WO2021215261A1 - Information processing method, information processing device, and program - Google Patents

Information processing method, information processing device, and program Download PDF

Info

Publication number
WO2021215261A1
WO2021215261A1 PCT/JP2021/014910 JP2021014910W WO2021215261A1 WO 2021215261 A1 WO2021215261 A1 WO 2021215261A1 JP 2021014910 W JP2021014910 W JP 2021014910W WO 2021215261 A1 WO2021215261 A1 WO 2021215261A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
reliability
teacher
correct answer
prediction
Prior art date
Application number
PCT/JP2021/014910
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 石井
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021215261A1 publication Critical patent/WO2021215261A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This technology relates to information processing methods, information processing devices, and programs applicable to machine learning.
  • Patent Document 1 discloses an evaluation device capable of evaluating the reliability of an estimated value obtained by using a neural network.
  • Non-Patent Document 1 it is possible to use the output of the neural network as reliability by executing mixup which expands the data by interpolating the data and the label used as the teacher data at the same ratio. The experimental result to the effect is described.
  • the purpose of the present technology is to provide an information processing method, an information processing device, and a program capable of outputting the reliability of the prediction result with high accuracy.
  • the information processing method is an information processing method executed by a computer system and includes an extraction step and a generation step.
  • the extraction step extracts two or more teacher data from a plurality of teacher data for training a machine learning model that predicts a correct answer for an input.
  • a kernel function is used to generate teacher data for reliability prediction in which the learning data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data.
  • a kernel function is used to generate teacher data for reliability prediction in which the learning data and the reliability related to the prediction of the correct answer are associated with each other from two or more teacher data.
  • Each of the plurality of teacher data may be data in which the correct answer is associated with the learning data for predicting the correct answer as a teacher label.
  • the generation step is included in each of the two or more extracted teacher data. By synthesizing the learning data for predicting the correct answer, the learning data for predicting the reliability may be generated. Further, the generation step determines the reliability of the generated learning data for predicting the reliability when the teacher label included in each of the two or more extracted teacher data is predicted as the correct answer. It may be generated as the reliability of the prediction of the correct answer.
  • the kernel function is used to generate a probability distribution to which the training data for reliability prediction follows, and the learning data for reliability prediction is generated based on the generated probability distribution. You may. Further, in the generation step, the teacher label included in each of the extracted two or more teacher data is correct under the condition that the generated learning data for predicting the reliability is input. A certain conditional probability may be generated as the reliability of the prediction of the correct answer.
  • the extraction step may extract two teacher data from the plurality of teacher data.
  • the generation step predicts the reliability by performing interpolation at a predetermined interpolation ratio for the learning data for predicting the correct answer included in each of the two extracted teacher data. You may generate training data for. Further, the generation step determines the reliability of the generated learning data for predicting the reliability when the teacher label included in each of the two extracted teacher data is predicted as the correct answer. It may be generated as the reliability of the prediction of.
  • the kernel function is used to generate a probability distribution to which the interpolation ratio follows, the interpolation ratio is determined based on the generated probability distribution, and the interpolation ratio is determined.
  • the training data for predicting the reliability may be generated.
  • the teacher label included in each of the extracted two teacher data is correct under the condition that the generated learning data for predicting the reliability is input.
  • Conditional probabilities may be generated as confidence in predicting the correct answer.
  • the kernel function may be a Gaussian kernel.
  • the information processing device includes an extraction unit and a generation unit.
  • the extraction unit executes the extraction step.
  • the generation unit executes the generation step.
  • the program according to one form of the present technology causes a computer system to execute the extraction step and the generation step.
  • FIG. 1 is a schematic diagram showing a configuration example of a data generation system according to an embodiment of the present technology.
  • FIG. 2 is a schematic diagram showing an example of a machine learning model.
  • FIG. 3 is a schematic diagram for explaining learning of a machine learning model using teacher data.
  • the data generation system 100 corresponds to an embodiment of an information processing system according to the present technology.
  • the data generation system 100 includes a teacher data DB (database) 10 and an information processing device 20.
  • a plurality of teacher data are stored in the teacher data DB 10.
  • the teacher data is data for training the machine learning model 15 that predicts the correct answer for the input, which is illustrated in FIG. It should be noted that what kind of data is input to the machine learning model 15 and what kind of data is predicted as the correct answer is not limited, and this technique can be applied to any machine learning model.
  • the teacher data is data in which the teacher label 12 is associated with the learning data 11.
  • Examples of the learning data 11 include image data, audio data, and the like.
  • arbitrary data to be input to the machine learning model 15 may be used.
  • the teacher label 12 is a correct answer (correct answer data) to be predicted by the machine learning model 15.
  • the teacher label 12 is stored in the label DB 13.
  • the label DB 13 is constructed in, for example, the teacher data DB 10 shown in FIG.
  • the configuration and method for storing the teacher data are not limited, and any configuration and method may be adopted.
  • the learning data 11 and the teacher label 12 are associated with each other and are input to the learning unit 14 as teacher data.
  • the learning unit 14 uses the teacher data and performs learning based on the machine learning algorithm.
  • the parameters (coefficients) for calculating the correct answer (teacher label) are updated and generated as learned parameters.
  • a program incorporating the generated learned parameters is generated as the machine learning model 15.
  • an error back propagation method that is generally often used for learning a neural network can be used.
  • a neural network is a model that originally imitates a human brain neural circuit, and has a layered structure consisting of three types of layers: an input layer, an intermediate layer (hidden layer), and an output layer.
  • a neural network having a large number of intermediate layers is particularly called a deep neural network, and a deep learning technique for learning this is known as a model capable of learning a complicated pattern hidden in a large amount of data.
  • the error back propagation method is one of such learning methods, and is often used for learning, for example, a convolutional neural network (CNN) used for recognizing images and moving images.
  • CNN convolutional neural network
  • a neurochip / neuromorphic chip incorporating the concept of a neural network can be used as a hardware structure for realizing such machine learning.
  • any machine learning algorithm may be used.
  • the information processing device 20 shown in FIG. 1 has hardware necessary for configuring a computer, such as a processor such as a CPU, GPU, or DSP, a memory such as a ROM or RAM, and a storage device such as an HDD (see FIG. 12).
  • a computer such as a processor such as a CPU, GPU, or DSP, a memory such as a ROM or RAM, and a storage device such as an HDD (see FIG. 12).
  • the information processing method according to the present technology is executed when the CPU loads and executes the program according to the present technology recorded in advance in the ROM or the like into the RAM.
  • the information processing device 20 can be realized by an arbitrary computer such as a PC (Personal Computer).
  • hardware such as FPGA and ASIC may be used.
  • the extraction unit 21 as a functional block and the generation unit 22 are configured by the CPU or the like executing a predetermined program.
  • the program is installed in the information processing apparatus 20 via, for example, various recording media. Alternatively, the program may be installed via the Internet or the like.
  • the type of recording medium on which the program is recorded is not limited, and any computer-readable recording medium may be used. For example, any non-transient storage medium that can be read by a computer may be used.
  • the teacher data DB 10 shown in FIG. 1 may be constructed in the information processing apparatus 20.
  • FIG. 4 is a flowchart showing an example of an information processing method executed by the information processing apparatus 20.
  • the extraction step is executed by the extraction unit 21 shown in FIG. 1 (step 101).
  • the extraction step is a step of extracting two or more teacher data from a plurality of teacher data for training the machine learning model 15 that predicts the correct answer for the input.
  • two or more teacher data may be arbitrarily extracted from a plurality of teacher data.
  • two or more teacher data may be extracted after processing such as classification is executed for a plurality of teacher data.
  • the generation step is executed by the generation unit 22 shown in FIG. 1 (step 102).
  • the generation step is a step of generating teacher data for reliability prediction from two or more extracted teacher data using a kernel function.
  • the teacher data for predicting the reliability is data in which the learning data and the reliability for predicting the correct answer by the machine learning model 15 are associated with each other. That is, in the teacher data for predicting the reliability, the reliability for the prediction of the correct answer is used as the teacher label.
  • the teacher data for predicting the reliability (learning data and the teacher label 12).
  • Reliability) is generated as new teacher data.
  • the kernel function any kernel function such as a Gaussian Kernel, a Square Kernel, or a Circular Kernel may be used.
  • the original teacher data shown in FIG. 1 and the like may be described as teacher data for predicting the correct answer.
  • the learning data 11 and the teacher label 12 included in the original teacher data may be described as the learning data 11 for predicting the correct answer and the correct answer label 12 by using the same reference numerals.
  • the learning data and the reliability included in the newly generated teacher data for the reliability prediction may be described as the learning data for the reliability prediction and the reliability label.
  • the reliability of the prediction of the correct answer by the machine learning model 15 corresponds to the reliability label.
  • the generation step shown in FIG. 4 synthesizes the learning data 11 for correct answer prediction included in each of the two or more extracted teacher data for correct answer prediction, so that the learning data for reliability prediction is synthesized. Is generated.
  • a data synthesis method an arbitrary data expansion method such as mixup may be used.
  • data interpolation may be performed with a predetermined interpolation ratio.
  • extrapolation of data and the like may be used.
  • the reliability when the teacher label (correct answer label) 12 included in each of the two or more extracted teacher data for correct answer prediction is predicted as the correct answer for the training data for reliability prediction generated by the synthesis.
  • Generated as reliability (reliability label) for reliability prediction For example, the teacher label (correct answer label) 12 included in each of the extracted two or more correct answer prediction teacher data under the condition that the generated training data for reliability prediction is input. It is possible to generate the correct conditional probability as the reliability (reliability label) for predicting the reliability. By such processing, it becomes possible to newly generate teacher data for reliability prediction.
  • the present technology will be described by taking a more detailed embodiment as an example.
  • FIG. 5 is a schematic diagram for explaining an example of object recognition using the machine learning model 15.
  • the machine learning model 15 recognizes the object shown in the image (image data) 17. That is, with the image 17 as an input, the type of the object shown in the image is predicted as the correct answer. For example, as shown in FIG. 5, five classes of "dog”, “cat”, “horse”, “sheep”, and “monkey” are set, and the score of each class is calculated for the input image 17. The class with the highest score is output as the prediction result.
  • the identification of the five classes of "dog”, “cat”, “horse”, “sheep”, and “monkey” is executed by applying an index value such as 1 to 5, for example.
  • FIGS. 5A and 5B it is assumed that an image 17 showing a cat is input.
  • the score of the "cat" class is sufficiently higher than the scores of the other classes.
  • the machine learning model 15 outputs the index value of the "cat” class as a prediction result.
  • FIG. 5B there may be cases where the score of the "cat” class is higher than the score of the other class, but there is not much difference with the score of the other class. Even in such a case, the machine learning model 15 outputs the index value of the "cat” class as a prediction result.
  • the following teacher data for correct answer prediction (learning data 11 for correct answer prediction, correct answer label 12) is used.
  • (Image showing a dog, index value corresponding to "dog” (1)) (Image showing a cat, index value corresponding to "cat” (2)) (Image showing a horse, index value corresponding to "horse” (3)) (Image showing sheep, index value corresponding to "sheep” (4)) (Image showing a monkey, index value corresponding to "monkey” (5))
  • Highly accurate object recognition is realized by creating a lot of these teacher data and training the machine learning model 15.
  • FIG. 6 is a schematic diagram showing another example of teacher data for predicting the correct answer. As shown in FIG. 6, it is also possible to add information on the size of the score of each class as the correct answer label 12. That is, the following data can be used as the teacher data for predicting the correct answer (learning data 11 for predicting the correct answer, the correct answer label 12). The maximum score is set to 1.0.
  • any method may be adopted as a method for creating the correct answer label. For example, teacher data is created with the index value of each class as the correct label. Then, the machine learning model 15 is trained so that the score of the class corresponding to the correct answer label is 1.0 and the score of the other class is 0.0. Such learning is also possible.
  • FIG. 7 is a block diagram showing a functional configuration example of the information processing device 20.
  • the information processing apparatus 20 has a data distribution creation unit 24, an interpolation ratio determination unit 25, an interpolation data generation unit 26, and a reliability label generation unit 27.
  • Each of these functional blocks is configured, for example, by a processor executing a predetermined program.
  • dedicated hardware such as an IC (integrated circuit) may be used.
  • the data distribution creation unit 24 realizes the extraction unit 21 shown in FIG.
  • the data distribution creation unit 24, the interpolation ratio determination unit 25, the interpolation data generation unit 26, and the reliability label generation unit 27 realize the generation unit 22 shown in FIG. Therefore, in the present embodiment, the data distribution creation unit 24 also functions as the extraction unit 21 and also as the generation unit 22.
  • FIG. 8 is a flowchart showing an example of the information processing method according to the present embodiment.
  • the data distribution creation unit 24 extracts two teacher data for predicting the correct answer from the teacher data DB 10 (step 201).
  • an image showing any of "dog”, “cat”, “horse”, “sheep”, and “monkey” is used as learning data 11 for predicting the correct answer.
  • the type (index value) of the object shown in the image is used as the correct label 12.
  • the image which is the learning data 11 for predicting the correct answer is referred to as (x).
  • (y) be the type (index value) of the object shown in the image.
  • the teacher data for predicting the correct answer stored in the teacher data DB 10 is (a set of (x, y)).
  • the two teacher data extracted by the data distribution creation unit 24 will be referred to as (x 0 , y 0 ) and (x 1 , y 1 ).
  • the data distribution creation unit 24 creates a probability distribution to which the learning data for reliability prediction (hereinafter referred to as (x')) generated from the teacher data for predicting the correct answer is followed by using the kernel function.
  • kernel functions are predetermined by the user.
  • parameters for creating a probability distribution according to the learning data (x') for reliability prediction are generated and input to the data distribution creation unit 24.
  • a kernel function is used to set the shape of the probability distribution that the learning data (x') for predicting reliability follows.
  • the kernel function itself is also included in the parameters for creating the probability distribution that the training data (x') for predicting reliability follows.
  • FIG. 9 is a schematic diagram for explaining an example of creating a probability distribution.
  • a Gaussian kernel is used as a kernel function. That is, it is assumed that the Gaussian distribution is set as the form of the probability distribution.
  • the learning data (x') for predicting the reliability follows by the following formula.
  • x i , s) in Eq. (Equation 1) is a Gaussian distribution with a width s centered on x i.
  • learning for reliability prediction is performed by setting a Gaussian distribution based on two learning data for correct answer prediction, (x 0 ) and (x 1), and adding appropriate coefficients. It is possible to create a probability distribution that the data (x') follows.
  • the coefficients of the two Gaussian distributions are both halved. Not limited to this, for example, an arbitrary coefficient may be set so that the sum of the coefficients is 1. Any kernel distribution other than the Gaussian distribution may be set.
  • two learning data (x 0 ) and (x 1 ) for predicting the correct answer are interpolated at a predetermined interpolation ratio (hereinafter referred to as ⁇ ).
  • a predetermined interpolation ratio
  • the interpolation ratio determination unit 25 determines the interpolation ratio ( ⁇ ).
  • the interpolation ratio ( ⁇ ) is determined based on the probability distribution created in step 202. Specifically, the interpolation ratio ( ⁇ ) is determined so that the learning data (x') for predicting the reliability generated by interpolation follows the probability distribution created in step 202. For example, the probability distribution of the interpolation ratio ( ⁇ ) is calculated so that the learning data (x') for predicting the reliability generated by interpolation follows the probability distribution created in step 202.
  • the probability distribution of the interpolation ratio ( ⁇ ) can be calculated, for example, by using a well-known change of variable method.
  • the interpolation ratio ( ⁇ ) is determined based on the calculated probability distribution. In the present embodiment, since data interpolation is executed, ⁇ is determined in the range of 0 ⁇ ⁇ ⁇ 1. Not limited to this, extrapolation of data may be performed by expanding the range that ⁇ can take.
  • Interpolation data and confidence labels are generated based on the determined interpolation ratio ( ⁇ ) (step 204).
  • the interpolated data is learning data (x') for predicting reliability. That is, in step 204, teacher data for predicting reliability is generated.
  • FIG. 10 is a schematic diagram showing an example of teacher data for predicting reliability.
  • the interpolation data (x') is generated by the interpolation data generation unit 26.
  • the interpolation data generation unit 26 generates the interpolation data (x') by executing the interpolation at the determined interpolation ratio ( ⁇ ). For example, two images for learning (x 0 ) and (x 1 ) for predicting the correct answer are combined based on the equation (Equation 2) to generate interpolated data (x').
  • the image showing the "dog (1)" and the image showing the "cat (2)" are two learning data (x 0 ) and (x 1) for predicting the correct answer. ) Is extracted.
  • interpolation is executed for these images, and interpolation data (x') is generated.
  • the learning data (x') for predicting the reliability is generated based on the probability distribution created in step 202.
  • the reliability label is generated by the reliability label generation unit 27.
  • the teacher labels (y 0 ) and (y 1 ) included in each of the two extracted teacher data for predicting the reliability of the generated interpolation data (x') are predicted as correct answers.
  • the reliability of the case is generated as a reliability label. Specifically, as shown in FIG. 10, it is included in each of the two extracted teacher data for predicting the correct answer under the condition that the generated interpolation data (x') is input.
  • Conditional probabilities (p (y y i
  • x')) in which the teacher labels (y 0 ) and (y 1) are correct are generated as confidence labels. In the example shown in FIG.
  • x')) that "dog (1)” is correct under the condition that the interpolation data (x') is input, and " A conditional probability (p (2
  • the conditional probability (p (y y i
  • x')) can also be said to be a posterior probability.
  • Equation 3 the left side to the middle side are calculated based on Bayes' theorem.
  • the middle side to the right side are calculated by substituting the creation result (Equation (Equation 1)) by the data distribution creation unit 24.
  • step 201 in FIG. 8 corresponds to the extraction step (step 101) shown in FIG.
  • Steps 202 to 204 are steps included in the generation step (step 202) shown in FIG.
  • a machine learning model is trained based on a machine learning algorithm as described with reference to FIG. This makes it possible to realize a machine learning model that takes the image (x) as an input and outputs the reliability (p (y
  • x)) of the class is output. By doing so, it is possible to output the reliability of the prediction. That is, it is possible to output the identification result and the reliability of the identification result at the same time. By creating a lot of teacher data for predicting reliability and training the machine learning model sufficiently, it is possible to output highly accurate reliability at the same time while achieving a high prediction accuracy rate.
  • the case where two teacher data for correct answer prediction is extracted is taken as an example, but three or more teacher data for correct answer prediction may be extracted.
  • learning for reliability prediction which is generated by synthesizing learning data for predicting 3 or more correct answers included in each of the teacher data for predicting 3 or more correct answers using a kernel function. It is possible to create a probability distribution that the data follows. Further, it is possible to generate learning data for predicting reliability and a reliability label based on the created probability distribution. That is, it is possible to generate the teacher data for reliability prediction from the extracted teacher data for reliability prediction of 3 or more by using the kernel function.
  • the kernel function is used, and the learning data and the reliability regarding the prediction of the correct answer are associated with each other from the two or more teacher data for the reliability prediction.
  • Teacher data is generated.
  • the most commonly used value as the reliability of the prediction is the probability that the prediction of the model is a correct prediction. That is, when the reliability of the prediction for a certain data is 0.5, the probability that the prediction is correct is 50%.
  • the reliability of the prediction for a certain data is 0.5
  • the probability that the prediction is correct is 50%.
  • the magnitude of the score of each class is used as the reliability. For example, in the case of the prediction result shown in FIG. 5A, it can be determined that the reliability of the prediction result that the object in the image is a cat is high.
  • the prediction result shown in FIG. 5B it can be determined that the reliability of the prediction result that the object shown in the image is a cat is low.
  • a method of correcting the reliability output from the model by post-processing can be considered.
  • training data and calculation for correction are required separately in order to correct the post-processing of reliability
  • a method of separately learning a model for estimating reliability in parallel can be considered.
  • this coping method has a problem that the calculation cost at the time of learning / prediction becomes high because the number of models increases.
  • a method of improving the learning method is conceivable so that the model outputs the correct reliability together with the prediction. For example, there is a method of imposing restrictions and penalties that lower the output reliability so as not to output too high reliability, but there is a problem that there is no guarantee that the correct reliability will be output.
  • Non-Patent Document 1 the teacher data for predicting the correct answer is newly added by data expansion in which both the learning data and the correct answer label are interpolated at the same interpolation ratio ( ⁇ ). Is generated in. It is described that by training a machine learning model using the teacher data, the identification accuracy can be improved and the accuracy of the reliability when the size of the score is used as the reliability is also improved.
  • FIG. 12 is a block diagram showing a hardware configuration example of the information processing device 20.
  • the information processing device 20 includes a CPU 61, a ROM (Read Only Memory) 62, a RAM 63, an input / output interface 65, and a bus 64 that connects them to each other.
  • a display unit 66, an input unit 67, a storage unit 68, a communication unit 69, a drive unit 70, and the like are connected to the input / output interface 65.
  • the display unit 66 is a display device using, for example, a liquid crystal display, an EL, or the like.
  • the input unit 67 is, for example, a keyboard, a pointing device, a touch panel, or other operating device.
  • the input unit 67 includes a touch panel
  • the touch panel can be integrated with the display unit 66.
  • the storage unit 68 is a non-volatile storage device, for example, an HDD, a flash memory, or other solid-state memory.
  • the drive unit 70 is a device capable of driving a removable recording medium 71 such as an optical recording medium or a magnetic recording tape.
  • the communication unit 69 is a modem, router, or other communication device for communicating with another device that can be connected to a LAN, WAN, or the like.
  • the communication unit 69 may communicate using either wire or wireless.
  • the communication unit 69 is often used separately from the information processing device 20.
  • Information processing by the information processing device 20 having the hardware configuration as described above is realized by the cooperation between the software stored in the storage unit 68 or the ROM 62 or the like and the hardware resources of the information processing device 20.
  • the information processing method according to the present technology is realized by loading the program constituting the software stored in the ROM 62 or the like into the RAM 63 and executing the program.
  • the program is installed in the information processing apparatus 20 via, for example, the recording medium 61.
  • the program may be installed in the information processing apparatus 20 via a global network or the like.
  • any non-transient storage medium that can be read by a computer may be used.
  • the information processing method and program according to the present technology may be executed and the information processing device according to the present technology may be constructed by the cooperation of a plurality of computers connected so as to be communicable via a network or the like. That is, the information processing method and the program according to the present technology can be executed not only in a computer system composed of a single computer but also in a computer system in which a plurality of computers operate in conjunction with each other.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether or not all the components are in the same housing.
  • a plurality of devices housed in separate housings and connected via a network, and one device in which a plurality of modules are housed in one housing are both systems.
  • the information processing method and program execution related to this technology by a computer system include, for example, extraction of teacher data, creation of probability distribution, determination of interposition ratio, generation of interposition data, generation of reliability label, etc. This includes both cases where the processing is performed by a computer and cases where each process is performed by a different computer. Further, the execution of each process by a predetermined computer includes causing another computer to execute a part or all of the process and acquire the result. That is, the information processing method and program according to the present technology can be applied to a cloud computing configuration in which one function is shared by a plurality of devices via a network and jointly processed.
  • expressions using "twist” such as “greater than A” and “less than A” include both the concept including the case equivalent to A and the concept not including the case equivalent to A. It is an expression that includes the concept. For example, “greater than A” is not limited to the case where the equivalent of A is not included, and “greater than or equal to A” is also included. Further, “less than A” is not limited to “less than A”, but also includes “less than or equal to A”. When implementing the present technology, specific settings and the like may be appropriately adopted from the concepts included in “greater than A” and “less than A” so that the effects described above can be exhibited.
  • the present technology can also adopt the following configurations.
  • An information processing method executed by a computer system An extraction step that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer for input, and It includes a generation step of generating training data for reliability prediction in which the training data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data using a kernel function. Information processing method.
  • Each of the plurality of teacher data is data in which the correct answer is associated with the learning data for predicting the correct answer as a teacher label.
  • the generation step By synthesizing the learning data for predicting the correct answer included in each of the extracted two or more teacher data, the learning data for predicting the reliability is generated.
  • the reliability of the generated training data for predicting the reliability when the teacher label included in each of the two or more extracted teacher data is predicted as the correct answer is the reliability of the prediction of the correct answer.
  • Information processing method generated as. (3) The information processing method according to (2).
  • the generation step Using the kernel function, a probability distribution to which the training data for reliability prediction follows is generated, and the learning data for reliability prediction is generated based on the generated probability distribution.
  • the conditional probability that the teacher label included in each of the extracted two or more teacher data is correct under the condition that the generated training data for predicting the reliability is input.
  • the extraction step two teacher data are extracted from the plurality of teacher data.
  • the generation step By performing interpolation at a predetermined interpolation ratio for the learning data for predicting the correct answer contained in each of the two extracted teacher data, the learning data for predicting the reliability is generated.
  • the reliability of the generated training data for predicting the reliability when the teacher label included in each of the two extracted teacher data is predicted as the correct answer is used as the reliability for predicting the correct answer.
  • the generation step Using the kernel function, generate a probability distribution to which the interpolation ratio follows, determine the interpolation ratio based on the generated probability distribution, and execute interpolation at the determined interpolation ratio. Then, the training data for predicting the reliability is generated.
  • the conditional probability that the teacher label included in each of the extracted two teacher data is correct under the condition that the generated training data for predicting the reliability is input is described above.
  • An information processing method that is generated as the reliability of predicting the correct answer. (6) The information processing method according to any one of (1) to (5).
  • the kernel function is an information processing method that is a Gaussian kernel.
  • An extraction unit that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer to the input.
  • a generator that generates training data and teacher data for reliability prediction in which the learning data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data using a kernel function.
  • Information processing device (8) An extraction step that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer for the input, and A computer system uses a kernel function to generate training data and teacher data for prediction of reliability in which the reliability of the prediction of the correct answer is associated with each other from the extracted two or more teacher data. Program to be executed by.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Image Analysis (AREA)

