1とCD3を架橋してPD-1アゴニストとして作用すること、およびPD-1を発現する細胞と別の細胞に発現するCD3を架橋することでT細胞を傷害する作用を有することが期待されている(非特許文献6)。
Currently, Phase 1 of a clinical trial for psoriasis using a PD-1 agonist antibody called CC-90006 is in progress (Non-Patent Document 3).
Recently, Phase 1 of a clinical trial targeting autoimmune diseases using ONO-4685, which is a bispecific antibody targeting both PD-1 and CD3, has been started (Non-Patent Documents 4 and 5). ). ONO-4685 acts as a PD-1 agonist by cross-linking PD-1 and CD3 expressed on the same T cell, and cross-links CD3 expressed on a cell expressing PD-1 and another cell. Therefore, it is expected to have an action of damaging T cells (Non-Patent Document 6).
国際公開第2018/053405号International Publication No. 2018/053405 国際公開第2004/072286号International Publication No. 2004/072286
 自己免疫疾患を含む疾患を治療または予防するための医薬が充分に満たされているとはいえない。したがって、自己免疫疾患を含む疾患を治療または予防するためのさらなる治療薬またはその候補が創出されることが期待される。 It cannot be said that the medicines for treating or preventing diseases including autoimmune diseases are sufficiently satisfied. Therefore, it is expected that further therapeutic agents or candidates for treating or preventing diseases including autoimmune diseases will be created.
 本発明者らは、自己免疫疾患に対する有効性を潜在的に有する免疫シナプスを標的とした抗原結合分子のコンセプトを創出し、それを実験的に確認した。具体的には、該抗原結合分子は、免疫シナプスに局在する共抑制分子とそのリガンドからなる複合体に特異的に結合することで、免疫シナプスを標的とする。該抗原結合分子は、好ましくは、該共抑制分子に対するアゴニスト活性を有する。該抗原結合分子は、該共抑制分子に対するアゴニスト活性に基づく免疫抑制作用を有する医薬以外に、共抑制分子とそのリガンドからなる複合体の検出にも提供され得る。 The present inventors have created and experimentally confirmed the concept of an antigen-binding molecule targeting an immunological synapse that has potential efficacy against autoimmune diseases. Specifically, the antigen-binding molecule targets the immunological synapse by specifically binding to a complex consisting of a co-suppressing molecule localized at the immunological synapse and its ligand. The antigen-binding molecule preferably has agonistic activity against the co-suppressing molecule. The antigen-binding molecule can be provided for detection of a complex consisting of a co-suppressing molecule and a ligand thereof, in addition to a drug having an immunosuppressive action based on an agonist activity against the co-suppressing molecule.
 本明細書における一態様として、以下の発明が提供される。
[1]第1の抗原結合ドメインを含む抗原結合分子であって、
前記第1の抗原結合ドメインが第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体に特異的に結合し得る、抗原結合分子。
[2]前記第1の抗原結合ドメインの前記第1の複合体への特異的結合が前記第1の複合体中の前記第1の共抑制分子および前記第1の共抑制分子リガンドのいずれか一方または両方との分子間力による結合である、[1]の抗原結合分子。
[3]前記第1の複合体が存在する免疫シナプスにおいて、前記第1の共抑制分子の下流の第1の細胞内シグナルを活性化し得る、[1]または[2]の抗原結合分子。
[4]前記第1の細胞内シグナルの活性化により、T細胞の活性化が抑制され得る、[3]の抗原結合分子。
[5]前記免疫シナプスが、MHCと前記共抑制分子リガンドを発現している細胞と、前記共抑制分子を発現している前記T細胞の間に形成されたものである、[3]または[4]の抗原結合分子。
[6]第1の抗原結合ドメインを含む抗原結合分子であって、
前記第1の抗原結合ドメインが第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体に結合し得、そして
前記第1の抗原結合ドメインの前記第1の複合体への結合活性が、前記第1の複合体を形成していない第1の共抑制分子および前記第1の複合体を形成していない第1の共抑制分子リガンドのいずれか一方または両方への結合活性よりも高い、抗原結合分子。
[7]前記第1の抗原結合ドメインの前記第1の複合体への結合が前記第1の複合体中の前記第1の共抑制分子および前記第1の共抑制分子リガンドのいずれか一方または両方との分子間力による結合である、[6]の抗原結合分子。
[8]前記第1の複合体が存在する免疫シナプスにおいて、前記第1の共抑制分子の下流の第1の細胞内シグナルを活性化し得る、[6]または[7]の抗原結合分子。
[9]前記第1の細胞内シグナルの活性化により、T細胞の活性化が抑制され得る、[8]の抗原結合分子。
[10]前記免疫シナプスが、MHCと前記共抑制分子リガンドを発現している細胞と、前記共抑制分子を発現している前記T細胞の間に形成されたものである、[8]または[9]の抗原結合分子。
[11]前記結合活性が以下の(a)および(b)のいずれか一方または両方の条件を満たす、[6]から[10]のいずれかの抗原結合分子:
 (a) 前記第1の共抑制分子を強制発現し前記第1の共抑制分子リガンドを強制発現していない第1の細胞を用いたフローサイトメトリーにおいて、前記第1の共抑制分子リガンドの細胞外ドメインまたはその一部を含む第1の可溶型ポリペプチドの存在下における前記第1の抗原結合ドメインの前記第1の細胞への結合活性が、前記第1の可溶型ポリペプチドの非存在下に比べて高い;
 (b) 前記第1の共抑制分子リガンドを強制発現し前記第1の共抑制分子を強制発現していない第2の細胞を用いたフローサイトメトリーにおいて、前記第1の共抑制分子の細胞外ドメインまたはその一部を含む第2の可溶型ポリペプチドの存在下における前記第1の抗原結合ドメインの前記第2の細胞への結合活性が、前記第2の可溶型ポリペプチドの非存在下に比べて高い。
[12]前記第1の細胞および前記第2の細胞の両方がチャイニーズハムスター卵巣細胞由来である、[10]の抗原結合分子。
[13]前記結合活性がバイオレイヤー干渉により測定される、[6]から[10]のいずれかの抗原結合分子。
[14]第1の抗原結合ドメインを含む抗原結合分子であって、
前記第1の抗原結合ドメインが第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体に存在するエピトープに特異的に結合し得る、抗原結合分子。
[15]前記エピトープの領域全体が、前記第1の複合体を形成していない前記第1の共抑制分子のみまたは前記第1の複合体を形成していない前記第1の共抑制分子リガンドのみでは満たされない、[14]の抗原結合分子。
[16]前記第1の抗原結合ドメインの前記第1の複合体への特異的結合が前記第1の複合体中の前記第1の共抑制分子および前記第1の共抑制分子リガンドのいずれか一方または両方との分子間力による結合である、[14]または[15]の抗原結合分子。
[17]前記第1の複合体が存在する免疫シナプスにおいて、前記第1の共抑制分子の下流の第1の細胞内シグナルを活性化し得る、[14]から[16]のいずれかの抗原結合分子。
[18]前記第1の細胞内シグナルの活性化により、T細胞の活性化が抑制され得る、[17]の抗原結合分子。
[19]前記免疫シナプスが、MHCと前記共抑制分子リガンドを発現している細胞と、前記共抑制分子を発現している前記T細胞の間に形成されたものである、[17]または[18]の抗原結合分子。
[20]前記第1の共抑制分子がPD-1であり、前記第1の共抑制分子リガンドがPD-L1であり、そして前記第1の抗原結合ドメインが結合するエピトープは、実施例7で作製された表1に示される抗ヒトPD-L1 / ヒトPD-1複合体タンパク質抗体のいずれか一つが結合する第1の複合体内のエピトープと全部または部分的に重複する、[1]から[19]の抗原結合分子。
[21]第1の共抑制分子を発現し前記第1の細胞内シグナルの強度が測定可能な第3の細胞と、抗原非依存的なT細胞受容体アクチベーターおよび前記第1の共抑制分子リガンドを発現する第4の細胞とが互いに接触可能な状態で用いられ、且つ、前記第3の細胞における前記第1の細胞内シグナルが前記第1の共抑制分子リガンドに対する阻害抗体により部分的に抑制されている条件下で行われる、前記第1の細胞内シグナルの強度の測定系において、前記抗原結合分子の存在下における前記第1の細胞内シグナルの前記強度が、前記抗原結合分子の非存在下に比べて高い、[3]から[5]、[8]から[10]、および[17]から[19]のいずれかの抗原結合分子。
[22]前記第3の細胞がJurkat細胞由来であり、および前記第4の細胞がチャイニーズハムスター卵巣細胞由来である、[21]の抗原結合分子。
[23]前記第1の細胞内シグナルの前記強度が、前記第1の共抑制分子が活性化したときに生じる、前記第1の共抑制分子の細胞内ドメインと前記細胞内ドメインに直接にまたは間接に相互作用する細胞内タンパク質との近接に基づき測定される、[21]または[22]の抗原結合分子。
[24]前記細胞内タンパク質が脱リン酸化酵素である、[23]の抗原結合分子。
[25]T細胞受容体と前記第1の共抑制分子を発現しており、前記T細胞受容体の下流で活性化し得る第2の細胞内シグナルの強度が測定可能であり、前記第1の細胞内シグナルの活性化によって前記第2の細胞内シグナルが抑制され得る第5の細胞と抗原非依存的なT細胞受容体アクチベーターおよび前記第1の共抑制分子リガンドを発現する第6の細胞とが互いに接触可能な条件下で用いられ、且つ、
前記第1の共抑制分子リガンドによる前記第5の細胞における前記第2の細胞内シグナルの抑制が前記第1の共抑制分子リガンドに対する阻害抗体により部分的に抑制されている条件下で行われる、前記第2の細胞内シグナルの強度の測定系において、
前記抗原結合分子の存在下における前記第2の細胞内シグナルの前記強度が、前記抗原結合分子の非存在下に比べて低い、[3]から[5]、[8]から[10]、[17]から[19]、および[21]から[24]のいずれかの抗原結合分子。
[26]前記第5の細胞がJurkat細胞由来であり、および前記第6の細胞がチャイニーズハムスター卵巣細胞由来である、[25]の抗原結合分子。
[27]前記第2の細胞内シグナルがNFAT活性である、[25]または[26]の抗原結合分子。
[28]前記第1の共抑制分子および前記第1の共抑制分子リガンドの組合せが、PD-1およびPD-L1の組合せ、PD-1およびPD-L2の組合せ、BTLAおよびHVEMの組合せ、TIGITおよびCD155の組合せ、TIGITおよびCD112の組合せ、LAG-3およびMHCクラスII分子の組合せ、CTLA4およびCD80の組合せ、CTLA4およびCD86の組合せ、TIM-3およびgalectin-9の組合せ、TIM-3およびphosphatidylserineの組合せ、TIM-3およびCEACAM-1の組合せ、ならびにTIM-3およびHMGB1の組合せからなる群から選択されるいずれか一つである、[1]から[19]、および[21]から[27]のいずれかの抗原結合分子。
[29]前記抗原結合分子が第2の抗原結合ドメインをさらに含む多重抗原結合分子であり、
前記第2の抗原結合ドメインが、第2の共抑制分子リガンドと第2の複合体を形成し得る第2の共抑制分子に特異的に結合し得る、[1]から[28]のいずれかの抗原結合分子。
[30]前記第1の複合体が存在する免疫シナプスにおいて、前記第2の共抑制分子の下流の第3の細胞内シグナルを活性化し得る、[29]の抗原結合分子。
[31]前記第3の細胞内シグナルの活性化により、前記第2の細胞内シグナルが抑制され得る、[30]の抗原結合分子。
[32]前記第2の抗原結合ドメインの前記第2の共抑制分子への結合が、前記第2の共抑制分子リガンドの前記第2の共抑制分子への結合と競合しない、[29]から[31]のいずれかの抗原結合分子。
[33]前記第2の共抑制分子および前記第2の共抑制分子リガンドの組合せが、PD-1およびPD-L1の組合せ、PD-1およびPD-L2の組合せ、BTLAおよびHVEMの組合せ、TIGITおよびCD155の組合せ、TIGITおよびCD112の組合せ、LAG-3およびMHCクラスII分子の組合せ、CTLA4およびCD80の組合せ、CTLA4およびCD86の組合せ、TIM-3およびgalectin-9の組合せ、TIM-3およびphosphatidylserineの組合せ、TIM-3およびCEACAM-1の組合せ、ならびにTIM-3およびHMGB1の組合せからなる群から選択されるいずれか一つの組合せである、[29]から[32]のいずれかの抗原結合分子。
[34]前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインが抗体の可変領域またはその対象抗原への結合性のその断片である、[29]から[33]のいずれかの抗原結合分子。
[35]前記第1の共抑制分子が前記第2の共抑制分子と同じである、または異なる、[29]から[34]のいずれかの抗原結合分子。
[36]前記第1の共抑制分子が前記第2の共抑制分子と同じである場合、前記第1の抗原結合ドメインが結合する前記第1の共抑制分子におけるエピトープは、前記第2の抗原結合ドメインが結合する前記第2の共抑制分子におけるエピトープと重複していない、または全部もしくは部分的に重複する、[35]の抗原結合分子。
[37]前記第1の共抑制分子リガンドが前記第2の共抑制分子リガンドと同じである、または異なる、[29]から[36]のいずれかの抗原結合分子。
[38]前記第1の細胞内シグナルが前記第3の細胞内シグナルと同じである、または異なる、[30]または[31]のいずれかの抗原結合分子。
[39]抗体の定常領域をさらに含む、[1]から[38]のいずれかの抗原結合分子。
[40]前記定常領域における少なくとも1残基が、天然型抗体の定常領域の相当する位置のアミノ酸残基とは異なる、[33]の抗原結合分子。
[41][1]から[40]のいずれかの抗原結合分子を含む、共抑制分子アゴニスト。
[42][1]から[40]のいずれかの抗原結合分子を含有する、共抑制分子シグナル活性化剤。
[43][1]から[40]のいずれかの抗原結合分子を含有する、医薬組成物。
[44]免疫の異常亢進に起因する疾患を治療するまたは予防するための、[43]の医薬組成物。
[45][1]から[40]のいずれかの抗原結合分子を含有する、第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体の検出剤。
[46][1]から[40]のいずれかの抗原結合分子を対象に投与することを含む、免疫を抑制する方法。
[47][1]から[40]のいずれかの抗原結合分子を免疫細胞に接触させることを含む、第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体の検出方法。
[48][1]から[40]のいずれかの抗原結合分子をコードする核酸を含む細胞を培養することを含む、抗原結合分子の製造方法。
[49]第1の共抑制分子またはその部分ポリペプチドおよび前記第1の共抑制分子に対する第1の共抑制分子リガンドまたはその部分ポリペプチドを含む第3の複合体を免疫した非ヒト動物から、[1]から[40]のいずれかの抗原結合分子を含む血漿または血液を採取することを含む、抗原結合分子の製造方法。
[50]前記第3の複合体が、前記第1の共抑制分子またはその部分ポリペプチドを前記第1の共抑制分子リガンドまたはその部分ポリペプチドにリンカーを介するか、化学結合により直接的に結合させた1分子である、[49]の製造方法。
[51]前記血漿または前記血液から、純度を高めた前記抗原結合分子を含有する組成物を得ることをさらに含む、[49]または[50]の製造方法。
[52]前記抗原結合分子がポリクローナル抗体である、[49]から[51]のいずれかの製造方法。
[53]第1の共抑制分子またはその部分ポリペプチドおよび前記第1の共抑制分子に対する第1の共抑制分子リガンドまたはその部分ポリペプチドを含む第3の複合体を免疫した非ヒト動物から、[1]から[40]のいずれかの抗原結合分子を発現する細胞クローンを単離することを含む、抗原結合分子の製造方法。
[54]前記第3の複合体が、前記第1の共抑制分子またはその部分ポリペプチドを前記第1の共抑制分子リガンドまたはその部分ポリペプチドにリンカーを介するか、化学結合により直接的に結合させた1分子である、[53]の製造方法。
[55]前記細胞クローンから前記抗原結合分子をコードする核酸を抽出し、単離することをさらに含む、[53]または[54]の製造方法。
[56]前記核酸を組み換えることをさらに含む、[55]の製造方法。
[57]前記組み換えられた核酸を他の細胞に導入し、前記抗原結合分子を前記他の細胞に発現させることをさらに含む、[56]の製造方法。
[58]前記発現させた抗原結合分子を含有する組成物を得ることをさらに含む、[57]の製造方法。
[59]前記組成物における前記発現させた抗原結合分子の純度を高めることをさらに含む、[58]の製造方法。
As one aspect of the present specification, the following invention is provided.
[1] An antigen-binding molecule containing a first antigen-binding domain.
An antigen-binding molecule in which the first antigen-binding domain can specifically bind to a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule.
[2] The specific binding of the first antigen-binding domain to the first complex is either the first co-suppressing molecule or the first co-suppressing molecular ligand in the first complex. The antigen-binding molecule of [1], which is an intermolecular force bond with one or both.
[3] The antigen-binding molecule of [1] or [2] capable of activating a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present.
[4] The antigen-binding molecule of [3], wherein activation of T cells can be suppressed by activation of the first intracellular signal.
[5] The immunological synapse is formed between the cells expressing the MHC and the co-suppressing molecular ligand and the T cells expressing the co-suppressing molecule, [3] or [ 4] Antigen-binding molecule.
[6] An antigen-binding molecule containing a first antigen-binding domain.
The first antigen-binding domain may bind to a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule, and said first antigen-binding domain. The binding activity to the first complex of the first co-suppressing molecule that does not form the first complex and the first co-suppressing molecular ligand that does not form the first complex. An antigen-binding molecule that has a higher binding activity to either or both.
[7] The binding of the first antigen-binding domain to the first complex is either one of the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex, or The antigen-binding molecule of [6], which is an intermolecular force bond with both.
[8] The antigen-binding molecule of [6] or [7] capable of activating a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present.
[9] The antigen-binding molecule of [8], wherein the activation of T cells can be suppressed by the activation of the first intracellular signal.
[10] The immunological synapse is formed between the cells expressing the MHC and the co-suppressing molecular ligand and the T cells expressing the co-suppressing molecule, [8] or [ 9] Antigen-binding molecule.
[11] The antigen-binding molecule according to any one of [6] to [10], wherein the binding activity satisfies any one or both of the following (a) and (b):
(a) In flow cytometry using a first cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand, the cell of the first co-suppressing molecular ligand. The binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide containing the outer domain or a part thereof is the non-binding activity of the first soluble polypeptide. Higher than in existence;
(b) In flow cytometry using a second cell forcibly expressing the first co-suppressing molecular ligand and not forcibly expressing the first co-suppressing molecule, extracellular of the first co-suppressing molecule. The binding activity of the first antigen-binding domain to the second cell in the presence of the second soluble polypeptide containing the domain or a part thereof is the absence of the second soluble polypeptide. Higher than below.
[12] The antigen-binding molecule of [10], wherein both the first cell and the second cell are derived from Chinese hamster ovary cells.
[13] The antigen-binding molecule according to any one of [6] to [10], the binding activity of which is measured by biolayer interference.
[14] An antigen-binding molecule containing a first antigen-binding domain.
An antigen capable of specifically binding the first antigen-binding domain to an epitope present in a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule. Binding molecule.
[15] Only the first co-suppressing molecule that does not form the first complex or only the first co-suppressing molecular ligand that does not form the first complex in the entire region of the epitope. The antigen-binding molecule of [14], which is not satisfied with.
[16] The specific binding of the first antigen-binding domain to the first complex is either the first co-suppressing molecule or the first co-suppressing molecular ligand in the first complex. The antigen-binding molecule of [14] or [15], which is an intermolecular force bond with one or both.
[17] The antigen binding according to any one of [14] to [16] capable of activating a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present. molecule.
[18] The antigen-binding molecule of [17], wherein the activation of T cells can be suppressed by the activation of the first intracellular signal.
[19] The immunological synapse is formed between the cells expressing the MHC and the co-suppressing molecular ligand and the T cells expressing the co-suppressing molecule, [17] or [ 18] antigen-binding molecule.
[20] The epitope to which the first co-suppressing molecule is PD-1, the first co-suppressing molecular ligand is PD-L1, and the first antigen-binding domain is bound is in Example 7. [1] to [1] to [1] to [1] to which any one of the anti-human PD-L1 / human PD-1 complex protein antibodies shown in Table 1 prepared partially overlaps with the epitope in the first complex to which it binds. 19] Antigen-binding molecule.
[21] A third cell expressing the first co-suppressing molecule and capable of measuring the intensity of the first intracellular signal, an antigen-independent T cell receptor activator, and the first co-suppressing molecule. It is used in a state where the fourth cell expressing the ligand can contact each other, and the first intracellular signal in the third cell is partially produced by an inhibitory antibody against the first co-suppressing molecular ligand. In the system for measuring the intensity of the first intracellular signal, which is performed under suppressed conditions, the intensity of the first intracellular signal in the presence of the antigen-binding molecule is not the same as that of the antigen-binding molecule. The antigen-binding molecule of any of [3] to [5], [8] to [10], and [17] to [19], which is higher than in the presence.
[22] The antigen-binding molecule of [21], wherein the third cell is derived from a Jurkat cell and the fourth cell is derived from a Chinese hamster ovary cell.
[23] The intensity of the first intracellular signal directly or directly to the intracellular domain and the intracellular domain of the first co-suppressing molecule, which occurs when the first co-suppressing molecule is activated. The antigen-binding molecule of [21] or [22], as measured based on its proximity to the intracellular protein that interacts indirectly.
[24] The antigen-binding molecule of [23], wherein the intracellular protein is a dephosphorylation enzyme.
[25] The intensity of the second intracellular signal that expresses the T cell receptor and the first co-suppressive molecule and can be activated downstream of the T cell receptor can be measured, and the first one. A fifth cell in which the second intracellular signal can be suppressed by activation of the intracellular signal and a sixth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecular ligand. Are used under conditions where they can contact each other, and
Suppression of the second intracellular signal in the fifth cell by the first co-suppressing molecular ligand is carried out under conditions where it is partially suppressed by an inhibitory antibody against the first co-suppressing molecular ligand. In the second intracellular signal intensity measurement system,
The intensity of the second intracellular signal in the presence of the antigen-binding molecule is lower than that in the absence of the antigen-binding molecule, [3] to [5], [8] to [10], [ An antigen-binding molecule according to any one of 17] to [19] and [21] to [24].
[26] The antigen-binding molecule of [25], wherein the fifth cell is derived from a Jurkat cell and the sixth cell is derived from a Chinese hamster ovary cell.
[27] The antigen-binding molecule of [25] or [26], wherein the second intracellular signal is NFAT activity.
[28] The combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM, and TIGIT. And CD155, TIGIT and CD112, LAG-3 and MHC class II molecules, CTLA4 and CD80, CTLA4 and CD86, TIM-3 and galectin-9, TIM-3 and phosphatidylserine. Any one selected from the group consisting of combinations, combinations of TIM-3 and CEACAM-1, and combinations of TIM-3 and HMGB1, [1] to [19], and [21] to [27]. Any of the antigen-binding molecules.
[29] The antigen-binding molecule is a multiple antigen-binding molecule further comprising a second antigen-binding domain.
Any of [1] to [28], wherein the second antigen-binding domain can specifically bind to a second co-suppressing molecule capable of forming a second complex with the second co-suppressing molecular ligand. Antigen-binding molecule.
[30] The antigen-binding molecule of [29] capable of activating a third intracellular signal downstream of the second co-suppressing molecule at the immunological synapse in which the first complex is present.
[31] The antigen-binding molecule of [30], wherein the activation of the third intracellular signal can suppress the second intracellular signal.
[32] From [29], the binding of the second antigen-binding domain to the second co-suppressing molecule does not compete with the binding of the second co-suppressing molecular ligand to the second co-suppressing molecule. Any of the antigen-binding molecules of [31].
[33] The combination of the second co-suppressing molecule and the second co-suppressing molecular ligand is a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM, and TIGIT. And CD155, TIGIT and CD112, LAG-3 and MHC class II molecules, CTLA4 and CD80, CTLA4 and CD86, TIM-3 and galectin-9, TIM-3 and phosphatidylserine. The antigen-binding molecule of any of [29] to [32], which is any combination selected from the group consisting of combinations, combinations of TIM-3 and CEACAM-1, and combinations of TIM-3 and HMGB1.
[34] The antigen binding according to any one of [29] to [33], wherein the first antigen-binding domain and the second antigen-binding domain are a variable region of an antibody or a fragment thereof that binds to a target antigen thereof. molecule.
[35] The antigen-binding molecule according to any one of [29] to [34], wherein the first co-suppressing molecule is the same as or different from the second co-suppressing molecule.
[36] When the first co-suppressing molecule is the same as the second co-suppressing molecule, the epitope in the first co-suppressing molecule to which the first antigen-binding domain binds is the second antigen. The antigen-binding molecule of [35] that does not overlap, or partially or partially overlaps, the epitope in the second co-suppressing molecule to which the binding domain binds.
[37] The antigen-binding molecule according to any one of [29] to [36], wherein the first co-suppressing molecular ligand is the same as or different from the second co-suppressing molecular ligand.
[38] The antigen-binding molecule of either [30] or [31], wherein the first intracellular signal is the same as or different from the third intracellular signal.
[39] The antigen-binding molecule according to any one of [1] to [38], further comprising a constant region of an antibody.
[40] The antigen-binding molecule of [33], wherein at least one residue in the constant region is different from the amino acid residue at the corresponding position in the constant region of the native antibody.
[41] A co-suppressing molecular agonist comprising any of the antigen-binding molecules of [1] to [40].
[42] A co-suppressing molecular signal activator containing the antigen-binding molecule according to any one of [1] to [40].
[43] A pharmaceutical composition containing the antigen-binding molecule according to any one of [1] to [40].
[44] The pharmaceutical composition of [43] for treating or preventing a disease caused by an abnormal increase in immunity.
[45] A first complex comprising a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule, which comprises any of the antigen-binding molecules of [1] to [40]. Detection agent.
[46] A method for suppressing immunity, which comprises administering an antigen-binding molecule according to any one of [1] to [40] to a subject.
[47] From the first co-suppressing molecule and the first co-suppressing molecular ligand to the first co-suppressing molecule, which comprises contacting the immune cell with any of the antigen-binding molecules of [1] to [40]. First method for detecting a complex.
[48] A method for producing an antigen-binding molecule, which comprises culturing a cell containing a nucleic acid encoding the antigen-binding molecule according to any one of [1] to [40].
[49] From a non-human animal immunized with a third complex comprising a first co-suppressing molecule or a partial polypeptide thereof and a first co-suppressing molecular ligand for the first co-suppressing molecule or a partial polypeptide thereof. A method for producing an antigen-binding molecule, which comprises collecting plasma or blood containing any of the antigen-binding molecules from [1] to [40].
[50] The third complex binds the first co-suppressing molecule or a partial polypeptide thereof to the first co-suppressing molecular ligand or a partial polypeptide thereof via a linker or directly by a chemical bond. The method for producing [49], which is one molecule.
[51] The method for producing [49] or [50], further comprising obtaining a composition containing the antigen-binding molecule with increased purity from the plasma or the blood.
[52] The production method according to any one of [49] to [51], wherein the antigen-binding molecule is a polyclonal antibody.
[53] From a non-human animal immunized with a third complex comprising a first co-suppressing molecule or a partial polypeptide thereof and a first co-suppressing molecular ligand for the first co-suppressing molecule or a partial polypeptide thereof. A method for producing an antigen-binding molecule, which comprises isolating a cell clone expressing any of the antigen-binding molecules [1] to [40].
[54] The third complex binds the first co-suppressing molecule or a partial polypeptide thereof to the first co-suppressing molecular ligand or a partial polypeptide thereof via a linker or directly by a chemical bond. The method for producing [53], which is one molecule.
[55] The method for producing [53] or [54], further comprising extracting and isolating the nucleic acid encoding the antigen-binding molecule from the cell clone.
[56] The production method of [55], further comprising recombination of the nucleic acid.
[57] The production method according to [56], further comprising introducing the recombinant nucleic acid into another cell and expressing the antigen-binding molecule in the other cell.
[58] The method for producing [57], further comprising obtaining a composition containing the expressed antigen-binding molecule.
[59] The method for producing [58], further comprising increasing the purity of the expressed antigen-binding molecule in the composition.
 本発明における抗原結合分子は、免疫シナプスに局在する共抑制分子とそのリガンドからなる複合体に特異的に結合することで免疫シナプスを標的とし、該共抑制分子に対するアゴニスト活性を有することから、自己免疫疾患を含む疾患を治療または予防するための治療薬またはその候補になり得る。 The antigen-binding molecule in the present invention targets the immunological synapse by specifically binding to a complex consisting of a co-suppressing molecule localized at the immunological synapse and its ligand, and has agonist activity against the co-suppressing molecule. It can be a therapeutic agent or a candidate for the treatment or prevention of diseases including autoimmune diseases.
