WO2021229721A1 - Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method - Google Patents

Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method Download PDF

Info

Publication number
WO2021229721A1
WO2021229721A1 PCT/JP2020/019115 JP2020019115W WO2021229721A1 WO 2021229721 A1 WO2021229721 A1 WO 2021229721A1 JP 2020019115 W JP2020019115 W JP 2020019115W WO 2021229721 A1 WO2021229721 A1 WO 2021229721A1
Authority
WO
WIPO (PCT)
Prior art keywords
haptics
aerial
required accuracy
determination unit
unit
Prior art date
Application number
PCT/JP2020/019115
Other languages
French (fr)
Japanese (ja)
Inventor
将平 近藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022515465A priority Critical patent/JP7072744B2/en
Priority to PCT/JP2020/019115 priority patent/WO2021229721A1/en
Publication of WO2021229721A1 publication Critical patent/WO2021229721A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present disclosure relates to an aerial haptics control device, an aerial haptics system, and an aerial haptics control method.
  • an “aerial display device” a device that displays an image in the air by projecting light into the air
  • a device that presents a tactile sensation in the air by transmitting ultrasonic waves in the air hereinafter referred to as "aerial haptics device”
  • HMI Human Machine Interface
  • Patent Document 1 discloses such a system.
  • the accuracy required for the tactile stimulus realized by the aerial haptics device (hereinafter referred to as "required accuracy”) varies depending on various factors. Specifically, for example, the required accuracy varies depending on whether the operation input by the user is fumbling or visual. Also, for example, the required accuracy varies depending on whether the HMI is simple or complex.
  • Patent Document 1 does not have a configuration for dealing with such fluctuations in required accuracy. Therefore, there is a problem that it is not possible to cope with the fluctuation of the required accuracy.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to cope with fluctuations in the required accuracy of tactile stimuli in an aerial haptic device.
  • the aerial haptics control device determines the required accuracy by using the determination information acquisition unit that acquires the determination information used for determining the required accuracy for the tactile stimulus realized by the aerial haptics device and the determination information.
  • Driver selection that selects multiple drive target haptic drivers from multiple haptic drivers included in the haptic driver group in the aerial haptic device by the required accuracy judgment unit and the selection density that differs depending on the required accuracy. It is equipped with a part.
  • FIG. It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the aerial haptics apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the drive control part among the control devices in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of a plurality of drive target haptics drivers arranged in a grid pattern. It is explanatory drawing which shows the example of a plurality of drive target haptics drivers arranged in a checkered pattern.
  • FIG. 1 It is a block diagram which shows the hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. 2 is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. 2 is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of the state which the user's line of sight is not directed to a display area. It is explanatory drawing which shows the example of the state in which a plurality of drive target haptics drivers are selected by the first selection density, and the drive frequency is set to the first drive frequency. It is explanatory drawing which shows the example of the state which a user's line of sight is directed to a display area.
  • FIG. 1 It is explanatory drawing which shows the example of the state which a plurality of drive target haptics drivers are selected by the 2nd selection density, and the drive frequency is set to the 2nd drive frequency.
  • FIG. 1 It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1.
  • FIG. 2 It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 2.
  • It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the operation of the required accuracy determination part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows the example of the image corresponding to the operation screen including the UI for slide operation. It is explanatory drawing which shows the example of the state in which a plurality of drive target haptics drivers are selected by the first selection density, and the drive frequency is set to the first drive frequency. It is explanatory drawing which shows the example of the image corresponding to the operation screen including the UI for tap operation. It is explanatory drawing which shows the example of the state which a plurality of drive target haptics drivers are selected by the 2nd selection density, and the drive frequency is set to the 2nd drive frequency.
  • FIG. 2 It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 3.
  • It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3.
  • FIG. It is a flowchart which shows the operation of the required accuracy determination part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3.
  • FIG. 3 It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3.
  • FIG. 1 is a block diagram showing a main part of the aerial haptics system according to the first embodiment.
  • FIG. 2 is a block diagram showing a main part of an aerial haptics device in the aerial haptics system according to the first embodiment.
  • FIG. 3 is a block diagram showing a main part of a drive control unit among the control devices in the aerial haptics system according to the first embodiment.
  • the aerial haptics system according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • the aerial haptics system 1 includes a control device 2, a line-of-sight detection device 3, an aerial haptics device 4, and an aerial display device 5.
  • the control device 2 includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2 includes a determination information acquisition unit 21, a required accuracy determination unit 22, a driver selection unit 23, and a frequency setting unit 24.
  • the determination information acquisition unit 21, the required accuracy determination unit 22, the driver selection unit 23, and the frequency setting unit 24 constitute the main part of the aerial haptics control device 100.
  • the control device 2 is composed of, for example, an in-vehicle information communication device. That is, the control device 2 is configured by, for example, an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the control device 2 is composed of an in-vehicle information communication device. That is, an example in which the aerial haptics system 1 is for an in-vehicle use will be mainly described.
  • User U of the aerial haptics system 1 is, for example, a passenger of a vehicle (not shown). That is, the user U is, for example, the driver of the vehicle, the passenger of the vehicle, or the driver of the vehicle and the passenger of the vehicle. Hereinafter, an example in which the user U is the driver of the vehicle will be mainly described.
  • the line-of-sight detection device 3 detects the line-of-sight direction L of the user U.
  • the line-of-sight detection device 3 outputs information indicating the detected line-of-sight direction L (hereinafter referred to as “line-of-sight direction information”).
  • the line-of-sight detection device 3 is composed of, for example, a DMS (Driver Monitoring System) or an OMS (Occupant Monitoring System).
  • DMS Driver Monitoring System
  • OMS Olecupant Monitoring System
  • the aerial haptics device 4 uses the haptics driver group DG.
  • the haptics driver group DG includes a plurality of haptics drivers D.
  • Each haptics driver D is composed of, for example, an ultrasonic transducer.
  • a plurality of haptics drivers D are arranged one-dimensionally.
  • the plurality of haptics drivers D are arranged two-dimensionally.
  • M ⁇ N haptics drivers D are arranged in a matrix of N rows and M columns.
  • N is an arbitrary integer of 2 or more.
  • M is an arbitrary integer of 2 or more.
  • the aerial display device 5 displays an image in the air by projecting light into the air.
  • the area where the image is displayed by the aerial display device 5 (hereinafter referred to as “display area”) A1 corresponds to the area where the tactile sensation is presented by the aerial haptics device 4 (hereinafter referred to as “air haptics area”) A2. .. That is, the aerial display device 5 corresponds to the aerial haptics device 4.
  • the aerial display device 5 is configured by, for example, a 3D-HUD (Three-Dimensional Head-Up Display).
  • the system control unit 11 controls the operation of the entire control device 2. As a result, the system control unit 11 controls the operation of the entire aerial haptics system 1.
  • the system control unit 11 is composed of, for example, a dedicated circuit.
  • the drive control unit 12 executes control for driving each haptics driver D based on an instruction from the system control unit 11.
  • the drive control unit 12 is composed of, for example, a dedicated circuit.
  • the drive control unit 12 includes a carrier wave signal generation unit 31, a vibration wave signal generation unit 32, a modulation unit 33, and an amplification unit 34.
  • the carrier wave signal generation unit 31 is an electric signal (hereinafter referred to as “carrier wave”) corresponding to an ultrasonic wave (hereinafter referred to as “carrier wave”) having a predetermined frequency (hereinafter referred to as “carrier frequency”) f based on an instruction by the system control unit 11. It is called a "signal").
  • carrier wave signal generation unit 31 outputs the generated carrier wave signal to the modulation unit 33.
  • the vibration wave signal generation unit 32 is an electric signal (hereinafter referred to as “vibration”) corresponding to ultrasonic waves (hereinafter referred to as “vibration wave”) for realizing vibration corresponding to a desired tactile stimulus based on an instruction by the system control unit 11. It is called a "wave signal").
  • the vibration wave signal generation unit 32 outputs the generated vibration wave signal to the modulation unit 33.
  • the modulation unit 33 modulates the carrier wave signal output by the carrier wave signal generation unit 31 by using the vibration wave signal output by the vibration wave signal generation unit 32.
  • the modulation unit 33 outputs the modulated carrier wave signal (hereinafter referred to as “modulated wave signal”) to the amplification unit 34.
  • the amplification unit 34 amplifies the modulated wave signal output by the modulation unit 33. As a result, the output modulated wave signal is amplified to a predetermined level.
  • the amplification unit 34 outputs the amplified modulated wave signal (hereinafter referred to as “transmission signal”) to the haptics driver group DG.
  • the carrier wave signal generation unit 31 generates a carrier wave signal corresponding to each haptics driver D.
  • the vibration wave signal generation unit 32 generates a vibration wave signal corresponding to each haptics driver D.
  • the modulation unit 33 modulates the corresponding carrier signal using the corresponding vibration wave signal for each haptics driver D.
  • the amplification unit 34 amplifies the modulated wave signal corresponding to each haptics driver D.
  • the amplification unit 34 outputs a transmission signal corresponding to each haptics driver D.
  • each haptics driver D is driven. That is, each haptics driver D transmits ultrasonic US in the air. As a result, the antennae are presented to the aerial haptics region A2. That is, haptics in the aerial haptics region A2 are realized.
  • the ultrasonic US transmitted by the corresponding haptics driver D is reflected by the indicator P and reflected.
  • the ultrasonic US' is received by the corresponding haptics driver D.
  • the corresponding haptics driver D outputs an electric signal (hereinafter referred to as “received signal”) corresponding to the received ultrasonic wave US ′.
  • the display control unit 13 executes control to display images corresponding to various screens by using the aerial display device 5 based on the instruction from the system control unit 11.
  • the display control unit 13 is composed of, for example, a dedicated circuit.
  • the image displayed by the aerial display device 5 includes images corresponding to screens for various operations (hereinafter referred to as "operation screens”).
  • the UI (User Interface) on each operation screen includes a UI for operation input by hand gesture.
  • the UI on each operation screen is referred to as "screen UI”.
  • the screen UI includes a UI for operation input by slide operation (hereinafter referred to as “UI for slide operation”).
  • the screen UI includes a UI for operation input by flick operation (hereinafter referred to as “UI for flick operation”).
  • the screen UI includes a UI for operation input by tap operation (hereinafter referred to as “UI for tap operation”).
  • simple operations for example, tap operations
  • simple operations compared to slide operations or flick operations
  • simple operations for example, tap operations
  • UI for simple operation the UI for simple operation input by simple operation
  • the current detection unit 14 detects the current value I in each haptics driver D. More specifically, the current detection unit 14 detects the current value I_1 corresponding to the transmission signal and the current value I_2 corresponding to the reception signal for each haptics driver D.
  • the current detection unit 14 is composed of, for example, a dedicated circuit.
  • the operation detection unit 15 detects the operation input to the operation screen by the user U by using the current value I detected by the current detection unit 14.
  • the operation detection unit 15 is composed of, for example, a dedicated circuit.
  • the transmission signal is input to the corresponding haptics driver D, and the reception signal is output by the corresponding haptics driver D.
  • the received signal is attenuated with respect to the corresponding transmitted signal. Further, the received signal has a phase difference with respect to the corresponding transmitted signal.
  • the operation detection unit 15 detects the operation by the hand gesture based on the result of the determination. Specifically, for example, the operation detection unit 15 detects a slide operation, a flick operation, or a tap operation.
  • the determination information acquisition unit 21 acquires information (hereinafter referred to as "determination information") used for determination by the request accuracy determination unit 22 described later.
  • the determination information acquired by the determination information acquisition unit 21 includes the line-of-sight direction information. That is, the determination information acquisition unit 21 acquires the line-of-sight direction information output by the line-of-sight detection device 3.
  • the required accuracy determination unit 22 determines the accuracy (that is, required accuracy) RA required for the tactile stimulus realized by the aerial haptic device 4 by using the determination information acquired by the determination information acquisition unit 21. be.
  • the required accuracy determination unit 22 determines whether the required accuracy RA is one of the first required accuracy RA_1 and the second required accuracy RA_2, which are different from each other.
  • the first required accuracy RA_1 corresponds to a higher accuracy than the second required accuracy RA_2.
  • the second required accuracy RA_2 corresponds to a lower accuracy than the first required accuracy RA_1.
  • the required accuracy determination unit 22 determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the acquired determination information. In other words, the required accuracy determination unit 22 determines whether or not the line of sight of the user U is directed to the aerial haptics region A2. As a result, the required accuracy determination unit 22 determines whether the operation input by the user U is fumbling or visual.
  • the required accuracy determination unit 22 determines that the required accuracy RA is the first required accuracy RA_1. do.
  • the required accuracy determination unit 22 has the required accuracy RA of the second required accuracy RA_2. Is determined.
  • the driver selection unit 23 selects a plurality of haptics drivers (hereinafter referred to as "drive target haptics drivers”) D_D among the M ⁇ N haptics drivers D included in the haptics driver group DG.
  • drive target haptics drivers a plurality of haptics drivers (hereinafter referred to as “drive target haptics drivers”) D_D among the M ⁇ N haptics drivers D included in the haptics driver group DG.
  • the densities (hereinafter referred to as “selective densities”) SD of a plurality of drive target haptics drivers D_D among the M ⁇ N haptics drivers D differ depending on the determination result by the required accuracy determination unit 22. It is a thing.
  • the driver selection unit 23 has a plurality of drivers selected by the first selective density SD_1 of the first selective density SD_1 and the second selective density SD_1 that are different from each other. Select the haptics driver D_D to be driven.
  • the driver selection unit 23 selects a plurality of drive target haptics drivers D_D by the second selection density SD_2.
  • the first selective density SD_1 corresponds to a higher density than the second selective density SD_1.
  • the second selective density SD_2 corresponds to a lower density than the first selective density SD_1.
  • the driver selection unit 23 drives all the haptics drivers D among the M ⁇ N haptics drivers D. Select for the target haptics driver D_D.
  • the driver selection unit 23 uses the plurality of haptics drivers D arranged in a grid pattern among the M ⁇ N haptics drivers D. Is selected as the drive target haptics driver D_D.
  • the driver selection unit 23 selects a plurality of haptics drivers D arranged in a checkered pattern among the M ⁇ N haptics drivers D as the haptics driver D_D to be driven.
  • haptics drivers D excluding a plurality of drive target haptics drivers D_D among M ⁇ N haptics drivers D may be referred to as “non-drive target haptics drivers”. Further, the code of "D_ND" may be used for the non-driven target haptics driver.
  • FIG. 4 shows an example of a plurality of drive target haptics drivers D_D arranged in a grid pattern. That is, as shown in FIG. 4, 25 haptics drivers D arranged in a matrix of 5 rows and 5 columns are included in the haptics driver group DG. Further, 16 drive target haptics drivers D_D and 9 non-drive target haptics drivers D_ND are included in the haptics driver group DG. The 16 driven haptics drivers D_D are arranged in a grid pattern.
  • FIG. 5 shows an example of a plurality of drive target haptics drivers D_D arranged in a checkered pattern. That is, as shown in FIG. 5, 25 haptics drivers D arranged in a matrix of 5 rows and 5 columns are included in the haptics driver group DG. Further, 12 drive target haptics drivers D_D and 13 non-drive target haptics drivers D_ND are included in the haptics driver group DG. The twelve drive target haptics drivers D_D are arranged in a checkered pattern.
  • the driver selection unit 23 instructs the drive control unit 12 to include each drive target haptics driver D_D as a drive target. In other words, the driver selection unit 23 instructs the drive control unit 12 to exclude each non-drive target haptics driver D_ND from the drive target.
  • the frequency setting unit 24 sets the frequency (hereinafter referred to as “driving frequency”) F of the ultrasonic wave US transmitted by each drive target haptics driver D_D to a different value according to the determination result by the required accuracy determination unit 22. It is something to do.
  • the frequency setting unit 24 sets the drive frequency F to a higher drive frequency among the different drive frequencies F_1 and F_1 (hereinafter, "first drive”). It is called “frequency”.) Set to F_1. This is realized, for example, by instructing the carrier signal generation unit 31 to generate a carrier signal corresponding to the higher carrier frequency f_1 among the different carrier frequencies f_1 and f_1.
  • the frequency setting unit 24 sets the drive frequency F to the lower drive frequency among the different drive frequencies F_1 and F_2 (hereinafter, "second drive”). It is called “frequency”.) Set to F_2. This is realized, for example, by instructing the carrier signal generation unit 31 to generate a carrier signal corresponding to the lower carrier frequency f_2 among the different carrier frequencies f_1 and f_2.
  • the drive control unit 12 includes each drive target haptics driver D_D as a drive target based on the instruction from the driver selection unit 23. In other words, the drive control unit 12 excludes each non-drive target haptics driver D_ND from the drive target based on the instruction from the driver selection unit 23.
  • the carrier wave signal generation unit 31 is adapted to generate a carrier wave signal corresponding to the carrier wave frequency f_1 or the carrier wave frequency f_2 based on the instruction by the frequency setting unit 24.
  • the main part of the aerial haptics system 1 is configured.
  • the processes executed by the determination information acquisition unit 21 may be collectively referred to as “determination information acquisition processing”. Further, the processes executed by the request accuracy determination unit 22 may be collectively referred to as “request accuracy determination process”. Further, the processes executed by the driver selection unit 23 may be collectively referred to as “driver selection process”. Further, the processes executed by the frequency setting unit 24 may be collectively referred to as "frequency setting process”.
  • the functions possessed by the determination information acquisition unit 21 may be collectively referred to as “determination information acquisition function”. Further, the functions of the required accuracy determination unit 22 may be collectively referred to as a “required accuracy determination function”. Further, the functions of the driver selection unit 23 may be collectively referred to as a “driver selection function”. Further, the functions of the frequency setting unit 24 may be collectively referred to as "frequency setting function”.
  • the code of "F1” may be used for the determination information acquisition function. Further, the reference numeral of “F2” may be used for the required accuracy determination function. In addition, the code of "F3” may be used for the driver selection function. Further, a code may be used for "F4" for the frequency setting function.
  • the aerial haptics control device 100 has a processor 41 and a memory 42.
  • the memory 42 stores programs corresponding to a plurality of functions (including a determination information acquisition function, a required accuracy determination function, a driver selection function, and a frequency setting function) F1 to F4.
  • the processor 41 reads and executes the program stored in the memory 42. As a result, a plurality of functions F1 to F4 are realized.
  • the aerial haptics control device 100 has a processing circuit 43.
  • the processing circuit 43 executes processing corresponding to a plurality of functions F1 to F4. As a result, a plurality of functions F1 to F4 are realized.
  • the aerial haptics control device 100 includes a processor 41, a memory 42, and a processing circuit 43.
  • a program corresponding to a part of the plurality of functions F1 to F4 is stored in the memory 42.
  • the processor 41 reads and executes the program stored in the memory 42. As a result, some of these functions are realized.
  • the processing circuit 43 executes processing corresponding to the remaining functions of the plurality of functions F1 to F4. As a result, such residual functions are realized.
  • the processor 41 is composed of one or more processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microprocessor
  • a microprocessor a microprocessor
  • a DSP Digital Signal Processor
  • the memory 42 is composed of one or more non-volatile memories.
  • the memory 42 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 42 is composed of one or more memories.
  • the individual memory uses, for example, a semiconductor memory or a magnetic disk. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memory is, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programle) drive, a solid state drive O Is.
  • the processing circuit 43 is composed of one or more digital circuits.
  • the processing circuit 43 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 43 is composed of one or more processing circuits.
  • the individual processing circuits are, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), System LSI (Sy), and System (Sy). Is.
  • the processor 41 when the processor 41 is composed of a plurality of processors, the correspondence between the plurality of functions F1 to F4 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1 to F4.
  • the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1 to F4.
  • each of the plurality of memories may store a program corresponding to one or more corresponding functions among the plurality of functions F1 to F4.
  • the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1 to F4.
  • the processing circuit 43 when the processing circuit 43 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1 to F4 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute processing corresponding to one or more corresponding functions among the plurality of functions F1 to F4.
  • the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 to F4.
  • the determination information acquisition unit 21 executes the determination information acquisition process (step ST1).
  • the required accuracy determination unit 22 executes the required accuracy determination process (step ST2).
  • the driver selection unit 23 executes the driver selection process (step ST3).
  • the frequency setting unit 24 executes the frequency setting process (step ST4).
  • step ST2 the process executed in step ST2 will be described.
  • the request accuracy determination unit 22 determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the determination information acquired in step ST1 (step ST11). ).
  • the request accuracy determination unit 22 requests the first request for the required accuracy RA. It is determined that the accuracy is RA_1 (step ST12).
  • step ST11 “YES” when the line of sight of the user U is directed to the display area A1 (step ST11 “YES”), that is, when the operation input by the user U is visual, the required accuracy determination unit 22 has the required accuracy RA. 2 It is determined that the required accuracy is RA_2 (step ST13).
  • FIG. 11 shows an example of a state in which the line of sight of the user U is not directed to the display area A1. That is, FIG. 11 shows an example of a state in which the user U is trying to input an operation by fumbling. More specifically, FIG. 11 shows an example of a state in which the driver's line of sight of the vehicle (not shown) is directed forward. That is, FIG. 11 shows an example of a state in which the driver of the vehicle is trying to input an operation while the vehicle is running.
  • the required accuracy determination unit 22 determines that the required accuracy RA is the first required accuracy RA_1. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the first selection density SD_1. Specifically, for example, all the haptics drivers D out of the 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are selected as the haptics driver D_D to be driven (see FIG. 12). .. Then, the drive frequency F is set to the first drive frequency F_1.
  • FIG. 13 shows an example of a state in which the line of sight of the user U is directed to the display area A1. That is, FIG. 13 shows an example of a state in which the user U is trying to visually input an operation. More specifically, FIG. 13 shows an example of a state in which the line of sight of the driver of the vehicle (not shown) is directed to the display area A1. That is, FIG. 13 shows an example of a state in which the driver of the vehicle is trying to input an operation while the vehicle is stopped.
  • the required accuracy determination unit 22 determines that the required accuracy RA is the second required accuracy RA_2. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the second selection density SD_2. Specifically, for example, eight haptics drivers D arranged in a checkered pattern among 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are used as the haptics driver D_D to be driven. It is set (see FIG. 14). Then, the drive frequency F is set to the second drive frequency F_2.
  • the higher the frequency of the ultrasonic wave the higher the directivity of the ultrasonic wave.
  • the lower the frequency of the ultrasonic wave the lower the directivity of the ultrasonic wave. Therefore, by setting the drive frequency F to the first drive frequency F_1, the directivity of the ultrasonic wave US transmitted by each drive target haptics driver D_D is increased (see FIG. 12).
  • the drive frequency F is set to the second drive frequency F_2, the directivity of the ultrasonic US transmitted by the individual drive target haptics drivers D_D becomes low (see FIG. 14).
  • the accuracy of the tactile stimulus is lowered, but the power consumption in the aerial haptic device 4 can be reduced.
  • the directivity of the ultrasonic US that is, using the second drive frequency F_2
  • the power consumption in the aerial haptic device 4 is reduced, and the tactile stimulus in the aerial haptic region A2 is partially performed. It can be suppressed from being missing. That is, it is possible to prevent the tactile stimuli in the aerial haptics region A2 from being lost in a reciprocal lattice pattern or the tactile stimuli in the aerial haptics region A2 from being missing in a checkered pattern.
  • the number X is reduced (that is, the second selection density SD_2 is used), and the directivity of the ultrasonic US is lowered (that is, the second drive frequency). F_2 is used). As a result, the power consumption of the aerial haptics device 4 can be reduced.
  • the plurality of drive target haptics drivers D_D are arranged in a checkered pattern, the following is compared with the case where the plurality of drive target haptics drivers D_D are arranged in a grid pattern. The effect can be obtained.
  • Target haptics drivers D_D may be adjacent to each other (see FIG. 4).
  • the two driven target haptics drivers D_D are not adjacent to each other (see FIG. 5).
  • adjacent means that they are adjacent in the row direction or the column direction in the matrix of N rows and M columns.
  • the number Y of drive target haptics drivers D_D adjacent to each drive target haptics driver D_D may differ. ..
  • the aerial haptics region is compared with the case where the plurality of drive target haptics drivers D_D are arranged in a grid pattern. It is possible to suppress the occurrence of unevenness of tactile stimulation in A2. In other words, the tactile stimulus in the aerial haptic region A2 can be easily homogenized. Moreover, such a tactile stimulus can be efficiently realized.
  • the aerial haptics control device 100 may not include the frequency setting unit 24. That is, the main part of the aerial haptics control device 100 may be configured by the determination information acquisition unit 21, the required accuracy determination unit 22, and the driver selection unit 23.
  • the aerial haptics system 1 may include a sensor 6.
  • the sensor 6 is composed of, for example, a camera or an infrared sensor.
  • the operation detection unit 15 may use the sensor 6 instead of the current value I when detecting the operation by the hand gesture.
  • Various known techniques can be used to detect the operation by the sensor 6. Detailed description of these techniques will be omitted.
  • the aerial haptics control device 100 has the determination information acquisition unit 21 for acquiring the determination information used for determining the required accuracy RA for the tactile stimulus realized by the aerial haptics device 4.
  • a driver selection unit 23 for selecting a plurality of drive target haptics drivers D_D among the drivers D is provided. This makes it possible to cope with fluctuations in the required accuracy RA.
  • the driver selection unit 23 determines that the required accuracy RA is the first required accuracy RA_1 higher than the second required accuracy RA_2 by the required accuracy determination unit 22, the first selection higher than the second selection density SD_2.
  • a plurality of drive target haptics drivers D_D are selected according to the density SD_1. This makes it possible to realize highly accurate tactile stimulation.
  • the aerial haptics control device 100 sets the drive frequency F in each of the plurality of drive target haptic drivers D_D to the second.
  • a frequency setting unit 24 for setting a first drive frequency F_1 higher than the drive frequency F_1 is provided. This makes it possible to realize highly accurate tactile stimulation.
  • the driver selection unit 23 makes a second selection lower than the first selection density SD_1.
  • a plurality of drive target haptics drivers D_D are selected by the density SD_2, and the aerial haptics control device 100 has a plurality of aerial haptics control devices 100 when the required accuracy determination unit 22 determines that the required accuracy RA is the second required accuracy RA_2.
  • a frequency setting unit 24 for setting the drive frequency F in each of the drive target haptics drivers D_D to the second drive frequency F_2 lower than the first drive frequency F_1 is provided. As a result, the amount of electric charge consumed by the aerial haptics device 4 can be reduced. In addition, it is possible to suppress the partial loss of tactile stimuli in the aerial haptic region A2.
  • the determination information includes the line-of-sight direction information indicating the line-of-sight direction L of the user U of the aerial haptics system 1 including the aerial haptics device 4 and the aerial display device 5 corresponding to the aerial haptics device 4. This makes it possible to determine the required accuracy RA according to whether the operation input by the user U is fumbling or visual.
  • the required accuracy determination unit 22 determines that the required accuracy RA is the first required accuracy RA_1 when the line of sight of the user U is not directed to the display area A1 in the aerial display device 5. Thereby, when the operation input by the user U is fumbling, it is possible to realize a highly accurate tactile stimulus.
  • the required accuracy determination unit 22 determines that the required accuracy RA is the second required accuracy RA_2. Thereby, when the operation input by the user U is visual, the power consumption in the aerial haptics device 4 can be reduced.
  • the determination information acquisition unit 21 acquires the determination information used for determining the required accuracy RA for the tactile stimulus realized by the aerial haptics device 4.
  • the haptics driver in the aerial haptics device 4 by the step ST2 in which the required accuracy determination unit 22 determines the required accuracy RA using the determination information and the selection density SD in which the driver selection unit 23 differs according to the required accuracy RA.
  • a step ST3 for selecting a plurality of driven target haptic drivers D_D among the plurality of haptic drivers D included in the group DG is provided. This makes it possible to cope with fluctuations in the required accuracy RA.
  • FIG. 18 is a block diagram showing a main part of the aerial haptics system according to the second embodiment.
  • the aerial haptics system according to the second embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • the aerial haptics system 1a includes a control device 2a, an aerial haptics device 4, and an aerial display device 5.
  • the control device 2a includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2a includes a determination information acquisition unit 21a, a required accuracy determination unit 22a, a driver selection unit 23, and a frequency setting unit 24.
  • the main part of the aerial haptics control device 100a is composed of the determination information acquisition unit 21a, the required accuracy determination unit 22a, the driver selection unit 23, and the frequency setting unit 24.
  • the determination information acquisition unit 21a acquires information (that is, determination information) used for determination by the required accuracy determination unit 22a, which will be described later.
  • the determination information acquired by the determination information acquisition unit 21a includes information indicating the screen UI being displayed in the aerial display device 5 (hereinafter referred to as "screen UI information").
  • the screen UI information is acquired from, for example, the system control unit 11.
  • the required accuracy determination unit 22a determines the accuracy (that is, required accuracy) RA required for the tactile stimulus realized by the aerial haptic device 4 by using the determination information acquired by the determination information acquisition unit 21a. be. More specifically, the required accuracy determination unit 22a determines whether the required accuracy RA is one of the first required accuracy RA_1 and the second required accuracy RA_2, which are different from each other.
  • the request accuracy determination unit 22a determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the acquired determination information.
  • the required accuracy determination unit 22a has the required accuracy RA first. It is determined that the required accuracy is RA_1.
  • the required accuracy determination unit 22a has a required accuracy RA of the second required accuracy RA_2. Judge that there is.
  • the main part of the aerial haptics system 1a is configured.
  • determination information acquisition processing the processes executed by the determination information acquisition unit 21a may be collectively referred to as “determination information acquisition processing”. Further, the functions of the determination information acquisition unit 21a may be collectively referred to as “determination information acquisition function”. Further, the reference numeral of "F1a" may be used for the determination information acquisition function.
  • the processes executed by the required accuracy determination unit 22a may be collectively referred to as “required accuracy determination process”. Further, the functions of the required accuracy determination unit 22a may be generically referred to as “required accuracy determination function”. Further, the reference numeral of "F2a" may be used for the required accuracy determination function.
  • the hardware configuration of the main part of the aerial haptics control device 100a is the same as that described with reference to FIGS. 6 to 8 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the aerial haptics control device 100a has a plurality of functions (including a determination information acquisition function, a required accuracy determination function, a driver selection function, and a frequency setting function) F1a, F2a, F3, and F4.
  • Each of the plurality of functions F1a, F2a, F3, and F4 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
  • the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1a, F2a, F3, and F4.
  • the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1a, F2a, F3, and F4.
  • the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1a, F2a, F3, and F4.
  • the determination information acquisition unit 21a executes the determination information acquisition process (step ST1a).
  • the required accuracy determination unit 22a executes the required accuracy determination process (step ST2a).
  • the driver selection unit 23 executes the driver selection process (step ST3).
  • the frequency setting unit 24 executes the frequency setting process (step ST4).
  • step ST2a the operation of the required accuracy determination unit 22a will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2a will be described.
  • the request accuracy determination unit 22a determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the determination information acquired in step ST1a (step). ST21).
  • the required accuracy determination unit 22a determines that the required accuracy RA is the first required accuracy RA_1 (step ST22). On the other hand, when the screen UI being displayed is a UI for simple operation (step ST21 “YES”), the required accuracy determination unit 22a determines that the required accuracy RA is the second required accuracy RA_2 (step ST23).
  • FIG. 21 shows an example of an image corresponding to an operation screen including a UI for slide operation. More specifically, an example of an image corresponding to a map screen is shown. In the figure, the arrow A indicates the slide range of the indicator body P in the slide operation.
  • the required accuracy determination unit 22a determines that the required accuracy RA is the first required accuracy RA_1. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the first selection density SD_1. Specifically, for example, all the haptics drivers D out of the 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are selected as the haptics driver D_D to be driven (see FIG. 22). .. Then, the drive frequency F is set to the first drive frequency F_1.
  • FIG. 23 shows an example of an image corresponding to an operation screen including a UI for tap operation. More specifically, an example of a video corresponding to the menu screen is shown. As shown in FIG. 23, the menu screen includes four buttons B_1 to B_1.
  • the required accuracy determination unit 22a determines that the required accuracy RA is the second required accuracy RA_2. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the second selection density SD_2. Specifically, for example, eight haptics drivers D arranged in a grid pattern out of 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are selected as the haptics driver D_D to be driven. (See FIG. 24). Then, the drive frequency F is set to the second drive frequency F_2.
  • a highly accurate tactile stimulus is required as compared with the case where the screen UI is a tap operation UI.
  • a high-precision tactile stimulus is not required as compared with the case where the screen UI is a UI for slide operation or a UI for flick operation.
  • the number X increases (that is, the first selection density SD_1 is used) as shown in FIG. 22. ), The directivity of the ultrasonic US is increased (that is, the first drive frequency F_1 is used). This makes it possible to realize highly accurate tactile stimulation.
  • the screen UI being displayed is a UI for simple operation (see FIG. 23)
  • the number X is reduced (that is, the second selection density SD_2 is used), and the ultrasonic US is used.
  • the directivity is low (ie, the second drive frequency F_2 is used). As a result, the power consumption of the aerial haptics device 4 can be reduced.
  • the aerial haptics control device 100a may not include the frequency setting unit 24. That is, the main part of the aerial haptics control device 100a may be configured by the determination information acquisition unit 21a, the required accuracy determination unit 22a, and the driver selection unit 23.
  • the aerial haptics system 1a may include a sensor 6.
  • the operation detection unit 15 may use the sensor 6 instead of the current value I when detecting the operation by the hand gesture.
  • the determination information includes the screen UI information indicating the screen UI in the aerial display device 5 corresponding to the aerial haptics device 4.
  • the required accuracy determination unit 22a determines that the required accuracy RA is the first required accuracy RA_1.
  • the required accuracy RA is the first required accuracy RA_1.
  • the required accuracy determination unit 22a determines that the required accuracy RA is the second required accuracy RA_2.
  • the power consumption in the aerial haptics device 4 can be reduced.
  • the power consumption in the aerial haptics device 4 can be reduced.
  • FIG. 28 is a block diagram showing a main part of the aerial haptics system according to the third embodiment.
  • the aerial haptics system according to the third embodiment will be described with reference to FIG. 28.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • the aerial haptics system 1b includes a control device 2b, a line-of-sight detection device 3, an aerial haptics device 4, and an aerial display device 5.
  • the control device 2b includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2b includes a determination information acquisition unit 21b, a required accuracy determination unit 22b, a driver selection unit 23, and a frequency setting unit 24.
  • the main part of the aerial haptics control device 100b is configured by the determination information acquisition unit 21b, the required accuracy determination unit 22b, the driver selection unit 23, and the frequency setting unit 24.
  • the determination information acquisition unit 21b acquires information (that is, determination information) used for determination by the required accuracy determination unit 22b, which will be described later.
  • the determination information acquired by the determination information acquisition unit 21b includes the line-of-sight direction information and the screen UI information.
  • the line-of-sight direction information is acquired from the line-of-sight detection device 3.
  • the screen UI information is acquired from, for example, the system control unit 11.
  • the required accuracy determination unit 22b determines the accuracy (that is, required accuracy) RA required for the tactile stimulus realized by the aerial haptic device 4 by using the determination information acquired by the determination information acquisition unit 21b. be. More specifically, the required accuracy determination unit 22b determines whether the required accuracy RA is one of the first required accuracy RA_1 and the second required accuracy RA_2, which are different from each other.
  • the required accuracy determination unit 22b determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the acquired determination information. Further, the request accuracy determination unit 22b determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the acquired determination information.
  • the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1. do. Further, when the line of sight of the user U is directed to the display area A1 (that is, when the operation input by the user U is visual), the screen UI being displayed is not a UI for simple operation (for example, being displayed). When the screen UI of is a UI for slide operation or a UI for flick operation), the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1.
  • the screen UI being displayed is a UI for simple operation (for example, display).
  • the required accuracy determination unit 22b determines that the required accuracy RA is the second required accuracy RA_2.
  • the main part of the aerial haptics system 1b is configured.
  • determination information acquisition processing the processes executed by the determination information acquisition unit 21b may be collectively referred to as “determination information acquisition processing”. Further, the functions of the determination information acquisition unit 21b may be collectively referred to as “determination information acquisition function”. Further, the reference numeral of "F1b" may be used for the determination information acquisition function.
  • the processes executed by the required accuracy determination unit 22b may be collectively referred to as “required accuracy determination process”. Further, the functions of the required accuracy determination unit 22b may be collectively referred to as “required accuracy determination function”. Further, the reference numeral of "F2b" may be used for the required accuracy determination function.
  • the hardware configuration of the main part of the aerial haptics control device 100b is the same as that described with reference to FIGS. 6 to 8 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the aerial haptics control device 100b has a plurality of functions (including a determination information acquisition function, a required accuracy determination function, a driver selection function, and a frequency setting function) F1b, F2b, F3, and F4.
  • Each of the plurality of functions F1b, F2b, F3, and F4 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
  • the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1b, F2b, F3, and F4.
  • the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1b, F2b, F3, and F4.
  • the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1b, F2b, F3, and F4.
  • the determination information acquisition unit 21b executes the determination information acquisition process (step ST1b).
  • the required accuracy determination unit 22b executes the required accuracy determination process (step ST2b).
  • the driver selection unit 23 executes the driver selection process (step ST3).
  • the frequency setting unit 24 executes the frequency setting process (step ST4).
  • step ST2b the operation of the required accuracy determination unit 22b will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2b will be described.
  • the required accuracy determination unit 22b determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the determination information acquired in step ST1b (step ST31). Further, the request accuracy determination unit 22b determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the determination information acquired in step ST1b (step). ST32).
  • the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1 (step ST33). Further, when the line of sight of the user U is directed to the display area A1 (step ST31 “YES”) and the screen UI being displayed is not a UI for simple operation (step ST32 “NO”), the required accuracy determination unit. 22b determines that the required accuracy RA is the first required accuracy RA_1 (step ST33).
  • the required accuracy determination Unit 22b determines that the required accuracy RA is the second required accuracy RA_2 (step ST34).
  • the required accuracy RA can be determined according to the line-of-sight direction L and the screen UI. Then, it is possible to realize a highly accurate tactile stimulus or reduce the power consumption in the aerial haptics device 4 according to the determined required accuracy RA.
  • the aerial haptics control device 100b may not include the frequency setting unit 24. That is, the main part of the aerial haptics control device 100b may be configured by the determination information acquisition unit 21b, the required accuracy determination unit 22b, and the driver selection unit 23.
  • the aerial haptics system 1b may include a sensor 6.
  • the operation detection unit 15 may use the sensor 6 instead of the current value I when detecting the operation by the hand gesture.
  • the determination information is the user U of the aerial haptics system 1b including the aerial haptics device 4 and the aerial display device 5 corresponding to the aerial haptics device 4.
  • the line-of-sight direction information indicating the line-of-sight direction L is included, and the screen UI information indicating the screen UI in the aerial display device 5 is included.
  • the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1 when the line of sight of the user U is not directed to the display area A1 in the aerial display device 5. Thereby, when the operation input by the user U is fumbling, it is possible to realize a highly accurate tactile stimulus.
  • the required accuracy RA is the first required accuracy RA_1 when the screen UI is not a UI for simple operation. Is determined to be.
  • the screen UI is not a UI for simple operation (for example, when the screen UI is a UI for slide operation or a UI for flick operation), high accuracy is achieved. Tactile stimulus can be realized.
  • the required accuracy RA is the second required accuracy. It is determined that it is RA_2.
  • the operation input by the user U is visual, and the screen UI is a UI for simple operation (for example, when the screen UI is a UI for tap operation), the power consumption in the aerial haptics device 4 Can be reduced.
  • the aerial haptics control device, the aerial haptics system, and the aerial haptics control method according to the present disclosure can be used, for example, in an in-vehicle information communication device.
  • 1,1a, 1b aerial haptics system 1,2a, 2b control device, 3 line-of-sight detection device, 4 aerial haptics device, 5 aerial display device, 6 sensors, 11 system control unit, 12 drive control unit, 13 display control unit , 14 Current detection unit, 15 Operation detection unit, 21,21a, 21b Judgment information acquisition unit, 22, 22a, 22b Requirement accuracy judgment unit, 23 Driver selection unit, 24 Frequency setting unit, 31 Carrier signal generation unit, 32 Vibration Wave signal generation unit, 33 modulation unit, 34 amplification unit, 41 processor, 42 memory, 43 processing circuit, 100, 100a, 100b aerial haptics control device, D haptics driver, DG haptics driver group.

Abstract

A mid-air haptic control device (100) comprises: a determination information acquisition unit (21) that acquires determination information used for determining the required accuracy (RA) for tactile stimulus realized with a mid-air haptic device (4); a required accuracy determination unit (22) that determines the required accuracy (RA) using the determination information; and a driver selection unit (23) that selects, according to selection densities (SD) that differ in accordance with the required accuracy (RA), multiple haptic drivers to be driven (D_D) from among multiple haptic drivers (D) included in a haptic driver group (DG) of the mid-air haptic device (4).

Description

空中ハプティクス制御装置、空中ハプティクスシステム及び空中ハプティクス制御方法Aerial haptics controller, aerial haptics system and aerial haptics control method
 本開示は、空中ハプティクス制御装置、空中ハプティクスシステム及び空中ハプティクス制御方法に関する。 The present disclosure relates to an aerial haptics control device, an aerial haptics system, and an aerial haptics control method.
 従来、空中に光を投影することにより、空中に映像を表示する装置(以下「空中ディスプレイ装置」という。)が開発されている。また、空中に超音波を送信することにより、空中に触覚を提示する装置(以下「空中ハプティクス装置」という。)が開発されている。また、空中ディスプレイ装置及び空中ハプティクス装置を用いて、空中におけるHMI(Human Machine Interface)を実現するシステムが開発されている。特許文献1には、かかるシステムが開示されている。 Conventionally, a device that displays an image in the air by projecting light into the air (hereinafter referred to as an "aerial display device") has been developed. Further, a device that presents a tactile sensation in the air by transmitting ultrasonic waves in the air (hereinafter referred to as "aerial haptics device") has been developed. In addition, a system that realizes an HMI (Human Machine Interface) in the air has been developed by using an aerial display device and an aerial haptics device. Patent Document 1 discloses such a system.
特開2017-162195号公報Japanese Unexamined Patent Publication No. 2017-162195
 空中ハプティクス装置により実現される触覚刺激に要求される精度(以下「要求精度」という。)は、種々の要因により変動するものである。具体的には、例えば、要求精度は、ユーザによる操作入力が手探りによるものであるか目視によるものであるかに応じて変動するものである。また、例えば、要求精度は、HMIが単純であるか複雑であるかに応じて変動するものである。 The accuracy required for the tactile stimulus realized by the aerial haptics device (hereinafter referred to as "required accuracy") varies depending on various factors. Specifically, for example, the required accuracy varies depending on whether the operation input by the user is fumbling or visual. Also, for example, the required accuracy varies depending on whether the HMI is simple or complex.
 特許文献1記載のシステムは、かかる要求精度の変動に対応するための構成を有していない。このため、かかる要求精度の変動に対応することができない問題があった。 The system described in Patent Document 1 does not have a configuration for dealing with such fluctuations in required accuracy. Therefore, there is a problem that it is not possible to cope with the fluctuation of the required accuracy.
 本開示は、上記のような課題を解決するためになされたものであり、空中ハプティクス装置における触覚刺激の要求精度の変動に対応することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to cope with fluctuations in the required accuracy of tactile stimuli in an aerial haptic device.
 本開示に係る空中ハプティクス制御装置は、空中ハプティクス装置により実現される触覚刺激に対する要求精度の判定に用いられる判定用情報を取得する判定用情報取得部と、判定用情報を用いて要求精度を判定する要求精度判定部と、要求精度に応じて異なる選択密度により、空中ハプティクス装置におけるハプティクスドライバ群に含まれる複数個のハプティクスドライバのうちの複数個の駆動対象ハプティクスドライバを選択するドライバ選択部と、を備えるものである。 The aerial haptics control device according to the present disclosure determines the required accuracy by using the determination information acquisition unit that acquires the determination information used for determining the required accuracy for the tactile stimulus realized by the aerial haptics device and the determination information. Driver selection that selects multiple drive target haptic drivers from multiple haptic drivers included in the haptic driver group in the aerial haptic device by the required accuracy judgment unit and the selection density that differs depending on the required accuracy. It is equipped with a part.
 本開示によれば、上記のように構成したので、空中ハプティクス装置における触覚刺激の要求精度の変動に対応することができる。 According to the present disclosure, since it is configured as described above, it is possible to cope with fluctuations in the required accuracy of tactile stimuli in an aerial haptic device.
実施の形態1に係る空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス装置の要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける制御装置のうちの駆動制御部の要部を示すブロック図である。It is a block diagram which shows the main part of the drive control part among the control devices in the aerial haptics system which concerns on Embodiment 1. FIG. 格子状に配置された複数個の駆動対象ハプティクスドライバの例を示す説明図である。It is explanatory drawing which shows the example of a plurality of drive target haptics drivers arranged in a grid pattern. 市松模様状に配置された複数個の駆動対象ハプティクスドライバの例を示す説明図である。It is explanatory drawing which shows the example of a plurality of drive target haptics drivers arranged in a checkered pattern. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の要部のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置のうちの要求精度判定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the required accuracy determination part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. ユーザの視線が表示領域に向けられていない状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the user's line of sight is not directed to a display area. 第1選択密度により複数個の駆動対象ハプティクスドライバが選択されて、駆動周波数が第1駆動周波数に設定された状態の例を示す説明図である。It is explanatory drawing which shows the example of the state in which a plurality of drive target haptics drivers are selected by the first selection density, and the drive frequency is set to the first drive frequency. ユーザの視線が表示領域に向けられている状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which a user's line of sight is directed to a display area. 第2選択密度により複数個の駆動対象ハプティクスドライバが選択されて、駆動周波数が第2駆動周波数に設定された状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which a plurality of drive target haptics drivers are selected by the 2nd selection density, and the drive frequency is set to the 2nd drive frequency. 実施の形態1に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態2に係る空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 2. 実施の形態2に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2. FIG. 実施の形態2に係る空中ハプティクスシステムにおける空中ハプティクス制御装置のうちの要求精度判定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the required accuracy determination part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2. FIG. スライド操作用のUIを含む操作画面に対応する映像の例を示す説明図である。It is explanatory drawing which shows the example of the image corresponding to the operation screen including the UI for slide operation. 第1選択密度により複数個の駆動対象ハプティクスドライバが選択されて、駆動周波数が第1駆動周波数に設定された状態の例を示す説明図である。It is explanatory drawing which shows the example of the state in which a plurality of drive target haptics drivers are selected by the first selection density, and the drive frequency is set to the first drive frequency. タップ操作用のUIを含む操作画面に対応する映像の例を示す説明図である。It is explanatory drawing which shows the example of the image corresponding to the operation screen including the UI for tap operation. 第2選択密度により複数個の駆動対象ハプティクスドライバが選択されて、駆動周波数が第2駆動周波数に設定された状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which a plurality of drive target haptics drivers are selected by the 2nd selection density, and the drive frequency is set to the 2nd drive frequency. 実施の形態2に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2. FIG. 実施の形態2に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2. FIG. 実施の形態2に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2. FIG. 実施の形態3に係る空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 3. 実施の形態3に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3. FIG. 実施の形態3に係る空中ハプティクスシステムにおける空中ハプティクス制御装置のうちの要求精度判定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the required accuracy determination part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3. FIG. 実施の形態3に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3. FIG. 実施の形態3に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3. FIG. 実施の形態3に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3. FIG.
 以下、この開示をより詳細に説明するために、この開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain this disclosure in more detail, a mode for carrying out this disclosure will be described in accordance with the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る空中ハプティクスシステムの要部を示すブロック図である。図2は、実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス装置の要部を示すブロック図である。図3は、実施の形態1に係る空中ハプティクスシステムにおける制御装置のうちの駆動制御部の要部を示すブロック図である。図1~図3を参照して、実施の形態1に係る空中ハプティクスシステムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of the aerial haptics system according to the first embodiment. FIG. 2 is a block diagram showing a main part of an aerial haptics device in the aerial haptics system according to the first embodiment. FIG. 3 is a block diagram showing a main part of a drive control unit among the control devices in the aerial haptics system according to the first embodiment. The aerial haptics system according to the first embodiment will be described with reference to FIGS. 1 to 3.
 図1に示す如く、空中ハプティクスシステム1は、制御装置2、視線検出装置3、空中ハプティクス装置4及び空中ディスプレイ装置5を含むものである。制御装置2は、システム制御部11、駆動制御部12、表示制御部13、電流検出部14及び操作検出部15を含むものである。また、制御装置2は、判定用情報取得部21、要求精度判定部22、ドライバ選択部23及び周波数設定部24を含むものである。判定用情報取得部21、要求精度判定部22、ドライバ選択部23及び周波数設定部24により、空中ハプティクス制御装置100の要部が構成されている。 As shown in FIG. 1, the aerial haptics system 1 includes a control device 2, a line-of-sight detection device 3, an aerial haptics device 4, and an aerial display device 5. The control device 2 includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2 includes a determination information acquisition unit 21, a required accuracy determination unit 22, a driver selection unit 23, and a frequency setting unit 24. The determination information acquisition unit 21, the required accuracy determination unit 22, the driver selection unit 23, and the frequency setting unit 24 constitute the main part of the aerial haptics control device 100.
 制御装置2は、例えば、車載用の情報通信機器により構成されている。すなわち、制御装置2は、例えば、ECU(Electronic Control Unit)により構成されている。以下、制御装置2が車載用の情報通信機器により構成されている場合の例を中心に説明する。すなわち、空中ハプティクスシステム1が車載用である場合の例を中心に説明する。 The control device 2 is composed of, for example, an in-vehicle information communication device. That is, the control device 2 is configured by, for example, an ECU (Electronic Control Unit). Hereinafter, an example in which the control device 2 is composed of an in-vehicle information communication device will be mainly described. That is, an example in which the aerial haptics system 1 is for an in-vehicle use will be mainly described.
 空中ハプティクスシステム1のユーザUは、例えば、車両(不図示)の搭乗者である。すなわち、ユーザUは、例えば、当該車両の運転者、当該車両の同乗者、又は当該車両の運転者及び当該車両の同乗者の各々である。以下、ユーザUが当該車両の運転者である場合の例を中心に説明する。 User U of the aerial haptics system 1 is, for example, a passenger of a vehicle (not shown). That is, the user U is, for example, the driver of the vehicle, the passenger of the vehicle, or the driver of the vehicle and the passenger of the vehicle. Hereinafter, an example in which the user U is the driver of the vehicle will be mainly described.
 視線検出装置3は、ユーザUの視線方向Lを検出するものである。視線検出装置3は、当該検出された視線方向Lを示す情報(以下「視線方向情報」という。)を出力するものである。視線検出装置3は、例えば、DMS(Driver Monitoring System)又はOMS(Occupant Monitoring System)により構成されている。視線方向Lの検出には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 The line-of-sight detection device 3 detects the line-of-sight direction L of the user U. The line-of-sight detection device 3 outputs information indicating the detected line-of-sight direction L (hereinafter referred to as “line-of-sight direction information”). The line-of-sight detection device 3 is composed of, for example, a DMS (Driver Monitoring System) or an OMS (Occupant Monitoring System). Various known techniques can be used to detect the line-of-sight direction L. Detailed description of these techniques will be omitted.
 図2に示す如く、空中ハプティクス装置4は、ハプティクスドライバ群DGを用いるものである。ハプティクスドライバ群DGは、複数個のハプティクスドライバDを含むものである。個々のハプティクスドライバDは、例えば、超音波トランスデューサにより構成されている。 As shown in FIG. 2, the aerial haptics device 4 uses the haptics driver group DG. The haptics driver group DG includes a plurality of haptics drivers D. Each haptics driver D is composed of, for example, an ultrasonic transducer.
 複数個のハプティクスドライバDは、一次元状に配列されている。または、複数個のハプティクスドライバDは、二次元状に配列されている。図2に示す例においては、M×N個のハプティクスドライバDがN行M列のマトリクス状に配列されている。ここで、Nは、2以上の任意の整数である。また、Mは、2以上の任意の整数である。 A plurality of haptics drivers D are arranged one-dimensionally. Alternatively, the plurality of haptics drivers D are arranged two-dimensionally. In the example shown in FIG. 2, M × N haptics drivers D are arranged in a matrix of N rows and M columns. Here, N is an arbitrary integer of 2 or more. Further, M is an arbitrary integer of 2 or more.
 以下、複数個のハプティクスドライバDが二次元状に配列されている場合の例を中心に説明する。より具体的には、M×N個のハプティクスドライバDがN行M列のマトリクス状に配列されている場合の例を中心に説明する。 Hereinafter, an example in which a plurality of haptics drivers D are arranged two-dimensionally will be mainly described. More specifically, an example in which M × N haptics drivers D are arranged in a matrix of N rows and M columns will be mainly described.
 空中ディスプレイ装置5は、空中に光を投影することにより、空中に映像を表示するものである。空中ディスプレイ装置5により映像が表示される領域(以下「表示領域」という。)A1は、空中ハプティクス装置4により触覚が提示される領域(以下「空中ハプティクス領域」という。)A2に対応している。すなわち、空中ディスプレイ装置5は、空中ハプティクス装置4に対応するものである。空中ディスプレイ装置5は、例えば、3D-HUD(Three-Dimensional Head-Up Display)により構成されている。 The aerial display device 5 displays an image in the air by projecting light into the air. The area where the image is displayed by the aerial display device 5 (hereinafter referred to as “display area”) A1 corresponds to the area where the tactile sensation is presented by the aerial haptics device 4 (hereinafter referred to as “air haptics area”) A2. .. That is, the aerial display device 5 corresponds to the aerial haptics device 4. The aerial display device 5 is configured by, for example, a 3D-HUD (Three-Dimensional Head-Up Display).
 システム制御部11は、制御装置2全体の動作を制御するものである。これにより、システム制御部11は、空中ハプティクスシステム1全体の動作を制御するものである。システム制御部11は、例えば、専用の回路により構成されている。 The system control unit 11 controls the operation of the entire control device 2. As a result, the system control unit 11 controls the operation of the entire aerial haptics system 1. The system control unit 11 is composed of, for example, a dedicated circuit.
 駆動制御部12は、システム制御部11による指示に基づき、個々のハプティクスドライバDを駆動する制御を実行するものである。駆動制御部12は、例えば、専用の回路により構成されている。 The drive control unit 12 executes control for driving each haptics driver D based on an instruction from the system control unit 11. The drive control unit 12 is composed of, for example, a dedicated circuit.
 すなわち、図3に示す如く、駆動制御部12は、搬送波信号生成部31、振動波信号生成部32、変調部33及び増幅部34を含むものである。 That is, as shown in FIG. 3, the drive control unit 12 includes a carrier wave signal generation unit 31, a vibration wave signal generation unit 32, a modulation unit 33, and an amplification unit 34.
 搬送波信号生成部31は、システム制御部11による指示に基づき、所定の周波数(以下「搬送波周波数」という。)fを有する超音波(以下「搬送波」という。)に対応する電気信号(以下「搬送波信号」という。)を生成するものである。搬送波信号生成部31は、当該生成された搬送波信号を変調部33に出力するものである。 The carrier wave signal generation unit 31 is an electric signal (hereinafter referred to as “carrier wave”) corresponding to an ultrasonic wave (hereinafter referred to as “carrier wave”) having a predetermined frequency (hereinafter referred to as “carrier frequency”) f based on an instruction by the system control unit 11. It is called a "signal"). The carrier wave signal generation unit 31 outputs the generated carrier wave signal to the modulation unit 33.
 振動波信号生成部32は、システム制御部11による指示に基づき、所望の触覚刺激に対応する振動を実現するための超音波(以下「振動波」という。)に対応する電気信号(以下「振動波信号」という。)を生成するものである。振動波信号生成部32は、当該生成された振動波信号を変調部33に出力するものである。 The vibration wave signal generation unit 32 is an electric signal (hereinafter referred to as “vibration”) corresponding to ultrasonic waves (hereinafter referred to as “vibration wave”) for realizing vibration corresponding to a desired tactile stimulus based on an instruction by the system control unit 11. It is called a "wave signal"). The vibration wave signal generation unit 32 outputs the generated vibration wave signal to the modulation unit 33.
 変調部33は、振動波信号生成部32により出力された振動波信号を用いて、搬送波信号生成部31により出力された搬送波信号を変調するものである。変調部33は、当該変調された搬送波信号(以下「変調波信号」という。)を増幅部34に出力するものである。 The modulation unit 33 modulates the carrier wave signal output by the carrier wave signal generation unit 31 by using the vibration wave signal output by the vibration wave signal generation unit 32. The modulation unit 33 outputs the modulated carrier wave signal (hereinafter referred to as “modulated wave signal”) to the amplification unit 34.
 増幅部34は、変調部33により出力された変調波信号を増幅するものである。これにより、当該出力された変調波信号は、所定のレベルに増幅される。増幅部34は、当該増幅された変調波信号(以下「送信信号」という。)をハプティクスドライバ群DGに出力するものである。 The amplification unit 34 amplifies the modulated wave signal output by the modulation unit 33. As a result, the output modulated wave signal is amplified to a predetermined level. The amplification unit 34 outputs the amplified modulated wave signal (hereinafter referred to as “transmission signal”) to the haptics driver group DG.
 ここで、搬送波信号生成部31は、個々のハプティクスドライバDに対応する搬送波信号を生成する。振動波信号生成部32は、個々のハプティクスドライバDに対応する振動波信号を生成する。変調部33は、個々のハプティクスドライバDについて、対応する振動波信号を用いて対応する搬送波信号を変調する。増幅部34は、個々のハプティクスドライバDに対応する変調波信号を増幅する。増幅部34は、個々のハプティクスドライバDに対応する送信信号を出力する。 Here, the carrier wave signal generation unit 31 generates a carrier wave signal corresponding to each haptics driver D. The vibration wave signal generation unit 32 generates a vibration wave signal corresponding to each haptics driver D. The modulation unit 33 modulates the corresponding carrier signal using the corresponding vibration wave signal for each haptics driver D. The amplification unit 34 amplifies the modulated wave signal corresponding to each haptics driver D. The amplification unit 34 outputs a transmission signal corresponding to each haptics driver D.
 これにより、個々のハプティクスドライバDが駆動する。すなわち、個々のハプティクスドライバDが空中に超音波USを送信する。これにより、空中ハプティクス領域A2に触覚が提示される。すなわち、空中ハプティクス領域A2におけるハプティクスが実現される。 As a result, each haptics driver D is driven. That is, each haptics driver D transmits ultrasonic US in the air. As a result, the antennae are presented to the aerial haptics region A2. That is, haptics in the aerial haptics region A2 are realized.
 なお、空中ハプティクス領域A2のうちの指示体(例えばユーザの指)Pが存在する領域においては、対応するハプティクスドライバDにより送信された超音波USが指示体Pにより反射されて、当該反射された超音波US’が当該対応するハプティクスドライバDにより受信される。当該対応するハプティクスドライバDは、当該受信された超音波US’に対応する電気信号(以下「受信信号」という。)を出力する。 In the region of the aerial haptics region A2 where the indicator (for example, the user's finger) P exists, the ultrasonic US transmitted by the corresponding haptics driver D is reflected by the indicator P and reflected. The ultrasonic US'is received by the corresponding haptics driver D. The corresponding haptics driver D outputs an electric signal (hereinafter referred to as “received signal”) corresponding to the received ultrasonic wave US ′.
 表示制御部13は、システム制御部11による指示に基づき、空中ディスプレイ装置5を用いて、種々の画面に対応する映像を表示する制御を実行するものである。表示制御部13は、例えば、専用の回路により構成されている。 The display control unit 13 executes control to display images corresponding to various screens by using the aerial display device 5 based on the instruction from the system control unit 11. The display control unit 13 is composed of, for example, a dedicated circuit.
 ここで、空中ディスプレイ装置5により表示される映像は、種々の操作用の画面(以下「操作画面」という。)に対応する映像を含むものである。個々の操作画面におけるUI(User Interface)は、ハンドジェスチャによる操作入力用のUIを含むものである。以下、個々の操作画面におけるUIを「画面UI」という。 Here, the image displayed by the aerial display device 5 includes images corresponding to screens for various operations (hereinafter referred to as "operation screens"). The UI (User Interface) on each operation screen includes a UI for operation input by hand gesture. Hereinafter, the UI on each operation screen is referred to as "screen UI".
 具体的には、例えば、画面UIは、スライド操作による操作入力用のUI(以下「スライド操作用のUI」という。)を含むものである。または、例えば、画面UIは、フリック操作による操作入力用のUI(以下「フリック操作用のUI」という。)を含むものである。または、例えば、画面UIは、タップ操作による操作入力用のUI(以下「タップ操作用のUI」という。)を含むものである。 Specifically, for example, the screen UI includes a UI for operation input by slide operation (hereinafter referred to as "UI for slide operation"). Alternatively, for example, the screen UI includes a UI for operation input by flick operation (hereinafter referred to as "UI for flick operation"). Alternatively, for example, the screen UI includes a UI for operation input by tap operation (hereinafter referred to as "UI for tap operation").
 以下、スライド操作又はフリック操作に比して単純な操作(例えばタップ操作)を総称して「単純操作」ということがある。また、単純操作による操作入力用のUIを「単純操作用のUI」ということがある。 Hereinafter, simple operations (for example, tap operations) compared to slide operations or flick operations may be collectively referred to as "simple operations". In addition, the UI for operation input by simple operation may be referred to as "UI for simple operation".
 電流検出部14は、個々のハプティクスドライバDにおける電流値Iを検出するものである。より具体的には、電流検出部14は、個々のハプティクスドライバDについて、送信信号に対応する電流値I_1を検出するとともに、受信信号に対応する電流値I_2を検出するものである。電流検出部14は、例えば、専用の回路により構成されている。 The current detection unit 14 detects the current value I in each haptics driver D. More specifically, the current detection unit 14 detects the current value I_1 corresponding to the transmission signal and the current value I_2 corresponding to the reception signal for each haptics driver D. The current detection unit 14 is composed of, for example, a dedicated circuit.
 操作検出部15は、電流検出部14により検出された電流値Iを用いて、ユーザUにより操作画面に対して入力された操作を検出するものである。操作検出部15は、例えば、専用の回路により構成されている。 The operation detection unit 15 detects the operation input to the operation screen by the user U by using the current value I detected by the current detection unit 14. The operation detection unit 15 is composed of, for example, a dedicated circuit.
 すなわち、空中ハプティクス領域A2のうちの指示体Pが存在する領域においては、対応するハプティクスドライバDに送信信号が入力されるとともに、当該対応するハプティクスドライバDにより受信信号が出力される。通常、受信信号は、対応する送信信号に対して減衰したものとなる。また、受信信号は、対応する送信信号に対して位相差を有するものとなる。 That is, in the region of the aerial haptics region A2 where the indicator P exists, the transmission signal is input to the corresponding haptics driver D, and the reception signal is output by the corresponding haptics driver D. Normally, the received signal is attenuated with respect to the corresponding transmitted signal. Further, the received signal has a phase difference with respect to the corresponding transmitted signal.
 このため、個々のハプティクスドライバDにおける電流値I_1,I_2の差分値ΔIに基づき、対応する領域における指示体Pの有無を判定することができる。操作検出部15は、かかる判定の結果に基づき、ハンドジェスチャによる操作を検出する。具体的には、例えば、操作検出部15は、スライド操作、フリック操作又はタップ操作を検出する。 Therefore, it is possible to determine the presence / absence of the indicator P in the corresponding region based on the difference value ΔI of the current values I_1 and I_1 in each haptics driver D. The operation detection unit 15 detects the operation by the hand gesture based on the result of the determination. Specifically, for example, the operation detection unit 15 detects a slide operation, a flick operation, or a tap operation.
 判定用情報取得部21は、後述する要求精度判定部22による判定に用いられる情報(以下「判定用情報」という。)を取得するものである。ここで、判定用情報取得部21により取得される判定用情報は、視線方向情報を含むものである。すなわち、判定用情報取得部21は、視線検出装置3により出力された視線方向情報を取得するものである。 The determination information acquisition unit 21 acquires information (hereinafter referred to as "determination information") used for determination by the request accuracy determination unit 22 described later. Here, the determination information acquired by the determination information acquisition unit 21 includes the line-of-sight direction information. That is, the determination information acquisition unit 21 acquires the line-of-sight direction information output by the line-of-sight detection device 3.
 要求精度判定部22は、判定用情報取得部21により取得された判定用情報を用いて、空中ハプティクス装置4により実現される触覚刺激に要求される精度(すなわち要求精度)RAを判定するものである。 The required accuracy determination unit 22 determines the accuracy (that is, required accuracy) RA required for the tactile stimulus realized by the aerial haptic device 4 by using the determination information acquired by the determination information acquisition unit 21. be.
 より具体的には、要求精度判定部22は、要求精度RAが互いに異なる第1要求精度RA_1及び第2要求精度RA_2のうちのいずれであるかを判定するものである。ここで、第1要求精度RA_1は、第2要求精度RA_2に比して高い精度に対応するものである。他方、第2要求精度RA_2は、第1要求精度RA_1に比して低い精度に対応するものである。 More specifically, the required accuracy determination unit 22 determines whether the required accuracy RA is one of the first required accuracy RA_1 and the second required accuracy RA_2, which are different from each other. Here, the first required accuracy RA_1 corresponds to a higher accuracy than the second required accuracy RA_2. On the other hand, the second required accuracy RA_2 corresponds to a lower accuracy than the first required accuracy RA_1.
 すなわち、要求精度判定部22は、上記取得された判定用情報に含まれる視線方向情報を用いて、ユーザUの視線が表示領域A1に向けられているか否かを判定する。換言すれば、要求精度判定部22は、ユーザUの視線が空中ハプティクス領域A2に向けられているか否かを判定する。これにより、要求精度判定部22は、ユーザUによる操作入力が手探りよるものであるか目視によるものであるかを判定する。 That is, the required accuracy determination unit 22 determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the acquired determination information. In other words, the required accuracy determination unit 22 determines whether or not the line of sight of the user U is directed to the aerial haptics region A2. As a result, the required accuracy determination unit 22 determines whether the operation input by the user U is fumbling or visual.
 ユーザUの視線が表示領域A1に向けられていない場合(すなわちユーザUによる操作入力が手探りによるものである場合)、要求精度判定部22は、要求精度RAが第1要求精度RA_1であると判定する。他方、ユーザUの視線が表示領域A1に向けられている場合(すなわちユーザUによる操作入力が目視によるものである場合)、要求精度判定部22は、要求精度RAが第2要求精度RA_2であると判定する。 When the line of sight of the user U is not directed to the display area A1 (that is, when the operation input by the user U is due to fumbling), the required accuracy determination unit 22 determines that the required accuracy RA is the first required accuracy RA_1. do. On the other hand, when the line of sight of the user U is directed to the display area A1 (that is, when the operation input by the user U is visual), the required accuracy determination unit 22 has the required accuracy RA of the second required accuracy RA_2. Is determined.
 ドライバ選択部23は、ハプティクスドライバ群DGに含まれるM×N個のハプティクスドライバDのうちの複数個のハプティクスドライバ(以下「駆動対象ハプティクスドライバ」という。)D_Dを選択するものである。ここで、M×N個のハプティクスドライバDのうちの複数個の駆動対象ハプティクスドライバD_Dの密度(以下「選択密度」という。)SDは、要求精度判定部22による判定結果に応じて異なるものである。 The driver selection unit 23 selects a plurality of haptics drivers (hereinafter referred to as "drive target haptics drivers") D_D among the M × N haptics drivers D included in the haptics driver group DG. be. Here, the densities (hereinafter referred to as “selective densities”) SD of a plurality of drive target haptics drivers D_D among the M × N haptics drivers D differ depending on the determination result by the required accuracy determination unit 22. It is a thing.
 すなわち、要求精度RAが第1要求精度RA_1であると判定された場合、ドライバ選択部23は、互いに異なる第1選択密度SD_1及び第2選択密度SD_2のうちの第1選択密度SD_1により複数個の駆動対象ハプティクスドライバD_Dを選択する。他方、要求精度RAが第2要求精度RA_2であると判定された場合、ドライバ選択部23は、第2選択密度SD_2により複数個の駆動対象ハプティクスドライバD_Dを選択する。ここで、第1選択密度SD_1は、第2選択密度SD_2に比して高い密度に対応するものである。他方、第2選択密度SD_2は、第1選択密度SD_1に比して低い密度に対応するものである。 That is, when it is determined that the required accuracy RA is the first required accuracy RA_1, the driver selection unit 23 has a plurality of drivers selected by the first selective density SD_1 of the first selective density SD_1 and the second selective density SD_1 that are different from each other. Select the haptics driver D_D to be driven. On the other hand, when it is determined that the required accuracy RA is the second required accuracy RA_2, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D by the second selection density SD_2. Here, the first selective density SD_1 corresponds to a higher density than the second selective density SD_1. On the other hand, the second selective density SD_2 corresponds to a lower density than the first selective density SD_1.
 具体的には、例えば、要求精度RAが第1要求精度RA_1であると判定された場合、ドライバ選択部23は、M×N個のハプティクスドライバDのうちの全てのハプティクスドライバDを駆動対象ハプティクスドライバD_Dに選択する。他方、要求精度RAが第2要求精度RA_2であると判定された場合、ドライバ選択部23は、M×N個のハプティクスドライバDのうちの格子状に配置された複数個のハプティクスドライバDを駆動対象ハプティクスドライバD_Dに選択する。または、ドライバ選択部23は、M×N個のハプティクスドライバDのうちの市松模様状に配置された複数個のハプティクスドライバDを駆動対象ハプティクスドライバD_Dに選択する。 Specifically, for example, when it is determined that the required accuracy RA is the first required accuracy RA_1, the driver selection unit 23 drives all the haptics drivers D among the M × N haptics drivers D. Select for the target haptics driver D_D. On the other hand, when it is determined that the required accuracy RA is the second required accuracy RA_2, the driver selection unit 23 uses the plurality of haptics drivers D arranged in a grid pattern among the M × N haptics drivers D. Is selected as the drive target haptics driver D_D. Alternatively, the driver selection unit 23 selects a plurality of haptics drivers D arranged in a checkered pattern among the M × N haptics drivers D as the haptics driver D_D to be driven.
 以下、M×N個のハプティクスドライバDのうちの複数個の駆動対象ハプティクスドライバD_Dを除く0個以上のハプティクスドライバDを「非駆動対象ハプティクスドライバ」ということがある。また、非駆動対象ハプティクスドライバに「D_ND」の符号を用いることがある。 Hereinafter, 0 or more haptics drivers D excluding a plurality of drive target haptics drivers D_D among M × N haptics drivers D may be referred to as “non-drive target haptics drivers”. Further, the code of "D_ND" may be used for the non-driven target haptics driver.
 図4は、格子状に配置された複数個の駆動対象ハプティクスドライバD_Dの例を示している。すなわち、図4に示す如く、5行5列のマトリクス状に配列された25個のハプティクスドライバDがハプティクスドライバ群DGに含まれている。また、16個の駆動対象ハプティクスドライバD_D及び9個の非駆動対象ハプティクスドライバD_NDがハプティクスドライバ群DGに含まれている。16個の駆動対象ハプティクスドライバD_Dは、格子状に配置されている。 FIG. 4 shows an example of a plurality of drive target haptics drivers D_D arranged in a grid pattern. That is, as shown in FIG. 4, 25 haptics drivers D arranged in a matrix of 5 rows and 5 columns are included in the haptics driver group DG. Further, 16 drive target haptics drivers D_D and 9 non-drive target haptics drivers D_ND are included in the haptics driver group DG. The 16 driven haptics drivers D_D are arranged in a grid pattern.
 図5は、市松模様状に配置された複数個の駆動対象ハプティクスドライバD_Dの例を示している。すなわち、図5に示す如く、5行5列のマトリクス状に配列された25個のハプティクスドライバDがハプティクスドライバ群DGに含まれている。また、12個の駆動対象ハプティクスドライバD_D及び13個の非駆動対象ハプティクスドライバD_NDがハプティクスドライバ群DGに含まれている。12個の駆動対象ハプティクスドライバD_Dは、市松模様状に配置されている。 FIG. 5 shows an example of a plurality of drive target haptics drivers D_D arranged in a checkered pattern. That is, as shown in FIG. 5, 25 haptics drivers D arranged in a matrix of 5 rows and 5 columns are included in the haptics driver group DG. Further, 12 drive target haptics drivers D_D and 13 non-drive target haptics drivers D_ND are included in the haptics driver group DG. The twelve drive target haptics drivers D_D are arranged in a checkered pattern.
 ドライバ選択部23は、個々の駆動対象ハプティクスドライバD_Dを駆動の対象に含めることを駆動制御部12に指示するようになっている。換言すれば、ドライバ選択部23は、個々の非駆動対象ハプティクスドライバD_NDを駆動の対象から除外することを駆動制御部12に指示するようになっている。 The driver selection unit 23 instructs the drive control unit 12 to include each drive target haptics driver D_D as a drive target. In other words, the driver selection unit 23 instructs the drive control unit 12 to exclude each non-drive target haptics driver D_ND from the drive target.
 周波数設定部24は、個々の駆動対象ハプティクスドライバD_Dにより送信される超音波USの周波数(以下「駆動周波数」という。)Fを、要求精度判定部22による判定結果に応じて異なる値に設定するものである。 The frequency setting unit 24 sets the frequency (hereinafter referred to as “driving frequency”) F of the ultrasonic wave US transmitted by each drive target haptics driver D_D to a different value according to the determination result by the required accuracy determination unit 22. It is something to do.
 すなわち、要求精度RAが第1要求精度RA_1であると判定された場合、周波数設定部24は、駆動周波数Fを、互いに異なる駆動周波数F_1,F_2のうちのより高い駆動周波数(以下「第1駆動周波数」という。)F_1に設定する。これは、例えば、互いに異なる搬送波周波数f_1,f_2のうちのより高い搬送波周波数f_1に対応する搬送波信号の生成を搬送波信号生成部31に指示することにより実現される。 That is, when it is determined that the required accuracy RA is the first required accuracy RA_1, the frequency setting unit 24 sets the drive frequency F to a higher drive frequency among the different drive frequencies F_1 and F_1 (hereinafter, "first drive"). It is called "frequency".) Set to F_1. This is realized, for example, by instructing the carrier signal generation unit 31 to generate a carrier signal corresponding to the higher carrier frequency f_1 among the different carrier frequencies f_1 and f_1.
 他方、要求精度RAが第2要求精度RA_2であると判定された場合、周波数設定部24は、駆動周波数Fを、互いに異なる駆動周波数F_1,F_2のうちのより低い駆動周波数(以下「第2駆動周波数」という。)F_2に設定する。これは、例えば、互いに異なる搬送波周波数f_1,f_2のうちのより低い搬送波周波数f_2に対応する搬送波信号の生成を搬送波信号生成部31に指示することにより実現される。 On the other hand, when it is determined that the required accuracy RA is the second required accuracy RA_2, the frequency setting unit 24 sets the drive frequency F to the lower drive frequency among the different drive frequencies F_1 and F_2 (hereinafter, "second drive"). It is called "frequency".) Set to F_2. This is realized, for example, by instructing the carrier signal generation unit 31 to generate a carrier signal corresponding to the lower carrier frequency f_2 among the different carrier frequencies f_1 and f_2.
 駆動制御部12は、ドライバ選択部23による指示に基づき、個々の駆動対象ハプティクスドライバD_Dを駆動の対象に含めるようになっている。換言すれば、駆動制御部12は、ドライバ選択部23による指示に基づき、個々の非駆動対象ハプティクスドライバD_NDを駆動の対象から除外するようになっている。このとき、搬送波信号生成部31は、周波数設定部24による指示に基づき、搬送波周波数f_1又は搬送波周波数f_2に対応する搬送波信号を生成するようになっている。 The drive control unit 12 includes each drive target haptics driver D_D as a drive target based on the instruction from the driver selection unit 23. In other words, the drive control unit 12 excludes each non-drive target haptics driver D_ND from the drive target based on the instruction from the driver selection unit 23. At this time, the carrier wave signal generation unit 31 is adapted to generate a carrier wave signal corresponding to the carrier wave frequency f_1 or the carrier wave frequency f_2 based on the instruction by the frequency setting unit 24.
 このようにして、空中ハプティクスシステム1の要部が構成されている。 In this way, the main part of the aerial haptics system 1 is configured.
 以下、判定用情報取得部21により実行される処理を総称して「判定用情報取得処理」ということがある。また、要求精度判定部22により実行される処理を総称して「要求精度判定処理」ということがある。また、ドライバ選択部23により実行される処理を総称して「ドライバ選択処理」ということがある。また、周波数設定部24により実行される処理を総称して「周波数設定処理」ということがある。 Hereinafter, the processes executed by the determination information acquisition unit 21 may be collectively referred to as "determination information acquisition processing". Further, the processes executed by the request accuracy determination unit 22 may be collectively referred to as “request accuracy determination process”. Further, the processes executed by the driver selection unit 23 may be collectively referred to as "driver selection process". Further, the processes executed by the frequency setting unit 24 may be collectively referred to as "frequency setting process".
 以下、判定用情報取得部21が有する機能を総称して「判定用情報取得機能」ということがある。また、要求精度判定部22が有する機能を総称して「要求精度判定機能」ということがある。また、ドライバ選択部23が有する機能を総称して「ドライバ選択機能」ということがある。また、周波数設定部24が有する機能を総称して「周波数設定機能」ということがある。 Hereinafter, the functions possessed by the determination information acquisition unit 21 may be collectively referred to as "determination information acquisition function". Further, the functions of the required accuracy determination unit 22 may be collectively referred to as a "required accuracy determination function". Further, the functions of the driver selection unit 23 may be collectively referred to as a "driver selection function". Further, the functions of the frequency setting unit 24 may be collectively referred to as "frequency setting function".
 以下、判定用情報取得機能に「F1」の符号を用いることがある。また、要求精度判定機能に「F2」の符号を用いることがある。また、ドライバ選択機能に「F3」の符号を用いることがある。また、周波数設定機能に「F4」に符号を用いることがある。 Hereinafter, the code of "F1" may be used for the determination information acquisition function. Further, the reference numeral of "F2" may be used for the required accuracy determination function. In addition, the code of "F3" may be used for the driver selection function. Further, a code may be used for "F4" for the frequency setting function.
 次に、図6~図8を参照して、空中ハプティクス制御装置100の要部のハードウェア構成について説明する。 Next, with reference to FIGS. 6 to 8, the hardware configuration of the main part of the aerial haptics control device 100 will be described.
 図6に示す如く、空中ハプティクス制御装置100は、プロセッサ41及びメモリ42を有している。メモリ42には、複数個の機能(判定用情報取得機能、要求精度判定機能、ドライバ選択機能及び周波数設定機能を含む。)F1~F4に対応するプログラムが記憶されている。プロセッサ41は、メモリ42に記憶されているプログラムを読み出して実行する。これにより、複数個の機能F1~F4が実現される。 As shown in FIG. 6, the aerial haptics control device 100 has a processor 41 and a memory 42. The memory 42 stores programs corresponding to a plurality of functions (including a determination information acquisition function, a required accuracy determination function, a driver selection function, and a frequency setting function) F1 to F4. The processor 41 reads and executes the program stored in the memory 42. As a result, a plurality of functions F1 to F4 are realized.
 または、図7に示す如く、空中ハプティクス制御装置100は、処理回路43を有している。処理回路43は、複数個の機能F1~F4に対応する処理を実行する。これにより、複数個の機能F1~F4が実現される。 Alternatively, as shown in FIG. 7, the aerial haptics control device 100 has a processing circuit 43. The processing circuit 43 executes processing corresponding to a plurality of functions F1 to F4. As a result, a plurality of functions F1 to F4 are realized.
 または、図8に示す如く、空中ハプティクス制御装置100は、プロセッサ41、メモリ42及び処理回路43を有している。メモリ42には、複数個の機能F1~F4のうちの一部の機能に対応するプログラムが記憶されている。プロセッサ41は、メモリ42に記憶されているプログラムを読み出して実行する。これにより、かかる一部の機能が実現される。また、処理回路43は、複数個の機能F1~F4のうちの残余の機能に対応する処理を実行する。これにより、かかる残余の機能が実現される。 Alternatively, as shown in FIG. 8, the aerial haptics control device 100 includes a processor 41, a memory 42, and a processing circuit 43. A program corresponding to a part of the plurality of functions F1 to F4 is stored in the memory 42. The processor 41 reads and executes the program stored in the memory 42. As a result, some of these functions are realized. Further, the processing circuit 43 executes processing corresponding to the remaining functions of the plurality of functions F1 to F4. As a result, such residual functions are realized.
 プロセッサ41は、1個以上のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 41 is composed of one or more processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microprocessor, or a DSP (Digital Signal Processor) is used.
 メモリ42は、1個以上の不揮発性メモリにより構成されている。または、メモリ42は、1個以上の不揮発性メモリ及び1個以上の揮発性メモリにより構成されている。すなわち、メモリ42は、1個以上のメモリにより構成されている。個々のメモリは、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。また、個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ソリッドステートドライブ又はハードディスクドライブを用いたものである。 The memory 42 is composed of one or more non-volatile memories. Alternatively, the memory 42 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 42 is composed of one or more memories. The individual memory uses, for example, a semiconductor memory or a magnetic disk. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory). In addition, the individual non-volatile memory is, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programle) drive, a solid state drive O Is.
 処理回路43は、1個以上のデジタル回路により構成されている。または、処理回路43は、1個以上のデジタル回路及び1個以上のアナログ回路により構成されている。すなわち、処理回路43は、1個以上の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System on a Chip)又はシステムLSI(Large Scale Integration)を用いたものである。 The processing circuit 43 is composed of one or more digital circuits. Alternatively, the processing circuit 43 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 43 is composed of one or more processing circuits. The individual processing circuits are, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), System LSI (Sy), and System (Sy). Is.
 ここで、プロセッサ41が複数個のプロセッサにより構成されているとき、複数個の機能F1~F4と複数個のプロセッサとの対応関係は任意である。すなわち、複数個のプロセッサの各々は、複数個の機能F1~F4のうちの対応する1個以上の機能に対応するプログラムを読み出して実行するものであっても良い。プロセッサ41は、複数個の機能F1~F4の各々に対応する専用のプロセッサを含むものであっても良い。 Here, when the processor 41 is composed of a plurality of processors, the correspondence between the plurality of functions F1 to F4 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1 to F4. The processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1 to F4.
 また、メモリ42が複数個のメモリにより構成されているとき、複数個の機能F1~F4と複数個のメモリとの対応関係は任意である。すなわち、複数個のメモリの各々は、複数個の機能F1~F4のうちの対応する1個以上の機能に対応するプログラムを記憶するものであっても良い。メモリ42は、複数個の機能F1~F4の各々に対応する専用のメモリを含むものであっても良い。 Further, when the memory 42 is composed of a plurality of memories, the correspondence between the plurality of functions F1 to F4 and the plurality of memories is arbitrary. That is, each of the plurality of memories may store a program corresponding to one or more corresponding functions among the plurality of functions F1 to F4. The memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1 to F4.
 また、処理回路43が複数個の処理回路により構成されているとき、複数個の機能F1~F4と複数個の処理回路との対応関係は任意である。すなわち、複数個の処理回路の各々は、複数個の機能F1~F4のうちの対応する1個以上の機能に対応する処理を実行するものであっても良い。処理回路43は、複数個の機能F1~F4の各々に対応する専用の処理回路を含むものであっても良い。 Further, when the processing circuit 43 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1 to F4 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute processing corresponding to one or more corresponding functions among the plurality of functions F1 to F4. The processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 to F4.
 次に、図9に示すフローチャートを参照して、空中ハプティクス制御装置100の動作について説明する。 Next, the operation of the aerial haptics control device 100 will be described with reference to the flowchart shown in FIG.
 まず、判定用情報取得部21が判定用情報取得処理を実行する(ステップST1)。次いで、要求精度判定部22が要求精度判定処理を実行する(ステップST2)。次いで、ドライバ選択部23がドライバ選択処理を実行する(ステップST3)。次いで、周波数設定部24が周波数設定処理を実行する(ステップST4)。 First, the determination information acquisition unit 21 executes the determination information acquisition process (step ST1). Next, the required accuracy determination unit 22 executes the required accuracy determination process (step ST2). Next, the driver selection unit 23 executes the driver selection process (step ST3). Next, the frequency setting unit 24 executes the frequency setting process (step ST4).
 次に、図10に示すフローチャートを参照して、要求精度判定部22の動作について説明する。すなわち、ステップST2にて実行される処理について説明する。 Next, the operation of the required accuracy determination unit 22 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2 will be described.
 まず、要求精度判定部22は、ステップST1にて取得された判定用情報に含まれる視線方向情報を用いて、ユーザUの視線が表示領域A1に向けられているか否かを判定する(ステップST11)。 First, the request accuracy determination unit 22 determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the determination information acquired in step ST1 (step ST11). ).
 ユーザUの視線が表示領域A1に向けられていない場合(ステップST11“NO”)、すなわちユーザUによる操作入力が手探りによるものである場合、要求精度判定部22は、要求精度RAが第1要求精度RA_1であると判定する(ステップST12)。 When the line of sight of the user U is not directed to the display area A1 (step ST11 “NO”), that is, when the operation input by the user U is by groping, the request accuracy determination unit 22 requests the first request for the required accuracy RA. It is determined that the accuracy is RA_1 (step ST12).
 他方、ユーザUの視線が表示領域A1に向けられている場合(ステップST11“YES”)、すなわちユーザUによる操作入力が目視によるものである場合、要求精度判定部22は、要求精度RAが第2要求精度RA_2であると判定する(ステップST13)。 On the other hand, when the line of sight of the user U is directed to the display area A1 (step ST11 “YES”), that is, when the operation input by the user U is visual, the required accuracy determination unit 22 has the required accuracy RA. 2 It is determined that the required accuracy is RA_2 (step ST13).
 次に、図11~図14を参照して、空中ハプティクス制御装置100におけるドライバ選択処理及び周波数設定処理の具体例について説明する。また、空中ハプティクス制御装置100の効果について説明する。 Next, a specific example of the driver selection process and the frequency setting process in the aerial haptics control device 100 will be described with reference to FIGS. 11 to 14. Further, the effect of the aerial haptics control device 100 will be described.
 図11は、ユーザUの視線が表示領域A1に向けられていない状態の例を示している。すなわち、図11は、ユーザUが手探りによる操作入力をしようとしている状態の例を示している。より具体的には、図11は、車両(不図示)の運転者の視線が前方に向けられている状態の例を示している。すなわち、図11は、当該車両の運転者が当該車両の走行中に操作入力をしようとしている状態の例を示している。 FIG. 11 shows an example of a state in which the line of sight of the user U is not directed to the display area A1. That is, FIG. 11 shows an example of a state in which the user U is trying to input an operation by fumbling. More specifically, FIG. 11 shows an example of a state in which the driver's line of sight of the vehicle (not shown) is directed forward. That is, FIG. 11 shows an example of a state in which the driver of the vehicle is trying to input an operation while the vehicle is running.
 この場合、要求精度判定部22により、要求精度RAが第1要求精度RA_1であると判定される。そして、ドライバ選択部23により、第1選択密度SD_1にて複数個の駆動対象ハプティクスドライバD_Dが選択される。具体的には、例えば、4行4列のマトリクス状に配列された16個のハプティクスドライバDのうちの全てのハプティクスドライバDが駆動対象ハプティクスドライバD_Dに選択される(図12参照)。そして、駆動周波数Fが第1駆動周波数F_1に設定される。 In this case, the required accuracy determination unit 22 determines that the required accuracy RA is the first required accuracy RA_1. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the first selection density SD_1. Specifically, for example, all the haptics drivers D out of the 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are selected as the haptics driver D_D to be driven (see FIG. 12). .. Then, the drive frequency F is set to the first drive frequency F_1.
 図13は、ユーザUの視線が表示領域A1に向けられている状態の例を示している。すなわち、図13は、ユーザUが目視による操作入力をしようとしている状態の例を示している。より具体的には、図13は、車両(不図示)の運転者の視線が表示領域A1に向けられている状態の例を示している。すなわち、図13は、当該車両の運転者が当該車両の停止中に操作入力をしようとしている状態の例を示している。 FIG. 13 shows an example of a state in which the line of sight of the user U is directed to the display area A1. That is, FIG. 13 shows an example of a state in which the user U is trying to visually input an operation. More specifically, FIG. 13 shows an example of a state in which the line of sight of the driver of the vehicle (not shown) is directed to the display area A1. That is, FIG. 13 shows an example of a state in which the driver of the vehicle is trying to input an operation while the vehicle is stopped.
 この場合、要求精度判定部22により、要求精度RAが第2要求精度RA_2であると判定される。そして、ドライバ選択部23により、第2選択密度SD_2にて複数個の駆動対象ハプティクスドライバD_Dが選択される。具体的には、例えば、4行4列のマトリクス状に配列された16個のハプティクスドライバDのうちの市松模様状に配置された8個のハプティクスドライバDが駆動対象ハプティクスドライバD_Dに設定される(図14参照)。そして、駆動周波数Fが第2駆動周波数F_2に設定される。 In this case, the required accuracy determination unit 22 determines that the required accuracy RA is the second required accuracy RA_2. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the second selection density SD_2. Specifically, for example, eight haptics drivers D arranged in a checkered pattern among 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are used as the haptics driver D_D to be driven. It is set (see FIG. 14). Then, the drive frequency F is set to the second drive frequency F_2.
 ここで、第1選択密度SD_1を用いることにより、ドライバ選択部23により選択される駆動対象ハプティクスドライバD_Dの個数Xが多くなる。例えば、図12に示す例においては、X=16である。他方、第2選択密度SD_2を用いることにより、ドライバ選択部23により選択される駆動対象ハプティクスドライバD_Dの個数Xが少なくなる。例えば、図14に示す例においては、X=8である。 Here, by using the first selection density SD_1, the number X of the drive target haptics drivers D_D selected by the driver selection unit 23 increases. For example, in the example shown in FIG. 12, X = 16. On the other hand, by using the second selection density SD_2, the number X of the drive target haptics drivers D_D selected by the driver selection unit 23 is reduced. For example, in the example shown in FIG. 14, X = 8.
 また、一般に、超音波の周波数が高いほど、かかる超音波の指向性が高くなる。換言すれば、超音波の周波数が低いほど、かかる超音波の指向性が低くなる。このため、駆動周波数Fが第1駆動周波数F_1に設定されることにより、個々の駆動対象ハプティクスドライバD_Dにより送信される超音波USの指向性が高くなる(図12参照)。他方、駆動周波数Fが第2駆動周波数F_2に設定されることにより、個々の駆動対象ハプティクスドライバD_Dにより送信される超音波USの指向性が低くなる(図14参照)。 Also, in general, the higher the frequency of the ultrasonic wave, the higher the directivity of the ultrasonic wave. In other words, the lower the frequency of the ultrasonic wave, the lower the directivity of the ultrasonic wave. Therefore, by setting the drive frequency F to the first drive frequency F_1, the directivity of the ultrasonic wave US transmitted by each drive target haptics driver D_D is increased (see FIG. 12). On the other hand, when the drive frequency F is set to the second drive frequency F_2, the directivity of the ultrasonic US transmitted by the individual drive target haptics drivers D_D becomes low (see FIG. 14).
 ここで、個数Xを多くする(すなわち第1選択密度SD_1を用いる)とともに超音波USの指向性を高くする(すなわち第1駆動周波数F_1を用いる)ことにより、高精度な触覚刺激を実現することができる。 Here, by increasing the number X (that is, using the first selection density SD_1) and increasing the directivity of the ultrasonic US (that is, using the first drive frequency F_1), highly accurate tactile stimulation can be realized. Can be done.
 他方、個数Xを少なくする(すなわち第2選択密度SD_2を用いる)ことにより、触覚刺激の精度が低下するものの、空中ハプティクス装置4における消費電力を低減することができる。また、このとき、超音波USの指向性を低くする(すなわち第2駆動周波数F_2を用いる)ことにより、空中ハプティクス装置4における消費電力を低減しつつ、空中ハプティクス領域A2における触覚刺激が部分的に欠落するのを抑制することができる。すなわち、空中ハプティクス領域A2における触覚刺激が逆格子状に欠落したり、又は空中ハプティクス領域A2における触覚刺激が市松模様状に欠落したりするのを抑制することができる、 On the other hand, by reducing the number X (that is, using the second selection density SD_2), the accuracy of the tactile stimulus is lowered, but the power consumption in the aerial haptic device 4 can be reduced. Further, at this time, by lowering the directivity of the ultrasonic US (that is, using the second drive frequency F_2), the power consumption in the aerial haptic device 4 is reduced, and the tactile stimulus in the aerial haptic region A2 is partially performed. It can be suppressed from being missing. That is, it is possible to prevent the tactile stimuli in the aerial haptics region A2 from being lost in a reciprocal lattice pattern or the tactile stimuli in the aerial haptics region A2 from being missing in a checkered pattern.
 ユーザUが手探りによる操作入力をするときは(図11参照)、手探りによる操作入力をスムーズにする観点から、高精度な触覚刺激を実現するのが好適である。このとき、空中ハプティクスシステム1においては、図12に示す如く、個数Xが多くなる(すなわち第1選択密度SD_1が用いられる)とともに、超音波USの指向性が高くなる(すなわち第1駆動周波数F_1が用いられる)。これにより、高精度な触覚刺激を実現することができる。この結果、手探りによる操作入力をスムーズにすることができる。 When the user U inputs an operation by groping (see FIG. 11), it is preferable to realize a highly accurate tactile stimulus from the viewpoint of smoothing the operation input by groping. At this time, in the aerial haptics system 1, as shown in FIG. 12, as the number X increases (that is, the first selection density SD_1 is used), the directivity of the ultrasonic US becomes higher (that is, the first drive frequency). F_1 is used). This makes it possible to realize highly accurate tactile stimulation. As a result, it is possible to smooth the operation input by groping.
 他方、ユーザUが目視による操作入力をするときは(図13参照)、ユーザUが手探りによる操作入力をするときに比して、高精度な触覚刺激が不要である。このとき、空中ハプティクスシステム1においては、図14に示す如く、個数Xが少なくなる(すなわち第2選択密度SD_2が用いられる)とともに、超音波USの指向性が低くなる(すなわち第2駆動周波数F_2が用いられる)。これにより、空中ハプティクス装置4における消費電力を低減することができる。 On the other hand, when the user U makes a visual operation input (see FIG. 13), a highly accurate tactile stimulus is not required as compared with the case where the user U makes a fumbling operation input. At this time, in the aerial haptics system 1, as shown in FIG. 14, the number X is reduced (that is, the second selection density SD_2 is used), and the directivity of the ultrasonic US is lowered (that is, the second drive frequency). F_2 is used). As a result, the power consumption of the aerial haptics device 4 can be reduced.
 なお、複数個の駆動対象ハプティクスドライバD_Dが市松模様状に配置されていることにより、複数個の駆動対象ハプティクスドライバD_Dが格子状に配置されている場合に比して、以下のような効果を得ることができる。 Since the plurality of drive target haptics drivers D_D are arranged in a checkered pattern, the following is compared with the case where the plurality of drive target haptics drivers D_D are arranged in a grid pattern. The effect can be obtained.
 すなわち、複数個の駆動対象ハプティクスドライバD_Dが格子状に配置されているとき、複数個の駆動対象ハプティクスドライバD_Dのうちの各2個の駆動対象ハプティクスドライバD_Dについて、当該2個の駆動対象ハプティクスドライバD_Dが互いに隣接することがある(図4参照)。他方、複数個の駆動対象ハプティクスドライバD_Dが市松模様状に配置されているとき、当該2個の駆動対象ハプティクスドライバD_Dが互いに隣接することはない(図5参照)。ここで、「隣接する」とは、N行M列のマトリクスにおける行方向又は列方向に隣接することを意味する。 That is, when a plurality of drive target haptics drivers D_D are arranged in a grid pattern, the two drive target haptics drivers D_D of each of the plurality of drive target haptics drivers D_D are driven. Target haptics drivers D_D may be adjacent to each other (see FIG. 4). On the other hand, when a plurality of driven target haptics drivers D_D are arranged in a checkered pattern, the two driven target haptics drivers D_D are not adjacent to each other (see FIG. 5). Here, "adjacent" means that they are adjacent in the row direction or the column direction in the matrix of N rows and M columns.
 換言すれば、複数個の駆動対象ハプティクスドライバD_Dが格子状に配置されているときは、個々の駆動対象ハプティクスドライバD_Dに隣接する駆動対象ハプティクスドライバD_Dの個数Yが異なり得るものである。他方、複数個の駆動対象ハプティクスドライバD_Dが市松模様状に配置されているときは、個数Yが一定である(Y=0)。 In other words, when a plurality of drive target haptics drivers D_D are arranged in a grid pattern, the number Y of drive target haptics drivers D_D adjacent to each drive target haptics driver D_D may differ. .. On the other hand, when a plurality of drive target haptics drivers D_D are arranged in a checkered pattern, the number Y is constant (Y = 0).
 このため、複数個の駆動対象ハプティクスドライバD_Dが市松模様状に配置されていることにより、複数個の駆動対象ハプティクスドライバD_Dが格子状に配置されている場合に比して、空中ハプティクス領域A2における触覚刺激のむらの発生を抑制することができる。換言すれば、空中ハプティクス領域A2における触覚刺激を容易に均一にすることができる。また、かかる触覚刺激を効率良く実現することができる。 Therefore, since the plurality of drive target haptics drivers D_D are arranged in a checkered pattern, the aerial haptics region is compared with the case where the plurality of drive target haptics drivers D_D are arranged in a grid pattern. It is possible to suppress the occurrence of unevenness of tactile stimulation in A2. In other words, the tactile stimulus in the aerial haptic region A2 can be easily homogenized. Moreover, such a tactile stimulus can be efficiently realized.
 次に、図15を参照して、空中ハプティクスシステム1の変形例について説明する。 Next, a modified example of the aerial haptics system 1 will be described with reference to FIG.
 図15に示す如く、空中ハプティクス制御装置100は、周波数設定部24を含まないものであっても良い。すなわち、判定用情報取得部21、要求精度判定部22及びドライバ選択部23により空中ハプティクス制御装置100の要部が構成されているものであっても良い。 As shown in FIG. 15, the aerial haptics control device 100 may not include the frequency setting unit 24. That is, the main part of the aerial haptics control device 100 may be configured by the determination information acquisition unit 21, the required accuracy determination unit 22, and the driver selection unit 23.
 次に、図16及び図17を参照して、空中ハプティクスシステム1の他の変形例について説明する。 Next, another modification of the aerial haptics system 1 will be described with reference to FIGS. 16 and 17.
 図16又は図17に示す如く、空中ハプティクスシステム1は、センサ6を含むものであっても良い。センサ6は、例えば、カメラ又は赤外線センサにより構成されている。操作検出部15は、ハンドジェスチャによる操作を検出するにあたり、電流値Iを用いるのに代えてセンサ6を用いるものであっても良い。センサ6による操作の検出には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 As shown in FIG. 16 or FIG. 17, the aerial haptics system 1 may include a sensor 6. The sensor 6 is composed of, for example, a camera or an infrared sensor. The operation detection unit 15 may use the sensor 6 instead of the current value I when detecting the operation by the hand gesture. Various known techniques can be used to detect the operation by the sensor 6. Detailed description of these techniques will be omitted.
 以上のように、実施の形態1に係る空中ハプティクス制御装置100は、空中ハプティクス装置4により実現される触覚刺激に対する要求精度RAの判定に用いられる判定用情報を取得する判定用情報取得部21と、判定用情報を用いて要求精度RAを判定する要求精度判定部22と、要求精度RAに応じて異なる選択密度SDにより、空中ハプティクス装置4におけるハプティクスドライバ群DGに含まれる複数個のハプティクスドライバDのうちの複数個の駆動対象ハプティクスドライバD_Dを選択するドライバ選択部23と、を備える。これにより、要求精度RAの変動に対応することができる。 As described above, the aerial haptics control device 100 according to the first embodiment has the determination information acquisition unit 21 for acquiring the determination information used for determining the required accuracy RA for the tactile stimulus realized by the aerial haptics device 4. , A plurality of haptics included in the haptics driver group DG in the aerial haptics device 4 by the requirement accuracy determination unit 22 for determining the requirement accuracy RA using the determination information and the selection density SD different according to the requirement accuracy RA. A driver selection unit 23 for selecting a plurality of drive target haptics drivers D_D among the drivers D is provided. This makes it possible to cope with fluctuations in the required accuracy RA.
 また、ドライバ選択部23は、要求精度判定部22により要求精度RAが第2要求精度RA_2よりも高い第1要求精度RA_1であると判定された場合、第2選択密度SD_2よりも高い第1選択密度SD_1により複数個の駆動対象ハプティクスドライバD_Dを選択する。これにより、高精度な触覚刺激を実現することができる。 Further, when the driver selection unit 23 determines that the required accuracy RA is the first required accuracy RA_1 higher than the second required accuracy RA_2 by the required accuracy determination unit 22, the first selection higher than the second selection density SD_2. A plurality of drive target haptics drivers D_D are selected according to the density SD_1. This makes it possible to realize highly accurate tactile stimulation.
 また、空中ハプティクス制御装置100は、要求精度判定部22により要求精度RAが第1要求精度RA_1であると判定された場合、複数個の駆動対象ハプティクスドライバD_Dの各々における駆動周波数Fを第2駆動周波数F_2よりも高い第1駆動周波数F_1に設定する周波数設定部24を備える。これにより、高精度な触覚刺激を実現することができる。 Further, when the required accuracy RA is determined by the required accuracy determination unit 22 to be the first required accuracy RA_1, the aerial haptics control device 100 sets the drive frequency F in each of the plurality of drive target haptic drivers D_D to the second. A frequency setting unit 24 for setting a first drive frequency F_1 higher than the drive frequency F_1 is provided. This makes it possible to realize highly accurate tactile stimulation.
 また、ドライバ選択部23は、要求精度判定部22により要求精度RAが第1要求精度RA_1よりも低い第2要求精度RA_2であると判定された場合、第1選択密度SD_1よりも低い第2選択密度SD_2により複数個の駆動対象ハプティクスドライバD_Dを選択するものであり、空中ハプティクス制御装置100は、要求精度判定部22により要求精度RAが第2要求精度RA_2であると判定された場合、複数個の駆動対象ハプティクスドライバD_Dの各々における駆動周波数Fを第1駆動周波数F_1よりも低い第2駆動周波数F_2に設定する周波数設定部24を備える。これにより、空中ハプティクス装置4における消費電量を低減することができる。また、空中ハプティクス領域A2における触覚刺激が部分的に欠落するのを抑制することができる。 Further, when the required accuracy RA is determined by the required accuracy determination unit 22 to be the second required accuracy RA_2, which is lower than the first required accuracy RA_1, the driver selection unit 23 makes a second selection lower than the first selection density SD_1. A plurality of drive target haptics drivers D_D are selected by the density SD_2, and the aerial haptics control device 100 has a plurality of aerial haptics control devices 100 when the required accuracy determination unit 22 determines that the required accuracy RA is the second required accuracy RA_2. A frequency setting unit 24 for setting the drive frequency F in each of the drive target haptics drivers D_D to the second drive frequency F_2 lower than the first drive frequency F_1 is provided. As a result, the amount of electric charge consumed by the aerial haptics device 4 can be reduced. In addition, it is possible to suppress the partial loss of tactile stimuli in the aerial haptic region A2.
 また、判定用情報は、空中ハプティクス装置4及び空中ハプティクス装置4に対応する空中ディスプレイ装置5を含む空中ハプティクスシステム1のユーザUの視線方向Lを示す視線方向情報を含む。これにより、ユーザUによる操作入力が手探りによるものであるか目視によるものであるかに応じた要求精度RAの判定を実現することができる。 Further, the determination information includes the line-of-sight direction information indicating the line-of-sight direction L of the user U of the aerial haptics system 1 including the aerial haptics device 4 and the aerial display device 5 corresponding to the aerial haptics device 4. This makes it possible to determine the required accuracy RA according to whether the operation input by the user U is fumbling or visual.
 また、要求精度判定部22は、ユーザUの視線が空中ディスプレイ装置5における表示領域A1に向けられていない場合、要求精度RAが第1要求精度RA_1であると判定する。これにより、ユーザUによる操作入力が手探りによるものであるとき、高精度な触覚刺激を実現することができる。 Further, the required accuracy determination unit 22 determines that the required accuracy RA is the first required accuracy RA_1 when the line of sight of the user U is not directed to the display area A1 in the aerial display device 5. Thereby, when the operation input by the user U is fumbling, it is possible to realize a highly accurate tactile stimulus.
 また、要求精度判定部22は、ユーザUの視線が空中ディスプレイ装置5における表示領域A1に向けられている場合、要求精度RAが第2要求精度RA_2であると判定する。これにより、ユーザUによる操作入力が目視によるものであるとき、空中ハプティクス装置4における消費電力を低減することができる。 Further, when the line of sight of the user U is directed to the display area A1 in the aerial display device 5, the required accuracy determination unit 22 determines that the required accuracy RA is the second required accuracy RA_2. Thereby, when the operation input by the user U is visual, the power consumption in the aerial haptics device 4 can be reduced.
 また、実施の形態1に係る空中ハプティクス制御方法は、判定用情報取得部21が、空中ハプティクス装置4により実現される触覚刺激に対する要求精度RAの判定に用いられる判定用情報を取得するステップST1と、要求精度判定部22が、判定用情報を用いて要求精度RAを判定するステップST2と、ドライバ選択部23が、要求精度RAに応じて異なる選択密度SDにより、空中ハプティクス装置4におけるハプティクスドライバ群DGに含まれる複数個のハプティクスドライバDのうちの複数個の駆動対象ハプティクスドライバD_Dを選択するステップST3と、を備える。これにより、要求精度RAの変動に対応することができる。 Further, in the aerial haptics control method according to the first embodiment, the determination information acquisition unit 21 acquires the determination information used for determining the required accuracy RA for the tactile stimulus realized by the aerial haptics device 4. , The haptics driver in the aerial haptics device 4 by the step ST2 in which the required accuracy determination unit 22 determines the required accuracy RA using the determination information and the selection density SD in which the driver selection unit 23 differs according to the required accuracy RA. A step ST3 for selecting a plurality of driven target haptic drivers D_D among the plurality of haptic drivers D included in the group DG is provided. This makes it possible to cope with fluctuations in the required accuracy RA.
実施の形態2.
 図18は、実施の形態2に係る空中ハプティクスシステムの要部を示すブロック図である。図18を参照して、実施の形態2に係る空中ハプティクスシステムについて説明する。なお、図18において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 18 is a block diagram showing a main part of the aerial haptics system according to the second embodiment. The aerial haptics system according to the second embodiment will be described with reference to FIG. In FIG. 18, the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
 図18に示す如く、空中ハプティクスシステム1aは、制御装置2a、空中ハプティクス装置4及び空中ディスプレイ装置5を含むものである。制御装置2aは、システム制御部11、駆動制御部12、表示制御部13、電流検出部14及び操作検出部15を含むものである。また、制御装置2aは、判定用情報取得部21a、要求精度判定部22a、ドライバ選択部23及び周波数設定部24を含むものである。判定用情報取得部21a、要求精度判定部22a、ドライバ選択部23及び周波数設定部24により、空中ハプティクス制御装置100aの要部が構成されている。 As shown in FIG. 18, the aerial haptics system 1a includes a control device 2a, an aerial haptics device 4, and an aerial display device 5. The control device 2a includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2a includes a determination information acquisition unit 21a, a required accuracy determination unit 22a, a driver selection unit 23, and a frequency setting unit 24. The main part of the aerial haptics control device 100a is composed of the determination information acquisition unit 21a, the required accuracy determination unit 22a, the driver selection unit 23, and the frequency setting unit 24.
 判定用情報取得部21aは、後述する要求精度判定部22aによる判定に用いられる情報(すなわち判定用情報)を取得するものである。ここで、判定用情報取得部21aにより取得される判定用情報は、空中ディスプレイ装置5における表示中の画面UIを示す情報(以下「画面UI情報」という。)を含むものである。画面UI情報は、例えば、システム制御部11から取得される。 The determination information acquisition unit 21a acquires information (that is, determination information) used for determination by the required accuracy determination unit 22a, which will be described later. Here, the determination information acquired by the determination information acquisition unit 21a includes information indicating the screen UI being displayed in the aerial display device 5 (hereinafter referred to as "screen UI information"). The screen UI information is acquired from, for example, the system control unit 11.
 要求精度判定部22aは、判定用情報取得部21aにより取得された判定用情報を用いて、空中ハプティクス装置4により実現される触覚刺激に要求される精度(すなわち要求精度)RAを判定するものである。より具体的には、要求精度判定部22aは、要求精度RAが互いに異なる第1要求精度RA_1及び第2要求精度RA_2のうちのいずれであるかを判定するものである。 The required accuracy determination unit 22a determines the accuracy (that is, required accuracy) RA required for the tactile stimulus realized by the aerial haptic device 4 by using the determination information acquired by the determination information acquisition unit 21a. be. More specifically, the required accuracy determination unit 22a determines whether the required accuracy RA is one of the first required accuracy RA_1 and the second required accuracy RA_2, which are different from each other.
 すなわち、要求精度判定部22aは、上記取得された判定用情報に含まれる画面UI情報を用いて、表示中の画面UIが単純操作用のUIであるか否かを判定する。表示中の画面UIが単純操作用のUIでない場合(例えば表示中の画面UIがスライド操作用のUI又はフリック操作用のUIである場合)、要求精度判定部22aは、要求精度RAが第1要求精度RA_1であると判定する。他方、表示中の画面UIが単純操作用のUIである場合(例えば表示中の画面UIがタップ作用のUIである場合)、要求精度判定部22aは、要求精度RAが第2要求精度RA_2であると判定する。 That is, the request accuracy determination unit 22a determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the acquired determination information. When the screen UI being displayed is not a UI for simple operation (for example, when the screen UI being displayed is a UI for slide operation or a UI for flick operation), the required accuracy determination unit 22a has the required accuracy RA first. It is determined that the required accuracy is RA_1. On the other hand, when the displayed screen UI is a UI for simple operation (for example, when the displayed screen UI is a tapping UI), the required accuracy determination unit 22a has a required accuracy RA of the second required accuracy RA_2. Judge that there is.
 このようにして、空中ハプティクスシステム1aの要部が構成されている。 In this way, the main part of the aerial haptics system 1a is configured.
 以下、判定用情報取得部21aにより実行される処理を総称して「判定用情報取得処理」ということがある。また、判定用情報取得部21aが有する機能を総称して「判定用情報取得機能」ということがある。また、かかる判定用情報取得機能に「F1a」の符号を用いることがある。 Hereinafter, the processes executed by the determination information acquisition unit 21a may be collectively referred to as "determination information acquisition processing". Further, the functions of the determination information acquisition unit 21a may be collectively referred to as "determination information acquisition function". Further, the reference numeral of "F1a" may be used for the determination information acquisition function.
 以下、要求精度判定部22aにより実行される処理を総称して「要求精度判定処理」ということがある。また、要求精度判定部22aが有する機能を総称して「要求精度判定機能」ということがある。また、かかる要求精度判定機能に「F2a」の符号を用いることがある。 Hereinafter, the processes executed by the required accuracy determination unit 22a may be collectively referred to as "required accuracy determination process". Further, the functions of the required accuracy determination unit 22a may be generically referred to as "required accuracy determination function". Further, the reference numeral of "F2a" may be used for the required accuracy determination function.
 空中ハプティクス制御装置100aの要部のハードウェア構成は、実施の形態1にて図6~図8を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the aerial haptics control device 100a is the same as that described with reference to FIGS. 6 to 8 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、空中ハプティクス制御装置100aは、複数個の機能(判定用情報取得機能、要求精度判定機能、ドライバ選択機能及び周波数設定機能を含む。)F1a,F2a,F3,F4を有している。複数個の機能F1a,F2a,F3,F4の各々は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は処理回路43により実現されるものであっても良い。 That is, the aerial haptics control device 100a has a plurality of functions (including a determination information acquisition function, a required accuracy determination function, a driver selection function, and a frequency setting function) F1a, F2a, F3, and F4. Each of the plurality of functions F1a, F2a, F3, and F4 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
 ここで、プロセッサ41は、複数個の機能F1a,F2a,F3,F4の各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ42は、複数個の機能F1a,F2a,F3,F4の各々に対応する専用のメモリを含むものであっても良い。また、処理回路43は、複数個の機能F1a,F2a,F3,F4の各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1a, F2a, F3, and F4. Further, the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1a, F2a, F3, and F4. Further, the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1a, F2a, F3, and F4.
 次に、図19に示すフローチャートを参照して、空中ハプティクス制御装置100aの動作について説明する。なお、図19において、図9に示すステップと同様のステップには同一符号を付している。 Next, the operation of the aerial haptics control device 100a will be described with reference to the flowchart shown in FIG. In FIG. 19, the same steps as those shown in FIG. 9 are designated by the same reference numerals.
 まず、判定用情報取得部21aが判定用情報取得処理を実行する(ステップST1a)。次いで、要求精度判定部22aが要求精度判定処理を実行する(ステップST2a)。次いで、ドライバ選択部23がドライバ選択処理を実行する(ステップST3)。次いで、周波数設定部24が周波数設定処理を実行する(ステップST4)。 First, the determination information acquisition unit 21a executes the determination information acquisition process (step ST1a). Next, the required accuracy determination unit 22a executes the required accuracy determination process (step ST2a). Next, the driver selection unit 23 executes the driver selection process (step ST3). Next, the frequency setting unit 24 executes the frequency setting process (step ST4).
 次に、図20に示すフローチャートを参照して、要求精度判定部22aの動作について説明する。すなわち、ステップST2aにて実行される処理について説明する。 Next, the operation of the required accuracy determination unit 22a will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2a will be described.
 まず、要求精度判定部22aは、ステップST1aにて取得された判定用情報に含まれる画面UI情報を用いて、表示中の画面UIが単純操作用のUIであるか否かを判定する(ステップST21)。 First, the request accuracy determination unit 22a determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the determination information acquired in step ST1a (step). ST21).
 表示中の画面UIが単純操作用のUIでない場合(ステップST21“NO”)、要求精度判定部22aは、要求精度RAが第1要求精度RA_1であると判定する(ステップST22)。他方、表示中の画面UIが単純操作用のUIである場合(ステップST21“YES”)、要求精度判定部22aは、要求精度RAが第2要求精度RA_2であると判定する(ステップST23)。 When the screen UI being displayed is not a UI for simple operation (step ST21 "NO"), the required accuracy determination unit 22a determines that the required accuracy RA is the first required accuracy RA_1 (step ST22). On the other hand, when the screen UI being displayed is a UI for simple operation (step ST21 “YES”), the required accuracy determination unit 22a determines that the required accuracy RA is the second required accuracy RA_2 (step ST23).
 次に、図21~図24を参照して、空中ハプティクス制御装置100aにおけるドライバ選択処理及び周波数設定処理の具体例について説明する。また、空中ハプティクス制御装置100aの効果について説明する。 Next, a specific example of the driver selection process and the frequency setting process in the aerial haptics control device 100a will be described with reference to FIGS. 21 to 24. Further, the effect of the aerial haptics control device 100a will be described.
 図21は、スライド操作用のUIを含む操作画面に対応する映像の例を示している。より具体的には、地図画面に対応する映像の例を示している。図中、矢印Aは、スライド操作における指示体Pのスライド範囲を示している。 FIG. 21 shows an example of an image corresponding to an operation screen including a UI for slide operation. More specifically, an example of an image corresponding to a map screen is shown. In the figure, the arrow A indicates the slide range of the indicator body P in the slide operation.
 この場合、要求精度判定部22aにより、要求精度RAが第1要求精度RA_1であると判定される。そして、ドライバ選択部23により、第1選択密度SD_1にて複数個の駆動対象ハプティクスドライバD_Dが選択される。具体的には、例えば、4行4列のマトリクス状に配列された16個のハプティクスドライバDのうちの全てのハプティクスドライバDが駆動対象ハプティクスドライバD_Dに選択される(図22参照)。そして、駆動周波数Fが第1駆動周波数F_1に設定される。 In this case, the required accuracy determination unit 22a determines that the required accuracy RA is the first required accuracy RA_1. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the first selection density SD_1. Specifically, for example, all the haptics drivers D out of the 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are selected as the haptics driver D_D to be driven (see FIG. 22). .. Then, the drive frequency F is set to the first drive frequency F_1.
 図23は、タップ操作用のUIを含む操作画面に対応する映像の例を示している。より具体的には、メニュー画面に対応する映像の例を示している。図23に示す如く、メニュー画面は、4個のボタンB_1~B_4を含むものである。 FIG. 23 shows an example of an image corresponding to an operation screen including a UI for tap operation. More specifically, an example of a video corresponding to the menu screen is shown. As shown in FIG. 23, the menu screen includes four buttons B_1 to B_1.
 この場合、要求精度判定部22aにより、要求精度RAが第2要求精度RA_2であると判定される。そして、ドライバ選択部23により、第2選択密度SD_2にて複数個の駆動対象ハプティクスドライバD_Dが選択される。具体的には、例えば、4行4列のマトリクス状に配列された16個のハプティクスドライバDのうちの格子状に配置された8個のハプティクスドライバDが駆動対象ハプティクスドライバD_Dに選択される(図24参照)。そして、駆動周波数Fが第2駆動周波数F_2に設定される。 In this case, the required accuracy determination unit 22a determines that the required accuracy RA is the second required accuracy RA_2. Then, the driver selection unit 23 selects a plurality of drive target haptics drivers D_D at the second selection density SD_2. Specifically, for example, eight haptics drivers D arranged in a grid pattern out of 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are selected as the haptics driver D_D to be driven. (See FIG. 24). Then, the drive frequency F is set to the second drive frequency F_2.
 通常、画面UIがスライド操作用のUI又はフリック操作用のUIであるときは、画面UIがタップ操作用のUIであるときに比して、高精度な触覚刺激が要求される。換言すれば、画面UIがタップ操作用のUIであるときは、画面UIがスライド操作用のUI又はフリック操作用のUIであるときに比して、高精度な触覚刺激が不要である。 Normally, when the screen UI is a slide operation UI or a flick operation UI, a highly accurate tactile stimulus is required as compared with the case where the screen UI is a tap operation UI. In other words, when the screen UI is a UI for tap operation, a high-precision tactile stimulus is not required as compared with the case where the screen UI is a UI for slide operation or a UI for flick operation.
 そこで、空中ハプティクスシステム1aにおいては、表示中の画面UIが単純操作用のUIでない場合(図21参照)、図22に示す如く、個数Xが多くなる(すなわち第1選択密度SD_1が用いられる)とともに、超音波USの指向性が高くする(すなわち第1駆動周波数F_1が用いられる)。これにより、高精度な触覚刺激を実現することができる。他方、表示中の画面UIが単純操作用のUIである場合(図23参照)、図24に示す如く、個数Xが少なくなる(すなわち第2選択密度SD_2が用いられる)とともに、超音波USの指向性が低くなる(すなわち第2駆動周波数F_2が用いられる)。これにより、空中ハプティクス装置4における消費電力を低減することができる。 Therefore, in the aerial haptics system 1a, when the screen UI being displayed is not a UI for simple operation (see FIG. 21), the number X increases (that is, the first selection density SD_1 is used) as shown in FIG. 22. ), The directivity of the ultrasonic US is increased (that is, the first drive frequency F_1 is used). This makes it possible to realize highly accurate tactile stimulation. On the other hand, when the screen UI being displayed is a UI for simple operation (see FIG. 23), as shown in FIG. 24, the number X is reduced (that is, the second selection density SD_2 is used), and the ultrasonic US is used. The directivity is low (ie, the second drive frequency F_2 is used). As a result, the power consumption of the aerial haptics device 4 can be reduced.
 次に、図25を参照して、空中ハプティクスシステム1aの変形例について説明する。 Next, a modified example of the aerial haptics system 1a will be described with reference to FIG. 25.
 図25に示す如く、空中ハプティクス制御装置100aは、周波数設定部24を含まないものであっても良い。すなわち、判定用情報取得部21a、要求精度判定部22a及びドライバ選択部23により空中ハプティクス制御装置100aの要部が構成されているものであっても良い。 As shown in FIG. 25, the aerial haptics control device 100a may not include the frequency setting unit 24. That is, the main part of the aerial haptics control device 100a may be configured by the determination information acquisition unit 21a, the required accuracy determination unit 22a, and the driver selection unit 23.
 次に、図26及び図27を参照して、空中ハプティクスシステム1aの他の変形例について説明する。 Next, another modification of the aerial haptics system 1a will be described with reference to FIGS. 26 and 27.
 図26又は図27に示す如く、空中ハプティクスシステム1aは、センサ6を含むものであっても良い。操作検出部15は、ハンドジェスチャによる操作を検出するにあたり、電流値Iを用いるのに代えてセンサ6を用いるものであっても良い。 As shown in FIG. 26 or 27, the aerial haptics system 1a may include a sensor 6. The operation detection unit 15 may use the sensor 6 instead of the current value I when detecting the operation by the hand gesture.
 以上のように、実施の形態2に係る空中ハプティクス制御装置100aにおいて、判定用情報は、空中ハプティクス装置4に対応する空中ディスプレイ装置5における画面UIを示す画面UI情報を含む。これにより、表示中の画面UIが単純操作用のUIであるか否かに応じた要求精度RAの判定を実現することができる。 As described above, in the aerial haptics control device 100a according to the second embodiment, the determination information includes the screen UI information indicating the screen UI in the aerial display device 5 corresponding to the aerial haptics device 4. As a result, it is possible to determine the required accuracy RA according to whether or not the screen UI being displayed is a UI for simple operation.
 また、要求精度判定部22aは、画面UIが単純操作用のUIでない場合、要求精度RAが第1要求精度RA_1であると判定する。これにより、表示中の画面UIが単純操作用のUIでないとき、高精度な触覚刺激を実現することができる。具体的には、例えば、表示中の画面UIがスライド操作用のUI又はフリック操作用のUIであるとき、高精度な触覚刺激を実現することができる。 Further, if the screen UI is not a UI for simple operation, the required accuracy determination unit 22a determines that the required accuracy RA is the first required accuracy RA_1. As a result, when the screen UI being displayed is not a UI for simple operation, highly accurate tactile stimulation can be realized. Specifically, for example, when the screen UI being displayed is a UI for slide operation or a UI for flick operation, highly accurate tactile stimulation can be realized.
 また、要求精度判定部22aは、画面UIが単純操作用のUIである場合、要求精度RAが第2要求精度RA_2であると判定する。これにより、表示中の画面UIが単純操作用のUIであるとき、空中ハプティクス装置4における消費電力を低減することができる。具体的には、例えば、表示中の画面UIがタップ操作用のUIであるとき、空中ハプティクス装置4における消費電力を低減することができる。 Further, when the screen UI is a UI for simple operation, the required accuracy determination unit 22a determines that the required accuracy RA is the second required accuracy RA_2. Thereby, when the screen UI being displayed is a UI for simple operation, the power consumption in the aerial haptics device 4 can be reduced. Specifically, for example, when the screen UI being displayed is a UI for tap operation, the power consumption in the aerial haptics device 4 can be reduced.
実施の形態3.
 図28は、実施の形態3に係る空中ハプティクスシステムの要部を示すブロック図である。図28を参照して、実施の形態3に係る空中ハプティクスシステムについて説明する。なお、図28において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 3.
FIG. 28 is a block diagram showing a main part of the aerial haptics system according to the third embodiment. The aerial haptics system according to the third embodiment will be described with reference to FIG. 28. In FIG. 28, the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
 図28に示す如く、空中ハプティクスシステム1bは、制御装置2b、視線検出装置3、空中ハプティクス装置4及び空中ディスプレイ装置5を含むものである。制御装置2bは、システム制御部11、駆動制御部12、表示制御部13、電流検出部14及び操作検出部15を含むものである。また、制御装置2bは、判定用情報取得部21b、要求精度判定部22b、ドライバ選択部23及び周波数設定部24を含むものである。判定用情報取得部21b、要求精度判定部22b、ドライバ選択部23及び周波数設定部24により、空中ハプティクス制御装置100bの要部が構成されている。 As shown in FIG. 28, the aerial haptics system 1b includes a control device 2b, a line-of-sight detection device 3, an aerial haptics device 4, and an aerial display device 5. The control device 2b includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2b includes a determination information acquisition unit 21b, a required accuracy determination unit 22b, a driver selection unit 23, and a frequency setting unit 24. The main part of the aerial haptics control device 100b is configured by the determination information acquisition unit 21b, the required accuracy determination unit 22b, the driver selection unit 23, and the frequency setting unit 24.
 判定用情報取得部21bは、後述する要求精度判定部22bによる判定に用いられる情報(すなわち判定用情報)を取得するものである。ここで、判定用情報取得部21bにより取得される判定用情報は、視線方向情報及び画面UI情報を含むものである。視線方向情報は、視線検出装置3から取得される。画面UI情報は、例えば、システム制御部11から取得される。 The determination information acquisition unit 21b acquires information (that is, determination information) used for determination by the required accuracy determination unit 22b, which will be described later. Here, the determination information acquired by the determination information acquisition unit 21b includes the line-of-sight direction information and the screen UI information. The line-of-sight direction information is acquired from the line-of-sight detection device 3. The screen UI information is acquired from, for example, the system control unit 11.
 要求精度判定部22bは、判定用情報取得部21bにより取得された判定用情報を用いて、空中ハプティクス装置4により実現される触覚刺激に要求される精度(すなわち要求精度)RAを判定するものである。より具体的には、要求精度判定部22bは、要求精度RAが互いに異なる第1要求精度RA_1及び第2要求精度RA_2のうちのいずれであるかを判定するものである。 The required accuracy determination unit 22b determines the accuracy (that is, required accuracy) RA required for the tactile stimulus realized by the aerial haptic device 4 by using the determination information acquired by the determination information acquisition unit 21b. be. More specifically, the required accuracy determination unit 22b determines whether the required accuracy RA is one of the first required accuracy RA_1 and the second required accuracy RA_2, which are different from each other.
 すなわち、要求精度判定部22bは、上記取得された判定用情報に含まれる視線方向情報を用いて、ユーザUの視線が表示領域A1に向けられているか否かを判定する。また、要求精度判定部22bは、上記取得された判定用情報に含まれる画面UI情報を用いて、表示中の画面UIが単純操作用のUIであるか否かを判定する。 That is, the required accuracy determination unit 22b determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the acquired determination information. Further, the request accuracy determination unit 22b determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the acquired determination information.
 ユーザUの視線が表示領域A1に向けられていない場合(すなわちユーザUによる操作入力が手探りによるものである場合)、要求精度判定部22bは、要求精度RAが第1要求精度RA_1であると判定する。また、ユーザUの視線が表示領域A1に向けられている場合(すなわちユーザUによる操作入力が目視によるものである場合)において、表示中の画面UIが単純操作用のUIでないとき(例えば表示中の画面UIがスライド操作用のUI又はフリック操作用のUIであるとき)、要求精度判定部22bは、要求精度RAが第1要求精度RA_1であると判定する。 When the line of sight of the user U is not directed to the display area A1 (that is, when the operation input by the user U is due to fumbling), the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1. do. Further, when the line of sight of the user U is directed to the display area A1 (that is, when the operation input by the user U is visual), the screen UI being displayed is not a UI for simple operation (for example, being displayed). When the screen UI of is a UI for slide operation or a UI for flick operation), the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1.
 他方、ユーザUの視線が表示領域A1に向けられている場合(すなわちユーザUによる操作入力が目視によるものである場合)において、表示中の画面UIが単純操作用のUIであるとき(例えば表示中の画面UIがタップ操作用のUIであるとき)、要求精度判定部22bは、要求精度RAが第2要求精度RA_2であると判定する。 On the other hand, when the line of sight of the user U is directed to the display area A1 (that is, when the operation input by the user U is visual), the screen UI being displayed is a UI for simple operation (for example, display). (When the screen UI inside is the UI for tap operation), the required accuracy determination unit 22b determines that the required accuracy RA is the second required accuracy RA_2.
 このようにして、空中ハプティクスシステム1bの要部が構成されている。 In this way, the main part of the aerial haptics system 1b is configured.
 以下、判定用情報取得部21bにより実行される処理を総称して「判定用情報取得処理」ということがある。また、判定用情報取得部21bが有する機能を総称して「判定用情報取得機能」ということがある。また、かかる判定用情報取得機能に「F1b」の符号を用いることがある。 Hereinafter, the processes executed by the determination information acquisition unit 21b may be collectively referred to as "determination information acquisition processing". Further, the functions of the determination information acquisition unit 21b may be collectively referred to as "determination information acquisition function". Further, the reference numeral of "F1b" may be used for the determination information acquisition function.
 以下、要求精度判定部22bにより実行される処理を総称して「要求精度判定処理」ということがある。また、要求精度判定部22bが有する機能を総称して「要求精度判定機能」ということがある。また、かかる要求精度判定機能に「F2b」の符号を用いることがある。 Hereinafter, the processes executed by the required accuracy determination unit 22b may be collectively referred to as "required accuracy determination process". Further, the functions of the required accuracy determination unit 22b may be collectively referred to as "required accuracy determination function". Further, the reference numeral of "F2b" may be used for the required accuracy determination function.
 空中ハプティクス制御装置100bの要部のハードウェア構成は、実施の形態1にて図6~図8を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the aerial haptics control device 100b is the same as that described with reference to FIGS. 6 to 8 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、空中ハプティクス制御装置100bは、複数個の機能(判定用情報取得機能、要求精度判定機能、ドライバ選択機能及び周波数設定機能を含む。)F1b,F2b,F3,F4を有している。複数個の機能F1b,F2b,F3,F4の各々は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は処理回路43により実現されるものであっても良い。 That is, the aerial haptics control device 100b has a plurality of functions (including a determination information acquisition function, a required accuracy determination function, a driver selection function, and a frequency setting function) F1b, F2b, F3, and F4. Each of the plurality of functions F1b, F2b, F3, and F4 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
 ここで、プロセッサ41は、複数個の機能F1b,F2b,F3,F4の各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ42は、複数個の機能F1b,F2b,F3,F4の各々に対応する専用のメモリを含むものであっても良い。また、処理回路43は、複数個の機能F1b,F2b,F3,F4の各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1b, F2b, F3, and F4. Further, the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1b, F2b, F3, and F4. Further, the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1b, F2b, F3, and F4.
 次に、図29に示すフローチャートを参照して、空中ハプティクス制御装置100bの動作について説明する。なお、図29において、図9に示すステップと同様のステップには同一符号を付している。 Next, the operation of the aerial haptics control device 100b will be described with reference to the flowchart shown in FIG. In FIG. 29, the same steps as those shown in FIG. 9 are designated by the same reference numerals.
 まず、判定用情報取得部21bが判定用情報取得処理を実行する(ステップST1b)。次いで、要求精度判定部22bが要求精度判定処理を実行する(ステップST2b)。次いで、ドライバ選択部23がドライバ選択処理を実行する(ステップST3)。次いで、周波数設定部24が周波数設定処理を実行する(ステップST4)。 First, the determination information acquisition unit 21b executes the determination information acquisition process (step ST1b). Next, the required accuracy determination unit 22b executes the required accuracy determination process (step ST2b). Next, the driver selection unit 23 executes the driver selection process (step ST3). Next, the frequency setting unit 24 executes the frequency setting process (step ST4).
 次に、図30に示すフローチャートを参照して、要求精度判定部22bの動作について説明する。すなわち、ステップST2bにて実行される処理について説明する。 Next, the operation of the required accuracy determination unit 22b will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST2b will be described.
 まず、要求精度判定部22bは、ステップST1bにて取得された判定用情報に含まれる視線方向情報を用いて、ユーザUの視線が表示領域A1に向けられているか否かを判定する(ステップST31)。また、要求精度判定部22bは、ステップST1bにて取得された判定用情報に含まれる画面UI情報を用いて、表示中の画面UIが単純操作用のUIであるか否かを判定する(ステップST32)。 First, the required accuracy determination unit 22b determines whether or not the line of sight of the user U is directed to the display area A1 by using the line-of-sight direction information included in the determination information acquired in step ST1b (step ST31). ). Further, the request accuracy determination unit 22b determines whether or not the screen UI being displayed is a UI for simple operation by using the screen UI information included in the determination information acquired in step ST1b (step). ST32).
 ユーザUの視線が表示領域A1に向けられていない場合(ステップST31“NO”)、要求精度判定部22bは、要求精度RAが第1要求精度RA_1であると判定する(ステップST33)。また、ユーザUの視線が表示領域A1に向けられている場合において(ステップST31“YES”)、表示中の画面UIが単純操作用のUIでないとき(ステップST32“NO”)、要求精度判定部22bは、要求精度RAが第1要求精度RA_1であると判定する(ステップST33)。 When the line of sight of the user U is not directed to the display area A1 (step ST31 “NO”), the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1 (step ST33). Further, when the line of sight of the user U is directed to the display area A1 (step ST31 “YES”) and the screen UI being displayed is not a UI for simple operation (step ST32 “NO”), the required accuracy determination unit. 22b determines that the required accuracy RA is the first required accuracy RA_1 (step ST33).
 他方、ユーザUの視線が表示領域A1に向けられている場合において(ステップST31“YES”)、表示中の画面UIが単純操作用のUIであるとき(ステップST32“YES”)、要求精度判定部22bは、要求精度RAが第2要求精度RA_2であると判定する(ステップST34)。 On the other hand, when the line of sight of the user U is directed to the display area A1 (step ST31 “YES”) and the screen UI being displayed is a UI for simple operation (step ST32 “YES”), the required accuracy determination Unit 22b determines that the required accuracy RA is the second required accuracy RA_2 (step ST34).
 このように、視線方向情報及び画面UI情報を用いることにより、視線方向L及び画面UIに応じて要求精度RAを判定することができる。そして、当該判定された要求精度RAに応じて、高精度な触覚刺激を実現したり、又は空中ハプティクス装置4における消費電力を低減したりすることができる。 In this way, by using the line-of-sight direction information and the screen UI information, the required accuracy RA can be determined according to the line-of-sight direction L and the screen UI. Then, it is possible to realize a highly accurate tactile stimulus or reduce the power consumption in the aerial haptics device 4 according to the determined required accuracy RA.
 次に、図31を参照して、空中ハプティクスシステム1bの変形例について説明する。 Next, a modified example of the aerial haptics system 1b will be described with reference to FIG. 31.
 図31に示す如く、空中ハプティクス制御装置100bは、周波数設定部24を含まないものであっても良い。すなわち、判定用情報取得部21b、要求精度判定部22b及びドライバ選択部23により空中ハプティクス制御装置100bの要部が構成されているものであっても良い。 As shown in FIG. 31, the aerial haptics control device 100b may not include the frequency setting unit 24. That is, the main part of the aerial haptics control device 100b may be configured by the determination information acquisition unit 21b, the required accuracy determination unit 22b, and the driver selection unit 23.
 次に、図32及び図33を参照して、空中ハプティクスシステム1bの他の変形例について説明する。 Next, another modification of the aerial haptics system 1b will be described with reference to FIGS. 32 and 33.
 図32又は図33に示す如く、空中ハプティクスシステム1bは、センサ6を含むものであっても良い。操作検出部15は、ハンドジェスチャによる操作を検出するにあたり、電流値Iを用いるのに代えてセンサ6を用いるものであっても良い。 As shown in FIG. 32 or FIG. 33, the aerial haptics system 1b may include a sensor 6. The operation detection unit 15 may use the sensor 6 instead of the current value I when detecting the operation by the hand gesture.
 以上のように、実施の形態3に係る空中ハプティクス制御装置100bにおいて、判定用情報は、空中ハプティクス装置4及び空中ハプティクス装置4に対応する空中ディスプレイ装置5を含む空中ハプティクスシステム1bのユーザUの視線方向Lを示す視線方向情報を含み、かつ、空中ディスプレイ装置5における画面UIを示す画面UI情報を含む。これにより、視線方向L及び画面UIに応じた要求精度RAの判定を実現することができる。 As described above, in the aerial haptics control device 100b according to the third embodiment, the determination information is the user U of the aerial haptics system 1b including the aerial haptics device 4 and the aerial display device 5 corresponding to the aerial haptics device 4. The line-of-sight direction information indicating the line-of-sight direction L is included, and the screen UI information indicating the screen UI in the aerial display device 5 is included. As a result, it is possible to determine the required accuracy RA according to the line-of-sight direction L and the screen UI.
 また、要求精度判定部22bは、ユーザUの視線が空中ディスプレイ装置5における表示領域A1に向けられていない場合、要求精度RAが第1要求精度RA_1であると判定する。これにより、ユーザUによる操作入力が手探りによるものであるとき、高精度な触覚刺激を実現することができる。 Further, the required accuracy determination unit 22b determines that the required accuracy RA is the first required accuracy RA_1 when the line of sight of the user U is not directed to the display area A1 in the aerial display device 5. Thereby, when the operation input by the user U is fumbling, it is possible to realize a highly accurate tactile stimulus.
 また、要求精度判定部22bは、ユーザUの視線が空中ディスプレイ装置5における表示領域A1に向けられている場合において、画面UIが単純操作用のUIでないとき、要求精度RAが第1要求精度RA_1であると判定する。これにより、ユーザUによる操作入力が目視によるものである場合において、画面UIが単純操作用のUIでないとき(例えば画面UIがスライド操作用のUI又はフリック操作用のUIであるとき)、高精度な触覚刺激を実現することができる。 Further, in the case where the line of sight of the user U is directed to the display area A1 in the aerial display device 5, the required accuracy RA is the first required accuracy RA_1 when the screen UI is not a UI for simple operation. Is determined to be. As a result, when the operation input by the user U is visual, and the screen UI is not a UI for simple operation (for example, when the screen UI is a UI for slide operation or a UI for flick operation), high accuracy is achieved. Tactile stimulus can be realized.
 また、要求精度判定部22bは、ユーザUの視線が空中ディスプレイ装置5における表示領域A1に向けられている場合において、画面UIが単純操作用のUIであるとき、要求精度RAが第2要求精度RA_2であると判定する。これにより、ユーザUによる操作入力が目視によるものである場合において、画面UIが単純操作用のUIであるとき(例えば画面UIがタップ操作用のUIであるとき)、空中ハプティクス装置4における消費電力を低減することができる。 Further, in the required accuracy determination unit 22b, when the line of sight of the user U is directed to the display area A1 in the aerial display device 5, when the screen UI is a UI for simple operation, the required accuracy RA is the second required accuracy. It is determined that it is RA_2. As a result, when the operation input by the user U is visual, and the screen UI is a UI for simple operation (for example, when the screen UI is a UI for tap operation), the power consumption in the aerial haptics device 4 Can be reduced.
 なお、本願開示はその開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the disclosure of the present application, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本開示に係る空中ハプティクス制御装置、空中ハプティクスシステム及び空中ハプティクス制御方法は、例えば、車載用の情報通信機器に用いることができる。 The aerial haptics control device, the aerial haptics system, and the aerial haptics control method according to the present disclosure can be used, for example, in an in-vehicle information communication device.
 1,1a,1b 空中ハプティクスシステム、2,2a,2b 制御装置、3 視線検出装置、4 空中ハプティクス装置、5 空中ディスプレイ装置、6 センサ、11 システム制御部、12 駆動制御部、13 表示制御部、14 電流検出部、15 操作検出部、21,21a,21b 判定用情報取得部、22,22a,22b 要求精度判定部、23 ドライバ選択部、24 周波数設定部、31 搬送波信号生成部、32 振動波信号生成部、33 変調部、34 増幅部、41 プロセッサ、42 メモリ、43 処理回路、100,100a,100b 空中ハプティクス制御装置、D ハプティクスドライバ、DG ハプティクスドライバ群。 1,1a, 1b aerial haptics system, 2,2a, 2b control device, 3 line-of-sight detection device, 4 aerial haptics device, 5 aerial display device, 6 sensors, 11 system control unit, 12 drive control unit, 13 display control unit , 14 Current detection unit, 15 Operation detection unit, 21,21a, 21b Judgment information acquisition unit, 22, 22a, 22b Requirement accuracy judgment unit, 23 Driver selection unit, 24 Frequency setting unit, 31 Carrier signal generation unit, 32 Vibration Wave signal generation unit, 33 modulation unit, 34 amplification unit, 41 processor, 42 memory, 43 processing circuit, 100, 100a, 100b aerial haptics control device, D haptics driver, DG haptics driver group.

Claims (20)

  1.  空中ハプティクス装置により実現される触覚刺激に対する要求精度の判定に用いられる判定用情報を取得する判定用情報取得部と、
     前記判定用情報を用いて前記要求精度を判定する要求精度判定部と、
     前記要求精度に応じて異なる選択密度により、前記空中ハプティクス装置におけるハプティクスドライバ群に含まれる複数個のハプティクスドライバのうちの複数個の駆動対象ハプティクスドライバを選択するドライバ選択部と、
     を備える空中ハプティクス制御装置。
    A judgment information acquisition unit that acquires judgment information used to judge the required accuracy for tactile stimuli realized by an aerial haptic device, and a judgment information acquisition unit.
    The required accuracy determination unit that determines the required accuracy using the determination information,
    A driver selection unit that selects a plurality of drive target haptic drivers among a plurality of haptic drivers included in the haptics driver group in the aerial haptics device with different selection densities according to the required accuracy.
    An aerial haptic controller equipped with.
  2.  前記ドライバ選択部は、前記要求精度判定部により前記要求精度が第2要求精度よりも高い第1要求精度であると判定された場合、第2選択密度よりも高い第1選択密度により前記複数個の駆動対象ハプティクスドライバを選択することを特徴とする請求項1記載の空中ハプティクス制御装置。 When the required accuracy determination unit determines that the required accuracy is the first required accuracy higher than the second required accuracy, the driver selection unit has the plurality of the driver selection units due to the first selection density higher than the second selection density. The aerial haptics control device according to claim 1, wherein the haptics driver to be driven is selected.
  3.  前記要求精度判定部により前記要求精度が前記第1要求精度であると判定された場合、前記複数個の駆動対象ハプティクスドライバの各々における駆動周波数を第2駆動周波数よりも高い第1駆動周波数に設定する周波数設定部を備えることを特徴とする請求項2記載の空中ハプティクス制御装置。 When the required accuracy determination unit determines that the required accuracy is the first required accuracy, the drive frequency of each of the plurality of drive target haptic drivers is set to a first drive frequency higher than the second drive frequency. The aerial haptics control device according to claim 2, further comprising a frequency setting unit for setting.
  4.  前記ドライバ選択部は、前記要求精度判定部により前記要求精度が第1要求精度よりも低い第2要求精度であると判定された場合、第1選択密度よりも低い第2選択密度により前記複数個の駆動対象ハプティクスドライバを選択するものであり、
     前記要求精度判定部により前記要求精度が前記第2要求精度であると判定された場合、前記複数個の駆動対象ハプティクスドライバの各々における駆動周波数を第1駆動周波数よりも低い第2駆動周波数に設定する周波数設定部を備える
     ことを特徴とする請求項1記載の空中ハプティクス制御装置。
    When the required accuracy determination unit determines that the required accuracy is the second required accuracy lower than the first required accuracy, the driver selection unit has the plurality of the second selected densities lower than the first selected density. It selects the haptics driver to be driven by.
    When the required accuracy determination unit determines that the required accuracy is the second required accuracy, the drive frequency of each of the plurality of drive target haptic drivers is set to a second drive frequency lower than the first drive frequency. The aerial haptics control device according to claim 1, further comprising a frequency setting unit for setting.
  5.  前記要求精度判定部により前記要求精度が前記第2要求精度であると判定された場合における前記複数個の駆動対象ハプティクスドライバは、格子状に配置されていることを特徴とする請求項4記載の空中ハプティクス制御装置。 4. The fourth aspect of claim 4, wherein the plurality of driven haptic drivers when the required accuracy is determined by the required accuracy determination unit to be the second required accuracy are arranged in a grid pattern. Aerial haptics controller.
  6.  前記要求精度判定部により前記要求精度が前記第2要求精度であると判定された場合における前記複数個の駆動対象ハプティクスドライバは、市松模様状に配置されていることを特徴とする請求項4記載の空中ハプティクス制御装置。 4. The present invention is characterized in that the plurality of drive target haptic drivers when the required accuracy is determined by the required accuracy determination unit to be the second required accuracy are arranged in a checkered pattern. The aerial haptics controller described.
  7.  前記判定用情報は、前記空中ハプティクス装置及び前記空中ハプティクス装置に対応する空中ディスプレイ装置を含む空中ハプティクスシステムのユーザの視線方向を示す視線方向情報を含むことを特徴とする請求項2から請求項6のうちのいずれか1項記載の空中ハプティクス制御装置。 The determination information includes the line-of-sight direction information indicating the line-of-sight direction of the user of the aerial haptics system including the aerial haptics device and the aerial display device corresponding to the aerial haptics device, according to claim 2. The aerial haptics control device according to any one of 6.
  8.  前記要求精度判定部は、前記ユーザの視線が前記空中ディスプレイ装置における表示領域に向けられていない場合、前記要求精度が前記第1要求精度であると判定することを特徴とする請求項7記載の空中ハプティクス制御装置。 The seventh aspect of claim 7, wherein the required accuracy determination unit determines that the required accuracy is the first required accuracy when the user's line of sight is not directed to the display area in the aerial display device. Aerial haptics controller.
  9.  前記要求精度判定部は、前記ユーザの視線が前記空中ディスプレイ装置における表示領域に向けられている場合、前記要求精度が前記第2要求精度であると判定することを特徴とする請求項7記載の空中ハプティクス制御装置。 The seventh aspect of claim 7, wherein the required accuracy determination unit determines that the required accuracy is the second required accuracy when the user's line of sight is directed to the display area in the aerial display device. Aerial haptics controller.
  10.  前記判定用情報は、前記空中ハプティクス装置に対応する空中ディスプレイ装置における画面UIを示す画面UI情報を含むことを特徴とする請求項2から請求項6のうちのいずれか1項記載の空中ハプティクス制御装置。 The aerial haptics control according to any one of claims 2 to 6, wherein the determination information includes screen UI information indicating a screen UI in the aerial display device corresponding to the aerial haptics device. Device.
  11.  前記要求精度判定部は、前記画面UIが単純操作用のUIでない場合、前記要求精度が前記第1要求精度であると判定することを特徴とする請求項10記載の空中ハプティクス制御装置。 The aerial haptics control device according to claim 10, wherein the required accuracy determination unit determines that the required accuracy is the first required accuracy when the screen UI is not a UI for simple operation.
  12.  前記要求精度判定部は、前記画面UIが単純操作用のUIである場合、前記要求精度が前記第2要求精度であると判定することを特徴とする請求項10記載の空中ハプティクス制御装置。 The aerial haptics control device according to claim 10, wherein the required accuracy determination unit determines that the required accuracy is the second required accuracy when the screen UI is a UI for simple operation.
  13.  前記判定用情報は、前記空中ハプティクス装置及び前記空中ハプティクス装置に対応する空中ディスプレイ装置を含む空中ハプティクスシステムのユーザの視線方向を示す視線方向情報を含み、かつ、前記空中ディスプレイ装置における画面UIを示す画面UI情報を含むことを特徴とする請求項2から請求項6のうちのいずれか1項記載の空中ハプティクス制御装置。 The determination information includes the line-of-sight direction information indicating the line-of-sight direction of the user of the aerial haptics system including the aerial haptics device and the aerial display device corresponding to the aerial haptics device, and the screen UI in the aerial display device. The aerial haptics control device according to any one of claims 2 to 6, wherein the screen UI information is included.
  14.  前記要求精度判定部は、前記ユーザの視線が前記空中ディスプレイ装置における表示領域に向けられていない場合、前記要求精度が前記第1要求精度であると判定することを特徴とする請求項13記載の空中ハプティクス制御装置。 13. The thirteenth aspect of the present invention, wherein the required accuracy determination unit determines that the required accuracy is the first required accuracy when the user's line of sight is not directed to the display area in the aerial display device. Aerial haptics controller.
  15.  前記要求精度判定部は、前記ユーザの視線が前記空中ディスプレイ装置における表示領域に向けられている場合において、前記画面UIが単純操作用のUIでないとき、前記要求精度が前記第1要求精度であると判定することを特徴とする請求項13記載の空中ハプティクス制御装置。 The required accuracy determination unit is the first required accuracy when the user's line of sight is directed to the display area in the aerial display device and the screen UI is not a UI for simple operation. 13. The aerial haptics control device according to claim 13.
  16.  前記要求精度判定部は、前記ユーザの視線が前記空中ディスプレイ装置における表示領域に向けられている場合において、前記画面UIが単純操作用のUIであるとき、前記要求精度が前記第2要求精度であると判定することを特徴とする請求項13記載の空中ハプティクス制御装置。 When the screen UI is a UI for simple operation when the user's line of sight is directed to the display area in the aerial display device, the required accuracy determination unit has the required accuracy of the second required accuracy. The aerial haptics control device according to claim 13, wherein the aerial haptics control device is characterized in that it is determined to be present.
  17.  請求項1記載の空中ハプティクス制御装置と、
     前記空中ハプティクス装置と、
     を備える空中ハプティクスシステム。
    The aerial haptics control device according to claim 1 and
    With the aerial haptics device,
    An aerial haptics system with.
  18.  前記空中ハプティクス装置に対応する空中ディスプレイ装置を備えることを特徴とする請求項17記載の空中ハプティクスシステム。 The aerial haptics system according to claim 17, further comprising an aerial display device corresponding to the aerial haptics device.
  19.  車載用であることを特徴とする請求項17又は請求項18記載の空中ハプティクスシステム。 The aerial haptics system according to claim 17 or 18, wherein the system is for in-vehicle use.
  20.  判定用情報取得部が、空中ハプティクス装置により実現される触覚刺激に対する要求精度の判定に用いられる判定用情報を取得するステップと、
     要求精度判定部が、前記判定用情報を用いて前記要求精度を判定するステップと、
     ドライバ選択部が、前記要求精度に応じて異なる選択密度により、前記空中ハプティクス装置におけるハプティクスドライバ群に含まれる複数個のハプティクスドライバのうちの複数個の駆動対象ハプティクスドライバを選択するステップと、
     を備える空中ハプティクス制御方法。
    The step of acquiring the judgment information used for the judgment information acquisition unit to judge the required accuracy for the tactile stimulus realized by the aerial haptics device, and
    A step in which the required accuracy determination unit determines the required accuracy using the determination information,
    A step in which the driver selection unit selects a plurality of drive target haptics drivers among a plurality of haptics drivers included in the haptics driver group in the aerial haptics device by a selection density different according to the required accuracy. ,
    Aerial haptics control method with.
PCT/JP2020/019115 2020-05-13 2020-05-13 Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method WO2021229721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022515465A JP7072744B2 (en) 2020-05-13 2020-05-13 Aerial haptics controller, aerial haptics system and aerial haptics control method
PCT/JP2020/019115 WO2021229721A1 (en) 2020-05-13 2020-05-13 Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019115 WO2021229721A1 (en) 2020-05-13 2020-05-13 Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method

Publications (1)

Publication Number Publication Date
WO2021229721A1 true WO2021229721A1 (en) 2021-11-18

Family

ID=78525537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019115 WO2021229721A1 (en) 2020-05-13 2020-05-13 Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method

Country Status (2)

Country Link
JP (1) JP7072744B2 (en)
WO (1) WO2021229721A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236610A (en) * 1990-02-14 1991-10-22 Tech Res & Dev Inst Of Japan Def Agency Active phased array antenna system
JP2012183103A (en) * 2011-03-03 2012-09-27 Fujifilm Corp Ultrasonic diagnostic apparatus and ultrasonic image generating method
JP2012208262A (en) * 2011-03-29 2012-10-25 Dainippon Printing Co Ltd Electronic book device
JP2015064703A (en) * 2013-09-24 2015-04-09 株式会社デンソー Tactile device
JP2017162195A (en) * 2016-03-09 2017-09-14 株式会社Soken Touch sense presentation device
JP2019530049A (en) * 2016-07-22 2019-10-17 ハーマン インターナショナル インダストリーズ インコーポレイテッド Resonance localization by tactile transducer device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641653A (en) 1989-10-31 1997-06-24 The Texas A&M University System DNA encoding Actinobacillus pleuropneumoniae hemolysin
CN107688478A (en) 2016-08-05 2018-02-13 阿里巴巴集团控股有限公司 Terminal, the display methods of application message and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236610A (en) * 1990-02-14 1991-10-22 Tech Res & Dev Inst Of Japan Def Agency Active phased array antenna system
JP2012183103A (en) * 2011-03-03 2012-09-27 Fujifilm Corp Ultrasonic diagnostic apparatus and ultrasonic image generating method
JP2012208262A (en) * 2011-03-29 2012-10-25 Dainippon Printing Co Ltd Electronic book device
JP2015064703A (en) * 2013-09-24 2015-04-09 株式会社デンソー Tactile device
JP2017162195A (en) * 2016-03-09 2017-09-14 株式会社Soken Touch sense presentation device
JP2019530049A (en) * 2016-07-22 2019-10-17 ハーマン インターナショナル インダストリーズ インコーポレイテッド Resonance localization by tactile transducer device

Also Published As

Publication number Publication date
JPWO2021229721A1 (en) 2021-11-18
JP7072744B2 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
EP2891966B1 (en) Electronic glasses and method for correcting color blindness
JP2020509847A5 (en)
US10775782B2 (en) Remote parking control apparatus, system including the same, and method thereof
US10979612B2 (en) Electronic device comprising plurality of cameras using rolling shutter mode
US10332268B2 (en) Image processing apparatus, generation method, and non-transitory computer-readable storage medium
KR20190047790A (en) Electronic device for recognizing fingerprint using display
JP5870586B2 (en) Projector control device, display device, and program.
JP2013148870A5 (en)
JP2008024138A (en) Image display device and program
US20100002130A1 (en) Image processing apparatus and method
JP2016133640A5 (en)
US10848686B2 (en) Method of providing image and electronic device for supporting the method
CN106335502A (en) Semiconductor device, control system and observation method
CN104272245A (en) Overscan support
CN108873040A (en) Method and apparatus for detecting road layer position
US10009583B2 (en) Projection system, projection apparatus, information processing method, and storage medium
WO2021229721A1 (en) Mid-air haptic control device, mid-air haptic system, and mid-air haptic control method
KR102276863B1 (en) Image processing apparatus and image processing method
KR20190134370A (en) Electronic device and method for displaying content of application through display
CN105051788A (en) Graphics processing using multiple primitives
WO2021229720A1 (en) Aerial haptics control device, aerial haptics system, and aerial haptics control method
US20180359430A1 (en) Image processing device, image processing system, and non-transitory storage medium
KR102553105B1 (en) Electronic device controlling position or area of image based on a change of contents of image
US10960759B2 (en) Apparatus and method for automatically setting speed of vehicle
WO2015083266A1 (en) Display control device, and display control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935626

Country of ref document: EP

Kind code of ref document: A1