Abstract

An information processing method according to an embodiment of the present technology is executed by a computer system, and includes an extraction step and a generation step. In the extraction step, two or more sets of teacher data are extracted from a plurality of sets of teacher data for training a machine learning model which predicts a correct answer with respect to an input. In the generation step, teacher data for reliability prediction, in which learning data and the reliability of the correct answer prediction are associated with one another, are generated from the two or more extracted sets of teacher data, using a kernel function.

Description

情報処理方法、情報処理装置、及びプログラムInformation processing methods, information processing devices, and programs
 本技術は、機械学習に適用可能な情報処理方法、情報処理装置、及びプログラムに関する。 This technology relates to information processing methods, information processing devices, and programs applicable to machine learning.
 特許文献1には、ニューラルネットワークを用いて求められた推定値に対する信頼度を評価することが可能な評価装置について開示されている。
 非特許文献1には、教師データとして用いられるデータ及びラベルを同一の比率でそれぞれ内挿することでデータを拡張するmixupを実行することで、ニューラルネットワークの出力を信頼度としても用いることが可能になる旨の実験結果が記載されている。
Patent Document 1 discloses an evaluation device capable of evaluating the reliability of an estimated value obtained by using a neural network.
In Non-Patent Document 1, it is possible to use the output of the neural network as reliability by executing mixup which expands the data by interpolating the data and the label used as the teacher data at the same ratio. The experimental result to the effect is described.
特許第5494034号公報Japanese Patent No. 5494034
 機械学習を用いた予測に関して、予測結果の信頼度を高い精度で出力することが可能な技術が求められている。 Regarding prediction using machine learning, there is a need for a technology that can output the reliability of prediction results with high accuracy.
 以上のような事情に鑑み、本技術の目的は、予測結果の信頼度を高い精度で出力することを可能とする情報処理方法、情報処理装置、及びプログラムを提供することにある。 In view of the above circumstances, the purpose of the present technology is to provide an information processing method, an information processing device, and a program capable of outputting the reliability of the prediction result with high accuracy.
 上記目的を達成するため、本技術の一形態に係る情報処理方法は、コンピュータシステムにより実行される情報処理方法であって、抽出ステップと、生成ステップとを具備する。
 前記抽出ステップは、入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する。
 前記生成ステップは、カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する。
In order to achieve the above object, the information processing method according to one embodiment of the present technology is an information processing method executed by a computer system and includes an extraction step and a generation step.
The extraction step extracts two or more teacher data from a plurality of teacher data for training a machine learning model that predicts a correct answer for an input.
In the generation step, a kernel function is used to generate teacher data for reliability prediction in which the learning data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data.
 この情報処理方法では、カーネル関数が用いられて、2以上の教師データから、学習用データと正解の予測に関する信頼度とが互いに関連付けられた信頼度予測用の教師データが生成される。生成された信頼度予測用の教師データを用いて機械学習モデルを学習させることで、予測結果の信頼度を高い精度で出力することが可能となる。 In this information processing method, a kernel function is used to generate teacher data for reliability prediction in which the learning data and the reliability related to the prediction of the correct answer are associated with each other from two or more teacher data. By training the machine learning model using the generated teacher data for predicting the reliability, it is possible to output the reliability of the prediction result with high accuracy.
 前記複数の教師データの各々は、正解予測用の学習用データに、正解が教師ラベルとして関連付けられたデータであってもよい。この場合、前記信頼度予測用の教師データに含まれる前記学習用データを信頼度予測用の学習用データとすると、前記生成ステップは、抽出された前記2以上の教師データの各々に含まれる前記正解予測用の学習用データを合成することで、前記信頼度予測用の学習用データを生成してもよい。また前記生成ステップは、生成された前記信頼度予測用の学習用データに対する、抽出された前記2以上の教師データの各々に含まれる前記教師ラベルが正解として予測される場合の信頼度を、前記正解の予測に対する信頼度として生成してもよい。 Each of the plurality of teacher data may be data in which the correct answer is associated with the learning data for predicting the correct answer as a teacher label. In this case, assuming that the training data included in the reliability prediction teacher data is the training data for reliability prediction, the generation step is included in each of the two or more extracted teacher data. By synthesizing the learning data for predicting the correct answer, the learning data for predicting the reliability may be generated. Further, the generation step determines the reliability of the generated learning data for predicting the reliability when the teacher label included in each of the two or more extracted teacher data is predicted as the correct answer. It may be generated as the reliability of the prediction of the correct answer.
 前記生成ステップは、前記カーネル関数を用いて、前記信頼度予測用の学習用データが従う確率分布を生成し、生成された前記確率分布に基づいて前記信頼度予測用の学習用データを生成してもよい。また前記生成ステップは、生成された前記信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された前記2以上の教師データの各々に含まれる前記教師ラベルが正解である条件付き確率を、前記正解の予測に対する信頼度として生成してもよい。 In the generation step, the kernel function is used to generate a probability distribution to which the training data for reliability prediction follows, and the learning data for reliability prediction is generated based on the generated probability distribution. You may. Further, in the generation step, the teacher label included in each of the extracted two or more teacher data is correct under the condition that the generated learning data for predicting the reliability is input. A certain conditional probability may be generated as the reliability of the prediction of the correct answer.
 前記抽出ステップは、前記複数の教師データから、2つの教師データを抽出してもよい。この場合、前記生成ステップは、抽出された前記2つの教師データの各々に含まれる前記正解予測用の学習用データに対して所定の内挿比率で内挿を実行することで、前記信頼度予測用の学習用データを生成してもよい。また前記生成ステップは、生成された前記信頼度予測用の学習用データに対する、抽出された前記2つの教師データの各々に含まれる前記教師ラベルが正解として予測される場合の信頼度を、前記正解の予測に対する信頼度として生成してもよい。 The extraction step may extract two teacher data from the plurality of teacher data. In this case, the generation step predicts the reliability by performing interpolation at a predetermined interpolation ratio for the learning data for predicting the correct answer included in each of the two extracted teacher data. You may generate training data for. Further, the generation step determines the reliability of the generated learning data for predicting the reliability when the teacher label included in each of the two extracted teacher data is predicted as the correct answer. It may be generated as the reliability of the prediction of.
 前記生成ステップは、前記カーネル関数を用いて、前記内挿比率が従う確率分布を生成し、生成された前記確率分布に基づいて前記内挿比率を決定し、決定された前記内挿比率で内挿を実行することで、前記信頼度予測用の学習用データを生成してもよい。また前記生成ステップは、生成された前記信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された前記2つの教師データの各々に含まれる前記教師ラベルが正解である条件付き確率を、前記正解の予測に対する信頼度として生成してもよい。 In the generation step, the kernel function is used to generate a probability distribution to which the interpolation ratio follows, the interpolation ratio is determined based on the generated probability distribution, and the interpolation ratio is determined. By executing the interpolation, the training data for predicting the reliability may be generated. Further, in the generation step, the teacher label included in each of the extracted two teacher data is correct under the condition that the generated learning data for predicting the reliability is input. Conditional probabilities may be generated as confidence in predicting the correct answer.
 前記カーネル関数は、ガウシアンカーネルであってもよい。 The kernel function may be a Gaussian kernel.
 本技術の一形態に係る情報処理装置は、抽出部と、生成部とを具備する。
 前記抽出部は、前記抽出ステップを実行する。
 前記生成部は、前記生成ステップを実行する。
The information processing device according to one form of the present technology includes an extraction unit and a generation unit.
The extraction unit executes the extraction step.
The generation unit executes the generation step.
 本技術の一形態に係るプログラムは、前記抽出ステップと、前記生成ステップとをコンピュータシステムに実行させる。 The program according to one form of the present technology causes a computer system to execute the extraction step and the generation step.
本技術の一実施形態に係るデータ生成システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the data generation system which concerns on one Embodiment of this technique. 機械学習モデルの一例を示す模式図である。It is a schematic diagram which shows an example of a machine learning model. 教師データを用いた機械学習モデルの学習を説明するための模式図である。It is a schematic diagram for explaining the learning of the machine learning model using the teacher data. 情報処理装置により実行される情報処理方法の一例を示すフローチャートである。It is a flowchart which shows an example of the information processing method executed by an information processing apparatus. 機械学習モデルを用いた物体認識の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of object recognition using a machine learning model. 正解予測用の教師データの他の例を示す模式図である。It is a schematic diagram which shows another example of the teacher data for the correct answer prediction. 情報処理装置の機能的な構成例を示すブロック図である。It is a block diagram which shows the functional configuration example of an information processing apparatus. 本実施形態に係る情報処理方法の一例を示すフローチャートである。It is a flowchart which shows an example of the information processing method which concerns on this Embodiment. 確率分布の作成例を説明するための模式的な図である。It is a schematic diagram for demonstrating the example of making a probability distribution. 信頼度予測用の教師データの一例を示す模式図である。It is a schematic diagram which shows an example of the teacher data for reliability prediction. 非特許文献1に記載の技術を説明するための模式図である。It is a schematic diagram for demonstrating the technique described in Non-Patent Document 1. 情報処理装置のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware configuration example of an information processing apparatus.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments relating to the present technology will be described with reference to the drawings.
 [データ生成システム]
 図1は、本技術の一実施形態に係るデータ生成システムの構成例を示す模式図である。
 図2は、機械学習モデルの一例を示す模式図である。
 図3は、教師データを用いた機械学習モデルの学習を説明するための模式図である。
[Data generation system]
FIG. 1 is a schematic diagram showing a configuration example of a data generation system according to an embodiment of the present technology.
FIG. 2 is a schematic diagram showing an example of a machine learning model.
FIG. 3 is a schematic diagram for explaining learning of a machine learning model using teacher data.
 データ生成システム100は、本技術に係る情報処理システムの一実施形態に相当する。
 図1に示すように、データ生成システム100は、教師データDB(データベース)10と、情報処理装置20とを有する。
 教師データDB10には、複数の教師データが格納される。
 教師データは、図2に例示する、入力に対して正解を予測する機械学習モデル15を学習させるためのデータである。
 なお機械学習モデル15に、どのようなデータが入力され、どのようなデータが正解として予測されるかは限定されず、任意の機械学習モデルに対して、本技術は適用可能である。
The data generation system 100 corresponds to an embodiment of an information processing system according to the present technology.
As shown in FIG. 1, the data generation system 100 includes a teacher data DB (database) 10 and an information processing device 20.
A plurality of teacher data are stored in the teacher data DB 10.
The teacher data is data for training the machine learning model 15 that predicts the correct answer for the input, which is illustrated in FIG.
It should be noted that what kind of data is input to the machine learning model 15 and what kind of data is predicted as the correct answer is not limited, and this technique can be applied to any machine learning model.
 図3に示すように、教師データは、学習用データ11に、教師ラベル12が関連付けられたデータである。
 学習用データ11としては、例えば画像データや音声データ等が挙げられる。その他、機械学習モデル15に対して入力対象となる任意のデータが用いられてよい。
 教師ラベル12は、機械学習モデル15により予測させたい正解(正解データ)である。なお図3に示す例では、教師ラベル12は、ラベルDB13に格納されている。ラベルDB13は、例えば図1に示す教師データDB10内に構築される。
 もちろん、教師データ(学習用データ11及び教師ラベル12)を保存するための構成や方法は限定されず、任意の構成及び方法が採用されてよい。
As shown in FIG. 3, the teacher data is data in which the teacher label 12 is associated with the learning data 11.
Examples of the learning data 11 include image data, audio data, and the like. In addition, arbitrary data to be input to the machine learning model 15 may be used.
The teacher label 12 is a correct answer (correct answer data) to be predicted by the machine learning model 15. In the example shown in FIG. 3, the teacher label 12 is stored in the label DB 13. The label DB 13 is constructed in, for example, the teacher data DB 10 shown in FIG.
Of course, the configuration and method for storing the teacher data (learning data 11 and the teacher label 12) are not limited, and any configuration and method may be adopted.
 図3に示すように、学習用データ11と教師ラベル12とが関連付けられ、教師データとして学習部14に入力される。
 学習部14により、教師データが用いられ、機械学習アルゴリズムに基づいて学習が実行される。学習により、正解(教師ラベル)を算出するためのパラメータ(係数)が更新され、学習済パラメータとして生成される。生成された学習済パラメータが組み込まれたプログラムが、機械学習モデル15として生成される。
 学習部14における学習手法には、例えば、ニューラルネットワークの学習のために一般的に良く利用される誤差逆伝搬法を用いることができる。ニューラルネットワークとは、元々人間の脳神経回路を模倣したモデルであり、入力層、中間層(隠れ層)、出力層の3種類の層からなる層構造を持ったモデルである。多数の中間層を持つニューラルネットワークは特にディープニューラルネットワークと呼ばれ、これを学習するためのディープラーニング技術は、大量データの中に潜んでいる複雑なパターンを学習できるモデルとして知られている。誤差逆伝搬法はこのような学習手法の1つであり、例えば、画像や動画の認識に用いられる畳み込みニューラルネットワーク(CNN: Convolutional Neural Network)などの学習に良く用いられる。
 また、このような機械学習を実現するハードウェア構造としては、ニューラルネットワークの概念を組み込まれたニューロチップ/ニューロモーフィック・チップが用いられ得る。
 その他、任意の機械学習アルゴリズムが用いられてもよい。
As shown in FIG. 3, the learning data 11 and the teacher label 12 are associated with each other and are input to the learning unit 14 as teacher data.
The learning unit 14 uses the teacher data and performs learning based on the machine learning algorithm. By learning, the parameters (coefficients) for calculating the correct answer (teacher label) are updated and generated as learned parameters. A program incorporating the generated learned parameters is generated as the machine learning model 15.