図1は、NanoBRET(登録商標)を使用したSHP-2リクルートメントアッセイ系によって測定された、抗PD-1アームと抗CD3アームを含む二重特異性抗体のPD-1シグナル誘導(SHP-2リクルートメント)活性の評価結果を示す図である。「OKT3//949」はOKT3由来のアームとclone 949由来のアームを含む二重特異性抗体を、「CE115TR//949」はCE115TR由来のアームとclone 949由来のアームを含む二重特異性抗体を意味する。FIG. 1 shows PD-1 signal induction (SHP-2) of a bispecific antibody containing an anti-PD-1 arm and an anti-CD3 arm as measured by an SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result of recruitment) activity. "OKT3 // 949" is a bispecific antibody containing an arm derived from OKT3 and an arm derived from clone 949, and "CE115TR // 949" is a bispecific antibody containing an arm derived from CE115TR and an arm derived from clone 949. Means. 図2は、T細胞増殖アッセイによる、抗PD-1アームおよび抗ヒトCD3アームを含む二重特異性抗体のヒトCD4陽性T細胞の増殖に対する作用を評価した結果を示す図である。「OKT3/IC17」はOKT3由来のアームおよび抗KLH抗体由来のアームを含む二重特異性抗体を、「OKT3/PD1-17 (7J13)」はOKT3由来のアームおよびPD1-17由来のアームを含む二重特異性抗体を、「OKT3/clone10」はOKT3由来のアームおよびclone10由来のアームを含む二重特異性抗体を、「OKT3/clone949」はOKT3由来のアームおよびclone949由来のアームを含む二重特異性抗体を意味する。これらのうちOKT3/IC17が陰性対照として使用された。FIG. 2 is a diagram showing the results of evaluating the effects of bispecific antibodies containing anti-PD-1 arm and anti-human CD3 arm on the proliferation of human CD4-positive T cells by the T cell proliferation assay. "OKT3 / IC17" includes a bispecific antibody containing an arm derived from OKT3 and an arm derived from an anti-KLH antibody, and "OKT3 / PD1-17 (7J13)" includes an arm derived from OKT3 and an arm derived from PD1-17. Bispecific antibody, "OKT3 / clone10" is a bispecific antibody containing an arm derived from OKT3 and an arm derived from clone10, and "OKT3 / clone949" is a double containing an arm derived from OKT3 and an arm derived from clone949. Means specific antibody. Of these, OKT3 / IC17 was used as a negative control. 図3は、作製したリンカー融合型ヒトPD-L1/ヒトPD-1複合体タンパク質のデザインを示す図である。左図はヒトPD-L1のN131とヒトPD-1のN33との間にリンカーを挿入したLinker complex#1のデザインを、右図はヒトPD-1のE146とヒトPD-L1のF19との間にリンカーを挿入したLinker complex#2を示している。FIG. 3 is a diagram showing the design of the prepared linker-fused human PD-L1 / human PD-1 complex protein. The figure on the left shows the design of Linker complex # 1 with a linker inserted between N131 of human PD-L1 and N33 of human PD-1, and the figure on the right shows the design of E146 of human PD-1 and F19 of human PD-L1. Shows Linker complex # 2 with a linker inserted between them. 図4は、作製したジスルフィド結合導入型ヒトPD-L1 / ヒトPD-1複合体タンパク質のデザインを示す図である。ヒトPD-L1のY56C改変体とヒトPD-1のA132C改変体とを組み合わせたS-S complex#1と、ヒトPD-L1のA18C改変体とヒトPD-1のG90C改変体とを組み合わせたS-S complex#2が作製された。FIG. 4 is a diagram showing the design of the prepared disulfide bond-introduced human PD-L1 / human PD-1 complex protein. SS complex # 1 which is a combination of Y56C variant of human PD-L1 and A132C variant of human PD-1, and SS complex which is a combination of A18C variant of human PD-L1 and G90C variant of human PD-1. # 2 was created. 図5は、抗ヒトPD-L1 / ヒトPD-1複合体抗体の特異性評価の結果を示す図である。30クローン(LPB0006, LPB0010, LPB0017, LPB0036, LPB0038, LPC0001, LPC0002, LPC0006, LPC0007, LPC0008, LPC0011, LPC0012, LPC0017, LPC0019, LPC0020, LPC0039, LPC0063, LPC0072, LPD0061, LPD0067, LPD0073, LPD0074, LPD0075, LPD0079, LPE0015, LPE0017, LPE0024, LPE0027, LPE0065, LPE0076)がヒトPD-L1がヒトPD-1に結合した複合体に結合することが示された。FIG. 5 is a diagram showing the results of specificity evaluation of the anti-human PD-L1 / human PD-1 complex antibody. 30 clones (LPB0006, LPB0010, LPB0017, LPB0036, LPB0038, LPC0001, LPC0002, LPC0006, LPC0007, LPC0008, LPC0011, LPC0012, LPC0017, LPC0019, LPC0020, LPC0039, LPC0063, LPC0072, LPD unable , LPE0015, LPE0017, LPE0024, LPE0027, LPE0065, LPE0076) were shown to bind to the complex of human PD-L1 bound to human PD-1. 図5-1の続きを示す図である。It is a figure which shows the continuation of FIG. 5-1. 図6は、NanoBRET(登録商標)を使用したSHP-2リクルートメントアッセイ系によって測定された、抗ヒトPD-1抗体(clone949 および PDA0129)のPD-1シグナル誘導(SHP-2リクルートメント)活性の評価結果を示す図である。「129 homo」は実施例9で作製された抗ヒトPD-1抗体PDA0129であり、「949 homo」は、実施例1で作製された抗ヒトPD-1抗体clone 949である。FIG. 6 shows the PD-1 signal-induced (SHP-2 recruitment) activity of anti-human PD-1 antibodies (clone949 and PDA0129) as measured by the SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result. “129 homo” is the anti-human PD-1 antibody PDA0129 prepared in Example 9, and “949 homo” is the anti-human PD-1 antibody clone 949 prepared in Example 1. 図7は、NanoBRET(登録商標)を使用したSHP-2リクルートメントアッセイ系によって測定された、抗ヒトPD-L1 / ヒトPD-1複合体抗体(LPC0039およびLPB0006)のPD-1シグナル誘導(SHP-2リクルートメント)活性の評価結果を示す図である。「LPC0039 homo」および「LPB0006 homo」は実施例7で作製された抗ヒトPD-L1 / ヒトPD-1複合体抗体である。FIG. 7 shows PD-1 signal induction (SHP) of anti-human PD-L1 / human PD-1 complex antibodies (LPC0039 and LPB0006) measured by the SHP-2 recruitment assay system using NanoBRET®. -2 Recruitment) It is a figure which shows the evaluation result of the activity. "LPC0039homo" and "LPB0006homo" are anti-human PD-L1 / human PD-1 complex antibodies prepared in Example 7. 図8は、抗ヒトPD-1抗体(clone 949、PDA0129、clone 10、PD1-17)の、ヒトPD-1とヒトPD-L1との結合に対する阻害活性の評価結果を示す図である。陽性対照としてPD-1阻害抗体である5C4およびPembrolizumabが用いられた。陰性対照としてPD-1とPD-L1のいずれにも結合しないanti-KLH(抗KLH抗体)が用いられた。FIG. 8 is a diagram showing the evaluation results of the inhibitory activity of anti-human PD-1 antibodies (clone 949, PDA0129, clone 10, PD1-17) on the binding between human PD-1 and human PD-L1. PD-1 inhibitory antibodies 5C4 and Pembrolizumab were used as positive controls. Anti-KLH (anti-KLH antibody), which does not bind to either PD-1 or PD-L1, was used as a negative control. 図9は、NanoBRET(登録商標)を使用したSHP-2リクルートメントアッセイ系によって測定された、抗PD-L1/PD-1複合体アームと抗PD-1アームを含む二重特異性抗体のPD-1シグナル誘導(SHP-2リクルートメント)活性の評価結果を示す図である。「LPE0024」「LPB0017」「LPC0039」「LPC0020」「LPC0017」は、実施例7で作製された抗ヒトPD-L1 / ヒトPD-1複合体抗体からのアームを意味し、「949」および「129」は、それぞれ抗ヒトPD-1抗体clone 949およびPDA0129からのアームを意味する。FIG. 9 shows PD of a bispecific antibody containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm as measured by an SHP-2 recruitment assay system using NanoBRET®. It is a figure which shows the evaluation result of -1 signal induction (SHP-2 recruitment) activity. “LPE0024”, “LPB0017”, “LPC0039”, “LPC0020”, and “LPC0017” mean arms from the anti-human PD-L1 / human PD-1 complex antibody prepared in Example 7, and “949” and “129”. Means the arms from the anti-human PD-1 antibodies clone 949 and PDA0129, respectively. 図9Aの続きを示す図である。It is a figure which shows the continuation of FIG. 9A. 図10は、抗PD-L1/PD-1複合体アームと抗PD-1アームを含む二重特異性抗体によるNFAT活性の抑制の評価結果を示す図である。「LPB0010」「LPB0017」「LPC0039」「LPE0024」「LPC0011」「LPC0020」「LPC0001」「LPB0010」は、実施例7で作製された抗ヒトPD-L1 / ヒトPD-1複合体抗体からのアームを意味し、「Clone 949」「PDA0129」は抗ヒトPD-1抗体からのアームを意味する。FIG. 10 is a diagram showing the evaluation results of suppression of NFAT activity by a bispecific antibody containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm. “LPB0010”, “LPB0017”, “LPC0039”, “LPE0024”, “LPC0011”, “LPC0020”, “LPC0001”, and “LPB0010” are arms from the anti-human PD-L1 / human PD-1 complex antibody prepared in Example 7. Meaning, "Clone 949" and "PDA0129" mean an arm from an anti-human PD-1 antibody. 図11は、本実施例で検討された各分子型コンセプトのデザインおよび各アームの機能を説明する図である。FIG. 11 is a diagram illustrating the design of each molecular type concept and the function of each arm examined in this embodiment. 図12は、本実施例で検討された各分子型コンセプトの作用機序を説明する図である。FIG. 12 is a diagram illustrating the mechanism of action of each molecular type concept examined in this embodiment. 図13は、実施例18に示されるような、抗ヒトPD-L1 / ヒトPD-1複合体抗体LPB0010HCb-G1T7P/LPB0010LCb-k0MTC のFab断片とヒトPD-L1細胞外ドメイン / ヒトPD-1細胞外ドメインとの複合体のX線結晶構造の全体構造を示す図である。LPB0010 Fabがリボン(黒色:重鎖、薄灰色:軽鎖)として、hPD-L1/hPD-1複合体は表面表現として示される(灰色:hPD-L1、白色:hPD-1)。FIG. 13 shows a Fab fragment of anti-human PD-L1 / human PD-1 complex antibody LPB0010HCb-G1T7P / LPB0010LCb-k0MTC and human PD-L1 extracellular domain / human PD-1 cells as shown in Example 18. It is a figure which shows the whole structure of the X-ray crystal structure of the complex with the extracellular domain. LPB0010Fab is shown as a ribbon (black: heavy chain, light gray: light chain), and hPD-L1 / hPD-1 complex is shown as a surface representation (gray: hPD-L1, white: hPD-1). 図14は、実施例18に示されるような、LPB0010 Fab のエピトープの、ヒトPD-L1細胞外ドメイン / ヒトPD-1細胞外ドメイン複合体結晶構造上へのマッピングを示す図である(灰色:hPD-L1、白色:hPD-1)。黒色ハイライトはLPB0010 Fab から4.5Å以内のアミノ酸を示す。左図では相互作用界面が正面方向から見たマッピングを示す図であり、右図はX軸方向に90度回転させた方向から見たマッピングを示す図である。FIG. 14 is a diagram showing the mapping of LPB0010Fab epitopes onto the human PD-L1 extracellular domain / human PD-1 extracellular domain complex crystal structure as shown in Example 18 (gray:). hPD-L1, white: hPD-1). Black highlights indicate amino acids within 4.5 Å of LPB0010Fab. The figure on the left shows the mapping of the interaction interface seen from the front, and the figure on the right shows the mapping seen from the direction rotated 90 degrees in the X-axis direction. 図15Aは、実施例18に示されるような、LPB0010 Fab のエピトープの、ヒトPD-L1細胞外ドメイン(アミノ酸番号:19-238)のアミノ酸配列上へのマッピングを示す図である。黒色ハイライトはLPB0010 Fab から4.5Å以内のアミノ酸を示す。FIG. 15A is a diagram showing the mapping of the epitope of LPB0010Fab onto the amino acid sequence of the human PD-L1 extracellular domain (amino acid number: 19-238) as shown in Example 18. Black highlights indicate amino acids within 4.5 Å of LPB0010Fab. 図15Bは、実施例18に示されるような、LPB0010 Fab のエピトープの、ヒトPD-1細胞外ドメイン(アミノ酸番号:21-167) のアミノ酸配列上へのマッピングを示す図である。黒色ハイライトはLPB0010 Fab から4.5Å以内のアミノ酸を示す。FIG. 15B is a diagram showing the mapping of the epitope of LPB0010Fab onto the amino acid sequence of the human PD-1 extracellular domain (amino acid number: 21-167) as shown in Example 18. Black highlights indicate amino acids within 4.5 Å of LPB0010Fab. 分図A)は、実施例19に示されるような、LPB0010 Fab断片とヒトPD-L1細胞外ドメイン / ヒトPD-1細胞外ドメインの複合体のネガティブ染色電子顕微鏡像の2次元平均化の上位5クラスの像を示す図である。 分図B)は、実施例18に示されるようなLPB0010 Fab断片とヒトPD-L1細胞外ドメイン / ヒトPD-1細胞外ドメインの複合体のX線結晶構造と既報のPD-L1構造(PDB ID=4Z18)との重ね合わせにより作成したモデル構造を、ネガティブ染色電子顕微鏡像の2次元平均化の各クラスの像に対応するように、様々な方向から見た図である。Section A) shows the top of the two-dimensional averaging of negatively stained electron micrographs of the complex of LPB0010Fab fragment and human PD-L1 extracellular domain / human PD-1 extracellular domain as shown in Example 19. It is a figure which shows the image of 5 classes. Figure B) shows the X-ray crystal structure and the previously reported PD-L1 structure (PDB) of the complex of LPB0010Fab fragment and human PD-L1 extracellular domain / human PD-1 extracellular domain as shown in Example 18. It is a figure which looked at the model structure created by superimposing with ID = 4Z18) from various directions so as to correspond to the image of each class of two-dimensional averaging of a negative-stained electron microscope image. 図17は、実施例19に示されるような、LPC0039 Fab断片とヒトPD-L1細胞外ドメイン / ヒトPD-1細胞外ドメイン(S-S complex #2)の複合体のネガティブ染色電子顕微鏡像の2次元平均化の上位5クラスの像を示す図である。FIG. 17 is a two-dimensional negatively stained electron microscope image of a complex of LPC0039Fab fragment and human PD-L1 extracellular domain / human PD-1 extracellular domain (SS complex # 2) as shown in Example 19. It is a figure which shows the image of the top 5 classes of averaging.
A.定義
 本明細書において「共抑制分子」とは、T細胞に発現する膜タンパク質であり、抗原提示細胞に発現する共抑制分子リガンドの特異的結合によりT細胞の活性または活性化を抑制する細胞内シグナルを生じる分子である。
 本明細書において「共抑制分子リガンド」とは、抗原提示細胞に発現する膜タンパク質であり、T細胞に発現する共抑制分子への特異的結合により、T細胞に対して、該共抑制分子を介して、該T細胞の活性または活性化を抑制する細胞内シグナルを生じる分子である。
 本明細書において「共抑制分子と共抑制分子リガンドからなる複合体」とは、該共抑制分子が該共抑制分子リガンドに結合し得る組合せである場合に、該共抑制分子リガンドが該共抑制分子に結合した状態のそれら分子により形成された複合体のことをいう。
 本明細書において「分子間力」とは、主に、ある分子と他の分子の間に働く電磁気学的な力である。分子間力として、イオン間相互作用、水素結合、双極子相互作用、およびファンデルワールス力が例示される。分子間力には、共有結合は包含されない。高分子においては、分子内の別の部分の間に共有結合ではなく分子間力が生じることがある。
 本明細書において「結合活性」とは、分子間力の強さを表す際に使用される。ある分子と他の分子との結合活性は、それらの分子間に生じる様々な分子間力の総和により決定される。分子間の結合活性を測定するために、フローサイトメトリー(FCM)、表面プラズモン共鳴(SPR)、バイオレイヤー干渉(BLI)、酵素結合免疫吸着検定法(ELISA)が一般的な手法として採用され得る。
 本明細書において、「特異的に結合」とは、たとえば、対象抗原に対する結合活性が他の抗原に対する結合活性よりも高い場合における、該対象抗原に対する結合をいう。本明細書において、「結合活性」は後述の「(b-2) 第2の態様」の「i) 結合活性」で定義される。
 本明細書において「エピトープ」とは、抗原結合分子、抗原結合ドメイン、または抗体が抗原に結合するときに、その抗原結合分子、抗原結合ドメイン、または抗体と分子間力結合を形成する抗原の原子群を含む分子表面の一領域または領域群である。抗原決定基とも呼ばれる。
 本明細書における「分子内の立体構造変化」は、共抑制分子リガンドが共抑制分子に結合することによって生じる、いずれか一方または両方の立体構造の変化(Structure, 2015, Vol.23, pp.2341-2348.およびJ Biol Chem, 2013, Vol.288, pp.11771-11785.を参照)を意味する。生理機能を有するように高次構造を形成したタンパク質は、そのタンパク質の表面に、他のタンパク質との分子間相互作用によってその立体構造に変化を生じさせる可塑的な領域を有することがある。タンパク質の立体構造の変化は、生理機能を有するように高次構造を形成したタンパク質における特定のアミノ酸残基に関する、他のアミノ酸残基との相対的な位置関係の変化を意味する。本明細書においては、特に、共抑制分子リガンドが共抑制分子に結合することによって生じる分子内の立体構造変化を想定する。
 本明細書において、抗体の「アーム」とは、自然に存在する抗体と同様な二価抗体における一価を構成する部分を意味する。具体的には当該アームは一の重鎖Fabと一の軽鎖Fabがジスルフィド結合により結合した抗体の部分を指す。アームを含む抗体は二価抗体に限定されず、一価抗体または多価抗体であり得る。
A. Definitions As used herein, a "co-inhibitory molecule" is a membrane protein expressed on T cells, and is intracellular that suppresses T cell activity or activation by specific binding of a co-inhibitor molecule ligand expressed on antigen-presenting cells. A molecule that produces a signal.
As used herein, the term "co-suppressing molecular ligand" is a membrane protein expressed on an antigen-presenting cell, and the co-suppressing molecule is applied to T cells by specific binding to the co-suppressing molecule expressed on T cells. Mediated by a molecule that produces an intracellular signal that suppresses the activation or activation of the T cell.
As used herein, the term "complex consisting of a co-suppressing molecule and a co-suppressing molecular ligand" means that the co-suppressing molecular ligand is the co-suppressing molecular ligand when the co-suppressing molecule is a combination capable of binding to the co-suppressing molecular ligand. It refers to a complex formed by those molecules in a state of being bound to the molecule.
As used herein, the "intermolecular force" is mainly an electromagnetic force acting between one molecule and another. Examples of intramolecular forces include ionic interactions, hydrogen bonds, dipole interactions, and van der Waals forces. Intramolecular forces do not include covalent bonds. In macromolecules, intermolecular forces may occur between different parts of the molecule rather than covalent bonds.
As used herein, "binding activity" is used to describe the strength of intramolecular force. The binding activity of one molecule to another is determined by the sum of the various intramolecular forces that occur between those molecules. Flow cytometry (FCM), surface plasmon resonance (SPR), biolayer interference (BLI), and enzyme-linked immunosorbent assay (ELISA) can be adopted as common techniques for measuring intermolecular binding activity. ..
As used herein, the term "specifically binding" refers to binding to the target antigen when, for example, the binding activity to the target antigen is higher than the binding activity to the other antigen. In the present specification, "binding activity" is defined by "i) binding activity" in "(b-2) second aspect" described later.
As used herein, an "epitogen" is an antigen-binding molecule, an antigen-binding domain, or an antigen atom that forms an intermolecular force bond with the antigen-binding molecule, antigen-binding domain, or antibody when the antibody binds to the antigen. A region or region group on the surface of a molecule containing a group. Also called an antigenic determinant.
"Intramolecular three-dimensional structure change" as used herein is a change in one or both of the three-dimensional structure caused by the binding of a co-suppressing molecular ligand to a co-suppressing molecule (Structure, 2015, Vol.23, pp. 2341-2348. And J Biol Chem, 2013, Vol.288, pp.11771-11785.). A protein having a higher-order structure formed to have a physiological function may have a plastic region on the surface of the protein that causes a change in its three-dimensional structure by an intramolecular interaction with another protein. A change in the three-dimensional structure of a protein means a change in the relative positional relationship with other amino acid residues with respect to a specific amino acid residue in a protein having a higher-order structure formed to have a physiological function. In the present specification, it is particularly assumed that the intramolecular conformational change caused by the binding of the co-suppressing molecular ligand to the co-suppressing molecule is assumed.
As used herein, the "arm" of an antibody means a portion of a monovalent antibody similar to a naturally occurring antibody. Specifically, the arm refers to a portion of an antibody in which one heavy chain Fab and one light chain Fab are bound by a disulfide bond. The antibody containing the arm is not limited to a divalent antibody, and may be a monovalent antibody or a multivalent antibody.
 本明細書で用語「抗体」は、最も広い意味で使用され、所望の抗原結合活性を示す限りは、これらに限定されるものではないが、モノクローナル抗体、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体)および抗体断片を含む、種々の抗体構造を包含する。 As used herein, the term "antibody" is used in the broadest sense, and is not limited to, but is not limited to, a monoclonal antibody, a polyclonal antibody, and a multispecific antibody (for example,) as long as it exhibits a desired antigen-binding activity. Includes various antibody structures, including bispecific antibodies) and antibody fragments.
 「抗体断片」は、完全抗体が結合する抗原に結合する当該完全抗体の一部分を含む、当該完全抗体以外の分子のことをいう。抗体断片の例は、これらに限定されるものではないが、Fv、Fab、Fab'、Fab’-SH、F(ab')2;ダイアボディ;線状抗体;単鎖抗体分子(例えば、scFv);および、抗体断片から形成された多重特異性抗体を含む。 "Antibody fragment" refers to a molecule other than the complete antibody, which comprises a portion of the complete antibody that binds to the antigen to which the complete antibody binds. Examples of antibody fragments are, but are not limited to, Fv, Fab, Fab', Fab'-SH, F (ab') 2 ; Diabody; Linear antibody; Single chain antibody molecule (eg, scFv). ); And contains a multispecific antibody formed from an antibody fragment.
 本明細書で用語「Fc領域」は、少なくとも定常領域の一部分を含む免疫グロブリン重鎖のC末端領域を定義するために用いられる。この用語は、天然型配列のFc領域および変異体Fc領域を含む。一態様において、ヒトIgG重鎖Fc領域はCys226から、またはPro230から、重鎖のカルボキシル末端まで延びる。ただし、Fc領域のC末端のリジン (Lys447) またはグリシン‐リジン(Gly446-Lys447)は、存在していてもしていなくてもよい。本明細書では別段特定しない限り、Fc領域または定常領域中のアミノ酸残基の番号付けは、Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD 1991 に記載の、EUナンバリングシステム(EUインデックスとも呼ばれる)にしたがう。 As used herein, the term "Fc region" is used to define the C-terminal region of an immunoglobulin heavy chain that contains at least a portion of the constant region. The term includes the Fc region of a native sequence and the mutant Fc region. In one embodiment, the human IgG heavy chain Fc region extends from Cys226 or from Pro230 to the carboxyl terminus of the heavy chain. However, the C-terminal lysine (Lys447) or glycine-lysine (Gly446-Lys447) in the Fc region may or may not be present. Unless otherwise specified herein, the numbering of amino acid residues in the Fc region or constant region is Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Follow the EU numbering system (also known as the EU index) described in MD 1991.
 「フレームワーク」または「FR」は、超可変領域 (HVR) 残基以外の、可変ドメイン残基のことをいう。可変ドメインのFRは、通常4つのFRドメイン:FR1、FR2、FR3、およびFR4からなる。それに応じて、HVRおよびFRの配列は、通常次の順序でVH(またはVL)に現れる:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。 "Framework" or "FR" refers to variable domain residues other than hypervariable region (HVR) residues. A variable domain FR usually consists of four FR domains: FR1, FR2, FR3, and FR4. Accordingly, the sequences of HVR and FR usually appear in VH (or VL) in the following order: FR1-H1 (L1) -FR2-H2 (L2) -FR3-H3 (L3) -FR4.
 「単離された」抗体は、そのもともとの環境の成分から分離されたものである。いくつかの態様において、抗体は、例えば、電気泳動(例えば、SDS-PAGE、等電点分離法 (isoelectric focusing: IEF)、キャピラリー電気泳動)またはクロマトグラフ(例えば、イオン交換または逆相HPLC)で測定して、95%または99%を超える純度まで精製される。抗体の純度の評価のための方法の総説として、例えば、Flatman et al., J. Chromatogr. B 848:79-87 (2007) を参照のこと。 An "isolated" antibody is one that has been isolated from its original environmental components. In some embodiments, the antibody is subjected to, for example, electrophoresis (eg, SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatograph (eg, ion exchange or reverse phase HPLC). Measured and purified to a purity greater than 95% or 99%. See, for example, Flatman et al., J. Chromatogr. B 848: 79-87 (2007) for a review of methods for assessing antibody purity.
 本明細書でいう用語「モノクローナル抗体」は、実質的に均一な抗体の集団から得られる抗体のことをいう。すなわち、その集団を構成する個々の抗体は、生じ得る変異抗体(例えば、自然に生じる変異を含む変異抗体、またはモノクローナル抗体調製物の製造中に発生する変異抗体。そのような変異体は通常若干量存在している。)を除いて、同一でありおよび/または同じエピトープに結合する。異なるエピトープに対する異なる抗体を典型的に含むポリクローナル抗体調製物とは対照的に、モノクローナル抗体調製物の各モノクローナル抗体は、抗原上の単一の決定基に対するものである。したがって、修飾語「モノクローナル」は、実質的に均一な抗体の集団から得られるものである、という抗体の特徴を示し、何らかの特定の方法による抗体の製造を求めるものと解釈されるべきではない。例えば、本発明にしたがって用いられるモノクローナル抗体は、これらに限定されるものではないが、ハイブリドーマ法、組換えDNA法、ファージディスプレイ法、ヒト免疫グロブリン遺伝子座の全部または一部を含んだトランスジェニック動物を利用する方法を含む、様々な手法によって作成されてよく、モノクローナル抗体を作製するためのそのような方法および他の例示的な方法は、本明細書に記載されている。 The term "monoclonal antibody" as used herein refers to an antibody obtained from a substantially uniform population of antibodies. That is, the individual antibodies that make up the population are possible mutant antibodies (eg, mutant antibodies that contain naturally occurring mutations, or mutant antibodies that occur during the manufacture of monoclonal antibody preparations, such variants are usually slightly smaller. Except for the amount present), they are identical and / or bind to the same epitope. In contrast to polyclonal antibody preparations, which typically contain different antibodies against different epitopes, each monoclonal antibody in the monoclonal antibody preparation is for a single determinant on the antigen. Therefore, the modifier "monoclonal" should not be construed as requiring the production of an antibody by any particular method, indicating the characteristic of the antibody that it is obtained from a substantially homogeneous population of antibodies. For example, the monoclonal antibodies used in accordance with the present invention are, but are not limited to, hybridoma methods, recombinant DNA methods, phage display methods, transgenic animals containing all or part of the human immunoglobulin loci. It may be made by a variety of methods, including methods that utilize, such methods and other exemplary methods for making monoclonal antibodies are described herein.
 「天然型抗体」は、天然に生じる様々な構造を伴う免疫グロブリン分子のことをいう。例えば、天然型IgG抗体は、ジスルフィド結合している2つの同一の軽鎖と2つの同一の重鎖から構成される約150,000ダルトンのヘテロ四量体糖タンパク質である。N末端からC末端に向かって、各重鎖は、可変重鎖ドメインまたは重鎖可変ドメインとも呼ばれる可変領域 (VH) を有し、それに3つの定常ドメイン(CH1、CH2、およびCH3)が続く。同様に、N末端からC末端に向かって、各軽鎖は、可変軽鎖ドメインまたは軽鎖可変ドメインとも呼ばれる可変領域 (VL) を有し、それに定常軽鎖 (CL) ドメインが続く。抗体の軽鎖は、その定常ドメインのアミノ酸配列に基づいて、カッパ(κ)およびラムダ(λ)と呼ばれる、2つのタイプの1つに帰属させられてよい。 "Natural antibody" refers to an immunoglobulin molecule with various naturally occurring structures. For example, a native IgG antibody is a heterotetrameric glycoprotein of approximately 150,000 daltons composed of two identical light chains that are disulfide-bonded and two identical heavy chains. From the N-terminus to the C-terminus, each heavy chain has a variable heavy chain domain or variable region (VH), also known as a heavy chain variable domain, followed by three constant domains (CH1, CH2, and CH3). Similarly, from the N-terminus to the C-terminus, each light chain has a variable region (VL), also called a variable light chain domain or a light chain variable domain, followed by a stationary light chain (CL) domain. The light chain of an antibody may be assigned to one of two types, called kappa (κ) and lambda (λ), based on the amino acid sequence of its constant domain.
 用語「可変領域」または「可変ドメイン」は、抗体を抗原へと結合させることに関与する、抗体の重鎖または軽鎖のドメインのことをいう。天然型抗体の重鎖および軽鎖の可変ドメイン(それぞれVHおよびVL)は、通常、各ドメインが4つの保存されたフレームワーク領域 (FR) および3つの超可変領域 (HVR) を含む、類似の構造を有する。(例えば、Kindt et al. Kuby Immunology, 6th ed., W.H. Freeman and Co., page 91 (2007) 参照。)1つのVHまたはVLドメインで、抗原結合特異性を与えるに充分であろう。さらに、ある特定の抗原に結合する抗体は、当該抗原に結合する抗体からのVHまたはVLドメインを使ってそれぞれVLまたはVHドメインの相補的ライブラリをスクリーニングして、単離されてもよい。例えばPortolano et al., J. Immunol. 150:880-887 (1993); Clarkson et al., Nature 352:624-628 (1991) 参照。 The term "variable region" or "variable domain" refers to the heavy or light chain domain of an antibody involved in binding the antibody to an antigen. The heavy and light chain variable domains of native antibodies (VH and VL, respectively) are similar, with each domain usually containing four conserved framework regions (FR) and three hypervariable regions (HVR). Has a structure. (See, for example, Kindt al. Kuby Immunology, 6th ed., W.H. Freeman and Co., page 91 (2007).) One VH or VL domain may be sufficient to confer antigen binding specificity. Furthermore, an antibody that binds to a particular antigen may be isolated by screening a complementary library of VL or VH domains using the VH or VL domain from the antibody that binds to that antigen, respectively. See, for example, Portolano et al., J. Immunol. 150: 880-887 (1993); Clarkson et al., Nature 352: 624-628 (1991).
 本明細書で用いられる用語「ベクター」は、それが連結されたもう1つの核酸を増やすことができる、核酸分子のことをいう。この用語は、自己複製核酸構造としてのベクター、および、それが導入された宿主細胞のゲノム中に組み入れられるベクターを含む。あるベクターは、自身が動作的に連結された核酸の、発現をもたらすことができる。そのようなベクターは、本明細書では「発現ベクター」とも称される。 As used herein, the term "vector" refers to a nucleic acid molecule that can augment another nucleic acid to which it is linked. The term includes a vector as a self-replicating nucleic acid structure and a vector incorporated into the genome of the host cell into which it has been introduced. Certain vectors can result in the expression of nucleic acids to which they are operably linked. Such vectors are also referred to herein as "expression vectors."
B.抗原結合分子
 本発明の一局面において、抗原結合分子は第1の抗原結合ドメインを含む。
 第1の抗原結合ドメインは、第1の複合体に結合し得る限り、如何なる化学的構造を有していてもよく、たとえば、低分子化合物であってもよく、高分子化合物であってもよい。第1の複合体は、第1の共抑制分子と第1の共抑制分子リガンドからなる。第1の共抑制分子リガンドは、第1の共抑制分子に対するリガンドである。後述される「(b-10)他の態様」欄において、第1の抗原結合ドメインの具体的な態様が例示される。
B. Antigen-binding molecule In one aspect of the invention, the antigen-binding molecule comprises a first antigen-binding domain.
The first antigen-binding domain may have any chemical structure as long as it can bind to the first complex, and may be, for example, a low molecular weight compound or a high molecular weight compound. .. The first complex consists of a first co-suppressing molecule and a first co-suppressing molecular ligand. The first co-suppressing molecular ligand is a ligand for the first co-suppressing molecule. Specific embodiments of the first antigen-binding domain are exemplified in the “(b-10) Other aspects” column described later.
(b-1)第1の態様
 一態様において、第1の抗原結合ドメインは、第1の複合体に特異的に結合し得る。
(B-1) First Aspect In one embodiment, the first antigen binding domain may specifically bind to the first complex.
 該態様において、第1の抗原結合ドメインの第1の複合体への特異的結合は、第1の複合体中の第1の共抑制分子への分子間力による結合であり得、第1の複合体中の第1の共抑制分子リガンドへの分子間力による結合であり得、または第1の複合体中の第1の共抑制分子と第1の共抑制分子リガンドの両方との分子間力による結合であり得る。第1の抗原結合ドメインの第1の複合体への特異的結合は、好ましくは、第1の複合体中の第1の共抑制分子と第1の共抑制分子リガンドの両方との分子間力による結合であり得る。これら様々な結合の態様の存在は、第1の抗原結合ドメインが第1の複合体に特異的に結合している限り、第1の共抑制分子と第1の共抑制分子リガンドのいずれか一方または両方に分子間力が形成され得ることを意味する。 In that embodiment, the specific binding of the first antigen binding domain to the first complex can be an intermolecular force binding to the first co-suppressing molecule in the first complex, the first. It can be an intermolecular force binding to the first co-suppressing molecular ligand in the complex, or between the molecules of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. It can be a force bond. The specific binding of the first antigen-binding domain to the first complex is preferably an intermolecular force between both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. Can be a bond by. The presence of these various binding modes is either the first co-suppressing molecule or the first co-suppressing molecular ligand, as long as the first antigen binding domain is specifically bound to the first complex. Or it means that an intermolecular force can be formed in both.
 該態様において、第1の抗原結合ドメインが第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方と分子間力による結合を形成する場合には、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方または両方に分子内の立体構造変化がある場合が想定される。この場合において、第1の抗原結合ドメインは、これら二つの分子間の結合によって変化した立体構造を特異的に認識する。
 たとえば、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子と第1の共抑制分子リガンドの一方の分子内に立体構造変化がある場合には、第1の抗原結合ドメインは、その結合によって変化した立体構造を認識しつつ、そしてその立体構造の変化を生じた第1の共抑制分子または第1の共抑制分子リガンドと分子間力による結合を形成し得る。
 一方、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子と第1の共抑制分子リガンドの両方の分子内に立体構造変化がある場合には、第1の抗原結合ドメインは、その結合によって変化した第1の共抑制分子と第1の共抑制分子リガンドのいずれか一方の立体構造を認識しつつ、そしてその立体構造の変化を生じた第1の共抑制分子または第1の共抑制分子リガンドと分子間力による結合を形成し得る。
In this embodiment, when the first antigen-binding domain forms an intermolecular force bond with either the first co-suppressing molecule or the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is used. It is assumed that there is an intramolecular conformational change in either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the first co-suppressing molecule. In this case, the first antigen-binding domain specifically recognizes the three-dimensional structure changed by the binding between these two molecules.
For example, when the first co-suppressing molecular ligand binds to the first co-suppressing molecule, there is a conformational change in one of the first co-suppressing molecule and the first co-suppressing molecular ligand. The first antigen-binding domain recognizes the three-dimensional structure changed by the binding, and binds by intermolecular force to the first co-suppressing molecule or the first co-suppressing molecular ligand that caused the change in the three-dimensional structure. Can form.
On the other hand, if there is a conformational change in both the first co-suppressing molecule and the first co-suppressing molecular ligand when the first co-suppressing molecular ligand binds to the first co-suppressing molecule, The first antigen-binding domain recognizes the three-dimensional structure of either the first co-suppressing molecule or the first co-suppressing molecular ligand changed by the binding, and causes the change in the three-dimensional structure. Can form an intermolecular force bond with a co-suppressing molecule or a first co-suppressing molecular ligand.
 該態様において、第1の抗原結合ドメインが第1の共抑制分子および第1の共抑制分子リガンドの両方と分子間力による結合を形成する場合には、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子および第1の共抑制分子リガンドの分子内に立体構造変化があってもなくてもよい。この場合において仮に立体構造変化を生じるならば、第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方または両方の立体構造に変化を生じ得る。
 この場合において、第1の抗原結合ドメインは、第1の複合体に特有な原子の配置を認識し、そして第1の共抑制分子および第1の共抑制分子リガンドの両方と分子間力による結合を形成し得る。この場合における第1の抗原結合ドメインが認識するすべての原子の配置は、第1の複合体を形成していない第1の共抑制分子のみ、または第1の複合体を形成していない第1の共抑制分子リガンドのみには存在しない。
In this embodiment, when the first antigen-binding domain forms an intermolecular force bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is the first. There may or may not be a conformational change within the molecule of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the co-suppressing molecule. In this case, if a conformational change occurs, the conformation of either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand can occur.
In this case, the first antigen binding domain recognizes the atomic arrangement peculiar to the first complex and binds by intermolecular force to both the first co-suppressing molecule and the first co-suppressing molecular ligand. Can be formed. In this case, the arrangement of all the atoms recognized by the first antigen-binding domain is only the first co-suppressing molecule that does not form the first complex, or the first that does not form the first complex. It does not exist only in the co-suppressing molecular ligand of.
(b-2)第2の態様
 上述の(b-1)とは別の態様において、第1の抗原結合ドメインは、第1の複合体に結合し得る。
(B-2) Second Aspect In another embodiment than (b-1) above, the first antigen binding domain may bind to the first complex.
 該態様において、第1の抗原結合ドメインの第1の複合体への結合活性は、第1の複合体を形成していない第1の共抑制分子への結合活性よりも高い、第1の複合体を形成していない第1の共抑制分子リガンドへの結合活性よりも高い、または第1の複合体を形成していない第1の共抑制分子への結合活性と第1の複合体を形成していない第1の共抑制分子リガンドへの結合活性の両方よりも高い。第1の抗原結合ドメインの第1の複合体への結合活性は、好ましくは、第1の複合体を形成していない第1の共抑制分子への結合活性および第1の複合体を形成していない第1の共抑制分子リガンドへの結合活性の両方よりも高い。 In this embodiment, the binding activity of the first antigen-binding domain to the first complex is higher than the binding activity to the first co-suppressing molecule that does not form the first complex, the first complex. Forming a first complex with a binding activity to a first co-suppressing molecule that is higher than the binding activity to a first co-suppressing molecule ligand that does not form a body, or that does not form a first complex Higher than both binding activity to the first co-suppressing molecular ligand that is not. The binding activity of the first antigen-binding domain to the first complex preferably forms the first complex and the binding activity to the first co-suppressing molecule that does not form the first complex. Higher than both binding activity to the first co-suppressing molecular ligand that is not.
 該態様において、第1の抗原結合ドメインの第1の複合体への結合は、第1の複合体中の第1の共抑制分子への分子間力による結合であり得、第1の複合体中の第1の共抑制分子リガンドへの分子間力による結合であり得、または第1の複合体中の第1の共抑制分子と第1の共抑制分子リガンドの両方との分子間力による結合であり得る。第1の抗原結合ドメインの第1の複合体への結合は、好ましくは、第1の複合体中の第1の共抑制分子と第1の共抑制分子リガンドの両方との分子間力による結合であり得る。これら様々な結合の態様の存在は、第1の抗原結合ドメインが第1の複合体に結合し、上述の結合活性を有している限り、第1の共抑制分子と第1の共抑制分子リガンドのいずれか一方または両方に分子間力が形成され得ることを意味する。 In that embodiment, the binding of the first antigen binding domain to the first complex can be an intermolecular force binding to the first co-suppressing molecule in the first complex, the first complex. It can be an intermolecular force binding to the first co-suppressing molecular ligand in, or by an intermolecular force of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. It can be a bond. Binding of the first antigen-binding domain to the first complex is preferably intermolecular force binding of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. Can be. The presence of these various binding embodiments is due to the presence of the first co-suppressing molecule and the first co-suppressing molecule as long as the first antigen binding domain binds to the first complex and has the above-mentioned binding activity. It means that an intermolecular force can be formed on either or both of the ligands.
 該態様において、第1の抗原結合ドメインが第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方と分子間力による結合を形成する場合には、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方または両方に分子内の立体構造変化がある場合が想定される。この場合において、第1の抗原結合ドメインは、これら二つの分子間の結合によって変化した立体構造を、その結合による変化前の立体構造よりも認識しやすい。
 たとえば、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子と第1の共抑制分子リガンドの一方の分子内に立体構造変化がある場合には、第1の抗原結合ドメインは、その結合によって変化した立体構造をその変化前の立体構造よりも認識しやすく、そしてその立体構造の変化を生じた第1の共抑制分子または第1の共抑制分子リガンドと分子間力による結合を形成しやすい。
 一方、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子と第1の共抑制分子リガンドの両方の分子内に立体構造変化がある場合には、第1の抗原結合ドメインは、その結合によって変化した第1の共抑制分子と第1の共抑制分子リガンドのいずれか一方の立体構造をそれらの変化前の立体構造よりも認識しやすく、そしてその立体構造の変化を生じた第1の共抑制分子または第1の共抑制分子リガンドと分子間力による結合を形成しやすい。
In this embodiment, when the first antigen-binding domain forms an intermolecular force bond with either the first co-suppressing molecule or the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is used. It is assumed that there is an intramolecular conformational change in either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the first co-suppressing molecule. In this case, the first antigen-binding domain is more likely to recognize the three-dimensional structure changed by the binding between these two molecules than the three-dimensional structure before the change due to the binding.
For example, when the first co-suppressing molecular ligand binds to the first co-suppressing molecule, there is a conformational change in one of the first co-suppressing molecule and the first co-suppressing molecular ligand. The first antigen-binding domain is easier to recognize the three-dimensional structure changed by the binding than the three-dimensional structure before the change, and the first co-suppressing molecule or the first co-suppressing molecule that caused the change in the three-dimensional structure. It is easy to form a bond with a ligand by intermolecular force.
