WO2021209166A1 - Method for the spatially concentrated transmission of data between a base station and a mobile station, and data transmission system - Google Patents

Method for the spatially concentrated transmission of data between a base station and a mobile station, and data transmission system Download PDF

Info

Publication number
WO2021209166A1
WO2021209166A1 PCT/EP2020/085155 EP2020085155W WO2021209166A1 WO 2021209166 A1 WO2021209166 A1 WO 2021209166A1 EP 2020085155 W EP2020085155 W EP 2020085155W WO 2021209166 A1 WO2021209166 A1 WO 2021209166A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
antenna
base station
polar angle
frequency
Prior art date
Application number
PCT/EP2020/085155
Other languages
German (de)
French (fr)
Inventor
Thomas Kleine-Ostmann
Thomas HARZ
Marius Mihalachi
Thorsten Schrader
Original Assignee
Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie, filed Critical Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie,
Priority to EP20824169.5A priority Critical patent/EP4136766A1/en
Publication of WO2021209166A1 publication Critical patent/WO2021209166A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/38Systems for determining direction or position line using comparison of [1] the phase of the envelope of the change of frequency, due to Doppler effect, of the signal transmitted by an antenna moving, or appearing to move, in a cyclic path with [2] the phase of a reference signal, the frequency of this reference signal being synchronised with that of the cyclic movement, or apparent cyclic movement, of the antenna
    • G01S1/40Systems for determining direction or position line using comparison of [1] the phase of the envelope of the change of frequency, due to Doppler effect, of the signal transmitted by an antenna moving, or appearing to move, in a cyclic path with [2] the phase of a reference signal, the frequency of this reference signal being synchronised with that of the cyclic movement, or apparent cyclic movement, of the antenna the apparent movement of the antenna being produced by cyclic sequential energisation of fixed antennas

Definitions

  • the invention relates to a method for transmitting data between a base station and a mobile station.
  • the invention relates to a data transmission system with a base station and a mobile station, the base station having a rotary radio beacon, which (i) a reference signal antenna in the form of an omnidirectional antenna that emits a reference signal and (ii) at least one polar angle antenna arrangement , which extends along a polar angle Antennenkrei ses, has.
  • Data transmission systems consist, for example, of a fixed base station, in the form of a WLAN router or some other transmitting station for electromagnetic waves, and a mobile station, for example a mobile computer or a mobile phone.
  • the invention is based on the object of reducing the disadvantages of the prior art.
  • the invention solves the problem by a method for transmitting data between a base station and a mobile station with the steps (a) determining an angular position W of the mobile station relative to a base station and (b) sending a spatially bundled data signal, in particular with a data Carrier frequency Struktur of at least 10 gigahertz, below the angular position W between mobile station and base station, (c) determining the angular position W a (i) determining a first Peilwin angle in the form of a polar angle Q and (ii) determining a second bearing angle in the form of a Azimuthal angle f includes and (d) the bearing angles q, f are determined by means of a rotary radio fire, which (i) a reference signal antenna in the form of an omnidirectional antenna that emits a reference signal, (ii) at least one polar angle antenna arrangement from polar angle Antennas which are arranged along a polar angle antenna circle, the polar angle antenna arrangement a umlau Fendes
  • the invention relates to a generic data transmission system in which the base station has a rotary radio beacon which (i) has a reference signal antenna in the form of an omnidirectional antenna which sends a reference signal emits, (ii) a polar angle antenna arrangement which extends along a polar angle antenna circle, and (iii) an azimuthal angle antenna arrangement which extends along an azimuthal angle antenna circle, (iv) wherein a polar angle antenna circle normal, the is perpendicular to the polar angle antenna circle, orthogonal to an azimuthal angle antenna circle normal, which is perpendicular to the azimuthal angle antenna circle, runs.
  • the advantage of the invention is that the angular position at which the spatially bundled data signal has to be sent by the base station in order to hit the mobile station can be determined with comparatively high accuracy.
  • Rotary radio lights are known from the prior art for the navigation of aircraft and have been refined there to such an extent that measurement uncertainties of only a few degrees can be achieved. These rotary radio beacons are used to determine a directional angle in the plane.
  • the electronic circuit that can be used to calculate the angular position is relatively simple in structure. It also appears possible to produce such an electronic circuit as an integrated circuit, which enables inexpensive mass production.
  • the angular position is understood to mean that set of angles, usually two or three angles, for which it applies that a spatially bundled data signal that is emitted in this angular position hits the base station.
  • the angular position is preferably specified in a common coordinate system of the base and mobile stations.
  • the spatially bundled data signal is understood to mean, in particular, a beam of electromagnetic radiation that is radiated in a directional manner.
  • the bearing angles are understood to mean the two angles that are determined by the mobile station from the signals of the rotary radio beacon.
  • the bearing angles are thus specified in the coordinate system of the mobile station.
  • An indication of the bearing angles in the common coordinate system is equivalent to this.
  • the feature that the polar angle antenna circle normal runs orthogonally to the azimutal angle antenna circle normal is understood, in particular, that the two normals enclose an angle of 90 ° in the technical sense. This means that it is possible, but not necessary, for the angle between the normals to be precisely 90 °.
  • angular deviations are possible if they are so small that the data signal that is sent out at the angular position hits the mobile station. In particular, a deviation of only for example ⁇ 5 ° in the mathematical sense running vertically is possible.
  • the bearing angles are preferably determined by determining a phase shift between the reference signal on the one hand and the polar angle signal or the azimuthal angle signal on the other hand.
  • the polar angle or the azimuthal angle results in a clear manner from the corresponding phase shift.
  • the reference antenna preferably sends a modulated reference signal, in particular an amplitude- or frequency-modulated reference signal.
  • the reference signal preferably has a carrier frequency of at least 10 GHz. It is then possible, please include the manufacture of rotary radio beacons with small dimensions, for example smaller than 4 cm x 4 cm x 4 cm, which is a preferred embodiment. Such a small rotary radio beacon is suitable for use in mobile and base stations without making them too large.
  • the carrier frequency is preferably less than 100 GHz. At higher carrier frequencies, the attenuation becomes too strong.
  • the polar angle antenna arrangement preferably has at least 50, in particular at least 75, polar angle antennas.
  • the polar angle antennas are preferential planar antennas, these are particularly easy to manufacture. It can be advantageous if the polar angle antenna arrangement has at least 100, in particular at least 1,000, polar angle antennas.
  • the number of polar angle antennas is preferably less than 20,000, in particular 10,000.
  • the antennas are patch antennas; these are particularly easy to manufacture.
  • the polar angle antenna arrangement and the azimuthal angle antenna arrangement are preferably identical in construction.
  • the polar angle antennas are successively controlled with a rotation frequency of at least 5 kilohertz, in particular at least 30 kilohertz.
  • the rotational frequency is 15 kilohertz.
  • the rotational frequency corresponds to a reference signal modulation frequency with which the reference signal is modulated, in particular amplitude or frequency modulated.
  • a polar angle antenna circle diameter of the polar angle antenna circle is preferably at most 70 mm, in particular at most 35 mm. This allows a compact design.
  • an azimuthal angle antenna circle diameter of the azimuthal angle antenna circle is at most 70 mm, in particular at most 35 mm.
  • the polar angle signal preferably has a polar angle signal frequency of at least 10 GHz. This enables a small design of the rotary radio beacon.
  • the polar angle signal frequency differs by less than 1 megahertz and / or more than 5 kilohertz from the azimuthal angle signal frequency.
  • the polar angle signal frequency preferably corresponds to the carrier frequency which is shifted by a polar angle shift frequency.
  • the azimuthal angle antenna arrangement preferably has the properties described above for the polar angle antenna arrangement. It is favorable if the azimuthal angle signal has an azimuthal angle signal frequency of at least 10 GHz, the azimuthal angle signal frequency corresponding to the carrier frequency which is shifted by an azimuthal angle displacement frequency.
  • the difference between polar angle signal shift frequency and azimuthal angle shift frequency is preferably greater than the rotational frequency and is preferably at least 10 times the rotational frequency. It is beneficial if the difference between the shift frequencies is at most 100 times the rotational frequency. In this way, on the one hand, the signals for determining the azimuthal angle and the polar angle can be easily separated from one another, and on the other hand, the frequency range required for performing the method is reasonably small.
  • the reference signal antenna can send out a frequency-modulated reference signal, the reference signal having a carrier frequency of at least 10 GHz.
  • the carrier frequency is preferably less than 100 GHz.
  • the base station has a second polar angle antenna arrangement which has second polar angle antennas which extend along a second polar angle antenna circle K‘20. It is particularly advantageous if the polar angle antenna circles K20, K‘20 are tilted relative to one another. In this way, it is avoided that there is no signal loss in any position of the mobile station relative to the base station as a result of the radiation characteristics of the antennas.
  • the method comprises the step of continuously sending the angular position to the base station.
  • the base station then sends the spatially bundled data signal in the direction indicated by the angular position.
  • the mobile station can also transmit bundled data in the direction of the base station.
  • the method according to the invention preferably has the following steps:
  • Detecting angles of position of the rotary radio beacon in space by means of at least one Mobile station position sensor which in particular has a vector magnetometer and an acceleration sensor, (ii) calculating the angular position from the bearing angles and the position angles and (iii) sending the angular position to the base station.
  • a coordinate system is defined, which is referred to as a common coordinate system, its angular orientation is measured equally by a position sensor of the base station and a position sensor of the mobile station.
  • one coordinate axis of the common coordinate system runs downwards and one coordinate axis runs in the direction of the magnetic north pole.
  • the bearing angles are preferably calculated with reference to the common coordinate system.
  • the angular position of the radio beacon is determined in space. Since the position of the coordinate system of the base station in space is also known, the angular position (in coordinates of the common coordinate system base station) can be calculated from the bearing angles, the position angles and, if necessary, the base station position of the base station in space.
  • the angular position W is determined in the mobile station from the signals emitted by the rotary radio beacon.
  • the location of the base station in space is known, namely either by fixed orientation during installation or by a base station position sensor provided according to a preferred embodiment.
  • the mobile station If, according to a preferred embodiment, the mobile station has determined its position in space, it sends this position to the base station. This is repeated continuously.
  • the base station When the base station has received the position information from the mobile station, it can send user data in direction W to the mobile station.
  • the method comprises the steps of (i) detecting the angular position, (ii) detecting the angular position of the base station, (iii) detecting the angular position of the mobile station, (iv) calculating a transmission direction in which the base station is relative to the mobile station and (v) sending a spatially bundled data signal, in particular with a data carrier frequency of at least 10 gigahertz, in the transmission direction. This ensures that the mobile station emits the data signal in the direction of the base station.
  • a mobile station of a data transmission system preferably has a mobile station position sensor for detecting the angular position of the rotary radio beacon in space.
  • the mobile station position sensor is, for example, a Magnetome ter, by means of which the position of the mobile station relative to the earth's magnetic field can be measured in combination with an acceleration sensor that determines the position of the horizontal plane.
  • the base station preferably has a base station computer which is designed to automatically carry out a method with the steps (i) detecting the angular position W and (ii) sending a spatially bundled data signal, in particular with a data carrier frequencyphil of at least 10 gigahertz, at the angular position W to the mobile station.
  • a mobile station is also provided which is designed to determine the bearing angle by means of signals that originate from a rotary radio beacon, to detect the position angle and to calculate and transmit the angular position.
  • a base station for a data transmission system which has a rotary radio beacon with the features of (d) of claim 1.
  • Figure 1 is a schematic view of a data transmission system according to the invention
  • FIG. 2 shows a schematic circuit diagram of a rotary radio beacon for a data transmission system according to the invention and a base station according to the invention
  • FIG. 3 shows a schematic circuit diagram of an evaluation circuit of a mobile station according to the invention of a data transmission system according to the invention
  • FIG. 4 shows a schematic view of a data transmission system according to the invention in accordance with a second embodiment.
  • FIG. 1 shows schematically a data transmission system 10, which has a base station 12 and a mobile station 14, in the present case in the form of a schematically indicated smartphone.
  • the base station 12 comprises a schematically drawn rotary radio beacon 16 which has a reference signal antenna 18 in the form of an omnidirectional antenna.
  • the rotary radio beacon 16 also has a polar angle antenna arrangement 20 and an azimuthal angle antenna arrangement 22.
  • the polar angle antenna arrangement 20 extends along a polar angle antenna circle K20, which has a polar angle antenna circle normal N20.
  • the azimuthal angle antenna arrangement 22 extends along an azimuthal angle antenna circle K22, which has an azimuthal angle antenna circle normal N22.
  • the two normals N20, N22 are perpendicular to each other.
  • the reference signal antenna 18 is arranged in the center of the polar angle antenna circle K20 and the azimuthal angle antenna circle K22.
  • the reference signal antenna 18 sends a reference signal, which is with a polar angle signal that originates from the polar angle antenna assembly 20 and a
  • the azimuthal angle signal emanating from the azimuthal angle antenna arrangement 22 is superimposed to form a bearing signal 24, which is shown schematically.
  • the Peilsig nal 24 spreads in all spatial directions, but for the sake of clarity, only a small solid angle range is shown.
  • the mobile station 14 has a receiving antenna 26 with which the direction finding signal 24 is received. From the direction finding signal 24, a mobile station computer 28, which is connected to the receiving antenna 26, calculates a polar angle Q and an azimuthal angle cp, which together form an angular position W.
  • the angular position W describes the angular position of the mobile station 14 in a coordinate system KS12 of the base station 1
  • the mobile station 14 sends this angular position W back to the base station 12 by means of a transmitting antenna 30.
  • the transmitting antenna 30 is an electronically pivotable antenna.
  • the base station 12 has a base station receiving antenna 32 for receiving this signal.
  • a bundled data signal 36 is emitted at the angular position W by means of a data antenna 34.
  • the data signal 36 is thus directed directly to the mobile station 14.
  • the data signal 36 has a data carrier frequencyeuropa of at least 10 GHz.
  • Receiving antenna 32 and transmitting antenna 34 are usually implemented with a single bidirectionally controlled antenna.
  • an azimuthal angle antenna circle diameter ⁇ f is as large as the polar angle antenna circle diameter D ⁇ . This is - regardless of the other features of the embodiment described form - a preferred embodiment of the invention.
  • FIG. 1 shows that the mobile station 14 can have a mobile station position sensor 42 by means of which the position angle au, ⁇ i4, g ⁇ 4 in space can be determined. This is done, for example, by measuring the earth's magnetic field and the direction of gravity, which defines two coordinate system directions. The third coordinate system direction is chosen so that an orthogonal right system results.
  • the mobile station 14 sends its position, as it results from the au, ⁇ i4, yi4, to the base station 12.
  • the base station 12 can have a base station position sensor 66 by means of which the position angle 012, ⁇ i2, Y12 of the base station 12 in space can be determined. This is done, for example, by measuring the earth's magnetic field and the direction of gravity, which defines two coordinate system directions. The third coordinate system direction is chosen so that an orthogonal right system results.
  • the base station 12 sends its position, as it results from the position angles CM2, ß 12, yi2, continuously to the mobile station 14. From the position angles 012, ßi 2, yi2 and the angular direction W, the mobile station computer 28 calculates the direction under which the transmitting antenna 30 must send bundled signals 68 in order to aim at the data antenna 34.
  • FIG. 2 shows a generating circuit 44 for generating frequencies for striking the reference signal antenna 18, the polar angle antenna arrangement 20 and the azimuthal angle antenna arrangement 22 (see FIG. 1).
  • the carrier signal 24 is then mixed with a polar angle shift frequency ⁇ DQ, so that a polar angle signal frequency f ⁇ is produced.
  • ⁇ DQ 100 kHz applies.
  • This is successively circulated to the polar angle antennas 38. i at the rotational frequency fu.
  • every polar angle antenna 38. i is applied with the polar angle signal frequency f ⁇ for a period of 1 / (fu IShe), then the adjacent polar angle antenna 38.i + 1 is applied with the polar angle signal frequency f ⁇ .
  • the polar angle shift frequency fA ⁇ is 50 kFlz in the present case.
  • the carrier signal frequency fr is then shifted into an azimuthal angle shift frequency fA 9 , so that an azimuthal angle signal frequency f 9 is obtained.
  • fA 9 400 kFlz applies. This is conducted to the azimuthal angle antennas 40.j and circulates on the azimuthal angle antenna arrangement 22 at the rotational frequency fu.
  • FIG. 3 shows an evaluation circuit 48 which is part of the mobile station computer 28 (see FIG. 1), but does not necessarily have to be implemented on the same chip or the same board.
  • the signal is filtered with a second bandpass filter 56, which only filters out the frequency ⁇ DF.
  • the signal obtained in this way passes through a demodulator 58 and then another bandpass filter which filters out the Umlauffre frequency fu.
  • the signal obtained in this way is also passed to the discriminator 54.
  • the result is phase Df.
  • FIG. 3 shows the variant of a double Doppler rotary radio beacon: both reception branches for the signals transmitted by the antenna circuits, consisting of a bandpass filter, demodulator and further bandpass filter, are designed for frequency modulation. In the event that the antennas only radiate outwards, they would have to be designed for amplitude modulation. Then the circuit would have only one bandpass filter instead of the combination of bandpass filter, demodulator and further bandpass filter.
  • the reference signal on the other hand, could be frequency modulated to improve localization. Its evaluation is then carried out by the circuit bandpass filter, demodulator and further bandpass filter.
  • the signal behind the first bandpass filter 52 which is passed to the first discriminator 54.1, is also switched to a second discriminator 54.2.
  • the signal from mixer 51 is also passed through a third bandpass filter 60 which filters out the polar angle shift frequency ⁇ DQ.
  • the signal then reaches a second demodulator 58.2 and then a further bandpass filter 62 which filters out the rotational frequency fu.
  • the signal obtained in this way is passed to the second discriminator 54.2.
  • the phase DQ results. From the phases Df and DQ, the mobile station computer 28 (see FIG. 1) calculates the angular position which includes the polar angle Q and the azimuthal angle f.
  • FIG. 4 shows a further embodiment of a data transmission system 10 according to the invention, in which the base station 12 has a second rotary radio beacon 16 ′, which is constructed like the first rotary radio beacon 16.
  • the components of the second rotary radio beacon 16 ' have reference symbols with an apostrophe.
  • the two rotary radio lights 16, 16 ' are arranged shifted parallel to one another, both in the direction of the polar angle antenna circle normals N20 and in the direction of the azimuthal angle antenna circle normals N22.
  • the rotary radio beacons 16 16 ′ are also preferably rotated relative to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention relates to a method for transmitting data between a base station (12) and a mobile station (14), comprising the steps of: (a) determining an angular position (W=(0,cp)) of the mobile station (14) relative to a base station (12) and (b) transmitting a spatially concentrated data signal (36), in particular at a data carrier frequency (fo) of at least 10 gigahertz, with the angular position (W) between the mobile station (14) and the base station (12). According to the invention, there is provision for (c) the determining of the angular position (W) to comprise (i) determining a first bearing angle in the form of a polar angle Θ and (ii) determining a second bearing angle in the form of an azimuth angle cp and (d) the bearing angles (0,cp) to be determined by means of a rotating radio beacon (16) that has (i) a reference signal antenna (18) in the form of an omnidirectional antenna that emits a reference signal (46), (ii) at least one polar angle antenna arrangement (20) that extends along a polar angle antenna circuit (K20) and emits an omnidirectional polar angle signal, and (iii) at least one azimuth angle antenna arrangement (22) that extends along an azimuth angle antenna circuit (K22) and emits an omnidirectional azimuth angle signal, (iv) wherein a polar angle antenna circuit normal (N20) that is at right angles to the polar angle antenna circuit (K20) runs orthogonally with respect to an azimuth angle antenna circuit normal (N22) that is at right angles to the azimuth angle antenna circuit (K22).

Description

VERFAHREN ZUM RÄUMLICH GEBÜNDELTEN ÜBERMITTELN VON DATEN ZWISCHEN EINER PROCEDURE FOR SPATIAL BUNDLED TRANSMISSION OF DATA BETWEEN A
BASISSTATION UNDBASE STATION AND
EINER MOBILSTATION UND DATENÜBERTRAGUNGSSYSTEM MITTELS A MOBILE STATION AND DATA TRANSFER SYSTEM BY USING
Die Erfindung betrifft ein Verfahren zum Übermitteln von Daten zwischen einer Basis station und einer Mobilstation. Gemäß einem zweiten Aspekt betrifft die Erfindung ein Datenübertragungssystem mit einer Basisstation und einer Mobilstation, wobei die Basisstation ein Drehfunkfeuer aufweist, das (i) eine Referenzsignal-Antenne in Form einer Rundstrahlantenne, die ein Referenzsignal aussendet und,(ii) zumindest eine Polarwinkel-Antennenanordnung, die sich entlang eines Polarwinkel-Antennenkrei ses erstreckt, aufweist. The invention relates to a method for transmitting data between a base station and a mobile station. According to a second aspect, the invention relates to a data transmission system with a base station and a mobile station, the base station having a rotary radio beacon, which (i) a reference signal antenna in the form of an omnidirectional antenna that emits a reference signal and (ii) at least one polar angle antenna arrangement , which extends along a polar angle Antennenkrei ses, has.
Datenübertragungssysteme bestehen beispielsweise aus einer ortsfesten Basissta tion, in Form eines WLAN-Routers oder einer sonstigen Sendestation für elektromag netische Wellen, und einer Mobilstation, beispielsweise einem mobilen Rechner oder einem Mobiltelefon. Data transmission systems consist, for example, of a fixed base station, in the form of a WLAN router or some other transmitting station for electromagnetic waves, and a mobile station, for example a mobile computer or a mobile phone.
Aus der US 2007/0055746 A1 ist bekannt, dass ein solches Datenübertragungssys tem Sendeeinrichtungen aufweisen kann, um die Lage der Mobilstation durch Trian gulation zu erfassen. Drehfunkfeuer ganz allgemein sind in dem Buch von Erwin Ler- tes, „Funkortung und Funknavigation“, Springer Verlag, 1995, beschrieben. It is known from US 2007/0055746 A1 that such a data transmission system can have transmission devices in order to detect the position of the mobile station by triangulation. Rotary radio beacons in general are described in the book by Erwin Lertes, “Funkortung und Funknavigation”, Springer Verlag, 1995.
Es ist wünschenswert, zwischen der Basisstation und der Mobilstation Daten mit ei ner möglichst hohen Datenrate auszutauschen. Je höher die Daten-Trägerfrequenz, also die Trägerfrequenz des Datensignals, ist, desto größer ist die Datenrate, die übertragen werden kann. Es gibt daher Bestrebungen, diese Frequenz weiter zu stei gern. Nachteilig ist daran, dass die Dämpfung des Datensignals umso stärker wird, je höher die Daten-Trägerfrequenz ist. Es wird daher versucht, räumlich gebündelte Datensignale zu senden. Das hat den Vorteil, dass in der Keule, also in dem Bereich, in dem sich das gebildete Datensig nal ausbreitet, höhere Feldstärken verwendet werden können, sodass trotz der zu nehmenden Dämpfung Daten übertragen werden können. Es hat sich jedoch als schwierig herausgestellt, die Richtung des räumlich gebündelten Datensignals schnell und prozesssicher zu bewerkstelligen. It is desirable to exchange data between the base station and the mobile station at the highest possible data rate. The higher the data carrier frequency, i.e. the carrier frequency of the data signal, the higher the data rate that can be transmitted. There are therefore efforts to further increase this frequency. The disadvantage here is that the attenuation of the data signal becomes greater the higher the data carrier frequency. An attempt is therefore made to send spatially bundled data signals. This has the advantage that higher field strengths can be used in the lobe, that is to say in the area in which the data signal formed is propagated, so that data can be transmitted despite the attenuation that has to be taken. However, it has turned out to be difficult to achieve the direction of the spatially bundled data signal quickly and reliably.
Der Erfindung liegt die Aufgabe zugrunde, Nachteile im Stand der Technik zu vermin dern. The invention is based on the object of reducing the disadvantages of the prior art.
Die Erfindung löst das Problem durch ein Verfahren zum Übermitteln von Daten zwi schen einer Basisstation und einer Mobilstation mit den Schritten (a) Ermitteln einer Winkellage W der Mobilstation relativ zu einer Basisstation und (b) Senden eines räumlich gebündelten Datensignals, insbesondere mit einer Daten-Trägerfrequenz fü von zumindest 10 Gigahertz, unter der Winkellage W zwischen Mobilstation und Ba sisstation, (c) das Ermitteln der Winkellage W ein (i) Ermitteln eines ersten Peilwin kels in Form eines Polarwinkels Q und (ii) Ermitteln eines zweiten Peilwinkels in Form eines Azimutalwinkels f umfasst und (d) die Peilwinkel q,f mittels eines Drehfunk feuers ermittelt werden, das (i) eine Referenzsignal-Antenne in Form einer Rund strahlantenne, die ein Referenzsignal aussendet, (ii) zumindest eine Polarwinkel-An tennenanordnung aus Polarwinkel-Antennen, die entlang eines Polarwinkel-Anten nenkreises angeordnet sind, wobei die Polarwinkel-Antennenanordnung ein umlau fendes Polarwinkel-Signal aussendet, und (iii) zumindest eine Azimutalwinkel-Anten nenanordnung aus Azimutal-Antennen, die entlang eines Azimutalwinkel-Antennen kreises angeordnet sind, wobei die Azimutalwinkel-Antennenanordnung ein umlau fendes Azimutalwinkel-Signal aussendet, aufweist, (iv) wobei eine Polarwinkel-An- tennenkreisnormale, die senkrecht auf dem Polarwinkel-Antennenkreis steht, ortho gonal zu einer Azimutalwinkel-Antennenkreisnormalen, die senkrecht auf dem Azi mutalwinkel-Antennenkreis steht, verläuft. The invention solves the problem by a method for transmitting data between a base station and a mobile station with the steps (a) determining an angular position W of the mobile station relative to a base station and (b) sending a spatially bundled data signal, in particular with a data Carrier frequency fü of at least 10 gigahertz, below the angular position W between mobile station and base station, (c) determining the angular position W a (i) determining a first Peilwin angle in the form of a polar angle Q and (ii) determining a second bearing angle in the form of a Azimuthal angle f includes and (d) the bearing angles q, f are determined by means of a rotary radio fire, which (i) a reference signal antenna in the form of an omnidirectional antenna that emits a reference signal, (ii) at least one polar angle antenna arrangement from polar angle Antennas which are arranged along a polar angle antenna circle, the polar angle antenna arrangement a umlau Fendes Polarwin emits kel signal, and (iii) at least one azimuthal angle antenna arrangement of azimuthal antennas, which are arranged along an azimuthal angle antenna circle, the azimuthal angle antenna arrangement emitting a circumferential azimuthal angle signal, (iv) wherein a Polar angle antenna circle normal, which is perpendicular to the polar angle antenna circle, runs orthogonally to an azimuthal angle antenna circle normal, which is perpendicular to the azimuthal angle antenna circle.
Gemäß einem zweiten Aspekt betrifft die Erfindung ein gattungsgemäßes Datenüber tragungssystem, bei dem die Basisstation ein Drehfunkfeuer aufweist, das (i) eine Referenzsignal-Antenne in Form einer Rundstrahlantenne, die ein Referenzsignal aussendet, (ii) eine Polarwinkel-Antennenanordnung, der sich entlang eines Polar winkel-Antennenkreises erstreckt, und (iii) eine Azimutalwinkel-Antennenanordnung, die sich entlang eines Azimutalwinkel-Antennenkreises erstreckt, aufweist, (iv) wobei eine Polarwinkel-Antennenkreisnormale, die senkrecht auf dem Polarwinkel-Anten nenkreis steht, orthogonal zu einer Azimutalwinkel-Antennenkreisnormale, die senk recht auf dem Azimutalwinkel-Antennenkreis steht, verläuft. According to a second aspect, the invention relates to a generic data transmission system in which the base station has a rotary radio beacon which (i) has a reference signal antenna in the form of an omnidirectional antenna which sends a reference signal emits, (ii) a polar angle antenna arrangement which extends along a polar angle antenna circle, and (iii) an azimuthal angle antenna arrangement which extends along an azimuthal angle antenna circle, (iv) wherein a polar angle antenna circle normal, the is perpendicular to the polar angle antenna circle, orthogonal to an azimuthal angle antenna circle normal, which is perpendicular to the azimuthal angle antenna circle, runs.
Vorteilhaft an der Erfindung ist, dass die Winkellage, unter der das räumlich gebün delte Datensignal von der Basisstation gesendet werden muss, um die Mobilstation zu treffen, mit vergleichsweise hoher Genauigkeit bestimmt werden kann. Drehfunk feuer sind aus dem Stand der Technik für die Navigation von Flugzeugen bekannt und wurden dort so weit verfeinert, dass Messunsicherheiten erreichbar sind, die nur wenige Grad betragen. Diese Drehfunkfeuer dienen der Ermittlung eines Richtungs winkels in der Ebene. The advantage of the invention is that the angular position at which the spatially bundled data signal has to be sent by the base station in order to hit the mobile station can be determined with comparatively high accuracy. Rotary radio lights are known from the prior art for the navigation of aircraft and have been refined there to such an extent that measurement uncertainties of only a few degrees can be achieved. These rotary radio beacons are used to determine a directional angle in the plane.
Vorteilhaft ist zudem, dass die Bestimmung der Winkellage in der Regel vergleichs weise einfach ist. So ist die elektronische Schaltung, die zur Berechnung der Winkel lage verwendet werden kann, strukturell relativ einfach. Es erscheint zudem möglich, eine derartige elektronische Schaltung als integrierten Schaltkreis herzustellen, was eine billige Massenfertigung ermöglicht. It is also advantageous that the determination of the angular position is usually comparatively simple. The electronic circuit that can be used to calculate the angular position is relatively simple in structure. It also appears possible to produce such an electronic circuit as an integrated circuit, which enables inexpensive mass production.
Im Rahmen der vorliegenden Beschreibung wird unter der Winkellage derjenige Satz an Winkeln, in der Regel zwei oder drei Winkel, verstanden, für den gilt, dass ein räumlich gebündeltes Datensignal, das in dieser Winkellage abgegeben wird, die Ba sisstation trifft. Die Winkellage wird vorzugsweise in einem gemeinsamen Koordina tensystem von Basis- und Mobilstation angegeben. In the context of the present description, the angular position is understood to mean that set of angles, usually two or three angles, for which it applies that a spatially bundled data signal that is emitted in this angular position hits the base station. The angular position is preferably specified in a common coordinate system of the base and mobile stations.
Unter dem räumlich gebündelten Datensignal wird insbesondere ein Strahl elektro magnetischer Strahlung verstanden, der gerichtet abgestrahlt wird. The spatially bundled data signal is understood to mean, in particular, a beam of electromagnetic radiation that is radiated in a directional manner.
Unter den Peilwinkeln werden die beiden Winkel verstanden, die von der Mobilstation aus den Signalen des Drehfunkfeuers ermittelt werden. Die Peilwinkel werden damit im Koordinatensystem der Mobilstation angegeben. Dazu äquivalent ist eine Angabe der Peilwinkel im gemeinsamen Koordinatensystem. Unter dem Merkmal, dass die Polarwinkel-Antennenkreisnormale orthogonal zur Azi mutalwinkel-Antennenkreisnormale verläuft, wird insbesondere verstanden, dass die beiden Normalen einen Winkel von im technischen Sinne 90° einschließen. Das be deutet, dass es möglich, nicht aber notwendig ist, dass der Winkel zwischen den bei den Normalen präzise 90° beträgt. Insbesondere sind Winkelabweichungen möglich, sofern diese so klein sind, dass das Datensignal, das unter der Winkellage ausge sendet wird, die Mobilstation trifft. Insbesondere ist eine Abweichung nur von bei spielsweise ± 5° im mathematischen Sinne senkrecht verlaufend möglich. The bearing angles are understood to mean the two angles that are determined by the mobile station from the signals of the rotary radio beacon. The bearing angles are thus specified in the coordinate system of the mobile station. An indication of the bearing angles in the common coordinate system is equivalent to this. The feature that the polar angle antenna circle normal runs orthogonally to the azimutal angle antenna circle normal is understood, in particular, that the two normals enclose an angle of 90 ° in the technical sense. This means that it is possible, but not necessary, for the angle between the normals to be precisely 90 °. In particular, angular deviations are possible if they are so small that the data signal that is sent out at the angular position hits the mobile station. In particular, a deviation of only for example ± 5 ° in the mathematical sense running vertically is possible.
Das Ermitteln der Peilwinkel erfolgt vorzugsweise durch Bestimmen einer Phasenver schiebung zwischen dem Referenzsignal einerseits und dem Polarwinkelsignal bzw. dem Azimutalwinkel-Signal andererseits. Aus der entsprechenden Phasenverschie bung ergibt sich auf eindeutige Weise der Polarwinkel bzw. der Azimutalwinkel. The bearing angles are preferably determined by determining a phase shift between the reference signal on the one hand and the polar angle signal or the azimuthal angle signal on the other hand. The polar angle or the azimuthal angle results in a clear manner from the corresponding phase shift.
Vorzugsweise sendet die Referenzantenne ein moduliertes Referenzsignal, insbe sondere ein amplituden- oder frequenzmoduliertes Referenzsignal. Das Referenzsig nal hat vorzugsweise eine Trägerfrequenz, von zumindest 10 GHz. Es ist dann mög lich, dass Drehfunkfeuer mit kleinen Abmessungen herzustellen, die beispielsweise kleiner sind als 4 cm x 4 cm x 4 cm, was eine bevorzugte Ausführungsform darstellt. Ein derartig kleines Drehfunkfeuer ist zur Verwendung in Mobil- und Basisstationen geeignet, ohne diese zu groß werden zu lassen. Die Trägerfrequenz ist vorzugs weise kleiner als 100 GHz. Bei höheren Trägerfrequenzen wird die Dämpfung zu stark. The reference antenna preferably sends a modulated reference signal, in particular an amplitude- or frequency-modulated reference signal. The reference signal preferably has a carrier frequency of at least 10 GHz. It is then possible, please include the manufacture of rotary radio beacons with small dimensions, for example smaller than 4 cm x 4 cm x 4 cm, which is a preferred embodiment. Such a small rotary radio beacon is suitable for use in mobile and base stations without making them too large. The carrier frequency is preferably less than 100 GHz. At higher carrier frequencies, the attenuation becomes too strong.
Es handelt sich um ein konventionelles Drehfunkfeuer, bei dem nur die Amplituden variation in Folge des Umschaltens der Einzelantennen auf dem Antennenkreis ge nutzt wird, wenn die Antennen ausschließlich nach außen strahlen, insbesondere wenn die Antennen planare Antennen sind. Strahlen die Einzelantennen des Anten nenkreises in alle Richtungen, so kann die Frequenzmodulation in Folge des Um schaltens der Einzelanatennen genutzt werden und es handelt sich um ein Doppler- Drehfunkfeuer. Vorzugsweise besitzt die Polarwinkel-Antennenanordnung zumindest 50, insbeson dere zumindest 75, Polarwinkel-Antennen. Die Polarwinkel-Antennen sind vorzugs weise Planarantennen, diese sind besonders einfach herstellbar. Es kann vorteilhaft sein, wenn die Polarwinkel-Antennenanordnung zumindest 100, insbesondere zu mindest 1.000, Polarwinkel-Antennen aufweist. Vorzugsweise ist die Zahl der Polar winkel-Antennen kleiner als 20.000, insbesondere 10.000. It is a conventional rotary radio beacon in which only the amplitude variation due to the switching of the individual antennas on the antenna circuit is used if the antennas only radiate outwards, especially if the antennas are planar antennas. If the individual antennas of the antenna circle radiate in all directions, the frequency modulation can be used as a result of switching the individual antennas and it is a Doppler rotary radio beacon. The polar angle antenna arrangement preferably has at least 50, in particular at least 75, polar angle antennas. The polar angle antennas are preferential planar antennas, these are particularly easy to manufacture. It can be advantageous if the polar angle antenna arrangement has at least 100, in particular at least 1,000, polar angle antennas. The number of polar angle antennas is preferably less than 20,000, in particular 10,000.
Günstig ist es, wenn die Antennen Patchantennen sind, diese sind besonders ein fach herzustellen. Vorzugsweise sind die Polarwinkel-Antennenanordnung und die Azimutalwinkel-Antennenanordnung baugleich. It is advantageous if the antennas are patch antennas; these are particularly easy to manufacture. The polar angle antenna arrangement and the azimuthal angle antenna arrangement are preferably identical in construction.
Gemäß einer bevorzugten Ausführungsform werden die Polarwinkel-Antennen suk zessive mit einer Umlauffrequenz von zumindest 5 Kilohertz, insbesondere zumin dest 30 Kilohertz, angesteuert. Beispielsweise beträgt die Umlauffrequenz 15 Kilo hertz. Die Umlauffrequenz entspricht einer Referenzsignalmodulationsfrequenz, mit der das Referenzsignal moduliert, insbesondere amplituden- oder frequenzmoduliert, wird. According to a preferred embodiment, the polar angle antennas are successively controlled with a rotation frequency of at least 5 kilohertz, in particular at least 30 kilohertz. For example, the rotational frequency is 15 kilohertz. The rotational frequency corresponds to a reference signal modulation frequency with which the reference signal is modulated, in particular amplitude or frequency modulated.
Vorzugsweise beträgt ein Polarwinkel-Antennenkreisdurchmesser des Polarwinkel- Antennenkreises höchstens 70 mm, insbesondere höchstens 35 mm. Das erlaubt eine kompakte Bauform. Vorzugsweise beträgt ein Azimutalwinkel-Antennenkreis durchmesser des Azimutalwinkel-Antennenkreises höchstens 70 mm, insbesondere höchstens 35 mm. A polar angle antenna circle diameter of the polar angle antenna circle is preferably at most 70 mm, in particular at most 35 mm. This allows a compact design. Preferably, an azimuthal angle antenna circle diameter of the azimuthal angle antenna circle is at most 70 mm, in particular at most 35 mm.
Das Polarwinkel-Signal hat vorzugsweise eine Polarwinkelsignal-Frequenz von zu mindest 10 GHz. Das ermöglicht eine kleine Bauform des Drehfunkfeuers. Vorzugs weise unterscheidet sich die Polarwinkelsignal-Frequenz um weniger als 1 Mega hertz und/oder mehr als 5 Kilohertz von der Azimutalwinkelsignal-Frequenz. The polar angle signal preferably has a polar angle signal frequency of at least 10 GHz. This enables a small design of the rotary radio beacon. Preferably, the polar angle signal frequency differs by less than 1 megahertz and / or more than 5 kilohertz from the azimuthal angle signal frequency.
Die Polarwinkelsignal-Frequenz entspricht vorzugsweise der Trägerfrequenz, die um eine Polarwinkel-Verschiebefrequenz verschoben ist. The polar angle signal frequency preferably corresponds to the carrier frequency which is shifted by a polar angle shift frequency.
Vorzugsweise besitzt die Azimutalwinkel-Antennenanordnung die oben für die Polar winkel-Antennenanordnung beschriebenen Eigenschaften. Günstig ist es, wenn das Azimutalwinkel-Signal eine Azimutalwinkelsignal-Frequenz von zumindest 10 GHz hat, wobei die Azimutalwinkelsignal-Frequenz der Trägerfre quenz, die um eine Azimutalwinkel-Verschiebefrequenz verschoben ist, entspricht.The azimuthal angle antenna arrangement preferably has the properties described above for the polar angle antenna arrangement. It is favorable if the azimuthal angle signal has an azimuthal angle signal frequency of at least 10 GHz, the azimuthal angle signal frequency corresponding to the carrier frequency which is shifted by an azimuthal angle displacement frequency.
Die Differenz zwischen Polarwinkelsignal-Verschiebefrequenz und Azimutalwinkel- Verschiebefrequenz ist vorzugsweise größer als die Umlauffrequenz und beträgt vor zugsweise zumindest das 10-fache der Umlauffrequenz. Günstig ist es, wenn die Dif ferenz der Verschiebefrequenzen höchstens das 100-fache der Umlauffrequenz be trägt. Auf diese Weise sind die Signale zur Bestimmung des Azimutalwinkels und des Polarwinkels einerseits gut voneinander trennbar, andererseits ist der zum Durchfüh ren des Verfahrens notwendige Frequenzbereich vertretbar klein. The difference between polar angle signal shift frequency and azimuthal angle shift frequency is preferably greater than the rotational frequency and is preferably at least 10 times the rotational frequency. It is beneficial if the difference between the shift frequencies is at most 100 times the rotational frequency. In this way, on the one hand, the signals for determining the azimuthal angle and the polar angle can be easily separated from one another, and on the other hand, the frequency range required for performing the method is reasonably small.
Alternativ zu einem amplitudenmodulierten Frequenzsignal kann die Referenzsignal- Antenne ein frequenzmoduliertes Referenzsignal aussenden, wobei das Referenz signal eine Trägerfrequenz von zumindest 10 GHz hat. Vorzugsweise ist die Träger frequenz kleiner als 100 GHz. As an alternative to an amplitude-modulated frequency signal, the reference signal antenna can send out a frequency-modulated reference signal, the reference signal having a carrier frequency of at least 10 GHz. The carrier frequency is preferably less than 100 GHz.
Gemäß einer bevorzugten Ausführungsform besitzt die Basisstation eine zweite Po larwinkel-Antennenanordnung, die zweite Polarwinkel-Antennen aufweist, die sich entlang eines zweiten Polarwinkel-Antennenkreis K‘20 erstrecken. Besonders vorteil haft ist es, wenn die Polarwinkel-Antennenkreise K20, K‘20 gegeneinander verkippt sind. Auf diese Weise wird vermieden, dass es in keiner Position der Mobilstation re lativ zur Basisstation zu einem Signalverlust in Folge der Abstrahlcharakteristiken der Antennen kommen kann. According to a preferred embodiment, the base station has a second polar angle antenna arrangement which has second polar angle antennas which extend along a second polar angle antenna circle K‘20. It is particularly advantageous if the polar angle antenna circles K20, K‘20 are tilted relative to one another. In this way, it is avoided that there is no signal loss in any position of the mobile station relative to the base station as a result of the radiation characteristics of the antennas.
Gemäß einer bevorzugten Ausführungsform umfasst das Verfahren den Schritt des kontinuierlichen Sendens der Winkellage an die Basisstation. Die Basisstation sendet daraufhin das räumlich gebündelte Datensignal in die Richtung, die durch die Winkel lage angegeben wird. Die Mobilstation kann ebenfalls gebündelt Daten in Richtung der Basisstation übertragen. According to a preferred embodiment, the method comprises the step of continuously sending the angular position to the base station. The base station then sends the spatially bundled data signal in the direction indicated by the angular position. The mobile station can also transmit bundled data in the direction of the base station.
Das erfindungsgemäße Verfahren weist vorzugsweise die folgenden Schritte auf:The method according to the invention preferably has the following steps:
(i) Erfassen von Lagewinkeln des Drehfunkfeuers im Raum mittels zumindest eines Mobilstation-Lagesensors, der insbesondere ein vektorielles Magnetometers und ei nen Beschleunigungssensor aufweist, (ii) Berechnen der Winkellage aus den Peil winkeln und den Lagewinkeln und (iii) Senden der Winkellage an die Basisstation. Mittels des Mobilstation-Lagesensors wird ein Koordinatensystem definiert, das als gemeinsames Koordinatensystem bezeichnet wird, seine Winkelorientierung von ei nem Lagesensor der Basisstation und einem Lagesensor der Mobilstation gleich ge messen wird. (i) Detecting angles of position of the rotary radio beacon in space by means of at least one Mobile station position sensor, which in particular has a vector magnetometer and an acceleration sensor, (ii) calculating the angular position from the bearing angles and the position angles and (iii) sending the angular position to the base station. By means of the mobile station position sensor, a coordinate system is defined, which is referred to as a common coordinate system, its angular orientation is measured equally by a position sensor of the base station and a position sensor of the mobile station.
Beispielsweise verläuft eine Koordinatenachse des gemeinsamen Koordinatensys tems nach unten und eine Koordinatenachse in Richtung des magnetischen Nord pols. Die Peilwinkel werden vorzugsweise bezüglich des gemeinsamen Koordinaten systems berechnet. Um daraus die Winkellage im Koordinatensystem der Basissta tion zu berechnen, werden die Lagewinkel des Drehfunkfeuers im Raum bestimmt. Da die Lage des Koordinatensystems der Basisstation im Raum ebenfalls bekannt ist, lässt sich aus den Peilwinkeln, den Lagewinkeln und ggf. der Basisstation-Lage der Basisstation im Raum die Winkellage (in Koordinaten des gemeinsamen Koordi natensystems Basisstation) berechnen. For example, one coordinate axis of the common coordinate system runs downwards and one coordinate axis runs in the direction of the magnetic north pole. The bearing angles are preferably calculated with reference to the common coordinate system. In order to calculate the angular position in the coordinate system of the base station, the angular position of the radio beacon is determined in space. Since the position of the coordinate system of the base station in space is also known, the angular position (in coordinates of the common coordinate system base station) can be calculated from the bearing angles, the position angles and, if necessary, the base station position of the base station in space.
Die Winkellage W wird in der Mobilstation aus den abgestrahlten Signalen des Dreh funkfeuers ermittelt. Die Lage der Basisstation im Raum ist bekannt, nämlich entwe der durch ortsfeste Ausrichtung bei Installation oder durch einen gemäß einer bevor zugten Ausführungsform vorhandenen Basisstation-Lagesensor. The angular position W is determined in the mobile station from the signals emitted by the rotary radio beacon. The location of the base station in space is known, namely either by fixed orientation during installation or by a base station position sensor provided according to a preferred embodiment.
Hat, gemäß einer bevorzugten Ausführungsform, die Mobilstation ihre Lage im Raum bestimmt, sendet sie diese Lage an die Basisstation. Das wird kontinuierlich wieder holt. Wenn die Basisstation die Lageinformation der Mobilstation empfangen hat, kann sie Nutzdaten in Richtung W zur Mobilstation senden. If, according to a preferred embodiment, the mobile station has determined its position in space, it sends this position to the base station. This is repeated continuously. When the base station has received the position information from the mobile station, it can send user data in direction W to the mobile station.
Gemäß einer bevorzugten Ausführungsform umfasst das Verfahren die Schritte (i) Erfassen der Winkellage, (ii) Erfassen der Lagewinkel der Basisstation, (iii) Erfas sen der Lagewinkel der Mobilstation, (iv) Berechnen einer Senderichtung, in der sich die Basisstation relativ zur Mobilstation befindet und (v) Senden eines räumlich ge- bündelten Datensignals, insbesondere mit einer Daten-Trägerfrequenz von zumin dest 10 Gigahertz, in die Senderichtung. So wird erreicht, dass die Mobilstation das Datensignal in Richtung der Basisstation abstrahlt. According to a preferred embodiment, the method comprises the steps of (i) detecting the angular position, (ii) detecting the angular position of the base station, (iii) detecting the angular position of the mobile station, (iv) calculating a transmission direction in which the base station is relative to the mobile station and (v) sending a spatially bundled data signal, in particular with a data carrier frequency of at least 10 gigahertz, in the transmission direction. This ensures that the mobile station emits the data signal in the direction of the base station.
Eine Mobilstation eines erfindungsgemäßen Datenübertragungssystems besitzt vor zugsweise einen Mobilstation-Lagesensor zum Erfassen der Lagewinkel des Dreh funkfeuers im Raum. Der Mobilstation-Lagesensor ist beispielsweise ein Magnetome ter, mittels dem die Lage der Mobilstation relativ zum Erdmagnetfeld messbar ist in Kombination mit einem Beschleunigungssensor, der die Lage der Horizontalebene ermittelt. A mobile station of a data transmission system according to the invention preferably has a mobile station position sensor for detecting the angular position of the rotary radio beacon in space. The mobile station position sensor is, for example, a Magnetome ter, by means of which the position of the mobile station relative to the earth's magnetic field can be measured in combination with an acceleration sensor that determines the position of the horizontal plane.
Vorzugsweise weist die Mobilstation einen Mobilstation-Rechner auf, der ausgebildet ist zum automatischen Durchführen eines Verfahrens mit den Schritten (i) Ermitteln einer Winkellage W=0,cp durch Ermitteln eines ersten Peilwinkels in Form eines Po larwinkels Q, Ermitteln eines zweiten Peilwinkels in Form eines Azimutalwinkels f und (ii) Senden der Winkellage W an die Basisstation. Die Basisstation besitzt vor zugsweise einen Basisstations-Rechner, der ausgebildet ist zum automatischen Durchführen eines Verfahrens mit den Schritten (i) Erfassen der Winkellage W und (ii) Senden eines räumlich gebündelten Datensignals, insbesondere mit einer Daten- Trägerfrequenz fü von zumindest 10 Gigahertz, unter der Winkellage W an die Mobil station. The mobile station preferably has a mobile station computer which is designed to automatically carry out a method with the steps (i) determining an angular position W = 0, cp by determining a first bearing angle in the form of a polar angle Q, determining a second bearing angle in the form an azimuthal angle f and (ii) sending the angular position W to the base station. The base station preferably has a base station computer which is designed to automatically carry out a method with the steps (i) detecting the angular position W and (ii) sending a spatially bundled data signal, in particular with a data carrier frequency fü of at least 10 gigahertz, at the angular position W to the mobile station.
Erfindungsgemäß ist zudem eine Mobilstation vorgesehen, die ausgebildet ist zum Ermitteln der Peilwinkel mittels Signalen, die von einem Drehfunkfeuer stammen, zum Erfassen der Lagewinkel und zum Berechnen und Senden der Winkellage. According to the invention, a mobile station is also provided which is designed to determine the bearing angle by means of signals that originate from a rotary radio beacon, to detect the position angle and to calculate and transmit the angular position.
Erfindungsgemäß ist zudem eine Basisstation für ein Datenübertragungssystem, die ein Drehfunkfeuer mit den Merkmalen von (d) von Anspruch 1 aufweist. Im Folgenden wird die Erfindung anhand der beigefügten Zeichnungen näher erläu tert. Dabei zeigt According to the invention, a base station for a data transmission system is also provided, which has a rotary radio beacon with the features of (d) of claim 1. The invention is explained in more detail below with reference to the accompanying drawings. It shows
Figur 1 eine schematische Ansicht eines erfindungsgemäßen Datenübertragungs systems, Figure 1 is a schematic view of a data transmission system according to the invention,
Figur 2 ein schematisches Schaltbild eines Drehfunkfeuers für ein erfindungsge mäßes Datenübertragungssystem und eine erfindungsgemäße Basissta tion, FIG. 2 shows a schematic circuit diagram of a rotary radio beacon for a data transmission system according to the invention and a base station according to the invention,
Figur 3 ein schematisches Schaltbild einer Auswerteschaltung einer erfindungsge mäßen Mobilstation eines erfindungsgemäßen Datenübertragungssys tems und FIG. 3 shows a schematic circuit diagram of an evaluation circuit of a mobile station according to the invention of a data transmission system according to the invention, and FIG
Figur 4 eine schematische Ansicht eines erfindungsgemäßen Datenübertragungs systems gemäß einer zweiten Ausführungsform. FIG. 4 shows a schematic view of a data transmission system according to the invention in accordance with a second embodiment.
Figur 1 zeigt schematisch ein Datenübertragungssystem 10, das eine Basisstation 12 und eine Mobilstation 14, im vorliegenden Fall in Form eines schematisch angedeu teten Smartphones aufweist. Die Basisstation 12 umfasst ein schematisch einge zeichnetes Drehfunkfeuer 16, das eine Referenzsignal-Antenne 18 in Form einer Rundstrahlantenne aufweist. Das Drehfunkfeuer 16 besitzt zudem eine Polarwinkel- Antennenanordnung 20 und eine Azimutalwinkel-Antennenanordnung 22. Figure 1 shows schematically a data transmission system 10, which has a base station 12 and a mobile station 14, in the present case in the form of a schematically indicated smartphone. The base station 12 comprises a schematically drawn rotary radio beacon 16 which has a reference signal antenna 18 in the form of an omnidirectional antenna. The rotary radio beacon 16 also has a polar angle antenna arrangement 20 and an azimuthal angle antenna arrangement 22.
Die Polarwinkel-Antennenanordnung 20 erstreckt sich entlang eines Polarwinkel-An tennenkreises K20, der eine Polarwinkel-Antennenkreisnormale N20 hat. Die Azimutal winkel-Antennenanordnung 22 erstreckt sich entlang eines Azimutalwinkel-Anten nenkreises K22, der eine Azimutalwinkel-Antennenkreisnormale N22 hat. Die beiden Normalen N20, N22 stehen senkrecht aufeinander. Die Referenzsignal-Antenne 18 ist im Mittelpunkt des Polarwinkel-Antennenkreises K20 und des Azimutalwinkel-Anten nenkreises K22 angeordnet. The polar angle antenna arrangement 20 extends along a polar angle antenna circle K20, which has a polar angle antenna circle normal N20. The azimuthal angle antenna arrangement 22 extends along an azimuthal angle antenna circle K22, which has an azimuthal angle antenna circle normal N22. The two normals N20, N22 are perpendicular to each other. The reference signal antenna 18 is arranged in the center of the polar angle antenna circle K20 and the azimuthal angle antenna circle K22.
Die Referenzsignal-Antenne 18 sendet ein Referenzsignal, das sich mit einem Polar winkelsignal, das von der Polarwinkel-Antennenanordnung 20 ausgeht und einem Azimutalwinkelsignal, das von der Azimutalwinkel-Antennenanordnung 22 ausgeht, zu einem Peilsignal 24 überlagert, das schematisch eingezeichnet ist. Das Peilsig nal 24 breitet sich in alle Raumrichtungen aus, es ist der Übersichtlichkeit wegen aber nur ein kleiner Raumwinkelbereich eingezeichnet. The reference signal antenna 18 sends a reference signal, which is with a polar angle signal that originates from the polar angle antenna assembly 20 and a The azimuthal angle signal emanating from the azimuthal angle antenna arrangement 22 is superimposed to form a bearing signal 24, which is shown schematically. The Peilsig nal 24 spreads in all spatial directions, but for the sake of clarity, only a small solid angle range is shown.
Die Mobilstation 14 besitzt eine Empfangsantenne 26, mit der das Peilsignal 24 emp fangen wird. Aus dem Peilsignal 24 berechnet ein Mobilstations-Rechner 28, der mit der Empfangsantenne 26 verbunden ist, einen Polarwinkel Q und einen Azimutalwin kel cp, die gemeinsam eine Winkellage W bilden. Die Winkellage W beschreibt die Winkelposition der Mobilstation 14 in einem Koordinatensystem KS12 der Basissta tion 1 The mobile station 14 has a receiving antenna 26 with which the direction finding signal 24 is received. From the direction finding signal 24, a mobile station computer 28, which is connected to the receiving antenna 26, calculates a polar angle Q and an azimuthal angle cp, which together form an angular position W. The angular position W describes the angular position of the mobile station 14 in a coordinate system KS12 of the base station 1
Die Mobilstation 14 sendet diese Winkellage W mittels einer Sendeantenne 30 an die Basisstation 12 zurück. Die Sendeantenne 30 ist eine elektronisch schwenkbare An tenne. Die Basisstation 12 besitzt eine Basisstation-Empfangsantenne 32 zum Emp fangen dieses Signals. Mittels einer Datenantenne 34 wird ein gebündeltes Datensig nal 36 unter der Winkellage W abgestrahlt. Das Datensignal 36 ist damit direkt auf die Mobilstation 14 gerichtet. Das Datensignal 36 hat eine Daten-Trägerfrequenz fü von zumindest 10 GHz. Es ist aber nicht notwendig, eine Empfangsantenne 26 und eine Sendeantenne 30 zu verwenden, üblicherweise wird die Empfangsantenne 26 auch als Sendeantenne 30 verwendet, indem eine einzige bidirektional angesteuerte Antenne eingesetzt wird. The mobile station 14 sends this angular position W back to the base station 12 by means of a transmitting antenna 30. The transmitting antenna 30 is an electronically pivotable antenna. The base station 12 has a base station receiving antenna 32 for receiving this signal. A bundled data signal 36 is emitted at the angular position W by means of a data antenna 34. The data signal 36 is thus directed directly to the mobile station 14. The data signal 36 has a data carrier frequency fü of at least 10 GHz. However, it is not necessary to use a receiving antenna 26 and a transmitting antenna 30; the receiving antenna 26 is usually also used as a transmitting antenna 30 by using a single bidirectionally controlled antenna.
Empfangsantenne 32 und Sendeantenne 34 werden üblicherweise mit einer einzigen bidirektional angesteuerten Antenne realisiert. Receiving antenna 32 and transmitting antenna 34 are usually implemented with a single bidirectionally controlled antenna.
Die Polarwinkel-Antennenanordnung 20 umfasst eine Mehrzahl an Polarwinkel-An tennen 38. i (i = 1 , 2, ... , N38), die entlang des Polarwinkel-Antennenkreises K20 ange ordnet sind. Die Azimutalwinkel-Antennenanordnung 22 umfasst mehrere Azimutal winkel-Antennen 40.j (j = 1 , ... , N40), die entlang des Azimutalwinkel-Antennenkreises K22 angeordnet sind. Ein Polarwinkel-Antennenkreisdurchmesser D© beträgt im vor liegenden Fall D© = 35 mm. Ein Azimutalwinkel-Antennenkreisdurchmesser ϋf ist im vorliegenden Vergleich so groß wie der Polarwinkel-Antennenkreisdurchmesser D©. Dies ist - unabhängig von den anderen Merkmalen der beschriebenen Ausführungs formen - eine bevorzugte Ausführungsform der Erfindung. The polar angle antenna arrangement 20 comprises a plurality of polar angle antennas 38. i (i = 1, 2, ..., N38), which are arranged along the polar angle antenna circle K20. The azimuthal angle antenna arrangement 22 comprises a plurality of azimuthal angle antennas 40.j (j = 1,..., N40) which are arranged along the azimuthal angle antenna circle K22. A polar angle antenna circle diameter D © in the present case is D © = 35 mm. In the present comparison, an azimuthal angle antenna circle diameter ϋ f is as large as the polar angle antenna circle diameter D ©. This is - regardless of the other features of the embodiment described form - a preferred embodiment of the invention.
Figur 1 zeigt, dass die Mobilstation 14 einen Mobilstation-Lagesensor 42 aufweisen kann, mittels dem Lagewinkel au, ßi4, gΐ4 im Raum bestimmt werden können. Das erfolgt beispielsweise durch Messen des Erdmagnetfelds und der Richtung der Schwerkraft, wodurch zwei Koordinatensystem-Richtungen festgelegt sind. Die dritte Koordinatensystem-Richtung wird so gewählt, dass sich ein orthogonales Rechtssys tem ergibt. Die Mobilstation 14 sendet seine Lage, wie sie sich aus den au, ßi4, yi4 ergibt, an die Basisstation 12. FIG. 1 shows that the mobile station 14 can have a mobile station position sensor 42 by means of which the position angle au, βi4, gΐ4 in space can be determined. This is done, for example, by measuring the earth's magnetic field and the direction of gravity, which defines two coordinate system directions. The third coordinate system direction is chosen so that an orthogonal right system results. The mobile station 14 sends its position, as it results from the au, βi4, yi4, to the base station 12.
Die Basisstation 12 kann einen Basisstation-Lagesensor 66 aufweisen, mittels dem Lagewinkel 012, ßi2, Y12 der Basisstation 12 im Raum bestimmt werden können. Das erfolgt beispielsweise durch Messen des Erdmagnetfelds und der Richtung der Schwerkraft, wodurch zwei Koordinatensystem-Richtungen festgelegt sind. Die dritte Koordinatensystem-Richtung wird so gewählt, dass sich ein orthogonales Rechtssys tem ergibt. Die Basisstation 12 sendet seine Lage, wie sie sich aus den Lagewinkeln CM2, ß 12 , yi2 ergibt, kontinuierlich an die Mobilstation 14. Aus den Lagewinkeln 012, ßi 2, yi2 und der Winkelrichtung W berechnet der Mobilstations-Rechner 28 die Rich tung, unter der die Sendeantenne 30 gebündelte Signale 68 senden muss, um auf die Datenantenne 34 zu zielen. The base station 12 can have a base station position sensor 66 by means of which the position angle 012, βi2, Y12 of the base station 12 in space can be determined. This is done, for example, by measuring the earth's magnetic field and the direction of gravity, which defines two coordinate system directions. The third coordinate system direction is chosen so that an orthogonal right system results. The base station 12 sends its position, as it results from the position angles CM2, ß 12, yi2, continuously to the mobile station 14. From the position angles 012, ßi 2, yi2 and the angular direction W, the mobile station computer 28 calculates the direction under which the transmitting antenna 30 must send bundled signals 68 in order to aim at the data antenna 34.
Figur 2 zeigt eine Erzeugungsschaltung 44 zum Erzeugen von Frequenzen zum Be aufschlagen der Referenzsignal-Antenne 18, der Polarwinkel-Antennenanordnung 20 und der Azimutalwinkel-Antennenanordnung 22 (vgl. Figur 1 ). Ein Trägersignal mit der Trägerfrequenz fr von im vorliegenden Fall fr = 10 GHz wird mit einer Umlauffre- quenz fu gemischt, sodass sich das Referenzsignal 46 ergibt, das an die Referenz signal-Antenne 18 geleitet wird. FIG. 2 shows a generating circuit 44 for generating frequencies for striking the reference signal antenna 18, the polar angle antenna arrangement 20 and the azimuthal angle antenna arrangement 22 (see FIG. 1). A carrier signal with the carrier frequency fr, in the present case fr = 10 GHz, is mixed with a round trip frequency fu, so that the reference signal 46 results, which is passed to the reference signal antenna 18.
Das Trägersignal 24 wird danach mit einer Polarwinkelverschiebefrequenz ΪDQ ge mischt, sodass eine Polarwinkelsignal-Frequenz f© entsteht. Im vorliegenden Fall gilt ΪDQ = 100 kHz. Diese wird mit der Umlauffrequenz fu sukzessive umlaufend auf die Polarwinkelantennen 38. i geleitet. In anderen Worten wird jede Polarwinkel-Antenne 38. i für einen Zeitraum von 1/(fu IShe) mit der Polarwinkelsignal-Frequenz f© beauf schlagt, danach wird die benachbarte Polarwinkel-Antenne 38.i+1 mit der Polarwin kelsignal-Frequenz f© beaufschlagt. The carrier signal 24 is then mixed with a polar angle shift frequency ΪDQ, so that a polar angle signal frequency f © is produced. In the present case, ΪDQ = 100 kHz applies. This is successively circulated to the polar angle antennas 38. i at the rotational frequency fu. In other words, every polar angle antenna 38. i is applied with the polar angle signal frequency f © for a period of 1 / (fu IShe), then the adjacent polar angle antenna 38.i + 1 is applied with the polar angle signal frequency f ©.
Die Polarwinkelverschiebefrequenz fA© beträgt im vorliegenden Fall 50 kFlz. Die Trä gersignalfrequenz beträgt fr = 10 GFIz. Die Umlauffrequenz fu beträgt beispielsweise fu = 10 kFlz oder fu = 30 kFlz. Die Trägersignalfrequenz fr wird danach in eine Azi- mutalwinkel-Verschiebefrequenz fA9 verschoben, sodass eine Azimutalwinkelsignal- Frequenz f9 erhalten wird. Im vorliegenden Fall gilt fA9 = 400 kFlz. Diese wird auf die Azimutalwinkel-Antennen 40.j geleitet und läuft mit der Umlauffrequenz fu auf der Azimutalwinkel-Antennenanordnung 22 um. The polar angle shift frequency fA © is 50 kFlz in the present case. The carrier signal frequency is fr = 10 GFIz. The rotational frequency fu is, for example, fu = 10 kFlz or fu = 30 kFlz. The carrier signal frequency fr is then shifted into an azimuthal angle shift frequency fA 9 , so that an azimuthal angle signal frequency f 9 is obtained. In the present case, fA 9 = 400 kFlz applies. This is conducted to the azimuthal angle antennas 40.j and circulates on the azimuthal angle antenna arrangement 22 at the rotational frequency fu.
Figur 3 zeigt eine Auswerteschaltung 48, die Teil des Mobilstation-Rechners 28 (vgl. Figur 1 ) ist, aber nicht notwendigerweise auf dem gleichen Chip oder gleichen Pla tine realisiert sein muss. Das von der Empfangsantenne 26 empfangene Signal wird zunächst mit der Trägerfrequenz von im vorliegenden Fall fr = 50 GFIz eines lokalen Oszillators (LO) 50 gemischt und danach mittels eines Bandpassfilters 52, der ledig lich die Umlauffrequenz fu herausfiltert, gefiltert. Dieses Signal wird einem Diskrimi nator 54 zugeleitet. Zudem wird das Signal mit einem zweiten Bandpassfilter 56 gefil tert, der lediglich die Frequenz ΪDF herausfiltert. Das so erhaltene Signal durchläuft ei nen Demodulator 58 und danach einen weiteren Bandpassfilter, der die Umlauffre quenz fu herausfiltert. Das so erhaltene Signal wird ebenfalls auf den Diskriminator 54 geleitet. Als Ergebnis ergibt sich die Phase Df. FIG. 3 shows an evaluation circuit 48 which is part of the mobile station computer 28 (see FIG. 1), but does not necessarily have to be implemented on the same chip or the same board. The signal received by the receiving antenna 26 is first mixed with the carrier frequency of in the present case fr = 50 GFIz of a local oscillator (LO) 50 and then filtered by means of a bandpass filter 52 which only filters out the circular frequency fu. This signal is fed to a discriminator 54. In addition, the signal is filtered with a second bandpass filter 56, which only filters out the frequency ΪDF. The signal obtained in this way passes through a demodulator 58 and then another bandpass filter which filters out the Umlauffre frequency fu. The signal obtained in this way is also passed to the discriminator 54. The result is phase Df.
Figur 3 zeigt die Variante eines doppelten Doppler-Drehfunkfeuers: beide Empfangs zweige für die von den Antennenkreisen ausgesendeten Signale bestehend aus Bandpassfilter, Demodulator und weiterem Bandpassfilter, sind für die Frequenzmo dulation ausgelegt. Für den Fall, dass die Antennen nur nach radial außen strahlen, müssten diese für Amplitudenmodulation ausgelegt werden. Dann hätte die Schal tung statt der Kombination Bandpassfilter, Demodulator und weiterer Bandpassfilter nur einen Bandpassfilter. Das Referenzsignal könnte dagegen zur Verbesserung der Ortung frequenzmoduliert werden. Dessen Auswertung erfolgt dann durch die Schal tung Bandpassfilter, Demodulator und weiterer Bandpassfilter. Das hinter dem ersten Bandpassfilter 52 anliegende Signal, das auf den ersten Dis kriminator 54.1 geleitet wird, wird zudem auf einen zweiten Diskriminator 54.2 gelei tet. Das Signal vom Mischer 51 wird zudem über einen dritten Bandpassfilter 60 ge leitet, der die Polarwinkel-Verschiebefrequenz ΪDQ herausfiltert. Das Signal gelangt danach auf einen zweiten Demodulator 58.2 und danach einen weiteren Bandpassfil ter 62, der die Umlauffrequenz fu herausfiltert. Das so erhaltene Signal wird auf den zweiten Diskriminator 54.2 geleitet. Nach Durchlaufen eines Tiefpassfilters 64 ergibt sich die Phase DQ. Aus den Phasen Df und DQ wird vom Mobilstation-Rechner 28 (vgl. Figur 1) die Winkellage berechnet, die den Polarwinkel Q und den Azimutalwin- kel f umfasst. Figure 3 shows the variant of a double Doppler rotary radio beacon: both reception branches for the signals transmitted by the antenna circuits, consisting of a bandpass filter, demodulator and further bandpass filter, are designed for frequency modulation. In the event that the antennas only radiate outwards, they would have to be designed for amplitude modulation. Then the circuit would have only one bandpass filter instead of the combination of bandpass filter, demodulator and further bandpass filter. The reference signal, on the other hand, could be frequency modulated to improve localization. Its evaluation is then carried out by the circuit bandpass filter, demodulator and further bandpass filter. The signal behind the first bandpass filter 52, which is passed to the first discriminator 54.1, is also switched to a second discriminator 54.2. The signal from mixer 51 is also passed through a third bandpass filter 60 which filters out the polar angle shift frequency ΪDQ. The signal then reaches a second demodulator 58.2 and then a further bandpass filter 62 which filters out the rotational frequency fu. The signal obtained in this way is passed to the second discriminator 54.2. After passing through a low-pass filter 64, the phase DQ results. From the phases Df and DQ, the mobile station computer 28 (see FIG. 1) calculates the angular position which includes the polar angle Q and the azimuthal angle f.
Figur 4 zeigt eine weitere Ausführungsform eines erfindungsgemäßen Datenübertra gungssystems 10, bei dem die Basisstation 12 ein zweites Drehfunkfeuer 16' auf weist, das wie das erste Drehfunkfeuer 16 aufgebaut ist. Die Komponenten des zwei- ten Drehfunkfeuers 16' tragen Bezugszeichen mit Apostroph. Die beiden Drehfunk feuer 16, 16' sind sowohl in Richtung der Polarwinkel-Antennenkreisnormalen N20 als auch ich Richtung der Azimutalwinkel-Antennenkreisnormalen N22 vorzugsweise pa rallel verschoben zueinander angeordnet. Vorzugsweise sind die Drehfunkfeuer 16 16' zudem gegeneinander verdreht. FIG. 4 shows a further embodiment of a data transmission system 10 according to the invention, in which the base station 12 has a second rotary radio beacon 16 ′, which is constructed like the first rotary radio beacon 16. The components of the second rotary radio beacon 16 'have reference symbols with an apostrophe. The two rotary radio lights 16, 16 'are arranged shifted parallel to one another, both in the direction of the polar angle antenna circle normals N20 and in the direction of the azimuthal angle antenna circle normals N22. The rotary radio beacons 16 16 ′ are also preferably rotated relative to one another.
Bezugszeichenliste List of reference symbols
10 Datenübertragungssystem 60 drittes Bandpassfilter 12 Basisstation 62 Bandpassfilter 14 Mobilstation 64 Tiefpassfilter 16 Drehfunkfeuer 66 Basisstation-Lagesensor 18 Referenzsignal-Antenne 68 Signal 10 data transmission system 60 third bandpass filter 12 base station 62 bandpass filter 14 mobile station 64 lowpass filter 16 rotary radio beacon 66 base station position sensor 18 reference signal antenna 68 signal
20 Polarwinkel-Antennenanordnung Cd2 Lagewinkel der Basisstation 22 Azimutalwinkel-Antennenanord ßi2 Lagewinkel der Basisstation nung gΐ2 Lagewinkel der Basisstation20 polar angle antenna arrangement Cd2 position angle of the base station 22 azimuthal angle antenna arrangement ßi2 position angle of the base station voltage gΐ2 position angle of the base station
24 Peilsignal au Lagewinkel der Mobilstation 26 Empfangsantenne ßi4 Lagewinkel der Mobilstation 28 Mobilstations-Rechner gΐ4 Lagewinkel der Mobilstation 24 bearing signal au positional angle of the mobile station 26 receiving antenna ßi4 positional angle of the mobile station 28 mobile station computer gΐ4 positional angle of the mobile station
30 Sendeantenne D© Polarwinkel-Antennenkreisdurch 32 Basisstations-Empfangsantenne messer 34 Datenantenne ϋy Azimutalwinkel-Antennenkreis 36 Datensignal durchmesser 38 Polarwinkel-Antenne fü Daten-Trägerfrequenz ίt Trägerfrequenz 30 transmitting antenna D © polar angle antenna circuit through 32 base station receiving antenna knife 34 data antenna ϋy azimuthal angle antenna circuit 36 data signal diameter 38 polar angle antenna for data carrier frequency ίt carrier frequency
40 Azimutalwinkel-Antenne i, j Laufindex 42 Mobilstation-Lagesensor K20 Polarwinkel-Antennenkreis 44 Erzeugungsschaltung K22 Azimutalwinkel-Antennenkreis 46 Referenzsignal K12 Koordinatensystem der Basissta 48 Auswerteschaltung tion 40 azimuthal angle antenna i, j running index 42 mobile station position sensor K20 polar angle antenna circuit 44 generating circuit K22 azimuthal angle antenna circuit 46 reference signal K12 coordinate system of the base station 48 evaluation circuit tion
N20 Polarwinkel-Antennenkreisnorma-N20 polar angle antenna circle standard
50 Oszillator le 50 oscillator le
51 Mischer N22 Azimutalwinkel-Antennenkreis-51 Mixer N22 Azimuthal angle antenna circle
52 Bandpassfilter normale 54 Diskriminator N38 Zahl der Polarwinkel-Antennen52 bandpass filter normal 54 discriminator N38 number of polar angle antennas
56 zweites Bandpassfilter N40 Zahl der Azimutalwinkel-Anten 58 Demodulator nen 56 second bandpass filter N40 number of azimuthal angle antennas 58 demodulators
W Winkellage W angular position

Claims

Patentansprüche Claims
1. Verfahren zum Übermitteln von Daten zwischen einer Basisstation (12) und ei ner Mobilstation (14), mit den Schritten: 1. A method for transmitting data between a base station (12) and a mobile station (14), comprising the steps:
(a) Ermitteln einer Winkellage (W=(0,cp)) der Mobilstation (14) relativ zu einer Basisstation (12) und (a) determining an angular position (W = (0, cp)) of the mobile station (14) relative to a base station (12) and
(b) Senden eines räumlich gebündelten Datensignals (36), insbesondere mit einer Daten-Trägerfrequenz (fü) von zumindest 10 Gigahertz, unter der Winkellage (W) zwischen Mobilstation (14) und Basisstation (12), gekenn zeichnet dadurch, dass (b) Sending a spatially bundled data signal (36), in particular with a data carrier frequency (fü) of at least 10 gigahertz, at the angular position (W) between mobile station (14) and base station (12), characterized in that
(c) das Ermitteln der Winkellage (W) ein (c) determining the angular position (W)
(i) Ermitteln eines ersten Peilwinkels in Form eines Polarwinkels Q und(i) determining a first bearing angle in the form of a polar angle Q and
(ii) Ermitteln eines zweiten Peilwinkels in Form eines Azimutalwinkels f umfasst und (ii) comprises determining a second bearing angle in the form of an azimuthal angle f and
(d) die Peilwinkel (q,f) mittels eines Drehfunkfeuers (16) ermittelt werden, das(d) the bearing angles (q, f) are determined by means of a rotary radio beacon (16), the
(i) eine Referenzsignal-Antenne (18) in Form einer Rundstrahlantenne, die ein Referenzsignal (46) aussendet, (i) a reference signal antenna (18) in the form of an omnidirectional antenna which transmits a reference signal (46),
(ii) zumindest eine Polarwinkel-Antennenanordnung (20), die sich ent lang eines Polarwinkel-Antennenkreises (K20) erstreckt und ein um laufendes Polarwinkel-Signal aussendet, und (ii) at least one polar angle antenna arrangement (20) which extends ent long of a polar angle antenna circle (K20) and emits a current polar angle signal, and
(iii) zumindest eine Azimutalwinkel-Antennenanordnung (22), die sich entlang eines Azimutalwinkel-Antennenkreises (K22) erstreckt und ein umlaufendes Azimutalwinkel-Signal aussendet, aufweist, (iii) at least one azimuthal angle antenna arrangement (22) which extends along an azimuthal angle antenna circle (K22) and emits a circumferential azimuthal angle signal,
(iv) wobei eine Polarwinkel-Antennenkreisnormale (N20), die senkrecht auf dem Polarwinkel-Antennenkreis (K20) steht, orthogonal zu einer Azimutalwinkel-Antennenkreisnormale (N22), die senkrecht auf dem Azimutalwinkel-Antennenkreis (K22) steht, verläuft. (iv) wherein a polar angle antenna circle normal (N20), which is perpendicular to the polar angle antenna circle (K20), runs orthogonally to an azimuthal angle antenna circle normal (N22) which is perpendicular to the azimuthal angle antenna circle (K22).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass 2. The method according to claim 1, characterized in that
(a) die Referenzsignal-Antenne (18) ein moduliertes Referenzsignal (46) aus sendet und dass (A) the reference signal antenna (18) transmits a modulated reference signal (46) and that
(b) das Referenzsignal (46) eine Trägerfrequenz (fr) von zumindest 10 Gi gahertz hat. (b) the reference signal (46) has a carrier frequency (fr) of at least 10 Gi gahertz.
3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass 3. The method according to any one of the preceding claims, characterized in that
(a) die Polarwinkel-Antennenanordnung (20) zumindest 50, insbesondere zu mindest 75, Polarwinkel-Antennen (38) aufweist, und dass (a) the polar angle antenna arrangement (20) has at least 50, in particular at least 75, polar angle antennas (38), and that
(b) die Polarwinkel-Antennen (38) planare Antennen sind. (b) the polar angle antennas (38) are planar antennas.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Polarwinkel-Antennen (38) sukzessive mit einer Umlauffrequenz (fu) von zumindest 5 Kilohertz, insbesondere zumindest 30 Kilohertz, angesteuert werden. 4. The method according to any one of the preceding claims, characterized in that the polar angle antennas (38) are successively controlled with an orbital frequency (fu) of at least 5 kilohertz, in particular at least 30 kilohertz.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Referenzsignal (46) mit der Umlauffrequenz (fu) amplitudenmoduliert ist. 5. The method according to claim 4, characterized in that the reference signal (46) is amplitude-modulated with the rotational frequency (fu).
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass 6. The method according to any one of the preceding claims, characterized in that
(a) ein Polarwinkel-Antennenkreisdurchmesser (De) des Polarwinkel-Anten nenkreises (K20) höchstens 70 Millimeter, insbesondere höchstens 35 Mil limeter, beträgt und/oder (A) a polar angle antenna circle diameter (De) of the polar angle antenna circle (K20) is at most 70 millimeters, in particular at most 35 millimeters, and / or
(b) ein Azimutalwinkel-Antennenkreisdurchmesser (ϋf) des Azimutalwinkel- Antennenkreises (K22) höchstens 70 Millimeter, insbesondere höchstens 35 Millimeter, beträgt. (B) an azimuthal angle antenna circle diameter (ϋ f ) of the azimuthal angle antenna circle (K22) is at most 70 millimeters, in particular at most 35 millimeters.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass 7. The method according to any one of the preceding claims, characterized in that
(a) das Polarwinkel-Signal eine Polarwinkelsignal-Frequenz (fe) von zumin dest 10 Gigahertz hat, (a) the polar angle signal has a polar angle signal frequency (fe) of at least 10 gigahertz,
(b) wobei die Polarwinkelsignal-Frequenz (fe) gleich der um eine Polarwinkel- Verschiebefrequenz {Ue) verschobenen Trägerfrequenz (Fr) ist und die Polarwinkel-Verschiebefrequenz (Fvi) größer ist als die Umlauffrequenz (fu) und höchstens das 100-fache der Umlauffrequenz (fu) beträgt. (b) where the polar angle signal frequency (fe) is equal to the carrier frequency (Fr) shifted by a polar angle shift frequency {Ue) and the polar angle shift frequency (Fvi) is greater than the rotational frequency (fu) and at most 100 times that Orbital frequency (fu).
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass 8. The method according to any one of the preceding claims, characterized in that
(a) das Azimutalwinkel-Signal eine Azimutalwinkelsignal-Frequenz (f9) von zu mindest 10 Gigahertz hat, (a) the azimuthal angle signal has an azimuthal angle signal frequency (f 9 ) of at least 10 gigahertz,
(b) wobei die Azimutalwinkelsignal-Frequenz (f9) gleich der um eine Azimutal- winkel-Verschiebefrequenz (ίDF) verschobenen Trägerfrequenz (Fr) ist und die Azimutalwinkel-Verschiebefrequenz ( vp) größer ist als die Umlauffre quenz (fu) und höchstens das 100-fache der Umlauffrequenz (fu) beträgt. (b) where the azimuthal angle signal frequency (f 9 ) is equal to the carrier frequency (Fr) shifted by an azimuthal angle shift frequency (ίD F ) and the azimuthal angle shift frequency (vp) is greater than the Umlauffre frequency (fu) and at most 100 times the rotational frequency (fu).
9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die Polarwinkelsignal-Verschiebefrequenz (Fvi) von der Azimutalwin- kel-Verschiebefrequenz ( vp) um zumindest die Umlauffrequenz (fu), insbeson dere zumindest das Zehnfache der Umlauffrequenz (fu), unterscheidet. 9. The method according to any one of the preceding claims, characterized in that the polar angle signal shift frequency (Fvi) differs from the azimuthal angle shift frequency (vp) by at least the rotational frequency (fu), in particular at least ten times the rotational frequency (fu), differs.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass 10. The method according to claim 1, characterized in that
(c) die Referenzsignal-Antenne (18) ein frequenzmoduliertes Referenzsignal (46) aussendet und dass (c) the reference signal antenna (18) emits a frequency-modulated reference signal (46) and that
(d) das Referenzsignal (46) eine Trägerfrequenz (Fr) von zumindest 10 Gi gahertz hat. (d) the reference signal (46) has a carrier frequency (Fr) of at least 10 Gi gahertz.
11. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch den Schritt: kontinuierlich Senden der Winkellage (W) an die Basisstation (12). 11. The method according to any one of the preceding claims, characterized by the step: continuously sending the angular position (W) to the base station (12).
12. Datenübertragungssystem (10) mit 12. Data transmission system (10) with
(a) einer Basisstation (12) und (a) a base station (12) and
(b) einer Mobilstation (14), (b) a mobile station (14),
(c) wobei die Basisstation (12) ein Drehfunkfeuer (16) aufweist, das (i) eine Referenzsignal-Antenne (18) in Form einer Rundstrahlantenne, die ein Referenzsignal (46) aussendet, und (ii) zumindest eine Polarwinkel-Antennenanordnung (20), die sich ent lang eines Polarwinkel-Antennenkreises (K20) erstreckt, hat, dadurch gekennzeichnet, dass (d) die Basisstation (12) (c) the base station (12) having a rotary radio beacon (16) which (i) has a reference signal antenna (18) in the form of an omnidirectional antenna which emits a reference signal (46), and (ii) at least one polar angle antenna arrangement ( 20), which extends along a polar angle antenna circle (K20), characterized in that (d) the base station (12)
(i) zumindest eine Azimutwinkel-Antennenanordnung, die sich entlang eines Azimutwinkel-Antennenkreises erstreckt, aufweist, und (i) at least one azimuth angle antenna arrangement extending along an azimuth angle antenna circle, and
(ii) eine Polarwinkel-Antennenkreisnormale (N20), die senkrecht auf dem Polarwinkel-Antennenkreis (K20) steht, orthogonal zu einer Azimutal- winkel-Antennenkreisnormalen, die senkrecht auf dem Azimutalwin kel-Antennenkreis (K22) steht, verläuft. (ii) a polar angle antenna circle normal (N20) which is perpendicular to the polar angle antenna circle (K20), orthogonal to an azimuthal angle antenna circle normal which is perpendicular to the azimuthal angle antenna circle (K22).
13. Datenübertragungssystem (10) nach Anspruch 12, dadurch gekennzeichnet, dass (a) die Mobilstation (14) einen Mobilstation-Lagesensor (42) zum Erfassen von Lagewinkeln (au, ßi4, g-14) der Mobilstation (14) im Raum aufweist und (b) dass die Basisstation (12) einen Basisstation-Lagesensor (66) zum Erfas sen von Lagewinkeln (012, ß-12, g-12) der Basisstation (12) im Raum auf weist. 13. Data transmission system (10) according to claim 12, characterized in that (a) the mobile station (14) has a mobile station position sensor (42) for detecting position angles (au, ßi4, g-14) of the mobile station (14) in space and (b) that the base station (12) has a base station position sensor (66) for detecting position angles (012, β-12, g-12) of the base station (12) in space.
14. Datenübertragungssystem (10) nach Anspruch 13, dadurch gekennzeichnet, dass 14. Data transmission system (10) according to claim 13, characterized in that
(a) die Mobilstation (14) einen Mobilstation-Rechner (28) aufweist, der ausge bildet ist zum automatischen Durchführen eines Verfahrens mit den Schrit ten: (A) the mobile station (14) has a mobile station computer (28) which is designed to automatically carry out a method with the steps:
(i) Ermitteln einer Winkellage (W=(0,cp)) durch (i) Determination of an angular position (W = (0, cp))
Ermitteln eines ersten Peilwinkels in Form eines Polarwinkels Q, Ermitteln eines zweiten Peilwinkels in Form eines Azimutalwinkels f und Determining a first bearing angle in the form of a polar angle Q, determining a second bearing angle in the form of an azimuthal angle f and
(ii) Senden der Winkellage (W) an die Basisstation (12) und dass(ii) Sending the angular position (W) to the base station (12) and that
(b) die Basisstation (12) einen Basisstations-Rechner aufweist, der ausgebil det ist zum automatischen Durchführen eines Verfahrens mit den Schrit ten: (b) the base station (12) has a base station computer which is designed to automatically carry out a method with the steps:
(i) Erfassen der Winkellage (W) und (i) Detecting the angular position (W) and
(ii) Senden und Empfangen eines räumlich gebündelten Datensignals (36), insbesondere mit einer Daten-Trägerfrequenz (fü) von zumin dest 10 Gigahertz, unter der Winkellage (W) zwischen Mobilstation (14) und Basisstation (12). (ii) Sending and receiving a spatially bundled data signal (36), in particular with a data carrier frequency (fü) of at least 10 gigahertz, at the angular position (W) between mobile station (14) and base station (12).
15. Datenübertragungssystem (10) nach Anspruch 13 oder 14, dadurch gekenn zeichnet, dass 15. Data transmission system (10) according to claim 13 or 14, characterized in that
(a) der Mobilstations-Rechner (28) ausgebildet ist zum automatischen Durch führen eines Verfahrens mit den Schritten: (A) the mobile station computer (28) is designed to automatically carry out a method with the steps:
(i) Erfassen der Winkellage (W), (i) Detecting the angular position (W),
(ii) Erfassen der Lagewinkel (012, ßi2, g-12) der Basisstation (12)(ii) Acquisition of the position angle (012, ßi2, g-12) of the base station (12)
(iii) Erfassen der Lagewinkel (au, ßi4, g-14) der Mobilstation (14) von der Mobilstation (14), (iii) Detecting the position angle (au, ßi4, g-14) of the mobile station (14) from the mobile station (14),
(iv) Berechnen einer Senderichtung, in der sich die Basisstation (12) re lativ zur Mobilstation (14) befindet und (iv) calculating a transmission direction in which the base station (12) is located relative to the mobile station (14) and
(v) Senden eines räumlich gebündelten Datensignals (36), insbesondere mit einer Daten-Trägerfrequenz (fü) von zumindest 10 Gigahertz, in die Senderichtung. (v) Sending a spatially bundled data signal (36), in particular with a data carrier frequency (fü) of at least 10 gigahertz, in the transmission direction.
PL/bro PL / bro
PCT/EP2020/085155 2020-04-15 2020-12-09 Method for the spatially concentrated transmission of data between a base station and a mobile station, and data transmission system WO2021209166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20824169.5A EP4136766A1 (en) 2020-04-15 2020-12-09 Method for the spatially concentrated transmission of data between a base station and a mobile station, and data transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020110348.4A DE102020110348B3 (en) 2020-04-15 2020-04-15 Method for transmitting data between a base station and a mobile station and data transmission system
DE102020110348.4 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021209166A1 true WO2021209166A1 (en) 2021-10-21

Family

ID=73834489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/085155 WO2021209166A1 (en) 2020-04-15 2020-12-09 Method for the spatially concentrated transmission of data between a base station and a mobile station, and data transmission system

Country Status (3)

Country Link
EP (1) EP4136766A1 (en)
DE (1) DE102020110348B3 (en)
WO (1) WO2021209166A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1190525B (en) * 1961-07-28 1965-04-08 Int Standard Electric Corp Doppler radio beacon system with fine azimuth display on the receiver side
EP1102084A2 (en) * 1999-11-15 2001-05-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method to determine the orientation of the azimuth direction of a navigation apparatus
US20070055746A1 (en) 2001-07-18 2007-03-08 Oran David R System for dynamically tracking the location of network devices to enable emergency services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1190525B (en) * 1961-07-28 1965-04-08 Int Standard Electric Corp Doppler radio beacon system with fine azimuth display on the receiver side
EP1102084A2 (en) * 1999-11-15 2001-05-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method to determine the orientation of the azimuth direction of a navigation apparatus
US20070055746A1 (en) 2001-07-18 2007-03-08 Oran David R System for dynamically tracking the location of network devices to enable emergency services

Also Published As

Publication number Publication date
DE102020110348B3 (en) 2021-08-05
EP4136766A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
EP3660532B1 (en) Method, device and system for determining the angle of arrival (aoa) for locating an object
EP2591377B1 (en) Method and apparatus for determining the position and orientation of a mobile transmitter
DE602004007013T2 (en) PROXIMITY DETECTION DEVICE
DE112010003159T5 (en) Method and device for aligning antennas
EP2307904A1 (en) Device and method for determining the distance and/or orientation of a moveable object
EP1340097A1 (en) Radar device and method for operating a radar device
DE2454786A1 (en) HIGH FREQUENCY DIRECTION SYSTEM
EP3736546B1 (en) Fill level radar with adaptive transmission power
DE2715383C3 (en) Radio navigation system
DE112019005500T5 (en) ANTENNA DEVICE, MOVABLE BODY, AND AIMING METHOD
DE102008011889A1 (en) Digital beamforming with frequency modulated signals
WO2021209166A1 (en) Method for the spatially concentrated transmission of data between a base station and a mobile station, and data transmission system
EP3051303B1 (en) Near-field measurement of active antenna systems
EP1102084B1 (en) Method to determine the orientation of the azimuth direction of a navigation apparatus
EP0273326B1 (en) Landing-aid system for aircraft having its own on-board radar
DE3428726C2 (en)
DE1026379B (en) Retro-reflecting radio beacon for guiding vehicles
EP0023606A1 (en) Antenna system for locating the position of a microwave signal source
DE2532970A1 (en) ANTENNA
DE3619028C2 (en)
EP4334734A1 (en) Method and system for automatically measuring and/or obtaining parameters from systems and/or antennas
DE3938340A1 (en) METHOD AND DEVICE FOR RADIO DETECTING BY MONITORING SECONDARY RADAR
DE10163455A1 (en) Determining direction of mobile radio transmission, by activating sub-groups comprising combinations of antennas in rapid succession and using phase shifts to locate source
WO2021170693A1 (en) System for determining the spatial position of a first objective relative to a second object
AT166019B (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020824169

Country of ref document: EP

Effective date: 20221115