WO2021221285A1 - Artificial neural network-based electricity market price prediction system - Google Patents

Artificial neural network-based electricity market price prediction system Download PDF

Info

Publication number
WO2021221285A1
WO2021221285A1 PCT/KR2021/002330 KR2021002330W WO2021221285A1 WO 2021221285 A1 WO2021221285 A1 WO 2021221285A1 KR 2021002330 W KR2021002330 W KR 2021002330W WO 2021221285 A1 WO2021221285 A1 WO 2021221285A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
price
smp
neural network
artificial neural
Prior art date
Application number
PCT/KR2021/002330
Other languages
French (fr)
Korean (ko)
Inventor
배유석
김나연
서성발
이현숙
Original Assignee
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국산업기술대학교산학협력단 filed Critical 한국산업기술대학교산학협력단
Publication of WO2021221285A1 publication Critical patent/WO2021221285A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Definitions

  • the present invention relates to a power market price prediction system based on an artificial neural network.
  • the transaction price of the domestic electricity market is determined according to the principle of cost minimization by reflecting the variable cost of the generators participating in the bidding from the lowest to the highest using the Power Generation Planning Program (RSC, Resource Scheduling & Commitment).
  • the generation cost of a generator is called the System Marginal Price (SMP), and it is determined by the market price of the time period.
  • the domestic electricity market determines the system marginal price (SMP) by predicting the electricity price according to the cost of generators such as oil, LNG, and coal, which are raw materials.
  • SMP system marginal price
  • the current domestic electricity market price prediction method is the market price considering the electricity demand predicted one day before the day of the transaction and the bid amount of generators. With this predictive and determined structure, it is difficult to reflect in real time various variables that affect the price.
  • an artificial neural network-based power that determines the price in consideration of various factors affecting the price of electricity.
  • a power market price prediction method includes collecting power transaction data from a database; processing the collected data into a state that can be input to an artificial neural network; performing learning of the artificial neural network with the processed data; and predicting a systematic marginal price (SMP) using the learned artificial neural network.
  • SMP systematic marginal price
  • the power transaction data may include a power demand forecast amount, a fuel cost unit price, a bid amount, and the like.
  • the artificial neural network may be a model in which a Long Short-Term Memory (LSTM) network and a Deep Neural Network (DNN) are sequentially connected.
  • LSTM Long Short-Term Memory
  • DNN Deep Neural Network
  • the processing of the collected data may include: sampling or expanding data by date or time; And it may include at least one of the step of selectively extracting the required data by column and time.
  • the processing of the collected data may include: estimating missing data by applying an interpolation method to the original data; detecting and correcting abnormal data; smoothing the original data; And it may further include at least one of the step of normalizing the original data.
  • the step of learning the artificial neural network with the processed data may include designing an algorithm by adjusting a hyper parameter based on an input of a system user; performing learning by receiving the processed data for the designed algorithm as an input and outputting a systematic marginal price (SMP) value as an output; and correcting the hyperparameter so that an error between the predicted value and the actual value of the systematic limit price (SMP) is minimized.
  • SMP systematic marginal price
  • the step of predicting the systematic marginal price may be a step of predicting the previous-day market systematic limiting price (SMP) of a 24-hour period.
  • the predicting of the SMP may include predicting the SMP of the real-time market, which varies in units of one hour.
  • the electricity market price is predicted and determined based on the predicted system limit price (SMP).
  • SMP system limit price
  • an apparatus for predicting a power market price includes a processor; and a memory storing instructions executable by the processor; including, wherein the processor collects power transaction data from the database by executing the instructions, processes the collected data into a state that can be input to the artificial neural network, and uses the processed data for the artificial neural network. Learning is performed, and a systematic marginal price (SMP) can be predicted using the learned artificial neural network.
  • SMP systematic marginal price
  • the power transaction data may include data including a power demand forecast amount, a fuel cost unit price, and a bid amount.
  • the artificial neural network may be a model in which a Long Short-Term Memory (LSTM) network and a Deep Neural Network (DNN) are sequentially connected.
  • LSTM Long Short-Term Memory
  • DNN Deep Neural Network
  • the processor may sample or expand data by date or time, and selectively extract necessary data by column and time.
  • the processor applies interpolation to the original data to estimate missing data, detect and correct abnormal data, smooth the original data, and normalize the original data. have.
  • the processor designs an algorithm by adjusting a hyper parameter based on a system user's input, receives processed data for the designed algorithm as an input, and sets a systematic marginal price (SMP) value. It may be characterized by performing learning as an output and correcting the hyperparameter so that the error between the predicted value and the actual value of the systematic marginal price (SMP) is minimized.
  • SMP systematic marginal price
  • the predicted systematic marginal price may be characterized as the all-day market systematic marginal price (SMP) of a 24-hour period.
  • the predicted systemic limiting price may be a real-time systemic limiting price (SMP) of the real-time market that changes in units of one hour.
  • the processor may predict and determine the electricity market price based on the predicted system limit price (SMP).
  • SMP system limit price
  • a program for implementing a method for predicting electricity market prices recorded on a computer-readable recording medium may include: collecting electricity transaction data from a database; processing the collected data into a state that can be input to an artificial neural network; performing learning of the artificial neural network with the processed data; and predicting a systematic marginal price (SMP) using the learned artificial neural network.
  • SMP systematic marginal price
  • an SMP system operation plan for a price-determining power generation plan of a small-scale/distributed future power trading market, and it is possible to provide an indicator for a power market power generation plan and a bidding plan.
  • a user can easily predict the SMP of the previous day or real-time market using data provided by the power market to provide an indicator for price determination, power generation plan, and power system operation, and the predicted SMP and price It can be used as an indicator of small-scale/individual electricity transaction and bidding amount by analyzing the trend of In particular, when P2P (person-to-person) electricity trading is activated in the near future, it can become a standard for determining electricity transaction prices.
  • P2P person-to-person
  • a user can easily process data for data monitoring and artificial intelligence learning through data visualization secured in the system UI, and can immediately monitor the status of the processed data.
  • a system user can easily perform algorithm learning within the UI to find an optimal parameter.
  • the algorithm can be similarly applied even when a new price determining factor occurs in the future power market in the input data during algorithm learning, it is effective in establishing a pricing development plan in the future power market that is currently difficult to predict.
  • FIG. 1 is a diagram illustrating a structure of an LSTM, which is a type of an artificial neural network algorithm, according to various embodiments of the present disclosure.
  • FIG. 2 is a diagram illustrating a flowchart of a method for predicting electricity market price based on an artificial neural network, according to various embodiments of the present disclosure.
  • FIG. 3 is a diagram illustrating an algorithm model for outputting a previous-day market SMP prediction value (SMP t ) when input data (X t ) is input through an artificial neural network trained using processed data, according to various embodiments.
  • SMP t previous-day market SMP prediction value
  • FIG. 4 is a diagram illustrating an overall configuration of an apparatus for predicting electricity market prices according to various embodiments of the present disclosure.
  • FIG. 5 is a diagram illustrating an internal configuration of a processor in an apparatus for predicting a power market price according to various embodiments of the present disclosure
  • SMP system limit price
  • FIG. 7 is a diagram illustrating comparative analysis data between an actual SMP value and a predicted SMP value, according to various embodiments of the present disclosure
  • 'module' or 'part' refers to software or hardware components such as field programmable gate array (FPGA) or application specific integrated circuit (ASIC), but is not limited to software or hardware.
  • a 'unit' or 'module' may be configured to reside on an addressable storage medium or may be configured to reproduce one or more processors.
  • 'part' or 'module' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs.
  • ⁇ онентs may include procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided in one component, 'unit' or 'module' may be combined into a smaller number of components and 'unit' or 'module' or additional components and 'unit' or 'module' can be further separated.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of recording medium known in the art.
  • An exemplary recording medium is coupled to the processor, the processor capable of reading information from, and writing information to, the storage medium.
  • the recording medium may be integral with the processor.
  • the processor and recording medium may reside within an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • a component When it is said that a component is 'connected' or 'connected' to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in between. It should be On the other hand, when it is mentioned that a certain element is 'directly connected' or 'directly connected' to another element, it should be understood that there is no other element in the middle.
  • Artificial intelligence is a computer system or device equipped with human intelligence, and may refer to artificially implemented human intelligence in a machine or the like. Artificial intelligence also refers to the field of science that studies the methodology or feasibility of creating intelligence.
  • An artificial neural network is a model or algorithm that implements artificial intelligence. It is a statistical learning algorithm modeled by simulating a biological neural network in machine learning. It can be called a model or learning algorithm having problem-solving ability by changing the binding strength of
  • An artificial neural network may include an input layer, an output layer, and one or more hidden layers.
  • Each layer of the artificial neural network includes a plurality of nodes corresponding to neurons of the neural network, and a node in one layer of the artificial neural network and a node in another layer may be connected by a synapse.
  • an artificial neural network in which all nodes of each layer and all nodes of the next layer are synaptically connected may be referred to as a fully connected artificial neural network.
  • each node may receive input signals input through a synapse and generate an output value based on an activation function for weights and biases for each input signal.
  • a deep neural network may collectively refer to an artificial neural network including a plurality of hidden layers between an input layer and an output layer.
  • a deep neural network can model complex nonlinear relationships and can have various structures depending on its purpose.
  • a deep neural network structure there may be a recurrent neural network (RNN), a long short-term memory (LSTM), or the like.
  • RNN recurrent neural network
  • LSTM long short-term memory
  • the recurrent neural network has a cyclic structure inside, so the learning of the past time is multiplied by the weight and can be reflected in the current learning. performs a kind of memory function. Therefore, it can be effective in performing classification or prediction by learning sequential data.
  • LSTM is a neural network that solves the problem that old data of the cyclical neural network disappears without affecting it. Like the cyclical neural network, it can be effective in performing classification or prediction by learning sequential data.
  • FIG. 1 is a diagram illustrating the structure of an LSTM, which is a type of an artificial neural network algorithm according to various embodiments.
  • an LSTM may include a plurality of cells having the same structure.
  • Each cell in the LSTM compares the cell state (e.g. C t ) and output (e.g. h t ) at the current time to the cell state (e.g. C t-1 ) and output (e.g. h t-1 ) at the previous time and now It can be determined based on an input of time (eg x t ).
  • each cell of the LSTM may include four neural network layers.
  • the first neural network layer also called the forget gate layer, is the gate that decides whether to reflect past and present information.
  • the gate may perform the determination using a sigmoid function.
  • the sigmoid function is a mathematical function having an S-shaped curve and may be defined as a function of Equation 1 in an embodiment.
  • the sigmoid function may output a value between 0 and 1 according to an input.
  • Equation 2 defines a function for obtaining the output of the forgetting gate layer.
  • the output (f t ) of the forgetting gate layer is the previous cell state (eg, C t-1 ) based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ). ) can be either forgotten or preserved.
  • the weight (W f ) of the forgetting gate layer is a value that can be changed by learning
  • the bias (b f ) of the forgetting gate layer is a preset value.
  • represents the sigmoid function.
  • the second neural network layer is also called an input gate layer and determines which of the new information to be stored in a cell state (eg, C t ), and can be defined by Equation 3 below.
  • the output (i t ) of the input gate layer determines which of the information to be stored in the cell state based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ). can decide
  • the weight (W i ) of the input gate layer is a value that can be changed by learning
  • the bias ( b i ) of the input gate layer is a preset value.
  • represents the sigmoid function.
  • the third neural network layer determines a new candidate value ( ⁇ C t ) to store in the cell state.
  • a new candidate value ( ⁇ C t ) may be determined according to Equation 4 below.
  • the new candidate value ( ⁇ C t ) is the output of a hyperbolic tangent (tanh) function based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ) can be a value.
  • the hyperbolic tangent function can have a value between -1 and 1.
  • the weight W C is a value that can be changed by learning
  • the bias b C is a preset value.
  • tanh represents the hyperbolic tangent function.
  • a new cell state (eg, C t ) may be determined based on the results of the three neural network layers described above. Equation 5 defines a function for determining a new cell state (eg, C t ).
  • the conservation of the past cell state the output of the forgetting gate layers showing whether to preserve or whether to forget (C t-1) (f t) to historical cell state (C t-1) multiplied by whether A new cell state (C t ) can be determined by determining a value to be updated and finally a value to be updated by multiplying the candidate value to be updated ( ⁇ C t ) by the output (i t ) of the input gate layer indicating the degree of update.
  • the fourth and final neural network layer is also called an output gate layer and determines what to output as an output, and can be defined by Equation 6 below.
  • the output (o t ) of the output gate layer is any of the cell state (C t ) updated based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ). You can decide whether to print something.
  • the weight W o of the output gate layer is a value that can be changed by learning
  • the bias b o of the output gate layer is a preset value.
  • represents the sigmoid function.
  • the cell output h t of the LSTM may be determined according to Equation 7 below.
  • tanh denotes a hyperbolic tangent function
  • the LSTM for determining the cell state and output according to Equations 2 to 7 described above can change the weights W f , Wi i , W C , W o through iterative learning so that an optimal result can be output. .
  • Machine learning may be to generate input data using actual measurement values, and to train the LSTM so that the output of the LSTM after inputting the input data produces a result value according to the measurement.
  • the machine learning uses the weights W f , W i , W to minimize the error between the output of the LSTM and the measured output value using gradient descent and back propagation.
  • C , W o ) values may be determined.
  • the error between the actual SMP value and the SMP t value predicted by the artificial neural network can be reduced by using back propagation.
  • algorithm learning for prediction of systematic marginal price is performed through input data such as demand forecast amount, fuel cost unit price, and bid amount, and the learned algorithm is To provide a method and device that can be used to determine the price of the electricity market by predicting the system marginal price (SMP) of the previous day's market or the real-time market by using it, and then predicting the electricity price based on this.
  • SMP systematic marginal price
  • FIG. 2 is a flowchart illustrating a method of predicting an SMP through input data and predicting and determining a power price based on the input data, according to various embodiments of the present disclosure.
  • power transaction data related to factors eg, fuel cost unit price, demand forecast amount, bidding amount, etc.
  • factors eg, fuel cost unit price, demand forecast amount, bidding amount, etc.
  • the collected power transaction data may be pre-processed and processed so as to be utilized as input data for learning an artificial intelligence algorithm.
  • data pre-processing function data by year/month/day/hour can be sampled or expanded, and necessary data can be selectively extracted by column and time.
  • data processing function the function of estimating missing data using interpolation from the original data, the function of detecting and correcting abnormal data, the function of smoothing the original data for generalization of artificial intelligence system learning, the function of normalizing the original data, etc. may be included.
  • interpolation is a series of functions that obtains an approximate function (f(x)) that satisfies the given data from statistically or experimentally obtained data (xi), and uses this formula to obtain a function value for a given variable.
  • Abnormal data means data that deviate by more than a certain value on the graph of the function
  • smoothing means a process of smoothing the data set by removing noise values, etc.
  • normalization means the process of structuring data to minimize redundancy.
  • a system user may determine an optimal artificial neural network configuration by adjusting hyper parameters on the UI.
  • the hyperparameter may include the number of hidden units, the number of iterations, a batch size, a learning rate, and the like.
  • the optimal artificial neural network configuration may be defined as a hyperparameter in the case where the error between the SMP predicted value and the actual value output after learning of the artificial neural network determined according to the set hyperparameter is the smallest.
  • the configuration of the artificial neural network to which the power market time series data proposed in the present invention is input may be a LSTM network most suitable for time series data learning and a DNN connected thereto.
  • the data processed in S200 is input to the artificial neural network designed by the hyperparameter set in operation S300 to learn about the designed artificial neural network.
  • the SMP predicted value output from the artificial neural network that has been trained may be compared with the actual value.
  • the optimal hyperparameter may be found by repeating operations S300 and S400.
  • the SMP prediction algorithm designed above may be used to predict the SMP of the all-day market in a 24-hour period and/or the SMP of the real-time market that fluctuates in units of one hour.
  • the electricity market price may be predicted and determined based on the predicted SMP.
  • FIG. 3 is a diagram illustrating an algorithm model for outputting a previous market SMP prediction value (SMP t ) when input data (X t ) is input through an artificial neural network trained using processed data.
  • SMP t previous market SMP prediction value
  • a previous market SMP prediction value may be output.
  • the input data may include the next-day electricity demand forecast, fuel cost per generator (nuclear power, bituminous coal, anthracite, oil, LNG, etc.), and bid amount per generator.
  • an LSTM network and a DNN may be sequentially connected.
  • the LSTM network may have two-level cells.
  • the DNN includes an input layer 115a, a hidden layer 115b, and an output layer 115c, and the number of hidden layers 115b may be changed according to hyperparameter adjustment.
  • FIG. 4 is a view showing the overall configuration of the electric power market price prediction apparatus 100.
  • the power market price prediction apparatus 100 may include a processor 110 , a memory 120 , an input unit 130 , and an output unit 140 .
  • each component may be composed of one chip, component, or electronic circuit, or may be composed of a combination of chips, components, or electronic circuits.
  • some of the components shown in FIG. 4 may be divided into a plurality of components (eg, a plurality of processors) and configured as different chips or components or electronic circuits, and some components may be They may be combined to form a single chip, component or electronic circuit.
  • the memory 120 may store data supporting various functions of the power market price prediction apparatus 100 .
  • the memory 120 includes a plurality of application programs driven in the power market price prediction device 100, program codes for the operation of the power market price prediction device 100, for example, a deep neural network model designed for a specific task. It is possible to store the implemented program code, in particular the program code of the trained deep neural network model, and the like.
  • the memory 120 may store the data required for the power market price prediction device 100 to learn through the artificial neural network, the data generated during the learning process of the artificial neural network, and the program code of the learned deep neural network model finally determined through learning. have.
  • the input unit 130 may receive data that is a factor influencing the power market price determination, such as the predicted amount of power demand, the unit price of fuel for each generator, and the bidding amount from the public institution database 200 .
  • the output unit 140 may output the prediction result of the systemic limit price (SMP) of the previous day's market or the systemic limiting price (SMP) of the real-time market.
  • SMP systemic limit price
  • the processor 110 may perform data processing and/or calculation for the overall operation of the power market price prediction apparatus 100 .
  • the processor 110 may control at least one other component included in the power market price prediction apparatus 100 by driving a software program.
  • the processor 110 may perform learning according to machine learning according to the program code stored in the memory 120 , and store the learning result in the memory 120 .
  • the processor 110 may predict the SMP based on the collected data. According to an embodiment, the processor 110 may predict the SMP based on the collected data using the trained artificial neural network model 111 .
  • the learned artificial neural network model 111 may be pre-trained in an external device and stored in the memory 120 , and the processor 110 reads the learned artificial neural network model 111 stored in the memory 120 , SMP can be predicted by performing
  • FIG. 5 is a diagram illustrating an internal configuration of the processor 110 of the power market price prediction apparatus 100 .
  • the processor 110 may include a data collection module 112 , a data processing module 113 , a learning module 114 , an SMP prediction module 115 , and an artificial neural network model 111 .
  • the data collection module 112 may collect electricity transaction data related to factors (eg, fuel cost unit price, demand forecast amount, bid amount, etc.) that affect the price determination in the electricity market from a public institution database.
  • the data processing module 113 may perform pre-processing and processing to utilize the collected power transaction data as input data for learning an artificial intelligence algorithm.
  • the learning module 114 may receive the processed data and proceed with learning.
  • the SMP prediction module 115 may predict the all-day market or real-time SMP by using the learned artificial neural network.
  • the artificial neural network model 111 may be designed as an optimal hyper parameter determined by the LSTM network and the DNN may be sequentially connected, and the system user may adjust the hyper parameter on the UI. According to various embodiments, the learned artificial neural network model 111 may be previously learned in an external device and stored in the memory 120 .
  • SMP system limit price
  • pre-processing and processing may be performed on the system UI so that the collected power transaction data can be used as data for learning an artificial neural network algorithm, and learning may be performed.
  • the data pre-processing function it is possible to sample or expand the data by year/month/day/hour, and to selectively extract the necessary data.
  • the function of estimating missing data using interpolation from the original data, the function of detecting and correcting abnormal data, the function of smoothing the original data for generalization of artificial intelligence system learning, the function of normalizing the original data, etc. may be included.
  • artificial neural network learning can be performed by using the systematic limit price (SMP) data for each hour (24h) of a specific period as an output value.
  • SMP systematic limit price
  • FIG. 7 is a diagram illustrating comparative analysis data between an actual SMP value and an all-day market SMP value of a 24-hour period predicted through artificial neural network learning.
  • the predicted SMP matches the actual SMP by about 97% with the algorithm model trained 500 times through the artificial neural network of FIG. 3 .
  • the electricity market price prediction device performs algorithm learning for predicting the system limit price (SMP) through input data such as demand forecast amount, fuel cost unit price, and bid amount, and uses the learned algorithm for 24 hours.
  • SMP system limit price
  • the electric power price is predicted based on this, making it more accurate, reasonable, and reflecting real-time Pricing function can be provided.