On the other hand, if there is a conformational change in both the first co-suppressing molecule and the first co-suppressing molecular ligand when the first co-suppressing molecular ligand binds to the first co-suppressing molecule, The first antigen-binding domain is easier to recognize the three-dimensional structure of either the first co-suppressing molecule or the first co-suppressing molecular ligand altered by the binding, and is easier to recognize than the pre-changed three-dimensional structure. It is easy to form a bond by intermolecular force with the first co-suppressing molecule or the first co-suppressing molecular ligand that has changed the three-dimensional structure.
 該態様において、第1の抗原結合ドメインが第1の共抑制分子および第1の共抑制分子リガンドの両方と分子間力による結合を形成する場合には、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子および第1の共抑制分子リガンドの分子内に立体構造変化があってもなくてもよい。この場合において仮に立体構造変化を生じるならば、第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方または両方の立体構造に変化を生じ得る。この場合において、第1の抗原結合ドメインは、第1の複合体に特有な原子の配置を第1の複合体を形成していない第1の共抑制分子における原子の配置および第1の複合体を形成していない第1の共抑制分子リガンドにおける原子の配置よりも認識しやすく、そして第1の共抑制分子および第1の共抑制分子リガンドの両方と分子間力による結合を形成しやすい。この場合における第1の抗原結合ドメインが認識するすべての原子の配置は、第1の複合体を形成していない第1の共抑制分子のみ、または第1の複合体を形成していない第1の共抑制分子リガンドのみには存在しない。 In that embodiment, if the first antigen-binding domain forms an intermolecular force bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is the first. There may or may not be a conformational change within the molecule of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the co-suppressing molecule. In this case, if a conformational change occurs, the conformation of either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand can occur. In this case, the first antigen-binding domain has an atomic arrangement peculiar to the first complex, an atomic arrangement in the first co-suppressing molecule that does not form the first complex, and a first complex. It is easier to recognize than the arrangement of atoms in the first co-suppressing molecular ligand that does not form, and it is easier to form an intermolecular bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand. In this case, the arrangement of all the atoms recognized by the first antigen-binding domain is only the first co-suppressing molecule that does not form the first complex, or the first that does not form the first complex. It does not exist only in the co-suppressing molecular ligand of.
i) 結合活性
 該態様における結合活性は、一般に用いられる分子間の結合活性の測定法を用いて測定され得る。分子間の結合活性の測定法として、フローサイトメトリー(FCM)、表面プラズモン共鳴(SPR)、バイオレイヤー干渉(BLI)、酵素結合免疫吸着検定法(ELISA)が選択され得る。抗原結合分子が第1の抗原結合分子の一つのみを含む場合、抗原結合分子の第1の複合体への結合活性をこれらの測定法により測定した場合、抗原結合分子の第1の複合体へのアフィニティが測定される。抗原結合分子が第1の抗原結合分子の複数を含む場合、抗原結合分子の第1の複合体への結合活性をこれらの測定法により測定した場合、抗原結合分子の第1の複合体へのアビディティが測定される。
i) Binding activity The binding activity in the embodiment can be measured using a commonly used method for measuring intermolecular binding activity. Flow cytometry (FCM), surface plasmon resonance (SPR), biolayer interference (BLI), and enzyme-linked immunosorbent assay (ELISA) can be selected as methods for measuring intermolecular binding activity. When the antigen-binding molecule contains only one of the first antigen-binding molecules, the first complex of the antigen-binding molecules when the antigen-binding activity of the antigen-binding molecule to the first complex is measured by these measurement methods. Affinity to is measured. When the antigen-binding molecule contains a plurality of the first antigen-binding molecules, when the antigen-binding activity of the antigen-binding molecule to the first complex is measured by these measurement methods, the antigen-binding molecule to the first complex Avidity is measured.
(フローサイトメトリー)
 一態様において、結合活性はフローサイトメトリーにより測定されることが好ましい。結合活性がフローサイトメトリーにより測定される場合、第1の複合体が細胞の表面上に形成されるため、第1の複合体における第1の共抑制分子と第1の共抑制分子リガンドの結合態様が、他の測定法よりも生体内の環境により近づく。フローサイトメトリーにより測定された抗原結合分子の第1の複合体への結合活性は、生体内の環境を反映しやすい。
(Flow cytometry)
In one embodiment, the binding activity is preferably measured by flow cytometry. When the binding activity is measured by flow cytometry, the first complex is formed on the surface of the cell, so that the binding of the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex The embodiment is closer to the in vivo environment than other measurement methods. The binding activity of the antigen-binding molecule to the first complex measured by flow cytometry easily reflects the environment in the living body.
 該態様における結合活性を測定するためのフローサイトメトリーの一例としては、第1の共抑制分子を強制発現し第1の共抑制分子リガンドを強制発現していない第1の細胞を用いて行われる。
 該例においては、第1の可溶型ポリペプチドの存在下と非存在下において、第1の抗原結合ドメインの第1の細胞への結合活性が測定される。
 該例においては、第1の可溶型ポリペプチドの存在下における第1の抗原結合ドメインの第1の細胞への結合活性が、第1の可溶型ポリペプチドの非存在下に比べて高い。
As an example of flow cytometry for measuring the binding activity in this embodiment, a first cell in which the first co-suppressing molecule is forcibly expressed and the first co-suppressing molecular ligand is not forcibly expressed is used. ..
In this example, the binding activity of the first antigen-binding domain to the first cell is measured in the presence and absence of the first soluble polypeptide.
In this example, the binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide is higher than in the absence of the first soluble polypeptide. ..
 第1の細胞は、第1の共抑制分子を強制発現しており、且つ第1の共抑制分子リガンドを強制発現していない動物由来の細胞であれば、如何なる細胞でよい。第1の細胞は、好ましくは実質的に第1の共抑制分子リガンドを発現していない。第1の細胞は、より好ましくは第1の共抑制分子リガンドを発現していない。
 第1の細胞は、好ましくは浮遊培養できる細胞である。第1の細胞の種類としては、チャイニーズハムスター卵巣細胞由来の細胞が挙げられる。
The first cell may be any cell as long as it is an animal-derived cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand. The first cell preferably does not substantially express the first co-suppressing molecular ligand. The first cell more preferably does not express the first co-suppressing molecular ligand.
The first cell is preferably a cell that can be suspended and cultured. The first cell type includes cells derived from Chinese hamster ovary cells.
 本例における測定に用いられる第1の抗原結合ドメインは、抗原結合分子に含まれる状態でもよく、抗原結合分子の一部の状態であってもよい。測定に用いられる第1の抗原結合ドメインは、抗原結合分子に含まれないアミノ酸配列が付加されていてもよい。
 本例における測定に用いられる第1の可溶型ポリペプチドは、第1の共抑制分子リガンドの細胞外ドメインまたはその一部を含み且つ可溶型である限り、如何なるポリペプチドであってもよい。第1の共抑制分子リガンドの細胞外ドメインは、Ig-V様ドメインおよびIg-C様ドメインを含む。測定に用いられる第1の可溶型ポリペプチドは、少なくとも第1の共抑制分子リガンドのIg-V様ドメインを含んでいればよい。すなわち、測定に用いられる第1の可溶型ポリペプチドは、第1の共抑制分子リガンドのIg-V様ドメインを含み且つ可溶型である限り、如何なるポリペプチドであってもよい。測定に用いられる第1の可溶型ポリペプチドは、好ましくは第1の共抑制分子リガンドのIg-V様ドメインを含み且つ可溶型である。
The first antigen-binding domain used for the measurement in this example may be contained in the antigen-binding molecule or may be a part of the antigen-binding molecule. The first antigen-binding domain used for the measurement may be added with an amino acid sequence not contained in the antigen-binding molecule.
The first soluble polypeptide used for the measurement in this example may be any polypeptide as long as it contains or a part of the extracellular domain of the first co-suppressing molecular ligand and is soluble. .. The extracellular domain of the first co-suppressing molecular ligand comprises an Ig-V-like domain and an Ig-C-like domain. The first soluble polypeptide used for the measurement may contain at least the Ig-V-like domain of the first co-suppressing molecular ligand. That is, the first soluble polypeptide used for the measurement may be any polypeptide as long as it contains the Ig-V-like domain of the first co-suppressing molecular ligand and is soluble. The first soluble polypeptide used for the measurement preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecular ligand.
 該態様における結合活性を測定するためのフローサイトメトリーのもう一つの例としては、第1の共抑制分子リガンドを強制発現し第1の共抑制分子を強制発現していない第2の細胞を用いて行われる。
 該例においては、第2の可溶型ポリペプチドの存在下と非存在下において、第1の抗原結合ドメインの第2の細胞への結合活性が測定される。
 該例においては、第2の可溶型ポリペプチドの存在下における第1の抗原結合ドメインの第2の細胞への結合活性が、第2の可溶型ポリペプチドの非存在下に比べて高い。
As another example of flow cytometry for measuring the binding activity in this embodiment, a second cell in which the first co-suppressing molecular ligand is forcibly expressed and the first co-suppressing molecule is not forcibly expressed is used. Is done.
In this example, the binding activity of the first antigen-binding domain to the second cell is measured in the presence and absence of the second soluble polypeptide.
In this example, the binding activity of the first antigen-binding domain to the second cell in the presence of the second soluble polypeptide is higher than in the absence of the second soluble polypeptide. ..
 第2の細胞は、第1の共抑制分子リガンドを強制発現しており、且つ第1の共抑制分子を強制発現していない動物由来の細胞であれば、如何なる細胞でよい。第2の細胞は、好ましくは実質的に第1の共抑制分子を発現していない。第2の細胞は、より好ましくは第1の共抑制分子を発現していない。
 第2の細胞は、好ましくは浮遊培養できる細胞である。第2の細胞の種類としては、チャイニーズハムスター卵巣細胞由来の細胞が挙げられる。
The second cell may be any cell as long as it is an animal-derived cell that forcibly expresses the first co-suppressing molecular ligand and does not forcibly express the first co-suppressing molecule. The second cell preferably does not substantially express the first co-suppressing molecule. The second cell more preferably does not express the first co-suppressing molecule.
The second cell is preferably a cell that can be suspended and cultured. The second type of cell includes cells derived from Chinese hamster ovary cells.
 本例における測定に用いられる第1の抗原結合ドメインは、抗原結合分子に含まれる状態でもよく、抗原結合分子の一部の状態であってもよい。測定に用いられる第1の抗原結合ドメインは、抗原結合分子に含まれないアミノ酸配列が付加されていてもよい。
 本例における測定に用いられる第2の可溶型ポリペプチドは、第1の共抑制分子の細胞外ドメインまたはその一部を含み且つ可溶型である限り、如何なるポリペプチドであってもよい。第1の共抑制分子の細胞外ドメインは、Ig-V様ドメインを含む。測定に用いられる第2の可溶型ポリペプチドは、少なくとも第1の共抑制分子のIg-V様ドメインを含んでいればよい。すなわち、測定に用いられる第2の可溶型ポリペプチドは、第1の共抑制分子のIg-V様ドメインを含み且つ可溶型である限り、如何なるポリペプチドであってもよい。測定に用いられる第2の可溶型ポリペプチドは、好ましくは第1の共抑制分子のIg-V様ドメインを含み且つ可溶型である。
The first antigen-binding domain used for the measurement in this example may be contained in the antigen-binding molecule or may be a part of the antigen-binding molecule. The first antigen-binding domain used for the measurement may be added with an amino acid sequence not contained in the antigen-binding molecule.
The second soluble polypeptide used for the measurement in this example may be any polypeptide as long as it contains or a part of the extracellular domain of the first co-suppressing molecule and is soluble. The extracellular domain of the first co-suppressive molecule comprises an Ig-V-like domain. The second soluble polypeptide used for the measurement may contain at least the Ig-V-like domain of the first co-suppressing molecule. That is, the second soluble polypeptide used for the measurement may be any polypeptide as long as it contains the Ig-V-like domain of the first co-suppressing molecule and is soluble. The second soluble polypeptide used for the measurement preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecule.
 結合活性の具体的な態様として、以下の(a)および(b)のいずれか一方または両方の条件を満たす態様が挙げられる。
 (a) 前記第1の共抑制分子を強制発現し前記第1の共抑制分子リガンドを強制発現していない第1の細胞を用いたフローサイトメトリーにおいて、前記第1の共抑制分子リガンドの細胞外ドメインまたはその一部を含む第1の可溶型ポリペプチドの存在下における前記第1の抗原結合ドメインの前記第1の細胞への結合活性が、前記第1の可溶型ポリペプチドの非存在下に比べて高い。
 (b) 前記第1の共抑制分子リガンドを強制発現し前記第1の共抑制分子を強制発現していない第2の細胞を用いたフローサイトメトリーにおいて、前記第1の共抑制分子の細胞外ドメインまたはその一部を含む第2の可溶型ポリペプチドの存在下における前記第1の抗原結合ドメインの前記第2の細胞への結合活性が、前記第2の可溶型ポリペプチドの非存在下に比べて高い。
Specific embodiments of the binding activity include embodiments that satisfy either or both of the following (a) and (b).
(a) In flow cytometry using a first cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand, the cell of the first co-suppressing molecular ligand. The binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide containing the outer domain or a part thereof is the non-binding activity of the first soluble polypeptide. Higher than in existence.
(b) In flow cytometry using a second cell forcibly expressing the first co-suppressing molecular ligand and not forcibly expressing the first co-suppressing molecule, extracellular of the first co-suppressing molecule. The binding activity of the first antigen-binding domain to the second cell in the presence of the second soluble polypeptide containing the domain or a part thereof is the absence of the second soluble polypeptide. Higher than below.
 該具体的な態様において、(a)の第1の細胞はチャイニーズハムスター卵巣細胞由来であり得る。(b)の第2の細胞はチャイニーズハムスター卵巣細胞由来であり得る。第1の細胞および第2の細胞の両方がチャイニーズハムスター卵巣細胞由来であり得る。
 該具体的な態様において、「強制発現」とは、細胞における遺伝子組換えによる外来的なタンパク質の発現である。
 フローサイトメトリーは、当業者により通常用いられるものでよく、市販のフローサイトメトリーが用いられ得る。
 第1の可溶型ポリペプチドは、第1の共抑制分子リガンドの細胞外ドメインまたはその一部を含むポリペプチドであればよく、そして好ましくは可溶型である。第1の共抑制分子リガンドの細胞外ドメインまたはその一部は、好ましくは第1の共抑制分子リガンドのIg-V様ドメインを含み且つ可溶型である。
 第2の可溶型ポリペプチドは、第1の共抑制分子の細胞外ドメインまたはその一部を含むポリペプチドであればよく、そして好ましくは可溶型である。第1の共抑制分子の細胞外ドメインまたはその一部は、好ましくは第1の共抑制分子のIg-V様ドメインを含み且つ可溶型である。
In that particular embodiment, the first cell of (a) may be derived from Chinese hamster ovary cells. The second cell in (b) can be derived from Chinese hamster ovary cells. Both the first and second cells can be derived from Chinese hamster ovary cells.
In that particular embodiment, "forced expression" is the expression of a foreign protein by genetic recombination in a cell.
The flow cytometry may be one commonly used by those skilled in the art, and commercially available flow cytometry may be used.
The first soluble polypeptide may be any polypeptide comprising the extracellular domain of the first co-suppressing molecular ligand or a portion thereof, and is preferably soluble. The extracellular domain of the first co-suppressing molecular ligand or a portion thereof preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecular ligand.
The second soluble polypeptide may be any polypeptide comprising the extracellular domain of the first co-suppressing molecule or a portion thereof, and is preferably soluble. The extracellular domain of the first co-suppressing molecule or a portion thereof preferably contains and is soluble in the Ig-V-like domain of the first co-suppressing molecule.
 上記(a)の態様において結合活性が検出される機序として、初めに、第1の可溶型ポリペプチドの存在下において該第1の可溶型ポリペプチドが第1の細胞に強制発現する第1の共抑制分子に結合することにより、第1の複合体が該第1の細胞表面上に形成される。次いで、第1の抗原結合ドメインを含むポリペプチド(該ポリペプチドは抗原結合分子であってもよい。)が、形成された該第1の複合体に結合する。この結合がフローサイトメトリーで検出される。第1の抗原結合ドメインが第1の複合体に特異的に結合するものであるから、第1の可溶型ポリペプチドの非存在下においてはこの結合は検出されない。
 上記(b)の態様において結合活性が検出される機序として、初めに、第2の可溶型ポリペプチドの存在下において該第2の可溶型ポリペプチドが第2の細胞に強制発現する第1の共抑制分子リガンドに結合することにより、第1の複合体が該第2の細胞表面上に形成される。次いで、第1の抗原結合ドメインを含むポリペプチド(該ポリペプチドは抗原結合分子であってもよい。)が、形成された該第1の複合体に結合する。この結合がフローサイトメトリーで検出される。第1の抗原結合ドメインが第1の複合体に特異的に結合するものであるから、第2の可溶型ポリペプチドの非存在下においてはこの結合は検出されない。
As a mechanism for detecting the binding activity in the aspect (a) above, first, the first soluble polypeptide is forcibly expressed in the first cell in the presence of the first soluble polypeptide. By binding to the first co-suppressing molecule, a first complex is formed on the first cell surface. The polypeptide comprising the first antigen binding domain (the polypeptide may then be an antigen binding molecule) then binds to the formed first complex. This binding is detected by flow cytometry. Since the first antigen-binding domain specifically binds to the first complex, this binding is not detected in the absence of the first soluble polypeptide.
As a mechanism for detecting the binding activity in the aspect (b) above, first, the second soluble polypeptide is forcibly expressed in the second cell in the presence of the second soluble polypeptide. By binding to the first co-suppressing molecular ligand, the first complex is formed on the second cell surface. The polypeptide comprising the first antigen binding domain (the polypeptide may then be an antigen binding molecule) then binds to the formed first complex. This binding is detected by flow cytometry. Since the first antigen-binding domain specifically binds to the first complex, this binding is not detected in the absence of the second soluble polypeptide.
(バイオレイヤー干渉)
 別の態様において、結合活性はバイオレイヤー干渉(BLI)により測定されることが好ましい。BLIによる結合活性において、たとえば、Octet HTX (Molecular Devies)が用いられ得る。測定時のアッセイバッファーとしては、たとえば、50 mM リン酸, 150 mM NaCl, 0.05w/v% P20, pH 7.4が用いられ得る。温度条件は、30℃が挙げられる。
(Biolayer interference)
In another embodiment, the binding activity is preferably measured by biolayer interference (BLI). In the binding activity by BLI, for example, Octet HTX (Molecular Devies) can be used. As the assay buffer at the time of measurement, for example, 50 mM phosphoric acid, 150 mM NaCl, 0.05 w / v% P20, pH 7.4 can be used. The temperature condition is 30 ° C.
 抗体を捕捉するバイオセンサーとしては、たとえば、Protein A Biosensor (ForteBio, Cat. 18-05010)が用いられ得る。これに、対象の抗原結合分子が約2.5nmとなるように捕捉され得る。
 第1の複合体への結合活性を測定する際には、第1の共抑制分子および第1の共抑制分子リガンドは、アッセイバッファーに最終濃度1000nMとなるようにアッセイバッファーで希釈され、用いられ得る。
 対照区として第1の共抑制分子のみ、または第1の共抑制分子リガンドのみへの結合活性を測定する際には、第1の共抑制分子または第1の共抑制分子リガンドは、ランニングバッファーに最終濃度1000nMとなるようにアッセイバッファーで希釈され、用いられ得る。
As a biosensor for capturing an antibody, for example, Protein A Biosensor (ForteBio, Cat. 18-05010) can be used. In this, the antigen-binding molecule of interest can be captured so as to be about 2.5 nm.
When measuring the binding activity to the first complex, the first co-suppressing molecule and the first co-suppressing molecular ligand are diluted in the assay buffer with an assay buffer to a final concentration of 1000 nM and used. obtain.
When measuring the binding activity to only the first co-suppressing molecule or only the first co-suppressing molecular ligand as a control group, the first co-suppressing molecule or the first co-suppressing molecular ligand is added to the running buffer. It can be diluted with assay buffer to a final concentration of 1000 nM and used.
 抗原結合分子の抗原に対する結合活性は、Data Analysis HT 12.0 を用いた分析結果から、下式3により算出され得る。 The antigen-binding activity of the antigen-binding molecule can be calculated by the following formula 3 from the analysis results using Data Analysis HT 12.0.
[式3]
 抗原結合分子の単位量あたりの抗原結合量=(抗原の結合量(nm)-ブランクの結合量(nm))/抗原結合分子の捕捉量(nm)
[Equation 3]
Antigen binding amount per unit amount of antigen-binding molecule = (antigen binding amount (nm) -blank binding amount (nm)) / antigen-binding molecule capture amount (nm)
 結合活性の具体的な態様として、抗原結合分子の単位量あたりの第1の複合体への結合量が、該抗原結合分子の単位量あたりの第1の共抑制分子のみ、第1の共抑制分子リガンドのみ、または第1の共抑制分子のみと第1の共抑制分子リガンドのみの両方への結合量よりも高い。 As a specific embodiment of the binding activity, the amount of the antigen-binding molecule bound to the first complex per unit amount of the antigen-binding molecule is only the first co-suppressing molecule per unit amount of the antigen-binding molecule, and the first co-suppression occurs. It is higher than the amount of binding to the molecular ligand alone, or both the first co-suppressing molecule alone and the first co-suppressing molecular ligand alone.
(b-3)第3の態様
 上述の(b-1)および(b-2)とは別の態様において、第1の抗原結合ドメインは、第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体に存在するエピトープに特異的に結合し得る。
 該エピトープの領域全体は、好ましくは第1の複合体を形成していない第1の共抑制分子のみ、または第1の複合体を形成していない第1の共抑制分子リガンドのみでは満たされない。この態様には、第1の複合体を形成していない第1の共抑制分子の一部分と第1の複合体を形成していない第1の共抑制分子リガンドの一部分の両方をエピトープとする場合が包含されるほか、第1の複合体を形成していない第1の共抑制分子には存在しないが第1の複合体を形成している第1の共抑制分子には存在する立体構造をエピトープとする場合および第1の複合体を形成していない第1の共抑制分子リガンドには存在しないが第1の複合体を形成している第1の共抑制分子リガンドには存在する立体構造をエピトープとする場合のような後述する立体構造変化をエピトープとする場合が包含される。
(B-3) Third Aspect In another aspect from the above-mentioned (b-1) and (b-2), the first antigen-binding domain is a first co-suppressing molecule and the first co-suppressing. It may specifically bind to an epitope present in a first complex consisting of a first co-suppressing molecular ligand for a molecule.
The entire region of the epitope is preferably not filled with only the first co-suppressing molecule that does not form the first complex, or only the first co-suppressing molecular ligand that does not form the first complex. In this embodiment, both a part of the first co-suppressing molecule that does not form the first complex and a part of the first co-suppressing molecular ligand that does not form the first complex are used as epitopes. Is included, and a three-dimensional structure that does not exist in the first co-suppressing molecule that does not form the first complex but exists in the first co-suppressing molecule that forms the first complex. A three-dimensional structure that does not exist in the case of an epitope and in the first co-suppressing molecular ligand that does not form the first complex, but exists in the first co-suppressing molecular ligand that forms the first complex. The case where the three-dimensional structure change described later is used as an epitope, such as the case where is used as an epitope is included.
 該態様において、第1の抗原結合ドメインのエピトープへの特異的結合は、第1の複合体中の第1の共抑制分子への分子間力による結合であり得、第1の複合体中の第1の共抑制分子リガンドへの分子間力による結合であり得、または第1の複合体中の第1の共抑制分子と第1の共抑制分子リガンドの両方との分子間力による結合であり得る。第1の抗原結合ドメインの該エピトープへの特異的結合は、好ましくは、第1の複合体中の第1の共抑制分子と第1の共抑制分子リガンドの両方との分子間力による結合であり得る。これら様々な結合の態様の存在は、第1の抗原結合ドメインが該エピトープに特異的に結合している限り、第1の共抑制分子と第1の共抑制分子リガンドのいずれか一方または両方に分子間力が形成され得ることを意味する。該分子間力は、該第1の抗原結合ドメインと該エピトープの間に生じる分子間力であり得る。 In that embodiment, the specific binding of the first antigen binding domain to the epitope can be an intermolecular force binding to the first co-suppressing molecule in the first complex and in the first complex. It can be an intermolecular force binding to the first co-suppressing molecular ligand, or an intermolecular force binding to both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. could be. Specific binding of the first antigen-binding domain to the epitope is preferably by intermolecular force binding of both the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. could be. The presence of these various binding embodiments is associated with either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand as long as the first antigen binding domain is specifically bound to the epitope. It means that an intermolecular force can be formed. The intramolecular force can be an intramolecular force that occurs between the first antigen binding domain and the epitope.
 該態様において、第1の抗原結合ドメインが第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方と分子間力による結合を形成する場合には、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方または両方に分子内の立体構造変化がある場合が想定される。この場合において、第1の抗原結合ドメインは、これら二つの分子間の結合によって変化した立体構造をエピトープとして特異的に認識する。
 たとえば、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子と第1の共抑制分子リガンドの一方の分子内に立体構造変化がある場合には、第1の抗原結合ドメインは、その結合によって変化した立体構造をエピトープとして認識しつつ、そしてその立体構造の変化を生じた第1の共抑制分子または第1の共抑制分子リガンドと分子間力による結合を形成し得る。
 一方、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子と第1の共抑制分子リガンドの両方の分子内に立体構造変化がある場合には、第1の抗原結合ドメインは、その結合によって変化した第1の共抑制分子と第1の共抑制分子リガンドのいずれか一方の立体構造をエピトープとして認識しつつ、そしてその立体構造の変化を生じた第1の共抑制分子または第1の共抑制分子リガンドと分子間力による結合を形成し得る。
In this embodiment, when the first antigen-binding domain forms an intermolecular force bond with either the first co-suppressing molecule or the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is used. It is assumed that there is an intramolecular conformational change in either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the first co-suppressing molecule. In this case, the first antigen-binding domain specifically recognizes the three-dimensional structure changed by the binding between these two molecules as an epitope.
For example, when the first co-suppressing molecular ligand binds to the first co-suppressing molecule, there is a conformational change in one of the first co-suppressing molecule and the first co-suppressing molecular ligand. The first antigen-binding domain recognizes the three-dimensional structure changed by the binding as an epitope, and depends on the first co-suppressing molecule or the first co-suppressing molecular ligand that caused the change in the three-dimensional structure and the intermolecular force. Can form a bond.
On the other hand, if there is a conformational change in both the first co-suppressing molecule and the first co-suppressing molecular ligand when the first co-suppressing molecular ligand binds to the first co-suppressing molecule, The first antigen-binding domain recognizes the three-dimensional structure of either the first co-suppressing molecule or the first co-suppressing molecular ligand changed by the binding as an epitope, and causes the change in the three-dimensional structure. It can form an intermolecular force bond with a first co-suppressing molecule or a first co-suppressing molecular ligand.
 該態様において、第1の抗原結合ドメインが第1の共抑制分子および第1の共抑制分子リガンドの両方と分子間力による結合を形成する場合には、第1の共抑制分子リガンドが第1の共抑制分子に結合したときに第1の共抑制分子および第1の共抑制分子リガンドの分子内に立体構造変化があってもなくてもよい。この場合において仮に立体構造変化を生じるならば、第1の共抑制分子および第1の共抑制分子リガンドのいずれか一方または両方の立体構造に変化を生じ得る。
 この場合において、第1の抗原結合ドメインは、第1の複合体に特有な原子の配置をエピトープとして認識し、そして第1の共抑制分子および第1の共抑制分子リガンドの両方におけるエピトープと分子間力による結合を形成し得る。この場合における第1の抗原結合ドメインが認識するエピトープにおけるすべての原子の配置は、第1の複合体を形成していない第1の共抑制分子のみ、または第1の複合体を形成していない第1の共抑制分子リガンドのみには存在しない。
In this embodiment, when the first antigen-binding domain forms an intermolecular force bond with both the first co-suppressing molecule and the first co-suppressing molecular ligand, the first co-suppressing molecular ligand is the first. There may or may not be a conformational change within the molecule of the first co-suppressing molecule and the first co-suppressing molecular ligand when bound to the co-suppressing molecule. In this case, if a conformational change occurs, the conformation of either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand can occur.
In this case, the first antigen-binding domain recognizes the atomic arrangement peculiar to the first complex as an epitope, and the epitope and molecule in both the first co-suppressing molecule and the first co-suppressing molecular ligand. Intermolecular bonds can be formed. In this case, the arrangement of all atoms in the epitope recognized by the first antigen-binding domain is only the first co-suppressing molecule that does not form the first complex, or does not form the first complex. It does not exist only in the first co-suppressing molecular ligand.
(b-4)抗原結合分子の免疫シナプスにおける作用
 上述の(b-1)、(b-2)および(b-3)の態様において、抗原結合分子は、第1の複合体が存在する免疫シナプスにおいて、第1の共抑制分子の下流の第1の細胞内シグナルを活性化し得る。
 「第1の共抑制分子の下流の第1の細胞内シグナル」とは、第1の共抑制分子を発現する細胞において、第1の共抑制分子が活性化したときに生じる細胞内シグナルを意味する。T細胞において、第1の細胞内シグナルの活性化はT細胞受容体からのシグナルを抑制する機能を有し得る。その結果として、T細胞の活性化が抑制され得る。ここで言うT細胞の活性化とは、T細胞の増殖や活性化型細胞への分化などの免疫が活性化する際に現れるT細胞の表現型のほか、免疫を賦活するサイトカイン産生増加のことである。T細胞としては、特に、CD4(+)FoxP3(-) T細胞、およびCD8(+) T細胞が挙げられる。
(B-4) Action of the antigen-binding molecule at the immunological synapse In the embodiments (b-1), (b-2) and (b-3) described above, the antigen-binding molecule is an immune system in which the first complex is present. At the synapse, it can activate a first intracellular signal downstream of the first co-suppressing molecule.
The "first intracellular signal downstream of the first co-suppressing molecule" means an intracellular signal generated when the first co-suppressing molecule is activated in a cell expressing the first co-suppressing molecule. do. In T cells, activation of the first intracellular signal may have the function of suppressing the signal from the T cell receptor. As a result, T cell activation can be suppressed. T cell activation here refers to the phenotype of T cells that appears when immunity is activated, such as T cell proliferation and differentiation into activated cells, as well as increased production of cytokines that activate immunity. Is. Examples of T cells include CD4 (+) FoxP3 (-) T cells and CD8 (+) T cells.
 「免疫シナプス」とは、共抑制分子リガンドを発現している細胞と、共抑制分子を発現している免疫系の細胞とが近接し、接触し、それらの間に形成されるリング状の構造を意味する(Front Immunol 2016 Vol.7 Article 255, Immunology 2011 Vol.133 pp.420-425)。MHCと共抑制分子リガンドを発現している細胞と共抑制分子を発現しているT細胞の間に形成されたシナプスが、免疫シナプスとして例示される。 An "immunological synapse" is a ring-shaped structure formed between cells expressing a co-suppressing molecular ligand and cells of the immune system expressing a co-suppressing molecule in close proximity to each other and in contact with each other. Means (Front Immunol 2016 Vol.7 Article 255, Immunology 2011 Vol.133 pp.420-425). Synapses formed between cells expressing a co-suppressing molecular ligand with MHC and T cells expressing a co-suppressing molecule are exemplified as immunological synapses.
(b-5)第1の細胞内シグナルの強度の測定
 一態様において、第1の共抑制分子の活性化により生じた第1の細胞内シグナルの強度は、in vitroの実験により測定され得る。この測定系で、抗原結合分子の存在下における第1の細胞内シグナルの強度が抗原結合分子の非存在下に比べて高い場合に、抗原結合分子によって第1の細胞内シグナルが活性化されたということができる。
(B-5) Measurement of First Intracellular Signal Intensity In one embodiment, the intensity of the first intracellular signal generated by activation of the first co-suppressing molecule can be measured by in vitro experiments. In this measurement system, the antigen-binding molecule activated the first intracellular signal when the intensity of the first intracellular signal in the presence of the antigen-binding molecule was higher than that in the absence of the antigen-binding molecule. It can be said.
 該態様において、第1の共抑制分子を発現する第3の細胞と、抗原非依存的なT細胞受容体アクチベーターおよび第1の共抑制分子リガンドを発現する第4の細胞とが互いに接触可能な状態で用いられる測定系が、第1の細胞内シグナルの強度の測定系として例示される。該第3の細胞は、第1の共抑制分子の活性化により生じる下流の細胞内シグナルである第1の細胞内シグナルの強度を測定し得る細胞である。 In this embodiment, a third cell expressing the first co-suppressing molecule and a fourth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecular ligand can contact each other. The measurement system used in the above state is exemplified as the measurement system of the intensity of the first intracellular signal. The third cell is a cell capable of measuring the intensity of the first intracellular signal, which is a downstream intracellular signal generated by the activation of the first co-suppressing molecule.
 該測定系で第3の細胞における第1の細胞内シグナルが第4の細胞における第1の共抑制分子リガンドによって最大限に活性化している状態に至っている場合には、抗原結合分子が第1の細胞内シグナルを活性化したことを確認できない。したがって、該例示において第1の細胞内シグナルの強度の測定は、第4の細胞が発現する第1の共抑制分子リガンドにより第3の細胞における第1の細胞内シグナルの活性化が最大限に達していない条件で行われる。そのような条件とするために、第4の細胞における第1の共抑制分子リガンドに対する阻害抗体を用いることにより、第3の細胞における第1の細胞内シグナルを部分的に抑制する方法が適用され得る。第1の共抑制分子リガンドに対する阻害抗体には、公知の阻害抗体が適用され得る。たとえば、PD-L1に対する阻害抗体としては、YW243.55S70(US2016/0222117 A1を参照;重鎖可変領域配列番号:16および軽鎖可変領域配列番号:17)が用いられ得る。 When the first intracellular signal in the third cell is maximally activated by the first co-suppressing molecular ligand in the fourth cell in the measurement system, the antigen-binding molecule is the first. It cannot be confirmed that the intracellular signal of the cell was activated. Therefore, in the above embodiment, the measurement of the intensity of the first intracellular signal maximizes the activation of the first intracellular signal in the third cell by the first co-suppressing molecular ligand expressed by the fourth cell. It is done under conditions that have not been reached. In order to make such a condition, a method of partially suppressing the first intracellular signal in the third cell by using an inhibitory antibody against the first co-suppressing molecular ligand in the fourth cell is applied. obtain. A known inhibitory antibody may be applied to the inhibitory antibody against the first co-suppressive molecular ligand. For example, as an inhibitory antibody against PD-L1, YW243.55S70 (see US2016 / 0222117 A1; heavy chain variable region SEQ ID NO: 16 and light chain variable region SEQ ID NO: 17) can be used.
 該例示において、第3の細胞はJurkat細胞由来であり得る。第4の細胞はチャイニーズハムスター卵巣細胞由来であり得る。好ましい態様において、第3の細胞がJurkat細胞由来であり、且つ第4の細胞がチャイニーズハムスター卵巣細胞由来である。第4の細胞としては、Promega製のPD-L1を発現する人工抗原提示細胞(#J109A)が例示される。 In the embodiment, the third cell can be derived from Jurkat cells. The fourth cell can be derived from Chinese hamster ovary cells. In a preferred embodiment, the third cell is derived from Jurkat cells and the fourth cell is derived from Chinese hamster ovary cells. As the fourth cell, an artificial antigen-presenting cell (# J109A) expressing PD-L1 manufactured by Promega is exemplified.