As the learning method in the learning unit 14, for example, an error back propagation method that is generally often used for learning a neural network can be used. A neural network is a model that originally imitates a human brain neural circuit, and has a layered structure consisting of three types of layers: an input layer, an intermediate layer (hidden layer), and an output layer. A neural network having a large number of intermediate layers is particularly called a deep neural network, and a deep learning technique for learning this is known as a model capable of learning a complicated pattern hidden in a large amount of data. The error back propagation method is one of such learning methods, and is often used for learning, for example, a convolutional neural network (CNN) used for recognizing images and moving images.
Further, as a hardware structure for realizing such machine learning, a neurochip / neuromorphic chip incorporating the concept of a neural network can be used.
In addition, any machine learning algorithm may be used.
 図1に示す情報処理装置20は、例えばCPUやGPU、DSP等のプロセッサ、ROMやRAM等のメモリ、HDD等の記憶デバイス等、コンピュータの構成に必要なハードウェアを有する(図12参照)。
 例えばCPUがROM等に予め記録されている本技術に係るプログラムをRAMにロードして実行することにより、本技術に係る情報処理方法が実行される。
 例えばPC(Personal Computer)等の任意のコンピュータにより、情報処理装置20を実現することが可能である。もちろんFPGA、ASIC等のハードウェアが用いられてもよい。
 本実施形態では、CPU等が所定のプログラムを実行することで、機能ブロックとしての抽出部21と、生成部22とが構成される。もちろん機能ブロックを実現するために、IC(集積回路)等の専用のハードウェアが用いられてもよい。
 プログラムは、例えば種々の記録媒体を介して情報処理装置20にインストールされる。あるいは、インターネット等を介してプログラムのインストールが実行されてもよい。
 プログラムが記録される記録媒体の種類等は限定されず、コンピュータが読み取り可能な任意の記録媒体が用いられてよい。例えば、コンピュータが読み取り可能な非一過性の任意の記憶媒体が用いられてよい。
 なお図1に示す教師データDB10が、情報処理装置20内に構築される場合もあり得る。
The information processing device 20 shown in FIG. 1 has hardware necessary for configuring a computer, such as a processor such as a CPU, GPU, or DSP, a memory such as a ROM or RAM, and a storage device such as an HDD (see FIG. 12).
For example, the information processing method according to the present technology is executed when the CPU loads and executes the program according to the present technology recorded in advance in the ROM or the like into the RAM.
For example, the information processing device 20 can be realized by an arbitrary computer such as a PC (Personal Computer). Of course, hardware such as FPGA and ASIC may be used.
In the present embodiment, the extraction unit 21 as a functional block and the generation unit 22 are configured by the CPU or the like executing a predetermined program. Of course, dedicated hardware such as an IC (integrated circuit) may be used to realize the functional block.
The program is installed in the information processing apparatus 20 via, for example, various recording media. Alternatively, the program may be installed via the Internet or the like.
The type of recording medium on which the program is recorded is not limited, and any computer-readable recording medium may be used. For example, any non-transient storage medium that can be read by a computer may be used.
The teacher data DB 10 shown in FIG. 1 may be constructed in the information processing apparatus 20.
 図4は、情報処理装置20により実行される情報処理方法の一例を示すフローチャートである。
 図1に示す抽出部21により、抽出ステップが実行される(ステップ101)。
 抽出ステップは、入力に対して正解を予測する機械学習モデル15を学習させるための複数の教師データから、2以上の教師データを抽出するステップである。
 例えば、複数の教師データから、2以上の教師データが任意に抽出されてよい。これに限定されず、例えば複数の教師データに対して分類等の処理が実行された後に、2以上の教師データが抽出されてもよい。
 図1に示す生成部22により、生成ステップが実行される(ステップ102)。
 生成ステップは、カーネル関数を用いて、抽出された2以上の教師データから、信頼度予測用の教師データを生成するステップである。
 信頼度予測用の教師データは、学習用データと、機械学習モデル15による正解の予測に対する信頼度とが互いに関連付けられたデータである。すなわち信頼度予測用の教師データでは、正解の予測に対する信頼度が教師ラベルとして用いられる。
FIG. 4 is a flowchart showing an example of an information processing method executed by the information processing apparatus 20.
The extraction step is executed by the extraction unit 21 shown in FIG. 1 (step 101).
The extraction step is a step of extracting two or more teacher data from a plurality of teacher data for training the machine learning model 15 that predicts the correct answer for the input.
For example, two or more teacher data may be arbitrarily extracted from a plurality of teacher data. Not limited to this, for example, two or more teacher data may be extracted after processing such as classification is executed for a plurality of teacher data.
The generation step is executed by the generation unit 22 shown in FIG. 1 (step 102).
The generation step is a step of generating teacher data for reliability prediction from two or more extracted teacher data using a kernel function.
The teacher data for predicting the reliability is data in which the learning data and the reliability for predicting the correct answer by the machine learning model 15 are associated with each other. That is, in the teacher data for predicting the reliability, the reliability for the prediction of the correct answer is used as the teacher label.
 このように本実施形態では、機械学習モデル15を学習させるための教師データ(学習用データ11及び教師ラベル12)から、カーネル関数を用いることで、信頼度予測用の教師データ(学習用データ及び信頼度)が、新たな教師データとして生成される。
 カーネル関数としては、ガウシアンカーネル(Gaussian Kernel)、平方カーネル(Square Kernel)、円形カーネル(Circular Kernel)等、任意のカーネル関数が用いられてよい。
 以下、図1等に示す元の教師データを正解予測用の教師データと記載する場合がある。また元の教師データに含まれる学習用データ11及び教師ラベル12を、同じ符号を用いて、正解予測用の学習用データ11、及び正解ラベル12と記載する場合がある。
 また、新たに生成される信頼度予測用の教師データに含まれる学習用データ及び信頼度を、信頼度予測用の学習用データ、及び信頼度ラベルと記載する場合がある。この場合、機械学習モデル15による正解の予測に対する信頼度が、信頼度ラベルに相当する。
As described above, in the present embodiment, by using the kernel function from the teacher data (learning data 11 and the teacher label 12) for training the machine learning model 15, the teacher data for predicting the reliability (learning data and the teacher label 12). Reliability) is generated as new teacher data.
As the kernel function, any kernel function such as a Gaussian Kernel, a Square Kernel, or a Circular Kernel may be used.
Hereinafter, the original teacher data shown in FIG. 1 and the like may be described as teacher data for predicting the correct answer. Further, the learning data 11 and the teacher label 12 included in the original teacher data may be described as the learning data 11 for predicting the correct answer and the correct answer label 12 by using the same reference numerals.
In addition, the learning data and the reliability included in the newly generated teacher data for the reliability prediction may be described as the learning data for the reliability prediction and the reliability label. In this case, the reliability of the prediction of the correct answer by the machine learning model 15 corresponds to the reliability label.
 例えば、図4に示す生成ステップにより、抽出された2以上の正解予測用の教師データの各々に含まれる正解予測用の学習用データ11が合成されることで、信頼度予測用の学習用データが生成される。
 データの合成方法としては、mixup等の任意のデータ拡張手法が用いられてよい。例えば、所定の内挿比率によるデータの内挿が実行されてもよい。その他、データの外挿等が用いられてもよい。もちろんデータの内挿及び外挿を併用するといったことも可能である。
For example, the generation step shown in FIG. 4 synthesizes the learning data 11 for correct answer prediction included in each of the two or more extracted teacher data for correct answer prediction, so that the learning data for reliability prediction is synthesized. Is generated.
As a data synthesis method, an arbitrary data expansion method such as mixup may be used. For example, data interpolation may be performed with a predetermined interpolation ratio. In addition, extrapolation of data and the like may be used. Of course, it is also possible to use data interpolation and extrapolation together.
 合成により生成された信頼度予測用の学習用データに対する、抽出された2以上の正解予測用の教師データの各々に含まれる教師ラベル(正解ラベル)12が正解として予測される場合の信頼度が、信頼度予測用の信頼度(信頼度ラベル)として生成される。
 例えば、生成された信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された2以上の正解予測用の教師データの各々に含まれる教師ラベル(正解ラベル)12が正解である条件付き確率を、信頼度予測用の信頼度(信頼度ラベル)として生成することが可能である。
 このような処理により、信頼度予測用の教師データを新たに生成することが可能となる。以下、さらに詳しい実施形態を例に挙げて、本技術について説明する。
The reliability when the teacher label (correct answer label) 12 included in each of the two or more extracted teacher data for correct answer prediction is predicted as the correct answer for the training data for reliability prediction generated by the synthesis. , Generated as reliability (reliability label) for reliability prediction.
For example, the teacher label (correct answer label) 12 included in each of the extracted two or more correct answer prediction teacher data under the condition that the generated training data for reliability prediction is input. It is possible to generate the correct conditional probability as the reliability (reliability label) for predicting the reliability.
By such processing, it becomes possible to newly generate teacher data for reliability prediction. Hereinafter, the present technology will be described by taking a more detailed embodiment as an example.
 [機械学習モデルによる物体認識]
 図5は、機械学習モデル15を用いた物体認識の一例を説明するための模式図である。
 ここでは、機械学習モデル15により、画像(画像データ)17に写っている物体が認識される。すなわち、画像17を入力として、画像に写っている物体の種類が正解として予測される。
 例えば、図5に示すように、「犬」「猫」「馬」「羊」「猿」の5つクラスが設定され、入力された画像17に対して、各クラスのスコアが算出される。最もスコアが高いクラスが、予測結果として出力される。なお、「犬」「猫」「馬」「羊」「猿」の5つクラスの識別は、例えば1~5等のインデックス値を当てはめることで実行される。
[Object recognition by machine learning model]
FIG. 5 is a schematic diagram for explaining an example of object recognition using the machine learning model 15.
Here, the machine learning model 15 recognizes the object shown in the image (image data) 17. That is, with the image 17 as an input, the type of the object shown in the image is predicted as the correct answer.
For example, as shown in FIG. 5, five classes of "dog", "cat", "horse", "sheep", and "monkey" are set, and the score of each class is calculated for the input image 17. The class with the highest score is output as the prediction result. The identification of the five classes of "dog", "cat", "horse", "sheep", and "monkey" is executed by applying an index value such as 1 to 5, for example.
 図5A及びBに示すように、猫が写った画像17が入力されたとする。図5Aに示すように、「猫」のクラスのスコアが、他のクラスのスコアよりも十分に大きくなったとする。機械学習モデル15は、「猫」のクラスのインデックス値を、予測結果として出力する。
 図5Bに示すように、「猫」のクラスのスコアが他のクラスのスコアよりも大きいが、他のクラスのスコアに対してあまり差がないような場合もあり得る。このような場合でも、機械学習モデル15は、「猫」のクラスのインデックス値を、予測結果として出力する。
As shown in FIGS. 5A and 5B, it is assumed that an image 17 showing a cat is input. As shown in FIG. 5A, it is assumed that the score of the "cat" class is sufficiently higher than the scores of the other classes. The machine learning model 15 outputs the index value of the "cat" class as a prediction result.
As shown in FIG. 5B, there may be cases where the score of the "cat" class is higher than the score of the other class, but there is not much difference with the score of the other class. Even in such a case, the machine learning model 15 outputs the index value of the "cat" class as a prediction result.
 図5に示す識別タスクが実行される場合、例えば、以下のような正解予測用の教師データ(正解予測用の学習用データ11、正解ラベル12)が用いられる。
 (犬が写っている画像、「犬」に対応するインデックス値(1))
 (猫が写っている画像、「猫」に対応するインデックス値(2))
 (馬が写っている画像、「馬」に対応するインデックス値(3))
 (羊が写っている画像、「羊」に対応するインデックス値(4))
 (猿が写っている画像、「猿」に対応するインデックス値(5))
 これらの教師データを多く作成し、機械学習モデル15を学習させることで精度の高い物体認識が実現される。
When the identification task shown in FIG. 5 is executed, for example, the following teacher data for correct answer prediction (learning data 11 for correct answer prediction, correct answer label 12) is used.
(Image showing a dog, index value corresponding to "dog" (1))
(Image showing a cat, index value corresponding to "cat" (2))
(Image showing a horse, index value corresponding to "horse" (3))
(Image showing sheep, index value corresponding to "sheep" (4))
(Image showing a monkey, index value corresponding to "monkey" (5))
Highly accurate object recognition is realized by creating a lot of these teacher data and training the machine learning model 15.
 図6は、正解予測用の教師データの他の例を示す模式図である。
 図6に示すように、各クラスのスコアの大きさの情報を、正解ラベル12として付加することも可能である。すなわち、正解予測用の教師データ(正解予測用の学習用データ11、正解ラベル12)として、以下のデータを用いることが可能である。なお、スコアの最大値は1.0に設定されている。
 (犬が写っている画像、「犬(1)」のスコア1.0かつ他のクラスのスコア0.0)
 (猫が写っている画像、「猫(2)」のスコア1.0かつ他のクラスのスコア0.0)
 (馬が写っている画像、「馬(3)」のスコア1.0かつ他のクラスのスコア0.0)
 (羊が写っている画像、「羊(4)」のスコア1.0かつ他のクラスのスコア0.0)
 (猿が写っている画像、「猿(5)」のスコア1.0かつ他のクラスのスコア0.0)
 その他、正解ラベルの作成方法として、任意の方法が採用されてよい。例えば、各クラスのインデックス値を正解ラベルとして教師データが作成される。そして正解ラベルに対応するクラスのスコアが1.0となり、他のクラスのスコアが0.0となるように、機械学習モデル15を学習させる。このような学習も可能である。
FIG. 6 is a schematic diagram showing another example of teacher data for predicting the correct answer.
As shown in FIG. 6, it is also possible to add information on the size of the score of each class as the correct answer label 12. That is, the following data can be used as the teacher data for predicting the correct answer (learning data 11 for predicting the correct answer, the correct answer label 12). The maximum score is set to 1.0.
(Image showing a dog, score 1.0 for "dog (1)" and score 0.0 for other classes)
(Image showing a cat, score 1.0 for "cat (2)" and score 0.0 for other classes)
(Image showing a horse, score 1.0 for "horse (3)" and score 0.0 for other classes)
(Image showing sheep, score 1.0 for "sheep (4)" and score 0.0 for other classes)
(Image showing a monkey, score 1.0 for "monkey (5)" and score 0.0 for other classes)
In addition, any method may be adopted as a method for creating the correct answer label. For example, teacher data is created with the index value of each class as the correct label. Then, the machine learning model 15 is trained so that the score of the class corresponding to the correct answer label is 1.0 and the score of the other class is 0.0. Such learning is also possible.
 図7は、情報処理装置20の機能的な構成例を示すブロック図である。
 本実施形態では、情報処理装置20は、データ分布作成部24と、内挿比率決定部25と、内挿データ生成部26と、信頼度ラベル生成部27とを有する。
 これらの各機能ブロックは、例えばプロセッサが所定のプログラムを実行することで構成される。もちろんこれらの機能ブロックを実現するために、IC(集積回路)等の専用のハードウェアが用いられてもよい。
 本実施形態では、データ分布作成部24により、図1に示す抽出部21が実現される。
 また、データ分布作成部24、内挿比率決定部25、内挿データ生成部26、及び信頼度ラベル生成部27により、図1に示す生成部22が実現される。従って本実施形態では、データ分布作成部24は、抽出部21としても機能し、生成部22としても機能する。
FIG. 7 is a block diagram showing a functional configuration example of the information processing device 20.