Abstract

The present invention relates to an artificial neural network-based electricity market price prediction method and apparatus, and the electricity market price prediction method may comprise the steps of: collecting electricity transaction data from a database; processing the collected data into a state that can be input to an artificial neural network; performing learning of the artificial neural network with the processed data; and predicting a system marginal price (SMP) by using the learned artificial neural network. According to the present invention, it is possible to predict the system marginal price (SMP) of a day-ahead market and/or a real-time market through the learned artificial neural network.

Description

인공신경망 기반 전력시장 가격 예측 시스템Artificial Neural Network-based Electricity Market Price Prediction System
본 발명은 인공신경망을 기반으로 하는 전력시장 가격 예측 시스템에 관한 것이다.The present invention relates to a power market price prediction system based on an artificial neural network.
국내 전력시장의 거래가격은 발전계획프로그램(RSC, Resource Scheduling & Commitment)’을 이용하여 입찰에 참여한 발전기의 변동비가 낮은 순서에서 높은 순으로 반영하여 비용 최소화 원칙에 따라 결정하며, 이때 가장 변동비가 높은 발전기의 발전비용을 계통한계가격(SMP, System Marginal Price)이라고 하고, 이를 그 시간대의 시장 가격으로 결정하고 있다.The transaction price of the domestic electricity market is determined according to the principle of cost minimization by reflecting the variable cost of the generators participating in the bidding from the lowest to the highest using the Power Generation Planning Program (RSC, Resource Scheduling & Commitment). The generation cost of a generator is called the System Marginal Price (SMP), and it is determined by the market price of the time period.
국내 전력시장은 원료인 유류, LNG, 석탄 등의 발전기 비용에 따라 전력 가격을 예측하여 계통한계가격(SMP)을 결정하고 있으나, 이러한 전력시장 가격 예측 방법은 다양한 신재생 에너지가 공급되어 배전 레벨에서 전력거래가 이루어질 미래의 전력시장의 경우 고려해야 할 요인들이 많아져 적용이 어려울 수 있다.The domestic electricity market determines the system marginal price (SMP) by predicting the electricity price according to the cost of generators such as oil, LNG, and coal, which are raw materials. In the case of the future electricity market where electricity trading will take place, there are many factors to consider, so it may be difficult to apply.
또한 소규모/분산 형태의 미래 전력시장의 경우 실시간으로 전력 가격을 예측하는 것이 중요하나, 현재 국내의 전력시장 가격 예측 방법은 거래당일 하루 전에 예측된 전력 수요와 발전기들의 입찰량 등을 고려하여 시장가격이 예측 및 결정되는 구조로, 가격에 영향을 주는 여러 변수들의 실시간 반영이 어려운 면이 있다.In addition, in the case of a small/distributed future electricity market, it is important to predict the electricity price in real time, but the current domestic electricity market price prediction method is the market price considering the electricity demand predicted one day before the day of the transaction and the bid amount of generators. With this predictive and determined structure, it is difficult to reflect in real time various variables that affect the price.
따라서 본 발명에서는 신재생 에너지 등의 공급 확대 및 소규모/분산 전력거래 시장이 예상되는 미래의 전력시장에 대응하기 위하여, 전력 가격에 영향을 미치는 다양한 요인들을 고려하여 가격을 결정하는 인공신경망 기반의 전력시장 가격 예측 시스템을 제안한다.Therefore, in the present invention, in order to respond to the future power market in which the supply of new and renewable energy is expected to expand and the small/distributed power trading market is expected, an artificial neural network-based power that determines the price in consideration of various factors affecting the price of electricity We propose a market price prediction system.
본 문서에서 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in this document are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.
본 발명의 다양한 실시 예들에 따른 전력시장 가격 예측 방법은, 데이터베이스로부터 전력 거래 데이터를 수집하는 단계; 상기 수집된 데이터를 인공신경망에 입력할 수 있는 상태로 가공하는 단계; 상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하는 단계; 및 상기 학습된 인공신경망을 이용하여 계통한계가격(SMP)을 예측하는 단계를 포함할 수 있다.A power market price prediction method according to various embodiments of the present disclosure includes collecting power transaction data from a database; processing the collected data into a state that can be input to an artificial neural network; performing learning of the artificial neural network with the processed data; and predicting a systematic marginal price (SMP) using the learned artificial neural network.
본 발명의 다양한 실시 예들에 따르면, 상기 전력 거래 데이터는 전력 수요 예측량, 연료비 단가 및 입찰량 등을 포함할 수 있다.According to various embodiments of the present disclosure, the power transaction data may include a power demand forecast amount, a fuel cost unit price, a bid amount, and the like.
본 발명의 다양한 실시 예들에 따르면, 상기 인공신경망은 LSTM(Long Short-Term Memory)네트워크와 DNN(Deep Neural Network)이 순서대로 연결된 모델인 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the artificial neural network may be a model in which a Long Short-Term Memory (LSTM) network and a Deep Neural Network (DNN) are sequentially connected.
본 발명의 다양한 실시 예들에 따르면, 상기 수집된 데이터를 가공하는 단계는, 날짜 또는 시간 별로 데이터를 샘플링하거나 확장하는 단계; 및 필요한 데이터를 컬럼 및 시간별로 선택적으로 추출하는 단계 중 적어도 어느 하나를 포함할 수 있다.According to various embodiments of the present disclosure, the processing of the collected data may include: sampling or expanding data by date or time; And it may include at least one of the step of selectively extracting the required data by column and time.
본 발명의 다양한 실시 예들에 따르면, 상기 수집된 데이터를 가공하는 단계는, 원본 데이터에 보간법을 적용하여 누락 데이터를 추정하는 단계; 이상 데이터를 감지 및 보정하는 단계; 원본데이터를 스무딩 하는 단계; 및 원본데이터를 정규화 하는 단계 중 적어도 어느 하나를 더 포함할 수 있다.According to various embodiments of the present disclosure, the processing of the collected data may include: estimating missing data by applying an interpolation method to the original data; detecting and correcting abnormal data; smoothing the original data; And it may further include at least one of the step of normalizing the original data.
본 발명의 다양한 실시 예들에 따르면, 상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하는 단계는, 시스템 사용자의 입력에 기초하여 하이퍼 파라미터를 조정함으로써 알고리즘을 설계하는 단계; 상기 설계된 알고리즘에 대하여 가공된 데이터를 입력으로 하고 계통한계가격(SMP) 값을 출력으로 하여 학습을 진행하는 단계; 및 계통한계가격(SMP)의 예측값과 실제값의 오차가 최소가 되도록 하이퍼 파라미터를 보정하는 단계를 포함할 수 있다.According to various embodiments of the present disclosure, the step of learning the artificial neural network with the processed data may include designing an algorithm by adjusting a hyper parameter based on an input of a system user; performing learning by receiving the processed data for the designed algorithm as an input and outputting a systematic marginal price (SMP) value as an output; and correcting the hyperparameter so that an error between the predicted value and the actual value of the systematic limit price (SMP) is minimized.
본 발명의 다양한 실시 예들에 따르면, 상기 계통한계가격(SMP)을 예측하는 단계는, 24시간 주기의 전일 시장 계통한계가격(SMP)을 예측하는 단계인 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the step of predicting the systematic marginal price (SMP) may be a step of predicting the previous-day market systematic limiting price (SMP) of a 24-hour period.
본 발명의 다양한 실시 예들에 따르면, 상기 계통한계가격(SMP)을 예측하는 단계는, 1시간 단위로 변동되는 실시간 시장의 계통한계가격(SMP)을 예측하는 단계인 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the predicting of the SMP may include predicting the SMP of the real-time market, which varies in units of one hour.
본 발명의 다양한 실시 예들에 따르면, 상기 예측된 계통한계가격(SMP)에 근거하여 전력시장 가격을 예측 및 결정하는 것을 특징으로 할 수 있다.According to various embodiments of the present invention, it may be characterized in that the electricity market price is predicted and determined based on the predicted system limit price (SMP).
본 발명의 다양한 실시 예들에 따르면, 전력시장 가격 예측 장치는 프로세서; 및 상기 프로세서에 의해 실행 가능한 명령어들을 저장하는 메모리; 를 포함하고, 상기 프로세서는, 상기 명령어들을 실행함으로써, 데이터베이스로부터 전력 거래 데이터를 수집하고, 상기 수집된 데이터를 인공신경망에 입력할 수 있는 상태로 가공하고, 상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하고, 상기 학습된 인공신경망을 이용하여 계통한계가격(SMP)을 예측할 수 있다.According to various embodiments of the present disclosure, an apparatus for predicting a power market price includes a processor; and a memory storing instructions executable by the processor; including, wherein the processor collects power transaction data from the database by executing the instructions, processes the collected data into a state that can be input to the artificial neural network, and uses the processed data for the artificial neural network. Learning is performed, and a systematic marginal price (SMP) can be predicted using the learned artificial neural network.
본 발명의 다양한 실시 예들에 따르면, 상기 전력 거래 데이터는, 전력 수요 예측량, 연료비 단가 및 입찰량을 포함하는 데이터를 포함할 수 있다.According to various embodiments of the present disclosure, the power transaction data may include data including a power demand forecast amount, a fuel cost unit price, and a bid amount.
본 발명의 다양한 실시 예들에 따르면, 상기 인공신경망은, LSTM(Long Short-Term Memory)네트워크와 DNN(Deep Neural Network)이 순서대로 연결된 모델인 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the artificial neural network may be a model in which a Long Short-Term Memory (LSTM) network and a Deep Neural Network (DNN) are sequentially connected.
본 발명의 다양한 실시 예들에 따르면, 상기 프로세서는, 날짜 또는 시간 별로 데이터를 샘플링하거나 확장하고, 필요한 데이터를 컬럼 및 시간별로 선택적으로 추출하는 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the processor may sample or expand data by date or time, and selectively extract necessary data by column and time.
본 발명의 다양한 실시 예들에 따르면, 상기 프로세서는, 원본 데이터에 보간법을 적용하여 누락 데이터를 추정하고, 이상 데이터를 감지 및 보정하고, 원본데이터를 스무딩 하고, 원본데이터를 정규화 하는 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the processor applies interpolation to the original data to estimate missing data, detect and correct abnormal data, smooth the original data, and normalize the original data. have.
본 발명의 다양한 실시 예들에 따르면, 상기 프로세서는, 시스템 사용자의 입력에 기초하여 하이퍼 파라미터를 조정함으로써 알고리즘을 설계하고, 상기 설계된 알고리즘에 대하여 가공된 데이터를 입력으로 하고 계통한계가격(SMP) 값을 출력으로 하여 학습을 진행하고, 계통한계가격(SMP)의 예측값과 실제값의 오차가 최소가 되도록 하이퍼 파라미터를 보정하는 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the processor designs an algorithm by adjusting a hyper parameter based on a system user's input, receives processed data for the designed algorithm as an input, and sets a systematic marginal price (SMP) value. It may be characterized by performing learning as an output and correcting the hyperparameter so that the error between the predicted value and the actual value of the systematic marginal price (SMP) is minimized.
본 발명의 다양한 실시 예들에 따르면, 상기 예측된 계통한계가격(SMP)은 24시간 주기의 전일 시장 계통한계가격(SMP)인 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the predicted systematic marginal price (SMP) may be characterized as the all-day market systematic marginal price (SMP) of a 24-hour period.
본 발명의 다양한 실시 예들에 따르면, 상기 예측된 계통한계가격(SMP)은 1시간 단위로 변동되는 실시간 시장의 계통한계가격(SMP)인 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the predicted systemic limiting price (SMP) may be a real-time systemic limiting price (SMP) of the real-time market that changes in units of one hour.
본 발명의 다양한 실시 예들에 따르면, 상기 프로세서는, 예측된 계통한계가격(SMP)에 근거하여 전력시장 가격을 예측 및 결정하는 것을 특징으로 할 수 있다.According to various embodiments of the present disclosure, the processor may predict and determine the electricity market price based on the predicted system limit price (SMP).
본 발명의 다양한 실시 예들에 따르면, 컴퓨터로 읽을 수 있는 기록매체에 기록된 전력시장 가격 예측 방법을 구현하기 위한 프로그램은, 데이터베이스로부터 전력 거래 데이터를 수집하는 단계; 상기 수집된 데이터를 인공신경망에 입력할 수 있는 상태로 가공하는 단계; 상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하는 단계; 및 상기 학습된 인공신경망을 이용하여 계통한계가격(SMP)을 예측하는 단계를 포함할 수 있다.According to various embodiments of the present disclosure, a program for implementing a method for predicting electricity market prices recorded on a computer-readable recording medium may include: collecting electricity transaction data from a database; processing the collected data into a state that can be input to an artificial neural network; performing learning of the artificial neural network with the processed data; and predicting a systematic marginal price (SMP) using the learned artificial neural network.
다양한 실시 예들에 따라, 예측하기 어려운 미래의 전력거래 시장에서 가격 결정에 영향을 미치는 어떠한 요인이 발생하더라도 해당 요인을 반영하여 전력시장의 가격 결정 발전계획을 수립할 수 있다.According to various embodiments, it is possible to establish a pricing development plan for the electricity market by reflecting any factors affecting price determination in the unpredictable future electricity trading market.
다양한 실시 예들에 따라, 소규모/분산 형태의 미래 전력거래 시장의 가격 결정 발전계획을 위한 SMP 계통운영 계획수립이 가능하며, 전력시장의 발전계획 및 입찰계획을 위한 지표를 제공할 수 있다.According to various embodiments, it is possible to establish an SMP system operation plan for a price-determining power generation plan of a small-scale/distributed future power trading market, and it is possible to provide an indicator for a power market power generation plan and a bidding plan.
다양한 실시 예들에 따라, 신뢰도 높은 네트워크 구축으로 완전(full) 디지털 변전소 도입기반을 마련할 수 있다.According to various embodiments, it is possible to prepare a foundation for introducing a full digital substation by building a reliable network.
다양한 실시 예들에 따라, 전력시장에서 제공하는 데이터를 사용하여 사용자가 손쉽게 전일 시장 또는 실시간 시장의 SMP를 예측하여 가격 결정 발전계획, 전력계통운영을 위한 지표를 제공할 수 있으며, 예측된 SMP와 가격의 추이를 분석하여 소규모/개인 간의 전력거래와 입찰량의 지표로 활용할 수 있다. 특히, 가까운 미래에 P2P(개인 간) 전력거래가 활성화 될 경우, 전력 거래 가격 결정의 기준이 될 수 있다.According to various embodiments, a user can easily predict the SMP of the previous day or real-time market using data provided by the power market to provide an indicator for price determination, power generation plan, and power system operation, and the predicted SMP and price It can be used as an indicator of small-scale/individual electricity transaction and bidding amount by analyzing the trend of In particular, when P2P (person-to-person) electricity trading is activated in the near future, it can become a standard for determining electricity transaction prices.
다양한 실시 예들에 따라, 시스템 UI에서 확보된 데이터 시각화를 통한 데이터 모니터링 및 인공지능 학습을 위한 데이터 가공을 사용자가 쉽게 할 수 있고, 가공된 데이터의 상황을 즉시 모니터링 할 수 있다.According to various embodiments, a user can easily process data for data monitoring and artificial intelligence learning through data visualization secured in the system UI, and can immediately monitor the status of the processed data.
다양한 실시 예들에 따라, 알고리즘 학습 시 요구되는 파라미터를 UI에서 조정하여 시스템 사용자가 쉽게 UI 내에서 알고리즘 학습을 진행하여 최적의 파라미터를 찾을 수 있다.According to various embodiments, by adjusting parameters required for algorithm learning in the UI, a system user can easily perform algorithm learning within the UI to find an optimal parameter.
다양한 실시 예들에 따라, 알고리즘 학습 시 입력데이터에 미래 전력시장에서 새로운 가격 결정요인이 발생할 경우에도 해당 알고리즘을 유사하게 적용 가능하므로, 현재 예측하기 어려운 미래 전력시장의 가격 결정 발전계획 수립에 효과적이다.According to various embodiments, since the algorithm can be similarly applied even when a new price determining factor occurs in the future power market in the input data during algorithm learning, it is effective in establishing a pricing development plan in the future power market that is currently difficult to predict.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtainable in the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those of ordinary skill in the art to which the present disclosure belongs from the description below. will be.
도 1은, 다양한 실시 예들에 따른, 인공신경망 알고리즘의 일종인 LSTM의 구조를 도시한 도면이다.1 is a diagram illustrating a structure of an LSTM, which is a type of an artificial neural network algorithm, according to various embodiments of the present disclosure.
도 2는, 다양한 실시 예들에 따른, 인공신경망 기반 전력시장 가격 예측 방법의 흐름도를 도시한 도면이다.2 is a diagram illustrating a flowchart of a method for predicting electricity market price based on an artificial neural network, according to various embodiments of the present disclosure.
도 3은, 다양한 실시 예들에 따른, 가공된 데이터를 이용하여 학습된 인공신경망을 통해 입력데이터(X t) 입력시 전일 시장 SMP 예측값(SMP t)을 출력하는 알고리즘 모델을 도시한 도면이다.3 is a diagram illustrating an algorithm model for outputting a previous-day market SMP prediction value (SMP t ) when input data (X t ) is input through an artificial neural network trained using processed data, according to various embodiments.
도 4는, 다양한 실시 예들에 따른, 전력시장 가격 예측 장치의 전체적인 구성을 도시한 도면이다.4 is a diagram illustrating an overall configuration of an apparatus for predicting electricity market prices according to various embodiments of the present disclosure.
도 5는, 다양한 실시 예들에 따른, 전력시장 가격 예측 장치 중 프로세서의 내부 구성을 도시한 도면이다.5 is a diagram illustrating an internal configuration of a processor in an apparatus for predicting a power market price according to various embodiments of the present disclosure;
도 6은, 다양한 실시 예들에 따른, 수집된 전력시장 데이터 중 특정기간의 시간별(24h) 계통한계가격(SMP) 데이터가 표시된 화면을 도시한 도면이다.6 is a diagram illustrating a screen on which system limit price (SMP) data for a specific period of time (24h) is displayed among the collected electricity market data according to various embodiments of the present disclosure.
도 7은, 다양한 실시 예들에 따른, 실제 SMP 값과 예측된 SMP 값의 비교분석 자료를 도시한 도면이다.7 is a diagram illustrating comparative analysis data between an actual SMP value and a predicted SMP value, according to various embodiments of the present disclosure;
도면의 설명과 관련하여, 동일 또는 유사한 구성요소에 대해서는 동일 또는 유사한 참조 부호가 사용될 수 있다.In connection with the description of the drawings, the same or similar reference numerals may be used for the same or similar components.
※ 부호의 설명※ Explanation of symbols
100: 전력시장 가격 예측 장치100: power market price prediction device
110: 프로세서110: processor
111: 인공신경망 모델111: artificial neural network model
112: 데이터 수집 모듈112: data acquisition module
113: 데이터 가공 모듈113: data processing module
114: 학습 모듈114: learning module
115: SMP 예측 모듈115: SMP prediction module
115a: 입력층115a: input layer
115b: 은닉층115b: hidden layer
115c: 출력층115c: output layer
120: 메모리120: memory
130: 입력부130: input unit
140: 출력부140: output unit
200: 데이터 베이스200: database
이하 다양한 실시 예들이 첨부된 도면을 참고하여 상세히 설명된다.Hereinafter, various embodiments will be described in detail with reference to the accompanying drawings.
도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략할 수 있다. Regardless of the reference numerals, the same or similar components are assigned the same reference numerals, and overlapping descriptions thereof may be omitted.
이하의 설명에서 사용되는 구성요소에 대한 접미사 '모듈' 또는 '부'는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, '모듈' 또는 '부'는 소프트웨어 또는 FPGA(field programmable gate array) 또는 ASIC(application specific integrated circuit)과 같은 하드웨어 구성요소를 의미하나, 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '부' 또는 '모듈'은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서 일 예로서 '부' 또는 '모듈'은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함할 수 있다. 하나의 구성요소, '부' 또는 '모듈'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '부' 또는 '모듈'들로 결합되거나 추가적인 구성요소들과 '부' 또는 '모듈'들로 더 분리될 수 있다.The suffix 'module' or 'part' for the components used in the following description is given or mixed in consideration of only the ease of writing the specification, and does not have a meaning or role distinct from each other by itself. In addition, 'module' or 'unit' refers to software or hardware components such as field programmable gate array (FPGA) or application specific integrated circuit (ASIC), but is not limited to software or hardware. A 'unit' or 'module' may be configured to reside on an addressable storage medium or may be configured to reproduce one or more processors. Thus, as an example, 'part' or 'module' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. may include procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functionality provided in one component, 'unit' or 'module' may be combined into a smaller number of components and 'unit' or 'module' or additional components and 'unit' or 'module' can be further separated.
본 발명의 몇몇 실시 예들과 관련하여 설명되는 방법 또는 알고리즘의 단계는 프로세서에 의해 실행되는 하드웨어, 소프트웨어 모듈, 또는 그 2 개의 결합으로 직접 구현될 수 있다. 소프트웨어 모듈은 RAM 메모리, 플래시 메모리, ROM 메모리, EPROM 메모리, EEPROM 메모리, 레지스터, 하드 디스크, 착탈형 디스크, CD-ROM, 또는 당업계에 알려진 임의의 다른 형태의 기록 매체에 상주할 수도 있다. 예시적인 기록 매체는 프로세서에 커플링되며, 그 프로세서는 기록 매체로부터 정보를 판독할 수 있고 저장 매체에 정보를 기입할 수 있다. 다른 방법으로, 기록 매체는 프로세서와 일체형일 수도 있다. 프로세서 및 기록 매체는 주문형 집적회로(ASIC) 내에 상주할 수도 있다. ASIC은 사용자 단말기 내에 상주할 수도 있다.The steps of a method or algorithm described in connection with some embodiments of the present invention may be directly implemented in hardware executed by a processor, a software module, or a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of recording medium known in the art. An exemplary recording medium is coupled to the processor, the processor capable of reading information from, and writing information to, the storage medium. Alternatively, the recording medium may be integral with the processor. The processor and recording medium may reside within an application specific integrated circuit (ASIC). The ASIC may reside within the user terminal.
어떤 구성요소가 다른 구성요소에 ‘연결되어’ 있다거나 ‘접속되어’ 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 ‘직접 연결되어’ 있다거나 ‘직접 접속되어’ 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When it is said that a component is 'connected' or 'connected' to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in between. it should be On the other hand, when it is mentioned that a certain element is 'directly connected' or 'directly connected' to another element, it should be understood that there is no other element in the middle.
우선 본 명세서에서 사용되는 용어들에 대하여 간략히 설명한다.First, the terms used in this specification will be briefly described.
인공지능은 인간의 지능을 갖춘 컴퓨터 시스템 또는 장치이며, 인간의 지능을 기계 등에 인공적으로 구현한 것을 의미할 수 있다. 인공 지능은 또한 지능을 만들 수 있는 방법론이나 실현 가능성 등을 연구하는 과학 분야를 지칭하기도 한다.Artificial intelligence is a computer system or device equipped with human intelligence, and may refer to artificially implemented human intelligence in a machine or the like. Artificial intelligence also refers to the field of science that studies the methodology or feasibility of creating intelligence.
인공신경망(artificial neural network)은 인공지능을 구현하는 모델 또는 알고리즘으로써, 기계학습에서 생물학의 신경망을 모사하여 모델링한 통계학적 학습 알고리즘으로, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 모델 또는 학습 알고리즘이라 할 수 있다.An artificial neural network is a model or algorithm that implements artificial intelligence. It is a statistical learning algorithm modeled by simulating a biological neural network in machine learning. It can be called a model or learning algorithm having problem-solving ability by changing the binding strength of
인공신경망은 입력 층, 출력 층 그리고 하나 이상의 은닉 층을 포함할 수 있다. 인공신경망의 각 층은 신경망의 뉴런에 대응하는 복수의 노드를 포함하고, 인공신경망의 한 층의 노드와 다른 층의 노드 간은 시냅스로 연결될 수 있다. 일 실시 예로 각 층의 모든 노드와 다음 층의 모든 노드가 시냅스로 연결된 인공신경망을 완전 연결된 인공신경망이라 칭할 수 있다.An artificial neural network may include an input layer, an output layer, and one or more hidden layers. Each layer of the artificial neural network includes a plurality of nodes corresponding to neurons of the neural network, and a node in one layer of the artificial neural network and a node in another layer may be connected by a synapse. In one embodiment, an artificial neural network in which all nodes of each layer and all nodes of the next layer are synaptically connected may be referred to as a fully connected artificial neural network.
인공신경망에서 각 노드는 시냅스를 통해 입력되는 입력 신호들을 받고 각 입력 신호들에 대한 가중치 및 편향에 대한 활성 함수에 기초하여 출력 값을 생성할 수 있다.In the artificial neural network, each node may receive input signals input through a synapse and generate an output value based on an activation function for weights and biases for each input signal.
심층 신경망(deep neural network, DNN)은 입력층과 출력층 사이에 복수의 은닉층을 포함하는 인공신경망을 통칭할 수 있다. 심층 신경망은 복잡한 비선형 관계들을 모델링할 수 있으며, 그 목적에 따라 다양한 구조를 가질 수 있다. 예를 들면, 심층 신경망 구조로, 순환 신경망(recurrent neural network, RNN), LSTM(long short-term memory)등이 있을 수 있다.A deep neural network (DNN) may collectively refer to an artificial neural network including a plurality of hidden layers between an input layer and an output layer. A deep neural network can model complex nonlinear relationships and can have various structures depending on its purpose. For example, as a deep neural network structure, there may be a recurrent neural network (RNN), a long short-term memory (LSTM), or the like.
순환 신경망(RNN)은 내부에 순환 구조가 들어 있어 과거 시간의 학습이 가중치와 곱해져 현재 학습에 반영될 수 있은 구조이며, 현재의 출력 결과는 과거 시간에서의 출력 결과에 영향을 받으며, 은닉 층은 일종의 메모리 기능을 수행한다. 따라서 순차적인 데이터를 학습하여 분류 또는 예측을 수행하는 데 효과적일 수 있다. The recurrent neural network (RNN) has a cyclic structure inside, so the learning of the past time is multiplied by the weight and can be reflected in the current learning. performs a kind of memory function. Therefore, it can be effective in performing classification or prediction by learning sequential data.
LSTM은 순환 신경망의 일종으로써 순환신경망의 오래된 과거 데이터가 영향을 미치지 못하고 사라지는 문제점을 해소하는 신경망이며, 순환신경망과 마찬가지로, 순차적인 데이터를 학습하여 분류 또는 예측을 수행하는 데 효과적일 수 있다. As a type of recurrent neural network, LSTM is a neural network that solves the problem that old data of the cyclical neural network disappears without affecting it. Like the cyclical neural network, it can be effective in performing classification or prediction by learning sequential data.
도 1은, 다양한 실시예에 따른 인공신경망 알고리즘의 일종인 LSTM의 구조를 도시한 도면이다.1 is a diagram illustrating the structure of an LSTM, which is a type of an artificial neural network algorithm according to various embodiments.
도 1을 참조하면, LSTM은 복수 개의 동일한 구조의 셀(cell)로 구성될 수 있다. LSTM의 각 셀은 지금 시간의 셀 상태(예: C t) 및 출력(예: h t)을 이전 시간의 셀 상태(예: C t-1) 및 출력(예: h t-1)과 지금 시간의 입력(예: x t)에 기초하여 결정할 수 있다. 이에 따라, LSTM의 각 셀은 4개의 신경망 층(neural network layer)을 포함할 수 있다. Referring to FIG. 1 , an LSTM may include a plurality of cells having the same structure. Each cell in the LSTM compares the cell state (e.g. C t ) and output (e.g. h t ) at the current time to the cell state (e.g. C t-1 ) and output (e.g. h t-1 ) at the previous time and now It can be determined based on an input of time (eg x t ). Accordingly, each cell of the LSTM may include four neural network layers.
첫 번째 신경망 층은 망각 게이트 층(forget gate layer)라고도 불리며 과거 및 현재의 정보를 반영할지를 결정하는 게이트이다. 일 실시 예에 따라 게이트는 시그모이드 함수(sigmoid function)를 이용하여 결정을 수행할 수 있다. 시그모이드 함수는 S자형 곡선을 갖는 수학 함수로 일 실시 예로 수학식 1의 함수로 정의될 수 있다.The first neural network layer, also called the forget gate layer, is the gate that decides whether to reflect past and present information. According to an embodiment, the gate may perform the determination using a sigmoid function. The sigmoid function is a mathematical function having an S-shaped curve and may be defined as a function of Equation 1 in an embodiment.
Figure PCTKR2021002330-appb-img-000001
Figure PCTKR2021002330-appb-img-000001
수학식 1을 참조하면, 시그모이드 함수는 입력에 따라 0과 1 사이의 값을 출력할 수 있다.Referring to Equation 1, the sigmoid function may output a value between 0 and 1 according to an input.
다음 수학식 2는 망각 게이트 층의 출력을 획득하기 위한 함수를 정의한다.Equation 2 below defines a function for obtaining the output of the forgetting gate layer.
Figure PCTKR2021002330-appb-img-000002
Figure PCTKR2021002330-appb-img-000002
수학식 2를 참조하면, 망각 게이트 층의 출력(f t)은 이전 셀 출력(예: h t-1)과 현재 입력(예: x t)에 기초하여 이전 셀 상태(예: C t-1)를 망각할 것인지 아니면 보존할 것일지를 결정할 수 있다. 여기서, 망각 게이트 층의 가중치(W f)는 학습에 의하여 변경될 수 있는 값이며, 망각 게이트 층의 바이어스(b f)는 미리 설정되는 값이다. 그리고 σ는 시그모이드 함수를 나타낸다.Referring to Equation 2, the output (f t ) of the forgetting gate layer is the previous cell state (eg, C t-1 ) based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ). ) can be either forgotten or preserved. Here, the weight (W f ) of the forgetting gate layer is a value that can be changed by learning, and the bias (b f ) of the forgetting gate layer is a preset value. And σ represents the sigmoid function.
두 번째 신경망 층은 입력 게이트 층(input gate layer)이라고도 불리며 새로운 정보 중 어떤 것을 셀 상태(예: C t)에 저장할 것인지를 결정하며, 다음 수학식 3에 의해 정의될 수 있다.The second neural network layer is also called an input gate layer and determines which of the new information to be stored in a cell state (eg, C t ), and can be defined by Equation 3 below.
Figure PCTKR2021002330-appb-img-000003
Figure PCTKR2021002330-appb-img-000003
수학식 3을 참조하면, 입력 게이트 층의 출력(i t)은 이전 셀 출력(예: h t-1)과 현재 입력(예: x t)에 기초하여 정보 중 어떤 것을 셀 상태에 저장할 것인지를 결정할 수 있다. 여기서, 입력 게이트 층의 가중치(W i)는 학습에 의하여 변경될 수 있는 값이며, 입력 게이트 층의 바이어스(b i)는 미리 설정되는 값이다. 그리고 σ는 시그모이드 함수를 나타낸다.Referring to Equation 3, the output (i t ) of the input gate layer determines which of the information to be stored in the cell state based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ). can decide Here, the weight (W i ) of the input gate layer is a value that can be changed by learning, and the bias ( b i ) of the input gate layer is a preset value. And σ represents the sigmoid function.
세 번째 신경망 층은 셀 상태에 저장하기 위한 새로운 후보 값(~C t)을 결정한다. 새로운 후보 값(~C t)은 다음 수학식 4에 따라 결정될 수 있다.The third neural network layer determines a new candidate value (~C t ) to store in the cell state. A new candidate value (~C t ) may be determined according to Equation 4 below.
Figure PCTKR2021002330-appb-img-000004
Figure PCTKR2021002330-appb-img-000004
수학식 4를 참조하면, 새로운 후보 값(~C t)은 이전 셀 출력(예: h t-1)과 현재 입력(예: x t)에 기초하는 쌍곡탄젠트(hyperbolic tangent; tanh) 함수의 출력 값일 수 있다. 쌍곡탄젠트 함수는 -1에서 1사이의 값을 가질 수 있다. 여기서, 가중치(W C)는 학습에 의하여 변경될 수 있는 값이며, 바이어스(b C)는 미리 설정되는 값이다. 그리고 tanh는 쌍곡탄젠트 함수를 나타낸다. Referring to Equation 4, the new candidate value (~C t ) is the output of a hyperbolic tangent (tanh) function based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ) can be a value. The hyperbolic tangent function can have a value between -1 and 1. Here, the weight W C is a value that can be changed by learning, and the bias b C is a preset value. And tanh represents the hyperbolic tangent function.
상술한 세 개의 신경망 층의 결과에 기초하여 새로운 셀 상태(예: C t)가 결정될 수 있다. 수학식 5는 새로운 셀 상태(예: C t)를 결정하는 함수를 정의한다. A new cell state (eg, C t ) may be determined based on the results of the three neural network layers described above. Equation 5 defines a function for determining a new cell state (eg, C t ).
Figure PCTKR2021002330-appb-img-000005
Figure PCTKR2021002330-appb-img-000005
수학식 5를 참조하면, 과거의 셀 상태(C t-1)를 망각할 것인지 아니면 보존할 것인지를 나타내는 망각 게이트 층의 출력(f t)을 곱하여 과거 셀 상태(C t-1)의 보존 여부를 결정하고, 갱신하고자 하는 후보 값(~C t)과 갱신 정도를 나타내는 입력 게이트 층의 출력(i t)을 곱하여 최종 갱신할 값을 결정함으로서 새로운 셀 상태(C t)를 결정할 수 있다.Referring to equation (5), the conservation of the past cell state, the output of the forgetting gate layers showing whether to preserve or whether to forget (C t-1) (f t) to historical cell state (C t-1) multiplied by whether A new cell state (C t ) can be determined by determining a value to be updated and finally a value to be updated by multiplying the candidate value to be updated (~C t ) by the output (i t ) of the input gate layer indicating the degree of update.
마지막 네 번째 신경망 층은 출력 게이트 층(output gate layer)이라고도 불리며 무엇을 출력으로 내보낼 것인지를 결정하며, 다음 수학식 6에 의해 정의될 수 있다.The fourth and final neural network layer is also called an output gate layer and determines what to output as an output, and can be defined by Equation 6 below.
Figure PCTKR2021002330-appb-img-000006
Figure PCTKR2021002330-appb-img-000006
수학식 6을 참조하면, 출력 게이트 층의 출력(o t)은 이전 셀 출력(예: h t-1)과 현재 입력(예: x t)에 기초하여 갱신된 셀 상태(C t) 중에서 어떤 것을 출력할 것인지를 결정할 수 있다. 여기서, 출력 게이트 층의 가중치(W o)는 학습에 의하여 변경될 수 있는 값이며, 출력 게이트 층의 바이어스(b o)는 미리 설정되는 값이다. 그리고 σ는 시그모이드 함수를 나타낸다.Referring to Equation 6, the output (o t ) of the output gate layer is any of the cell state (C t ) updated based on the previous cell output (eg, h t-1 ) and the current input (eg, x t ). You can decide whether to print something. Here, the weight W o of the output gate layer is a value that can be changed by learning, and the bias b o of the output gate layer is a preset value. And σ represents the sigmoid function.
최종적으로 LSTM 의 셀 출력(h t)은 다음 수학식 7에 따라 결정될 수 있다.Finally, the cell output h t of the LSTM may be determined according to Equation 7 below.
Figure PCTKR2021002330-appb-img-000007
Figure PCTKR2021002330-appb-img-000007
여기서, tanh는 쌍곡 탄젠트 함수를 나타낸다.Here, tanh denotes a hyperbolic tangent function.
상술한 수학식 2 내지 7에 따라 셀 상태 및 출력을 결정하는 LSTM은 반복 학습을 통하여 가중치(W f, W i, W C, W o)를 변경하여 최적의 결과가 출력될 수 있도록 할 수 있다. The LSTM for determining the cell state and output according to Equations 2 to 7 described above can change the weights W f , Wi i , W C , W o through iterative learning so that an optimal result can be output. .
LSTM의 출력에서 최적의 결과가 출력되도록 가중치를 변경하는 것을 학습, 특히 기계 학습이라 칭할 수 있다. 기계 학습은 실측 값을 이용하여 입력 데이터를 생성하고, 입력 데이터의 입력 후 LSTM의 출력이 실측에 따른 결과 값이 나올 수 있도록 LSTM을 학습시키는 것일 수 있다. 이때, 기계 학습은 일 실시예에 따라, 경사 하강법(gradient descent) 및 역전파(back propagation)를 이용하여 LSTM의 출력과 실측 출력 값 사이의 오차를 최소화하도록 가중치(W f, W i, W C, W o) 값들을 정하는 것일 수 있다.Changing the weights so that the optimal result is output from the output of the LSTM can be called learning, particularly machine learning. Machine learning may be to generate input data using actual measurement values, and to train the LSTM so that the output of the LSTM after inputting the input data produces a result value according to the measurement. At this time, according to an embodiment, the machine learning uses the weights W f , W i , W to minimize the error between the output of the LSTM and the measured output value using gradient descent and back propagation. C , W o ) values may be determined.
본 발명에서는 실제 SMP 값과 인공신경망에 의해 예측된 SMP t 값과의 오차를 역전파(back propagation)를 이용하여 줄여나갈 수 있다.In the present invention, the error between the actual SMP value and the SMP t value predicted by the artificial neural network can be reduced by using back propagation.
상술한 LSTM과 DNN 등의 심층 신경망을 사용하여, 본 발명에서는 수요 예측량, 연료비 단가, 입찰량 등의 입력데이터를 통해 계통한계가격(SMP)의 예측을 위한 알고리즘 학습을 진행하고, 학습된 알고리즘을 활용하여 전일 시장 또는 실시간 시장의 계통한계가격(SMP)을 예측한 후, 이를 바탕으로 전력 가격을 예측하여 전력시장의 가격 결정에 활용할 수 있는 방법 및 장치를 제공하고자 한다.Using the deep neural networks such as LSTM and DNN described above, in the present invention, algorithm learning for prediction of systematic marginal price (SMP) is performed through input data such as demand forecast amount, fuel cost unit price, and bid amount, and the learned algorithm is To provide a method and device that can be used to determine the price of the electricity market by predicting the system marginal price (SMP) of the previous day's market or the real-time market by using it, and then predicting the electricity price based on this.
도 2는 다양한 실시 예들에 따른, 입력데이터를 통해 SMP를 예측하고 이를 바탕으로 전력 가격을 예측, 결정하는 방법을 도시한 흐름도이다.2 is a flowchart illustrating a method of predicting an SMP through input data and predicting and determining a power price based on the input data, according to various embodiments of the present disclosure.
도 2를 참조하면, 동작 S100에서, 공공기관 데이터 베이스에서 전력시장 가격 결정에 영향을 주는 요인(연료비 단가, 수요예측량, 입찰량 등)에 관련된 전력 거래 데이터를 수집할 수 있다.Referring to FIG. 2 , in operation S100 , power transaction data related to factors (eg, fuel cost unit price, demand forecast amount, bidding amount, etc.) affecting the price determination in the electricity market may be collected from the public institution database.
동작 S200에서, 수집된 전력거래 데이터를 인공지능 알고리즘 학습을 위한 입력데이터로 활용할 수 있도록 전처리 및 가공할 수 있다. 데이터 전처리 기능의 경우, 연별/월별/일별/시간별 데이터를 샘플링 또는 확장 할 수 있고, 필요한 데이터를 컬럼 및 시간별로 선택적으로 추출할 수 있다. 데이터 가공 기능의 경우, 원본데이터로부터 보간법을 이용하여 누락데이터를 추정하는 기능, 이상 데이터를 감지하고 보정하는 기능, 인공지능 시스템 학습 일반화를 위하여 원본데이터를 스무딩하는 기능, 원본데이터를 정규화 하는 기능 등이 포함될 수 있다. 여기서 보간(Interpolation)이란, 통계적 혹은 실험적으로 구해진 데이터들(xi)로부터, 주어진 데이터를 만족하는 근사 함수(f(x))를 구하고, 이 식을 이용하여 주어진 변수에 대한 함수 값을 구하는 일련의 과정을 의미한다. 이상데이터는 함수의 그래프 상에서 일정 값 이상 벗어난 데이터를 의미하며, 스무딩은 노이즈값 제거 등을 통해 데이터 세트를 매끄럽게 하는 과정을 의미하고, 정규화는 중복을 최소화하도록 데이터를 구조화 하는 과정을 의미한다.In operation S200, the collected power transaction data may be pre-processed and processed so as to be utilized as input data for learning an artificial intelligence algorithm. In the case of data pre-processing function, data by year/month/day/hour can be sampled or expanded, and necessary data can be selectively extracted by column and time. In the case of data processing function, the function of estimating missing data using interpolation from the original data, the function of detecting and correcting abnormal data, the function of smoothing the original data for generalization of artificial intelligence system learning, the function of normalizing the original data, etc. may be included. Here, interpolation is a series of functions that obtains an approximate function (f(x)) that satisfies the given data from statistically or experimentally obtained data (xi), and uses this formula to obtain a function value for a given variable. means process. Abnormal data means data that deviate by more than a certain value on the graph of the function, smoothing means a process of smoothing the data set by removing noise values, etc., and normalization means the process of structuring data to minimize redundancy.
동작 S300에서, SMP 예측을 위한 인공지능 알고리즘 설계시 시스템 사용자가 UI상에서 하이퍼 파라미터를 조정하여 최적의 인공신경망 구성을 결정할 수 있다. 여기서 하이퍼 파라미터에는 은닉 유닛의 수, 반복 횟수, 배치(batch) 사이즈, 학습률 등이 포함될 수 있다. 여기서 최적의 인공신경망 구성은 설정된 하이퍼 파라미터에 따라 결정된 인공신경망의 학습 후 출력된 SMP 예측값과 실제값과의 오차가 가장 작은 경우의 하이퍼 파라미터로 정의될 수 있다. 일실시 예에 따라, 본 발명에서 제안하는 전력시장 시계열 데이터를 입력으로 하는 인공신경망 구성은 시계열 데이터 학습에 가장 적합한 LSTM 네트워크와 DNN이 연결된 것일 수 있다.In operation S300 , when designing an artificial intelligence algorithm for SMP prediction, a system user may determine an optimal artificial neural network configuration by adjusting hyper parameters on the UI. Here, the hyperparameter may include the number of hidden units, the number of iterations, a batch size, a learning rate, and the like. Here, the optimal artificial neural network configuration may be defined as a hyperparameter in the case where the error between the SMP predicted value and the actual value output after learning of the artificial neural network determined according to the set hyperparameter is the smallest. According to an embodiment, the configuration of the artificial neural network to which the power market time series data proposed in the present invention is input may be a LSTM network most suitable for time series data learning and a DNN connected thereto.
동작 S400에서, 동작 S300에서 설정된 하이퍼 파라미터에 의해 설계된 인공신경망에 S200에서 가공된 데이터를 입력하여 설계된 인공신경망에 대한 학습을 진행한다. 설정된 하이퍼 파라미터의 적절성을 판단하기 위하여 학습이 완료된 인공신경망에서 출력된 SMP 예측값과 실제값이 비교될 수 있다. 예측값과 실제값 사이의 오차가 미리 설정된 값보다 커 적절치 않다고 판단하는 경우, 동작 S300 및 동작 S400을 반복하여 최적의 하이퍼 파라미터를 찾을 수 있다.In operation S400, the data processed in S200 is input to the artificial neural network designed by the hyperparameter set in operation S300 to learn about the designed artificial neural network. In order to determine the appropriateness of the set hyperparameter, the SMP predicted value output from the artificial neural network that has been trained may be compared with the actual value. When it is determined that the error between the predicted value and the actual value is larger than a preset value and it is not appropriate, the optimal hyperparameter may be found by repeating operations S300 and S400.
동작 S500에서, 상기에서 설계한 SMP 예측 알고리즘을 이용하여 24시간 주기의 전일 시장 SMP 및/또는 1시간 단위로 변동되는 실시간 시장의 SMP를 예측할 수 있다.In operation S500, the SMP prediction algorithm designed above may be used to predict the SMP of the all-day market in a 24-hour period and/or the SMP of the real-time market that fluctuates in units of one hour.
동작 S600에서, 예측된 SMP를 기준으로 전력시장 가격을 예측 및 결정할 수 있다.In operation S600, the electricity market price may be predicted and determined based on the predicted SMP.
도 3은 가공된 데이터를 이용하여 학습된 인공신경망을 통하여, 입력데이터(X t) 입력시 전일 시장 SMP 예측값(SMP t)을 출력하는 알고리즘 모델을 도시한 도면이다.FIG. 3 is a diagram illustrating an algorithm model for outputting a previous market SMP prediction value (SMP t ) when input data (X t ) is input through an artificial neural network trained using processed data.
도 3을 참조하면, 시간 별(총 24시간) 입력 데이터가 학습된 인공신경망에 입력되면, 전일 시장 SMP 예측 값이 출력될 수 있다. 여기서 입력데이터에는 익일 전력 수요예측량, 발전기(원자력, 유연탄, 무연탄, 유류, LNG 등)별 연료비단가, 발전기 별 입찰량이 포함될 수 있다. 상기 인공신경망은 LSTM 네트워크와 DNN이 순서대로 연결될 수 있다. 상기 LSTM 네트워크는 2단계의 셀을 가질 수 있다. 상기 DNN은 입력층(115a), 은닉층(115b), 출력층(115c)으로 구성되며, 하이퍼 파라미터 조정에 따라 은닉층(115b)의 수가 변화될 수 있다.Referring to FIG. 3 , when input data for each hour (a total of 24 hours) is input to the trained artificial neural network, a previous market SMP prediction value may be output. Here, the input data may include the next-day electricity demand forecast, fuel cost per generator (nuclear power, bituminous coal, anthracite, oil, LNG, etc.), and bid amount per generator. In the artificial neural network, an LSTM network and a DNN may be sequentially connected. The LSTM network may have two-level cells. The DNN includes an input layer 115a, a hidden layer 115b, and an output layer 115c, and the number of hidden layers 115b may be changed according to hyperparameter adjustment.
도 4는 전력시장 가격 예측 장치(100)의 전체적인 구성을 도시한 도면이다.4 is a view showing the overall configuration of the electric power market price prediction apparatus 100.
도 4를 참조하면, 전력시장 가격 예측 장치(100)는 프로세서(110), 메모리(120), 입력부(130), 출력부(140)를 포함할 수 있다. Referring to FIG. 4 , the power market price prediction apparatus 100 may include a processor 110 , a memory 120 , an input unit 130 , and an output unit 140 .
도 4에 도시된 전력시장 가격 예측 장치(100)의 구성은 일 실시 예로 각각의 구성 요소는 하나의 칩, 부품 또는 전자 회로로 구성되거나, 칩, 부품 또는 전자 회로의 결합으로 구성될 수 있다. 다른 일 실시 예에 따라, 도 4에 도시된 구성 요소들 중 일부는 복수 개의 구성 요소(예: 복수 개의 프로세서)로 분리되어 서로 다른 칩 또는 부품 또는 전자 회로로 구성될 수 있으며, 일부 구성 요소들은 결합되어 하나의 칩, 부품 또는 전자 회로로 구성될 수 있다.The configuration of the electric power market price prediction apparatus 100 shown in FIG. 4 is an example, and each component may be composed of one chip, component, or electronic circuit, or may be composed of a combination of chips, components, or electronic circuits. According to another embodiment, some of the components shown in FIG. 4 may be divided into a plurality of components (eg, a plurality of processors) and configured as different chips or components or electronic circuits, and some components may be They may be combined to form a single chip, component or electronic circuit.
다양한 실시 예에 따르면, 메모리(120)는 전력시장 가격 예측 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 메모리(120)는 전력시장 가격 예측 장치(100)에서 구동되는 다수의 응용 프로그램, 전력시장 가격 예측 장치(100)의 동작을 위한 프로그램 코드들, 예를 들어, 특정한 작업을 위해 설계된 심층 신경망 모델이 구현된 프로그램 코드, 특히 학습된 심층 신경망 모델의 프로그램 코드 등을 저장할 수 있다. 메모리(120)는 전력시장 가격 예측 장치(100)가 인공신경망을 통해 학습하는데 필요한 데이터, 인공신경망의 학습 과정 중에 생성된 데이터 및 학습을 통해 최종적으로 결정된 학습된 심층 신경망 모델의 프로그램 코드를 저장할 수 있다.According to various embodiments, the memory 120 may store data supporting various functions of the power market price prediction apparatus 100 . The memory 120 includes a plurality of application programs driven in the power market price prediction device 100, program codes for the operation of the power market price prediction device 100, for example, a deep neural network model designed for a specific task. It is possible to store the implemented program code, in particular the program code of the trained deep neural network model, and the like. The memory 120 may store the data required for the power market price prediction device 100 to learn through the artificial neural network, the data generated during the learning process of the artificial neural network, and the program code of the learned deep neural network model finally determined through learning. have.
다양한 실시 예에 따르면, 입력부(130)는 공공기관 데이터 베이스(200)로부터 전력 수요 예측량, 각 발전기 별 연료비 단가 및 입찰량 등 전력시장 가격 결정에 영향을 주는 요인이 되는 데이터를 입력 받을 수 있다.According to various embodiments, the input unit 130 may receive data that is a factor influencing the power market price determination, such as the predicted amount of power demand, the unit price of fuel for each generator, and the bidding amount from the public institution database 200 .
다양한 실시 예에 따르면, 출력부(140)는 전일 시장의 계통한계가격(SMP) 또는 실시간 시장의 계통한계가격(SMP) 예측결과를 출력할 수 있다.According to various embodiments of the present disclosure, the output unit 140 may output the prediction result of the systemic limit price (SMP) of the previous day's market or the systemic limiting price (SMP) of the real-time market.
다양한 실시 예에 따르면, 프로세서(110)는 전력시장 가격 예측 장치(100)의 전반적인 동작을 위한 데이터 처리 및/또는 연산을 수행할 수 있다. 프로세서(110)는 소프트웨어 프로그램을 구동하여 전력시장 가격 예측 장치(100)에 포함된 적어도 하나의 다른 구성 요소를 제어할 수 있다. 또한, 프로세서(110)는 메모리(120)에 저장된 프로그램 코드에 따라 기계 학습에 따른 학습을 수행하고, 학습의 결과를 메모리(120)에 저장할 수 있다. According to various embodiments, the processor 110 may perform data processing and/or calculation for the overall operation of the power market price prediction apparatus 100 . The processor 110 may control at least one other component included in the power market price prediction apparatus 100 by driving a software program. In addition, the processor 110 may perform learning according to machine learning according to the program code stored in the memory 120 , and store the learning result in the memory 120 .
프로세서(110)는 수집된 데이터에 기초하여 SMP를 예측할 수 있다. 일 실시예에 따라, 프로세서(110)는 학습된 인공신경망 모델(111)을 이용하여, 수집된 데이터에 기초한 SMP를 예측할 수 있다. 학습된 인공 신경망 모델(111)은 외부 장치에서 미리 학습되어 메모리(120)에 저장되어 있을 수 있고, 프로세서(110)는 메모리(120)에 저장되어 있는 학습된 인공신경망 모델(111)을 읽어 들여 수행함으로써 SMP를 예측할 수 있다.The processor 110 may predict the SMP based on the collected data. According to an embodiment, the processor 110 may predict the SMP based on the collected data using the trained artificial neural network model 111 . The learned artificial neural network model 111 may be pre-trained in an external device and stored in the memory 120 , and the processor 110 reads the learned artificial neural network model 111 stored in the memory 120 , SMP can be predicted by performing
도 5는 전력시장 가격 예측 장치(100) 중 프로세서(110)의 내부 구성을 도시한 도면이다.5 is a diagram illustrating an internal configuration of the processor 110 of the power market price prediction apparatus 100 .
도 5를 참조하면, 프로세서(110)는 데이터 수집 모듈(112), 데이터 가공 모듈(113), 학습 모듈(114), SMP 예측 모듈(115) 및 인공신경망 모델(111)을 포함할 수 있다. 여기서 데이터 수집 모듈(112)은 공공기관 데이터 베이스에서 전력시장 가격 결정에 영향을 주는 요인(연료비 단가, 수요예측량, 입찰량 등)에 관련된 전력 거래 데이터를 수집할 수 있다. 데이터 가공 모듈(113)은 수집된 전력거래 데이터를 인공지능 알고리즘 학습을 위한 입력데이터로 활용할 수 있도록 전처리 및 가공을 할 수 있다. 학습 모듈(114)은 상기 가공된 데이터를 입력받아 학습을 진행할 수 있다. SMP 예측 모듈(115)은 학습된 인공신경망을 이용하여 전일 시장 또는 실시간 SMP를 예측할 수 있다. 인공신경망 모델(111)은 LSTM네트워크와 DNN이 순서대로 연결될 수 있으며, 시스템 사용자가 UI상에서 하이퍼 파라미터를 조정하여 결정된, 최적의 하이퍼 파라미터로 설계될 수 있다. 다양한 실시 예에 따라, 학습된 인공 신경망 모델(111)은 외부 장치에서 미리 학습되어 메모리(120)에 저장되어 있는 경우도 있다.Referring to FIG. 5 , the processor 110 may include a data collection module 112 , a data processing module 113 , a learning module 114 , an SMP prediction module 115 , and an artificial neural network model 111 . Here, the data collection module 112 may collect electricity transaction data related to factors (eg, fuel cost unit price, demand forecast amount, bid amount, etc.) that affect the price determination in the electricity market from a public institution database. The data processing module 113 may perform pre-processing and processing to utilize the collected power transaction data as input data for learning an artificial intelligence algorithm. The learning module 114 may receive the processed data and proceed with learning. The SMP prediction module 115 may predict the all-day market or real-time SMP by using the learned artificial neural network. The artificial neural network model 111 may be designed as an optimal hyper parameter determined by the LSTM network and the DNN may be sequentially connected, and the system user may adjust the hyper parameter on the UI. According to various embodiments, the learned artificial neural network model 111 may be previously learned in an external device and stored in the memory 120 .
도 6는 수집된 전력시장 데이터 중 특정기간의 시간별(24h) 계통한계가격(SMP) 데이터가 표시된 화면을 도시한 도면이다.6 is a view showing a screen on which system limit price (SMP) data for a specific period of time (24h) is displayed among the collected electricity market data.
도 6를 참조하면, 수집된 전력거래 데이터를 인공신경망 알고리즘 학습을 위한 데이터로 활용할 수 있도록 시스템 UI상에서 전처리 및 가공을 하고 학습을 진행할 수 있다. 데이터 전처리 기능의 경우, 연별/월별/일별/시간별 데이터를 샘플링 또는 확장 할 수 있고, 필요한 데이터를 선택적으로 추출할 수 있다. 데이터 가공 기능의 경우, 원본데이터로부터 보간법을 이용하여 누락데이터를 추정하는 기능, 이상 데이터를 감지하고 보정하는 기능, 인공지능 시스템 학습 일반화를 위하여 원본데이터를 스무딩하는 기능, 원본데이터를 정규화 하는 기능 등이 포함될 수 있다. 도 6에서와 같이, 특정기간의 시간별(24h) 계통한계가격(SMP) 데이터를 출력값으로 하여 인공신경망 학습을 진행할 수 있다.Referring to FIG. 6 , pre-processing and processing may be performed on the system UI so that the collected power transaction data can be used as data for learning an artificial neural network algorithm, and learning may be performed. In the case of the data pre-processing function, it is possible to sample or expand the data by year/month/day/hour, and to selectively extract the necessary data. In the case of data processing function, the function of estimating missing data using interpolation from the original data, the function of detecting and correcting abnormal data, the function of smoothing the original data for generalization of artificial intelligence system learning, the function of normalizing the original data, etc. may be included. As shown in FIG. 6 , artificial neural network learning can be performed by using the systematic limit price (SMP) data for each hour (24h) of a specific period as an output value.
도 7은 실제 SMP 값과 인공신경망 학습을 통해서 예측된 24시간 주기의 전일 시장 SMP 값 간의 비교분석 자료를 도시한 도면이다.7 is a diagram illustrating comparative analysis data between an actual SMP value and an all-day market SMP value of a 24-hour period predicted through artificial neural network learning.
도 7를 참조하면, 도 3의 인공신경망을 통해 500회 반복 학습된 알고리즘 모델로, 예측한 SMP가 실제 SMP와 약 97% 일치하는 결과를 볼 수 있다.Referring to FIG. 7 , it can be seen that the predicted SMP matches the actual SMP by about 97% with the algorithm model trained 500 times through the artificial neural network of FIG. 3 .
상술한 방법에 기초하여 전력시장 가격 예측 장치는 수요 예측량, 연료비 단가, 입찰량 등의 입력데이터를 통해 계통한계가격(SMP)의 예측을 위한 알고리즘 학습을 진행하고, 학습된 알고리즘을 활용하여 24시간 주기의 전일 시장 계통한계가격(SMP) 또는 1시간 단위로 변동하는 실시간 시장의 계통한계가격(SMP)을 예측한 후, 이를 바탕으로 전력 가격을 예측하여 보다 정확하고 합리적이며, 실시간성이 반영된 전력가격 결정기능을 제공할 수 있다.Based on the above-described method, the electricity market price prediction device performs algorithm learning for predicting the system limit price (SMP) through input data such as demand forecast amount, fuel cost unit price, and bid amount, and uses the learned algorithm for 24 hours. After predicting the market systematic limiting price (SMP) of the previous day of the cycle or the systemic limiting price of the real-time market (SMP) that fluctuates in units of one hour, the electric power price is predicted based on this, making it more accurate, reasonable, and reflecting real-time Pricing function can be provided.

Claims (19)

  1. 전력시장 가격 예측 방법에 있어서,In the electricity market price prediction method,
    데이터베이스로부터 전력 거래 데이터를 수집하는 단계;collecting power transaction data from a database;
    상기 수집된 데이터를 인공신경망에 입력할 수 있는 상태로 가공하는 단계;processing the collected data into a state that can be input to an artificial neural network;
    상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하는 단계; 및performing learning of the artificial neural network with the processed data; and
    상기 학습된 인공신경망을 이용하여 계통한계가격(SMP)을 예측하는 단계를 포함하는, 전력시장 가격 예측 방법.The method of predicting a system limit price (SMP) using the learned artificial neural network, comprising the step of predicting the electricity market price.
  2. 제 1항에 있어서, The method of claim 1,
    상기 전력 거래 데이터는, The power transaction data is
    전력 수요 예측량, 연료비 단가 및 입찰량 데이터를 포함하는, 전력시장 가격 예측 방법.Electricity market price forecasting method, including electric power demand forecast amount, fuel cost unit price and bid amount data.
  3. 제 1항에 있어서, The method of claim 1,
    상기 인공신경망은,The artificial neural network is
    LSTM(Long Short-Term Memory)네트워크와 DNN(Deep Neural Network)이 순서대로 연결된 모델인, 전력시장 가격 예측 방법.A method of predicting electricity market price, which is a model in which a Long Short-Term Memory (LSTM) network and a Deep Neural Network (DNN) are sequentially connected.
  4. 제 1항에 있어서, The method of claim 1,
    상기 수집된 데이터를 가공하는 단계는,The processing of the collected data includes:
    날짜 또는 시간 별로 데이터를 샘플링하거나 확장하는 단계; 및 sampling or expanding data by date or time; and
    필요한 데이터를 선택적으로 추출하는 단계 중 적어도 어느 하나를 포함하는, 전력시장 가격 예측 방법.Including at least one of the steps of selectively extracting necessary data, electricity market price prediction method.
  5. 제 4항에 있어서,5. The method of claim 4,
    상기 수집된 데이터를 가공하는 단계는,The processing of the collected data includes:
    원본 데이터에 보간법을 적용하여 누락 데이터를 추정하는 단계;estimating missing data by applying interpolation to the original data;
    이상 데이터를 감지 및 보정하는 단계;detecting and correcting abnormal data;
    원본데이터를 스무딩하는 단계; 및 smoothing the original data; and
    원본데이터를 정규화하는 단계 중 적어도 어느 하나를 더 포함하는, 전력시장 가격 예측 방법.At least one of the steps of normalizing the original data, the electricity market price prediction method.
  6. 제 1항에 있어서, The method of claim 1,
    상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하는 단계는,The step of learning about the artificial neural network with the processed data includes:
    시스템 사용자의 입력에 기초하여 하이퍼 파라미터를 조정함으로써 알고리즘을 설계하는 단계;designing an algorithm by adjusting hyperparameters based on system user input;
    상기 설계된 알고리즘에 대하여 가공된 데이터를 입력으로 하고 계통한계가격(SMP) 값을 출력으로 하여 학습을 진행하는 단계; 및 performing learning by receiving the processed data for the designed algorithm as an input and outputting a systematic marginal price (SMP) value as an output; and
    계통한계가격(SMP)의 예측값과 실제값의 오차가 최소가 되도록 하이퍼 파라미터를 보정하는 단계를 포함하는, 전력시장 가격 예측 방법.A method for predicting electricity market price, comprising correcting a hyper parameter such that an error between the predicted value of the system marginal price (SMP) and the actual value is minimized.
  7. 제 1항에 있어서,The method of claim 1,
    상기 계통한계가격(SMP)을 예측하는 단계는, Predicting the systematic marginal price (SMP) comprises:
    24시간 주기의 전일 시장 계통한계가격(SMP)을 예측하는 단계를 포함하는, 전력시장 가격 예측 방법.A method for predicting electricity market prices, comprising the step of estimating a previous day's market systematic marginal price (SMP) of a 24-hour period.
  8. 제 1항에 있어서,The method of claim 1,
    상기 계통한계가격(SMP)을 예측하는 단계는, Predicting the systematic marginal price (SMP) comprises:
    1시간 단위로 변동되는 실시간 시장의 계통한계가격(SMP)을 예측하는 단계를 포함하는, 전력시장 가격 예측 방법.A method for predicting electricity market price, comprising the step of predicting a system marginal price (SMP) of a real-time market that fluctuates in units of one hour.
  9. 제 1항에 있어서, The method of claim 1,
    상기 예측된 계통한계가격(SMP)에 근거하여 전력시장 가격을 예측 및 결정하는 단계를 더 포함하는, 전력시장 가격 예측 방법.Further comprising the step of predicting and determining the electricity market price based on the predicted system marginal price (SMP), electricity market price prediction method.
  10. 전력시장 가격 예측 장치에 있어서,In the electric power market price prediction device,
    프로세서; 및processor; and
    상기 프로세서에 의해 실행 가능한 명령어들을 저장하는 메모리; 를 포함하고,a memory storing instructions executable by the processor; including,
    상기 프로세서는,The processor is
    상기 명령어들을 실행함으로써,By executing the above instructions,
    데이터베이스로부터 전력 거래 데이터를 수집하고,collect electricity transaction data from the database;
    상기 수집된 데이터를 인공신경망에 입력할 수 있는 상태로 가공하고,Processing the collected data into a state that can be input to an artificial neural network,
    상기 가공된 데이터로 상기 인공신경망에 대한 학습을 진행하고, Learning about the artificial neural network with the processed data,
    상기 학습된 인공신경망을 이용하여 계통한계가격(SMP)을 예측하는, 전력시장 가격 예측 장치.A power market price prediction device for predicting a systematic marginal price (SMP) using the learned artificial neural network.
  11. 제 10항에 있어서, 11. The method of claim 10,
    상기 전력 거래 데이터는,The power transaction data is
    전력 수요 예측량, 연료비 단가 및 입찰량 데이터를 포함하는, 전력시장 가격 예측 장치.A power market price prediction device, including the power demand forecast amount, fuel cost unit price, and bid amount data.
  12. 제 10항에 있어서, 11. The method of claim 10,
    상기 인공신경망은, The artificial neural network is
    LSTM(Long Short-Term Memory)네트워크와 DNN(Deep Neural Network)이 순서대로 연결된 모델인, 전력시장 가격 예측 장치.A power market price prediction device that is a model in which a Long Short-Term Memory (LSTM) network and a Deep Neural Network (DNN) are sequentially connected.
  13. 제 10항에 있어서, 11. The method of claim 10,
    상기 프로세서는,The processor is
    날짜 또는 시간 별로 데이터를 샘플링하거나 확장하고, 필요한 데이터를 선택적으로 추출하는, 전력시장 가격 예측 장치.A power market price prediction device that samples or expands data by date or time, and selectively extracts necessary data.
  14. 제 10항에 있어서,11. The method of claim 10,
    상기 프로세서는,The processor is
    원본 데이터에 보간법을 적용하여 누락 데이터를 추정하고,Applies interpolation to the original data to estimate missing data,
    이상 데이터를 감지 및 보정하고,Detect and correct abnormal data,
    원본데이터를 스무딩하고,smoothing the original data,
    원본데이터를 정규화하는, 전력시장 가격 예측 장치.A power market price prediction device that normalizes the original data.
  15. 제 10항 에 있어서, 11. The method of claim 10,
    상기 프로세서는,The processor is
    시스템 사용자의 입력에 기초하여 하이퍼 파라미터를 조정함으로써 알고리즘을 설계하고,design an algorithm by adjusting hyperparameters based on system user input,
    상기 설계된 알고리즘에 대하여 가공된 데이터를 입력으로 하고 계통한계가격(SMP) 값을 출력으로 하여 학습을 진행하고,Learning is carried out by taking the processed data for the designed algorithm as an input and outputting the systematic marginal price (SMP) value as an output,
    계통한계가격(SMP)의 예측값과 실제값의 오차가 최소가 되도록 하이퍼 파라미터를 보정하는, 전력시장 가격 예측 장치.A power market price prediction device that corrects hyperparameters so that the error between the predicted value and the actual value of the system marginal price (SMP) is minimized.
  16. 제 10항에 있어서,11. The method of claim 10,
    상기 예측되는 계통한계가격(SMP)은, The predicted systematic marginal price (SMP) is,
    24시간 주기의 전일 시장 계통한계가격(SMP)인, 전력시장 가격 예측 장치.Electricity market price prediction device, which is the all-day market systematic marginal price (SMP) of a 24-hour period.
  17. 제 10항에 있어서,11. The method of claim 10,
    상기 예측되는 계통한계가격(SMP)은, The predicted systematic marginal price (SMP) is,
    1시간 단위로 변동되는 실시간 시장의 계통한계가격(SMP)인, 전력시장 가격 예측 장치.Electricity market price prediction device, which is the systematic marginal price (SMP) of the real-time market that fluctuates every hour.
  18. 제 10항에 있어서,11. The method of claim 10,
    상기 프로세서는, The processor is
    예측된 계통한계가격(SMP)에 근거하여 전력시장 가격을 예측 및 결정하는, 전력시장 가격 예측 장치.A power market price prediction device that predicts and determines the power market price based on the predicted system marginal price (SMP).
  19. 컴퓨터 판독 가능 저장매체에 있어서, In the computer-readable storage medium,
    컴퓨터상에서 실행될 때, 제1항 내지 제9항 중 어느 하나의 항에 따른 전력시장 가격 예측 방법을 수행하는 컴퓨터 프로그램을 포함하는, 컴퓨터 판독가능 저장 매체.A computer-readable storage medium comprising a computer program that, when executed on a computer, performs the method for predicting a power market price according to any one of claims 1 to 9.
PCT/KR2021/002330 2020-04-29 2021-02-24 Artificial neural network-based electricity market price prediction system WO2021221285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200052756A KR20210133751A (en) 2020-04-29 2020-04-29 Power market price prediction system based on artificial neural network
KR10-2020-0052756 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021221285A1 true WO2021221285A1 (en) 2021-11-04

Family

ID=78332053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002330 WO2021221285A1 (en) 2020-04-29 2021-02-24 Artificial neural network-based electricity market price prediction system

Country Status (2)

Country Link
KR (1) KR20210133751A (en)
WO (1) WO2021221285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115880102A (en) * 2023-03-08 2023-03-31 国网福建省电力有限公司 Electric energy metering method, system, equipment and storage medium
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102635894B1 (en) * 2021-12-29 2024-02-08 한국남동발전 주식회사 Smart power generation fuel price prediction system and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130089738A (en) * 2011-12-30 2013-08-13 주식회사 효성 Predicting system for energy management system
KR101572643B1 (en) * 2014-06-27 2015-11-30 (주)네모파트너즈엔이씨 THE APPARATUS AND METHOD OF NEMO's ELECTRICITY DEMAND RESOURCE MODELING SIMULATION WITH BUSINESS PLATFORM FOR NATIONAL VIRTUAL POWER PLANT
KR20190034917A (en) * 2017-09-25 2019-04-03 엘에스웨어(주) Blockchain Data analyzing Method based on Neural Network for Electric Power Trading
JP2019101579A (en) * 2017-11-29 2019-06-24 ヤフー株式会社 Estimation device, estimation method, and estimation program
KR20190136300A (en) * 2018-05-30 2019-12-10 한양대학교 에리카산학협력단 Hour-ahead price based energy management method and system for industrial facilities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130089738A (en) * 2011-12-30 2013-08-13 주식회사 효성 Predicting system for energy management system
KR101572643B1 (en) * 2014-06-27 2015-11-30 (주)네모파트너즈엔이씨 THE APPARATUS AND METHOD OF NEMO's ELECTRICITY DEMAND RESOURCE MODELING SIMULATION WITH BUSINESS PLATFORM FOR NATIONAL VIRTUAL POWER PLANT
KR20190034917A (en) * 2017-09-25 2019-04-03 엘에스웨어(주) Blockchain Data analyzing Method based on Neural Network for Electric Power Trading
JP2019101579A (en) * 2017-11-29 2019-06-24 ヤフー株式会社 Estimation device, estimation method, and estimation program
KR20190136300A (en) * 2018-05-30 2019-12-10 한양대학교 에리카산학협력단 Hour-ahead price based energy management method and system for industrial facilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system
CN115880102A (en) * 2023-03-08 2023-03-31 国网福建省电力有限公司 Electric energy metering method, system, equipment and storage medium

Also Published As

Publication number Publication date
KR20210133751A (en) 2021-11-08

Similar Documents

Publication Publication Date Title
WO2021221285A1 (en) Artificial neural network-based electricity market price prediction system
Laudani et al. High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms
Wang et al. Short-term wind speed forecasting based on information of neighboring wind farms
Mellit et al. An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria
Nguyen et al. A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam
Lopez-Guede et al. Systematic modeling of photovoltaic modules based on artificial neural networks
CN107562992B (en) Photovoltaic array maximum power tracking method based on SVM and particle swarm algorithm
CN115618296A (en) Dam monitoring time sequence data anomaly detection method based on graph attention network
Baptista et al. Hardware implementation of an artificial neural network model to predict the energy production of a photovoltaic system
Delussu et al. Experiments and comparison of digital twinning of photovoltaic panels by machine learning models and a cyber-physical model in modelica
Zhao et al. Probabilistic remaining useful life prediction based on deep convolutional neural network
Truong et al. An effective framework for real-time structural damage detection using one-dimensional convolutional gated recurrent unit neural network and high performance computing
CN116307641A (en) Digital power plant-oriented resource collaborative scheduling management method and system
Zu et al. A simple gated recurrent network for detection of power quality disturbances
CN115017970A (en) Migration learning-based gas consumption behavior anomaly detection method and system
CN115146842A (en) Multivariate time series trend prediction method and system based on deep learning
Halawa et al. Road traffic predictions across major city intersections using multilayer perceptrons and data from multiple intersections located in various places
Dang et al. seq2graph: discovering dynamic dependencies from multivariate time series with multi-level attention
Cianchini et al. Fast Dst computation by applying deep learning to Swarm satellite magnetic data
CN110570022A (en) mGBDT-based building energy consumption prediction method and system
Ghose et al. A Deep Learning based Air Quality Prediction Technique Using Influencing Pollutants of Neighboring Locations in Smart City
CN114492199A (en) Method and system for analyzing performance of voltage transformer, electronic equipment and medium
WO2021015332A1 (en) Solar power generation and control system, and method for operating solar power generation and control system
Caricato et al. Prognostic techniques for aeroengine health assessment and Remaining Useful Life estimation
Moradzadeh et al. Image processing-based data integrity attack detection in dynamic line rating forecasting applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795312

Country of ref document: EP

Kind code of ref document: A1