 該例示において、第1の細胞内シグナルの強度は、第1の共抑制分子が活性化したときに生じる、第1の共抑制分子の細胞内ドメインと該細胞内ドメインに直接にまたは間接に相互作用する細胞内タンパク質との近接に基づき測定され得る。近接の検出系は、細胞内に存在する分子間の近接を観察でき、その強度を数値化できる検出系である限り、如何なる検出系でもよい。具体的には、NanoBRET(登録商標)が挙げられる。 In the embodiment, the intensity of the first intracellular signal is directly or indirectly mutual with the intracellular domain of the first co-suppressing molecule, which occurs when the first co-suppressing molecule is activated. It can be measured based on its proximity to the intracellular protein of action. The proximity detection system may be any detection system as long as the proximity between molecules existing in the cell can be observed and the intensity thereof can be quantified. Specific examples include NanoBRET®.
 該例示において、第1の共抑制分子の細胞内ドメインに直接にまたは間接に相互作用する細胞内タンパク質は、公知のものであってもよく、実験者により新たに発見されたものであってもよい。脱リン酸化酵素が、該細胞内タンパク質として例示される。具体的には、共抑制分子がPD-1である場合、脱リン酸化酵素はSHP-2が例示される。 In the embodiment, the intracellular protein that directly or indirectly interacts with the intracellular domain of the first co-suppressing molecule may be known or newly discovered by an experimenter. good. Dephosphorylation enzyme is exemplified as the intracellular protein. Specifically, when the co-suppressing molecule is PD-1, the dephosphorylating enzyme is exemplified by SHP-2.
(b-6)第1の細胞内シグナルによる免疫活性化シグナルの抑制の測定
 一態様において、第1の共抑制分子の活性化により生じた第1の細胞内シグナルによって免疫の活性化シグナルが抑制されたか否かはin vitroの実験により確かめられ得る。その実験で、抗原結合分子の存在下における免疫の活性化シグナルの強度が抗原結合分子の非存在下に比べて低い場合に、抗原結合分子によって免疫の活性化シグナルが抑制されたということができる。免疫の活性化シグナルは、好ましくはT細胞におけるT細胞受容体の下流で活性化し得る第2の細胞内シグナルである。
(B-6) Measurement of suppression of immune activation signal by first intracellular signal In one embodiment, immune activation signal is suppressed by a first intracellular signal generated by activation of a first co-suppressing molecule. Whether or not it was done can be confirmed by in vitro experiments. In that experiment, it can be said that the antigen-binding molecule suppressed the immune activation signal when the intensity of the immune activation signal in the presence of the antigen-binding molecule was lower than that in the absence of the antigen-binding molecule. .. The immune activation signal is preferably a second intracellular signal that can be activated downstream of the T cell receptor in T cells.
 該態様において、T細胞受容体および第1の共抑制分子を発現する第5の細胞と、抗原非依存的なT細胞受容体アクチベーターおよび第1の共抑制分子リガンドを発現する第6の細胞とが互いに接触可能な条件下で用いられる測定系が、第2の細胞内シグナルの強度の測定系として例示される。該第5の細胞は、T細胞受容体の活性化により生じる下流の細胞内シグナルである第2の細胞内シグナルの強度を測定し得、第1の細胞内シグナルの活性化によって前記第2の細胞内シグナルが抑制され得る細胞である。第6の細胞は、上述の(b-5)で使われる第4の細胞を利用することができる。 In that embodiment, a fifth cell expressing the T cell receptor and the first co-suppressing molecule and a sixth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecule ligand. A measurement system used under conditions where the cells can come into contact with each other is exemplified as a second intracellular signal intensity measurement system. The fifth cell can measure the intensity of the second intracellular signal, which is a downstream intracellular signal generated by the activation of the T cell receptor, and the second intracellular signal can be measured by the activation of the first intracellular signal. A cell in which intracellular signals can be suppressed. As the sixth cell, the fourth cell used in (b-5) above can be utilized.
 該測定系の該第5の細胞において、第2の細胞内シグナルが、第6の細胞の第1の共抑制分子リガンドの結合に起因して生じる第5の細胞の第1の共抑制分子の活性化とそれに続く第1の細胞内シグナルの活性化によって最大限に抑制されている状態に至っている場合には、抗原結合分子が第2の細胞内シグナルを抑制したことを確認できない。したがって、該例示において第2の細胞内シグナルの強度の測定は、第6の細胞が発現する第1の共抑制分子リガンドにより第5の細胞における第2の細胞内シグナルが最大限に抑制されていない条件で行われる。そのような条件とするために、第6の細胞における第1の共抑制分子リガンドに対する阻害抗体を用いることにより、第5の細胞における第2の細胞内シグナルの抑制を部分的に抑制する方法が適用され得る。第1の共抑制分子リガンドに対する阻害抗体には、公知の阻害抗体が適用され得る。たとえば、PD-L1に対する阻害抗体としては、YW243.55S70(US2016/0222117 A1を参照;重鎖可変領域配列番号:16および軽鎖可変領域配列番号:17)が用いられ得る。 In the fifth cell of the measurement system, the second intracellular signal is the first co-suppressing molecule of the fifth cell resulting from the binding of the first co-suppressing molecular ligand of the sixth cell. When the state of maximal suppression by activation followed by activation of the first intracellular signal is reached, it cannot be confirmed that the antigen-binding molecule suppressed the second intracellular signal. Therefore, in the above embodiment, the measurement of the intensity of the second intracellular signal is such that the second intracellular signal in the fifth cell is maximally suppressed by the first co-inhibitory molecular ligand expressed by the sixth cell. It is done under no conditions. In order to make such a condition, there is a method of partially suppressing the suppression of the second intracellular signal in the fifth cell by using an inhibitory antibody against the first co-suppressing molecular ligand in the sixth cell. Can be applied. A known inhibitory antibody may be applied to the inhibitory antibody against the first co-suppressive molecular ligand. For example, as an inhibitory antibody against PD-L1, YW243.55S70 (see US2016 / 0222117 A1; heavy chain variable region SEQ ID NO: 16 and light chain variable region SEQ ID NO: 17) can be used.
 該例示において、第5の細胞はJurkat細胞由来であり得る。第6の細胞はチャイニーズハムスター卵巣細胞由来であり得る。好ましい態様において、第5の細胞がJurkat細胞由来であり、且つ第6の細胞がチャイニーズハムスター卵巣細胞由来である。第6の細胞としては、Promega社のPD-L1を発現する人工抗原提示細胞(#J109A)が例示される。 In the embodiment, the fifth cell can be derived from Jurkat cells. The sixth cell can be derived from Chinese hamster ovary cells. In a preferred embodiment, the fifth cell is derived from Jurkat cells and the sixth cell is derived from Chinese hamster ovary cells. As the sixth cell, an artificial antigen presenting cell (# J109A) expressing PD-L1 of Promega is exemplified.
 該例示において、第2の細胞内シグナルの強度は、T細胞受容体シグナルの下流で働く転写因子による転写活性に基づき測定され得る。転写活性の測定系は、T細胞受容体シグナルの下流で働くことが知られている因子の修飾または結合によるものでも、遺伝子の発現量の変動によるものでもよい。該修飾は、特定のタンパク質のリン酸化状態の変動であってもよい。該結合は、特定のタンパク質間の相互作用であってもよい。遺伝子の発現量の該変動は、特定の転写因子が認識するプロモーターに何らかの酵素活性を有するタンパク質をコードする遺伝子を融合させたレポーター遺伝子アッセイでもよい。具体的には、第2の細胞内シグナルが転写因子のNFATの活性である態様において、NFAT応答配列(NFAT response element)下流にルシフェラーゼ(Luciferase)を発現制御できるように融合させたレポーター遺伝子が第5の細胞に導入され、そしてルシフェラーゼと反応した基質が発光されるアッセイが、T細胞受容体シグナルの下流シグナルの強度を測定できるレポーター遺伝子アッセイとして例示される。 In the embodiment, the intensity of the second intracellular signal can be measured based on the transcriptional activity of a transcription factor acting downstream of the T cell receptor signal. The system for measuring transcriptional activity may be by modification or binding of a factor known to act downstream of the T cell receptor signal, or by variability in gene expression. The modification may be a variation in the phosphorylation state of a particular protein. The binding may be an interaction between specific proteins. The variation in gene expression may be a reporter gene assay in which a promoter recognized by a particular transcription factor is fused with a gene encoding a protein having some enzymatic activity. Specifically, in an embodiment in which the second intracellular signal is the activity of NFAT, which is a transcription factor, a reporter gene fused so that expression of luciferase can be controlled downstream of the NFAT response element is the first. An assay in which a substrate introduced into 5 cells and reacted with luciferase is luminescenceed is exemplified as a reporter gene assay capable of measuring the intensity of a downstream signal of a T cell receptor signal.
(b-7)第1の共抑制分子と第1の共抑制分子リガンドの組合せ
 一態様において、第1の抗原結合ドメインが特異的に結合し得る第1の複合体中の第1の共抑制分子は、抗原結合分子を得ようとした者がその時点で知り得る範囲の共抑制分子から適宜選択され得る。第1の共抑制分子は、代表的にはPD-1、BTLA、TIGIT、LAG-3、CTLA4、およびTIM-3が挙げられる。
(B-7) Combination of 1st Co-Suppressing Mole and 1st Co-Suppressing Molecular Ligand In one embodiment, the first co-suppressing in a first complex to which the first antigen-binding domain can specifically bind. The molecule can be appropriately selected from a range of co-suppressing molecules known at that time to those seeking to obtain the antigen-binding molecule. The first co-suppressing molecule typically includes PD-1, BTLA, TIGIT, LAG-3, CTLA4, and TIM-3.
 一態様において、第1の複合体中の第1の共抑制分子リガンドは、抗原結合分子を得ようとした者がその時点で知り得る範囲の共抑制分子リガンドから適宜選択され得る。第1の共抑制分子リガンドは、代表的にはPD-L1、PD-L2、HVEM、CD155、CD112、MHCクラスII分子、CD80、CD86、galectin-9、phosphatidylserine、CEACAM-1、およびHMGB1が挙げられる。 In one embodiment, the first co-suppressing molecular ligand in the first complex can be appropriately selected from a range of co-suppressing molecular ligands known at that time to those who seek to obtain the antigen-binding molecule. The first co-suppressing molecular ligands typically include PD-L1, PD-L2, HVEM, CD155, CD112, MHC class II molecules, CD80, CD86, galectin-9, phosphatidylserine, CEACAM-1, and HMGB1. Will be.
 これらの態様において、第1の共抑制分子および第1の共抑制分子リガンドの組合せは、好ましくはPD-1およびPD-L1の組合せ、PD-1およびPD-L2の組合せ、BTLAおよびHVEMの組合せ、TIGITおよびCD155の組合せ、TIGITおよびCD112の組合せ、LAG-3およびMHCクラスII分子の組合せ、CTLA4およびCD80の組合せ、CTLA4およびCD86の組合せ、TIM-3およびgalectin-9の組合せ、TIM-3およびphosphatidylserineの組合せ、TIM-3およびCEACAM-1の組合せ、ならびにTIM-3およびHMGB1の組合せからなる群から選択されるいずれか一つである。 In these embodiments, the combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is preferably a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM. , TIGIT and CD155 combination, TIGIT and CD112 combination, LAG-3 and MHC class II molecule combination, CTLA4 and CD80 combination, CTLA4 and CD86 combination, TIM-3 and galectin-9 combination, TIM-3 and One selected from the group consisting of a combination of phosphatidylserine, a combination of TIM-3 and CEACAM-1, and a combination of TIM-3 and HMGB1.
 特定の態様において、第1の共抑制分子および第1の共抑制分子リガンドの組合せは、PD-1およびPD-L1の組合せである。この場合において、第1の抗原結合ドメインが結合するエピトープは、好ましくは、実施例7で作製された表1に示される抗ヒトPD-L1 / ヒトPD-1複合体タンパク質抗体のいずれか一つが結合する第1の複合体内のエピトープと全部または部分的に重複する。第1の抗原結合ドメインが結合するエピトープは、より好ましくは、LPB0010HCb-G1T7P/LPB0010LCb-k0MTCまたはLPC0039HCd-G1T7P/LPC0039LCd-k0MTCと称する抗ヒトPD-L1 / ヒトPD-1複合体タンパク質抗体が結合する第1の複合体内のエピトープと全部または部分的に重複する。 In a particular embodiment, the combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is a combination of PD-1 and PD-L1. In this case, the epitope to which the first antigen-binding domain binds is preferably any one of the anti-human PD-L1 / human PD-1 complex protein antibodies prepared in Table 1 prepared in Example 7. It overlaps in whole or in part with the epitope in the first complex to which it binds. The epitope to which the first antigen-binding domain binds is more preferably an anti-human PD-L1 / human PD-1 complex protein antibody called LPB0010HCb-G1T7P / LPB0010LCb-k0MTC or LPC0039HCd-G1T7P / LPC0039LCd-k0MTC. It completely or partially overlaps with the epitope in the first complex.
(b-8)多重特異性抗原結合分子
 一態様において、抗原結合分子は、第2の抗原結合ドメインをさらに含んでいてもよい。その場合、抗原結合分子は、二以上の抗原またはエピトープに結合し得る多重特異性抗原結合分子である。該第2の抗原結合ドメインは、第2の共抑制分子リガンドと第2の複合体を形成し得る第2の共抑制分子に特異的に結合し得る。第2の抗原結合ドメインは、第2の複合体に結合し得ても結合し得ないくてもよい。第1の抗原結合ドメインが第1の複合体に結合することに特徴を有するのに対し、第2の抗原結合ドメインは第2の複合体に結合し得ても結合し得ないくてもよい点で、両ドメインは相違する。第2の抗原結合ドメインは、第2の共抑制分子に対するアゴニスト活性を有することが好ましい。
 第2の抗原結合ドメインは、上述の特徴を有する限り、如何なる化学的構造を有していてもよく、たとえば、低分子化合物であってもよく、高分子化合物であってもよい。後述される「(b-10)他の態様」欄において、第2の抗原結合ドメインの具体的な態様が例示される。
(B-8) Multispecific Antigen Binding Molecules In one embodiment, the antigen binding molecule may further comprise a second antigen binding domain. In that case, the antigen-binding molecule is a multispecific antigen-binding molecule that can bind to two or more antigens or epitopes. The second antigen-binding domain can specifically bind to a second co-suppressing molecule that can form a second complex with the second co-suppressing molecular ligand. The second antigen-binding domain may or may not bind to the second complex. The first antigen-binding domain is characterized by binding to the first complex, whereas the second antigen-binding domain may or may not bind to the second complex. In that respect, the two domains are different. The second antigen-binding domain preferably has agonist activity against the second co-suppressing molecule.
The second antigen-binding domain may have any chemical structure as long as it has the above-mentioned characteristics, and may be, for example, a low molecular weight compound or a high molecular weight compound. Specific embodiments of the second antigen-binding domain are exemplified in the “(b-10) Other aspects” column described later.
 該態様において、多重特異性抗原結合分子は、第1の複合体が存在する免疫シナプスにおいて、第2の共抑制分子の下流の第3の細胞内シグナルを活性化し得る。第3の細胞内シグナルの強度は、上述の(b-5)における「第1の細胞内シグナルの強度の測定」と同様にして測定され得る。第3の細胞内シグナルの強度を測定する場合には、「第1の細胞内シグナルの強度の測定」における、第1の共抑制分子が第2の共抑制分子に、第1の共抑制分子リガンドが第2の共抑制分子リガンドに、それぞれ置き換えられる。多重特異性抗原結合分子が第2の共抑制分子の下流の第3の細胞内シグナルを活性化し得るのは、第2の抗原結合ドメインが有する第2の共抑制分子に対するアゴニスト活性であることが好ましい。 In this embodiment, the multispecific antigen binding molecule can activate a third intracellular signal downstream of the second co-suppressing molecule at the immunological synapse in which the first complex is present. The intensity of the third intracellular signal can be measured in the same manner as in the above-mentioned "measurement of the intensity of the first intracellular signal" in (b-5). When measuring the intensity of the third intracellular signal, the first co-suppressing molecule is the second co-suppressing molecule and the first co-suppressing molecule in the "measurement of the intensity of the first intracellular signal". The ligand is replaced by a second co-suppressing molecular ligand, respectively. It is the agonist activity of the second antigen-binding domain on the second co-suppressing molecule that the multispecific antigen-binding molecule can activate the third intracellular signal downstream of the second co-suppressing molecule. preferable.
 該態様において、該第3の細胞内シグナルの活性化により、第2の細胞内シグナルが抑制され得る。第2の細胞内シグナルの強度は、上述の(b-6)における「第1の細胞内シグナルによる免疫活性化シグナルの抑制の測定」と同様にして測定され得る。 In this embodiment, activation of the third intracellular signal can suppress the second intracellular signal. The intensity of the second intracellular signal can be measured in the same manner as in "Measurement of suppression of immune activation signal by the first intracellular signal" in (b-6) above.
 該態様において、第2の抗原結合ドメインの第2の共抑制分子への結合は、好ましくは第2の共抑制分子リガンドの第2の共抑制分子への結合と競合しない。 In this embodiment, the binding of the second antigen-binding domain to the second co-suppressing molecule preferably does not compete with the binding of the second co-suppressing molecular ligand to the second co-suppressing molecule.
(b-9)第2の共抑制分子と第2の共抑制分子リガンドの組合せ
 一態様において、第2の抗原結合ドメインが特異的に結合し得る第2の共抑制分子は、多重特異性抗原結合分子を得ようとした者がその時点で知り得る範囲の共抑制分子から適宜選択され得る。第2の共抑制分子は、代表的にはPD-1、BTLA、TIGIT、LAG-3、CTLA4、およびTIM-3が挙げられる。
(B-9) Combination of a second co-suppressing molecule and a second co-suppressing molecular ligand In one embodiment, the second co-suppressing molecule to which the second antigen-binding domain can specifically bind is a multispecific antigen. It can be appropriately selected from the range of co-suppressing molecules that can be known at that time by the person who tried to obtain the bound molecule. The second co-suppressing molecule typically includes PD-1, BTLA, TIGIT, LAG-3, CTLA4, and TIM-3.
 一態様において、第2の共抑制分子と第2の複合体を形成し得る第2の共抑制分子リガンドは、多重特異性抗原結合分子を得ようとした者がその時点で知り得る範囲の共抑制分子リガンドから適宜選択され得る。第2の共抑制分子リガンドは、代表的にはPD-L1、PD-L2、HVEM、CD155、CD112、MHCクラスII分子、CD80、CD86、galectin-9、phosphatidylserine、CEACAM-1、およびHMGB1が挙げられる。 In one embodiment, the second co-suppressing molecular ligand capable of forming a second complex with the second co-suppressing molecule is a co-suppressing molecule to the extent known at that time to those seeking to obtain the multispecific antigen binding molecule. It can be appropriately selected from inhibitory molecular ligands. Second co-suppressing molecular ligands typically include PD-L1, PD-L2, HVEM, CD155, CD112, MHC class II molecules, CD80, CD86, galectin-9, phosphatidylserine, CEACAM-1, and HMGB1. Will be.
 これらの態様において、第2の共抑制分子および第2の共抑制分子リガンドの組合せは、好ましくはPD-1およびPD-L1の組合せ、PD-1およびPD-L2の組合せ、BTLAおよびHVEMの組合せ、TIGITおよびCD155の組合せ、TIGITおよびCD112の組合せ、LAG-3およびMHCクラスII分子の組合せ、CTLA4およびCD80の組合せ、CTLA4およびCD86の組合せ、TIM-3およびgalectin-9の組合せ、TIM-3およびphosphatidylserineの組合せ、TIM-3およびCEACAM-1の組合せ、ならびにTIM-3およびHMGB1の組合せからなる群から選択されるいずれか一つである。 In these embodiments, the combination of the second co-suppressing molecule and the second co-suppressing molecular ligand is preferably a combination of PD-1 and PD-L1, a combination of PD-1 and PD-L2, a combination of BTLA and HVEM. , TIGIT and CD155 combination, TIGIT and CD112 combination, LAG-3 and MHC class II molecule combination, CTLA4 and CD80 combination, CTLA4 and CD86 combination, TIM-3 and galectin-9 combination, TIM-3 and One selected from the group consisting of a combination of phosphatidylserine, a combination of TIM-3 and CEACAM-1, and a combination of TIM-3 and HMGB1.
(b-10)他の態様
 他の態様において、第1の複合体中に第1の共抑制分子の一分子が存在していてもよく、第1の共抑制分子の複数の分子が存在していてもよい。第1の複合体中に第1の共抑制分子リガンドの一分子が存在していてもよく、第1の共抑制分子リガンドの複数の分子が存在していてもよい。第1の複合体は、第1の共抑制分子および第1の共抑制分子リガンド以外の分子を含んでいてもよい。
(B-10) Other Aspects In another embodiment, one molecule of the first co-suppressing molecule may be present in the first complex, and a plurality of molecules of the first co-suppressing molecule are present. May be. One molecule of the first co-suppressing molecular ligand may be present in the first complex, or a plurality of molecules of the first co-suppressing molecular ligand may be present. The first complex may contain molecules other than the first co-suppressing molecule and the first co-suppressing molecular ligand.
 他の態様において、第1の抗原結合ドメインは、抗体の可変領域またはその対象抗原への結合性のその断片であり得る。第1の抗原結合ドメインは、好ましくは一の抗体の可変領域またはその対象抗原への結合性のその断片である。該態様における該「一の抗体の可変領域またはその対象抗原への結合性のその断片」は、一のアームであることを意味する。第1の抗原結合ドメインは、一のアームのみで第1の複合体に特異的に結合し得る。そうすることにより、第1の複合体が免疫シナプスに存在するときに、抗原結合分子は該免疫シナプスに局在し得る。 In other embodiments, the first antigen binding domain can be a variable region of an antibody or a fragment thereof that binds to its antigen of interest. The first antigen-binding domain is preferably a variable region of one antibody or a fragment thereof that binds to the antigen of interest. The "variable region of an antibody or a fragment thereof that binds to a target antigen thereof" in the embodiment means one arm. The first antigen-binding domain can specifically bind to the first complex with only one arm. By doing so, the antigen-binding molecule can localize to the immunological synapse when the first complex is present at the immunological synapse.
 他の態様において、第2の抗原結合ドメインは、抗体の可変領域またはその対象抗原への結合性のその断片であり得る。第2の抗原結合ドメインは、好ましくは一の抗体の可変領域またはその対象抗原への結合性のその断片である。該態様における該「一の抗体の可変領域またはその対象抗原への結合性のその断片」は、一のアームであることを意味する。第2の抗原結合ドメインは、一のアームのみで第2の共抑制分子に特異的に結合し得る。そのような結合により、第2の抗原結合ドメインは第3の細胞内シグナルを活性化し得る。 In other embodiments, the second antigen binding domain can be a variable region of the antibody or a fragment thereof that binds to the antigen of interest. The second antigen-binding domain is preferably a variable region of one antibody or a fragment thereof that binds to the antigen of interest. The "variable region of an antibody or a fragment thereof that binds to a target antigen thereof" in the embodiment means one arm. The second antigen-binding domain can specifically bind to the second co-suppressing molecule with only one arm. By such binding, the second antigen binding domain can activate a third intracellular signal.
 第1の抗原結合ドメインおよび第2の抗原結合ドメインの両方が、抗体の可変領域またはその対象抗原への結合性のその断片であることが好ましい。 It is preferred that both the first antigen-binding domain and the second antigen-binding domain are the variable region of the antibody or a fragment thereof that binds to the target antigen.
 他の態様において、第1の共抑制分子リガンドは、第2の共抑制分子リガンドと同じであってもよく、異なっていてもよい。第1の共抑制分子は、第2の共抑制分子と同じであってもよく、異なっていてもよい。それらの下流シグナルにおいても同様に、第1の細胞内シグナルは、第3の細胞内シグナルと同じであってもよく、異なっていてもよい。第1の共抑制分子が第2の共抑制分子と同じである場合、好ましくは第1の抗原結合ドメインと第2の抗原結合ドメインが結合する共抑制分子内のエピトープは互いに重複していない、または全部もしくは部分的に重複する。 In other embodiments, the first co-suppressing molecular ligand may be the same as or different from the second co-suppressing molecular ligand. The first co-suppressing molecule may be the same as or different from the second co-suppressing molecule. Similarly, in those downstream signals, the first intracellular signal may be the same as or different from the third intracellular signal. When the first co-suppressing molecule is the same as the second co-suppressing molecule, preferably the epitopes in the co-suppressing molecule to which the first antigen-binding domain and the second antigen-binding domain bind do not overlap with each other. Or it overlaps in whole or in part.
 他の態様において、抗原結合分子は抗体の定常領域をさらに含み得る。抗体の定常領域における少なくとも1残基が、天然型抗体の定常領域の相当する位置のアミノ酸残基と異なっていてもよい。さらなる態様において、抗原結合分子は抗体または抗体断片であり得る。該抗体は、好ましくは単離された抗体である。 In other embodiments, the antigen binding molecule may further comprise a constant region of the antibody. At least one residue in the constant region of the antibody may differ from the amino acid residue at the corresponding position in the constant region of the native antibody. In a further embodiment, the antigen binding molecule can be an antibody or antibody fragment. The antibody is preferably an isolated antibody.
 他の態様において、抗原結合分子は、第1の抗原結合ドメイン、第2の抗原結合ドメインおよび抗体の定常領域以外に、ポリペプチド、糖鎖、または低分子化合物を含み得る。これらの構成は、互いにリンカーや共有結合により連結されていてもよく、分子間力で複合体として存在していてもよい。すべての構成が直接的にまたはリンカーを介して共有結合により結合されていることが好ましい。リンカーの種類は、医薬に用い得るものである限り特に限定されない。 In other embodiments, the antigen-binding molecule may comprise a polypeptide, sugar chain, or small molecule compound in addition to the first antigen-binding domain, the second antigen-binding domain, and the constant region of the antibody. These configurations may be linked to each other by a linker or a covalent bond, or may exist as a complex by intramolecular force. It is preferred that all configurations are covalently linked, either directly or via a linker. The type of linker is not particularly limited as long as it can be used in medicine.
(b-11)製法
 本発明の別の局面において、上述の抗原結合分子の製造方法が提供される。
 一態様において、抗原結合分子の製造方法は、該抗原結合分子をコードする核酸を含む細胞を培養することを含み得る。
(B-11) Production Method In another aspect of the present invention, the above-mentioned method for producing an antigen-binding molecule is provided.
In one embodiment, the method for producing an antigen-binding molecule may include culturing cells containing a nucleic acid encoding the antigen-binding molecule.
 他の態様において、抗原結合分子の製造方法は、第1の共抑制分子またはその部分ポリペプチドおよび第1の共抑制分子に対する第1の共抑制分子リガンドまたはその部分ポリペプチドを含む第3の複合体を非ヒト動物に免疫することを含み得る。該第3の複合体は、該第1の共抑制分子またはその部分ポリペプチドを該第1の共抑制分子リガンドまたはその部分ポリペプチドにリンカーを介するか、化学結合により直接的に結合させた1分子であり得る。
 該リンカーは該第1の共抑制分子またはその部分ポリペプチドを該第1の共抑制分子リガンドまたはその部分ポリペプチドに化学的に結合できるものである限り特に制限されない。該化学結合は第3の複合体を抗原として機能させ得るものである限り特に制限されない。該化学結合の例として共有結合が挙げられる。該化学結合が共有結合であれば、第3の複合体の安定性が高められる。該共有結合は、システイン残基の側鎖に存在するチオール基を利用したジスルフィド結合が挙げられる。
In another embodiment, the method for producing an antigen-binding molecule is a third complex comprising a first co-suppressing molecule or a partial polypeptide thereof and a first co-suppressing molecular ligand for the first co-suppressing molecule or a partial polypeptide thereof. It may include immunizing the body against non-human animals. The third complex is obtained by directly binding the first co-suppressing molecule or a partial polypeptide thereof to the first co-suppressing molecular ligand or a partial polypeptide thereof via a linker or by a chemical bond1. It can be a molecule.
The linker is not particularly limited as long as it can chemically bind the first co-suppressing molecule or its partial polypeptide to the first co-suppressing molecular ligand or its partial polypeptide. The chemical bond is not particularly limited as long as the third complex can function as an antigen. An example of the chemical bond is a covalent bond. If the chemical bond is a covalent bond, the stability of the third complex is enhanced. Examples of the covalent bond include a disulfide bond utilizing a thiol group existing in the side chain of a cysteine residue.
 該製造方法は、該第3の複合体を免疫した該非ヒト動物から、該抗原結合分子を含む血漿または血液を採取することを含み得る。該製造方法は、該血漿または該血液から、純度を高めた前記抗原結合分子を含有する組成物を得ることをさらに含み得る。
 該態様において、該製造方法において、抗原結合分子はポリクローナル抗体であり得る。
The production method may include collecting plasma or blood containing the antigen-binding molecule from the non-human animal immunized with the third complex. The production method may further comprise obtaining a composition containing the antigen-binding molecule with increased purity from the plasma or blood.
In that embodiment, in the production method, the antigen binding molecule can be a polyclonal antibody.
 該製造方法は、第3の複合体を免疫した非ヒト動物から、該抗原結合分子を発現する細胞クローンを単離することを含み得る。該製造方法は、該細胞クローンから前記抗原結合分子をコードする核酸を抽出し、単離することをさらに含み得る。該製造方法は、該核酸を組み換えることをさらに含み得る。該製造方法は、該組み換えられた核酸を他の細胞に導入し、前記抗原結合分子を前記他の細胞に発現させることをさらに含み得る。該製造方法は、該発現させた抗原結合分子を含有する組成物を得ることをさらに含み得る。該製造方法は、該組成物における前記発現させた抗原結合分子の純度を高めることをさらに含み得る。 The production method may include isolating a cell clone expressing the antigen-binding molecule from a non-human animal immunized with the third complex. The production method may further comprise extracting and isolating the nucleic acid encoding the antigen-binding molecule from the cell clone. The production method may further comprise recombination of the nucleic acid. The production method may further comprise introducing the recombinant nucleic acid into another cell and expressing the antigen-binding molecule in the other cell. The production method may further comprise obtaining a composition containing the expressed antigen binding molecule. The production method may further comprise increasing the purity of the expressed antigen-binding molecule in the composition.
C.抗原結合分子の用途
(c-1)共抑制分子アゴニスト
 本発明の別の局面において、共抑制分子アゴニストが提供される。
 一態様において、共抑制分子アゴニストは上述の抗原結合分子を含む。該共抑制分子アゴニストは、共抑制分子に対してアゴニストとしての作用を期待して使用された場合のほか、共抑制分子に対するアゴニストとして予期せずに使用したが、該使用の結果として共抑制分子に対してアゴニスト活性を有していたまたは有していることが判明した場合も包含する。
C. Uses of Antigen-Binding Molecules (c-1) Co-Suppressing Molecular Agonists In another aspect of the present invention, co-suppressing molecular agonists are provided.
In one embodiment, the co-suppressing molecule agonist comprises the antigen-binding molecule described above. The co-suppressive molecule agonist was used unexpectedly as an agonist for a co-suppressive molecule as well as when it was used with the expectation of acting as an agonist for the co-suppressive molecule, but as a result of the use, the co-suppressive molecule It also includes cases where the agonist activity was or was found to be present.
(c-2)共抑制分子シグナル活性化剤
 本発明の別の局面において、共抑制分子シグナル活性化剤が提供される。
 一態様において、共抑制分子シグナル活性化剤は上述の抗原結合分子を含有する。該共抑制分子シグナル活性化剤は、共抑制分子に対してアゴニストとしての作用を期待して使用された場合のほか、共抑制分子に対するアゴニストとして予期せずに使用したが、該使用の結果として共抑制分子に対してアゴニスト活性を有していたまたは有していることが判明した場合も包含する。
(C-2) Co-suppressing molecular signal activator In another aspect of the present invention, a co-suppressing molecular signal activator is provided.
In one embodiment, the co-suppressing molecular signal activator contains the antigen-binding molecule described above. The co-suppressive molecule signal activator was used with the expectation of acting as an agonist on the co-suppressive molecule, and was unexpectedly used as an agonist on the co-suppressive molecule, but as a result of the use. It also includes cases where the agonist activity was or was found to be possessed against the co-suppressing molecule.
(c-3)医薬組成物
 本発明の別の局面において、医薬組成物が提供される。
 一態様において、医薬組成物は上述の抗原結合分子を含有し得る。該医薬組成物は、免疫の異常亢進に起因する疾患を治療するまたは予防するために用いられ得る。免疫の異常亢進に起因する疾患としては、自己免疫疾患が挙げられる。
(C-3) Pharmaceutical Composition A pharmaceutical composition is provided in another aspect of the present invention.
In one embodiment, the pharmaceutical composition may contain the antigen-binding molecule described above. The pharmaceutical composition can be used to treat or prevent a disease resulting from an hyperimmunity. Diseases caused by hyperimmunity include autoimmune diseases.
 「自己免疫疾患」は、その個体自身の組織から生じかつその個体自身の組織に対して向けられる非悪性疾患または障害のことをいう。本明細書で、自己免疫疾患は、悪性またはがん性の疾患または状態を明確に除外するものであり、特にB細胞リンパ腫、急性リンパ芽球性白血病 (acute lymphoblastic leukemia: ALL)、慢性リンパ球性白血病 (chronic lymphocytic leukemia: CLL)、ヘアリー細胞白血病、および慢性骨髄芽球性白血病を除外する。自己免疫疾患または障害の例は、これらに限定されるものではないが、以下のものを含む:乾癬および皮膚炎(例えば、アトピー性皮膚炎)を含む炎症性皮膚疾患などの炎症性反応;全身性強皮症および硬化症;炎症性腸疾患に関連する反応(例えば、クローン病および潰瘍性大腸炎);呼吸窮迫症候群(成人呼吸窮迫症候群;adult respiratory distress syndrome: ARDSを含む);皮膚炎;髄膜炎;脳炎;ブドウ膜炎;大腸炎;糸球体腎炎;例えば湿疹および喘息ならびにT細胞の浸潤および慢性炎症反応を伴う他の状態などのアレルギー性状態;アテローム硬化;白血球接着不全症;関節リウマチ;全身性エリテマトーデス (systemic lupus erythematosus: SLE) (ループス腎炎、皮膚ループスを含むがこれらに限定されない);糖尿病(例えば、I型糖尿病またはインスリン依存性糖尿病);多発性硬化症;レイノー症候群;自己免疫性甲状腺炎;橋本甲状腺炎;アレルギー性脳脊髄炎;シェーグレン症候群;若年発症糖尿病;ならびに典型的に結核、サルコイドーシス、多発性筋炎、肉芽腫症、および血管炎において見られるサイトカインおよびTリンパ球によって媒介される急性および遅延型過敏症に関連する免疫反応;悪性貧血(アジソン病);白血球の漏出を伴う疾患;中枢神経系 (central nervous system: CNS) 炎症性障害;多臓器損傷症候群;溶血性貧血(クリオグロブリン血症またはクームス陽性貧血を含むがこれらに限定されない);重症筋無力症;抗原‐抗体複合体介在性疾患;抗糸球体基底膜疾患;抗リン脂質症候群;アレルギー性神経炎;グレーブス病;ランバート‐イートン筋無力症候群;水疱性類天疱瘡;天疱瘡;自己免疫性多腺性内分泌障害;ライター病;スティフマン症候群;ベーチェット病;巨細胞性動脈炎;免疫複合体性腎炎;IgA腎症;IgM多発性ニューロパシー;免疫性血小板減少性紫斑病(immune thrombocytopenic purpura: ITP)または自己免疫性血小板減少症。 "Autoimmune disease" refers to a non-malignant disease or disorder that arises from the individual's own tissue and is directed at the individual's own tissue. As used herein, autoimmune disorders expressly exclude malignant or cancerous disorders or conditions, especially B-cell lymphoma, acute lymphoblastic leukemia (ALL), chronic lymphocytes. Exclude chronic lymphocytic leukemia (CLL), hairy cell leukemia, and chronic myeloblastic leukemia. Examples of autoimmune diseases or disorders include, but are not limited to: inflammatory reactions such as inflammatory skin diseases including psoriasis and dermatitis (eg, atopic dermatitis); systemic. Lupus erythematosus and sclerosis; Reactions associated with inflammatory bowel disease (eg, Crohn's disease and ulcerative colitis); Lupus erythematosus syndrome (adult respiratory distress syndrome: including ARDS); Dermatitis; Allergic conditions such as meningitis; encephalitis; vegetationitis; colitis; glomerular nephritis; eczema and asthma and other conditions with T cell infiltration and chronic inflammatory reactions; atherosclerosis; leukocyte adhesion failure; joints Rheumatoid; systemic lupus erythematosus (SLE) (including but not limited to lupus erythematosus, skin lupus); diabetes (eg, type I diabetes or insulin-dependent diabetes); polysclerosis; Raynaud's syndrome; autoimmune Immune thyroiditis; Hashimoto thyroiditis; allergic encephalomyelitis; Schegren's syndrome; juvenile-onset diabetes; and cytokines and T lymphocytes typically found in tuberculosis, sarcoidosis, polymyositis, granulomatosis, and vasculitis Immune reactions associated with mediated acute and delayed hypersensitivity; malignant anemia (Azison's disease); diseases associated with leukocyte leakage; central nervous system (CNS) inflammatory disorders; multi-organ injury syndrome; hemolytic Anemia (including, but not limited to, cryoglobulinemia or Coombs-positive anemia); severe myasthenia; antigen-antibody complex-mediated disease; anti-globulous basal membrane disease; antiphospholipid syndrome; allergic neuritis; Graves' disease; Lambert-Eaton myasthenic syndrome; Lupus erythematosus; Lupus erythematosus; Autoimmune polyglandular endocrine disorders; Reiter's disease; Stiffman's syndrome; Bechet's disease; Giant cell arteritis; Immune complex nephritis; IgA Nephropathy; IgM multiple neuropathy; immune thrombocytopenic purpura (ITP) or autoimmune thrombocytopenia.
 該態様において、医薬組成物は他の成分を含み得る。該他の成分としては、対象疾患に適用される他の有効成分、および薬学的許容される担体が挙げられる。該他の有効成分は、対象疾患に応じて適宜選択され得、特に限定されない。該薬学的許容される担体は、特に限定されず、緩衝液、賦形剤、安定化剤、または保存剤が挙げられる。該医薬組成物には、該他の成分の一種以上が使用され得る。 In that embodiment, the pharmaceutical composition may contain other ingredients. The other ingredients include other active ingredients applied to the disease of interest and pharmaceutically acceptable carriers. The other active ingredient may be appropriately selected depending on the target disease, and is not particularly limited. The pharmaceutically acceptable carrier is not particularly limited, and examples thereof include buffers, excipients, stabilizers, and preservatives. One or more of the other ingredients may be used in the pharmaceutical composition.
(c-4)複合体の検出剤および検出方法
 本発明の別の局面において、第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体の検出剤が提供される。
 一態様において、該検出剤は上述の抗原結合分子を含有し得る。第1の複合体は、目視ではその存在は分からないが、該検出剤によってその存在が明らかにされる。該検出剤が使用される対象は、第1の複合体が存在すると疑われるものであれば特に限定されず、生体、生体内の組織、生体から採取されたサンプル、または生体外に存在する何らかの混合物もしくは細胞であり得る。
(C-4) Complex Detection Agent and Detection Method In another aspect of the present invention, a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule. Detection agent is provided.
In one embodiment, the detection agent may contain the antigen-binding molecule described above. The presence of the first complex is not visible visually, but its presence is revealed by the detector. The target to which the detection agent is used is not particularly limited as long as it is suspected that the first complex is present, and is a living body, a tissue in the living body, a sample collected from the living body, or something existing in the living body. It can be a mixture or cells.
 本発明の別の局面において、第1の共抑制分子および該第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体の検出方法が提供される。
 一態様において、該検出方法は上述の抗原結合分子を免疫細胞に接触させることを含み得る。
 該検出方法において、抗原提示細胞が該免疫細胞に近接していてもよい。該免疫細胞は第1の共抑制分子を発現していてもよく、該抗原提示細胞は第1の共抑制分子リガンドを発現していてもよい。該免疫細胞はT細胞であり得る。該検出方法は、生体内に適用されてもよく、生体外で適用されてもよい。該検出方法が生体外で適用される場合には、該免疫細胞は生きたまま該抗原結合分子と接触させてもよく、スライドグラス上に固定化されていてもよい。該検出方法において、該免疫細胞は組織中に存在していてもよく、該免疫細胞以外の一以上の細胞と混在していてもよい。
In another aspect of the invention, there is provided a method for detecting a first complex comprising a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule.
In one embodiment, the detection method may include contacting the above-mentioned antigen-binding molecule with an immune cell.
In the detection method, the antigen-presenting cell may be in close proximity to the immune cell. The immune cell may express the first co-suppressing molecule, and the antigen-presenting cell may express the first co-suppressing molecular ligand. The immune cell can be a T cell. The detection method may be applied in vivo or in vitro. When the detection method is applied in vitro, the immune cell may be contacted with the antigen-binding molecule alive or may be immobilized on a slide glass. In the detection method, the immune cells may be present in the tissue or may be mixed with one or more cells other than the immune cells.
(c-5)免疫を抑制する方法
 本発明の別の局面において、免疫を抑制する方法が提供される。
 一態様において、該方法は上述の抗原結合分子を対象に投与することを含み得る。対象の体内において、T細胞が抗原提示細胞によって活性化されている場合、またはT細胞が抗原提示細胞によって活性化されることが予期される場合、該抗原結合分子が該対象に投与されることにより、該T細胞の活性化が抑えられ、該対象の免疫が抑制される。
 T細胞が抗原提示細胞によって活性化されるとき、該T細胞におけるT細胞受容体の下流シグナルが活性化される。一方、抗原提示細胞に発現する第1の共抑制分子リガンドがT細胞に発現する第1の共抑制分子と結合し第1の複合体を形成する。該抗原結合分子は、該第1の複合体に結合し、第1の共抑制分子の下流シグナルを活性化する。該方法においては、前述の活性化されたT細胞受容体の下流シグナルが、活性化された第1の共抑制分子の下流シグナルによって抑制されることにより、対象の免疫が抑制される機序が想定される。
(C-5) Method of Suppressing Immunity In another aspect of the present invention, a method of suppressing immunity is provided.
In one embodiment, the method may comprise administering to the subject the antigen-binding molecule described above. When T cells are activated by antigen-presenting cells in the body of a subject, or when T cells are expected to be activated by antigen-presenting cells, the antigen-binding molecule is administered to the subject. As a result, the activation of the T cells is suppressed, and the immunity of the subject is suppressed.
When a T cell is activated by an antigen-presenting cell, the downstream signal of the T cell receptor in the T cell is activated. On the other hand, the first co-suppressing molecular ligand expressed on the antigen-presenting cell binds to the first co-suppressing molecule expressed on the T cell to form the first complex. The antigen-binding molecule binds to the first complex and activates the downstream signal of the first co-suppressing molecule. In this method, the mechanism by which the immunity of the subject is suppressed by suppressing the downstream signal of the activated T cell receptor described above by the downstream signal of the activated first co-suppressing molecule. is assumed.
 本発明の抗原結合分子によれば、免疫シナプスに局在する共抑制分子とそのリガンドからなる複合体に特異的に結合することで免疫シナプスを標的とし、該共抑制分子に対するアゴニスト活性を有することから、該抗原結合分子は自己免疫疾患を含む疾患を治療または予防するための治療薬またはその候補になり得る。該抗原結合分子は、少なくとも第1の抗原結合ドメインを含むことにより、免疫シナプスにおいて共抑制分子に対するアゴニスト活性を有する。該抗原結合分子は、第1の抗原結合ドメインに加えて、第2の抗原結合ドメインを含む多重抗原結合分子とすることにより、免疫シナプスにおいて共抑制分子に対する顕著なアゴニスト活性を有する。
 一方、共刺激分子へのアゴニスト活性を有する抗原結合分子を得ようと企図した場合、上述の抗原結合分子の第1の抗原結合ドメインが特異的に結合する第1の複合体に含まれる第1の共抑制分子および該第1の共抑制分子に対する第1の共抑制分子リガンドは、それぞれ第1の共刺激分子および該第1の共刺激分子に対する第1の共刺激分子リガンドに置き換えられ得る。この場合に得られる抗原結合分子は、第1の共刺激分子および該第1の共刺激分子に対する第1の共刺激分子リガンドからなる第4の複合体に特異的に結合し得る第3の抗原結合ドメインを含む。そのような抗原結合分子は、共刺激分子に対するアゴニスト活性を有し得るから、がんおよび感染症の治療の候補になり得る。この場合、該抗原結合分子は、第3の抗原結合ドメインに加えて、第2の共刺激分子リガンドと第5の複合体を形成し得る第2の共刺激分子に特異的に結合し得る第4の抗原結合ドメインを含む多重抗原結合分子とすることにより、共刺激分子に対する顕著なアゴニスト活性を有することが期待される。
According to the antigen-binding molecule of the present invention, the immunological synapse is targeted by specifically binding to a complex consisting of a co-suppressing molecule localized at the immunological synapse and its ligand, and the co-suppressing molecule has agonist activity. Therefore, the antigen-binding molecule can be a therapeutic agent or a candidate for treating or preventing a disease including an autoimmune disease. The antigen-binding molecule has agonist activity against the co-suppressing molecule at the immunological synapse by including at least the first antigen-binding domain. The antigen-binding molecule has remarkable agonist activity against the co-suppressing molecule at the immunological synapse by making it a multiple antigen-binding molecule containing a second antigen-binding domain in addition to the first antigen-binding domain.
On the other hand, when an attempt is made to obtain an antigen-binding molecule having an agonistic activity on a costimulatory molecule, the first complex contained in the first complex to which the first antigen-binding domain of the above-mentioned antigen-binding molecule specifically binds. The co-suppressing molecule and the first co-suppressing molecular ligand for the first co-suppressing molecule can be replaced with a first co-stimulating molecule and a first co-stimulating molecular ligand for the first co-stimulating molecule, respectively. The antigen-binding molecule obtained in this case is a third antigen that can specifically bind to a fourth complex consisting of a first co-stimulator molecule and a first co-stimulator molecule ligand for the first co-stimulator molecule. Includes combined domain. Such antigen-binding molecules can have agonistic activity against costimulatory molecules and are therefore potential therapeutic candidates for cancer and infectious diseases. In this case, the antigen-binding molecule can specifically bind to a second co-stimulator molecule capable of forming a fifth complex with the second co-stimulator molecule ligand in addition to the third antigen-binding domain. It is expected that the multi-antigen binding molecule containing 4 antigen-binding domains will have remarkable agonist activity against the co-stimulating molecule.
(実施例1)抗ヒトPD-1抗体、抗ヒトCD3抗体、および抗ヒトPD-1抗体由来のアームおよび抗CD3抗体由来のアームを含む二重特異性抗体の作製 
 PD-1の免疫抑制性シグナルを誘導するアゴニストを創製するためには、T細胞受容体とPD-1とを共局在させる必要があると考えられていた(J. Exp. Med. Vol. 209 No. 6 1201-1217)。本発明者らは抗PD-1アームと抗CD3アームからなる二重特異性抗体を作製して、そのPD-1免疫抑制性シグナル誘導能を評価した。
Example 1 Preparation of a bispecific antibody comprising an anti-human PD-1 antibody, an anti-human CD3 antibody, and an arm derived from the anti-human PD-1 antibody and an arm derived from the anti-CD3 antibody.
It was thought that the T cell receptor and PD-1 needed to be co-localized in order to create an agonist that induces an immunosuppressive signal for PD-1 (J. Exp. Med. Vol. 209 No. 6 1201-1217). The present inventors prepared bispecific antibodies consisting of anti-PD-1 arm and anti-CD3 arm, and evaluated their PD-1 immunosuppressive signal-inducing ability.
 ヒトPD-1に結合しその免疫抑制性のシグナルを誘導することが示唆されている3種類の抗ヒトPD-1モノクローナル抗体 PD1-17(重鎖可変領域配列番号:1 および軽鎖可変領域配列番号:2(WO2004/056875を参照)、ならびに重鎖定常領域配列番号:11および軽鎖定常領域配列番号:12)、antibody949(clone 949)(重鎖可変領域配列番号:3および軽鎖可変領域配列番号:4(WO2011/110621を参照)、ならびに重鎖定常領域配列番号:11および軽鎖定常領域配列番号:13)、clone 10(重鎖可変領域配列番号:5 および軽鎖可変領域配列番号:6(WO2010/029435を参照)、ならびに重鎖定常領域配列番号:11、軽鎖定常領域配列番号:13)を当業者公知の方法にて調製した。 Three types of anti-human PD-1 monoclonal antibody PD1-17 (heavy chain variable region SEQ ID NO: 1 and light chain variable region sequence) that have been suggested to bind to human PD-1 and induce its immunosuppressive signal. Number: 2 (see WO2004 / 056875), as well as heavy chain constant region SEQ ID NO: 11 and light chain constant region SEQ ID NO: 12), antibody949 (clone 949) (heavy chain variable region SEQ ID NO: 3 and light chain variable region). SEQ ID NO: 4 (see WO2011 / 110621), as well as heavy chain constant region SEQ ID NO: 11 and light chain constant region SEQ ID NO: 13), clone 10 (heavy chain variable region SEQ ID NO: 5 and light chain variable region SEQ ID NO: 13). : 6 (see WO2010 / 029435), as well as heavy chain constant region SEQ ID NO: 11, light chain constant region SEQ ID NO: 13) were prepared by methods known to those skilled in the art.
 抗ヒトCD3抗体として、T細胞受容体を構成するCD3ε鎖に結合して、T細胞受容体の活性化シグナルを誘導することが公知である2種類の抗ヒトCD3モノクローナル抗体OKT3(重鎖可変領域配列番号:7(NCBI Accession: 1SY6_H, GI: 49259178)、軽鎖可変領域配列番号:8(NCBI Accession: 1SY6_L, GI: 49259177)、重鎖定常領域配列番号:14、および軽鎖定常領域配列番号:13)、およびCE115TR(重鎖可変領域配列番号:9 、軽鎖可変領域配列番号:10、重鎖定常領域配列番号:14、軽鎖定常領域配列番号:15)を当業者公知の方法にて調製した。
 本発明者らは、上記の3種類の抗ヒトPD-1抗体由来のアーム(本明細書では「抗PD-1アーム」ともいう。)、および上記の2種類の抗ヒトCD3モノクローナル抗体由来のアーム(以下「抗CD3アーム」ともいう。)を実験の目的に応じて組み合わせて、当業者公知の方法で抗PD-1アームと抗CD3アームを含む二重特異性抗体を調製した。以下の実施例において、二種類のアームが組合せられた二重特異性抗体は、たとえば、抗ヒトPD-1であるclone 949由来のアームと抗ヒトCD3抗体であるOKT3由来のアームとが組み合わせられた二重特異性抗体は「clone 949/OKT3」、「OKT3/clone 949」、「clone 949//OKT3」または「OKT3//clone 949」と称される。
As an anti-human CD3 antibody, two types of anti-human CD3 monoclonal antibody OKT3 (heavy chain variable region) known to bind to the CD3ε chain constituting the T cell receptor and induce an activation signal of the T cell receptor. SEQ ID NO: 7 (NCBI Accession: 1SY6_H, GI: 49259178), light chain variable region SEQ ID NO: 8 (NCBI Accession: 1SY6_L, GI: 49259177), heavy chain constant region SEQ ID NO: 14, and light chain constant region SEQ ID NO: : 13), and CE115TR (heavy chain variable region SEQ ID NO: 9, light chain variable region SEQ ID NO: 10, heavy chain constant region SEQ ID NO: 14, light chain constant region SEQ ID NO: 15) to methods known to those skilled in the art. Prepared.
The present inventors have derived the above-mentioned three types of anti-human PD-1 antibody-derived arms (also referred to as "anti-PD-1 arm" in the present specification), and the above-mentioned two types of anti-human CD3 monoclonal antibodies. Arms (hereinafter also referred to as "anti-CD3 arm") were combined according to the purpose of the experiment to prepare a bispecific antibody containing an anti-PD-1 arm and an anti-CD3 arm by a method known to those skilled in the art. In the following examples, the bispecific antibody in which the two types of arms are combined is, for example, an arm derived from clone 949, which is an anti-human PD-1, and an arm derived from OKT3, which is an anti-human CD3 antibody. Bispecific antibodies are referred to as "clone 949 / OKT3", "OKT3 / clone 949", "clone 949 // OKT3" or "OKT3 // clone 949".
(実施例2)抗PD-1アームおよび抗CD3アームを含む二重特異性抗体のPD-1シグナル誘導活性の評価(SHP-2リクルートメント)
 抗CD3アームおよび抗PD-1アームを含む二重特異性抗体のPD-1シグナルの誘導活性は、PD-1のシグナル誘導時にPD-1の細胞内ドメインと相互作用する脱リン酸化酵素であるSHP2の近接(SHP-2リクルートメント)を指標に評価された。評価にはNanoBRET(登録商標) PD-1/SHP2 Interaction Assayシステム(Promega)が用いられた。PD-1シグナルの誘導活性は、PD-1とSHP2の近接時のBRETによる蛍光シグナル(618nm)と、ドナーであるSHP2由来の発光(460nm)の比率で求められた。
 アッセイの前日にPD-L1を発現する抗原提示細胞(Promega, #J109A)を10%FBS入りのF-12培地(Gibco, 11765-054)で4.0 x 104 細胞/100mL/wellで96 well plate(Costar, #3917)に播種し、37℃のCO2インキュベータで16~24時間培養した。アッセイ当日にHaloTag(登録商標) nanoBRET(登録商標) 618 Ligand(Promega, #G980A)をOpti-MEM(Gibco, #31985-062)で250倍希釈した。培養していたPD-L1発現抗原提示細胞の培地を除き、希釈したHaloTag(登録商標) nanoBRET(登録商標) 618 Ligandを25 μL/well添加した。PD-L1阻害抗体(YW243.55S70)(US2016/0222117 A1を参照)(本実施例および図面においては「anti-PD-L1」または「PDL1b」と記載されることがある。)0.08 μg/mLを含むOpti-MEMで希釈した評価検体(40, 8, 1.6 μg/mL)を25 μL/wellで添加した。なお、PD-L1阻害抗体(YW243.55S70)の可変領域のアミノ酸配列はUS2016/0222117 A1の記載を参照した(重鎖可変領域配列番号:16、軽鎖可変領域配列番号:17)。該PD-L1阻害抗体において、重鎖定常領域にはヒトIgG1ベースの改変Fc体であるF1332(配列番号:18)、軽鎖定常領域にはヒトκ鎖定常領域であるk0MT(配列番号:19)が用いられた。PD-1/SHP2 Jurkat cell(Promega, #CS2009A01)を5 x 104 細胞/50μL/wellで上記の96 well plateに添加して、よく懸濁した後に37℃の5% CO2 インキュベータで2.5時間培養した。nanoBRET(登録商標) Nano-Glo(登録商標) substrate(Promega, #N157A)をOpti-MEMで100倍希釈し、25 mL/wellで培養した96 well plateに添加し、室温で30分間静置したのちEnvision(PerkinElmer, 2104 EnVision)でEm460mMおよびEm618nmを測定した。
 得られた値を以下の式1および式2に当てはめ、 BRET Ratio(mBU)を算出した。
(Example 2) Evaluation of PD-1 signal-inducing activity of bispecific antibodies containing anti-PD-1 arm and anti-CD3 arm (SHP-2 recruitment)
The PD-1 signal-inducing activity of bispecific antibodies, including anti-CD3 and anti-PD-1 arms, is a dephosphorylating enzyme that interacts with the intracellular domain of PD-1 during PD-1 signal induction. It was evaluated using the proximity of SHP2 (SHP-2 recruitment) as an index. The NanoBRET® PD-1 / SHP2 Interaction Assay System (Promega) was used for the evaluation. The inducible activity of the PD-1 signal was determined by the ratio of the fluorescence signal (618 nm) by BRET when PD-1 and SHP2 were in close proximity to the emission (460 nm) derived from the donor SHP2.
Antigen-presenting cells (Promega, # J109A) expressing PD-L1 the day before the assay were placed in F-12 medium (Gibco, 11765-054) containing 10% FBS in 4.0 x 10 4 cells / 100 mL / well 96 well plate. It was sown in (Costar, # 3917) and cultured in a CO 2 incubator at 37 ° C for 16 to 24 hours. On the day of the assay, HaloTag® nanoBRET® 618 Ligand (Promega, # G980A) was diluted 250-fold with Opti-MEM (Gibco, # 31985-062). The medium of the cultured PD-L1 expressing antigen-presenting cells was removed, and 25 μL / well of diluted HaloTag® nanoBRET® 618 Ligand was added. PD-L1 inhibitor antibody (YW243.55S70) (see US2016 / 0222117 A1) (may be referred to as "anti-PD-L1" or "PDL1b" in this example and drawing) 0.08 μg / mL An evaluation sample (40, 8, 1.6 μg / mL) diluted with Opti-MEM containing Opti-MEM was added at 25 μL / well. For the amino acid sequence of the variable region of the PD-L1 inhibitory antibody (YW243.55S70), refer to the description of US2016 / 0222117 A1 (heavy chain variable region SEQ ID NO: 16, light chain variable region SEQ ID NO: 17). In the PD-L1 inhibitory antibody, the heavy chain constant region is F1332 (SEQ ID NO: 18), which is a modified Fc body based on human IgG1, and the light chain constant region is k0MT (SEQ ID NO: 19), which is a human κ chain constant region. ) Was used. Add PD-1 / SHP2 Jurkat cell (Promega, # CS2009A01) to the above 96 well plate at 5 x 10 4 cells / 50 μL / well, suspend well and then in a 5% CO 2 incubator at 37 ° C for 2.5 hours. It was cultured. nanoBRET® Nano-Glo® substrate (Promega, # N157A) was diluted 100-fold with Opti-MEM, added to a 96 well plate cultured at 25 mL / well and allowed to stand at room temperature for 30 minutes. Later, Em460 mM and Em618 nm were measured with Envision (PerkinElmer, 2104 EnVision).
The obtained values were applied to the following equations 1 and 2 to calculate the BRET Ratio (mBU).
[式1]
Figure JPOXMLDOC01-appb-I000001
[式2]
Figure JPOXMLDOC01-appb-I000002
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
 アッセイの結果を図1に示す。該図に示されるように、抗PD-1アームと抗CD3アームを含む二重特異性抗体のSHP2リクルートメント、すなわちPD-1シグナルの誘導活性は明確に示されなかった。 The results of the assay are shown in FIG. As shown in the figure, the SHP2 recruitment of bispecific antibodies containing anti-PD-1 and anti-CD3 arms, i.e. the inducing activity of PD-1 signaling, was not clearly shown.
(実施例3)抗PD-1アームおよび抗CD3アームを含む二重特異性抗体のT細胞増殖アッセイでの評価
 抗PD-1アームおよび抗ヒトCD3アームを含む二重特異性抗体がprimary CD4陽性T細胞に対する抑制活性を有するか評価するため、健常人から採取した新鮮血から分取したCD4陽性T細胞に対する抑制活性を抗ヒトCD3アームと抗KLH抗体(本明細書では「IC17」と称される。)由来のアーム(重鎖可変領域配列番号:112、軽鎖可変領域配列番号:113、重鎖定常領域配列番号:11、および軽鎖定常領域配列番号:13)およびを含む二重特異性抗体(図2において「OKT3/IC17」と称される。)を陰性対照として評価した。評価の当日、健常人から採血した血液と等量のRPMI1640(Nakarai, #30264-56)を混合した後、血液混合用液の15/50量のフィコールを充填した遠沈管に静かに重層した。20℃に設定した遠心機で400g, 35分間遠心した後、フィコールの上層に白血球画分を新規の遠沈管に分取し、RPMI1640(Nakarai, #30264-56)で50mLにメスアップした。20℃の遠心機で500g, 15分間遠心し、細胞(PBMC)ペレットを回収した。回収したPBMCからヒトCD4+ T Cell Isolation Kit(miltenyi, Cat#130-096-533)を用いて該キットの手順に従い、ヒトCD4陽性T細胞を分取した。その後、得られたCD4陽性T細胞を、96 well 丸底plateに7.6 x 105 細胞/well添加し、10 ng/mLのIL-2および評価抗体(20, 5, 1.25, 0.31, 0.08 μg/mL)存在下で培養した。5日間培養した後、Cell Titer-Glo(登録商標) Luminescent Cell Viability Assay(promega, G7570)で該キットの手順に従って細胞増殖を評価した。その結果を図2に示す。
(Example 3) Evaluation of bispecific antibody containing anti-PD-1 arm and anti-CD3 arm in T cell proliferation assay The bispecific antibody containing anti-PD-1 arm and anti-human CD3 arm is primary CD4 positive. In order to evaluate whether it has inhibitory activity on T cells, the inhibitory activity on CD4-positive T cells collected from fresh blood collected from healthy subjects is referred to as anti-human CD3 arm and anti-KLH antibody (referred to as "IC17" in the present specification. ) Derived arm (heavy chain variable region SEQ ID NO: 112, light chain variable region SEQ ID NO: 113, heavy chain constant region SEQ ID NO: 11, and light chain constant region SEQ ID NO: 13) and bispecific. Sexual antibodies (referred to as "OKT3 / IC17" in FIG. 2) were evaluated as negative controls. On the day of the evaluation, blood collected from a healthy person was mixed with an equal amount of RPMI1640 (Nakarai, # 30264-56), and then gently layered in a centrifuge tube filled with 15/50 amount of Ficoll in the blood mixing solution. After centrifuging at 400 g for 35 minutes in a centrifuge set at 20 ° C, the leukocyte fraction was separated into a new centrifuge tube in the upper layer of Ficoll, and the size was increased to 50 mL with RPMI1640 (Nakarai, # 30264-56). The cells (PBMC) pellets were collected by centrifuging at 500 g for 15 minutes in a centrifuge at 20 ° C. Human CD4 + T Cell Isolation Kit (miltenyi, Cat # 130-096-533) was used to collect human CD4 + T Cell Isolation Kit (miltenyi, Cat # 130-096-533) from the collected PBMC according to the procedure of the kit. Then, the obtained CD4 positive T cells were added to a 96 well round bottom plate at 7.6 x 10 5 cells / well, and 10 ng / mL of IL-2 and the evaluation antibody (20, 5, 1.25, 0.31, 0.08 μg /). mL) was cultured in the presence. After culturing for 5 days, cell proliferation was evaluated using the Cell Titer-Glo® Luminescent Cell Viability Assay (promega, G7570) according to the procedure of the kit. The results are shown in FIG.
 図2に示されるように、3種類の抗PD-1アームおよび抗ヒトCD3アームを含む二重特異性抗体を検討した結果、これらの二重特異性抗体は、陰性対照の抗ヒトCD3アームおよび抗KLH抗体由来のアームを含む二重特異性抗体に比べて、ヒトCD4陽性T細胞の増殖をむしろ促進した。この結果から、抗PD-1アームおよび抗ヒトCD3アームを含む二重特異性抗体によってCD4陽性T細胞の増殖を抑制し、CD4陽性T細胞に起因する免疫応答を抑制することは困難であることが示唆された。 As shown in FIG. 2, as a result of examining bispecific antibodies containing three types of anti-PD-1 arms and anti-human CD3 arms, these bispecific antibodies were found to be negative control anti-human CD3 arms and anti-human CD3 arms. Rather, it promoted the proliferation of human CD4-positive T cells compared to bispecific antibodies containing arms derived from anti-KLH antibodies. From this result, it is difficult to suppress the proliferation of CD4 + T cells by bispecific antibodies containing anti-PD-1 arm and anti-human CD3 arm, and to suppress the immune response caused by CD4 + T cells. Was suggested.
(実施例4)ヒトPD-1細胞外ドメインタンパク質の作製 
 GenBankより得たヒトPD-1をコードする遺伝子配列情報(NM_005018)を基に、細胞外ドメイン(P21-Q167)に対して人工分泌シグナル配列であるHMM+38(塩基配列は配列番号20、アミノ酸配列は配列番号21)をN末端に付加した。また、C末端にはリンカー配列、ヒスチジンタグ、リンカー配列、BAPタグ(ビオチン化タグ、GLNDIFEAQKIEWHE)を付加して発現用コンストラクトとした(塩基配列は配列番号22、アミノ酸配列は配列番号23)。上記デザインの遺伝子を合成し哺乳類細胞用の自社構築ベクター(pBEF-OriP)にサブクローニングすることで発現ベクターとした。この発現ベクターをExpi293(登録商標)F細胞(Thermo Fisher)に導入することで、一過性にヒトPD-1細胞外ドメインタンパク質を発現させた。得られた培養上清はAKTA(登録商標) Avant25装置(GE healthcare)あるいはPure25装置(GE healthcare)およびPure150装置(GE healthcare)を用いて精製を行った。精製方法はHiTrap(登録商標) Q HPカラム(GE healthcare)やQ Sepharose FFレジン(GE healthcare)によるイオン交換クロマトグラフィー、HisTrap(登録商標) HPカラム(GE healthcare)によるアフィニティクロマトグラフィーにて精製した。ヒトPD-1細胞外ドメインタンパク質を含む画分を限外ろ過膜で濃縮した後に、Superdex(登録商標) 200 increase 10/300カラム(GE healthcare)やHiLoad 16/600 Superdex(登録商標) 200 pgカラム(GE healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のヒトPD-1細胞外ドメインタンパク質の単量体画分を得た。
(Example 4) Preparation of human PD-1 extracellular domain protein
Based on the gene sequence information (NM_005018) encoding human PD-1 obtained from GenBank, HMM + 38 (base sequence is SEQ ID NO: 20, amino acid), which is an artificially secreted signal sequence for the extracellular domain (P21-Q167). The sequence was added with SEQ ID NO: 21) at the N-terminal. In addition, a linker sequence, a histidine tag, a linker sequence, and a BAP tag (biotinylated tag, GLNDIFEAQKIEWHE) were added to the C-terminal to prepare an expression construct (base sequence: SEQ ID NO: 22, amino acid sequence: SEQ ID NO: 23). The gene of the above design was synthesized and subcloned into an in-house constructed vector (pBEF-OriP) for mammalian cells to obtain an expression vector. By introducing this expression vector into Expi293® F cells (Thermo Fisher), human PD-1 extracellular domain protein was transiently expressed. The obtained culture supernatant was purified using an AKTA® Avant25 device (GE healthcare) or a Pure25 device (GE healthcare) and a Pure150 device (GE healthcare). The purification method was ion exchange chromatography using HiTrap (registered trademark) Q HP column (GE healthcare) or Q Sepharose FF resin (GE healthcare), and affinity chromatography using HisTrap (registered trademark) HP column (GE healthcare). After concentrating the fraction containing human PD-1 extracellular domain protein with an ultrafiltration membrane, Superdex® 200 increase 10/300 column (GE healthcare) or HiLoad 16/600 Superdex® 200 pg column By further increasing the purification purity by gel filtration chromatography (size exclusion chromatography) using (GE healthcare) and removing multimers, a monomer fraction of high-purity human PD-1 extracellular domain protein can be obtained. Obtained.
 BAPタグにBiotinが付加されたヒトPD-1細胞外ドメインタンパク質を得るためには、ヒトPD-1細胞外ドメインタンパク質の発現ベクターとともにBiotin ligaseであるBirAの発現ベクターをExpi293(登録商標)F細胞に対してExpiFectamine(登録商標) 293 Transfection Kitを用いて導入することで、目的タンパク質にBiotinを付加させた。上記と同様の手順で、HiTrap(登録商標) Q HPカラム(GE Healthcare) によるイオン交換クロマトグラフィー、HisTrap(登録商標) HPカラム(GE Healthcare)によるアフィニティクロマトグラフィーにて精製した。その後、Biotin付加体の純度を上げる目的でStreptavidin Mutein Matrix(Roche)を使ったアフィニティクロマトグラフィーを行った。ヒトPD-1細胞外ドメインタンパク質を含む画分を限外ろ過膜で濃縮した後に、HiLoad 16/600 Superdex(登録商標) 200 pgカラム(GE Healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のBiotin付加体ヒトPD-1細胞外ドメインタンパク質の単量体画分を得た。 In order to obtain a human PD-1 extracellular domain protein in which Biotin is added to a BAP tag, an expression vector of BirA, which is a Biotin ligase, is used together with an expression vector of the human PD-1 extracellular domain protein in Expi293 (registered trademark) F cells. Biotin was added to the target protein by introducing it using ExpiFectamine (registered trademark) 293 Transfection Kit. Purification was performed by ion exchange chromatography using a HiTrap (registered trademark) QHP column (GE Healthcare) and affinity chromatography using a HisTrap (registered trademark) HP column (GE Healthcare) in the same procedure as described above. Then, affinity chromatography using Streptavidin Mutein Matrix (Roche) was performed for the purpose of increasing the purity of the Biotin adduct. After concentrating the fraction containing human PD-1 extracellular domain protein with an ultrafiltration membrane, gel filtration chromatography (size exclusion chromatography) using a HiLoad 16/600 Superdex® 200 pg column (GE Healthcare) ) To further increase the purification purity and remove multimers to obtain a high-purity Biotin adduct human PD-1 extracellular domain protein monomer fraction.
(実施例5)ヒトPD-L1細胞外ドメインタンパク質の作製 
 GenBankより得たヒトPD-L1をコードする遺伝子配列情報(NM_014143)を基に、細胞外ドメイン(F19-R238)に対して人工分泌シグナル配列であるHMM+38(塩基配列は配列番号20、アミノ酸配列は配列番号21)をN末端に付加し、C末端にはリンカー配列、ヒスチジンタグ、リンカー配列、BAPタグ(ビオチン化タグ、GLNDIFEAQKIEWHE)を付加して発現用コンストラクトとした(塩基配列は配列番号24、アミノ酸配列は配列番号25)。上記デザインの遺伝子を合成し哺乳類細胞用のベクター(pBEF-OriP)にサブクローニングすることで発現ベクターとした。この発現ベクターをFreeStyle(登録商標) CHO細胞(Thermo Fisher)に導入することで、一過性にヒトPD-L1細胞外ドメインタンパク質を発現させた。得られた培養上清はAKTA(登録商標) Avant25装置(GE healthcare)あるいはPure25装置(GE healthcare)およびPure150装置(GE healthcare)を用いて精製を行った。精製方法はHiTrap(登録商標) Q HP カラム(GE healthcare)や Q Sepharose FFレジン(GE healthcare)によるイオン交換クロマトグラフィー、HisTrap(登録商標) HPカラム(GE healthcare)によるアフィニティクロマトグラフィーにて精製した。ヒトPD-L1細胞外ドメインタンパク質を含む画分を限外ろ過膜で濃縮した後に、HiLoad 16/600 Superdex(登録商標) 200 pgカラム(GE healthcare)やHiLoad 26/600 Superdex(登録商標) 200 pgカラム(GE healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のヒトPD-L1細胞外ドメインタンパク質の単量体画分を得た。
(Example 5) Preparation of human PD-L1 extracellular domain protein
Based on the gene sequence information (NM_014143) encoding human PD-L1 obtained from GenBank, HMM + 38 (base sequence is SEQ ID NO: 20, amino acid), which is an artificially secreted signal sequence for the extracellular domain (F19-R238). SEQ ID NO: 21) was added to the N-terminal of the sequence, and a linker sequence, histidine tag, linker sequence, and BAP tag (biotinylated tag, GLNDIFEAQKIEWHE) were added to the C-terminal to prepare an expression construct (base sequence is SEQ ID NO: SEQ ID NO: 24, the amino acid sequence is SEQ ID NO: 25). The gene of the above design was synthesized and subcloned into a vector for mammalian cells (pBEF-OriP) to obtain an expression vector. By introducing this expression vector into FreeStyle® CHO cells (Thermo Fisher), human PD-L1 extracellular domain protein was transiently expressed. The obtained culture supernatant was purified using an AKTA® Avant25 device (GE healthcare) or a Pure25 device (GE healthcare) and a Pure150 device (GE healthcare). The purification method was ion exchange chromatography using HiTrap (registered trademark) Q HP column (GE healthcare) or Q Sepharose FF resin (GE healthcare), and affinity chromatography using HisTrap (registered trademark) HP column (GE healthcare). After concentrating the fraction containing human PD-L1 extracellular domain protein with an ultrafiltration membrane, HiLoad 16/600 Superdex® 200 pg column (GE healthcare) or HiLoad 26/600 Superdex® 200 pg A monomer fraction of high-purity human PD-L1 extracellular domain protein by further increasing the purification purity and removing multimers by gel filtration chromatography (size exclusion chromatography) using a column (GE healthcare). Got
 BAPタグにBiotinが付加されたヒトPD-L1細胞外ドメインタンパク質の調製は、上記の精製されたヒトPD-L1細胞外ドメインタンパク質をBirA酵素(biotin ligase)の精製タンパク質と混合してBiotin付加反応を行うことで行った。最終濃度として、ヒトPD-L1細胞外ドメインタンパク質が35μM, ATPが10mM、BirA酵素が0.825μM, 50mM Tris-HCl pH8.3, 10mM Mg(OAc)2, 0.05mM Biotinとなるように混合し、4度で16時間程度置くことで反応させた。Slide-A-Lyzer Dialysis Cassettes, 3.5K (Thermo Fisher)を用いた透析により20 mM NaPhospate, 600 mM NaCl, pH7.2に置換することで未反応のBiotinを除去した。その後、Biotin付加体の純度を上げる目的でStreptavidin Mutein Matrix(Roche)を使ったアフィニティクロマトグラフィーを行った。ヒトPD-L1細胞外ドメインタンパク質を含む画分を限外ろ過膜で濃縮した後に、Superdex(登録商標) 200 Increase 10/300 GLカラム(GE Healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のBiotin付加体ヒトPD-L1細胞外ドメインタンパク質の単量体画分を得た。 To prepare the human PD-L1 extracellular domain protein in which Biotin is added to the BAP tag, the above-purified human PD-L1 extracellular domain protein is mixed with the purified protein of BirA enzyme (biotin ligase) for the Biotin addition reaction. I went by doing. The final concentrations were 35 μM for human PD-L1 extracellular domain protein, 10 mM for ATP, 0.825 μM for BirA enzyme, 50 mM Tris-HCl pH 8.3, 10 mM Mg (OAc) 2 , 0.05 mM Biotin, and mixed. It was reacted by leaving it at 4 degrees for about 16 hours. Unreacted Biotin was removed by replacement with 20 mM NaPhospate, 600 mM NaCl, pH 7.2 by dialysis using Slide-A-Lyzer Dialysis Cassettes, 3.5K (Thermo Fisher). Then, affinity chromatography using Streptavidin Mutein Matrix (Roche) was performed for the purpose of increasing the purity of the Biotin adduct. After concentrating the fraction containing human PD-L1 extracellular domain protein with an ultrafiltration membrane, gel filtration chromatography using a Superdex® 200 Increase 10/300 GL column (GE Healthcare) (size exclusion chromatography) ) To further increase the purification purity and remove multimers to obtain a high-purity Biotin adduct human PD-L1 extracellular domain protein monomer fraction.
(実施例6)ヒトPD-L1 / ヒトPD-1複合体タンパク質の作製 
(1)リンカー融合型ヒトPD-L1 / ヒトPD-1複合体タンパク質の作製
 ヒトPD-L1の免疫グロブリンドメインの可変領域F19-N131とヒトPD-1の免疫グロブリンドメインの可変領域N33-E146との間にリンカー配列を挿入することで、両者の近接化による複合体としての安定化を図った。図3にそのデザインを示す。ヒトPD-1に関してはフリー・システイン除去のためC93S改変を導入した。ヒトPD-L1のN131とヒトPD-1のN33との間にリンカーを挿入したバージョンをLinker complex#1とした(塩基配列は配列番号:26、アミノ酸配列は配列番号:27)(図3左)。また、ヒトPD-1のE146とヒトPD-L1のF19との間にリンカーを挿入したバージョンをLinker complex#2とした(塩基配列は配列番号:28、アミノ酸配列は配列番号:29)(図3右)。どちらの複合体タンパク質に関しても、シグナル配列(HMM+38)をN末端に付加し、C末端にはリンカー配列、ヒスチジンタグ、リンカー配列、BAPタグ(GLNDIFEAQKIEWHE)を付加して発現用コンストラクトとした。この発現ベクターをFreeStyle(登録商標) CHO細胞(Thermo Fisher)に導入することで、一過性にタンパク質を発現させた。得られた培養上清をAKTA(登録商標) Avant25装置(GE Healthcare)およびHiTrap(登録商標) Q HP カラム(GE Healthcare) によるイオン交換クロマトグラフィー、HisTrap(登録商標) HPカラム(GE Healthcare)によるアフィニティクロマトグラフィーにて精製した。ヒトPD-L1 / ヒトPD-1複合体タンパク質を含む画分を限外ろ過膜で濃縮した後に、HiLoad 26/600 Superdex(登録商標) 200 pgカラム(GE Healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のヒトPD-L1 / ヒトPD-1複合体タンパク質を得た。
(Example 6) Preparation of human PD-L1 / human PD-1 complex protein
(1) Preparation of linker-fused human PD-L1 / human PD-1 complex protein With variable region F19-N131 of human PD-L1 immunoglobulin domain and variable region N33-E146 of human PD-1 immunoglobulin domain By inserting a linker sequence between the two, stabilization as a complex was achieved by bringing the two closer together. The design is shown in FIG. For human PD-1, C93S modification was introduced to remove free cysteine. The version in which a linker was inserted between N131 of human PD-L1 and N33 of human PD-1 was designated as Linker complex # 1 (base sequence: SEQ ID NO: 26, amino acid sequence: SEQ ID NO: 27) (Fig. 3, left). ). In addition, the version in which a linker was inserted between E146 of human PD-1 and F19 of human PD-L1 was designated as Linker complex # 2 (base sequence: SEQ ID NO: 28, amino acid sequence: SEQ ID NO: 29) (Fig.). 3 right). For both complex proteins, a signal sequence (HMM + 38) was added to the N-terminus, and a linker sequence, histidine tag, linker sequence, and BAP tag (GLNDIFEAQKIEWHE) were added to the C-terminus to prepare an expression construct. By introducing this expression vector into FreeStyle® CHO cells (Thermo Fisher), the protein was transiently expressed. The resulting culture supernatant was subjected to ion exchange chromatography by AKTA® Avant25 instrument (GE Healthcare) and HiTrap® Q HP column (GE Healthcare), affinity by HisTrap® HP column (GE Healthcare). Purified by chromatography. After concentrating the fraction containing human PD-L1 / human PD-1 complex protein with an ultrafiltration membrane, gel filtration chromatography using a HiLoad 26/600 Superdex® 200 pg column (GE Healthcare) ( High-purity human PD-L1 / human PD-1 complex protein was obtained by further increasing the purification purity and removing multimers by size exclusion chromatography).
 BAPタグにBiotinが付加されたヒトPD-L1 / ヒトPD-1複合体タンパク質の調製は、上記の精製されたヒトPD-L1 / ヒトPD-1複合体タンパク質をBirA酵素(biotin ligase)の精製タンパク質と混合してBiotin付加反応を行うことで行った。最終濃度として、ヒトPD-L1 / ヒトPD-1複合体タンパク質が25μMもしくは26μM, ATPが10mM、BirA酵素が0.825μM, 50mM Tris-HCl pH8.3, 10mM Mg(OAc)2, 0.05mM Biotinとなるように混合し、4度で16時間程度置くことで反応させた。Slide-A-Lyzer G2 Dialysis Cassettes, 10K (Thermo Fisher)を用いた透析により20 mM NaPhospate, 600 mM NaCl, pH7.2に置換することで未反応のBiotinを除去した。その後、Biotin付加体の純度を上げる目的でStreptavidin Mutein Matrix(Roche)を使ったアフィニティクロマトグラフィーを行った。ヒトPD-L1 / ヒトPD-1複合体タンパク質を含む画分を限外ろ過膜で濃縮した後に、Superdex(登録商標) 200 Increase 10/300 GLカラム(GE Healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のBiotin付加体ヒトPD-L1 / ヒトPD-1複合体タンパク質の画分を得た。 To prepare the human PD-L1 / human PD-1 complex protein in which Biotin is added to the BAP tag, the above-mentioned purified human PD-L1 / human PD-1 complex protein is purified by the BirA enzyme (biotin ligase). This was done by mixing with protein and performing a Biotin addition reaction. The final concentrations are 25 μM or 26 μM for human PD-L1 / human PD-1 complex protein, 10 mM for ATP, 0.825 μM for BirA enzyme, 50 mM Tris-HCl pH 8.3, 10 mM Mg (OAc) 2, 0.05 mM Biotin. It was mixed so that it would react by leaving it at 4 degrees for about 16 hours. Unreacted Biotin was removed by replacement with 20 mM NaPhospate, 600 mM NaCl, pH 7.2 by dialysis using Slide-A-Lyzer G2 Dialysis Cassettes, 10K (Thermo Fisher). Then, affinity chromatography using Streptavidin Mutein Matrix (Roche) was performed for the purpose of increasing the purity of the Biotin adduct. After concentrating the fraction containing human PD-L1 / human PD-1 complex protein with an ultrafiltration membrane, gel filtration chromatography using Superdex® 200 Increase 10/300 GL column (GE Healthcare) ( By further increasing the purification purity and removing multimers by size exclusion chromatography), a fraction of high-purity Biotin adduct human PD-L1 / human PD-1 complex protein was obtained.
(2)ジスルフィド結合導入型ヒトPD-L1 / ヒトPD-1複合体タンパク質の作製
 ヒトPD-L1とヒトPD-1の相互作用しているアミノ酸残基をシステイン残基に置換することで異所的なジスルフィド結合の形成を促し複合体としての安定化を図った。
(2) Preparation of disulfide bond-introduced human PD-L1 / human PD-1 complex protein Ectopic by substituting cysteine residues for the amino acid residues that interact with human PD-L1 and human PD-1. The formation of a specific disulfide bond was promoted to stabilize the complex.
 システインに置換する残基は報告されている共結晶の構造データ(PDB:3BIK)を基にした構造モデリングから選択した。分子設計ソフトウエアとしてはDiscovery Studio(ダッソー・システムズ株式会社)のDesign Protein toolsおよびMOE(Chemical Computing Group)のProtein Designの機能を用いた。これらのソフトウエアにより、ヒトPD-L1およびヒトPD-1の間で近接しているC原子を選定するとともに、rotamerを用いたモデリングからシステインに置換することでジスルフィド結合を形成できる残基を選択した。ヒトPD-L1のY56C改変体とヒトPD-1のA132C改変体とを組み合わせたバージョンをS-S complex#1とし、ヒトPD-L1のA18C改変体とヒトPD-1のG90C改変体とを組み合わせたバージョンをS-S complex#2とした。図4には、ジスルフィド結合導入型ヒトPD-L1 / ヒトPD-1複合体タンパク質のデザインが図示される。発現精製に際して、ヒトPD-L1とヒトPD-1との間のヘテロ二量体の形成効率を高めるとともに精製を容易にする目的で、ヒトPD-L1およびヒトPD-1をヘテロ二量体の形成を促進する技術であるKnobs into Holeの改変を含むFcと融合して発現精製に進めた。 The residue to be replaced with cysteine was selected from the structural modeling based on the reported structural data of the cocrystal (PDB: 3BIK). As the molecular design software, the functions of Design Protein tools of Discovery Studio (Dassault Systèmes Co., Ltd.) and Protein Design of MOE (Chemical Computing Group) were used. With these software, C atoms that are close to each other between human PD-L1 and human PD-1 are selected, and residues that can form disulfide bonds by substituting with cysteine from modeling using rotamer are selected. bottom. The combination of the Y56C variant of human PD-L1 and the A132C variant of human PD-1 was designated as SS complex # 1, and the A18C variant of human PD-L1 and the G90C variant of human PD-1 were combined. The version is SS complex # 2. FIG. 4 illustrates the design of a disulfide bond-introduced human PD-L1 / human PD-1 complex protein. For the purpose of increasing the efficiency of formation of the heterodimer between human PD-L1 and human PD-1 and facilitating purification during expression purification, human PD-L1 and human PD-1 are used as heterodimers. We proceeded with expression purification by fusing with Fc including modification of Knobs into Hole, which is a technology that promotes formation.
 ヒトPD-L1の免疫グロブリンドメインの可変領域F19-A132をリンカー配列、BAPタグ(GLNDIFEAQKIEWHE)、リンカー配列、PreScissionプロテアーゼ認識配列(LEVLFQGP)、リンカー配列をつないだものについてヒンジ領域を含むヒトIgG1型のFcドメインのN末端に融合した。FcドメインにはFcγ受容体および補体C1qに対する結合活性を欠損させるための改変(L235R, G236R, S239K)およびヘテロ二量体の形成を促進するためのKnobs into Hole技術のためのHole改変(D356C, T366S, L368A, Y407V)を導入した。PD-L1を含む融合タンパク質のC末端にはリンカー配列を介して精製用のHisタグを付加した。 Human IgG1 type containing the hinge region for the variable region F19-A132 of the immunoglobulin domain of human PD-L1 linked to the linker sequence, BAP tag (GLNDIFEAQKIEWHE), linker sequence, PreScission protease recognition sequence (LEVLFQGP), and linker sequence. Fused to the N-terminus of the Fc domain. Modifications to the Fc domain to lack binding activity to Fcγ receptors and complement C1q (L235R, G236R, S239K) and Hole modifications for Knobs into Hole technology to promote heterodimer formation (D356C) , T366S, L368A, Y407V) was introduced. A His tag for purification was added to the C-terminal of the fusion protein containing PD-L1 via a linker sequence.
 一方、ヒトPD-1の免疫グロブリンドメインの可変領域N33-E146(C93S改変を含む)にリンカー配列、BAPタグ(GLNDIFEAQKIEWHE)、リンカー配列、PreScissionプロテアーゼ認識配列(LEVLFQGP)、リンカー配列をつないだものについてヒンジ領域を含むヒトIgG1型のFcドメインのN末端に融合した。FcドメインにはFcγ受容体および補体C1qに対する結合活性を欠損させるための改変(L235R, G236R, S239K)よびKnob改変(Y349C, T366W)を導入した。PD-1を含む融合タンパク質のC末端にはリンカー配列を介して精製用のFLAGタグを付加した。 On the other hand, for the variable region N33-E146 (including C93S modification) of the immunoglobulin domain of human PD-1, the linker sequence, BAP tag (GLNDIFEAQKIEWHE), linker sequence, Precision protease recognition sequence (LEVLFQGP), and linker sequence are linked. It was fused to the N-terminus of the Fc domain of human IgG1 type including the hinge region. Modifications (L235R, G236R, S239K) and Knob modifications (Y349C, T366W) were introduced into the Fc domain to delete the binding activity to the Fcγ receptor and complement C1q. A FLAG tag for purification was added to the C-terminal of the fusion protein containing PD-1 via a linker sequence.
 いずれのタンパク質に関しても、人工分泌シグナル配列であるHMM+38をN末端に付加して発現用コンストラクトとした。
 S-S complex#1に用いたhPDL1(Y56C)_BAP_PreSission_hole_His10の塩基配列は配列番号:30に、アミノ酸配列は配列番号:31に示され、hPD1(A132C)_BAP_PreSission_knob_FLAGの塩基配列は配列番号:32に、アミノ酸配列は配列番号:33に示される。S-S complex#2に用いたhPDL1(A18C)_BAP_PreSission_hole_His10の塩基配列は配列番号:34に、アミノ酸配列を配列番号:35に示され、hPD1(G90C)_BAP_PreSission_knob_FLAGの塩基配列は配列番号36に、アミノ酸配列は配列番号:37に示される。
For each protein, HMM + 38, which is an artificial secretory signal sequence, was added to the N-terminal to prepare an expression construct.
The base sequence of hPDL1 (Y56C) _BAP_PreSission_hole_His10 used for SS complex # 1 is shown in SEQ ID NO: 30, the amino acid sequence is shown in SEQ ID NO: 31, and the base sequence of hPD1 (A132C) _BAP_PreSission_knob_FLAG is shown in SEQ ID NO: 32. Is shown in SEQ ID NO: 33. The base sequence of hPDL1 (A18C) _BAP_PreSission_hole_His10 used for SS complex # 2 is shown in SEQ ID NO: 34, the amino acid sequence is shown in SEQ ID NO: 35, the base sequence of hPD1 (G90C) _BAP_PreSission_knob_FLAG is shown in SEQ ID NO: 36, and the amino acid sequence is SEQ ID NO: 37.
 上記デザインの遺伝子を合成し哺乳類細胞用のベクター(pBEF-OriP)にサブクローニングすることで発現ベクターとした。この発現ベクターをFreeStyle(登録商標) CHO細胞(Thermo Fisher)に導入することで、一過性にタンパク質を発現させた。 The gene of the above design was synthesized and subcloned into a vector for mammalian cells (pBEF-OriP) to obtain an expression vector. By introducing this expression vector into FreeStyle® CHO cells (Thermo Fisher), the protein was transiently expressed.
 得られた培養上清からAKTA(登録商標) 10S装置(GE Healthcare)もしくはAKTA(登録商標) Avant25装置(GE Healthcare)を用いたクロマトグラフィーにより目的タンパク質を精製した。まずはANTI-FLAG M2 Affinity Gel(Sigma-Aldrich)を用いたアフィニティクロマトグラフィーを実施して、次にHisTrap(登録商標) HPカラム(GE Healthcare)によるアフィニティクロマトグラフィーを実施することでヘテロ二量体を形成している画分を得た。このヘテロ二量体のタンパク質に対してPreScission認識配列を切断するTurbo3C protease(Accelagen)を反応させることで、ヒトPD-L1 / ヒトPD-1複合体タンパクとFcドメインとの切り離しを行った。1mgのヒトPD-L1 / ヒトPD-1複合体タンパクに対して80ユニットのTurbo3C proteaseを混合し、その混合液をSlide-A-Lyzer G2 Dialysis Cassettes, 3.5K(Thermo Scientific)に充填し、D-PBS(-)に置換しながら、4℃で16時間程度で切断反応を行った。その後、サンプル中に含まれる切断済みのFcドメインや未切断のFc融合体、Turbo3C protease(Hisタグが付加されている)などの不要物を除去するため、HisTrap(登録商標) HPカラム(GE Healthcare)とHiTrap(登録商標) Protein A HPカラム(GE Healthcare)を直列につないだものにサンプルを通過させた。得られた切断反応済みヒトPD-L1 / ヒトPD-1複合体タンパク質を含む画分を限外ろ過膜で濃縮した後、HiLoad 26/600 Superdex(登録商標) 200 pg(GE Healthcare)を用いたゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のヒトPD-L1 / ヒトPD-1複合体タンパク質を得た。 The target protein was purified from the obtained culture supernatant by chromatography using an AKTA (registered trademark) 10S device (GE Healthcare) or an AKTA (registered trademark) Avant25 device (GE Healthcare). First, affinity chromatography using ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich) is performed, and then affinity chromatography using HisTrap (registered trademark) HP column (GE Healthcare) is performed to obtain a heterodimer. The forming fraction was obtained. By reacting this heterodimer protein with Turbo3C protease (Accelagen) that cleaves the PreScission recognition sequence, the human PD-L1 / human PD-1 complex protein was separated from the Fc domain. 80 units of Turbo3C protease was mixed with 1 mg of human PD-L1 / human PD-1 complex protein, and the mixture was filled in Slide-A-Lyzer G2 Dialysis Cassettes, 3.5K (Thermo Scientific), and D. The cleavage reaction was carried out at 4 ° C. for about 16 hours while substituting with -PBS (-). After that, in order to remove unnecessary substances such as cleaved Fc domain, uncut Fc fusion, and Turbo3C protein (with His tag attached) contained in the sample, HisTrap (registered trademark) HP column (GE Healthcare) ) And HiTrap (registered trademark) Protein A HP column (GE Healthcare) connected in series, and the sample was passed. After concentrating the obtained fraction containing the cleaved human PD-L1 / human PD-1 complex protein with an ultrafiltration membrane, HiLoad 26/600 Superdex (registered trademark) 200 pg (GE Healthcare) was used. High-purity human PD-L1 / human PD-1 complex protein was obtained by further increasing the purification purity and removing multimers by gel filtration chromatography (size exclusion chromatography).
 BAPタグにBiotinが付加されたヒトPD-L1 / ヒトPD-1複合体タンパク質の調製は、上記の精製されたヒトPD-L1 / ヒトPD-1複合体タンパク質をBirA酵素(biotin ligase)の精製タンパク質と混合してBiotin付加反応を行うことで行った。最終濃度として、ヒトPD-L1 / ヒトPD-1複合体タンパク質が21μMもしくは22μM, ATPが10mM、BirA酵素が0.825μM, 50mM Tris-HCl pH8.3, 10mM Mg(OAc)2, 0.05mM Biotinとなるように混合し、4度で16時間程度置くことで反応させた。このサンプルを限外ろ過膜で濃縮した後に、HisTrap(登録商標) HP (GE Healthcare)とSuperdex(登録商標) 200 Increase 10/300 GL(GE Healthcare)を直列につないでサンプルを流すことで不要なBirAを吸着させるとともに、ゲル濾過クロマトグラフィー(サイズ排除クロマトグラフィー)によって精製純度をさらに上げるとともに多量体を除去することで、高純度のBiotin付加体ヒトPD-L1 / ヒトPD-1複合体タンパク質の画分を得た。 To prepare the human PD-L1 / human PD-1 complex protein in which Biotin is added to the BAP tag, the above-mentioned purified human PD-L1 / human PD-1 complex protein is purified by the BirA enzyme (biotin ligase). This was done by mixing with protein and performing a Biotin addition reaction. The final concentrations are 21 μM or 22 μM for human PD-L1 / human PD-1 complex protein, 10 mM for ATP, 0.825 μM for BirA enzyme, 50 mM Tris-HCl pH 8.3, 10 mM Mg (OAc) 2, 0.05 mM Biotin. It was mixed so that it would react by leaving it at 4 degrees for about 16 hours. After concentrating this sample with an ultrafiltration membrane, it is unnecessary to connect HisTrap (registered trademark) HP (GE Healthcare) and Superdex (registered trademark) 200 Increase 10/300 GL (GE Healthcare) in series and flow the sample. High-purity Biotin adduct human PD-L1 / human PD-1 complex protein by adsorbing BirA, further increasing the purification purity by gel filtration chromatography (size exclusion chromatography), and removing multimers. I got a fraction.
(実施例7)ウサギからの抗ヒトPD-L1 / ヒトPD-1複合体タンパク質抗体の作製
 前述のとおり調製された4種類の各ヒトPD-L1 / ヒトPD-1複合体タンパク質である、Linker complex#1、Linker complex#2、S-S complex#1、およびS-S complex#2を抗原として用い、ウサギからモノクローナル抗体が作製された。12~13週齢のNZWウサギを4種類の抗原それぞれで免疫感作した。抗原タンパク質溶液を等容量のTiterMax Goldアジュバントと混合し、ウサギの皮内に投与した。免疫は1週間以上の間隔を置き4回繰り返し行った。Linker complex#1およびLinker complex#2は初回免疫時に200μg/headを投与し、その後の免疫では100μg/headを投与した。S-S complex#1およびS-S complex#2は全ての免疫時で100μg/headを投与した。最終免疫感作の1週間後、脾臓と血液を免疫感作動物から採取した。
(Example 7) Preparation of anti-human PD-L1 / human PD-1 complex protein antibody from rabbit Linker, which is each of the four types of human PD-L1 / human PD-1 complex proteins prepared as described above. Monoclonal antibodies were produced from rabbits using complex # 1, Linker complex # 2, SS complex # 1, and SS complex # 2 as antigens. 12-13 week old NZW rabbits were immunosensitized with each of the four antigens. The antigenic protein solution was mixed with an equal volume of TiterMax Gold adjuvant and administered intradermally to rabbits. Immunization was repeated 4 times at intervals of 1 week or longer. Linker complex # 1 and Linker complex # 2 were administered at 200 μg / head during the initial immunization and 100 μg / head during the subsequent immunization. SS complex # 1 and SS complex # 2 were administered at 100 μg / head at all times of immunization. One week after the final immunosensitization, spleen and blood were taken from the immunosensitizer.
 脾臓や血液の細胞に含まれる抗原特異的B細胞を濃縮するため、autoMACS Pro Separator(miltenyi Biotec)を用いたMACSによりヒトPD-L1細胞外ドメインタンパク質に対して結合する細胞のネガティブ・セレクションを行った後に、ウサギIgG型抗体を発現するB細胞を濃縮するためのポジティブ・セレクションを実施した。PD-L1細胞外ドメインタンパク質に対するネガティブ・セレクションではAnti-Biotin MicroBeads(Miltenyi Biotech, 130-090-485)に前述のBAPタグにBiotinが付加されたヒトPD-L1細胞外ドメインタンパク質を結合させて用いた。ウサギIgG型抗体を発現するB細胞のポジティブ・セレクションでは、Anti-mouse IgG MicroBeads(Miltenyi Biotech, 130-048-401)にMouse Anti-Rabbit IgG-PE(SouthernBiotech, 4090-9)を結合させて用いた。 In order to concentrate antigen-specific B cells contained in spleen and blood cells, negative selection of cells that bind to human PD-L1 extracellular domain protein was performed by MACS using autoMACS Pro Separator (miltenyi Biotec). After that, a positive selection was performed to concentrate B cells expressing rabbit IgG antibody. In the negative selection for PD-L1 extracellular domain protein, Anti-Biotin MicroBeads (Miltenyi Biotech, 130-090-485) is used by binding human PD-L1 extracellular domain protein with Biotin added to the above-mentioned BAP tag. board. In the positive selection of B cells expressing rabbit IgG antibody, Mouse Anti-Rabbit IgG-PE (SouthernBiotech, 4090-9) is bound to Anti-mouse IgG MicroBeads (Miltenyi Biotech, 130-048-401). board.
 MACSによる濃縮操作を経た細胞に対して、ヒトPD-L1 / ヒトPD-1複合体タンパク質に特異的な抗体に対するさらなる濃縮をかけるため、セルソーター(FACS aria III、BD)を用いた選別を実施した。4種類の免疫抗原の各々(免疫に用いたヒトPD-L1 / ヒトPD-1複合体タンパク質のBAPタグにビオチンを付加したもの)を結合させて、Streptavidin-APC(Miltenyi Biotech, 130-106-791)による染色を行った。同時に、ヒトIgG1型Fcと融合させたヒトPD-1タンパク質(R&D, 1086-PD)を結合させて、Goat anti-Human IgG Fc Cross-Adsorbed Secondary Antibody, DyLight 488(ThermoFisher, SA5-10134)による染色を行った。Anti-Rabbit IgG-PE(SouthernBiotech, 4090-9)によるIgG型抗体を発現するB細胞の選別も併せて行った。セルソーターを用いて、ヒトPD-L1 / ヒトPD-1複合体タンパク質に結合し、ヒトPD-1タンパク質には結合せず、IgG型抗体を発現するB細胞を回収した。 In order to further concentrate the cells that had undergone the enrichment operation by MACS against the antibody specific to the human PD-L1 / human PD-1 complex protein, sorting was performed using a cell sorter (FACSariaIII, BD). .. Streptavidin-APC (Miltenyi Biotech, 130-106-) by binding each of the four types of immune antigens (human PD-L1 used for immunization / BAP tag of human PD-1 complex protein with biotin added) Staining according to 791) was performed. At the same time, human PD-1 protein (R & D, 1086-PD) fused with human IgG1 type Fc is bound and stained with Goat anti-Human IgG Fc Cross-Adsorbed Secondary Antibody, DyLight 488 (ThermoFisher, SA5-10134). Was done. B cells expressing IgG-type antibody by Anti-Rabbit IgG-PE (SouthernBiotech, 4090-9) were also selected. Using a cell sorter, B cells that bound to the human PD-L1 / human PD-1 complex protein, did not bind to the human PD-1 protein, and expressed IgG-type antibody were recovered.
 得られたB細胞を1個/ウェルの密度で、細胞12,500個/ウェルのEL4細胞(European Collection of Cell Cultures)および20倍希釈した活性化ウサギT細胞馴化培地と共に384ウェルプレートに播種し、6~12日間培養して、そのB細胞培養上清中の分泌抗体を使った抗体スクリーニングに供した。EL4細胞は、事前にX線照射装置MX-160Labo(mediXtec)にて10Gyの照射量のX線を作用させて培養に供した。
 活性化ウサギT細胞馴化培地は、ウサギ胸腺細胞を、フィトヘマグルチニンM(Roche、カタログ番号11082132)、ホルボール12-ミリステート13-アセテート(Sigma、カタログ番号P1585)および2%FBSを含有するRPMI-1640培地中で培養することにより、調製した。培養後、B細胞の培養上清をさらなる評価のために回収し、細胞のペレットを凍結保存した。
The resulting B cells were seeded at a density of 1 / well on a 384-well plate with 12,500 / well EL4 cells (European Collection of Cell Cultures) and 20-fold diluted activated rabbit T cell conditioned medium, 6 After culturing for ~ 12 days, the cells were subjected to antibody screening using the secreted antibody in the B cell culture supernatant. EL4 cells were previously subjected to X-ray irradiation with an irradiation dose of 10 Gy using an X-ray irradiation device MX-160Labo (mediXtec) and subjected to culture.
Activated rabbit T cell conditioned medium is RPMI-1640 containing rabbit thymocytes, phytohaemagglutinin M (Roche, Catalog No. 11082132), phorbol 12-millistate 13-acetate (Sigma, Catalog No. P1585) and 2% FBS. Prepared by culturing in medium. After culturing, the culture supernatant of B cells was collected for further evaluation and the cell pellet was cryopreserved.
 B細胞培養上清に含まれる分泌抗体を利用し、抗体の結合特性を指標としたスクリーニングを実施した。ヒトPD-1細胞外ドメインタンパク質、ヒトPD-L1細胞外ドメインタンパク質、前述の4種のヒトPD-L1 / ヒトPD-1複合体タンパク質、および陰性対照であるBSAが固相されたMagPlex Microspheres(Luminex)と混合して各種タンパク質に対する結合をフローサイトメーター(iQue Screener, intellicyt)にて確認した。異なるタンパク質は異なる蛍光パターンを有するMagPlex Microspheresに固相することで区別して結合解析を行った。MagPlex Microspheresにストレプトアビジンを固相した後に、ビオチン化された各評価対象タンパク質を固相して評価に用いた。二次抗体にはGoat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488(Thermo Fisher Scientific, A-11034)を用いた。データ解析はFlowJoソフトウエア(トミーデジタルバイオロジー)を用いて行った。この実験結果から、陰性対照のBSAやヒトPD-1細胞外ドメインタンパク質およびヒトPD-L1細胞外ドメインタンパク質には結合せず、各ヒトPD-L1 / ヒトPD-1複合体タンパク質のみに結合する抗体を産生するB 細胞を選抜した。 Using the secreted antibody contained in the B cell culture supernatant, screening was performed using the antibody binding characteristics as an index. MagPlex Microspheres on which human PD-1 extracellular domain protein, human PD-L1 extracellular domain protein, the above-mentioned four human PD-L1 / human PD-1 complex proteins, and negative control BSA are immobilized. It was mixed with Luminex) and the binding to various proteins was confirmed with a flow cytometer (iQueScreener, intellicyt). Different proteins were analyzed by solid phase on MagPlex Microspheres having different fluorescence patterns. After streptavidin was solid-phased in MagPlex Microspheres, each biotinylated protein to be evaluated was solid-phased and used for evaluation. Goat anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (Thermo Fisher Scientific, A-11034) was used as the secondary antibody. Data analysis was performed using FlowJo software (Tomy Digital-Biolology). From the results of this experiment, it does not bind to the negative control BSA, human PD-1 extracellular domain protein, or human PD-L1 extracellular domain protein, but only to each human PD-L1 / human PD-1 complex protein. B cells that produce antibodies were selected.
 選択されたB細胞のRNAを、ZR-96 Quick-RNAキット(ZYMO RESEARCH、カタログ番号R1053)を用いて凍結保存細胞ペレットから精製した。調製されたRNAを用いて抗体重鎖可変領域をコードするDNAを逆転写PCRにより増幅し、Fcγ受容体および補体C1qに対する結合活性を欠損させたヒトIgG1重鎖定常領域であるF1332(配列番号:18)をコードするDNAとインフレームになるように再結合させた。また、抗体軽鎖可変領域をコードするDNAを逆転写PCRにより増幅し、ウサギ由来の抗体軽鎖可変領域の場合は改変型のヒトκ型軽鎖定常領域であるk0MTC(配列番号:38)をコードするDNAとインフレームとなるように再結合させた。上述のように再結合させた抗体の重鎖および軽鎖のコード配列を有する発現ベクターを調製し、重鎖と軽鎖の発現ベクターの比が1:1になるように混合したものをExpi293(登録商標)F細胞(Thermo Fisher)に対してExpiFectamine(登録商標) 293 Transfection Kitを用いて導入することで、抗体を一過性に発現させた。得られた培養上清からProtein Aを利用したアフィニティ精製により精製抗体を調製してその後の評価に用いた。
 表1に、作製された抗ヒトPD-L1 / ヒトPD-1複合体タンパク質抗体の30クローンの重鎖および軽鎖それぞれの可変領域および定常領域の配列番号を示す(抗体配列のシグナルペプチドと可変領域との境目については、GENETYX-SV/RCソフトウェア(Ver.15.0.3)のSignal Peptide prediction機能を用いた予測結果に従った。)。
Selected B cell RNA was purified from cryopreserved cell pellets using the ZR-96 Quick-RNA kit (ZYMO RESEARCH, Catalog No. R1053). F1332 (SEQ ID NO:) is a human IgG1 heavy chain constant region in which the DNA encoding the antibody heavy chain variable region is amplified by reverse transcription PCR using the prepared RNA and the binding activity to the Fcγ receptor and complement C1q is deleted. : 18) was recombined in-frame with the encoding DNA. In addition, the DNA encoding the antibody light chain variable region was amplified by reverse transcription PCR, and in the case of the antibody light chain variable region derived from rabbits, k0MTC (SEQ ID NO: 38), which is a modified human κ type light chain constant region, was obtained. It was recombined in-frame with the encoding DNA. As described above, an expression vector having the heavy chain and light chain coding sequences of the recombined antibody was prepared, and the mixture was mixed so that the ratio of the heavy chain to the light chain expression vector was 1: 1 (Expi293). The antibody was transiently expressed by introduction into F cells (Thermo Fisher) using the ExpiFectamine (registered trademark) 293 Transfection Kit. Purified antibodies were prepared from the obtained culture supernatant by affinity purification using Protein A and used for subsequent evaluation.
Table 1 shows the variable and constant region SEQ ID NOs of the heavy and light chains of 30 clones of the prepared anti-human PD-L1 / human PD-1 complex protein antibody (signal peptide and variable of antibody sequence). Regarding the boundary with the area, the prediction result using the Signal Peptide prediction function of GENETY X-SV / RC software (Ver.15.0.3) was followed.).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例8)抗ヒトPD-L1 / ヒトPD-1複合体抗体の特異性評価
 実施例7で作製された抗ヒトPD-L1 / ヒトPD-1複合体タンパク質抗体の30クローンの、細胞表面上で形成させたヒトPD-L1 / ヒトPD-1複合体に対する結合特異性の評価を行った。結合の評価はフローサイトメーター(iQue Screener, intellicyt)を用いて行った。細胞や添加するタンパク質の希釈、ならびに洗浄操作にはD-PBS(-)にBSAを最終濃度0.1%になるように添加した溶液(FACS bufferと呼ぶ)を用いた。評価のためにDXB11s細胞を親株として(parent/CHO)、全長ヒトPD-L1遺伝子(塩基配列は配列番号:110、アミノ酸配列は配列番号:111)を導入することで細胞膜表面上にヒトPD-L1を強制発現させた安定発現株(hPD-L1/CHO)、および全長ヒトPD-1遺伝子(塩基配列は配列番号:108、アミノ酸配列は配列番号:109)を導入することで細胞膜表面上にヒトPD-1を強制発現させた安定発現株(hPD-1/CHO)を準備した。ヒトPD-L1 / ヒトPD-1複合体タンパク質を細胞表面上であらかじめ形成させるために、hPD-L1/CHOは10μg/mLの可溶型ヒトPD-1細胞外ドメイン(ECD)タンパク質と混合し、hPD-1/CHOは10μg/mLの可溶型ヒトPD-L1細胞外ドメイン(ECD)タンパク質と混合して30分以上氷上に置いた。384ウェルのV底プレート(Greiner)に20μg/mLに調製した精製抗体を10μL/wellで添加したのちに、上述のあらかじめヒトPD-L1 / ヒトPD-1複合体を形成させた細胞溶液を1ウェルあたり30000細胞になるように10μL/wellで添加した。4℃で30分間インキュベーションして抗体を結合させたのち、遠心操作後に上清を吸引除去した。続けて50μL/wellのFACS bufferを添加した上で遠心操作後に上清を吸引除去する洗浄操作を2回繰り返した。結合を検出するための2次抗体にはGoat Anti-Human IgG Fc Cross-Adsorbed Secondary Antibody.DyLight 650(Thermo Fisher Scientific, SA5-10137)を用いた。
(Example 8) Evaluation of specificity of anti-human PD-L1 / human PD-1 complex antibody The cell surface of 30 clones of the anti-human PD-L1 / human PD-1 complex protein antibody prepared in Example 7 The binding specificity for the human PD-L1 / human PD-1 complex formed above was evaluated. The binding was evaluated using a flow cytometer (iQue Screener, intellicyt). A solution (called FACS buffer) in which BSA was added to D-PBS (-) to a final concentration of 0.1% was used for diluting cells and proteins to be added, and for washing operations. For evaluation, DXB11s cells were used as the parent strain (parent / CHO), and the human PD-L1 gene (base sequence: SEQ ID NO: 110, amino acid sequence: SEQ ID NO: 111) was introduced on the cell membrane surface to introduce human PD-. By introducing a stable expression strain (hPD-L1 / CHO) in which L1 was forcibly expressed, and a full-length human PD-1 gene (base sequence: SEQ ID NO: 108, amino acid sequence: SEQ ID NO: 109), it was introduced onto the cell membrane surface. A stable expression strain (hPD-1 / CHO) in which human PD-1 was forcibly expressed was prepared. To preform the human PD-L1 / human PD-1 complex protein on the cell surface, hPD-L1 / CHO is mixed with 10 μg / mL soluble human PD-1 extracellular domain (ECD) protein. , HPD-1 / CHO was mixed with 10 μg / mL soluble human PD-L1 extracellular domain (ECD) protein and placed on ice for at least 30 minutes. After adding purified antibody prepared at 20 μg / mL to a 384-well V-bottom plate (Greiner) at 10 μL / well, the above-mentioned cell solution in which the human PD-L1 / human PD-1 complex was previously formed was added to 1 Addition was made at 10 μL / well to 30,000 cells per well. After incubating at 4 ° C. for 30 minutes to bind the antibody, the supernatant was removed by suction after centrifugation. Subsequently, a washing operation of adding 50 μL / well FACS buffer and then suction-removing the supernatant after centrifugation was repeated twice. Goat Anti-Human IgG Fc Cross-Adsorbed Secondary Antibody. DyLight 650 (Thermo Fisher Scientific, SA5-10137) was used as the secondary antibody for detecting binding.
 ヒトPD-L1 / ヒトPD-1複合体タンパク質の細胞表面上での形成効率は、可溶型ヒトPD-1細胞外ドメインタンパク質および可溶型ヒトPD-L1細胞外ドメインタンパク質に付加されたビオチンを利用して、Streptavidin-APC(Miltenyi Biotec, 130-106791)を添加して検出することで確認した。
 データ解析はFlowJoソフトウエア(トミーデジタルバイオロジー)を用いて行った。
 得られた結合データを図5および表2に示す。PD-L1 / PD-1複合体に対して高い結合選択性を有する複数の抗体が得られた。
The efficiency of formation of human PD-L1 / human PD-1 complex protein on the cell surface was determined by the biotectic acid added to the soluble human PD-1 extracellular domain protein and the soluble human PD-L1 extracellular domain protein. It was confirmed by adding Streptavidin-APC (Miltenyi Biotec, 130-106791) and detecting it.
Data analysis was performed using FlowJo software (Tomy Digital-Biolology).
The obtained combined data are shown in FIG. 5 and Table 2. Multiple antibodies with high binding selectivity to the PD-L1 / PD-1 complex were obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例9)抗ヒトPD-1抗体の調製
 ヒトPD-1に結合しその免疫抑制性のシグナルを誘導しうる複数の抗ヒトPD-1抗体を調製した。実施例1に記載したPD1-17、antibody949(clone 949)、clone 10に、PDA0129(重鎖可変領域配列番号:99 、軽鎖可変領域配列番号:100 、重鎖定常領域配列番号:18、軽鎖定常領域配列番号:38)を加えた、4クローンの抗ヒトPD-1抗体を当業者公知の方法で調製した。
(Example 9) Preparation of anti-human PD-1 antibody A plurality of anti-human PD-1 antibodies capable of binding to human PD-1 and inducing its immunosuppressive signal were prepared. PD1-17, antibody949 (clone 949), clone 10 described in Example 1 to PDA0129 (heavy chain variable region SEQ ID NO: 99, light chain variable region SEQ ID NO: 100, heavy chain constant region SEQ ID NO: 18, light). Four clones of anti-human PD-1 antibody to which the chain constant region SEQ ID NO: 38) was added were prepared by a method known to those skilled in the art.
 実施例11に記載のリガンド結合阻害活性の評価に供するため、陽性対照としてヒトPD-1とヒトPD-L1との結合を阻害することが公知の抗ヒトPD-1モノクローナル抗体5C4(重鎖可変領域配列番号:101 および軽鎖可変領域配列番号:102(WO2006/121168を参照)、ならびに重鎖定常領域配列番号:105および軽鎖定常領域配列番号:15)およびPembrolizumab(重鎖可変領域配列番号:103 および軽鎖可変領域配列番号:104(WO2016/137850を参照)、ならびに重鎖定常領域配列番号:105および軽鎖定常領域配列番号:15)も併せて当業者公知の方法で調製した。 An anti-human PD-1 monoclonal antibody 5C4 (heavy chain variable) known to inhibit the binding between human PD-1 and human PD-L1 as a positive control for use in the evaluation of the ligand binding inhibitory activity described in Example 11. Region SEQ ID NO: 101 and light chain variable region SEQ ID NO: 102 (see WO2006 / 121168), and heavy chain constant region SEQ ID NO: 105 and light chain constant region SEQ ID NO: 15) and Pembrolizumab (heavy chain variable region SEQ ID NO: 15). : 103 and light chain variable region SEQ ID NO: 104 (see WO2016 / 137850), and heavy chain constant region SEQ ID NO: 105 and light chain constant region SEQ ID NO: 15) were also prepared by methods known to those skilled in the art.
(実施例10)抗ヒトPD-L1 / ヒトPD-1複合体抗体のPD-1シグナル誘導活性の評価(SHP-2リクルートメント)
 抗ヒトPD-1抗体(clone949 および PDA0129)がPD-1シグナルの誘導活性を有するかを、実施例2と同様の手順で、PD-1のシグナル誘導時にPD-1の細胞内ドメインと相互作用する脱リン酸化酵素であるSHP2の近接を指標に評価した。
 アッセイの結果を図6に示す。2種類の抗ヒトPD-1抗体が明確なSHP2リクルートメント誘導活性、すなわちPD-1シグナルの誘導活性を有しないことが示唆された。
(Example 10) Evaluation of PD-1 signal-inducing activity of anti-human PD-L1 / human PD-1 complex antibody (SHP-2 recruitment)
Whether anti-human PD-1 antibodies (clone949 and PDA0129) have PD-1 signal-inducing activity, interact with the intracellular domain of PD-1 during PD-1 signal induction by the same procedure as in Example 2. The proximity of SHP2, which is a dephosphorylating enzyme, was used as an index for evaluation.
The results of the assay are shown in FIG. It was suggested that the two anti-human PD-1 antibodies do not have clear SHP2 recruitment-inducing activity, i.e., PD-1 signaling-inducing activity.
 実施例7で作製された抗ヒトPD-L1 / ヒトPD-1複合体抗体がPD-1シグナルの誘導活性を有するかを、実施例2と同様の手順で、PD-1のシグナル誘導時にPD-1の細胞内ドメインと相互作用する脱リン酸化酵素であるSHP2の近接を指標に評価した。
 アッセイの結果を図7に示す。抗ヒトPD-L1 / ヒトPD-1複合体抗体が、上述した抗ヒトPD-1抗体(clone949 および PDA0129)と異なり、SHP2リクルートメントを誘導する活性、すなわちPD-1シグナルの誘導活性を有することが示された。
Whether the anti-human PD-L1 / human PD-1 complex antibody produced in Example 7 has the PD-1 signal-inducing activity was determined by the same procedure as in Example 2 during PD-1 signal induction. The proximity of SHP2, a dephosphorylating enzyme that interacts with the intracellular domain of -1, was evaluated as an index.
The results of the assay are shown in FIG. The anti-human PD-L1 / human PD-1 complex antibody, unlike the anti-human PD-1 antibody (clone949 and PDA0129) described above, has an activity of inducing SHP2 recruitment, that is, an activity of inducing PD-1 signal. It has been shown.
(実施例11)抗ヒトPD-1抗体のリガンド結合阻害活性の評価
 実施例9で調製された抗ヒトPD-1抗体(PD1-17、clone 949、clone 10、およびPDA0129)の、ヒトPD-1とヒトPD-L1との結合に対する阻害活性を評価した。阻害活性の評価は、ヒトPD-1発現細胞に結合する可溶型ヒトPD-L1細胞外ドメイン(ECD)タンパク質の結合強度が、抗ヒトPD-1抗体の存在下で減弱されるかを指標に行った。結合の評価はフローサイトメーター(iQue Screener, intellicyt)を用いて行った。細胞や添加するタンパク質の希釈、ならびに洗浄操作にはD-PBS(-)にBSAを最終濃度0.1%になるように添加した溶液(FACS bufferと呼ぶ)を用いた。評価には前述の全長ヒトPD-1遺伝子(塩基配列は配列番号:108、アミノ酸配列は配列番号:109)を導入することで細胞膜表面上にヒトPD-1を強制発現させた安定発現株(hPD-1/CHO)を用いた。一連の染色操作はV-Bottom 96 Well Cell Culture Plate(costar, 3894)を用いて行った。FACS bufferにて20, 4, 0.8μg/mLの各濃度に希釈した抗体溶液(100μL/well)を、3 x 106 細胞/mLに調製したhPD-1/CHO細胞50μL/well(150000 細胞/well)と混合して氷上で30分間置くことで抗体を結合させた。その後、10μg/mLのビオチン化された可溶型ヒトPD-L1細胞外ドメイン(ECD)タンパク質と混合して15分氷上に置いた。遠心操作後に上清を吸引除去し、続けて200μL/wellのFACS bufferを添加した上で遠心操作後に上清を吸引除去する洗浄操作を2回繰り返した。結合を検出するためのStreptavidin-APCは1000倍希釈したものを100μL/wellで添加して氷上で30分間インキュベートした。遠心操作後に上清を吸引除去し、続けて200μL/wellのFACS bufferを添加した上で遠心操作後に上清を吸引除去し、最終的に50μL/wellのFACS bufferで懸濁してiQue Screener,による結合データ取得を行った。取得されたデータの解析はFlowJoソフトウエア(トミーデジタルバイオロジー)を用いて行った。
 図8に示されるとおり、PD1-17およびclone 10はヒトPD-L1のヒトPD-1への結合を阻害する抗体であり、一方clone 949およびPDA0129は該結合を阻害しない抗体であった。
(Example 11) Evaluation of ligand binding inhibitory activity of anti-human PD-1 antibody The human PD- of the anti-human PD-1 antibody (PD1-17, clone 949, clone 10, and PDA0129) prepared in Example 9 The inhibitory activity on the binding between 1 and human PD-L1 was evaluated. Evaluation of inhibitory activity is an indicator of whether the binding strength of soluble human PD-L1 extracellular domain (ECD) protein that binds to human PD-1 expressing cells is attenuated in the presence of anti-human PD-1 antibody. Went to. The binding was evaluated using a flow cytometer (iQue Screener, intellicyt). A solution (called FACS buffer) in which BSA was added to D-PBS (-) to a final concentration of 0.1% was used for diluting cells and proteins to be added, and for washing operations. For evaluation, a stable expression strain in which human PD-1 was forcibly expressed on the cell membrane surface by introducing the above-mentioned full-length human PD-1 gene (base sequence: SEQ ID NO: 108, amino acid sequence: SEQ ID NO: 109) (stable expression strain). hPD-1 / CHO) was used. A series of staining operations were performed using a V-Bottom 96 Well Cell Culture Plate (costar, 3894). An antibody solution (100 μL / well) diluted to a concentration of 20, 4, 0.8 μg / mL with FACS buffer was prepared into 3 x 10 6 cells / mL, and hPD-1 / CHO cells 50 μL / well (150000 cells / well). The antibody was bound by mixing with well) and placing on ice for 30 minutes. It was then mixed with 10 μg / mL biotinylated soluble human PD-L1 extracellular domain (ECD) protein and placed on ice for 15 minutes. After the centrifugation operation, the supernatant was removed by suction, and then 200 μL / well of FACS buffer was added, and then the washing operation of removing the supernatant by suction after the centrifugation operation was repeated twice. Streptavidin-APC for detecting binding was added at 100 μL / well diluted 1000-fold and incubated on ice for 30 minutes. After centrifugation, remove the supernatant by suction, then add 200 μL / well FACS buffer, then remove the supernatant by suction after centrifugation, and finally suspend in 50 μL / well FACS buffer with iQue Screener. Combined data was acquired. The acquired data was analyzed using FlowJo software (Tomy Digital-Biolology).
As shown in FIG. 8, PD1-17 and clone 10 were antibodies that inhibited the binding of human PD-L1 to human PD-1, while clone 949 and PDA0129 were antibodies that did not inhibit the binding.
(実施例12)抗ヒトPD-L1 / ヒトPD-1複合体抗体を利用したPD-1アゴニスト抗体の作製
 本発明者らは、上記で作製された抗ヒトPD-L1 / ヒトPD-1複合体抗体を元に、PD-1に対するアゴニスト活性がより強力な、さらなる抗体分子型を検討した。具体的には、内因性のPD-L1 / PD-1複合体が形成されてその免疫抑制性制御の機能が発揮される免疫シナプスやTCRミクロクラスターの局所において、PD-L1によって誘導されるPD-1の免疫抑制性シグナルをさらに増強し得る分子型コンセプトを検討した。本発明者らは、抗PD-L1/PD-1複合体アームおよび抗PD-1アームを含む二重特異性抗体が該分子型コンセプトを満たすと考え、その評価を行った。
(Example 12) Preparation of PD-1 agonist antibody using anti-human PD-L1 / human PD-1 complex antibody The present inventors have prepared the anti-human PD-L1 / human PD-1 complex described above. Based on the body antibody, we investigated further antibody molecular types with stronger agonist activity against PD-1. Specifically, PD-L1 induced PD at the local immunological synapses and TCR microclusters where the endogenous PD-L1 / PD-1 complex is formed and exerts its immunosuppressive regulatory function. We investigated a molecular concept that could further enhance the immunosuppressive signal of -1. The present inventors considered that bispecific antibodies containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm satisfy the molecular type concept, and evaluated them.
 デザインされた二重特異性抗体の元となる抗ヒトPD-1抗体は、実施例9に記載のPD1-17、antibody949(clone 949)、clone 10、PDA0129の4クローンを用いた。表3に、実施例11で示されたこれら抗ヒトPD-1抗体の、ヒトPD-L1のヒトPD-1への結合に対する阻害活性の有無がまとめられている。 As the anti-human PD-1 antibody that is the source of the designed bispecific antibody, the four clones PD1-17, antibody949 (clone949), clone10, and PDA0129 described in Example 9 were used. Table 3 summarizes the presence or absence of inhibitory activity of these anti-human PD-1 antibodies shown in Example 11 against the binding of human PD-L1 to human PD-1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 該二重特異性抗体の元となる抗PD-L1 / PD-1複合体抗体は、実施例7で作製された30クローン(表1)から選択して用いた。表4に、作製された二重特異性抗体における抗PD-1アームおよび抗PD-L1 / PD-1複合体アームの組み合わせのうち、特に後の実施例で用いられた組み合わせを示す。 The anti-PD-L1 / PD-1 complex antibody that is the source of the bispecific antibody was selected from the 30 clones (Table 1) prepared in Example 7 and used. Table 4 shows the combinations of the anti-PD-1 arm and the anti-PD-L1 / PD-1 complex arm in the prepared bispecific antibody, particularly those used in the later examples.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に、上記で作製された抗PD-1アームおよび抗PD-L1 / PD-1複合体アームを含む二重特異性抗体の元となる抗体の重鎖および軽鎖のそれぞれの可変領域および定常領域の配列番号を示す(抗体配列のシグナルペプチドと可変領域との境目については、GENETYX-SV/RCソフトウェア(Ver.15.0.3)のSignal Peptide prediction機能を用いた予測結果に従った。)。 Table 5 shows the variable regions of the heavy and light chains of the antibody that is the source of the bispecific antibody, including the anti-PD-1 arm and anti-PD-L1 / PD-1 complex arm prepared above, and their respective variable regions. The SEQ ID NO: of the constant region is shown (for the boundary between the signal peptide of the antibody sequence and the variable region, the prediction result using the Signal Peptide prediction function of GENETYX-SV / RC software (Ver.15.0.3) was followed.) ..
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例13)抗PD-L1/PD-1複合体アームと抗PD-1アームを含む二重特異性抗体のPD-1シグナル誘導活性の評価(SHP-2リクルートメント)
 抗PD-L1/PD-1複合体アームと抗PD-1アームを含む二重特異性抗体がPD-1シグナルの誘導活性を有するかを、実施例2と同様の手順で、PD-1のシグナル誘導時にPD-1の細胞内ドメインと相互作用する脱リン酸化酵素であるSHP2の近接を指標に評価した。
 アッセイの結果を図9に示す。抗PD-L1/PD-1複合体アームと抗PD-1アームを含む二重特異性抗体がSHP2リクルートメントを誘導する活性、すなわちPD-1シグナルの誘導活性を有することが示された。特にantibody949 (clone 949)およびPDA0129といったPD-1とPD-L1との結合を阻害しない特性を有する抗PD-1抗体由来のアームを用いた二重特異性抗体を使うと、SHP2リクルートメントの誘導活性が顕著に高いことが分かった。
(Example 13) Evaluation of PD-1 signal-inducing activity of bispecific antibody containing anti-PD-L1 / PD-1 complex arm and anti-PD-1 arm (SHP-2 recruitment)
Whether the bispecific antibody containing the anti-PD-L1 / PD-1 complex arm and the anti-PD-1 arm has the inducing activity of PD-1 signal is determined by the same procedure as in Example 2 of PD-1. The proximity of SHP2, a dephosphorylating enzyme that interacts with the intracellular domain of PD-1 during signal induction, was used as an index.
The results of the assay are shown in FIG. It was shown that bispecific antibodies containing anti-PD-L1 / PD-1 complex arm and anti-PD-1 arm have the activity of inducing SHP2 recruitment, that is, the activity of inducing PD-1 signal. In particular, bispecific antibodies using arms derived from anti-PD-1 antibodies, such as antibody 949 (clone 949) and PDA0129, which do not inhibit the binding of PD-1 to PD-L1, can be used to induce SHP2 recruitment. It was found that the activity was remarkably high.
(実施例14)NFAT活性の抑制を指標としたPD-1シグナル誘導活性の評価
 抗PD-L1/PD-1複合体アームと抗PD-1アームを含む二重特異性抗体によって誘導されるPD-1シグナルが免疫抑制性の機能を有するかを、免疫活性化を担うT細胞受容体シグナルの下流で働く転写因子NFATの活性を指標に評価した。PD-1/PD-L1 Blockade Bioassayシステム(Promega)を用い、NFAT response element下流でLuciferaseの発光反応が起こることを利用して評価を行った。本アッセイではPD-L1 aAPC/CHO-K1細胞上のTCR stimulatorがPD-1 Effector Cell上のTCRの活性化シグナルを誘導することで、NFAT活性化が起こりレポーター遺伝子であるLuciferaseの発光が観察されるが、PD-L1によるPD-1シグナルの誘導によってNFATの活性化はほぼ完全に抑えられている。ところが、PD-L1阻害抗体の添加によってPD-1シグナル誘導が阻害されるとNFAT活性化が起こる。本発明者らは事前に本アッセイにおいてはPD-L1阻害抗体であるYW243.55S70を添加する最終濃度を40ng/mLにした時に約30%のPD-L1阻害がかかることを見出し、その条件下において二重特異性抗体がNFAT活性化の抑制を誘導するかを評価した。
(Example 14) Evaluation of PD-1 signal-inducing activity using suppression of NFAT activity as an index PD induced by a bispecific antibody containing an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm Whether the -1 signal has an immunosuppressive function was evaluated using the activity of the transcription factor NFAT, which acts downstream of the T cell receptor signal responsible for immune activation, as an index. Using the PD-1 / PD-L1 Blockade Bioassay system (Promega), evaluation was performed using the fact that the luminescence reaction of Luciferase occurs downstream of the NFAT response element. In this assay, the TCR stimulator on PD-L1 aAPC / CHO-K1 cells induces the activation signal of TCR on PD-1 Effector Cell, which causes NFAT activation and luminescence of the reporter gene Luciferase is observed. However, the activation of NFAT is almost completely suppressed by the induction of PD-1 signal by PD-L1. However, when PD-1 signal induction is inhibited by the addition of PD-L1 inhibitory antibody, NFAT activation occurs. The present inventors have previously found that in this assay, PD-L1 inhibition of about 30% is applied when the final concentration at which the PD-L1 inhibitory antibody YW243.55S70 is added is 40 ng / mL. In, it was evaluated whether the bispecific antibody induces the suppression of NFAT activation.
 反応はRound well 384 Well White Flat Bottom Polystyrene TC-Treated Microplate(Corning, 3826)を用いて行った。まずPD-L1 aAPC/CHO-K1細胞を2.5 x 105 細胞/mLに調製したものを30μL/wellで添加して37℃の5% CO2の条件で一晩インキュベートして付着させ、その後培養上清を除去した後にYW243.55S70の最終濃度が40ng/mLとなるように各濃度の二重特異性抗体と混合した抗体溶液を10μL/wellで添加した。室温で15分間静置した後に、PD-1 Effector Cellを4.6875 x 105 細胞/mLに調製したものを10μL/wellで添加して37℃の5% CO2の条件にて6時間インキュベートした。Bio-Glo Luciferase Assay System(Prmega, G7940)のLuciferase基質溶液を20μL/wellにて添加して室温で5分間静置した後にLuciferaseの発光をマイクロプレートリーダーEnVision Xcite(PerkinElmer)にて測定した。 The reaction was carried out using a Round well 384 Well White Flat Bottom Polystyrene TC-Treated Microplate (Corning, 3826). First, PD-L1 aAPC / CHO-K1 cells prepared to 2.5 x 10 5 cells / mL were added at 30 μL / well, incubated overnight at 37 ° C at 5% CO 2 , and then adhered, and then cultured. After removing the supernatant, an antibody solution mixed with bispecific antibody of each concentration was added at 10 μL / well so that the final concentration of YW243.55S70 was 40 ng / mL. After allowing to stand at room temperature for 15 minutes, PD-1 Effector Cell prepared to 4.6875 x 10 5 cells / mL was added at 10 μL / well and incubated at 37 ° C. under 5% CO 2 conditions for 6 hours. The Luciferase substrate solution of the Bio-Glo Luciferase Assay System (Prmega, G7940) was added at 20 μL / well and allowed to stand at room temperature for 5 minutes, and then the luciferase emission was measured with a microplate reader EnVision Xcite (PerkinElmer).
 図10に評価の結果が示される。作製された抗PD-L1/PD-1複合体アームおよび抗PD-1アームを含む二重特異性抗体は、前述のNanoBRET(登録商標)を使用したSHP-2リクルートメントアッセイ系で確認されたSHP2リクルートメント活性を有するだけでなく、本アッセイにより示されたようにNFAT活性を抑制する機能を有することも確認された。 The result of the evaluation is shown in FIG. The generated bispecific antibody containing the anti-PD-L1 / PD-1 complex arm and the anti-PD-1 arm was confirmed in the SHP-2 recruitment assay system using NanoBRET® described above. It was confirmed that not only has SHP2 recruitment activity, but also has a function of suppressing NFAT activity as shown by this assay.
(実施例15)各分子型コンセプトのデザインおよび各アームの機能、ならびにそれらの作用機序
 上述の実施例で検討されたPD-1アゴニスト抗体の具体的な抗体分子のデザインおよび各アームの機能を図11に、推定された作用機序を図12に示す。
 抗ヒトPD-L1 / ヒトPD-1複合体抗体(図11上および図12左)の両アームは、免疫シナプスへのターゲッティング機能に加えてPD-L1のPD-1への相互作用を増強する機能を有することにより、実施例10で示されたようなPD-1に対するアゴニスト作用を発揮すると推定された。この作用機序は、PD-L1のPD-1への相互作用を増強し得る抗複合体抗体だけでなく、他の共抑制分子リガンドの他の共抑制分子への相互作用を増強し得る抗複合体抗体にも適用され得る。
 抗PD-L1/PD-1複合体アームおよび抗PD-1アームを含む二重特異性抗体(図11下および図12右)において、抗PD-L1/PD-1複合体アームは、少なくとも免疫シナプスへのターゲッティング機能を有していればよく、PD-L1のPD-1への相互作用を増強する機能を有していても有していなくてもよい。該二重特異性抗体において、抗PD-1アームは、PD-1に対するアゴニスト作用を発揮すると推定された。この作用機序は、PD-L1のPD-1への相互作用を増強し得る抗複合体アームだけでなく、他の共抑制分子リガンドの他の共抑制分子への相互作用を増強し得る抗複合体アームにも適用され得る。
(Example 15) Design of each molecular type concept and function of each arm, and mechanism of action thereof Specific antibody molecule design of PD-1 agonist antibody and function of each arm examined in the above-mentioned Examples. FIG. 11 shows the estimated mechanism of action in FIG.
Both arms of the anti-human PD-L1 / human PD-1 complex antibody (Fig. 11 top and Fig. 12 left) enhance the interaction of PD-L1 with PD-1 in addition to the targeting function to the immunological synapse. By having a function, it was presumed to exert an agonistic action on PD-1 as shown in Example 10. This mechanism of action is not only an anti-complex antibody capable of enhancing the interaction of PD-L1 with PD-1, but also an anti-complex antibody capable of enhancing the interaction of other co-suppressing molecular ligands with other co-suppressing molecules. It can also be applied to complex antibodies.
In a bispecific antibody comprising an anti-PD-L1 / PD-1 complex arm and an anti-PD-1 arm (bottom of FIG. 11 and right of FIG. 12), the anti-PD-L1 / PD-1 complex arm is at least immune. It suffices to have a synapse targeting function, and may or may not have a function of enhancing the interaction of PD-L1 with PD-1. In the bispecific antibody, the anti-PD-1 arm was presumed to exert an agonistic effect on PD-1. This mechanism of action is not only an anti-complex arm that can enhance the interaction of PD-L1 with PD-1, but also an anti that can enhance the interaction of other co-suppressing molecular ligands with other co-suppressing molecules. It can also be applied to complex arms.
(実施例16)抗ヒトPD-L1/ヒトPD-1複合体抗体の作製
 実施例7で作製された抗ヒトPD-L1/ヒトPD-1複合体タンパク質抗体の重鎖定常領域をG1T7P(配列番号:114)に置き換えられた抗体の遺伝子が、当業者公知の方法で作製された。
 抗体は作製されたそれをコードする遺伝子を用いて当業者公知の方法で哺乳動物細胞に一過性に発現され、必要に応じて当業者公知の方法により精製された。発現に使用された各抗体の重鎖可変領域、重鎖定常領域、軽鎖可変領域、および軽鎖定常領域の組み合わせは、表6に示される。
(Example 16) Preparation of anti-human PD-L1 / human PD-1 complex antibody G1T7P (sequence) of the heavy chain constant region of the anti-human PD-L1 / human PD-1 complex protein antibody prepared in Example 7 The gene for the antibody replaced with No .: 114) was produced by a method known to those skilled in the art.
The antibody was transiently expressed in mammalian cells by a method known to those skilled in the art using the generated gene encoding the antibody, and was purified by a method known to those skilled in the art as necessary. The combinations of heavy chain variable region, heavy chain constant region, light chain variable region, and light chain constant region of each antibody used for expression are shown in Table 6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(実施例17)抗ヒトPD-L1/ヒトPD-1複合体抗体の結合特異性評価
 実施例16で作製された抗ヒトPD-L1/ヒトPD-1複合体タンパク質抗体のヒトPD-1, ヒトPD-L1およびこれらの混合物に対する結合活性が、Octet HTX (Molecular Devies) を用いて評価された。
 アッセイバッファーとして50 mM リン酸, 150 mM NaCl, 0.05w/v% P20, pH 7.4が用いられ、30℃にて評価が実施された。抗体を捕捉するバイオセンサーとしてはProtein A Biosensor (ForteBio, Cat. 18-05010、以降Pro Aバイオセンサーと記す) を使用した。アッセイバッファーで調製した抗体溶液をこのPro Aバイオセンサーに相互作用させることで、抗体が約2.5 nm捕捉された。本測定に用いたヒトPD-1およびヒトPD-L1は実施例4および実施例5に記載の手法で調製された。ヒトPD-1またはヒトPD-L1との結合測定では各抗原の最終濃度が1000nMとなるように、ヒトPD-1とヒトPD-L1混合物への結合測定では、ヒトPD-1とヒトPD-L1それぞれが最終濃度1000nMとなるようにアッセイバッファーで希釈され、バイオセンサー上に捕捉させた抗体に結合させた。チップは10 mM Glycine-HCl (pH 1.5) を用いて再生され、繰り返し抗体を捕捉して測定が行われた。各抗体の各抗原に対する解離定数 (KD) は、Data Analysis HT 10.0 を用いて算出された。具体的には、測定により得られたセンサーグラムを1:1 binding modelでfittingさせることで結合速度定数ka (L/mol/s)、解離速度定数kdis (1/s) が算出され、その値から解離定数KD (mol/L) が算出された。また、各抗体の各抗原に対する結合活性は、Data Analysis HT 12.0 を用いて各抗体の捕捉量(nm)および抗原に対する結合量(nm)が算出された。この結合量(nm)からブランクの結合量(nm)を除した後、捕捉量(nm)で割ることにより各抗体の単位抗体量あたりの抗原結合量が算出された。
 得られた結合データを表7および表8に示す。各抗体がPD-L1/PD-1複合体に対して高い結合選択性を有することが確認された。
(Example 17) Evaluation of binding specificity of anti-human PD-L1 / human PD-1 complex antibody Human PD-1, of the anti-human PD-L1 / human PD-1 complex protein antibody prepared in Example 16 Binding activity to human PD-L1 and mixtures thereof was assessed using Octet HTX (Molecular Devies).
Evaluation was performed at 30 ° C. using 50 mM phosphoric acid, 150 mM NaCl, 0.05 w / v% P20, pH 7.4 as assay buffer. A Protein A Biosensor (ForteBio, Cat. 18-05010, hereinafter referred to as Pro A biosensor) was used as a biosensor for capturing the antibody. By interacting the antibody solution prepared in the assay buffer with this Pro A biosensor, the antibody was captured at approximately 2.5 nm. Human PD-1 and human PD-L1 used in this measurement were prepared by the methods described in Examples 4 and 5. Human PD-1 and human PD- Each L1 was diluted with assay buffer to a final concentration of 1000 nM and bound to the antibody captured on the biosensor. The chips were regenerated with 10 mM Glycine-HCl (pH 1.5) and the antibody was repeatedly captured and measured. The dissociation constant (K D ) for each antigen of each antibody was calculated using Data Analysis HT 10.0. Specifically, the binding rate constant k a (L / mol / s) and the dissociation rate constant k dis (1 / s) are calculated by fitting the sensorgrams obtained by the measurement with a 1: 1 binding model. The dissociation constant K D (mol / L) was calculated from that value. For the binding activity of each antibody to each antigen, the capture amount (nm) and the binding amount to the antigen (nm) of each antibody were calculated using Data Analysis HT 12.0. After dividing the blank binding amount (nm) from this binding amount (nm), the antigen binding amount per unit antibody amount of each antibody was calculated by dividing by the capture amount (nm).
The obtained join data is shown in Tables 7 and 8. It was confirmed that each antibody has high binding selectivity for PD-L1 / PD-1 complex.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例18)抗ヒトPD-L1/ヒトPD-1複合体抗体Fab断片、ヒトPD-L1細胞外ドメイン およびヒトPD-1細胞外ドメイン複合体のX線結晶構造解析によるエピトープ同定 
 抗ヒトPD-L1/ヒトPD-1複合体抗体LPB0010HCb-G1T7P/LPB0010LCb-k0MTCのFab断片(本明細書において「LPB0010 Fab」と称する。)を調製するために、実施例16で作製されたLPB0010全長抗体が、Endoproteinase Lys-C(Roche) により35 ℃で2時間消化された後、Fc断片除去や高純度化のため、HiTrap(登録商標) MabSelect(登録商標) SuReカラム(GE Healthcare)、HiTrap(登録商標)SP HP カラム(GE Healthcare)およびHiLoad 16/600 Superdex (登録商標) 75 pg (GE Healthcare)を用いて、AKTAxpress(商標)装置(GE Healthcare)にて精製された。
(Example 18) Epitope identification by X-ray crystal structure analysis of anti-human PD-L1 / human PD-1 complex antibody Fab fragment, human PD-L1 extracellular domain and human PD-1 extracellular domain complex
LPB0010 prepared in Example 16 to prepare a Fab fragment of the anti-human PD-L1 / human PD-1 complex antibody LPB0010HCb-G1T7P / LPB0010LCb-k0MTC (referred to herein as "LPB0010 Fab"). Full-length antibody is digested with Endoproteinase Lys-C (Roche) at 35 ° C for 2 hours, then HiTrap® MabSelect® SuRe Column (GE Healthcare), HiTrap for Fc fragment removal and purification. Purified on an AKTAxpress ™ device (GE Healthcare) using SP HP column (GE Healthcare) and HiLoad 16/600 Superdex® 75 pg (GE Healthcare).