In the present embodiment, the information processing apparatus 20 has a data distribution creation unit 24, an interpolation ratio determination unit 25, an interpolation data generation unit 26, and a reliability label generation unit 27.
Each of these functional blocks is configured, for example, by a processor executing a predetermined program. Of course, in order to realize these functional blocks, dedicated hardware such as an IC (integrated circuit) may be used.
In the present embodiment, the data distribution creation unit 24 realizes the extraction unit 21 shown in FIG.
Further, the data distribution creation unit 24, the interpolation ratio determination unit 25, the interpolation data generation unit 26, and the reliability label generation unit 27 realize the generation unit 22 shown in FIG. Therefore, in the present embodiment, the data distribution creation unit 24 also functions as the extraction unit 21 and also as the generation unit 22.
 図8は、本実施形態に係る情報処理方法の一例を示すフローチャートである。
 データ分布作成部24により、教師データDB10から、2つの正解予測用の教師データが抽出される(ステップ201)。
 本実施形態では、「犬」「猫」「馬」「羊」「猿」のいずれかが写っている画像が、正解予測用の学習用データ11として用いられる。また、画像に写っている物体の種類(インデックス値)が正解ラベル12として用いられるとする。
 以下、正解予測用の学習用データ11である画像を、(x)とする。また、画像に写っている物体の種類(インデックス値)を(y)とする。教師データDB10に格納される正解予測用の教師データは、((x、y)の集合)となる。
 以下、データ分布作成部24により抽出される2つの教師データを、(x0、y0)及び(x1、y1)とする。
FIG. 8 is a flowchart showing an example of the information processing method according to the present embodiment.
The data distribution creation unit 24 extracts two teacher data for predicting the correct answer from the teacher data DB 10 (step 201).
In the present embodiment, an image showing any of "dog", "cat", "horse", "sheep", and "monkey" is used as learning data 11 for predicting the correct answer. Further, it is assumed that the type (index value) of the object shown in the image is used as the correct label 12.
Hereinafter, the image which is the learning data 11 for predicting the correct answer is referred to as (x). Further, let (y) be the type (index value) of the object shown in the image. The teacher data for predicting the correct answer stored in the teacher data DB 10 is (a set of (x, y)).
Hereinafter, the two teacher data extracted by the data distribution creation unit 24 will be referred to as (x 0 , y 0 ) and (x 1 , y 1 ).
 データ分布作成部24により、カーネル関数を用いて、2つの正解予測用の教師データから生成される信頼度予測用の学習用データ(以下、(x')とする)が従う確率分布が作成される(ステップ202)。
 例えば、カーネル関数は、ユーザにより予め定められる。定められたカーネル関数に基づいて、信頼度予測用の学習用データ(x')が従う確率分布を作成するためのパラメータが生成され、データ分布作成部24に入力される。
 例えばカーネル関数を用いて、信頼度予測用の学習用データ(x')が従う確率分布の形等が設定される。もちろんカーネル関数自体も、信頼度予測用の学習用データ(x')が従う確率分布を作成するためのパラメータに含まれる。
The data distribution creation unit 24 creates a probability distribution to which the learning data for reliability prediction (hereinafter referred to as (x')) generated from the teacher data for predicting the correct answer is followed by using the kernel function. (Step 202).
For example, kernel functions are predetermined by the user. Based on the defined kernel function, parameters for creating a probability distribution according to the learning data (x') for reliability prediction are generated and input to the data distribution creation unit 24.
For example, a kernel function is used to set the shape of the probability distribution that the learning data (x') for predicting reliability follows. Of course, the kernel function itself is also included in the parameters for creating the probability distribution that the training data (x') for predicting reliability follows.
 図9は、確率分布の作成例を説明するための模式的な図である。
 例えば、カーネル関数として、ガウシアンカーネルが用いられるとする。すなわち確率分布の形として、ガウス分布が設定されるとする。
 この場合、以下の式にて、信頼度予測用の学習用データ(x')が従う確率分布を作成することが可能である。
FIG. 9 is a schematic diagram for explaining an example of creating a probability distribution.
For example, suppose a Gaussian kernel is used as a kernel function. That is, it is assumed that the Gaussian distribution is set as the form of the probability distribution.
In this case, it is possible to create a probability distribution that the learning data (x') for predicting the reliability follows by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (数1)式中のN(x'|xi ,s)は、xiを中心とする幅sのガウス分布である。
 図9に示すように、2つの正解予測用の学習用データである(x0)及び(x1)を基準としてガウス分布を設定し、適宜係数を付加することで、信頼度予測用の学習用データ(x')が従う確率分布を作成することが可能となる。
 (数1)式では、2つのガウス分布の係数がともに1/2とされている。これに限定されず、例えば係数の和が1となるように、任意の係数が設定されてよい。
 ガウス分布以外の任意のカーネル分布が設定されてよい。
N (x'| x i , s) in Eq. (Equation 1) is a Gaussian distribution with a width s centered on x i.
As shown in FIG. 9, learning for reliability prediction is performed by setting a Gaussian distribution based on two learning data for correct answer prediction, (x 0 ) and (x 1), and adding appropriate coefficients. It is possible to create a probability distribution that the data (x') follows.
In Eq. (Equation 1), the coefficients of the two Gaussian distributions are both halved. Not limited to this, for example, an arbitrary coefficient may be set so that the sum of the coefficients is 1.
Any kernel distribution other than the Gaussian distribution may be set.
 本実施形態では、以下の式に示すように、2つの正解予測用の学習用データ(x0)及び(x1)に対して、所定の内挿比率(以下、λとする)で内挿を実行することで、信頼度予測用の学習用データ(x')が生成される。 In this embodiment, as shown in the following equation, two learning data (x 0 ) and (x 1 ) for predicting the correct answer are interpolated at a predetermined interpolation ratio (hereinafter referred to as λ). By executing, the learning data (x') for predicting the reliability is generated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図8に示すように、内挿比率決定部25により、内挿比率(λ)が決定される。
 内挿比率(λ)は、ステップ202にて作成された確率分布に基づいて決定される。具体的には、内挿により生成される信頼度予測用の学習用データ(x')が、ステップ202で作成された確率分布に従うように、内挿比率(λ)が決定される。
 例えば、内挿により生成される信頼度予測用の学習用データ(x')が、ステップ202で作成された確率分布に従うように、内挿比率(λ)の確率分布が算出される。内挿比率(λ)の確率分布は、例えば周知の変数変換の手法を用いることで算出可能である。
 算出された確率分布に基づいて、内挿比率(λ)が決定される。本実施形態では、データの内挿が実行されるので、0≦λ≦1の範囲を対象にλが決定される。これに限定されず、λがとり得る範囲を広げることで、データの外挿が実行されてもよい。
As shown in FIG. 8, the interpolation ratio determination unit 25 determines the interpolation ratio (λ).
The interpolation ratio (λ) is determined based on the probability distribution created in step 202. Specifically, the interpolation ratio (λ) is determined so that the learning data (x') for predicting the reliability generated by interpolation follows the probability distribution created in step 202.
For example, the probability distribution of the interpolation ratio (λ) is calculated so that the learning data (x') for predicting the reliability generated by interpolation follows the probability distribution created in step 202. The probability distribution of the interpolation ratio (λ) can be calculated, for example, by using a well-known change of variable method.
The interpolation ratio (λ) is determined based on the calculated probability distribution. In the present embodiment, since data interpolation is executed, λ is determined in the range of 0 ≦ λ ≦ 1. Not limited to this, extrapolation of data may be performed by expanding the range that λ can take.
 決定された内挿比率(λ)に基づいて、内挿データ及び信頼度ラベルが生成される(ステップ204)。なお、内挿データは、信頼度予測用の学習用データ(x')のことである。
 すなわちステップ204にて、信頼度予測用の教師データが生成される。
Interpolation data and confidence labels are generated based on the determined interpolation ratio (λ) (step 204). The interpolated data is learning data (x') for predicting reliability.
That is, in step 204, teacher data for predicting reliability is generated.
 図10は、信頼度予測用の教師データの一例を示す模式図である。
 内挿データ(x')は、内挿データ生成部26により生成される。
 内挿データ生成部26により、決定された内挿比率(λ)で内挿が実行されることで、内挿データ(x')が生成される。
 例えば、2つの正解予測用の学習用データ(x0)及び(x1)である2つの画像が、(数2)式に基づいて合成され、内挿データ(x')が生成される。
 図10に示す例では、「犬(1)」が写っている画像、及び「猫(2)」が写っている画像が、2つの正解予測用の学習用データ(x0)及び(x1)として抽出されている。そしてこれらの画像に対して内挿が実行され、内挿データ(x')が生成される。
 このように本実施形態では、ステップ202にて作成された確率分布に基づいて、信頼度予測用の学習用データ(x')が生成される。
FIG. 10 is a schematic diagram showing an example of teacher data for predicting reliability.
The interpolation data (x') is generated by the interpolation data generation unit 26.
The interpolation data generation unit 26 generates the interpolation data (x') by executing the interpolation at the determined interpolation ratio (λ).
For example, two images for learning (x 0 ) and (x 1 ) for predicting the correct answer are combined based on the equation (Equation 2) to generate interpolated data (x').
In the example shown in FIG. 10, the image showing the "dog (1)" and the image showing the "cat (2)" are two learning data (x 0 ) and (x 1) for predicting the correct answer. ) Is extracted. Then, interpolation is executed for these images, and interpolation data (x') is generated.
As described above, in the present embodiment, the learning data (x') for predicting the reliability is generated based on the probability distribution created in step 202.
 信頼度ラベルは、信頼度ラベル生成部27により生成される。
 本実施形態では、生成された内挿データ(x')に対する、抽出された2つの信頼度予測用の教師データの各々に含まれる教師ラベル(y0)及び(y1)が正解として予測される場合の信頼度が、信頼度ラベルとして生成される。
 具体的には、図10に示すように、生成された内挿データ(x')が入力されたという条件のもとでの、抽出された2つの正解予測用の教師データの各々に含まれる教師ラベル(y0)及び(y1)が正解である条件付き確率(p(y=yi|x'))が、信頼度ラベルとして生成される。
 図10に示す例では、内挿データ(x')が入力されたという条件のもとでの、「犬(1)」が正解である条件付き確率(p(1|x')、及び「猫(2)」が正解である条件付き確率(p(2|x')が、信頼度ラベルとして生成される。
 なお、条件付き確率(p(y=yi|x'))は、事後確率ともいえる。
The reliability label is generated by the reliability label generation unit 27.
In the present embodiment, the teacher labels (y 0 ) and (y 1 ) included in each of the two extracted teacher data for predicting the reliability of the generated interpolation data (x') are predicted as correct answers. The reliability of the case is generated as a reliability label.
Specifically, as shown in FIG. 10, it is included in each of the two extracted teacher data for predicting the correct answer under the condition that the generated interpolation data (x') is input. Conditional probabilities (p (y = y i | x')) in which the teacher labels (y 0 ) and (y 1) are correct are generated as confidence labels.
In the example shown in FIG. 10, the conditional probability (p (1 | x')) that "dog (1)" is correct under the condition that the interpolation data (x') is input, and " A conditional probability (p (2 | x')) in which "cat (2)" is the correct answer is generated as a confidence label.
The conditional probability (p (y = y i | x')) can also be said to be a posterior probability.
 本実施形態では、データ分布作成部24により、新たに生成される信頼度予測用の学習用データ(x')が従う確率分布が明示的に作成される。
 従って、新たに生成される信頼度予測用の学習用データ(x')に対する信頼度、すなわち条件付き確率(p(y=yi|x'))を、以下の式により算出することが可能である。
In the present embodiment, the data distribution creation unit 24 explicitly creates a probability distribution to which the newly generated learning data (x') for predicting the reliability follows.
Therefore, the reliability of the newly generated learning data (x') for predicting the reliability, that is, the conditional probability (p (y = y i | x')) can be calculated by the following formula. Is.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (数3)式において、左辺から中辺はベイズの定理に基づいて計算される。中辺から右辺はデータ分布作成部24による作成結果((数1)式)を代入することで計算される。
 内挿データ(x')と、条件付き確率(p(y=yi|x'))とを関連付けることで、信頼度予測用の教師データが生成される。
 なお、図8のステップ201は、図4に示す抽出ステップ(ステップ101)に相当する。
ステップ202~204は、図4に示す生成ステップ(ステップ202)に含まれるステップとなる。
In equation (Equation 3), the left side to the middle side are calculated based on Bayes' theorem. The middle side to the right side are calculated by substituting the creation result (Equation (Equation 1)) by the data distribution creation unit 24.
By associating the interpolated data (x') with the conditional probability (p (y = y i | x')), teacher data for predicting reliability is generated.
Note that step 201 in FIG. 8 corresponds to the extraction step (step 101) shown in FIG.
Steps 202 to 204 are steps included in the generation step (step 202) shown in FIG.
 生成された信頼度予測用の教師データを用いて、図3を参照して説明したように、機械学習アルゴリズムに基づいて機械学習モデルを学習させる。
 これにより、画像(x)を入力として、画像(x)に対する各クラスの信頼度(p(y|x))を出力する機械学習モデルを実現することが可能となる。
 例えば、図5に示す例では、入力される画像に対して、以下の信頼度を出力することが可能となる。
 画像に写っている物体が「犬」である場合の信頼度(p(y=1|x))
 画像に写っている物体が「猫」である場合の信頼度(p(y=2|x))
 画像に写っている物体が「馬」である場合の信頼度(p(y=3|x))
 画像に写っている物体が「羊」である場合の信頼度(p(y=4|x))
 画像に写っている物体が「猿」である場合の信頼度(p(y=5|x))
Using the generated teacher data for predicting reliability, a machine learning model is trained based on a machine learning algorithm as described with reference to FIG.
This makes it possible to realize a machine learning model that takes the image (x) as an input and outputs the reliability (p (y | x)) of each class with respect to the image (x).
For example, in the example shown in FIG. 5, the following reliability can be output for the input image.
Reliability when the object in the image is a "dog" (p (y = 1 | x))
Reliability when the object in the image is a "cat" (p (y = 2 | x))
Reliability when the object in the image is a "horse" (p (y = 3 | x))
Reliability when the object in the image is a "sheep" (p (y = 4 | x))
Reliability when the object in the image is a "monkey" (p (y = 5 | x))
 最も信頼度(p(y|x)が高いクラスを選択することで、画像に写っている物体を識別することが可能となる。また、当該クラスの信頼度(p(y|x)を出力することで、予測に対する信頼度を出力することが可能となる。すなわち、識別結果と、当該識別結果の信頼度を同時に出力することが可能となる。
 信頼度予測用の教師データを多く作成し、機械学習モデルを十分に学習させることで、高い予測正解率を達成しながらも、高精度な信頼度も同時に出力することが可能となる。
By selecting the class with the highest reliability (p (y | x)), it is possible to identify the object in the image. Also, the reliability (p (y | x)) of the class is output. By doing so, it is possible to output the reliability of the prediction. That is, it is possible to output the identification result and the reliability of the identification result at the same time.
By creating a lot of teacher data for predicting reliability and training the machine learning model sufficiently, it is possible to output highly accurate reliability at the same time while achieving a high prediction accuracy rate.
 なお本実施形態では、2つの正解予測用の教師データが抽出される場合を例に挙げたが、3以上の正解予測用の教師データが抽出されてもよい。
 例えば、カーネル関数を用いて、3以上の正解予測用の教師データの各々に含まれる、3以上の正解予測用の学習用データが合成されることで生成される、信頼度予測用の学習用データが従う確率分布を作成することが可能である。
 また、作成された確率分布に基づいて、信頼度予測用の学習用データ、及び信頼度ラベルが生成することが可能である。すなわちカーネル関数を用いて、抽出された3以上の信頼度予測用の教師データから、信頼度予測用の教師データを生成することが可能である。
In the present embodiment, the case where two teacher data for correct answer prediction is extracted is taken as an example, but three or more teacher data for correct answer prediction may be extracted.
For example, for learning for reliability prediction, which is generated by synthesizing learning data for predicting 3 or more correct answers included in each of the teacher data for predicting 3 or more correct answers using a kernel function. It is possible to create a probability distribution that the data follows.
Further, it is possible to generate learning data for predicting reliability and a reliability label based on the created probability distribution. That is, it is possible to generate the teacher data for reliability prediction from the extracted teacher data for reliability prediction of 3 or more by using the kernel function.
 以上、本実施形態に係る情報処理装置及び情報処理方法では、カーネル関数が用いられて、2以上の教師データから、学習用データと正解の予測に関する信頼度とが互いに関連付けられた信頼度予測用の教師データが生成される。生成された信頼度予測用の教師データを用いて機械学習モデルを学習させることで、予測結果の信頼度を高い精度で出力することが可能となる。 As described above, in the information processing apparatus and the information processing method according to the present embodiment, the kernel function is used, and the learning data and the reliability regarding the prediction of the correct answer are associated with each other from the two or more teacher data for the reliability prediction. Teacher data is generated. By training the machine learning model using the generated teacher data for predicting the reliability, it is possible to output the reliability of the prediction result with high accuracy.
 近年、機械学習に基づいた知的処理の精度が向上し、様々なタスクが自動化可能となった。これにより、社会的なインパクトの大きい重要なタスク(例えば、医療診断、金融商品の売買、法的解釈等)も自動化したいというニーズが大きくなっている。
 このようなタスクは誤った予測・判断を行った際の悪影響が大きいため、完全な自動化は難しい。機械による自動的な予測を行った上で、予測が難しい場合や予測が不可能(未学習)な場合には人間が判断する、というプロセスを採用することが現実的である。
 この時、予測の難しさの度合いや予測が不可能である度合いを知るために、機械学習による予測結果とともにその予測の信頼度を推定する必要がある。
 ここで、予測の信頼度として最もよく用いられている値は、モデルの予測が正しい予測となっている確率である。すなわち、あるデータに対する予測の信頼度が0.5の場合には、その予測が正しい確率が50%である。信頼度が一定以下のデータを抽出することで、予測の難しいデータや予測が不可能なデータを抽出できる。
 例えば、図5で例示した機械学習モデル15において、各クラスのスコアの大きさを、信頼度として用いることが考えられる。例えば図5Aに示す予測結果であれば、画像に写っている物体が猫であるという予測結果の信頼度は高いと判定可能である。一方で、図5Bに示す予測結果であれば、画像に写っている物体が猫であるという予測結果の信頼度は低いと判定可能である。
In recent years, the accuracy of intellectual processing based on machine learning has improved, and various tasks can be automated. As a result, there is an increasing need to automate important tasks that have a large social impact (for example, medical diagnosis, buying and selling financial products, legal interpretation, etc.).
It is difficult to fully automate such tasks because they have a large adverse effect when making incorrect predictions and judgments. It is realistic to adopt a process in which a human makes a judgment when the prediction is difficult or impossible (unlearned) after making an automatic prediction by a machine.
At this time, in order to know the degree of difficulty of prediction and the degree of impossible prediction, it is necessary to estimate the reliability of the prediction together with the prediction result by machine learning.
Here, the most commonly used value as the reliability of the prediction is the probability that the prediction of the model is a correct prediction. That is, when the reliability of the prediction for a certain data is 0.5, the probability that the prediction is correct is 50%. By extracting data whose reliability is below a certain level, it is possible to extract data that is difficult to predict or data that cannot be predicted.
For example, in the machine learning model 15 illustrated in FIG. 5, it is conceivable to use the magnitude of the score of each class as the reliability. For example, in the case of the prediction result shown in FIG. 5A, it can be determined that the reliability of the prediction result that the object in the image is a cat is high. On the other hand, with the prediction result shown in FIG. 5B, it can be determined that the reliability of the prediction result that the object shown in the image is a cat is low.
 しかしながら、機械学習モデル、特に最近よく用いられる深層学習で学習したモデルは、信頼度を過大評価する(つまり、信頼度が実際の正解率よりも大きな値となる)傾向がある、という問題が知られている。つまり、例えばあるデータに対する予測の信頼度が0.9の場合でも、実際の正解率は90%を大きく下回ることが多く発生する。
 例えば、図5に示す例では、識別が難しい画像であっても、特定のクラスのスコアが他のクラスよりも十分に高い予測結果(図5Aに例示する予測結果)が多く出力されてしまう。すなわちスコアの大きさ(信頼度)が過大評価された予測結果が出力されてしまう。
 このように過大に評価された信頼度を利用した場合、予測の難しいデータや予測が不可能なデータを正しく抽出して、人間に判断してもらうといったことは困難である。
However, it is known that machine learning models, especially those learned by deep learning, which is often used recently, tend to overestimate the reliability (that is, the reliability becomes a value larger than the actual correct answer rate). Has been done. That is, for example, even when the reliability of the prediction for a certain data is 0.9, the actual correct answer rate often falls far below 90%.
For example, in the example shown in FIG. 5, even if the image is difficult to identify, many prediction results (prediction results exemplified in FIG. 5A) in which the score of a specific class is sufficiently higher than that of other classes are output. That is, the prediction result in which the magnitude (reliability) of the score is overestimated is output.
When such overestimated reliability is used, it is difficult to correctly extract data that is difficult to predict or data that cannot be predicted and have humans judge it.
 このような問題に対する1つ目の対処法として、例えばモデルから出力される信頼度を後処理で補正するという方法が考えられる。しかしながら信頼度の後処理の補正を行うために別途学習データや補正用の計算が必要となるため、データ収集コストや予測時の計算コストが高くなってしまうという問題がある。
 2つ目の対処法として、信頼度を推定するモデルを並列に別途学習するという方法が考えられる。しかしながらこの対処法では、モデルが増えるため、学習・予測時の計算コストが高くなるという問題がある。
 3つ目の対処法として、モデルが予測とともに正しい信頼度を出力するように、学習方法を改良する手法が考えられる。例えば、高すぎる信頼度を出力しないように、出力される信頼度が低くなるような制約やペナルティを科す方法が挙げられるが、正しい信頼度が出力される保証がないという問題がある。
As a first countermeasure to such a problem, for example, a method of correcting the reliability output from the model by post-processing can be considered. However, since training data and calculation for correction are required separately in order to correct the post-processing of reliability, there is a problem that the data collection cost and the calculation cost at the time of prediction become high.
As a second countermeasure, a method of separately learning a model for estimating reliability in parallel can be considered. However, this coping method has a problem that the calculation cost at the time of learning / prediction becomes high because the number of models increases.
As a third countermeasure, a method of improving the learning method is conceivable so that the model outputs the correct reliability together with the prediction. For example, there is a method of imposing restrictions and penalties that lower the output reliability so as not to output too high reliability, but there is a problem that there is no guarantee that the correct reliability will be output.
 本発明者は、3つ目の対処法に着目し、予測に対する信頼度を高い精度で出力することが可能となる技術を実現するために考察を重ねた。
 例えば、図11に示すように、上記した非特許文献1では、学習用データ及び正解ラベルの両方を同一の内挿比率(λ)で内挿するデータ拡張により、正解予測用の教師データが新たに生成される。当該教師データを用いて機械学習モデルを学習させることで、識別精度の向上が図れるとともに、スコアの大きさを信頼度とした場合の信頼度の精度も向上する旨が記載されている。
 しかしながら非特許文献1に記載のmixupでは、内挿比率(λ)で内挿した新たな学習用データに対して、同じ内挿比率(λ)で内挿した正解ラベルが、学習用データに対する各クラスの信頼度となっていることの根拠がない。
 例えば、図11に示す例では、「犬(1)」が写っている画像、及び「猫(2)」が写っている画像が、内挿比率(λ=0.6)で内挿されて、内挿データが生成される。
 当該内挿データに対する正解ラベルが、同じ内挿比率(λ=0.6)で内挿することにより、以下のように生成される。
 (犬が写っている画像、「犬(1)」のスコア0.6)
 (猫が写っている画像、「猫(2)」のスコア0.4)
 (馬が写っている画像、「馬(3)」のスコア0.0)
 (羊が写っている画像、「羊(4)」のスコア0.0)
 (猿が写っている画像、「猿(5)」のスコア0.0)
 このような各クラスのスコアの大きさが、内挿データに対する各クラスの信頼度であるという根拠がない。
 従って、このように生成された教師データにより機械学習モデルを学習させたとしても、正しい信頼度が出力される保証がない。
The present inventor paid attention to the third coping method, and repeated consideration in order to realize a technique capable of outputting the reliability of the prediction with high accuracy.
For example, as shown in FIG. 11, in Non-Patent Document 1 described above, the teacher data for predicting the correct answer is newly added by data expansion in which both the learning data and the correct answer label are interpolated at the same interpolation ratio (λ). Is generated in. It is described that by training a machine learning model using the teacher data, the identification accuracy can be improved and the accuracy of the reliability when the size of the score is used as the reliability is also improved.
However, in the mixup described in Non-Patent Document 1, for the new learning data interpolated at the interpolation ratio (λ), the correct label inserted at the same interpolation ratio (λ) is attached to the learning data. There is no basis for class confidence.
For example, in the example shown in FIG. 11, an image showing "dog (1)" and an image showing "cat (2)" are interpolated at an interpolation ratio (λ = 0.6). , Interpolation data is generated.
The correct label for the interpolated data is generated as follows by interpolating with the same interpolation ratio (λ = 0.6).
(Image showing a dog, score of "dog (1)" 0.6)
(Image showing a cat, score 0.4 for "cat (2)")
(Image showing a horse, score 0.0 for "horse (3)")
(Image showing sheep, score 0.0 for "sheep (4)")
(Image showing a monkey, score 0.0 for "monkey (5)")
There is no evidence that the magnitude of each class's score is the confidence of each class in the interpolated data.
Therefore, even if the machine learning model is trained using the teacher data generated in this way, there is no guarantee that the correct reliability will be output.
 本技術では、与えられている複数の教師データから、学習すべき学習用データと信頼度との組が新たに生成される。すなわち本技術により、正しい信頼度の学習に特化したデータ拡張を実現することが可能となる。
 カーネル関数を用いてデータ分布を事前に設定することにより、新たな学習用データを生成するための内挿比率(λ)の決定と、内挿比率(λ)に応じた信頼度が生成とを、自動的にかつ適切に行うことが可能となる。
 新たに生成された信頼度予測用の教師データは、学習用データと信頼度とが正しく対応しているため、これらを通常の学習方法で学習するだけで、正しい信頼度を出力する機械学習モデルを実現することができる。
 また本技術では、信頼度を予測するための別途の学習等が不要であるので、データ収集コストや計算コストを十分に抑えることが可能である。
In this technique, a pair of learning data to be learned and reliability is newly generated from a plurality of given teacher data. That is, this technology makes it possible to realize data expansion specialized for learning of correct reliability.
By presetting the data distribution using the kernel function, the interpolation ratio (λ) for generating new learning data is determined, and the reliability according to the interpolation ratio (λ) is generated. , It becomes possible to do it automatically and appropriately.
In the newly generated teacher data for predicting reliability, the training data and the reliability correspond correctly, so a machine learning model that outputs the correct reliability simply by learning these with the usual learning method. Can be realized.
Further, in this technology, since it is not necessary to perform separate learning for predicting the reliability, it is possible to sufficiently suppress the data collection cost and the calculation cost.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
<Other Embodiments>
The present technology is not limited to the embodiments described above, and various other embodiments can be realized.
 図12は、情報処理装置20のハードウェア構成例を示すブロック図である。
 情報処理装置20は、CPU61、ROM(Read Only Memory)62、RAM63、入出力インタフェース65、及びこれらを互いに接続するバス64を備える。入出力インタフェース65には、表示部66、入力部67、記憶部68、通信部69、及びドライブ部70等が接続される。
 表示部66は、例えば液晶、EL等を用いた表示デバイスである。入力部67は、例えばキーボード、ポインティングデバイス、タッチパネル、その他の操作装置である。入力部67がタッチパネルを含む場合、そのタッチパネルは表示部66と一体となり得る。
 記憶部68は、不揮発性の記憶デバイスであり、例えばHDD、フラッシュメモリ、その他の固体メモリである。ドライブ部70は、例えば光学記録媒体、磁気記録テープ等、リムーバブルの記録媒体71を駆動することが可能なデバイスである。
 通信部69は、LAN、WAN等に接続可能な、他のデバイスと通信するためのモデム、ルータ、その他の通信機器である。通信部69は、有線及び無線のどちらを利用して通信するものであってもよい。通信部69は、情報処理装置20とは別体で使用される場合が多い。
 上記のようなハードウェア構成を有する情報処理装置20による情報処理は、記憶部68またはROM62等に記憶されたソフトウェアと、情報処理装置20のハードウェア資源との協働により実現される。具体的には、ROM62等に記憶された、ソフトウェアを構成するプログラムをRAM63にロードして実行することにより、本技術に係る情報処理方法が実現される。
 プログラムは、例えば記録媒体61を介して情報処理装置20にインストールされる。あるいは、グローバルネットワーク等を介してプログラムが情報処理装置20にインストールされてもよい。その他、コンピュータ読み取り可能な非一過性の任意の記憶媒体が用いられてよい。
FIG. 12 is a block diagram showing a hardware configuration example of the information processing device 20.
The information processing device 20 includes a CPU 61, a ROM (Read Only Memory) 62, a RAM 63, an input / output interface 65, and a bus 64 that connects them to each other. A display unit 66, an input unit 67, a storage unit 68, a communication unit 69, a drive unit 70, and the like are connected to the input / output interface 65.
The display unit 66 is a display device using, for example, a liquid crystal display, an EL, or the like. The input unit 67 is, for example, a keyboard, a pointing device, a touch panel, or other operating device. When the input unit 67 includes a touch panel, the touch panel can be integrated with the display unit 66.
The storage unit 68 is a non-volatile storage device, for example, an HDD, a flash memory, or other solid-state memory. The drive unit 70 is a device capable of driving a removable recording medium 71 such as an optical recording medium or a magnetic recording tape.
The communication unit 69 is a modem, router, or other communication device for communicating with another device that can be connected to a LAN, WAN, or the like. The communication unit 69 may communicate using either wire or wireless. The communication unit 69 is often used separately from the information processing device 20.
Information processing by the information processing device 20 having the hardware configuration as described above is realized by the cooperation between the software stored in the storage unit 68 or the ROM 62 or the like and the hardware resources of the information processing device 20. Specifically, the information processing method according to the present technology is realized by loading the program constituting the software stored in the ROM 62 or the like into the RAM 63 and executing the program.
The program is installed in the information processing apparatus 20 via, for example, the recording medium 61. Alternatively, the program may be installed in the information processing apparatus 20 via a global network or the like. In addition, any non-transient storage medium that can be read by a computer may be used.
 ネットワーク等を介して通信可能に接続された複数のコンピュータが協働することで、本技術に係る情報処理方法及びプログラムが実行され、本技術に係る情報処理装置が構築されてもよい。
 すなわち本技術に係る情報処理方法、及びプログラムは、単体のコンピュータにより構成されたコンピュータシステムのみならず、複数のコンピュータが連動して動作するコンピュータシステムにおいても実行可能である。
 なお本開示において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれもシステムである。
 コンピュータシステムによる本技術に係る情報処理方法、及びプログラムの実行は、例えば教師データの抽出、確率分布の作成、内挿比率の決定、内挿データの生成、信頼度ラベルの生成等が、単体のコンピュータにより実行される場合、及び各処理が異なるコンピュータにより実行される場合の両方を含む。また所定のコンピュータによる各処理の実行は、当該処理の一部または全部を他のコンピュータに実行させその結果を取得することを含む。
 すなわち本技術に係る情報処理方法及びプログラムは、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成にも適用することが可能である。
The information processing method and program according to the present technology may be executed and the information processing device according to the present technology may be constructed by the cooperation of a plurality of computers connected so as to be communicable via a network or the like.
That is, the information processing method and the program according to the present technology can be executed not only in a computer system composed of a single computer but also in a computer system in which a plurality of computers operate in conjunction with each other.
In the present disclosure, the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether or not all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device in which a plurality of modules are housed in one housing are both systems.
The information processing method and program execution related to this technology by a computer system include, for example, extraction of teacher data, creation of probability distribution, determination of interposition ratio, generation of interposition data, generation of reliability label, etc. This includes both cases where the processing is performed by a computer and cases where each process is performed by a different computer. Further, the execution of each process by a predetermined computer includes causing another computer to execute a part or all of the process and acquire the result.
That is, the information processing method and program according to the present technology can be applied to a cloud computing configuration in which one function is shared by a plurality of devices via a network and jointly processed.
 各図面を参照して説明したデータ生成システム、教師データDB、情報処理装置等の各構成、各処理フロー等はあくまで一実施形態であり、本技術の趣旨を逸脱しない範囲で、任意に変形可能である。すなわち本技術を実施するための他の任意の構成やアルゴリズム等が採用されてよい。 Each configuration of the data generation system, teacher data DB, information processing device, etc., each processing flow, etc. described with reference to each drawing is only one embodiment, and can be arbitrarily modified as long as it does not deviate from the purpose of the present technology. Is. That is, other arbitrary configurations, algorithms, and the like for implementing the present technology may be adopted.
 本開示において、「略」という文言が使用される場合、これはあくまで説明の理解を容易とするための使用であり、「略」という文言の使用/不使用に特別な意味があるわけではない。
 すなわち、本開示において、「中心」「中央」「均一」「等しい」「同じ」「直交」「平行」「対称」「延在」「軸方向」「円柱形状」「円筒形状」「リング形状」「円環形状」等の、形状、サイズ、位置関係、状態等を規定する概念は、「実質的に中心」「実質的に中央」「実質的に均一」「実質的に等しい」「実質的に同じ」「実質的に直交」「実質的に平行」「実質的に対称」「実質的に延在」「実質的に軸方向」「実質的に円柱形状」「実質的に円筒形状」「実質的にリング形状」「実質的に円環形状」等を含む概念とする。
 例えば「完全に中心」「完全に中央」「完全に均一」「完全に等しい」「完全に同じ」「完全に直交」「完全に平行」「完全に対称」「完全に延在」「完全に軸方向」「完全に円柱形状」「完全に円筒形状」「完全にリング形状」「完全に円環形状」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。
 従って、「略」の文言が付加されていない場合でも、いわゆる「略」を付加して表現される概念が含まれ得る。反対に、「略」を付加して表現された状態について、完全な状態が排除される訳ではない。
When the word "abbreviation" is used in this disclosure, it is used only to facilitate the understanding of the explanation, and the use / non-use of the word "abbreviation" does not have any special meaning. ..
That is, in the present disclosure, "center", "center", "uniform", "equal", "same", "orthogonal", "parallel", "symmetrical", "extended", "axial", "cylindrical", "cylindrical", and "ring". Concepts that define shape, size, positional relationship, state, etc., such as "annular shape," are "substantially centered,""substantiallycentered,""substantiallyuniform,""substantiallyequal," and "substantially equal." Same as "substantially orthogonal""substantiallyparallel""substantiallysymmetrical""substantiallyextending""substantiallyaxial""substantiallycylindrical""substantiallycylindrical""substantiallycylindrical" The concept includes "substantially ring shape", "substantially ring shape", and the like.
For example, "perfectly centered", "perfectly centered", "perfectly uniform", "perfectly equal", "perfectly identical", "perfectly orthogonal", "perfectly parallel", "perfectly symmetric", "perfectly extending", "perfectly extending" Includes states that are included in a predetermined range (for example, ± 10% range) based on "axial direction", "completely cylindrical shape", "completely cylindrical shape", "completely ring shape", "completely annular shape", etc. Is done.
Therefore, even when the word "abbreviation" is not added, a concept expressed by adding a so-called "abbreviation" can be included. On the contrary, the complete state is not excluded from the state expressed by adding "abbreviation".
 本開示において、「Aより大きい」「Aより小さい」といった「より」を使った表現は、Aと同等である場合を含む概念と、Aと同等である場合を含なまい概念の両方を包括的に含む表現である。例えば「Aより大きい」は、Aと同等は含まない場合に限定されず、「A以上」も含む。また「Aより小さい」は、「A未満」に限定されず、「A以下」も含む。
 本技術を実施する際には、上記で説明した効果が発揮されるように、「Aより大きい」及び「Aより小さい」に含まれる概念から、具体的な設定等を適宜採用すればよい。
In the present disclosure, expressions using "twist" such as "greater than A" and "less than A" include both the concept including the case equivalent to A and the concept not including the case equivalent to A. It is an expression that includes the concept. For example, "greater than A" is not limited to the case where the equivalent of A is not included, and "greater than or equal to A" is also included. Further, "less than A" is not limited to "less than A", but also includes "less than or equal to A".
When implementing the present technology, specific settings and the like may be appropriately adopted from the concepts included in "greater than A" and "less than A" so that the effects described above can be exhibited.
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。 It is also possible to combine at least two feature parts among the feature parts related to the present technology described above. That is, the various feature portions described in each embodiment may be arbitrarily combined without distinction between the respective embodiments. Further, the various effects described above are merely examples and are not limited, and other effects may be exhibited.
 なお、本技術は以下のような構成も採ることができる。
(1)
 コンピュータシステムにより実行される情報処理方法であって、
 入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する抽出ステップと、
 カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する生成ステップと
 を具備する情報処理方法。
(2)(1)に記載の情報処理方法であって、
 前記複数の教師データの各々は、正解予測用の学習用データに、正解が教師ラベルとして関連付けられたデータであり、
 前記信頼度予測用の教師データに含まれる前記学習用データを信頼度予測用の学習用データとすると、
 前記生成ステップは、
 抽出された前記2以上の教師データの各々に含まれる前記正解予測用の学習用データを合成することで、前記信頼度予測用の学習用データを生成し、
 生成された前記信頼度予測用の学習用データに対する、抽出された前記2以上の教師データの各々に含まれる前記教師ラベルが正解として予測される場合の信頼度を、前記正解の予測に対する信頼度として生成する
 情報処理方法。
(3)(2)に記載の情報処理方法であって、
 前記生成ステップは、
 前記カーネル関数を用いて、前記信頼度予測用の学習用データが従う確率分布を生成し、生成された前記確率分布に基づいて前記信頼度予測用の学習用データを生成し、
 生成された前記信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された前記2以上の教師データの各々に含まれる前記教師ラベルが正解である条件付き確率を、前記正解の予測に対する信頼度として生成する
 情報処理方法。
(4)(3)に記載の情報処理方法であって、
 前記抽出ステップは、前記複数の教師データから、2つの教師データを抽出し、
 前記生成ステップは、
 抽出された前記2つの教師データの各々に含まれる前記正解予測用の学習用データに対して所定の内挿比率で内挿を実行することで、前記信頼度予測用の学習用データを生成し、
 生成された前記信頼度予測用の学習用データに対する、抽出された前記2つの教師データの各々に含まれる前記教師ラベルが正解として予測される場合の信頼度を、前記正解の予測に対する信頼度として生成する
 情報処理方法。
(5)(4)に記載の情報処理方法であって、
 前記生成ステップは、
 前記カーネル関数を用いて、前記内挿比率が従う確率分布を生成し、生成された前記確率分布に基づいて前記内挿比率を決定し、決定された前記内挿比率で内挿を実行することで、前記信頼度予測用の学習用データを生成し、
 生成された前記信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された前記2つの教師データの各々に含まれる前記教師ラベルが正解である条件付き確率を、前記正解の予測に対する信頼度として生成する
 情報処理方法。
(6)(1)から(5)のうちいずれか1つに記載の情報処理方法であって、
 前記カーネル関数は、ガウシアンカーネルである
 情報処理方法。
(7)
 入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する抽出部と、
 カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する生成部と
 を具備する情報処理装置。
(8)
 入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する抽出ステップと、
 カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する生成ステップと
 をコンピュータシステムに実行させるプログラム。
The present technology can also adopt the following configurations.
(1)
An information processing method executed by a computer system.
An extraction step that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer for input, and
It includes a generation step of generating training data for reliability prediction in which the training data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data using a kernel function. Information processing method.
(2) The information processing method according to (1).
Each of the plurality of teacher data is data in which the correct answer is associated with the learning data for predicting the correct answer as a teacher label.
Assuming that the learning data included in the teacher data for reliability prediction is the learning data for reliability prediction,
The generation step
By synthesizing the learning data for predicting the correct answer included in each of the extracted two or more teacher data, the learning data for predicting the reliability is generated.
The reliability of the generated training data for predicting the reliability when the teacher label included in each of the two or more extracted teacher data is predicted as the correct answer is the reliability of the prediction of the correct answer. Information processing method generated as.
(3) The information processing method according to (2).
The generation step
Using the kernel function, a probability distribution to which the training data for reliability prediction follows is generated, and the learning data for reliability prediction is generated based on the generated probability distribution.
The conditional probability that the teacher label included in each of the extracted two or more teacher data is correct under the condition that the generated training data for predicting the reliability is input. An information processing method generated as a reliability for the prediction of the correct answer.
(4) The information processing method according to (3).
In the extraction step, two teacher data are extracted from the plurality of teacher data.
The generation step
By performing interpolation at a predetermined interpolation ratio for the learning data for predicting the correct answer contained in each of the two extracted teacher data, the learning data for predicting the reliability is generated. ,
The reliability of the generated training data for predicting the reliability when the teacher label included in each of the two extracted teacher data is predicted as the correct answer is used as the reliability for predicting the correct answer. Information processing method to generate.
(5) The information processing method according to (4).
The generation step
Using the kernel function, generate a probability distribution to which the interpolation ratio follows, determine the interpolation ratio based on the generated probability distribution, and execute interpolation at the determined interpolation ratio. Then, the training data for predicting the reliability is generated.
The conditional probability that the teacher label included in each of the extracted two teacher data is correct under the condition that the generated training data for predicting the reliability is input is described above. An information processing method that is generated as the reliability of predicting the correct answer.
(6) The information processing method according to any one of (1) to (5).
The kernel function is an information processing method that is a Gaussian kernel.
(7)
An extraction unit that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer to the input.
It is provided with a generator that generates training data and teacher data for reliability prediction in which the learning data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data using a kernel function. Information processing device.
(8)
An extraction step that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer for the input, and
A computer system uses a kernel function to generate training data and teacher data for prediction of reliability in which the reliability of the prediction of the correct answer is associated with each other from the extracted two or more teacher data. Program to be executed by.
 11…正解予測用の学習用データ
 12…教師ラベル(正解ラベル)
 15…機械学習モデル
 20…情報処理装置
 21…抽出部
 22…生成部
 24…データ分布作成部
 25…内挿比率決定部
 26…内挿データ生成部
 27…信頼度ラベル生成部
 100…データ生成システム
11 ... Learning data for predicting correct answer 12 ... Teacher label (correct answer label)
15 ... Machine learning model 20 ... Information processing device 21 ... Extraction unit 22 ... Generation unit 24 ... Data distribution creation unit 25 ... Interpolation ratio determination unit 26 ... Interpolation data generation unit 27 ... Reliability label generation unit 100 ... Data generation system

Claims (8)

  1.  コンピュータシステムにより実行される情報処理方法であって、
     入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する抽出ステップと、
     カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する生成ステップと
     を具備する情報処理方法。
    An information processing method executed by a computer system.
    An extraction step that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer for input, and
    It includes a generation step of generating training data for reliability prediction in which the training data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data using a kernel function. Information processing method.
  2.  請求項1に記載の情報処理方法であって、
     前記複数の教師データの各々は、正解予測用の学習用データに、正解が教師ラベルとして関連付けられたデータであり、
     前記信頼度予測用の教師データに含まれる前記学習用データを信頼度予測用の学習用データとすると、
     前記生成ステップは、
     抽出された前記2以上の教師データの各々に含まれる前記正解予測用の学習用データを合成することで、前記信頼度予測用の学習用データを生成し、
     生成された前記信頼度予測用の学習用データに対する、抽出された前記2以上の教師データの各々に含まれる前記教師ラベルが正解として予測される場合の信頼度を、前記正解の予測に対する信頼度として生成する
     情報処理方法。
    The information processing method according to claim 1.
    Each of the plurality of teacher data is data in which the correct answer is associated with the learning data for predicting the correct answer as a teacher label.
    Assuming that the learning data included in the teacher data for reliability prediction is the learning data for reliability prediction,
    The generation step
    By synthesizing the learning data for predicting the correct answer included in each of the extracted two or more teacher data, the learning data for predicting the reliability is generated.
    The reliability of the generated training data for predicting the reliability when the teacher label included in each of the two or more extracted teacher data is predicted as the correct answer is the reliability of the prediction of the correct answer. Information processing method generated as.
  3.  請求項2に記載の情報処理方法であって、
     前記生成ステップは、
     前記カーネル関数を用いて、前記信頼度予測用の学習用データが従う確率分布を生成し、生成された前記確率分布に基づいて前記信頼度予測用の学習用データを生成し、
     生成された前記信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された前記2以上の教師データの各々に含まれる前記教師ラベルが正解である条件付き確率を、前記正解の予測に対する信頼度として生成する
     情報処理方法。
    The information processing method according to claim 2.
    The generation step
    Using the kernel function, a probability distribution to which the training data for reliability prediction follows is generated, and the learning data for reliability prediction is generated based on the generated probability distribution.
    The conditional probability that the teacher label included in each of the extracted two or more teacher data is correct under the condition that the generated training data for predicting the reliability is input. An information processing method generated as a reliability for the prediction of the correct answer.
  4.  請求項3に記載の情報処理方法であって、
     前記抽出ステップは、前記複数の教師データから、2つの教師データを抽出し、
     前記生成ステップは、
     抽出された前記2つの教師データの各々に含まれる前記正解予測用の学習用データに対して所定の内挿比率で内挿を実行することで、前記信頼度予測用の学習用データを生成し、
     生成された前記信頼度予測用の学習用データに対する、抽出された前記2つの教師データの各々に含まれる前記教師ラベルが正解として予測される場合の信頼度を、前記正解の予測に対する信頼度として生成する
     情報処理方法。
    The information processing method according to claim 3.
    In the extraction step, two teacher data are extracted from the plurality of teacher data.
    The generation step
    By performing interpolation at a predetermined interpolation ratio for the learning data for predicting the correct answer contained in each of the two extracted teacher data, the learning data for predicting the reliability is generated. ,
    The reliability of the generated training data for predicting the reliability when the teacher label included in each of the two extracted teacher data is predicted as the correct answer is used as the reliability for predicting the correct answer. Information processing method to generate.
  5.  請求項4に記載の情報処理方法であって、
     前記生成ステップは、
     前記カーネル関数を用いて、前記内挿比率が従う確率分布を生成し、生成された前記確率分布に基づいて前記内挿比率を決定し、決定された前記内挿比率で内挿を実行することで、前記信頼度予測用の学習用データを生成し、
     生成された前記信頼度予測用の学習用データが入力されたという条件のもとでの、抽出された前記2つの教師データの各々に含まれる前記教師ラベルが正解である条件付き確率を、前記正解の予測に対する信頼度として生成する
     情報処理方法。
    The information processing method according to claim 4.
    The generation step
    Using the kernel function, generate a probability distribution to which the interpolation ratio follows, determine the interpolation ratio based on the generated probability distribution, and execute interpolation at the determined interpolation ratio. Then, the training data for predicting the reliability is generated.
    The conditional probability that the teacher label included in each of the extracted two teacher data is correct under the condition that the generated training data for predicting the reliability is input is described above. An information processing method that is generated as the reliability of predicting the correct answer.
  6.  請求項1に記載の情報処理方法であって、
     前記カーネル関数は、ガウシアンカーネルである
     情報処理方法。
    The information processing method according to claim 1.
    The kernel function is an information processing method that is a Gaussian kernel.
  7.  入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する抽出部と、
     カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する生成部と
     を具備する情報処理装置。
    An extraction unit that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer to the input.
    It is provided with a generator that generates training data and teacher data for reliability prediction in which the learning data and the reliability for the prediction of the correct answer are associated with each other from the extracted two or more teacher data using a kernel function. Information processing device.
  8.  入力に対して正解を予測する機械学習モデルを学習させるための複数の教師データから、2以上の教師データを抽出する抽出ステップと、
     カーネル関数を用いて、抽出された前記2以上の教師データから、学習用データと前記正解の予測に対する信頼度とが互いに関連付けられた信頼度予測用の教師データを生成する生成ステップと
     をコンピュータシステムに実行させるプログラム。
    An extraction step that extracts two or more teacher data from multiple teacher data for training a machine learning model that predicts the correct answer for input, and
    A computer system uses a kernel function to generate training data and teacher data for prediction of reliability in which the reliability of the prediction of the correct answer is associated with each other from the extracted two or more teacher data. Program to be executed by.
PCT/JP2021/014910 2020-04-20 2021-04-08 Information processing method, information processing device, and program WO2021215261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020074610 2020-04-20
JP2020-074610 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215261A1 true WO2021215261A1 (en) 2021-10-28

Family

ID=78269095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014910 WO2021215261A1 (en) 2020-04-20 2021-04-08 Information processing method, information processing device, and program

Country Status (1)

Country Link
WO (1) WO2021215261A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGYI ZHANG; MOUSTAPHA CISSE; YANN N. DAUPHIN; DAVID LOPEZ-PAZ: "mixup: Beyond Empirical Risk Minimization", ARXIV.ORG, 25 October 2017 (2017-10-25), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081313428 *
HONGYU GUO; YONGYI MAO; RICHONG ZHANG: "MixUp as Locally Linear Out-Of-Manifold Regularization", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 7 September 2018 (2018-09-07), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081427422 *
MAEDA, IWAO: "4I2-J-2-01Importance of uncertainty assessment in deep learning", PROCEEDINGS OF THE 33RD ANNUAL CONFERENCE OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE; JUNE 4-7, 2019, no. 33, 2019, pages 1 - 4, XP009531486, DOI: 10.11517/pjsai.JSAI2019.0_4I2J201 *

Similar Documents

Publication Publication Date Title
Murphy Probabilistic machine learning: an introduction
US11640518B2 (en) Method and apparatus for training a neural network using modality signals of different domains
CN109643383B (en) Domain split neural network
KR102102772B1 (en) Electronic apparatus and method for generating trained model thereof
JP2020091922A (en) Structure learning in convolutional neural networks
CN110766044B (en) Neural network training method based on Gaussian process prior guidance
US11651214B2 (en) Multimodal data learning method and device
US20200327409A1 (en) Method and device for hierarchical learning of neural network, based on weakly supervised learning
JP7047498B2 (en) Learning programs, learning methods and learning devices
CN113139664B (en) Cross-modal migration learning method
CN112633310A (en) Method and system for classifying sensor data with improved training robustness
CN113254927B (en) Model processing method and device based on network defense and storage medium
KR20230141683A (en) Method, apparatus and computer program for buildding knowledge graph using qa model
Valle Hands-On Generative Adversarial Networks with Keras: Your guide to implementing next-generation generative adversarial networks
US20200118027A1 (en) Learning method, learning apparatus, and recording medium having stored therein learning program
CN114399025A (en) Graph neural network interpretation method, system, terminal and storage medium
CN114648103A (en) Automatic multi-objective hardware optimization for processing deep learning networks
CN114118259A (en) Target detection method and device
CN111461862B (en) Method and device for determining target characteristics for service data
WO2021215261A1 (en) Information processing method, information processing device, and program
US11568303B2 (en) Electronic apparatus and control method thereof
JP4773680B2 (en) Information processing apparatus and method, program recording medium, and program
Wang et al. Not All Steps are Created Equal: Selective Diffusion Distillation for Image Manipulation
WO2021111832A1 (en) Information processing method, information processing system, and information processing device
JP6947460B1 (en) Programs, information processing equipment, and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP