WO2021224970A1 - Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method - Google Patents

Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method Download PDF

Info

Publication number
WO2021224970A1
WO2021224970A1 PCT/JP2020/018575 JP2020018575W WO2021224970A1 WO 2021224970 A1 WO2021224970 A1 WO 2021224970A1 JP 2020018575 W JP2020018575 W JP 2020018575W WO 2021224970 A1 WO2021224970 A1 WO 2021224970A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
coordinate
moving body
unit
value
Prior art date
Application number
PCT/JP2020/018575
Other languages
French (fr)
Japanese (ja)
Inventor
知宏 末永
千大 和氣
宏記 加藤
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2022519864A priority Critical patent/JP7359489B2/en
Priority to PCT/JP2020/018575 priority patent/WO2021224970A1/en
Publication of WO2021224970A1 publication Critical patent/WO2021224970A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Definitions

  • the present invention relates to a positioning system, a moving body, a speed estimation system, a positioning method, and a speed estimation method.
  • the coordinate values of the base station are positioned using the coordinates of the electronic reference point, and the position of the drone is specified by relative positioning with the base station.
  • the position of the drone is specified by relative positioning with the base station.
  • Patent Document 2 discloses a hybrid positioning device that obtains a deviation between the position information of a GPS positioning device and the position information of an inertial positioning device and determines that an abnormality occurs when the time series deviation is larger than a set value.
  • Patent Document 3 discloses a positioning device that selects one positioning result data according to a comparison with a predetermined threshold value for a plurality of positioning result data.
  • Patent Document 4 discloses a positioning control device for a moving body by combined positioning, which determines positioning accuracy by comparing a difference between positioning results and a threshold value, and combines satellite positioning and positioning by an inertial sensor. ..
  • the positioning system is a positioning system for positioning the coordinates of a moving body, and the position of the moving body is positioned with reference to at least two different reference points.
  • a coordinate acquisition unit that periodically calculates the first coordinate value and the second coordinate value indicating the above, and a coordinate storage unit that stores at least the historical value of the first coordinate value calculated before the previous time by the coordinate acquisition unit.
  • a comparison unit that calculates the difference between the first coordinate value and the historical value of the first coordinate value, and coordinates that determine the second coordinate value as the positioning coordinate of the moving body when the difference exceeds a predetermined value. It is provided with a fixing unit.
  • the coordinate determination unit may determine the first coordinate value as the positioning coordinate of the moving body when the difference is equal to or less than the predetermined value.
  • the coordinate acquisition unit further includes a reference point determination unit for determining the reference point as a calculation reference, and the reference point determination unit calculates the reference point closest to the coordinates of the moving body obtained by independent positioning. It may be decided based on the criteria of.
  • a speed measuring unit that generates a first speed indicating the speed of the moving body based on the first satellite signal and a second speed indicating the speed of the moving body based on the second satellite signal, and the first speed measuring unit.
  • a speed determination unit that determines the second speed as the speed of the moving body may be further provided.
  • a first antenna and a second antenna for receiving a satellite signal are provided, and a first speed indicating the speed of the moving body is generated based on the satellite signal received by the first antenna, and the second antenna is used.
  • the difference between the speed measuring unit that generates the second speed indicating the speed of the moving body based on the satellite signal received by the antenna and the historical value of the first speed and the first speed exceeds a predetermined value.
  • a speed determining unit that determines the second speed as the speed of the moving body may be further provided.
  • the positioning system is a positioning system that positions the coordinates of a moving body, and the position of the moving body is based on at least two different reference points.
  • a coordinate acquisition unit that periodically calculates the first coordinate value and the second coordinate value indicating the above, a coordinate estimation unit that estimates the coordinate value of the moving body based on the acceleration of the moving body, and the first coordinate value.
  • a comparison unit that calculates the difference from the second coordinate value, and a coordinate determination unit that determines the coordinate value estimated based on the acceleration as the positioning coordinate of the moving body when the difference exceeds a predetermined value. Be prepared.
  • a speed measuring unit that generates a first speed indicating the speed of the moving body based on the first satellite signal and a second speed indicating the speed of the moving body based on the second satellite signal, and the first speed measuring unit.
  • a speed determination unit that determines the speed estimated based on the acceleration as the speed of the moving body may be further provided.
  • a first antenna and a second antenna for receiving a satellite signal are provided, and a first speed indicating the speed of the moving body is generated based on the satellite signal received by the first antenna, and the second antenna is used.
  • a speed measuring unit that generates a second speed indicating the speed of the moving body based on the satellite signal received by the antenna, and the second speed when the difference between the first speed and the second speed exceeds a predetermined value. May be provided with a speed determining unit that determines the speed of the moving body.
  • the moving body according to still another aspect of the present invention is a moving body having a positioning system for positioning the position coordinates during movement, and the positioning system is the positioning described in any of the above. It is a system.
  • the speed estimation system is a speed estimation system that estimates the moving speed of a moving body, and determines the speed of the moving body based on a first satellite signal. Calculated before the previous time by the speed measuring unit that periodically generates the first speed shown and periodically generates the second speed indicating the speed of the moving object based on the second satellite signal, and the speed measuring unit.
  • a speed storage unit that stores the historical value of the first speed, a comparison unit that calculates the difference between the first speed and the historical value of the first speed, and the first when the difference exceeds a predetermined value.
  • a speed determination unit for determining the speed as the speed of the moving body is provided.
  • the speed estimation system includes a first antenna and a second antenna for receiving the satellite signal, and the satellite signal received by the first antenna.
  • a speed measuring unit that generates a first speed indicating the speed of the moving body based on the speed, and generates a second speed indicating the speed of the moving body based on the satellite signal received by the second antenna, and the speed.
  • a speed storage unit that stores the history value of the first speed calculated before the previous time by the measurement unit, a comparison unit that calculates the difference between the first speed and the history value of the first speed, and the difference are predetermined. When the value exceeds the value, a speed determining unit for determining the second speed as the speed of the moving body is provided.
  • the speed estimation system is a speed estimation system that estimates the moving speed of a moving body, and determines the speed of the moving body based on the first satellite signal.
  • a speed measuring unit that periodically generates the first speed shown and periodically generates a second speed indicating the speed of the moving body based on the second satellite signal, and the movement based on the acceleration of the moving body.
  • a speed estimation unit that estimates the speed of the body, a comparison unit that calculates the difference between the first speed and the second speed, and a speed estimated based on the acceleration when the difference exceeds a predetermined value. It includes a speed determination unit that determines the speed of the moving body.
  • the speed estimation system includes a first antenna and a second antenna for receiving the satellite signal, and the satellite signal received by the first antenna.
  • a speed measuring unit that generates a first speed indicating the speed of the moving body based on the speed, and generates a second speed indicating the speed of the moving body based on the satellite signal received by the second antenna, and the movement.
  • a speed estimation unit that estimates the speed of the moving body based on the acceleration of the body, a comparison unit that calculates the difference between the first speed and the second speed, and the acceleration when the difference exceeds a predetermined value. It is provided with a speed determination unit that determines the speed estimated based on the above as the speed of the moving body.
  • the positioning method is a positioning method for positioning the coordinates of a moving body, and the moving body has at least two reference points that are different from each other as a reference.
  • the comparison step for calculating the difference between the first coordinate value and the second coordinate value, and the difference are equal to or less than a predetermined value.
  • the positioning method is a positioning method for positioning the coordinates of a moving body, and the moving body has at least two reference points that are different from each other as a reference.
  • a coordinate acquisition step that periodically calculates a first coordinate value and a second coordinate value indicating a position
  • a coordinate estimation step that estimates a coordinate value of the moving body based on the acceleration of the moving body, and the first coordinate value.
  • a comparison step for calculating the difference between the second coordinate value and the second coordinate value, and a coordinate determination step for determining the coordinate value estimated based on the acceleration as the positioning coordinate of the moving body when the difference exceeds a predetermined value. , including.
  • the speed estimation method is a speed estimation method for estimating the moving speed of a moving body, and the speed of the moving body is determined based on the first satellite signal. Calculated before the previous time by the speed measurement step that periodically generates the first speed shown and periodically generates the second speed indicating the speed of the moving object based on the second satellite signal, and the speed measurement step.
  • a speed storage step for storing the historical value of the first speed, a comparison step for calculating the difference between the first speed and the historical value of the first speed, and the first when the difference exceeds a predetermined value. 2.
  • the speed determination step of determining the speed as the speed of the moving body is included.
  • the speed estimation method is a speed estimation method for estimating the moving speed of a moving body, and the speed of the moving body is determined based on the first satellite signal.
  • a speed measurement step that periodically generates the first velocity shown and periodically generates a second velocity indicating the velocity of the moving body based on the second satellite signal, and the movement based on the acceleration of the moving body.
  • the speed determination step of determining the speed of the moving body is included.
  • the coordinates of the moving body can be accurately positioned.
  • the drone which is an example of the moving body according to the present invention, will be described.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100.
  • the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotary blades 101-3a and 101-3b are rearward right, and the rotary blades 101- are forward right. 4a and 101-4b are arranged respectively.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for one rotary blade. Has been done.
  • Motor 102 is an example of a propulsion device.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hose 105 is a means for connecting the tank 104 and each nozzle 103-1, 103-2, 103-3, 103-4, is made of a hard material, and may also serve to support the nozzle. ..
  • the pump 106 is a means for discharging the sprayed material from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400.
  • These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire.
  • the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
  • Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire the coordinates of drone 100 and base station 404.
  • GNSS positioning satellite 410 such as GPS to acquire the coordinates of drone 100 and base station 404.
  • the operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone.
  • the small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, intruders such as buildings and electric wires may exist in the field 403.
  • Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the base station of RTK-GNSS may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
  • the base station 404 can acquire accurate coordinates by positioning relative to the reference point.
  • the reference point here is a so-called electronic reference point.
  • the electronic reference points are GNSS continuous observation points and are installed at intervals of about 20 km.
  • the relative positional relationship of a plurality of electronic reference points can be obtained with an accuracy of one millionth by performing relative positioning. This accuracy means that the relative positional relationship between two adjacent electronic reference points can be obtained with an error of 2 cm.
  • the relative positional relationship between the base station 404 and the electronic reference point can be obtained with an accuracy of one millionth.
  • relative positioning is a method of observing four or more same GNSS satellites at the same time at two points, measuring the time difference when the radio signal from the GNSS satellite reaches two points, and obtaining the relative positional relationship.
  • the position of the drone 100 can be provided with an error of, for example, several cm.
  • the coordinates of the base station 404 are calculated based on at least one coordinate of the reference points D1 and D2 arranged in the periphery. Further, the position coordinates of the drone 100 are calculated by relative positioning based on at least one coordinate of the reference points D1 and D2 and the coordinates of the base station 404. In addition, the velocity of the drone 100 is calculated based on at least one coordinate of reference points D1 and D2, and the coordinates of base station 404. Reference points are set at intervals of, for example, about 20 km. The reference point may be a virtual reference point (virtual reference point).
  • the server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the server 405 may be configured by a hardware device.
  • the server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal is, for example, a smart phone.
  • information on the expected operation of the drone 100 more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
  • the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff.
  • the departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
  • FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has the function of an RTK-GNSS base station in addition to the communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the GPS module RTK504 of the flight controller 501 can position the absolute position of the drone 100 by combining the signal of the RTK base station and the signal from the GPS positioning satellite. Since the GPS module RTK504 is so important, it may be duplicated / multiplexed, and the redundant GPS modules RTK504-1 and 504-2 are used to cope with the failure of a specific GPS positioning satellite. It may be controlled to use different positioning satellites 410a and 410b (see FIG. 16 (a)).
  • the GPS modules RTK504-1 and 504-2 are equipped with antennas 504a-1 and 504a-2, respectively. That is, as shown in FIG. 16A, the drone 100 includes two antennas 504a-1 and 504a-2, and the respective antennas 504a-1 and 504a-2 are from different positioning satellites 410a and 410b. Receive satellite signals from. Further, as in the drone 100b according to another embodiment shown in FIG. 16 (b), one antenna 504a-1 is provided, and satellite signals from a plurality of positioning satellites 410a and 410b are received by the antenna 504a-1. You may. In the figure, the number of satellites received by the antenna 504a-1 is 2, but there may be 3 or more.
  • a plurality of antennas 504a-1 and 504a-2 are provided, and the respective antennas 504a-1 and 504a-2 are the same positioning satellite 410a. You may receive satellite signals from.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in plants, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near-infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band.
  • the pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathology diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathology diagnosis camera 512b? Another device.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done.
  • other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • the positioning system 1000 is a system including, for example, a drone 100, a user interface device 200, and a positioning device 600, and these are connected to each other so as to be able to communicate with each other through a network NW.
  • the positioning device 600 may have a hardware configuration or may be configured on the server 405.
  • the drone 100, the user interface device 200, and the positioning device 600 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
  • the configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. ..
  • some or all of the functions of the positioning device 600 may be mounted on the drone 100.
  • the user interface device 200 may be provided with a display unit, and may be realized by the function of the actuator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
  • the positioning device 600 includes a computing device such as a CPU (Central Processing Unit) for executing information processing, and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). As a result, it has at least a reference point determination unit 610, a coordinate acquisition unit 620, a comparison unit 630, a coordinate determination unit 640, a coordinate storage unit 650, and a coordinate estimation unit 660 as software resources.
  • a computing device such as a CPU (Central Processing Unit) for executing information processing
  • a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the reference point determination unit 610 is a functional unit that determines the reference point used to acquire the coordinate values of the drone 100.
  • the reference point determination unit 610 selects at least two reference points that are different from each other.
  • the reference point determination unit 610 may select a reference point close to the coordinates of the drone 100 obtained by independent positioning.
  • the reference point determination unit 610 may select, for example, the closest reference point and the next closest reference point from the coordinates of the drone 100 obtained by independent positioning.
  • independent positioning the distance is calculated based on the time required from the transmission of radio waves from the satellite to the arrival at the receiver by receiving the satellite information transmitted from the GNSS satellite with a single antenna. It is a positioning method to be performed.
  • the reference point determination unit 610 may determine an arbitrary reference point as a reference point for acquiring coordinate values, regardless of independent positioning.
  • the reference point determination unit 610 may acquire the approximate position of the drone 100 via a user interface device such as the actuator 401, and determine the reference point based on the approximate position.
  • the position of the field owned by the manager of the positioning system for example, the address display or the like may be associated with the system in advance, and a relatively close reference point may be determined with reference to the position of the field.
  • the coordinate acquisition unit 620 is a functional unit that acquires coordinate values indicating the position of the drone 100 with reference to the reference point determined by the reference point determination unit 610.
  • the coordinate acquisition unit 620 calculates the number of coordinate values corresponding to the number of determined reference points.
  • the coordinate acquisition unit 620 acquires the first coordinate value and the second coordinate value, respectively, with reference to the first reference point D1 and the second reference point D2 (see FIG. 6).
  • the coordinate acquisition unit 620 periodically acquires coordinate values. This is to accurately grasp the coordinate values at each time point of the moving drone 100.
  • the coordinate values acquired by the coordinate acquisition unit 620 are stored in the coordinate storage unit 650.
  • the coordinate storage unit 650 stores at least the first coordinate value calculated by the coordinate acquisition unit 620 before the previous time, that is, the historical value of the first coordinate value.
  • the historical value of the first coordinate value may be the previous value of the first coordinate value acquired last time.
  • the coordinate storage unit 650 may overwrite the stored first coordinate value, or may store a plurality of first coordinate values together with the measured order. good. Further, the coordinate storage unit 650 may store the second coordinate value in addition to the first coordinate value.
  • the comparison unit 630 has a function of comparing the first coordinate value obtained with reference to the first reference point acquired by the coordinate acquisition unit 620 and the historical value of the first coordinate value stored in the coordinate storage unit 650. It is a department. Specifically, the comparison unit 630 calculates the difference between the first coordinate value and the historical value of the first coordinate value.
  • the coordinate estimation unit 660 is a functional unit that estimates the coordinates of the drone 100 based on the acceleration of the drone 100.
  • the coordinate estimation unit 660 estimates the coordinates of the drone 100 by integrating the measured values of the acceleration sensor mounted on the drone 100 twice.
  • the 6-axis gyro sensor 505 has the function of an acceleration sensor.
  • the coordinate estimation unit 660 adds the two integral values of the accelerations measured from the acquisition time of the previous value of the first coordinate value to the present to the previous value of the first coordinate value, thereby adding the current coordinate value. May be estimated.
  • the acceleration of the drone 100 may be measured by photographing the drone 100 from the outside of the drone 100 instead of measuring by the sensor mounted on the drone 100.
  • the coordinate determination unit 640 is a functional unit that determines the positioning coordinates of the drone 100 based on the result of comparison by the comparison unit 630. When the difference is equal to or less than a predetermined value, the coordinate determination unit 640 sets the first coordinate value as the positioning coordinate of the drone 100. Since the speed range of the drone 100 is predetermined, the amount of change in the first coordinate value from the previous value can be estimated to some extent. When the amount of change is within this assumed range, it is assumed that the occurrence of multipath due to reflection, measurement error, and the influence of disturbance are small, and the reliability of the first coordinate value is guaranteed by the second coordinate value.
  • the coordinate determination unit 640 sets the second coordinate value as the positioning coordinate of the drone 100.
  • the predetermined value may be set based on the moving speed of the drone 100. If the change in the first coordinate value exceeds the assumed range considering the moving speed of the drone 100, it is probable that the acquired first coordinate value does not indicate the correct position due to the occurrence of multipath due to reflection, measurement error, or disturbance. Is high. Further, the predetermined value may be uniformly set based on the moving speed that the drone 100 can exert, or may be calculated based on the moving speed at the time of acquiring the first coordinate value or the second coordinate value. good.
  • the comparison unit 630 determines whether or not the difference between the second coordinate value and the historical value of the first coordinate value is equal to or less than the predetermined value, and the coordinate determination unit 640 determines when the difference is equal to or less than the predetermined value.
  • the second coordinate value may be the positioning coordinate of the drone 100. According to this configuration, the reliability of the second coordinate value can be made more reliable.
  • the coordinate determination unit 640 uses the coordinates estimated by the coordinate estimation unit 660 based on the acceleration as the positioning coordinates of the drone 100. It may be confirmed.
  • the detection error of the acceleration is accumulated by the integral calculation. Therefore, if the coordinates generated based on the acceleration are adopted for a long time, the coordinate error becomes a cause. Therefore, the positioning device 600 measures the time when the difference between the first coordinate value and the historical value of the first coordinate value exceeds a predetermined value and adopts the coordinates generated based on the acceleration, and the time is predetermined.
  • the use of the coordinates generated based on the acceleration for control may be stopped and the drone 100 may perform the retracting operation.
  • the evacuation operation is, for example, hovering, but may be a normal landing operation for landing on the spot, or an emergency landing operation for immediately stopping the rotor blades and dropping the drone 100.
  • the coordinates generated by another method may be used for control.
  • the other method is, for example, a method of obtaining by using another reference point as a reference, but the method is not limited to this method. With such a configuration, it is possible to prevent the accuracy of the position control and the speed control of the drone 100 from being significantly deteriorated.
  • the coordinate acquisition unit 620 may acquire the speed of the drone 100 based on the satellite signal from the positioning satellite 410a or 410b (see FIG. 16A) in place of or in addition to the coordinate value. For example, the coordinate acquisition unit 620 calculates the speed within the predetermined time based on the transition of the coordinate values within the predetermined time. At this time, the coordinate storage unit 650 stores the historical value of the first velocity obtained based on the satellite signal from the first positioning satellite 410a. The comparison unit 630 calculates the difference between the first speed and the historical value of the first speed. The coordinate determination unit 640 determines the first speed as the speed of the drone 100 when the difference is equal to or less than a predetermined value.
  • the coordinate determination unit 640 determines the second speed obtained based on the satellite signal from the second positioning satellite 410b as the speed of the drone.
  • the coordinate determination unit 640 may estimate the speed based on the acceleration when the difference exceeds a predetermined value, and determine this estimated value as the speed of the drone 100.
  • the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation.
  • the speed generated by another method may be used for control. Even when the speed is estimated based on the acceleration, the detection error of the acceleration is accumulated by the integral calculation, so that the adoption over a long period of time causes the error of the speed.
  • a processing flow for positioning the coordinates of the drone 100 will be described with reference to FIG.
  • the reference point determination unit 610 determines the first reference point D1 and the second reference point D2 (see FIG. 6) (S1).
  • the coordinate acquisition unit 620 acquires the first coordinate value of the drone 100 with reference to the first reference point D1 and acquires the second coordinate value of the drone 100 with reference to the second reference point D2 (S2).
  • the comparison unit 630 calculates the difference between the first coordinate value and the historical value of the first coordinate value (S3). It is determined whether or not the difference is less than or equal to the predetermined value (S4), and if it is less than or equal to the predetermined value, the first coordinate value is fixed to the coordinates of the drone 100 (S5). When the difference exceeds a predetermined value in step S4, the second coordinate value is determined as the positioning coordinate (S6). Alternatively, in step S6, the coordinates of the drone 100 may be estimated based on the acceleration of the drone 100, and the estimated value may be determined as the positioning coordinates.
  • the drone 100 may perform the evacuation operation. Further, the coordinates estimated by another method may be used as the positioning coordinates.
  • the positioning device 601 in the second embodiment includes a reference point determination unit 610, a coordinate acquisition unit 620, a comparison unit 631, a coordinate determination unit 641, and a coordinate estimation unit 660.
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the comparison unit 631 compares the first coordinate value obtained with reference to the first reference point acquired by the coordinate acquisition unit 620 with the second coordinate value obtained with reference to the second reference point. Specifically, the comparison unit 630 calculates the difference between the first coordinate value and the second coordinate value.
  • the coordinate determination unit 641 uses the first coordinate value as the positioning coordinate of the drone 100 when the difference is equal to or less than a predetermined value.
  • the coordinate determination unit 640 uses the estimated coordinate value estimated from the acceleration by the coordinate estimation unit 660 as the positioning coordinate of the drone 100.
  • the comparison unit 631 calculates the difference between the estimated coordinate value and the first coordinate value or the second coordinate value, and the coordinate determination unit 641 calculates the difference to be equal to or less than the predetermined value.
  • the estimated coordinate value may be the positioning coordinate. Since the difference between the estimated coordinate value and the first coordinate value or the second coordinate value is small, the reliability of the estimated coordinate value is further ensured. Further, when the difference between the estimated coordinate value and the first coordinate value or the second coordinate value is equal to or less than a predetermined value, the coordinate determination unit 641 adopts the first coordinate value or the second coordinate value as the positioning coordinate. May be good.
  • the coordinate acquisition unit 620 may acquire the speed of the drone 100 based on the reference point instead of or in addition to the coordinate value.
  • the comparison unit 630 obtains the first velocity based on the first satellite signal received from the first positioning satellite 410a and the second velocity obtained based on the second satellite signal received from the second positioning satellite 410b. Calculate the difference from the two speeds.
  • the coordinate determination unit 640 determines the first speed as the speed of the drone 100.
  • the coordinate determination unit 640 determines the speed calculated by the coordinate estimation unit 660 as the drone speed when the difference exceeds a predetermined value.
  • the coordinate estimation unit 660 can calculate the speed of the drone 100 by integrating the acceleration of the drone 100 once.
  • the speed of the drone can be accurately measured even when an error occurs in the calculation of the speed due to the relative positioning.
  • the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation.
  • the speed generated by another method may be used for control.
  • the drone 100 includes a plurality of antennas 504a-1 and 504a-2, and the antennas 504a-1 and 504a-2 are the first satellites from the first positioning satellite 410a.
  • the signal and the second satellite signal from the second positioning satellite 410b may be received respectively.
  • the drone 100b may receive satellite signals from a plurality of positioning satellites 410a and 410b by one antenna 504a-1.
  • the drone 100c according to still another embodiment includes a plurality of antennas 504a-1 and 504a-2, and the antennas 504a-1 and 504a-2 are one first. 1 Positioning satellite 410a may receive different first satellite signals and second satellite signals, respectively.
  • the reference point determination unit 610 determines the first reference point D1 and the second reference point D2 (see FIG. 6) (S11).
  • the coordinate acquisition unit 620 acquires the first coordinate value of the drone 100 with reference to the first reference point D1 and acquires the second coordinate value of the drone 100 with reference to the second reference point D2 (S12).
  • the comparison unit 630 calculates the difference between the first coordinate value and the second coordinate value (S13). It is determined whether or not the difference is less than or equal to the predetermined value (S14), and if it is less than or equal to the predetermined value, the first coordinate value is fixed to the coordinates of the drone 100 (S15). When the difference exceeds a predetermined value in step S14, the coordinates of the drone 100 are estimated based on the acceleration of the drone 100, and the estimated value is determined as the positioning coordinates (S16). In this configuration, it may be determined whether or not the time in which the coordinates estimated based on the acceleration are used for control as the positioning coordinates continues for a predetermined time or longer, and if applicable, the drone 100 may perform the evacuation operation.
  • the speed estimation system 1002 is a system that estimates the moving speed of the drone 100 instead of the coordinates of the drone 100.
  • the same reference numerals are given to the same configurations as those of the positioning system 1000.
  • the speed estimation system 1002 has a speed estimation device 602.
  • the speed estimation device 602 includes a reference point determination unit 610, a speed measurement unit 622, a comparison unit 631, a speed determination unit 642, a speed storage unit 652, and a speed estimation unit 662.
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the speed measurement unit 622 is a functional unit that measures the speed of the drone 100 based on the satellite signal from the positioning satellite 410. For example, the speed measuring unit 622 calculates the speed within the predetermined time based on the transition of the coordinate values within the predetermined time. At this time, the speed storage unit 652 stores the historical value of the first speed obtained with reference to the first reference point D1. The comparison unit 632 calculates the difference between the first speed and the historical value of the first speed.
  • the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by the antennas 504a-1 and 504a-2, respectively. , Generates the first velocity based on the first satellite signal and generates the second velocity based on the second satellite signal.
  • the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by one antenna 504a-1. May be good. Further, as shown in FIG.
  • the drone 100c includes a plurality of antennas 504a-1 and 504a-2, and the antennas 504a-1 and 504a-2 are one first.
  • 1 Positioning satellite 410a may receive different first satellite signals and second satellite signals, respectively.
  • the speed measurement unit 622 acquires the speed on a regular basis.
  • the speed acquired by the speed measuring unit 622 is stored in the speed storage unit 652.
  • the speed storage unit 652 stores at least the first speed calculated by the speed measurement unit 622 before the previous time, that is, the historical value of the first speed.
  • the historical value of the first speed may be the previous value of the first speed acquired last time.
  • the speed storage unit 652 may overwrite the stored first speed, or may store a plurality of first speeds together with the measured order. Further, the speed storage unit 652 may store the second speed in addition to the first speed.
  • the comparison unit 632 is a functional unit that compares the first speed obtained with reference to the first satellite signal acquired by the speed measurement unit 622 and the historical value of the first speed stored in the speed storage unit 652. be. Specifically, the comparison unit 632 calculates the difference between the first speed and the historical value of the first speed.
  • the speed estimation unit 662 is a functional unit that estimates the speed of the drone 100 based on the acceleration of the drone 100.
  • the speed estimation unit 662 estimates the speed of the drone 100 by integrating the measured values of the acceleration sensor mounted on the drone 100.
  • the 6-axis gyro sensor 505 has the function of an acceleration sensor.
  • the speed estimation unit 662 may estimate the current speed by adding the integrated value of the accelerations measured from the acquisition time of the historical value of the first speed to the present to the historical value of the first speed. ..
  • the speed of the drone 100 may be measured by photographing the drone 100 from the outside of the drone 100 instead of measuring by the sensor mounted on the drone 100.
  • the speed determination unit 642 sets the second speed as the positioning speed of the drone 100. With this configuration, the speed of the drone can be measured accurately.
  • the speed determination unit 642 determines the speed estimated by the speed estimation unit 662 based on the acceleration as the speed of the drone 100 when the difference between the first speed and the historical value of the first speed exceeds a predetermined value. You may. When the difference exceeds a predetermined value, the speed determination unit 642 estimates the speed based on the acceleration, and may determine this estimated value as the speed of the drone 100. Further, the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation. Moreover, the speed generated by another method may be used for control.
  • the speed measurement unit 622 acquires the first speed of the drone 100 based on the first satellite signal received from the first positioning satellite 410a, and based on the second satellite signal received from the second positioning satellite 410b. And get the second speed of Drone 100 (S21).
  • the comparison unit 632 calculates the difference between the historical values of the first speed and the first speed (S22). It is determined whether or not the difference is less than or equal to the predetermined value (S23), and if it is less than or equal to the predetermined value, the first speed is determined to be the speed of the drone 100 (S24). When the difference exceeds a predetermined value in step S23, the second speed is determined as the speed (S25). Further, in step S25, the speed of the drone 100 may be estimated based on the acceleration of the drone 100, and the estimated value may be determined in the positioning coordinates.
  • the drone 100 may be made to perform the evacuation operation.
  • the speed estimated by another method may be used.
  • the speed estimation system 1003 according to the second embodiment of the present invention will be described focusing on a portion different from the speed estimation system 1002 according to the first embodiment.
  • the speed estimation system 1003 calculates the first speed and the second speed based on at least two satellite signals different from each other, and determines the speed of the drone 100 according to the difference.
  • the speed estimation device 603 in the second embodiment includes a reference point determination unit 610, a speed measurement unit 623, a comparison unit 633, a speed determination unit 643, and a speed estimation unit 662.
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by the antennas 504a-1 and 504a-2, respectively. , The first velocity and the second velocity are generated based on the first satellite signal and the second satellite signal, respectively. As shown in FIG. 16B, the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by one antenna 504a-1. May be good.
  • the comparison unit 633 compares the first speed obtained based on the first satellite signal acquired by the speed measurement unit 623 with the second speed obtained based on the second satellite signal. Specifically, the comparison unit 633 calculates the difference between the first speed and the second speed.
  • the speed determination unit 643 sets the first speed as the speed of the drone 100 when the difference is equal to or less than a predetermined value.
  • the speed determination unit 643 sets the estimated speed estimated from the acceleration by the speed estimation unit 662 as the speed of the drone 100 when the difference exceeds a predetermined value.
  • the comparison unit 633 calculates the difference between the estimated speed and the first speed or the second speed, and the speed determination unit 643 determines when the difference is equal to or less than the predetermined value.
  • the estimated speed may be determined as the positioning speed. Since the difference between the estimated speed and the first speed or the second speed is small, the reliability of the estimated speed is further ensured. Further, the speed determination unit 643 may adopt the first speed or the second speed as the positioning speed when the difference between the estimated speed and the first speed or the second speed is equal to or less than a predetermined value.
  • the speed determination unit 643 may estimate the speed based on the acceleration and determine this estimated value as the speed of the drone 100. Further, the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation. Moreover, the speed generated by another method may be used for control.
  • the speed measuring unit 623 acquires the first speed of the drone 100 based on the satellite signal from the first positioning satellite 410a, and the drone 100 is based on the satellite signal from the second positioning satellite 410b. Get the second velocity of (S31).
  • the comparison unit 633 calculates the difference between the first speed and the second speed (S32). It is determined whether or not the difference is less than or equal to the predetermined value (S33), and if it is less than or equal to the predetermined value, the first speed is determined to be the speed of the drone 100 (S34). When the difference exceeds a predetermined value in step S33, the speed of the drone 100 is estimated based on the acceleration of the drone 100, and the estimated speed is determined as the speed of the drone 100 (S35). In this configuration, it may be determined whether the time in which the speed estimated based on the acceleration is used for control continues for a predetermined time or longer, and if applicable, the drone 100 may be made to perform the evacuation operation. Alternatively, the speed estimated by another method may be used.
  • the coordinates of a moving body such as a drone can be accurately positioned.
  • the speed estimation system according to the present invention the speed of a moving body such as a drone can be estimated accurately.
  • the drone flies according to the amount of electricity stored in the battery, it is necessary to move at a higher speed than the land-based agricultural machine in order to complete the work in the field with a small number of charging times. Therefore, highly accurate positioning with high real-time performance is important for drone flight.
  • the coordinates of the agricultural drone can be accurately positioned, precision agriculture by the drone can be realized.
  • the positioning system, the speed estimation system, and the positioning method for positioning the coordinates of the drone have been described, but the positioning system, the speed estimation system, and the positioning method according to the present invention are not limited to the drone, but also for machines traveling on land. Applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

[Problem] To measure coordinates of a moving body with good precision. [Solution] A positioning system 1000 that performs positioning of coordinates of a moving body 100 includes a coordinates acquiring unit 620 that periodically calculates a first coordinates value and a second coordinates value that indicate a position of the moving body, with at least two reference points that differ from each other as references, a coordinates storing unit 650 that stores a previous history value of at least the first coordinates value calculated by the coordinates acquiring unit a prior time or earlier, a comparing unit 630 that calculates a difference between the first coordinates value and the history value of the first coordinates value, and a coordinates finalizing unit 640 that finalizes the second coordinates value as the positioning coordinates of the mobile body in a case of the difference exceeding a predetermined value.

Description

測位システム、移動体、速度推定システム、測位方法、および速度推定方法Positioning system, mobile, speed estimation system, positioning method, and speed estimation method
 本願発明は、測位システム、移動体、速度推定システム、測位方法、および速度推定方法に関する。 The present invention relates to a positioning system, a moving body, a speed estimation system, a positioning method, and a speed estimation method.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプタではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is advancing. One of the important application fields is spraying agricultural land (field) with pesticides, liquid fertilizers, etc. (for example, Patent Document 1). In relatively small farmlands, it is often appropriate to use drones rather than manned planes or helicopters.
 ドローンを使用して、圃場への散布作業を行う場合、電子基準点の座標を用いて基地局の座標値を測位し、当該基地局との相対測位によりドローンの位置を特定する。ここで、基地局の座標値を正確に測位するシステムが必要とされている。 When spraying work on a field using a drone, the coordinate values of the base station are positioned using the coordinates of the electronic reference point, and the position of the drone is specified by relative positioning with the base station. Here, there is a need for a system that accurately positions the coordinate values of a base station.
 例えば、特許文献2には、GPS測位装置の位置情報と慣性測位装置の位置情報との偏差を求め、時系列偏差が設定値よりも大きい場合に異常と判定するハイブリッド型測位装置が開示されている。特許文献3には、複数の測位結果データについて、所定の閾値との比較に応じて、一の測位結果データを選択する測位装置が開示されている。特許文献4には、測位結果の差分と閾値との比較により、測位精度を判定すること、および衛星測位と慣性センサによる測位とを組み合わせる、複合測位による移動体の測位制御装置が開示されている。 For example, Patent Document 2 discloses a hybrid positioning device that obtains a deviation between the position information of a GPS positioning device and the position information of an inertial positioning device and determines that an abnormality occurs when the time series deviation is larger than a set value. There is. Patent Document 3 discloses a positioning device that selects one positioning result data according to a comparison with a predetermined threshold value for a plurality of positioning result data. Patent Document 4 discloses a positioning control device for a moving body by combined positioning, which determines positioning accuracy by comparing a difference between positioning results and a threshold value, and combines satellite positioning and positioning by an inertial sensor. ..
特開2001-120151号公報Japanese Unexamined Patent Publication No. 2001-120151 特開平10-311734号公報Japanese Unexamined Patent Publication No. 10-31734 特開2006-258461号公報Japanese Unexamined Patent Publication No. 2006-258461 特開2007-64853号公報JP-A-2007-64853 特開2016-57239号公報Japanese Unexamined Patent Publication No. 2016-57239 特開2019-95278号公報JP-A-2019-95278 国際公開2014-132618号公報International Publication No. 2014-132618 国際公開2017-138502号公報International Publication No. 2017-138502
 移動体の座標を精度よく測位する、測位システムを提供する。 Provide a positioning system that accurately positions the coordinates of moving objects.
 上記目的を達成するため、本発明の一の観点に係る測位システムは、移動体の座標を測位する測位システムであって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を定期的に算出する座標取得部と、前記座標取得部により前回以前に算出された少なくとも前記第1座標値の履歴値を記憶する座標記憶部と、前記第1座標値と前記第1座標値の履歴値との差分を計算する比較部と、前記差分が所定値を超える場合に、前記第2座標値を前記移動体の測位座標として確定する座標確定部と、を備える。 In order to achieve the above object, the positioning system according to one aspect of the present invention is a positioning system for positioning the coordinates of a moving body, and the position of the moving body is positioned with reference to at least two different reference points. A coordinate acquisition unit that periodically calculates the first coordinate value and the second coordinate value indicating the above, and a coordinate storage unit that stores at least the historical value of the first coordinate value calculated before the previous time by the coordinate acquisition unit. A comparison unit that calculates the difference between the first coordinate value and the historical value of the first coordinate value, and coordinates that determine the second coordinate value as the positioning coordinate of the moving body when the difference exceeds a predetermined value. It is provided with a fixing unit.
 前記座標確定部は、前記差分が前記所定値以下であるとき、前記第1座標値を、前記移動体の測位座標として確定するものとしてもよい。 The coordinate determination unit may determine the first coordinate value as the positioning coordinate of the moving body when the difference is equal to or less than the predetermined value.
 前記座標取得部が算出の基準とする前記基準点を決定する基準点決定部をさらに備え、前記基準点決定部は、単独測位で求めた前記移動体の座標に最も近い基準点を、前記算出の基準に決定するものとしてもよい。 The coordinate acquisition unit further includes a reference point determination unit for determining the reference point as a calculation reference, and the reference point determination unit calculates the reference point closest to the coordinates of the moving body obtained by independent positioning. It may be decided based on the criteria of.
 第1の衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、前記第1速度と前記第1速度の履歴値との差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、をさらに備えるものとしてもよい。 A speed measuring unit that generates a first speed indicating the speed of the moving body based on the first satellite signal and a second speed indicating the speed of the moving body based on the second satellite signal, and the first speed measuring unit. When the difference between the first speed and the historical value of the first speed exceeds a predetermined value, a speed determination unit that determines the second speed as the speed of the moving body may be further provided.
 衛星信号を受信する第1のアンテナと第2のアンテナを備え、前記第1のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、前記第1速度と前記第1速度の履歴値との差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、をさらに備えるものとしてもよい。 A first antenna and a second antenna for receiving a satellite signal are provided, and a first speed indicating the speed of the moving body is generated based on the satellite signal received by the first antenna, and the second antenna is used. When the difference between the speed measuring unit that generates the second speed indicating the speed of the moving body based on the satellite signal received by the antenna and the historical value of the first speed and the first speed exceeds a predetermined value. A speed determining unit that determines the second speed as the speed of the moving body may be further provided.
 上記目的を達成するため、本発明の別の観点に係る測位システムは、移動体の座標を測位する測位システムであって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を定期的に算出する座標取得部と、前記移動体の加速度に基づいて前記移動体の座標値を推定する座標推定部と、前記第1座標値と前記第2座標値との差分を計算する比較部と、前記差分が所定値を超える場合に、前記加速度に基づいて推定される座標値を移動体の測位座標として確定する座標確定部と、を備える。 In order to achieve the above object, the positioning system according to another aspect of the present invention is a positioning system that positions the coordinates of a moving body, and the position of the moving body is based on at least two different reference points. A coordinate acquisition unit that periodically calculates the first coordinate value and the second coordinate value indicating the above, a coordinate estimation unit that estimates the coordinate value of the moving body based on the acceleration of the moving body, and the first coordinate value. A comparison unit that calculates the difference from the second coordinate value, and a coordinate determination unit that determines the coordinate value estimated based on the acceleration as the positioning coordinate of the moving body when the difference exceeds a predetermined value. Be prepared.
 第1の衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、前記第1速度と前記第2速度の差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定部と、をさらに備えるものとしてもよい。 A speed measuring unit that generates a first speed indicating the speed of the moving body based on the first satellite signal and a second speed indicating the speed of the moving body based on the second satellite signal, and the first speed measuring unit. When the difference between the first speed and the second speed exceeds a predetermined value, a speed determination unit that determines the speed estimated based on the acceleration as the speed of the moving body may be further provided.
 衛星信号を受信する第1のアンテナと第2のアンテナを備え、前記第1のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、前記第1速度と前記第2速度の差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、を備えるものとしてもよい。 A first antenna and a second antenna for receiving a satellite signal are provided, and a first speed indicating the speed of the moving body is generated based on the satellite signal received by the first antenna, and the second antenna is used. A speed measuring unit that generates a second speed indicating the speed of the moving body based on the satellite signal received by the antenna, and the second speed when the difference between the first speed and the second speed exceeds a predetermined value. May be provided with a speed determining unit that determines the speed of the moving body.
 上記目的を達成するため、本発明のさらに別の観点に係る移動体は、移動中の位置座標を測位する測位システムを有する移動体であって、前記測位システムは上述のいずれかに記載の測位システムである。 In order to achieve the above object, the moving body according to still another aspect of the present invention is a moving body having a positioning system for positioning the position coordinates during movement, and the positioning system is the positioning described in any of the above. It is a system.
 上記目的を達成するため、本発明のさらに別の観点に係る速度推定システムは、移動体の移動速度を推定する速度推定システムであって、第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測部と、前記速度計測部により前回以前に算出された前記第1速度の履歴値を記憶する速度記憶部と、前記第1速度と前記第1速度の履歴値との差分を計算する比較部と、前記差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、を備える。 In order to achieve the above object, the speed estimation system according to still another aspect of the present invention is a speed estimation system that estimates the moving speed of a moving body, and determines the speed of the moving body based on a first satellite signal. Calculated before the previous time by the speed measuring unit that periodically generates the first speed shown and periodically generates the second speed indicating the speed of the moving object based on the second satellite signal, and the speed measuring unit. A speed storage unit that stores the historical value of the first speed, a comparison unit that calculates the difference between the first speed and the historical value of the first speed, and the first when the difference exceeds a predetermined value. (2) A speed determination unit for determining the speed as the speed of the moving body is provided.
 上記目的を達成するため、本発明のさらに別の観点に係る速度推定システムは、衛星信号を受信する第1のアンテナと第2のアンテナを備え、前記第1のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、前記速度計測部により前回以前に算出された前記第1速度の履歴値を記憶する速度記憶部と、前記第1速度と前記第1速度の履歴値との差分を計算する比較部と、前記差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、を備える。 In order to achieve the above object, the speed estimation system according to still another aspect of the present invention includes a first antenna and a second antenna for receiving the satellite signal, and the satellite signal received by the first antenna. A speed measuring unit that generates a first speed indicating the speed of the moving body based on the speed, and generates a second speed indicating the speed of the moving body based on the satellite signal received by the second antenna, and the speed. A speed storage unit that stores the history value of the first speed calculated before the previous time by the measurement unit, a comparison unit that calculates the difference between the first speed and the history value of the first speed, and the difference are predetermined. When the value exceeds the value, a speed determining unit for determining the second speed as the speed of the moving body is provided.
 上記目的を達成するため、本発明のさらに別の観点に係る速度推定システムは、移動体の移動速度を推定する速度推定システムであって、第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測部と、前記移動体の加速度に基づいて前記移動体の速度を推定する速度推定部と、前記第1速度と前記第2速度との差分を計算する比較部と、前記差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定部と、を備える。 In order to achieve the above object, the speed estimation system according to still another aspect of the present invention is a speed estimation system that estimates the moving speed of a moving body, and determines the speed of the moving body based on the first satellite signal. A speed measuring unit that periodically generates the first speed shown and periodically generates a second speed indicating the speed of the moving body based on the second satellite signal, and the movement based on the acceleration of the moving body. A speed estimation unit that estimates the speed of the body, a comparison unit that calculates the difference between the first speed and the second speed, and a speed estimated based on the acceleration when the difference exceeds a predetermined value. It includes a speed determination unit that determines the speed of the moving body.
 上記目的を達成するため、本発明のさらに別の観点に係る速度推定システムは、衛星信号を受信する第1のアンテナと第2のアンテナを備え、前記第1のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、前記移動体の加速度に基づいて前記移動体の速度を推定する速度推定部と、前記第1速度と前記第2速度との差分を計算する比較部と、前記差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定部と、を備える。 In order to achieve the above object, the speed estimation system according to still another aspect of the present invention includes a first antenna and a second antenna for receiving the satellite signal, and the satellite signal received by the first antenna. A speed measuring unit that generates a first speed indicating the speed of the moving body based on the speed, and generates a second speed indicating the speed of the moving body based on the satellite signal received by the second antenna, and the movement. A speed estimation unit that estimates the speed of the moving body based on the acceleration of the body, a comparison unit that calculates the difference between the first speed and the second speed, and the acceleration when the difference exceeds a predetermined value. It is provided with a speed determination unit that determines the speed estimated based on the above as the speed of the moving body.
 上記目的を達成するため、本発明のさらに別の観点に係る測位方法は、移動体の座標を測位する測位方法であって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を算出する座標取得ステップと、前記第1座標値と前記第2座標値との差分を計算する比較ステップと、前記差分が所定値以下である場合に、前記第1座標値を、前記移動体の測位座標として確定する、座標確定ステップと、を含む。 In order to achieve the above object, the positioning method according to still another viewpoint of the present invention is a positioning method for positioning the coordinates of a moving body, and the moving body has at least two reference points that are different from each other as a reference. When the coordinate acquisition step for calculating the first coordinate value and the second coordinate value indicating the position, the comparison step for calculating the difference between the first coordinate value and the second coordinate value, and the difference are equal to or less than a predetermined value. Includes a coordinate determination step of determining the first coordinate value as the positioning coordinates of the moving body.
 上記目的を達成するため、本発明のさらに別の観点に係る測位方法は、移動体の座標を測位する測位方法であって、互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を定期的に算出する座標取得ステップと、前記移動体の加速度に基づいて前記移動体の座標値を推定する座標推定ステップと、前記第1座標値と前記第2座標値との差分を計算する比較ステップと、前記差分が所定値を超える場合に、前記加速度に基づいて推定される座標値を前記移動体の測位座標として確定する座標確定ステップと、を含む。 In order to achieve the above object, the positioning method according to still another aspect of the present invention is a positioning method for positioning the coordinates of a moving body, and the moving body has at least two reference points that are different from each other as a reference. A coordinate acquisition step that periodically calculates a first coordinate value and a second coordinate value indicating a position, a coordinate estimation step that estimates a coordinate value of the moving body based on the acceleration of the moving body, and the first coordinate value. A comparison step for calculating the difference between the second coordinate value and the second coordinate value, and a coordinate determination step for determining the coordinate value estimated based on the acceleration as the positioning coordinate of the moving body when the difference exceeds a predetermined value. ,including.
 上記目的を達成するため、本発明のさらに別の観点に係る速度推定方法は、移動体の移動速度を推定する速度推定方法であって、第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測ステップと、前記速度計測ステップにより前回以前に算出された前記第1速度の履歴値を記憶する速度記憶ステップと、前記第1速度と前記第1速度の履歴値との差分を計算する比較ステップと、前記差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定ステップと、を含む。 In order to achieve the above object, the speed estimation method according to still another aspect of the present invention is a speed estimation method for estimating the moving speed of a moving body, and the speed of the moving body is determined based on the first satellite signal. Calculated before the previous time by the speed measurement step that periodically generates the first speed shown and periodically generates the second speed indicating the speed of the moving object based on the second satellite signal, and the speed measurement step. A speed storage step for storing the historical value of the first speed, a comparison step for calculating the difference between the first speed and the historical value of the first speed, and the first when the difference exceeds a predetermined value. 2. The speed determination step of determining the speed as the speed of the moving body is included.
 上記目的を達成するため、本発明のさらに別の観点に係る速度推定方法は、移動体の移動速度を推定する速度推定方法であって、第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測ステップと、前記移動体の加速度に基づいて前記移動体の速度を推定する速度推定ステップと、前記第1速度と前記第2速度との差分を計算する比較ステップと、前記差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定ステップと、を含む。 In order to achieve the above object, the speed estimation method according to still another aspect of the present invention is a speed estimation method for estimating the moving speed of a moving body, and the speed of the moving body is determined based on the first satellite signal. A speed measurement step that periodically generates the first velocity shown and periodically generates a second velocity indicating the velocity of the moving body based on the second satellite signal, and the movement based on the acceleration of the moving body. A speed estimation step for estimating the speed of the body, a comparison step for calculating the difference between the first speed and the second speed, and a speed estimated based on the acceleration when the difference exceeds a predetermined value. The speed determination step of determining the speed of the moving body is included.
 移動体の座標を精度よく測位することができる。 The coordinates of the moving body can be accurately positioned.
本願発明に係る移動体の例であるドローンの平面図である。It is a top view of the drone which is an example of the moving body which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right side view of the above drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 上記ドローンの飛行制御システムの全体概念図である。It is an overall conceptual diagram of the flight control system of the above-mentioned drone. 上記ドローンが有する機能ブロック図である。It is a functional block diagram which the said drone has. 本願発明に係る測位システムの機能ブロック図である。It is a functional block diagram of the positioning system which concerns on this invention. 上記測位システムが上記ドローンの座標を測位する流れを示すフローチャートである。It is a flowchart which shows the flow which the said positioning system positions the coordinates of the said drone. 本願発明の第2実施形態に係る測位システムの機能ブロック図である。It is a functional block diagram of the positioning system which concerns on 2nd Embodiment of this invention. 上記測位システムが上記ドローンの座標を測位する流れを示すフローチャートである。It is a flowchart which shows the flow which the said positioning system positions the coordinates of the said drone. 本願発明に係る速度推定システムの機能ブロック図である。It is a functional block diagram of the speed estimation system which concerns on this invention. 上記速度推定システムが上記ドローンの速度を推定する流れを示すフローチャートである。It is a flowchart which shows the flow which the speed estimation system estimates the speed of the drone. 本願発明の第2実施形態に係る速度推定システムの機能ブロック図である。It is a functional block diagram of the speed estimation system which concerns on 2nd Embodiment of this invention. 上記速度推定システムが上記ドローンの速度を推定する流れを示すフローチャートである。It is a flowchart which shows the flow which the speed estimation system estimates the speed of the drone. 本願発明に係るドローンが、測位衛星からの衛星信号を受信する様子を示す模式図であって、(a)第3実施形態に係るドローン、(b)第4実施形態に係るドローン、(c)第5実施形態に係るドローンの様子を示す図である。It is a schematic diagram which shows the state that the drone which concerns on this invention receives a satellite signal from a positioning satellite, (a) the drone which concerns on 3rd Embodiment, (b) the drone which concerns on 4th Embodiment, (c). It is a figure which shows the state of the drone which concerns on 5th Embodiment.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, to simplify the drawings, well-known structures and devices are outlined.
 まず、本発明にかかる移動体の例である、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone, which is an example of the moving body according to the present invention, will be described. In the specification of the present application, the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の筐体110からのび出たアームにより筐体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption. Each rotor 101 is arranged on all sides of the housing 110 by an arm protruding from the housing 110 of the drone 100. That is, the rotors 101-1a and 101-1b are left rearward in the direction of travel, the rotors 101-2a and 101-2b are forward left, the rotary blades 101-3a and 101-3b are rearward right, and the rotary blades 101- are forward right. 4a and 101-4b are arranged respectively. In addition, the drone 100 has the traveling direction facing downward on the paper in FIG.
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガード115-1,115-2,115-3,115-4を支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 A grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter. As shown in FIGS. 2 and 3, the radial members for supporting the propeller guards 115-1,115-2,115-3,115-4 are not horizontal but have a yagura-like structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotary blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one machine is provided for one rotary blade. Has been done. Motor 102 is an example of a propulsion device. The upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc. The axes are on the same straight line and rotate in opposite directions.
 ノズル103-1、103-2、103-3、103-4は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles. In the specification of the present application, the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105は、タンク104と各ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該ノズルを支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズルから吐出するための手段である。 The tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The hose 105 is a means for connecting the tank 104 and each nozzle 103-1, 103-2, 103-3, 103-4, is made of a hard material, and may also serve to support the nozzle. .. The pump 106 is a means for discharging the sprayed material from the nozzle.
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、基地局404およびサーバ405が移動体通信網400を介して互いに接続されている。これらの接続は、移動体通信網400に代えてWi-Fiによる無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。また、構成要素間において、移動体通信網400に代えて、又は加えて、直接接続する構成を有していてもよい。 FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention. This figure is a schematic view, and the scale is not accurate. In the figure, the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400. These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire. Further, the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
 ドローン100および基地局404は、GPS等のGNSSの測位衛星410と通信を行い、ドローン100および基地局404の座標を取得する。ドローン100および基地局404が通信する測位衛星410は複数あってもよい。 Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire the coordinates of drone 100 and base station 404. There may be a plurality of positioning satellites 410 with which the drone 100 and the base station 404 communicate.
 操作器401は、使用者の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末、例えばスマートホンがシステムに含まれていてもよい。小型携帯端末は、例えば基地局404と接続されていて、基地局404を介してサーバ405からの情報等を受信可能である。 The operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program. The actuator 401 includes an input unit and a display unit as a user interface device. The drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operation device (not shown) having a function dedicated to emergency stop may be used. The emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly. Further, apart from the operating device 401, the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone. The small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
 圃場403は、ドローン100による散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, intruders such as buildings and electric wires may exist in the field 403.
 基地局404は、RTK-GNSS基地局として機能し、ドローン100の正確な位置を提供できるようになっている。また、Wi-Fi通信の親機機能等を提供する装置であってもよい。Wi-Fi通信の親機機能とRTK-GNSSの基地局が独立した装置であってもよい。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、サーバ405と互いに通信可能であってもよい。基地局404およびサーバ405は、営農クラウドを構成する。 Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the base station of RTK-GNSS may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
 また、基地局404は、基準点との相対測位によって正確な座標を取得することができる。ここでの、基準点は、いわゆる電子基準点である。電子基準点は、GNSS連続観測点であり、約20km間隔で設置されている。複数の電子基準点の相対的な位置関係は、相対測位を行うことで、100万分の1の精度で得られる。この精度は、隣接する2つの電子基準点の相対的な位置関係を2cmの誤差で得られることを意味する。同様に、基地局404と電子基準点との相対的な位置関係も、100万分の1の精度で得られる。 In addition, the base station 404 can acquire accurate coordinates by positioning relative to the reference point. The reference point here is a so-called electronic reference point. The electronic reference points are GNSS continuous observation points and are installed at intervals of about 20 km. The relative positional relationship of a plurality of electronic reference points can be obtained with an accuracy of one millionth by performing relative positioning. This accuracy means that the relative positional relationship between two adjacent electronic reference points can be obtained with an error of 2 cm. Similarly, the relative positional relationship between the base station 404 and the electronic reference point can be obtained with an accuracy of one millionth.
 ここで、相対測位は、2点で、同時に4個以上の同じGNSS衛星を観測し、GNSS衛星からの電波信号が2点に到達する時間差を測定して、相対的な位置関係を求める方法である。この基地局404を用いて、RTK-GNSS測位を行うことで、ドローン100の位置を、例えば、数cmの誤差で提供できるようになっている。 Here, relative positioning is a method of observing four or more same GNSS satellites at the same time at two points, measuring the time difference when the radio signal from the GNSS satellite reaches two points, and obtaining the relative positional relationship. be. By performing RTK-GNSS positioning using this base station 404, the position of the drone 100 can be provided with an error of, for example, several cm.
 図6においては、基地局404の座標は、周辺に配置される基準点D1およびD2の少なくとも1個の座標に基づいて算出される。また、ドローン100の位置座標は、基準点D1およびD2の少なくとも1個の座標、および基地局404の座標に基づいて相対測位により算出される。さらに、基準点D1およびD2の少なくとも1個の座標、および基地局404の座標に基づいて、ドローン100の速度が算出される。基準点は、例えば約20km間隔で設置されている。なお、基準点は、バーチャル基準点(仮想基準点)であってもよい。 In FIG. 6, the coordinates of the base station 404 are calculated based on at least one coordinate of the reference points D1 and D2 arranged in the periphery. Further, the position coordinates of the drone 100 are calculated by relative positioning based on at least one coordinate of the reference points D1 and D2 and the coordinates of the base station 404. In addition, the velocity of the drone 100 is calculated based on at least one coordinate of reference points D1 and D2, and the coordinates of base station 404. Reference points are set at intervals of, for example, about 20 km. The reference point may be a virtual reference point (virtual reference point).
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。サーバ405は、ハードウェア装置により構成されていてもよい。サーバ405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like. The server 405 may be configured by a hardware device. The server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route. In addition, the topographical information of the stored field 403 may be provided to the drone 100. In addition, the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
 小型携帯端末は例えばスマートホン等である。小型携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末からの入力に基づいて、ドローン100の動作を変更してもよい。 The small mobile terminal is, for example, a smart phone. On the display of the small mobile terminal, information on the expected operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point 406, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
 通常、ドローン100は圃場403の外部にある発着地点から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点に帰還する。発着地点から目的の圃場403に至るまでの飛行経路(侵入経路)は、サーバ405等で事前に保存されていてもよいし、使用者が離陸開始前に入力してもよい。発着地点は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。 Normally, the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material. The flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff. The departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
 図7に本願発明に係る散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501 uses motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on the input information received from the controller 401 and the input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b to control the flight of the drone 100. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
 フライトコントローラー501は、通信機530を介して、さらに、移動体通信網400を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、移動体通信網400を介した通信機能に加えて、RTK-GNSS基地局の機能も備えている。RTK基地局404の信号とGPS等の測位衛星410からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. The base station 404 also has the function of an RTK-GNSS base station in addition to the communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
 また、より具体的には、フライトコントローラー501が有するGPSモジュールRTK504により、RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、ドローン100の絶対位置を測位可能である。GPSモジュールRTK504は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS測位衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュールRTK504-1、504-2は互いに別の測位衛星410a、410b(図16(a)参照)を使用するよう制御されていてもよい。 More specifically, the GPS module RTK504 of the flight controller 501 can position the absolute position of the drone 100 by combining the signal of the RTK base station and the signal from the GPS positioning satellite. Since the GPS module RTK504 is so important, it may be duplicated / multiplexed, and the redundant GPS modules RTK504-1 and 504-2 are used to cope with the failure of a specific GPS positioning satellite. It may be controlled to use different positioning satellites 410a and 410b (see FIG. 16 (a)).
 図16(a)に示すように、GPSモジュールRTK504-1、504-2は、それぞれアンテナ504a-1、504a-2を備えている。すなわち、図16(a)に示すように、ドローン100は、2個のアンテナ504a-1、504a-2を備え、それぞれのアンテナ504a-1、504a-2は、互いに異なる測位衛星410a、410bからの衛星信号を受信する。また、図16(b)に示す別の実施形態にかかるドローン100bのように、1個のアンテナ504a-1を備え、当該アンテナ504a-1により複数の測位衛星410a、410bからの衛星信号を受信してもよい。同図においては、アンテナ504a-1が受信する衛星の個数は2個であるが、3個以上あってもよい。さらに、図16(c)に示すさらに別の実施形態にかかるドローン100cのように、複数のアンテナ504a-1、504a-2を備え、それぞれのアンテナ504a-1、504a-2が同じ測位衛星410aからの衛星信号を受信してもよい。 As shown in Fig. 16 (a), the GPS modules RTK504-1 and 504-2 are equipped with antennas 504a-1 and 504a-2, respectively. That is, as shown in FIG. 16A, the drone 100 includes two antennas 504a-1 and 504a-2, and the respective antennas 504a-1 and 504a-2 are from different positioning satellites 410a and 410b. Receive satellite signals from. Further, as in the drone 100b according to another embodiment shown in FIG. 16 (b), one antenna 504a-1 is provided, and satellite signals from a plurality of positioning satellites 410a and 410b are received by the antenna 504a-1. You may. In the figure, the number of satellites received by the antenna 504a-1 is 2, but there may be 3 or more. Further, as in the drone 100c according to still another embodiment shown in FIG. 16 (c), a plurality of antennas 504a-1 and 504a-2 are provided, and the respective antennas 504a-1 and 504a-2 are the same positioning satellite 410a. You may receive satellite signals from.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。 The flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103. The liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。 The growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis. The growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other. The plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm). Further, the growth diagnosis camera 512a may be a camera that receives visible light.
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。なお、病理診断カメラ512bはマルチスペクトルカメラであってもよく、波長650nm乃至680nm付近の帯域の光量を検出するものとしてもよい。 The pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis. The pathological diagnosis camera 512b is, for example, a red light camera. The red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in plants, and detects, for example, the amount of light in the band around 650 nm. The pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near-infrared light. Further, the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects the amount of light having at least three wavelengths in the visible light band. The pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。 The growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
 障害物検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。 The obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathology diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathology diagnosis camera 512b? Another device. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. .. The obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is in an open state.
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報を移動体通信網400経由又はWi-Fi通信経由でドローン100に送信するようにしてもよい。 These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed. Further, a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone. For example, a wind power sensor may be provided in the base station 404 to transmit information on the wind power and the wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge. The current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。通信機530は、3G、4G、およびLTE等の移動体通信網400と接続されており、移動体通信網400を介して基地局、サーバで構成される営農クラウド、操作器と通信可能に接続される。通信機に替えて、または、それに加えて、Wi‐Fi、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the drone status. Display means such as a liquid crystal display may be used in place of or in addition to the LED. The buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done. In place of or in addition to the communication device, other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
●制御システムの概要
 図8に示すように、測位システム1000は、例えばドローン100、ユーザインターフェース装置200、および測位装置600を含むシステムであり、これらはネットワークNWを通じて互いに通信可能に接続されている。測位装置600は、ハードウェア構成であってもよいし、サーバ405上に構成されていてもよい。ドローン100、ユーザインターフェース装置200、および測位装置600は、無線で互いに接続されていてもよいし、一部又は全部が有線により接続されていてもよい。
● Outline of control system As shown in FIG. 8, the positioning system 1000 is a system including, for example, a drone 100, a user interface device 200, and a positioning device 600, and these are connected to each other so as to be able to communicate with each other through a network NW. The positioning device 600 may have a hardware configuration or may be configured on the server 405. The drone 100, the user interface device 200, and the positioning device 600 may be connected to each other wirelessly, or may be partially or wholly connected by wire.
 なお、図8に示した構成は例示であり、ある構成要素が別の構成要素を包含していてもよいし、各構成要素が有する機能部は、別の構成要素が有していてもよい。例えば、測位装置600の機能の一部および全部がドローン100に搭載されていてもよい。 The configuration shown in FIG. 8 is an example, and one component may include another component, and the functional unit of each component may be included in another component. .. For example, some or all of the functions of the positioning device 600 may be mounted on the drone 100.
 ユーザインターフェース装置200は、表示部を備えていればよく、操作器401の機能により実現されてもよい。また、ユーザインターフェース装置200は、パーソナルコンピュータであってもよく、パーソナルコンピュータにインストールされたWebブラウザを介して、Web上のUIに情報を入力し、表示させてもよい。 The user interface device 200 may be provided with a display unit, and may be realized by the function of the actuator 401. Further, the user interface device 200 may be a personal computer, or information may be input and displayed in the UI on the Web via a Web browser installed in the personal computer.
●測位装置の機能部(1)
 図8に示すように、測位装置600は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を備え、これによりソフトウェア資源として少なくとも、基準点決定部610、座標取得部620、比較部630、座標確定部640、座標記憶部650および座標推定部660を有する。
● Functional part of positioning device (1)
As shown in FIG. 8, the positioning device 600 includes a computing device such as a CPU (Central Processing Unit) for executing information processing, and a storage device such as RAM (Random Access Memory) and ROM (Read Only Memory). As a result, it has at least a reference point determination unit 610, a coordinate acquisition unit 620, a comparison unit 630, a coordinate determination unit 640, a coordinate storage unit 650, and a coordinate estimation unit 660 as software resources.
 基準点決定部610は、ドローン100の座標値を取得するために用いる基準点を決定する機能部である。 The reference point determination unit 610 is a functional unit that determines the reference point used to acquire the coordinate values of the drone 100.
 基準点決定部610は、互いに異なる少なくとも2個の基準点を選択する。基準点決定部610は、単独測位で求めたドローン100の座標から近い基準点を選択してもよい。基準点決定部610は、例えば単独測位で求められるドローン100の座標から最も近い基準点と、次いで近い基準点を選択してよい。なお、単独測位は、GNSS衛星から送信される衛星の情報を1台のアンテナで受信することにより、衛星から電波が発信されてから受信機に到達するまでに要した時間に基づいて距離を算出する測位手法である。 The reference point determination unit 610 selects at least two reference points that are different from each other. The reference point determination unit 610 may select a reference point close to the coordinates of the drone 100 obtained by independent positioning. The reference point determination unit 610 may select, for example, the closest reference point and the next closest reference point from the coordinates of the drone 100 obtained by independent positioning. In independent positioning, the distance is calculated based on the time required from the transmission of radio waves from the satellite to the arrival at the receiver by receiving the satellite information transmitted from the GNSS satellite with a single antenna. It is a positioning method to be performed.
 基準点決定部610は、単独測位によらず、任意の基準点を座標値取得の基準点として決定してもよい。基準点決定部610は、操作器401などのユーザインターフェース装置を介してドローン100のおおよその位置を取得し、これに基づいて基準点を決定してもよい。また、測位システムの管理者が有する圃場の位置、例えば住所表示等があらかじめシステムに対応付けられていて、当該圃場の位置を参照して比較的近い基準点を決定してもよい。 The reference point determination unit 610 may determine an arbitrary reference point as a reference point for acquiring coordinate values, regardless of independent positioning. The reference point determination unit 610 may acquire the approximate position of the drone 100 via a user interface device such as the actuator 401, and determine the reference point based on the approximate position. Further, the position of the field owned by the manager of the positioning system, for example, the address display or the like may be associated with the system in advance, and a relatively close reference point may be determined with reference to the position of the field.
 座標取得部620は、基準点決定部610により決定される基準点を基準としてドローン100の位置を示す座標値を取得する機能部である。座標取得部620は、決定される基準点の個数に対応する個数の座標値を算出する。本実施形態では、座標取得部620は、第1基準点D1および第2基準点D2(図6参照)を基準として、それぞれ第1座標値および第2座標値を取得する。 The coordinate acquisition unit 620 is a functional unit that acquires coordinate values indicating the position of the drone 100 with reference to the reference point determined by the reference point determination unit 610. The coordinate acquisition unit 620 calculates the number of coordinate values corresponding to the number of determined reference points. In the present embodiment, the coordinate acquisition unit 620 acquires the first coordinate value and the second coordinate value, respectively, with reference to the first reference point D1 and the second reference point D2 (see FIG. 6).
 座標取得部620は、定期的に座標値を取得する。移動するドローン100の各時点における座標値を正確に把握するためである。 The coordinate acquisition unit 620 periodically acquires coordinate values. This is to accurately grasp the coordinate values at each time point of the moving drone 100.
 座標取得部620により取得される座標値は、座標記憶部650に記憶される。座標記憶部650は、少なくとも座標取得部620により前回以前に算出された第1座標値、すなわち第1座標値の履歴値を記憶している。第1座標値の履歴値は、前回取得された第1座標値の前回値であってもよい。座標記憶部650は、次の第1座標値が取得されたとき、記憶されている第1座標値に上書きしてもよいし、複数の第1座標値を計測された順序とともに記憶してもよい。また、座標記憶部650は、第1座標値に加えて第2座標値を記憶してもよい。 The coordinate values acquired by the coordinate acquisition unit 620 are stored in the coordinate storage unit 650. The coordinate storage unit 650 stores at least the first coordinate value calculated by the coordinate acquisition unit 620 before the previous time, that is, the historical value of the first coordinate value. The historical value of the first coordinate value may be the previous value of the first coordinate value acquired last time. When the next first coordinate value is acquired, the coordinate storage unit 650 may overwrite the stored first coordinate value, or may store a plurality of first coordinate values together with the measured order. good. Further, the coordinate storage unit 650 may store the second coordinate value in addition to the first coordinate value.
 比較部630は、座標取得部620により取得した第1基準点を基準として得られる第1座標値と、座標記憶部650に記憶されている、第1座標値の履歴値と、を比較する機能部である。具体的には、比較部630は、第1座標値と、第1座標値の履歴値との差分を算出する。 The comparison unit 630 has a function of comparing the first coordinate value obtained with reference to the first reference point acquired by the coordinate acquisition unit 620 and the historical value of the first coordinate value stored in the coordinate storage unit 650. It is a department. Specifically, the comparison unit 630 calculates the difference between the first coordinate value and the historical value of the first coordinate value.
 座標推定部660は、ドローン100の加速度に基づいてドローン100の座標を推定する機能部である。座標推定部660は、ドローン100に搭載されている加速度センサの計測値を2回積分することにより、ドローン100の座標を推定する。本実施形態では、6軸ジャイロセンサ505が加速度センサの機能を有する。例えば、座標推定部660は、第1座標値の前回値の取得時点から現在までに計測される加速度の2回積分値を、第1座標値の前回値に加算することで、現在の座標値を推定してもよい。なお、ドローン100の加速度は、ドローン100に搭載されるセンサによる計測に代えて、ドローン100の外部からドローン100を撮影すること等により計測してもよい。 The coordinate estimation unit 660 is a functional unit that estimates the coordinates of the drone 100 based on the acceleration of the drone 100. The coordinate estimation unit 660 estimates the coordinates of the drone 100 by integrating the measured values of the acceleration sensor mounted on the drone 100 twice. In this embodiment, the 6-axis gyro sensor 505 has the function of an acceleration sensor. For example, the coordinate estimation unit 660 adds the two integral values of the accelerations measured from the acquisition time of the previous value of the first coordinate value to the present to the previous value of the first coordinate value, thereby adding the current coordinate value. May be estimated. The acceleration of the drone 100 may be measured by photographing the drone 100 from the outside of the drone 100 instead of measuring by the sensor mounted on the drone 100.
 座標確定部640は、比較部630による比較の結果に基づいて、ドローン100の測位座標を確定する機能部である。座標確定部640は、当該差分が所定値以下であるとき、第1座標値をドローン100の測位座標とする。ドローン100の速度範囲はあらかじめ決まっているため、第1座標値の前回値からの変化量は、ある程度想定できる。当該変化量がこの想定範囲内にある場合は、反射によるマルチパスの発生、計測誤差および外乱の影響が少ないことが想定され、第1座標値の信頼性が第2座標値により担保される。 The coordinate determination unit 640 is a functional unit that determines the positioning coordinates of the drone 100 based on the result of comparison by the comparison unit 630. When the difference is equal to or less than a predetermined value, the coordinate determination unit 640 sets the first coordinate value as the positioning coordinate of the drone 100. Since the speed range of the drone 100 is predetermined, the amount of change in the first coordinate value from the previous value can be estimated to some extent. When the amount of change is within this assumed range, it is assumed that the occurrence of multipath due to reflection, measurement error, and the influence of disturbance are small, and the reliability of the first coordinate value is guaranteed by the second coordinate value.
 座標確定部640は、比較部630により算出される第1座標値と第1座標値の履歴値との差分が所定値より大きい場合には、第2座標値をドローン100の測位座標とする。当該所定値は、ドローン100の移動速度に基づいて設定されていてもよい。第1座標値の変化が、ドローン100の移動速度を鑑みた想定範囲を超える場合、取得される第1座標値は、反射によるマルチパスの発生、計測誤差又は外乱により正しい位置を示していない蓋然性が高いためである。また、当該所定値は、ドローン100が発揮し得る移動速度に基づいて一律に設定されていてもよいし、第1座標値又は第2座標値の取得時における移動速度に基づいて算出されてもよい。 When the difference between the first coordinate value calculated by the comparison unit 630 and the historical value of the first coordinate value is larger than the predetermined value, the coordinate determination unit 640 sets the second coordinate value as the positioning coordinate of the drone 100. The predetermined value may be set based on the moving speed of the drone 100. If the change in the first coordinate value exceeds the assumed range considering the moving speed of the drone 100, it is probable that the acquired first coordinate value does not indicate the correct position due to the occurrence of multipath due to reflection, measurement error, or disturbance. Is high. Further, the predetermined value may be uniformly set based on the moving speed that the drone 100 can exert, or may be calculated based on the moving speed at the time of acquiring the first coordinate value or the second coordinate value. good.
 また、比較部630により第2座標値と第1座標値の履歴値との差分が所定値以下であるか否かを判定し、座標確定部640は、当該差分が所定値以下であるときに、第2座標値をドローン100の測位座標としてもよい。この構成によれば、第2座標値の信頼性をより確実なものとすることができる。 Further, the comparison unit 630 determines whether or not the difference between the second coordinate value and the historical value of the first coordinate value is equal to or less than the predetermined value, and the coordinate determination unit 640 determines when the difference is equal to or less than the predetermined value. , The second coordinate value may be the positioning coordinate of the drone 100. According to this configuration, the reliability of the second coordinate value can be made more reliable.
 この構成によれば、複数の基準点を参照することで、計測誤差や外乱の影響を排除してドローンの座標を正確に測位することができる。 According to this configuration, by referring to a plurality of reference points, it is possible to accurately position the coordinates of the drone by eliminating the influence of measurement error and disturbance.
 さらに、座標確定部640は、第1座標値と第1座標値の履歴値との差分が所定値を超えるとき、座標推定部660により加速度に基づいて推定される座標をドローン100の測位座標として確定してもよい。ここで、加速度に基づいて座標を生成する場合、積分演算により加速度の検出誤差が蓄積されるため、加速度に基づいて生成される座標を長時間に渡って採用すると座標の誤差の原因になる。そこで、測位装置600は、第1座標値と第1座標値の履歴値との差分が所定値を超え、加速度に基づいて生成される座標を採用している時間を計測し、当該時間が所定期間以上続いた場合には、加速度に基づいて生成した座標を制御に利用することを停止して、ドローン100に退避動作を行わせてもよい。退避動作は、例えばホバリングであるが、その場に着陸する通常着陸動作、および直ちに回転翼を停止させ、ドローン100を落下させる緊急着陸動作であってもよい。また、当該時間が所定期間以上続いた場合には、別の方法により生成される座標を制御に利用してもよい。別の方法とは、例えば別の基準点を基準として求める方法であるが、この方法には限られない。このような構成によれば、ドローン100の位置制御および速度制御の精度が著しく劣化することを回避できる。 Further, when the difference between the first coordinate value and the historical value of the first coordinate value exceeds a predetermined value, the coordinate determination unit 640 uses the coordinates estimated by the coordinate estimation unit 660 based on the acceleration as the positioning coordinates of the drone 100. It may be confirmed. Here, when the coordinates are generated based on the acceleration, the detection error of the acceleration is accumulated by the integral calculation. Therefore, if the coordinates generated based on the acceleration are adopted for a long time, the coordinate error becomes a cause. Therefore, the positioning device 600 measures the time when the difference between the first coordinate value and the historical value of the first coordinate value exceeds a predetermined value and adopts the coordinates generated based on the acceleration, and the time is predetermined. If it continues for a period of time or longer, the use of the coordinates generated based on the acceleration for control may be stopped and the drone 100 may perform the retracting operation. The evacuation operation is, for example, hovering, but may be a normal landing operation for landing on the spot, or an emergency landing operation for immediately stopping the rotor blades and dropping the drone 100. Further, when the time continues for a predetermined period or more, the coordinates generated by another method may be used for control. The other method is, for example, a method of obtaining by using another reference point as a reference, but the method is not limited to this method. With such a configuration, it is possible to prevent the accuracy of the position control and the speed control of the drone 100 from being significantly deteriorated.
 また、座標取得部620は、座標値に代えて、又は加えて、測位衛星410a又は410b(図16(a)参照)からの衛星信号に基づいてドローン100の速度を取得してもよい。例えば、座標取得部620は、所定時間内における座標値の推移に基づいて、当該所定時間内の速度を算出する。このとき、座標記憶部650は、第1測位衛星410aからの衛星信号に基づいて求めた第1速度の履歴値を記憶している。比較部630は、第1速度と、第1速度の履歴値との差分を算出する。座標確定部640は、当該差分が所定値以下である場合に、第1速度をドローン100の速度として確定する。座標確定部640は、当該差分が所定値を超える場合に、第2測位衛星410bからの衛星信号に基づいて求めた第2速度をドローンの速度として確定する。この構成によれば、ドローンの速度を正確に測定することができる。さらに、座標確定部640は、当該差分が所定値を超える場合に、加速度に基づいて速度を推定し、この推定値をドローン100の速度として確定してもよい。また、加速度に基づいて推定した速度を採用している時間を計測し、当該時間が所定期間以上続いた場合には、ドローン100に退避動作を行わせてもよい。また、別の方法により生成される速度を制御に利用してもよい。加速度に基づいて速度を推定する場合にも、積分演算により加速度の検出誤差が蓄積されるため、長時間に渡って採用することは速度の誤差の原因となるためである。 Further, the coordinate acquisition unit 620 may acquire the speed of the drone 100 based on the satellite signal from the positioning satellite 410a or 410b (see FIG. 16A) in place of or in addition to the coordinate value. For example, the coordinate acquisition unit 620 calculates the speed within the predetermined time based on the transition of the coordinate values within the predetermined time. At this time, the coordinate storage unit 650 stores the historical value of the first velocity obtained based on the satellite signal from the first positioning satellite 410a. The comparison unit 630 calculates the difference between the first speed and the historical value of the first speed. The coordinate determination unit 640 determines the first speed as the speed of the drone 100 when the difference is equal to or less than a predetermined value. When the difference exceeds a predetermined value, the coordinate determination unit 640 determines the second speed obtained based on the satellite signal from the second positioning satellite 410b as the speed of the drone. With this configuration, the speed of the drone can be measured accurately. Further, the coordinate determination unit 640 may estimate the speed based on the acceleration when the difference exceeds a predetermined value, and determine this estimated value as the speed of the drone 100. Further, the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation. Moreover, the speed generated by another method may be used for control. Even when the speed is estimated based on the acceleration, the detection error of the acceleration is accumulated by the integral calculation, so that the adoption over a long period of time causes the error of the speed.
●処理フロー(1)
 図9を用いて、ドローン100の座標を測位する処理フローを説明する。まず、基準点決定部610により第1基準点D1および第2基準点D2(図6参照)を決定する(S1)。次いで、座標取得部620により、第1基準点D1を基準としてドローン100の第1座標値を取得するとともに、第2基準点D2を基準としてドローン100の第2座標値を取得する(S2)。
● Processing flow (1)
A processing flow for positioning the coordinates of the drone 100 will be described with reference to FIG. First, the reference point determination unit 610 determines the first reference point D1 and the second reference point D2 (see FIG. 6) (S1). Next, the coordinate acquisition unit 620 acquires the first coordinate value of the drone 100 with reference to the first reference point D1 and acquires the second coordinate value of the drone 100 with reference to the second reference point D2 (S2).
 次いで、比較部630により、第1座標値と第1座標値の履歴値の差分を算出する(S3)。差分が所定値以下か否かを判別し(S4)、所定値以下である場合は、第1座標値をドローン100の座標に確定する(S5)。ステップS4において差分が所定値を超えるときは、第2座標値を測位座標に確定する(S6)。又は、ステップS6において、ドローン100の加速度に基づいてドローン100の座標を推定し、当該推定値を測位座標に確定してもよい。この構成において、加速度に基づいて推定した座標を測位座標として制御に利用している時間が所定時間以上続いているか判定し、該当する場合は、ドローン100に退避動作を行わせてもよい。また、別の方法で推定した座標を測位座標として利用するものとしてもよい。 Next, the comparison unit 630 calculates the difference between the first coordinate value and the historical value of the first coordinate value (S3). It is determined whether or not the difference is less than or equal to the predetermined value (S4), and if it is less than or equal to the predetermined value, the first coordinate value is fixed to the coordinates of the drone 100 (S5). When the difference exceeds a predetermined value in step S4, the second coordinate value is determined as the positioning coordinate (S6). Alternatively, in step S6, the coordinates of the drone 100 may be estimated based on the acceleration of the drone 100, and the estimated value may be determined as the positioning coordinates. In this configuration, it may be determined whether or not the time in which the coordinates estimated based on the acceleration are used for control as the positioning coordinates continues for a predetermined time or longer, and if applicable, the drone 100 may perform the evacuation operation. Further, the coordinates estimated by another method may be used as the positioning coordinates.
●測位装置の機能部(2)
 図10を用いて、本願発明に係る測位システム1001の第2実施形態に関し、第1実施形態とは異なる部分を中心に説明する。第2実施形態においては、第1座標値と第2座標値との差分が所定以上であるとき、ドローンの加速度に基づいて座標を推定する。
● Functional part of positioning device (2)
The second embodiment of the positioning system 1001 according to the present invention will be described with reference to FIG. 10, focusing on a portion different from the first embodiment. In the second embodiment, when the difference between the first coordinate value and the second coordinate value is equal to or greater than a predetermined value, the coordinates are estimated based on the acceleration of the drone.
 第2実施形態における測位装置601は、基準点決定部610、座標取得部620、比較部631、座標確定部641および座標推定部660を備える。なお、第1実施形態と同様の構成については、お同じ符号を付した。 The positioning device 601 in the second embodiment includes a reference point determination unit 610, a coordinate acquisition unit 620, a comparison unit 631, a coordinate determination unit 641, and a coordinate estimation unit 660. The same reference numerals are given to the same configurations as those in the first embodiment.
 比較部631は、座標取得部620により取得した第1基準点を基準として得られる第1座標値と、第2基準点を基準として得られる第2座標値と、を比較する。具体的には、比較部630は、第1座標値と第2座標値との差分を算出する。 The comparison unit 631 compares the first coordinate value obtained with reference to the first reference point acquired by the coordinate acquisition unit 620 with the second coordinate value obtained with reference to the second reference point. Specifically, the comparison unit 630 calculates the difference between the first coordinate value and the second coordinate value.
 座標確定部641は、当該差分が所定値以下である場合に、第1座標値をドローン100の測位座標とする。座標確定部640は、当該差分が所定値を超える場合に、座標推定部660により加速度から推定される推定座標値を、ドローン100の測位座標とする。 The coordinate determination unit 641 uses the first coordinate value as the positioning coordinate of the drone 100 when the difference is equal to or less than a predetermined value. When the difference exceeds a predetermined value, the coordinate determination unit 640 uses the estimated coordinate value estimated from the acceleration by the coordinate estimation unit 660 as the positioning coordinate of the drone 100.
 なお、当該差分が所定値を超える場合に、比較部631により推定座標値と第1座標値又は第2座標値との差分を算出し、座標確定部641は、当該差分が所定値以下である場合に、推定座標値を測位座標としてもよい。推定座標値と第1座標値又は第2座標値との差が小さいことで、推定座標値の信頼性がより担保される。また、座標確定部641は、推定座標値と第1座標値又は第2座標値との差分が所定値以下である場合に、当該第1座標値又は第2座標値を測位座標に採用してもよい。 When the difference exceeds a predetermined value, the comparison unit 631 calculates the difference between the estimated coordinate value and the first coordinate value or the second coordinate value, and the coordinate determination unit 641 calculates the difference to be equal to or less than the predetermined value. In some cases, the estimated coordinate value may be the positioning coordinate. Since the difference between the estimated coordinate value and the first coordinate value or the second coordinate value is small, the reliability of the estimated coordinate value is further ensured. Further, when the difference between the estimated coordinate value and the first coordinate value or the second coordinate value is equal to or less than a predetermined value, the coordinate determination unit 641 adopts the first coordinate value or the second coordinate value as the positioning coordinate. May be good.
 また、座標取得部620は、座標値に代えて、又は加えて、基準点に基づいてドローン100の速度を取得してもよい。このとき、比較部630は、第1測位衛星410aから受信される第1衛星信号に基づいて求めた第1速度と、第2測位衛星410bから受信される第2衛星信号に基づいて求めた第2速度との差分を算出する。座標確定部640は、当該差分が所定値以下であるとき、第1速度をドローン100の速度として確定する。座標確定部640は、当該差分が所定値を超える場合に、座標推定部660により算出される速度を、ドローンの速度として確定する。例えば、座標推定部660は、ドローン100の加速度を1回積分することで、ドローン100の速度を算出することができる。この構成によれば、相対測位による速度の算出に誤差が生じた場合にも、ドローンの速度を正確に測定することができる。なお、加速度に基づいて推定した速度を採用している時間を計測し、当該時間が所定期間以上続いた場合には、ドローン100に退避動作を行わせてもよい。また、別の方法により生成される速度を制御に利用してもよい。 Further, the coordinate acquisition unit 620 may acquire the speed of the drone 100 based on the reference point instead of or in addition to the coordinate value. At this time, the comparison unit 630 obtains the first velocity based on the first satellite signal received from the first positioning satellite 410a and the second velocity obtained based on the second satellite signal received from the second positioning satellite 410b. Calculate the difference from the two speeds. When the difference is equal to or less than a predetermined value, the coordinate determination unit 640 determines the first speed as the speed of the drone 100. The coordinate determination unit 640 determines the speed calculated by the coordinate estimation unit 660 as the drone speed when the difference exceeds a predetermined value. For example, the coordinate estimation unit 660 can calculate the speed of the drone 100 by integrating the acceleration of the drone 100 once. According to this configuration, the speed of the drone can be accurately measured even when an error occurs in the calculation of the speed due to the relative positioning. The time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation. Moreover, the speed generated by another method may be used for control.
 このとき、図16(a)に示すように、ドローン100は、複数のアンテナ504a-1、504a-2を備え、アンテナ504a-1、504a-2は、第1測位衛星410aからの第1衛星信号および第2測位衛星410bからの第2衛星信号をそれぞれ受信してもよい。また、図16(b)に示すように、別の実施形態にドローン100bは、1個のアンテナ504a-1により複数の測位衛星410a、410bからの衛星信号を受信してもよい。さらに、図16(c)に示すように、さらに別の実施形態にかかるドローン100cは、複数のアンテナ504a-1、504a-2を備え、アンテナ504a-1、504a-2は、1個の第1測位衛星410aから互いに異なる第1衛星信号および第2衛星信号をそれぞれ受信してもよい。 At this time, as shown in FIG. 16A, the drone 100 includes a plurality of antennas 504a-1 and 504a-2, and the antennas 504a-1 and 504a-2 are the first satellites from the first positioning satellite 410a. The signal and the second satellite signal from the second positioning satellite 410b may be received respectively. Further, as shown in FIG. 16B, in another embodiment, the drone 100b may receive satellite signals from a plurality of positioning satellites 410a and 410b by one antenna 504a-1. Further, as shown in FIG. 16 (c), the drone 100c according to still another embodiment includes a plurality of antennas 504a-1 and 504a-2, and the antennas 504a-1 and 504a-2 are one first. 1 Positioning satellite 410a may receive different first satellite signals and second satellite signals, respectively.
●処理フロー(2)
 図11に示すように、基準点決定部610により第1基準点D1および第2基準点D2(図6参照)を決定する(S11)。次いで、座標取得部620により、第1基準点D1を基準としてドローン100の第1座標値を取得するとともに、第2基準点D2を基準としてドローン100の第2座標値を取得する(S12)。
● Processing flow (2)
As shown in FIG. 11, the reference point determination unit 610 determines the first reference point D1 and the second reference point D2 (see FIG. 6) (S11). Next, the coordinate acquisition unit 620 acquires the first coordinate value of the drone 100 with reference to the first reference point D1 and acquires the second coordinate value of the drone 100 with reference to the second reference point D2 (S12).
 次いで、比較部630により、第1座標値と第2座標値の差分を算出する(S13)。差分が所定値以下か否かを判別し(S14)、所定値以下である場合は、第1座標値をドローン100の座標に確定する(S15)。ステップS14において差分が所定値を超える場合に、ドローン100の加速度に基づいてドローン100の座標を推定し、当該推定値を測位座標に確定する(S16)。この構成において、加速度に基づいて推定した座標を測位座標として制御に利用している時間が所定時間以上続いているか判定し、該当する場合は、ドローン100に退避動作を行わせてもよい。また、別の方法で推定した座標を測位座標として利用するものとしてもよい。
●速度推定装置の機能部(1)
 図12を用いて、本願発明に係る速度推定システム1002の第1実施形態に関して説明する。速度推定システム1002は、ドローン100の座標に代えて、ドローン100の移動速度を推定するシステムである。なお、測位システム1000と同様の構成については同じ符号を付した。
Next, the comparison unit 630 calculates the difference between the first coordinate value and the second coordinate value (S13). It is determined whether or not the difference is less than or equal to the predetermined value (S14), and if it is less than or equal to the predetermined value, the first coordinate value is fixed to the coordinates of the drone 100 (S15). When the difference exceeds a predetermined value in step S14, the coordinates of the drone 100 are estimated based on the acceleration of the drone 100, and the estimated value is determined as the positioning coordinates (S16). In this configuration, it may be determined whether or not the time in which the coordinates estimated based on the acceleration are used for control as the positioning coordinates continues for a predetermined time or longer, and if applicable, the drone 100 may perform the evacuation operation. Further, the coordinates estimated by another method may be used as the positioning coordinates.
● Functional part of speed estimation device (1)
A first embodiment of the speed estimation system 1002 according to the present invention will be described with reference to FIG. The speed estimation system 1002 is a system that estimates the moving speed of the drone 100 instead of the coordinates of the drone 100. The same reference numerals are given to the same configurations as those of the positioning system 1000.
 速度推定システム1002は、速度推定装置602を有する。速度推定装置602は、基準点決定部610、速度計測部622、比較部631、速度確定部642、速度記憶部652および速度推定部662を備える。なお、第1実施形態と同様の構成については、同じ符号を付した。 The speed estimation system 1002 has a speed estimation device 602. The speed estimation device 602 includes a reference point determination unit 610, a speed measurement unit 622, a comparison unit 631, a speed determination unit 642, a speed storage unit 652, and a speed estimation unit 662. The same reference numerals are given to the same configurations as those in the first embodiment.
 速度計測部622は、測位衛星410からの衛星信号に基づいてドローン100の速度を計測する機能部である。例えば、速度計測部622は、所定時間内における座標値の推移に基づいて、当該所定時間内の速度を算出する。このとき、速度記憶部652は、第1基準点D1を基準として求めた第1速度の履歴値を記憶している。比較部632は、第1速度と、第1速度の履歴値との差分を算出する。 The speed measurement unit 622 is a functional unit that measures the speed of the drone 100 based on the satellite signal from the positioning satellite 410. For example, the speed measuring unit 622 calculates the speed within the predetermined time based on the transition of the coordinate values within the predetermined time. At this time, the speed storage unit 652 stores the historical value of the first speed obtained with reference to the first reference point D1. The comparison unit 632 calculates the difference between the first speed and the historical value of the first speed.
 図16(a)に示すように、速度計測部622は、複数の測位衛星410a、410bから送信される第1衛星信号および第2衛星信号を、アンテナ504a-1、504a-2によりそれぞれ受信し、第1衛星信号に基づいて第1速度を生成し、第2衛星信号に基づいて第2速度を生成する。なお、図16(b)に示すように、速度計測部622は、複数の測位衛星410a、410bから送信される第1衛星信号および第2衛星信号を1個のアンテナ504a-1により受信してもよい。さらに、図16(c)に示すように、さらに別の実施形態にかかるドローン100cは、複数のアンテナ504a-1、504a-2を備え、アンテナ504a-1、504a-2は、1個の第1測位衛星410aから互いに異なる第1衛星信号および第2衛星信号をそれぞれ受信してもよい。 As shown in FIG. 16A, the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by the antennas 504a-1 and 504a-2, respectively. , Generates the first velocity based on the first satellite signal and generates the second velocity based on the second satellite signal. As shown in FIG. 16B, the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by one antenna 504a-1. May be good. Further, as shown in FIG. 16 (c), the drone 100c according to still another embodiment includes a plurality of antennas 504a-1 and 504a-2, and the antennas 504a-1 and 504a-2 are one first. 1 Positioning satellite 410a may receive different first satellite signals and second satellite signals, respectively.
 速度計測部622は、定期的に速度を取得する。速度計測部622により取得される速度は、速度記憶部652に記憶される。速度記憶部652は、少なくとも速度計測部622により前回以前に算出された第1速度、すなわち第1速度の履歴値を記憶している。第1速度の履歴値は、前回取得された第1速度の前回値であってもよい。速度記憶部652は、次の第1速度が取得されたとき、記憶されている第1速度に上書きしてもよいし、複数の第1速度を計測された順序とともに記憶してもよい。また、速度記憶部652は、第1速度に加えて第2速度を記憶してもよい。 The speed measurement unit 622 acquires the speed on a regular basis. The speed acquired by the speed measuring unit 622 is stored in the speed storage unit 652. The speed storage unit 652 stores at least the first speed calculated by the speed measurement unit 622 before the previous time, that is, the historical value of the first speed. The historical value of the first speed may be the previous value of the first speed acquired last time. When the next first speed is acquired, the speed storage unit 652 may overwrite the stored first speed, or may store a plurality of first speeds together with the measured order. Further, the speed storage unit 652 may store the second speed in addition to the first speed.
 比較部632は、速度計測部622により取得した第1衛星信号を基準として得られる第1速度と、速度記憶部652に記憶されている、第1速度の履歴値と、を比較する機能部である。具体的には、比較部632は、第1速度と、第1速度の履歴値との差分を算出する。 The comparison unit 632 is a functional unit that compares the first speed obtained with reference to the first satellite signal acquired by the speed measurement unit 622 and the historical value of the first speed stored in the speed storage unit 652. be. Specifically, the comparison unit 632 calculates the difference between the first speed and the historical value of the first speed.
 速度推定部662は、ドローン100の加速度に基づいてドローン100の速度を推定する機能部である。速度推定部662は、ドローン100に搭載されている加速度センサの計測値を積分することにより、ドローン100の速度を推定する。本実施形態では、6軸ジャイロセンサ505が加速度センサの機能を有する。例えば、速度推定部662は、第1速度の履歴値の取得時点から現在までに計測される加速度の積分値を、第1速度の履歴値に加算することで、現在速度を推定してもよい。なお、ドローン100の速度は、ドローン100に搭載されるセンサによる計測に代えて、ドローン100の外部からドローン100を撮影すること等により計測してもよい。 The speed estimation unit 662 is a functional unit that estimates the speed of the drone 100 based on the acceleration of the drone 100. The speed estimation unit 662 estimates the speed of the drone 100 by integrating the measured values of the acceleration sensor mounted on the drone 100. In this embodiment, the 6-axis gyro sensor 505 has the function of an acceleration sensor. For example, the speed estimation unit 662 may estimate the current speed by adding the integrated value of the accelerations measured from the acquisition time of the historical value of the first speed to the present to the historical value of the first speed. .. The speed of the drone 100 may be measured by photographing the drone 100 from the outside of the drone 100 instead of measuring by the sensor mounted on the drone 100.
 速度確定部642は、比較部630により算出される第1座標値と第1座標値の履歴値との差分が所定値より大きい場合には、第2速度をドローン100の測位速度とする。この構成によれば、ドローンの速度を正確に測定することができる。 When the difference between the first coordinate value and the historical value of the first coordinate value calculated by the comparison unit 630 is larger than the predetermined value, the speed determination unit 642 sets the second speed as the positioning speed of the drone 100. With this configuration, the speed of the drone can be measured accurately.
 また、速度確定部642は、第1速度と第1速度の履歴値との差分が所定値を超える場合に、速度推定部662により加速度に基づいて推定される速度をドローン100の速度として確定してもよい。速度確定部642は、当該差分が所定値を超える場合に、加速度に基づいて速度を推定し、この推定値をドローン100の速度として確定してもよい。また、加速度に基づいて推定した速度を採用している時間を計測し、当該時間が所定期間以上続いた場合には、ドローン100に退避動作を行わせてもよい。また、別の方法により生成される速度を制御に利用してもよい。 Further, the speed determination unit 642 determines the speed estimated by the speed estimation unit 662 based on the acceleration as the speed of the drone 100 when the difference between the first speed and the historical value of the first speed exceeds a predetermined value. You may. When the difference exceeds a predetermined value, the speed determination unit 642 estimates the speed based on the acceleration, and may determine this estimated value as the speed of the drone 100. Further, the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation. Moreover, the speed generated by another method may be used for control.
 ●処理フロー(3)
 図13を用いて、ドローン100の速度を計測する処理フローを説明する。まず、速度計測部622により、第1測位衛星410aから受信される第1衛星信号に基づいてドローン100の第1速度を取得するとともに、第2測位衛星410bから受信される第2衛星信号に基づいてドローン100の第2速度を取得する(S21)。
● Processing flow (3)
The processing flow for measuring the speed of the drone 100 will be described with reference to FIG. First, the speed measurement unit 622 acquires the first speed of the drone 100 based on the first satellite signal received from the first positioning satellite 410a, and based on the second satellite signal received from the second positioning satellite 410b. And get the second speed of Drone 100 (S21).
 次いで、比較部632により、第1速度と第1速度の履歴値の差分を算出する(S22)。差分が所定値以下か否かを判別し(S23)、所定値以下である場合は、第1速度をドローン100の速度に確定する(S24)。ステップS23において差分が所定値を超える場合に、第2速度を速度として確定する(S25)。また、ステップS25において、ドローン100の加速度に基づいてドローン100の速度を推定し、当該推定値を測位座標に確定してもよい。この構成において、加速度に基づいて推定した速度を制御に利用している時間が所定時間以上続いているか判定し、該当する場合は、ドローン100に退避動作を行わせてもよい。また、別の方法で推定した速度を利用するものとしてもよい。 Next, the comparison unit 632 calculates the difference between the historical values of the first speed and the first speed (S22). It is determined whether or not the difference is less than or equal to the predetermined value (S23), and if it is less than or equal to the predetermined value, the first speed is determined to be the speed of the drone 100 (S24). When the difference exceeds a predetermined value in step S23, the second speed is determined as the speed (S25). Further, in step S25, the speed of the drone 100 may be estimated based on the acceleration of the drone 100, and the estimated value may be determined in the positioning coordinates. In this configuration, it may be determined whether the time in which the speed estimated based on the acceleration is used for control continues for a predetermined time or longer, and if applicable, the drone 100 may be made to perform the evacuation operation. Alternatively, the speed estimated by another method may be used.
●速度推定装置の機能部(2)
 図14を用いて、本願発明の第2実施形態に係る速度推定システム1003に関し、第1実施形態に係る速度推定システム1002とは異なる部分を中心に説明する。速度推定システム1003は、互いに異なる少なくとも2つの衛星信号に基づいて第1速度および第2速度を算出し、その差分に応じてドローン100の速度を決定する。
● Functional part of speed estimation device (2)
With reference to FIG. 14, the speed estimation system 1003 according to the second embodiment of the present invention will be described focusing on a portion different from the speed estimation system 1002 according to the first embodiment. The speed estimation system 1003 calculates the first speed and the second speed based on at least two satellite signals different from each other, and determines the speed of the drone 100 according to the difference.
 第2実施形態における速度推定装置603は、基準点決定部610、速度計測部623、比較部633、速度確定部643および速度推定部662を備える。なお、第1実施形態と同様の構成については、同じ符号を付した。 The speed estimation device 603 in the second embodiment includes a reference point determination unit 610, a speed measurement unit 623, a comparison unit 633, a speed determination unit 643, and a speed estimation unit 662. The same reference numerals are given to the same configurations as those in the first embodiment.
 図16(a)に示すように、速度計測部622は、複数の測位衛星410a、410bから送信される第1衛星信号および第2衛星信号を、アンテナ504a-1、504a-2によりそれぞれ受信し、第1衛星信号および第2衛星信号に基づいて第1速度および第2速度をそれぞれ生成する。なお、図16(b)に示すように、速度計測部622は、1個のアンテナ504a-1により複数の測位衛星410a、410bから送信される第1衛星信号および第2衛星信号を受信してもよい。 As shown in FIG. 16A, the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by the antennas 504a-1 and 504a-2, respectively. , The first velocity and the second velocity are generated based on the first satellite signal and the second satellite signal, respectively. As shown in FIG. 16B, the speed measuring unit 622 receives the first satellite signal and the second satellite signal transmitted from the plurality of positioning satellites 410a and 410b by one antenna 504a-1. May be good.
 比較部633は、速度計測部623により取得した第1衛星信号に基づいて得られる第1速度と、第2衛星信号に基づいて得られる第2速度と、を比較する。具体的には、比較部633は、第1速度と第2速度との差分を算出する。 The comparison unit 633 compares the first speed obtained based on the first satellite signal acquired by the speed measurement unit 623 with the second speed obtained based on the second satellite signal. Specifically, the comparison unit 633 calculates the difference between the first speed and the second speed.
 速度確定部643は、当該差分が所定値以下であるとき、第1速度をドローン100の速度とする。速度確定部643は、当該差分が所定値を超える場合に、速度推定部662により加速度から推定される推定速度を、ドローン100の速度とする。 The speed determination unit 643 sets the first speed as the speed of the drone 100 when the difference is equal to or less than a predetermined value. The speed determination unit 643 sets the estimated speed estimated from the acceleration by the speed estimation unit 662 as the speed of the drone 100 when the difference exceeds a predetermined value.
 なお、当該差分が所定値を超える場合に、比較部633により推定速度と第1速度又は第2速度との差分を算出し、速度確定部643は、当該差分が所定値以下であるときに、推定速度を測位速度として確定してもよい。推定速度と第1速度又は第2速度との差が小さいことで、推定速度の信頼性がより担保される。また、速度確定部643は、推定速度と第1速度又は第2速度との差分が所定値以下であるとき、当該第1速度又は第2速度を測位速度に採用してもよい。 When the difference exceeds a predetermined value, the comparison unit 633 calculates the difference between the estimated speed and the first speed or the second speed, and the speed determination unit 643 determines when the difference is equal to or less than the predetermined value. The estimated speed may be determined as the positioning speed. Since the difference between the estimated speed and the first speed or the second speed is small, the reliability of the estimated speed is further ensured. Further, the speed determination unit 643 may adopt the first speed or the second speed as the positioning speed when the difference between the estimated speed and the first speed or the second speed is equal to or less than a predetermined value.
 速度確定部643は、第1速度と第2速度との差分が所定値を超える場合に、加速度に基づいて速度を推定し、この推定値をドローン100の速度として確定してもよい。また、加速度に基づいて推定した速度を採用している時間を計測し、当該時間が所定期間以上続いた場合には、ドローン100に退避動作を行わせてもよい。また、別の方法により生成される速度を制御に利用してもよい。 When the difference between the first speed and the second speed exceeds a predetermined value, the speed determination unit 643 may estimate the speed based on the acceleration and determine this estimated value as the speed of the drone 100. Further, the time during which the speed estimated based on the acceleration is adopted may be measured, and if the time continues for a predetermined period or longer, the drone 100 may perform the evacuation operation. Moreover, the speed generated by another method may be used for control.
●処理フロー(4)
 図15に示すように、速度計測部623により、第1測位衛星410aからの衛星信号に基づいてドローン100の第1速度を取得するとともに、第2測位衛星410bからの衛星信号に基づいてドローン100の第2速度を取得する(S31)。
● Processing flow (4)
As shown in FIG. 15, the speed measuring unit 623 acquires the first speed of the drone 100 based on the satellite signal from the first positioning satellite 410a, and the drone 100 is based on the satellite signal from the second positioning satellite 410b. Get the second velocity of (S31).
 次いで、比較部633により、第1速度と第2速度の差分を算出する(S32)。差分が所定値以下か否かを判別し(S33)、所定値以下である場合は、第1速度をドローン100の速度に確定する(S34)。ステップS33において差分が所定値を超えるとき、ドローン100の加速度に基づいてドローン100の速度を推定し、当該推定速度をドローン100の速度に確定する(S35)。この構成において、加速度に基づいて推定した速度を制御に利用している時間が所定時間以上続いているか判定し、該当する場合は、ドローン100に退避動作を行わせてもよい。また、別の方法で推定した速度を利用するものとしてもよい。 Next, the comparison unit 633 calculates the difference between the first speed and the second speed (S32). It is determined whether or not the difference is less than or equal to the predetermined value (S33), and if it is less than or equal to the predetermined value, the first speed is determined to be the speed of the drone 100 (S34). When the difference exceeds a predetermined value in step S33, the speed of the drone 100 is estimated based on the acceleration of the drone 100, and the estimated speed is determined as the speed of the drone 100 (S35). In this configuration, it may be determined whether the time in which the speed estimated based on the acceleration is used for control continues for a predetermined time or longer, and if applicable, the drone 100 may be made to perform the evacuation operation. Alternatively, the speed estimated by another method may be used.
(本願発明による技術的に顕著な効果)
 本発明にかかる測位システムにおいては、ドローンを始めとする移動体の座標を精度よく測位することができる。また、本発明にかかる速度推定システムにおいては、ドローンを始めとする移動体の速度を精度よく推定することができる。特に、圃場において薬剤散布、又は作物の生育監視を行う農業用ドローンにおいては、散布および監視精度を担保するために、1乃至2cm程度の誤差で正確に飛行する必要がある。また、ドローンはバッテリの蓄電量により飛行するため、少ない充電回数で圃場内作業を完了させるために、陸上走行農機と比較して速い速度で移動する必要がある。したがって、ドローンの飛行には、高いリアルタイム性を有する高精度な測位が重要である。本発明にかかる測位システムにおいては、農業用ドローンの座標を精度よく測位することができるため、当該ドローンによる精密農業を実現することができる。
(Technically remarkable effect of the present invention)
In the positioning system according to the present invention, the coordinates of a moving body such as a drone can be accurately positioned. Further, in the speed estimation system according to the present invention, the speed of a moving body such as a drone can be estimated accurately. In particular, in agricultural drones that spray chemicals or monitor the growth of crops in the field, it is necessary to fly accurately with an error of about 1 to 2 cm in order to ensure the accuracy of spraying and monitoring. In addition, since the drone flies according to the amount of electricity stored in the battery, it is necessary to move at a higher speed than the land-based agricultural machine in order to complete the work in the field with a small number of charging times. Therefore, highly accurate positioning with high real-time performance is important for drone flight. In the positioning system according to the present invention, since the coordinates of the agricultural drone can be accurately positioned, precision agriculture by the drone can be realized.
 なお、本説明ではドローンの座標を測位する測位システム、速度推定システムおよび測位方法について説明したが、本願発明に係る測位システム、速度推定システムおよび測位方法はドローンに限られず、陸上走行する機械にも適用可能である。 In this description, the positioning system, the speed estimation system, and the positioning method for positioning the coordinates of the drone have been described, but the positioning system, the speed estimation system, and the positioning method according to the present invention are not limited to the drone, but also for machines traveling on land. Applicable.

Claims (17)

  1.  移動体の座標を測位する測位システムであって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を定期的に算出する座標取得部と、
     前記座標取得部により前回以前に算出された少なくとも前記第1座標値の履歴値を記憶する座標記憶部と、
     前記第1座標値と前記第1座標値の履歴値との差分を計算する比較部と、
     前記差分が所定値を超える場合に、前記第2座標値を前記移動体の測位座標として確定する座標確定部と、
    を備える、
    測位システム。
     
    A positioning system that measures the coordinates of a moving object.
    A coordinate acquisition unit that periodically calculates a first coordinate value and a second coordinate value indicating the position of the moving body based on at least two different reference points.
    A coordinate storage unit that stores at least the historical value of the first coordinate value calculated before the previous time by the coordinate acquisition unit, and a coordinate storage unit.
    A comparison unit that calculates the difference between the first coordinate value and the historical value of the first coordinate value, and
    When the difference exceeds a predetermined value, a coordinate determination unit that determines the second coordinate value as the positioning coordinate of the moving body, and a coordinate determination unit.
    To prepare
    Positioning system.
  2.  前記座標確定部は、前記差分が前記所定値以下であるとき、前記第1座標値を、前記移動体の測位座標として確定する、
    請求項1記載の測位システム。
     
    When the difference is equal to or less than the predetermined value, the coordinate determination unit determines the first coordinate value as the positioning coordinates of the moving body.
    The positioning system according to claim 1.
  3.  前記座標取得部が算出の基準とする前記基準点を決定する基準点決定部をさらに備え、
     前記基準点決定部は、単独測位で求めた前記移動体の座標に最も近い基準点を、前記算出の基準に決定する、
    請求項1又は2記載の測位システム。
     
    Further provided with a reference point determination unit for determining the reference point to be used as a calculation reference by the coordinate acquisition unit.
    The reference point determination unit determines the reference point closest to the coordinates of the moving body obtained by independent positioning as the reference for the calculation.
    The positioning system according to claim 1 or 2.
  4. 第1の衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、 前記第1速度と前記第1速度の履歴値との差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、をさらに備える
    請求項1乃至3のいずれかに記載の測位システム。
     
    A speed measuring unit that generates a first speed indicating the speed of the moving body based on the first satellite signal and a second speed indicating the speed of the moving body based on the second satellite signal, and the first speed measuring unit. If the difference between the historical values of the first speed and 1 speed exceeds a predetermined value, any one of claims 1 to 3 further comprising, a speed confirming unit for determining the second rate of speed of the movable body The positioning system described in.
  5.  衛星信号を受信する第1のアンテナと第2のアンテナを備え、
    前記第1のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、
     前記第1速度と前記第1速度の履歴値との差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、をさらに備える
    請求項1乃至3のいずれかに記載の測位システム。
     
    Equipped with a first antenna and a second antenna to receive satellite signals,
    A first velocity indicating the speed of the moving object is generated based on the satellite signal received by the first antenna, and the velocity of the moving object is indicated based on the satellite signal received by the second antenna. 2 Speed measuring unit that generates speed and
    3. The positioning system described in either.
  6.  移動体の座標を測位する測位システムであって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を定期的に算出する座標取得部と、
     前記移動体の加速度に基づいて前記移動体の座標値を推定する座標推定部と、
     前記第1座標値と前記第2座標値との差分を計算する比較部と、
     前記差分が所定値を超える場合に、前記加速度に基づいて推定される座標値を移動体の測位座標として確定する座標確定部と、
    を備える、
    測位システム。
     
    A positioning system that measures the coordinates of a moving object.
    A coordinate acquisition unit that periodically calculates a first coordinate value and a second coordinate value indicating the position of the moving body based on at least two different reference points.
    A coordinate estimation unit that estimates the coordinate values of the moving body based on the acceleration of the moving body, and
    A comparison unit that calculates the difference between the first coordinate value and the second coordinate value,
    When the difference exceeds a predetermined value, a coordinate determination unit that determines the coordinate value estimated based on the acceleration as the positioning coordinate of the moving body, and
    To prepare
    Positioning system.
  7.  第1の衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、
     前記第1速度と前記第2速度の差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定部と、をさらに備える、
    請求項6記載の測位システム。
     
    A speed measuring unit that generates a first speed indicating the speed of the moving body based on the first satellite signal and a second speed indicating the speed of the moving body based on the second satellite signal.
    Further provided is a speed determining unit that determines the speed estimated based on the acceleration as the speed of the moving body when the difference between the first speed and the second speed exceeds a predetermined value.
    The positioning system according to claim 6.
  8.  衛星信号を受信する第1のアンテナと第2のアンテナを備え、
     前記第1のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、
     前記第1速度と前記第2速度の差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、を備える
    請求項6又は7に記載の測位システム。
     
    Equipped with a first antenna and a second antenna to receive satellite signals,
    A first velocity indicating the speed of the moving object is generated based on the satellite signal received by the first antenna, and the velocity of the moving object is indicated based on the satellite signal received by the second antenna. 2 Speed measuring unit that generates speed and
    The positioning system according to claim 6 or 7, further comprising a speed determination unit that determines the second speed as the speed of the moving body when the difference between the first speed and the second speed exceeds a predetermined value.
  9.  移動中の位置座標を測位する測位システムを有する移動体であって、
     前記測位システムは請求項1乃至8のいずれかに記載の測位システムである、
    移動体。
     
    A mobile body having a positioning system for positioning the position coordinates during movement.
    The positioning system is the positioning system according to any one of claims 1 to 8.
    Mobile body.
  10.  移動体の移動速度を推定する速度推定システムであって、
     第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測部と、
     前記速度計測部により前回以前に算出された前記第1速度の履歴値を記憶する速度記憶部と、
     前記第1速度と前記第1速度の履歴値との差分を計算する比較部と、
     前記差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、
    を備える、
    速度推定システム。
     
    A speed estimation system that estimates the moving speed of a moving object.
    A speed that periodically generates a first velocity indicating the speed of the moving object based on the first satellite signal, and periodically generates a second velocity indicating the velocity of the moving object based on the second satellite signal. With the measurement unit
    A speed storage unit that stores the historical value of the first speed calculated by the speed measurement unit before the previous time, and a speed storage unit.
    A comparison unit that calculates the difference between the first speed and the historical value of the first speed, and
    When the difference exceeds a predetermined value, a speed determination unit that determines the second speed as the speed of the moving body, and a speed determination unit.
    To prepare
    Speed estimation system.
  11.  衛星信号を受信する第1のアンテナと第2のアンテナを備え、
     前記第1のアンテナが受信する前記衛星信号に基づいて移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、
     前記速度計測部により前回以前に算出された前記第1速度の履歴値を記憶する速度記憶部と、
     前記第1速度と前記第1速度の履歴値との差分を計算する比較部と、
     前記差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定部と、
    を備える、
    速度推定システム。
     
    Equipped with a first antenna and a second antenna to receive satellite signals,
    A second velocity indicating the velocity of the moving body is generated based on the satellite signal received by the first antenna, and a second velocity indicating the velocity of the moving object is indicated based on the satellite signal received by the second antenna. A speed measuring unit that generates speed and
    A speed storage unit that stores the historical value of the first speed calculated by the speed measurement unit before the previous time, and a speed storage unit.
    A comparison unit that calculates the difference between the first speed and the historical value of the first speed, and
    When the difference exceeds a predetermined value, a speed determination unit that determines the second speed as the speed of the moving body, and a speed determination unit.
    To prepare
    Speed estimation system.
  12.  移動体の移動速度を推定する速度推定システムであって、
     第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測部と、
     前記移動体の加速度に基づいて前記移動体の速度を推定する速度推定部と、
     前記第1速度と前記第2速度との差分を計算する比較部と、
     前記差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定部と、
    を備える、
    速度推定システム。
     
    A speed estimation system that estimates the moving speed of a moving object.
    A speed that periodically generates a first velocity indicating the speed of the moving object based on the first satellite signal, and periodically generates a second velocity indicating the velocity of the moving object based on the second satellite signal. With the measurement unit
    A speed estimation unit that estimates the speed of the moving body based on the acceleration of the moving body,
    A comparison unit that calculates the difference between the first speed and the second speed,
    When the difference exceeds a predetermined value, a speed determination unit that determines the speed estimated based on the acceleration as the speed of the moving body, and
    To prepare
    Speed estimation system.
  13.  衛星信号を受信する第1のアンテナと第2のアンテナを備え、
     前記第1のアンテナが受信する前記衛星信号に基づいて移動体の速度を示す第1速度を生成し、前記第2のアンテナが受信する前記衛星信号に基づいて前記移動体の速度を示す第2速度を生成する速度計測部と、
     前記移動体の加速度に基づいて前記移動体の速度を推定する速度推定部と、
     前記第1速度と前記第2速度との差分を計算する比較部と、
     前記差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定部と、
    を備える、
    速度推定システム。
     
    Equipped with a first antenna and a second antenna to receive satellite signals,
    A second velocity indicating the velocity of the moving body is generated based on the satellite signal received by the first antenna, and a second velocity indicating the velocity of the moving object is indicated based on the satellite signal received by the second antenna. A speed measuring unit that generates speed and
    A speed estimation unit that estimates the speed of the moving body based on the acceleration of the moving body,
    A comparison unit that calculates the difference between the first speed and the second speed,
    When the difference exceeds a predetermined value, a speed determination unit that determines the speed estimated based on the acceleration as the speed of the moving body, and
    To prepare
    Speed estimation system.
  14.  移動体の座標を測位する測位方法であって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を算出する座標取得ステップと、
     前記第1座標値と前記第2座標値との差分を計算する比較ステップと、 前記差分が所定値以下である場合に、前記第1座標値を、前記移動体の測位座標として確定する、座標確定ステップと、
    を含む、
    測位方法。
     
    It is a positioning method that positions the coordinates of a moving object.
    A coordinate acquisition step for calculating a first coordinate value and a second coordinate value indicating the position of the moving body, respectively, with at least two reference points different from each other as a reference.
    A comparison step for calculating the difference between the first coordinate value and the second coordinate value, and a coordinate that determines the first coordinate value as the positioning coordinate of the moving body when the difference is equal to or less than a predetermined value. Confirmation step and
    including,
    Positioning method.
  15.  移動体の座標を測位する測位方法であって、
     互いに異なる少なくとも2個の基準点をそれぞれ基準として、前記移動体の位置を示す第1座標値および第2座標値を定期的に算出する座標取得ステップと、
     前記移動体の加速度に基づいて前記移動体の座標値を推定する座標推定ステップと、
     前記第1座標値と前記第2座標値との差分を計算する比較ステップと、
     前記差分が所定値を超える場合に、前記加速度に基づいて推定される座標値を前記移動体の測位座標として確定する座標確定ステップと、
    を含む、
    測位方法。
     
    It is a positioning method that positions the coordinates of a moving object.
    A coordinate acquisition step for periodically calculating a first coordinate value and a second coordinate value indicating the position of the moving body with at least two different reference points as a reference, and a coordinate acquisition step.
    A coordinate estimation step that estimates the coordinate values of the moving body based on the acceleration of the moving body, and
    A comparison step for calculating the difference between the first coordinate value and the second coordinate value, and
    When the difference exceeds a predetermined value, a coordinate determination step of determining a coordinate value estimated based on the acceleration as a positioning coordinate of the moving body, and a coordinate determination step.
    including,
    Positioning method.
  16.  移動体の移動速度を推定する速度推定方法であって、
     第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測ステップと、
     前記速度計測ステップにより前回以前に算出された前記第1速度の履歴値を記憶する速度記憶ステップと、
     前記第1速度と前記第1速度の履歴値との差分を計算する比較ステップと、
     前記差分が所定値を超える場合に、前記第2速度を前記移動体の速度として確定する速度確定ステップと、
    を含む、
    速度推定方法。
     
    It is a speed estimation method that estimates the moving speed of a moving body.
    A speed that periodically generates a first velocity indicating the speed of the moving object based on the first satellite signal, and periodically generates a second velocity indicating the velocity of the moving object based on the second satellite signal. Measurement steps and
    A speed storage step for storing the historical value of the first speed calculated before the previous time by the speed measurement step, and a speed storage step.
    A comparison step for calculating the difference between the first speed and the historical value of the first speed, and
    When the difference exceeds a predetermined value, a speed determination step of determining the second speed as the speed of the moving body, and a speed determination step.
    including,
    Speed estimation method.
  17.  移動体の移動速度を推定する速度推定方法であって、
     第1の衛星信号に基づいて前記移動体の速度を示す第1速度を定期的に生成し、第2の衛星信号に基づいて前記移動体の速度を示す第2速度を定期的に生成する速度計測ステップと、
     前記移動体の加速度に基づいて前記移動体の速度を推定する速度推定ステップと、
     前記第1速度と前記第2速度との差分を計算する比較ステップと、
     前記差分が所定値を超える場合に、前記加速度に基づいて推定される速度を前記移動体の速度として確定する速度確定ステップと、
    を含む、
    速度推定方法。
    It is a speed estimation method that estimates the moving speed of a moving body.
    A speed that periodically generates a first velocity indicating the speed of the moving object based on the first satellite signal, and periodically generates a second velocity indicating the velocity of the moving object based on the second satellite signal. Measurement steps and
    A speed estimation step that estimates the speed of the moving body based on the acceleration of the moving body, and
    A comparison step for calculating the difference between the first speed and the second speed,
    A speed determination step of determining the speed estimated based on the acceleration as the speed of the moving body when the difference exceeds a predetermined value.
    including,
    Speed estimation method.
PCT/JP2020/018575 2020-05-07 2020-05-07 Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method WO2021224970A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022519864A JP7359489B2 (en) 2020-05-07 2020-05-07 Positioning system, moving object, speed estimation system, positioning method, and speed estimation method
PCT/JP2020/018575 WO2021224970A1 (en) 2020-05-07 2020-05-07 Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018575 WO2021224970A1 (en) 2020-05-07 2020-05-07 Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method

Publications (1)

Publication Number Publication Date
WO2021224970A1 true WO2021224970A1 (en) 2021-11-11

Family

ID=78467937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018575 WO2021224970A1 (en) 2020-05-07 2020-05-07 Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method

Country Status (2)

Country Link
JP (1) JP7359489B2 (en)
WO (1) WO2021224970A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128793A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Vehicle position measuring device
JP2010060489A (en) * 2008-09-05 2010-03-18 Seiko Epson Corp Satellite orbital modeling propriety determination method, long term prediction orbital data supply method, and satellite orbital modeling propriety determination device
WO2017072988A1 (en) * 2015-10-28 2017-05-04 パナソニックIpマネジメント株式会社 Observation system using a flying object, and observation method
JP2019184566A (en) * 2018-03-30 2019-10-24 パナソニックIpマネジメント株式会社 Vehicle and vehicle position estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128793A (en) * 2006-11-20 2008-06-05 Toyota Motor Corp Vehicle position measuring device
JP2010060489A (en) * 2008-09-05 2010-03-18 Seiko Epson Corp Satellite orbital modeling propriety determination method, long term prediction orbital data supply method, and satellite orbital modeling propriety determination device
WO2017072988A1 (en) * 2015-10-28 2017-05-04 パナソニックIpマネジメント株式会社 Observation system using a flying object, and observation method
JP2019184566A (en) * 2018-03-30 2019-10-24 パナソニックIpマネジメント株式会社 Vehicle and vehicle position estimation device

Also Published As

Publication number Publication date
JPWO2021224970A1 (en) 2021-11-11
JP7359489B2 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
WO2019168045A1 (en) Drone, control method thereof, and program
WO2020209255A1 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7353630B2 (en) Drone control system, drone control method, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JP6913979B2 (en) Drone
WO2021140657A1 (en) Drone system, flight management device, and drone
JPWO2020085239A1 (en) Driving route generator, driving route generation method, driving route generation program, and drone
JP7079547B1 (en) Field evaluation device, field evaluation method and field evaluation program
WO2021205559A1 (en) Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program
JP2022084735A (en) Drone, drone control method, and drone control program
WO2021224970A1 (en) Positioning system, mobile body, speed estimating system, positioning method, and speed estimating method
WO2021166175A1 (en) Drone system, controller, and method for defining work area
JP7037235B2 (en) Industrial machinery system, industrial machinery, control device, control method of industrial machinery system, and control program of industrial machinery system.
WO2021255885A1 (en) Spraying system, spraying method, and drone
JP7011233B2 (en) Spraying system and spraying management device
JP7062314B2 (en) Driving route generation system, driving route generation method, driving route generation program, coordinate survey system, and drone
WO2021111621A1 (en) Pathological diagnosis system for plants, pathological diagnosis method for plants, pathological diagnosis device for plants, and drone
WO2021199243A1 (en) Positioning system, drone, surveying machine, and positioning method
WO2021205501A1 (en) Resurvey necessity determination device, survey system, drone system, and resurvey necessity determination method
JP2021054280A (en) Operation route generation system, operation route generation method, operation route generation program, and drone
WO2021191947A1 (en) Drone system, drone, and obstacle detection method
JP6996792B2 (en) Drug discharge control system, its control method, and control program
JP7169022B2 (en) Harvest forecast system, harvest forecast method, harvest forecast program, and harvest time forecast system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934641

Country of ref document: EP

Kind code of ref document: A1