 精製されたLPB0010 Fabは、結晶化用の複合体サンプルを調製するために、実施例4と実施例5の手法でそれぞれ調製されたヒトPD-L1細胞外ドメインタンパク質(以下「hPD-L1_ECD」ともいう。)およびヒトPD-1細胞外ドメインタンパク質(以下「hPD-1_ECD」ともいう。)と約1:1:1 のモル比で混合された後、Superdex(登録商標)200 increase 10/300 GL(GE Healthcare)を用いたゲル濾過クロマトグラフィーによりAKTApurifier(商標)10 装置(GE Healthcare)にて精製された。分取された複合体画分は、Protein Deglycosylation Mix II (New England Biolabs)により37 ℃で4日間脱糖鎖された後に、20 mM HEPES 緩衝液pH 7.1、100 mM sodium chlorideで平衡化したSuperdex(登録商標)200 increase 10/300 GL (GE Healthcare)を用いて、AKTApurifier(商標)10 装置 (GE Healthcare)にて精製された。 The purified LPB0010Fab is also referred to as a human PD-L1 extracellular domain protein (hereinafter referred to as "hPD-L1_ECD") prepared by the methods of Example 4 and Example 5 in order to prepare a complex sample for crystallization. ) And human PD-1 extracellular domain protein (hereinafter also referred to as “hPD-1_ECD”) in a molar ratio of about 1: 1: 1 and then Superdex® 200 increases 10/300 GL. Purified by AKTApurifier ™ 10 device (GEHealthcare) by gel filtration chromatography using (GEHealthcare). The fractionated complex fraction was desglycanized with Protein Deglycosylation Mix II (New England Biolabs) at 37 ° C for 4 days, and then equilibrated with 20 mM HEPES buffer pH 7.1, 100 mM sodium chloride (Superdex). Purified with AKTApurifier (trademark) 10 device (GE Healthcare) using 200 increases 10/300 GL (GE Healthcare).
 調製された複合体は限外濾過膜を用いて11 mg/mLまで濃縮され、マイクロシーディング法と組み合わせた、20℃でのシッティングドロップ蒸気拡散法により結晶化した。結晶化のためのリザーバー溶液は、20% (w/v) polyethylene glycol 3350、0.2 M magnesium sulfate hydrateから成るものであった。リザーバー溶液に終濃度25% (v/v)のethylene glycolを添加した溶液に短時間浸けられた結晶は、液体窒素中で凍結された。 The prepared complex was concentrated to 11 mg / mL using an ultrafiltration membrane and crystallized by the sitting drop vapor diffusion method at 20 ° C in combination with the microseeding method. The reservoir solution for crystallization consisted of 20% (w / v) polyethylene glycol 3350 and 0.2 M magnesium sulfate hydrate. Crystals soaked in a reservoir solution supplemented with 25% (v / v) ethylene glycol for a short time were frozen in liquid nitrogen.
 回折イメージは、放射光施設SPring-8のビームラインBL45XUにて温度100Kで収集され、AutoPROC(Global Phasing Ltd.)プログラムによる処理により、分解能1.80 Åまでの回折強度データが得られた。データ収集の統計値が、表9に示される。 Diffraction images were collected at a temperature of 100 K at the beamline BL45XU of the synchrotron radiation facility SPring-8, and diffraction intensity data with a resolution of up to 1.80 Å was obtained by processing with the AutoPROC (Global Phaseing Ltd.) program. Data collection statistics are shown in Table 9.
 得られたX線回折強度データを用いて、Phaser(J. Appl. Cryst. 40: 658-674 (2007) )プログラムを用いた分子置換法を実施し、初期構造が決定された。LPB0010 Fabのサーチモデルとして社内の別抗体の結晶構造データが、hPD-L1_ECD / hPD-1_ECDのサーチモデルとしてPDB ID=4ZQK(Structure 23: 2341-2348 (2015) )が、それぞれ使用された。その後、Coot(Acta Cryst. D66: 486-501 (2010) )、Refmac5(Acta Cryst. D67: 355-467 (2011) )とBuster version 2.11.8(Global Phasing Ltd.)プログラムを用いたモデル構築と精密化が繰り返され、最終的な精密化座標が得られた。精密化の統計値が表9に示される。 Using the obtained X-ray diffraction intensity data, a molecular replacement method using the Phaser (J. Appl. Cryst. 40: 658-674 (2007)) program was carried out, and the initial structure was determined. Crystal structure data of another antibody in the company was used as the search model for LPB0010Fab, and PDBID = 4ZQK (Structure23: 2341-2348 (2015)) was used as the search model for hPD-L1_ECD / hPD-1_ECD. After that, model construction using Coot (ActaCryst. D66: 486-501 (2010)), Refmac5 (ActaCryst. D67: 355-467 (2011)) and Buster version 2.11.8 (Global Phaseing Ltd.) program The refinement was repeated and the final refined coordinates were obtained. The refinement statistics are shown in Table 9.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図13に示される通り、LPB0010 Fabは重鎖と軽鎖の両方で、hPD-L1_ECD / hPD-1_ECD複合体に、1:1の比で結合する。図14と図15には、LPB0010 Fabのエピトープマッピングを、それぞれ、hPD-L1_ECD / hPD-1_ECDの結晶構造上とアミノ酸配列上に示す。LPB0010 Fabのいずれかの原子から4.5Å以内の距離に位置している原子を1個以上含むアミノ酸が、エピトープとしてマッピングされている。これらの結果から、LPB0010 Fab が、hPD-L1_ECD とhPD-1_ECDの両方の分子を、アミノ酸配列上の複数の領域によって認識していることが分かり、LPB0010 FabがhPD-L1_ECD / hPD-1_ECD複合体としての立体構造をエピトープとすることが明らかとなった。図13と図14はPyMOL Version 2.3(Schrodinger, LLC.)ソフトウエアを用いて作成された。 As shown in FIG. 13, LPB0010Fab binds to the hPD-L1_ECD / hPD-1_ECD complex in both heavy and light chains in a 1: 1 ratio. 14 and 15 show the epitope mapping of LPB0010Fab on the crystal structure and amino acid sequence of hPD-L1_ECD / hPD-1_ECD, respectively. Amino acids containing one or more atoms located within 4.5 Å of any atom in LPB0010Fab are mapped as epitopes. From these results, it was found that LPB0010Fab recognizes both hPD-L1_ECD and hPD-1_ECD molecules by multiple regions on the amino acid sequence, and LPB0010Fab recognizes the hPD-L1_ECD / hPD-1_ECD complex. It was clarified that the three-dimensional structure as an epitope is used as an epitope. 13 and 14 were created using PyMOL Version 2.3 (Schrodinger, LLC.) Software.
 補足として、結晶化に用いたhPD-L1_ECDの発現領域は、実施例5に示される通りアミノ酸番号F19-R238であるにもかかわらず、結晶構造ではK136以降(Ig-C様ドメインへと続く。)は電子密度マップが見えていない。そのためhPD-L1のIg-C様ドメインのモデル構築がされていないが、K136以降のアミノ酸はLPB0010 Fabの結合部位と反対方向に伸びるため、LPB0010 Fabのエピトープには含まれないと考えられる。 As a supplement, although the expression region of hPD-L1_ECD used for crystallization is amino acid number F19-R238 as shown in Example 5, the crystal structure continues after K136 (Ig-C-like domain). ) Does not see the electron density map. Therefore, a model of the Ig-C-like domain of hPD-L1 has not been constructed, but since the amino acids after K136 extend in the direction opposite to the binding site of LPB0010Fab, it is considered that they are not included in the epitope of LPB0010Fab.
(実施例19)抗ヒトPD-L1 / ヒトPD-1複合体抗体Fab断片、ヒトPD-L1細胞外ドメイン およびヒトPD-1細胞外ドメイン複合体のネガティブ染色電子顕微鏡解析によるエピトープ評価
 抗ヒトPD-L1/ヒトPD-1複合体抗体LPB0010HCb-G1T7P/LPB0010LCb-k0MTCのFab断片(LPB0010 Fab)、およびLPC0039HCd-G1T7P/LPC0039LCd-k0MTCのFab断片(本明細書において「LPC0039 Fab」と称する。)を調製するために、実施例16で作製されたLPB0010HCb-G1T7P/LPB0010LCb-k0MTCおよびLPC0039HCd-G1T7P/LPC0039LCd-k0MTC全長抗体が、Endoproteinase Lys-C (Roche) により35 ℃で2時間消化された後、Fc断片除去や高純度化のため、HiTrap(登録商標) MabSelect(登録商標) SuReカラム(GE Healthcare)、HiTrap (登録商標)SP HP カラム(GE Healthcare)、およびHiLoad 16/600 Superdex (登録商標) 75 pg (GE Healthcare)を用いて、AKTAxpress(商標)装置(GE Healthcare)にて精製された。
(Example 19) Epitope evaluation by negative staining electron microscopic analysis of anti-human PD-L1 / human PD-1 complex antibody Fab fragment, human PD-L1 extracellular domain and human PD-1 extracellular domain complex Anti-human PD -L1 / human PD-1 complex antibody LPB0010HCb-G1T7P / LPB0010LCb-k0MTC Fab fragment (LPB0010 Fab) and LPC0039HCd-G1T7P / LPC0039LCd-k0MTC Fab fragment (referred to as "LPC0039 Fab" in the present specification). To prepare, LPB0010HCb-G1T7P / LPB0010LCb-k0MTC and LPC0039HCd-G1T7P / LPC0039LCd-k0MTC full-length antibodies prepared in Example 16 were digested with Endoproteinase Lys-C (Roche) at 35 ° C for 2 hours and then Fc. HiTrap® MabSelect® SuRe Column (GE Healthcare), HiTrap® SP HP Column (GE Healthcare), and HiLoad 16/600 Superdex® 75 for fragment removal and purification. Purified on an AKTAxpress ™ device (GE Healthcare) using pg (GE Healthcare).
 精製されたLPB0010 Fabは、実施例4と実施例5の手法でそれぞれ調製されたhPD-1_ECDおよびhPD-L1_ECDと約1:1:1 のモル比で混合された後、25 mM HEPES 緩衝液pH 7.1、100 mM sodium chlorideで平衡化したSuperdex (登録商標)200 increase 10/300 GL (GE Healthcare)を用いたゲル濾過クロマトグラフィーによりAKTApurifier(商標)10 装置 (GE Healthcare)にて精製された。ネガティブ染色電子顕微鏡解析用サンプルとして、LPB0010 FabとhPD-L1_ECD / hPD-1_ECDの複合体画分が回収された。 The purified LPB0010Fab is mixed with hPD-1_ECD and hPD-L1_ECD prepared by the methods of Example 4 and Example 5 in a molar ratio of about 1: 1: 1, and then 25 mM HEPES buffer pH. It was purified by AKTApurifier (trademark) 10 device (GE Healthcare) by gel filtration chromatography using Superdex (registered trademark) 200 increases 10/300 GL (GE Healthcare) equilibrated with 7.1, 100 mM sodium chloride. A complex fraction of LPB0010Fab and hPD-L1_ECD / hPD-1_ECD was recovered as a sample for negative staining electron microscope analysis.
 精製されたLPC0039 Fabは、実施例6の手法で調製されたジスルフィド結合導入型ヒトPD-L1 / ヒトPD-1複合体タンパク質S-S complex#2(以下「hPD-L1_ECD / hPD-1_ECD S-S complex#2」ともいう。)と約1:1 のモル比で混合された後、25 mM HEPES 緩衝液pH 7.1、100 mM sodium chlorideで平衡化したSuperdex(登録商標)200 increase 10/300 GL (GE Healthcare)を用いたゲル濾過クロマトグラフィーによりAKTApurifier(商標)10 装置 (GE Healthcare)にて精製された。ネガティブ染色電子顕微鏡解析用サンプルとして、LPC0039 FabとhPD-L1_ECD / hPD-1_ECD S-S complex#2の複合体画分が回収された。 The purified LPC0039Fab is a disulfide bond-introduced human PD-L1 / human PD-1 complex protein SS complex # 2 (hereinafter referred to as “hPD-L1_ECD / hPD-1_ECD SS complex # 2”) prepared by the method of Example 6. Superdex® 200 increment 10/300 GL (GE Healthcare), which was mixed with 25 mM HEPES buffer pH 7.1, 100 mM sodium chloride and then equilibrated with a molar ratio of about 1: 1. Purified by gel filtration chromatography using AKTApurifier ™ 10 device (GE Healthcare). As a sample for negative staining electron microscope analysis, a complex fraction of LPC0039Fab and hPD-L1_ECD / hPD-1_ECD S-S complex # 2 was recovered.
 精製されたLPB0010 FabとhPD-L1_ECD / hPD-1_ECDの複合体(濃度約0.5 mg/mL)およびLPC0039 FabとhPD-L1_ECD / hPD-1_ECD S-S complex#2の複合体(濃度約1.0 mg/mL)は、25 mM HEPES 緩衝液pH 7.1、100 mM sodium chlorideにて、それぞれ、40倍および50倍に希釈され、ネガティブ染色電子顕微鏡のサンプルとして、支持膜付きグリッドCu150(日本電子株式会社)上にアプライされた。アプライされたサンプルは2% (w/v) 酢酸ウラニルでネガティブ染色され、室温にて120 kVで稼働したJEM-1400plus(日本電子株式会社)電子顕微鏡により、倍率60,000倍、ピクセルサイズ3.058Å/pixelの条件で写真が撮影された(日本電子株式会社)。 Purified LPB0010Fab and hPD-L1_ECD / hPD-1_ECD complex (concentration approx. 0.5 mg / mL) and LPC0039Fab and hPD-L1_ECD / hPD-1_ECD SS complex # 2 complex (concentration approx. 1.0 mg / mL) Is diluted 40-fold and 50-fold with 25 mM HEPES buffer pH 7.1 and 100 mM sodium chloride, respectively, and applied on a grid Cu150 with a support film (Nippon Denshi Co., Ltd.) as a sample of a negative-stained electron microscope. Was done. The applied sample was negatively stained with 2% (w / v) uranyl acetate, and was operated at 120 kV at room temperature with a JEM-1400plus (JEOL Ltd.) electron microscope at a magnification of 60,000 times and a pixel size of 3.058 Å / pixel. The photo was taken under the conditions of (JEOL Ltd.).
 収集された画像から、EMAN2(J Struct Biol.157:38-46 (2007) )ソフトウェアスイートとRELION(J Mol Biol.415(2):406-418.(2012) )プログラムにより、それぞれ、粒子のピッキングと2次元平均化像の分類が実施された。 From the collected images, the EMAN2 (J Struct Biol. 157: 38-46 (2007)) software suite and the RELION (J Mol Biol.415 (2): 406-418. (2012)) program, respectively, of the particles Picking and classification of two-dimensional averaged images were performed.
 図16Aは、LPB0010 FabとhPD-L1_ECD / hPD-1_ECDの複合体の5種類の代表的な2次元平均像を示す。各平均像において、LPB0010 Fab、PD-L1およびPD-1の各分子を形状から識別することが可能であった(図中に分子名がラベルされている。)。この結果から、LPB0010は、PD-L1とPD-1の相互作用界面(No.1とNo.4に矢印で示す領域)に結合していることが分かる。従って、LPB0010 FabはPD-L1とPD-1の両方の分子をエピトープとして認識していると考えられ、これは実施例18に示されるようなX線結晶構造解析の結果と一致する。 FIG. 16A shows five typical two-dimensional average images of the complex of LPB0010Fab and hPD-L1_ECD / hPD-1_ECD. In each average image, it was possible to distinguish each molecule of LPB0010Fab, PD-L1 and PD-1 from the shape (the molecule name is labeled in the figure). From this result, it can be seen that LPB0010 is bound to the interaction interface between PD-L1 and PD-1 (the region indicated by the arrow in No. 1 and No. 4). Therefore, LPB0010Fab is considered to recognize both PD-L1 and PD-1 molecules as epitopes, which is consistent with the results of X-ray crystallography as shown in Example 18.
 さらに、各平均像について、LPB0010 FabとhPD-L1_ECD / hPD-1_ECDの複合体のX線結晶構造(実施例18)との対応が確認された。本結晶構造中に欠如しているhPD-L1_Ig-C様ドメインを補うために、既報のPD-L1構造(PDB ID=4Z18, Fedorov, A.A. et al. (2015) )とアミノ酸番号F19からN135で重ね合わせて作成したモデル構造が使用された。図16Bは、作成した立体構造モデルを、図16Aの2次元平均化の各クラスの像に対応するように、様々な方向から見た図である。これにより、ネガティブ染色電子顕微鏡解析の結果が、X線結晶構造解析の結果と一致することが明確に分かる。 Furthermore, it was confirmed that each average image corresponds to the X-ray crystal structure (Example 18) of the complex of LPB0010Fab and hPD-L1_ECD / hPD-1_ECD. In order to supplement the hPD-L1_Ig-C-like domain lacking in this crystal structure, the previously reported PD-L1 structure (PDB ID = 4Z18, Fedorov, AA et al. (2015)) and amino acid numbers F19 to N135 The model structure created by superimposing was used. FIG. 16B is a view of the created three-dimensional structure model viewed from various directions so as to correspond to the images of each class of the two-dimensional averaging of FIG. 16A. From this, it can be clearly seen that the result of the negative staining electron microscope analysis is in agreement with the result of the X-ray crystal structure analysis.
 また、LPB0010 Fabと実施例6の手法で調製されたリンカー融合型ヒトPD-L1 / ヒトPD-1複合体Linker complex#1(hPD-L1_Ig-C様ドメインがコンストラクトに含まれない)との複合体のネガティブ染色電子顕微鏡解析でも同様に、LPB0010 FabがPD-L1とPD-1の両方の分子をエピトープとして認識していることを示す結果が得られた(データは省略される。)。 In addition, the combination of LPB0010Fab and the linker-fused human PD-L1 / human PD-1 complex Linker complex # 1 (hPD-L1_Ig-C-like domain is not included in the construct) prepared by the method of Example 6). Negative staining of the body Electron microscopic analysis also provided results showing that LPB0010Fab recognizes both PD-L1 and PD-1 molecules as epitopes (data omitted).
 図17は、LPC0039 FabとhPD-L1_ECD / hPD-1_ECD S-S complex #2(hPD-L1_Ig-C様ドメインがコンストラクトに含まれない)の複合体の5種類の代表的な2次元平均像を示す。各平均像において、LPC0039 FabとhPD-L1 / hPD-1複合体の各分子を形状から識別することが可能であった(図中に分子名がラベルされている。ただし、PD-L1とPD-1との識別はできない。)。この結果から、LPC0039 Fabが、LPB0010 Fabと同様に、PD-L1とPD-1の相互作用界面(No.4に矢印で示す領域)に結合していることが分かる。従って、LPC0039 FabもPD-L1とPD-1の両方の分子をエピトープとして認識していると考えられる。 FIG. 17 shows five typical two-dimensional average images of a complex of LPC0039Fab and hPD-L1_ECD / hPD-1_ECD S-S complex # 2 (hPD-L1_Ig-C-like domain is not included in the construct). In each average image, it was possible to distinguish each molecule of the LPC0039Fab and hPD-L1 / hPD-1 complex from the shape (the molecule name is labeled in the figure, but PD-L1 and PD). It cannot be distinguished from -1.) From this result, it can be seen that LPC0039Fab is bound to the interaction interface between PD-L1 and PD-1 (the region indicated by the arrow in No. 4), similar to LPB0010Fab. Therefore, it is considered that LPC0039Fab also recognizes both PD-L1 and PD-1 molecules as epitopes.

Claims (15)

  1.  第1の抗原結合ドメインを含む抗原結合分子であって、
    前記第1の抗原結合ドメインが第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体に特異的に結合し得る、抗原結合分子。
    An antigen-binding molecule containing a first antigen-binding domain.
    An antigen-binding molecule in which the first antigen-binding domain can specifically bind to a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule.
  2.  前記第1の抗原結合ドメインの前記第1の複合体への特異的結合が前記第1の複合体中の前記第1の共抑制分子および前記第1の共抑制分子リガンドのいずれか一方または両方との分子間力による結合である、請求項1に記載の抗原結合分子。 The specific binding of the first antigen-binding domain to the first complex is either or both of the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. The antigen-binding molecule according to claim 1, which is an intermolecular force binding to the molecule.
  3.  第1の抗原結合ドメインを含む抗原結合分子であって、
    前記第1の抗原結合ドメインが第1の共抑制分子および前記第1の共抑制分子に対する第1の共抑制分子リガンドからなる第1の複合体に結合し得、そして
    前記第1の抗原結合ドメインの前記第1の複合体への結合活性が、前記第1の複合体を形成していない第1の共抑制分子および前記第1の複合体を形成していない第1の共抑制分子リガンドのいずれか一方または両方への結合活性よりも高い、抗原結合分子。
    An antigen-binding molecule containing a first antigen-binding domain.
    The first antigen-binding domain may bind to a first complex consisting of a first co-suppressing molecule and a first co-suppressing molecular ligand for the first co-suppressing molecule, and said first antigen-binding domain. The binding activity to the first complex of the first co-suppressing molecule that does not form the first complex and the first co-suppressing molecular ligand that does not form the first complex. An antigen-binding molecule that has a higher binding activity to either or both.
  4.  前記第1の抗原結合ドメインの前記第1の複合体への結合が前記第1の複合体中の前記第1の共抑制分子および前記第1の共抑制分子リガンドのいずれか一方または両方との分子間力による結合である、請求項3に記載の抗原結合分子。 The binding of the first antigen-binding domain to the first complex is with one or both of the first co-suppressing molecule and the first co-suppressing molecular ligand in the first complex. The antigen-binding molecule according to claim 3, which is an intermolecular force binding.
  5.  前記結合活性が以下の(a)および(b)のいずれか一方または両方の条件を満たす、請求項3または4に記載の抗原結合分子:
     (a) 前記第1の共抑制分子を強制発現し前記第1の共抑制分子リガンドを強制発現していない第1の細胞を用いたフローサイトメトリーにおいて、前記第1の共抑制分子リガンドの細胞外ドメインを含む第1の可溶型ポリペプチドの存在下における前記第1の抗原結合ドメインの前記第1の細胞への結合活性が、前記第1の可溶型ポリペプチドの非存在下に比べて高い;
     (b) 前記第1の共抑制分子リガンドを強制発現し前記第1の共抑制分子を強制発現していない第2の細胞を用いたフローサイトメトリーにおいて、前記第1の共抑制分子の細胞外ドメインを含む第2の可溶型ポリペプチドの存在下における前記第1の抗原結合ドメインの前記第2の細胞への結合活性が、前記第2の可溶型ポリペプチドの非存在下に比べて高い。
    The antigen-binding molecule according to claim 3 or 4, wherein the binding activity satisfies any one or both of the following (a) and (b):
    (a) In flow cytometry using a first cell that forcibly expresses the first co-suppressing molecule and does not forcibly express the first co-suppressing molecular ligand, the cell of the first co-suppressing molecular ligand. The binding activity of the first antigen-binding domain to the first cell in the presence of the first soluble polypeptide containing the outer domain is higher than that in the absence of the first soluble polypeptide. High;
    (b) In flow cytometry using a second cell forcibly expressing the first co-suppressing molecular ligand and not forcibly expressing the first co-suppressing molecule, extracellular of the first co-suppressing molecule. The binding activity of the first antigen-binding domain to the second cell in the presence of the second soluble polypeptide containing the domain is higher than that in the absence of the second soluble polypeptide. high.
  6.  前記第1の複合体が存在する免疫シナプスにおいて、前記第1の共抑制分子の下流の第1の細胞内シグナルを活性化し得る、請求項1から5のいずれか一項に記載の抗原結合分子。 The antigen-binding molecule according to any one of claims 1 to 5, which can activate a first intracellular signal downstream of the first co-suppressing molecule at the immunological synapse in which the first complex is present. ..
  7.  前記第1の細胞内シグナルの活性化により、T細胞の活性化が抑制され得る、請求項6に記載の抗原結合分子。 The antigen-binding molecule according to claim 6, wherein the activation of T cells can be suppressed by the activation of the first intracellular signal.
  8.  前記免疫シナプスが、MHCと前記共抑制分子リガンドを発現している細胞と、前記共抑制分子を発現している前記T細胞の間に形成されたものである、請求項6または7に記載の抗原結合分子。 6. Antigen binding molecule.
  9.  第1の共抑制分子を発現し前記第1の細胞内シグナルの強度が測定可能な第3の細胞と、抗原非依存的なT細胞受容体アクチベーターおよび前記第1の共抑制分子リガンドを発現する第4の細胞とが互いに接触可能な状態で用いられ、且つ、前記第3の細胞における前記第1の細胞内シグナルが前記第1の共抑制分子リガンドに対する阻害抗体により部分的に抑制されている条件下で行われる、前記第1の細胞内シグナルの強度の測定系において、前記抗原結合分子の存在下における前記第1の細胞内シグナルの前記強度が、前記抗原結合分子の非存在下に比べて高い、請求項6から8のいずれか一項に記載の抗原結合分子。 Expressing the first co-suppressing molecule and measuring the intensity of the first intracellular signal, the third cell, and the antigen-independent T-cell receptor activator and the first co-suppressing molecular ligand. The first intracellular signal in the third cell is partially suppressed by an inhibitory antibody against the first co-suppressing molecular ligand. In the system for measuring the intensity of the first intracellular signal, which is carried out under the above conditions, the intensity of the first intracellular signal in the presence of the antigen-binding molecule is in the absence of the antigen-binding molecule. The antigen-binding molecule according to any one of claims 6 to 8, which is higher than the above.
  10.  T細胞受容体と前記第1の共抑制分子を発現しており、前記T細胞受容体の下流で活性化し得る第2の細胞内シグナルの強度が測定可能であり、前記第1の細胞内シグナルの活性化によって前記第2の細胞内シグナルが抑制され得る第5の細胞と、抗原非依存的なT細胞受容体アクチベーターおよび前記第1の共抑制分子リガンドを発現する第6の細胞とが互いに接触可能な条件下で用いられ、且つ、
    前記第1の共抑制分子リガンドによる前記第5の細胞における前記第2の細胞内シグナルの抑制が前記第1の共抑制分子リガンドに対する阻害抗体により部分的に抑制されている条件下で行われる、前記第2の細胞内シグナルの強度の測定系において、
    前記抗原結合分子の存在下における前記第2の細胞内シグナルの前記強度が、前記抗原結合分子の非存在下に比べて低い、請求項6から9のいずれか一項に記載の抗原結合分子。
    The intensity of the second intracellular signal that expresses the T cell receptor and the first co-suppressive molecule and can be activated downstream of the T cell receptor can be measured, and the first intracellular signal can be measured. A fifth cell in which the second intracellular signal can be suppressed by activation of the above, and a sixth cell expressing the antigen-independent T cell receptor activator and the first co-suppressing molecular ligand. Used under conditions that allow contact with each other, and
    Suppression of the second intracellular signal in the fifth cell by the first co-suppressing molecular ligand is carried out under conditions where it is partially suppressed by an inhibitory antibody against the first co-suppressing molecular ligand. In the second intracellular signal intensity measurement system,
    The antigen-binding molecule according to any one of claims 6 to 9, wherein the intensity of the second intracellular signal in the presence of the antigen-binding molecule is lower than that in the absence of the antigen-binding molecule.
  11.  前記第1の共抑制分子および前記第1の共抑制分子リガンドの組合せが、PD-1およびPD-L1の組合せ、PD-1およびPD-L2の組合せ、BTLAおよびHVEMの組合せ、TIGITおよびCD155の組合せ、TIGITおよびCD112の組合せ、LAG-3およびMHCクラスII分子の組合せ、CTLA4およびCD80の組合せ、CTLA4およびCD86の組合せ、TIM-3およびgalectin-9の組合せ、TIM-3およびphosphatidylserineの組合せ、TIM-3およびCEACAM-1の組合せ、ならびにTIM-3およびHMGB1の組合せからなる群から選択されるいずれか一つである、請求項1から10のいずれか一項に記載の抗原結合分子。 The combination of the first co-suppressing molecule and the first co-suppressing molecular ligand is PD-1 and PD-L1, PD-1 and PD-L2, BTLA and HVEM, TIGIT and CD155. Combination, TIGIT and CD112 combination, LAG-3 and MHC class II molecule combination, CTLA4 and CD80 combination, CTLA4 and CD86 combination, TIM-3 and galectin-9 combination, TIM-3 and phosphatidylserine combination, TIM The antigen-binding molecule according to any one of claims 1 to 10, which is any one selected from the group consisting of a combination of -3 and CEACAM-1 and a combination of TIM-3 and HMGB1.
  12.  前記抗原結合分子が第2の抗原結合ドメインをさらに含む多重抗原結合分子であり、
    前記第2の抗原結合ドメインが、第2の共抑制分子リガンドと第2の複合体を形成し得る第2の共抑制分子に特異的に結合し得る、請求項1から11のいずれか一項に記載の抗原結合分子。
    The antigen-binding molecule is a multiple antigen-binding molecule further comprising a second antigen-binding domain.
    One of claims 1 to 11, wherein the second antigen-binding domain can specifically bind to a second co-suppressing molecule capable of forming a second complex with the second co-suppressing molecular ligand. The antigen-binding molecule according to.
  13.  前記第2の抗原結合ドメインの前記第2の共抑制分子への結合が、前記第2の共抑制分子リガンドの前記第2の共抑制分子への結合と競合しない、請求項12に記載の抗原結合分子。 The antigen according to claim 12, wherein the binding of the second antigen-binding domain to the second co-suppressing molecule does not compete with the binding of the second co-suppressing molecular ligand to the second co-suppressing molecule. Binding molecule.
  14.  前記第2の共抑制分子および前記第2の共抑制分子リガンドの組合せが、PD-1およびPD-L1の組合せ、PD-1およびPD-L2の組合せ、BTLAおよびHVEMの組合せ、TIGITおよびCD155の組合せ、TIGITおよびCD112の組合せ、LAG-3およびMHCクラスII分子の組合せ、CTLA4およびCD80の組合せ、CTLA4およびCD86の組合せ、TIM-3およびgalectin-9の組合せ、TIM-3およびphosphatidylserineの組合せ、TIM-3およびCEACAM-1の組合せ、ならびにTIM-3およびHMGB1の組合せからなる群から選択されるいずれか一つの組合せである、請求項12または13に記載の抗原結合分子。 The combination of the second co-suppressing molecule and the second co-suppressing molecular ligand is PD-1 and PD-L1, PD-1 and PD-L2, BTLA and HVEM, TIGIT and CD155. Combination, TIGIT and CD112 combination, LAG-3 and MHC class II molecule combination, CTLA4 and CD80 combination, CTLA4 and CD86 combination, TIM-3 and galectin-9 combination, TIM-3 and phosphatidylserine combination, TIM The antigen-binding molecule according to claim 12 or 13, which is any one combination selected from the group consisting of a combination of -3 and CEACAM-1 and a combination of TIM-3 and HMGB1.
  15.  前記第1の抗原結合ドメインおよび前記第2の抗原結合ドメインが抗体の可変領域またはその対象抗原への結合性のその断片である、請求項12から14のいずれか一項に記載の抗原結合分子。 The antigen-binding molecule according to any one of claims 12 to 14, wherein the first antigen-binding domain and the second antigen-binding domain are a variable region of an antibody or a fragment thereof that binds to a target antigen thereof. ..
PCT/JP2021/019099 2020-05-20 2021-05-20 Antigen-binding molecule WO2021235509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020088417A JP2023116826A (en) 2020-05-20 2020-05-20 antigen binding molecule
JP2020-088417 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021235509A1 true WO2021235509A1 (en) 2021-11-25

Family

ID=78707934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019099 WO2021235509A1 (en) 2020-05-20 2021-05-20 Antigen-binding molecule

Country Status (2)

Country Link
JP (1) JP2023116826A (en)
WO (1) WO2021235509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819580A (en) * 2022-11-23 2023-03-21 武汉爱博泰克生物科技有限公司 High affinity rabbit monoclonal antibodies to human IL-12 and uses thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266884A (en) * 1997-12-03 1999-10-05 Boehringer Mannheim Corp Complex specific antibody, its production and use
CN107794257A (en) * 2016-08-31 2018-03-13 安诺优达基因科技(北京)有限公司 A kind of construction method in DNA large fragments library and its application
JP2018537950A (en) * 2015-10-02 2018-12-27 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antibody specific for PD1 and TIM3
WO2019014091A1 (en) * 2017-07-10 2019-01-17 Eli Lilly And Company Checkpoint inhibitor bispecific antibodies
JP2019506444A (en) * 2015-12-14 2019-03-07 マクロジェニクス,インコーポレーテッド Dual specificity with immunoreactivity with PD-1 and CTLA-4 and method of using the same
JP2019515252A (en) * 2016-03-15 2019-06-06 ラボラトリー コーポレイション オブ アメリカ ホールディングス Method of evaluating protein interaction between cells
WO2019152642A1 (en) * 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies
JP2020512836A (en) * 2017-04-01 2020-04-30 北京韓美薬品有限公司 Anti-PD-L1 / anti-PD-1 natural antibody structure-like heterodimer bispecific antibody and method for preparing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266884A (en) * 1997-12-03 1999-10-05 Boehringer Mannheim Corp Complex specific antibody, its production and use
JP2018537950A (en) * 2015-10-02 2018-12-27 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antibody specific for PD1 and TIM3
JP2019506444A (en) * 2015-12-14 2019-03-07 マクロジェニクス,インコーポレーテッド Dual specificity with immunoreactivity with PD-1 and CTLA-4 and method of using the same
JP2019515252A (en) * 2016-03-15 2019-06-06 ラボラトリー コーポレイション オブ アメリカ ホールディングス Method of evaluating protein interaction between cells
CN107794257A (en) * 2016-08-31 2018-03-13 安诺优达基因科技(北京)有限公司 A kind of construction method in DNA large fragments library and its application
JP2020512836A (en) * 2017-04-01 2020-04-30 北京韓美薬品有限公司 Anti-PD-L1 / anti-PD-1 natural antibody structure-like heterodimer bispecific antibody and method for preparing the same
WO2019014091A1 (en) * 2017-07-10 2019-01-17 Eli Lilly And Company Checkpoint inhibitor bispecific antibodies
WO2019152642A1 (en) * 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819580A (en) * 2022-11-23 2023-03-21 武汉爱博泰克生物科技有限公司 High affinity rabbit monoclonal antibodies to human IL-12 and uses thereof
CN115819580B (en) * 2022-11-23 2023-09-05 武汉爱博泰克生物科技有限公司 High-affinity rabbit monoclonal antibody aiming at human IL-12 and application thereof

Also Published As

Publication number Publication date
JP2023116826A (en) 2023-08-23

Similar Documents

Publication Publication Date Title
TWI717432B (en) Antibodies and methods of use thereof
TWI597290B (en) Cell injury-inducing therapeutic agent
CN105189561B (en) Bispecific molecules immunoreactive with immune effector cells expressing activating receptors and antigens expressed by virus-infected cells and uses thereof
JP2022024054A (en) Novel monoclonal antibodies to cytotoxic t lymphocyte-associated protein 4 (ctla-4)
TWI823895B (en) Anti-b7-h4 antibody, antigen binding fragment thereof and medical use thereof
TW202023611A (en) Antibody constructs for cldn18.2 and cd3
TW201735947A (en) Cell injury inducing therapeutic drug for use in cancer therapy
JP2018537410A (en) Binding molecule with modified J chain
JP7022067B2 (en) T-cell receptor-like antibody specific for FOXP3-derived peptide
JP6770153B2 (en) Anti-EphA4 antibody
TW201639880A (en) Antibodies and chimeric antigen receptors specific for ROR1
CN111971301A (en) anti-MS 4A4A antibodies and methods of use thereof
JP5959438B2 (en) Agents for treating diseases
US9783610B2 (en) Anti-tumor endothelial marker-1 (TEM1) antibody variants and uses thereof
WO2021235509A1 (en) Antigen-binding molecule
JP2021528382A (en) Methods and means of attracting immune effector cells to tumor cells
US20230265185A1 (en) Anti-cd22 single domain antibodies and therapeutic constructs
US20180141994A1 (en) Toll-like receptor 2 binding epitope and binding member thereto
CN111253486B (en) anti-PD-1 antibodies and uses thereof
US20230143003A1 (en) Affinity matured and humanized binding domains targeting ror2
JP2023547661A (en) Polypeptide constructs that bind to CD3
JP2022547135A (en) Method for Purifying Bispecific Antigen-Binding Polypeptides with Enhanced Protein L Capture Dynamic Binding Capacity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP