WO2021201101A1 - バルーン付きアブレーションカテーテルシステム及びその制御方法 - Google Patents

バルーン付きアブレーションカテーテルシステム及びその制御方法 Download PDF

Info

Publication number
WO2021201101A1
WO2021201101A1 PCT/JP2021/013837 JP2021013837W WO2021201101A1 WO 2021201101 A1 WO2021201101 A1 WO 2021201101A1 JP 2021013837 W JP2021013837 W JP 2021013837W WO 2021201101 A1 WO2021201101 A1 WO 2021201101A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
cauterization
pressure
heating
volume
Prior art date
Application number
PCT/JP2021/013837
Other languages
English (en)
French (fr)
Inventor
塚本康太
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP21779546.7A priority Critical patent/EP4129223A4/en
Priority to KR1020227026876A priority patent/KR20220159353A/ko
Priority to US17/915,052 priority patent/US20230157741A1/en
Priority to CN202180025227.XA priority patent/CN115279291A/zh
Priority to JP2021519186A priority patent/JPWO2021201101A1/ja
Publication of WO2021201101A1 publication Critical patent/WO2021201101A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/10Power sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00684Sensing and controlling the application of energy using lookup tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/063Measuring instruments not otherwise provided for for measuring volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • the present invention relates to an ablation catheter system with a balloon capable of estimating the cauterization depth at the time of ablation and a control method thereof.
  • Catheter ablation treatment is a method in which an ablation catheter is inserted into the heart chamber of the heart, and the myocardial tissue that causes arrhythmia or the like is destroyed by a method such as ablation to perform treatment.
  • Catheter ablation is primarily used to treat tachyarrhythmias such as paroxysmal supraventricular tachycardia, atrial tachycardia, atrial flutter and paroxysmal ventricular tachycardia, and is used on cardiac electrophysiological examinations for arrhythmias.
  • this is a treatment method in which an ablation catheter is made to reach the site of occurrence of arrhythmia from within the cardiac cavity, and the target site is destroyed by a method such as heating the tip of the catheter.
  • ablation catheters for use in this treatment method.
  • a metal electrode having a length of 4 mm to 8 mm and a diameter of 2 mm to 3 mm is provided at the tip of the catheter, and the metal electrode portion is provided.
  • Ablation catheters that make point-like contact with the myocardial tissue that causes arrhythmia to isolate the source of arrhythmia, and ablation catheters with balloons that can heat the balloon in the atrium while attaching a balloon to the tip of the catheter. are known.
  • the cauterization depth of the myocardial tissue in contact with the balloon can be accurately determined. It is required to estimate.
  • Patent Document 1 has a metal electrode at the tip of a catheter, measures the force applied to the target tissue, and integrates the force with the energization time of the ablation probe to estimate the lesion size (depth, volume). Or an area) can be supplied in real time.
  • Patent Documents 2 and 3 report an ablation catheter system with a balloon having a balloon at the tip of the catheter tube, which is provided with a high frequency generator and a balloon surface temperature equalizing device.
  • JP-A-2010-259810 Japanese Patent Application Laid-Open No. 2003-102850 JP 2010-240004
  • Patent Documents 2 and 3 report high-frequency heating balloon catheters that can heat the tissue in contact with the balloon as uniformly as possible with high-frequency heating and safely heat-treat the affected area at the optimum temperature.
  • An example is shown in which the cauterization depth of the tissue is proportional to the balloon contact temperature and the high-frequency energization time.
  • the cauterization depth differs depending on the contact state between the balloon and the tissue, and the cauterization is sufficiently performed. There is a possibility that it will not be damaged.
  • An ablation catheter system comprising a processor that calculates an estimated causal depth with the obtained balloon volume value as a variable.
  • D k * P 2 + k'* P + t ⁇ ⁇ ⁇ Equation 1
  • D represents the estimated cauterization depth
  • k and k'are based on the balloon volume and the proportionality constant referenced from the reference table based on the heating temperature and cauterizing time
  • t is based on the balloon volume and the heating temperature and cauterizing time. It is a constant referenced from the reference table, where P represents the value of the balloon pressure.
  • P represents the value of the balloon pressure.
  • the processor outputs the heating temperature and the cauterization time required to obtain a set estimated cauterization depth with respect to the obtained values of the balloon pressure and the balloon volume, (1) to The ablation catheter system according to any one of (5).
  • (7) Based on the steps of measuring the pressure of the balloon, the step of measuring the volume of the balloon, the heating temperature of the generator, the ablation time of the generator, the pressure of the balloon and the volume of the balloon, the ablation depth is determined.
  • a method of controlling an ablation system including an estimation process.
  • the cauterization depth of ablation can be estimated from the settings of the balloon pressure, the balloon volume, the heating temperature and the cauterization time, so that the affected area can be reliably cauterized. Can be done.
  • FIG. 6 is a cross-sectional view taken along the line CC'of the balloon catheter shown in FIG. The flowchart regarding the control of the ablation catheter system with a balloon of this invention is shown.
  • the flowchart of the procedure concerning the control of the ablation catheter system with a balloon of this invention is shown. It is the schematic which showed the evaluation system for measuring the cauterization depth by a balloon catheter. It is a graph which shows the relationship between the internal pressure of a balloon and the cauterization depth. It is an enlarged schematic view of the cauterized part of the evaluation system of FIG. It is a graph which shows the relationship between the contact pressure of a balloon and the cauterization depth.
  • the ablation catheter system of the present invention includes a catheter shaft, a balloon attached to the catheter shaft, a lumen that penetrates the catheter shaft in the longitudinal direction and communicates with the inside of the balloon, and heating arranged inside the balloon.
  • the electrode and temperature sensor, the heating device that applies electrical energy to the heating electrode, the pressure sensor, the balloon volume sensor, the heating temperature of the generator, the cauterizing time of the generator, the value of the balloon pressure obtained from the pressure sensor, and the value of the balloon pressure obtained from the pressure sensor. It is characterized by including a processor that calculates an estimated causal depth using the value of the balloon volume obtained from the balloon volume sensor as a variable.
  • the “cauterization depth” refers to the vertical distance (mm) from the outermost surface of the ablation target tissue to which the balloon contacts to the deepest surface of the target tissue in which irreversible degeneration has occurred.
  • the "balloon pressure” used in the present specification refers to the “balloon internal pressure” applied to the inside of the balloon or the “balloon contact pressure” which is the pressure generated when the balloon is pressed against the tissue to be ablated.
  • the ablation catheter 1 with a balloon according to the first embodiment of the present invention will be described with reference to FIG.
  • the ablation catheter system 15 with a balloon shown in FIG. 1 is roughly divided into an ablation catheter 1 with a balloon, a pressure measuring unit including a pressure sensor 6 for measuring balloon pressure and a pressure measuring unit 18, a balloon volume sensor 16 and a syringe 19. It is composed of a liquid adjusting unit including the vibration applying device 25 and a heating device 13 for supplying power to the heating electrode 9.
  • the ablation catheter 1 with a balloon is provided with a balloon 3 capable of expanding and contracting on the distal end side of the catheter shaft 2a, and the distal end and the posterior end of the balloon 3 are fixed to the catheter shaft 2a.
  • the catheter shaft 2a has a lumen 4 penetrating the inside of the catheter shaft 2a, and the lumen 4 communicates with the inside of the balloon 3 by a side hole 5 provided inside the balloon 3 at the tip end portion of the catheter shaft 2a.
  • the lumen 4 on the proximal end side of the catheter shaft 2a is connected to the balloon volume sensor 16 via a three-way stopcock 29, and the balloon volume sensor 16 is connected to the vibration imparting device 25 via an extension tube 28.
  • the heating electrode 9 is fixed to the catheter shaft 2a inside the balloon 3, and the temperature sensor 10 is fixed to the base end of the heating electrode 9.
  • the lead wire 11 for the heating electrode connected to the heating electrode 9 and the lead wire 12 for the temperature sensor connected to the temperature sensor 10 are connected to the heating device 13 through the lumen 4.
  • the pressure sensor 6 is connected to the pressure sensor lead wire 17 and is connected to the pressure measuring unit 18.
  • the pressure sensor 6 is preferably installed on the surface of the balloon 3, inside the balloon 3, or inside the lumen 4. In the balloon-equipped ablation catheter 1 according to the first embodiment of FIG. 1, the pressure sensor 6 is installed inside the balloon 3 and inside the lumen 4.
  • the length of the catheter shaft 2a is preferably 0.5 m to 2 m.
  • the diameter of the catheter shaft 2a is preferably 3 m to 5 mm.
  • the material of the catheter shaft 2a is preferably a flexible material having excellent antithrombotic properties.
  • the flexible material having excellent antithrombotic properties include, but are not limited to, fluoropolymers, polyamides, polyurethane-based polymers, and polyimides.
  • the shape of the balloon 3 may be any shape that can fit the blood vessel.
  • the size that fits the pulmonary vein junction of the left atrium is preferably a spherical shape having a diameter of 15 mm to 40 mm. ..
  • the spherical shape includes a true spherical shape, an oblate spherical shape, and a long spherical shape, but a true spherical balloon is preferable. Further, these spherical shapes include those having a substantially spherical shape.
  • the film thickness of the balloon 3 is preferably 20 ⁇ m to 100 ⁇ m.
  • the material of the balloon 3 is preferably a stretchable material having excellent antithrombotic properties, and more preferably a polyurethane-based polymer material.
  • the polyurethane-based polymer material include thermoplastic polyether urethane, polyether polyurethane urea, fluorine polyether urethane urea, polyether polyurethane urea resin, and polyether polyurethane urea amide.
  • the lead wire 11 for the heating electrode, the lead wire 12 for the temperature sensor, and the lead wire 17 for the pressure sensor are inserted into the lumen of the catheter shaft 2a.
  • the structure is such that the heating liquid 14 passes through the gap between the inside of the lumen and each lead wire.
  • a lumen 4a through which the heating liquid 14 communicating with the inside of the balloon 3 passes, a lead wire 11 for a heating electrode, and a lead wire 12 for a temperature sensor It may have a structure such as a double lumen catheter shaft 2b having a lumen 4b through which the pressure sensor lead wire 17 is inserted.
  • the measurement method of the pressure sensor 6 includes, but is not limited to, a resistance wire type and a capacitance type.
  • the catheter shaft may be a double-tube type catheter shaft 2c in which the inner tube 20 is inserted into the lumen of the outer tube 21.
  • the structure of the catheter shaft 2c is such that the space between the outer tube 21 and the inner tube 20 communicates with the inside of the balloon 3 as shown in FIG.
  • the pressure sensor 6 is arranged on the surface of the balloon 3, the inside of the balloon 3, or the lumen 4, and the lead wire 11 for the heating electrode and the lead wire 12 for the temperature sensor are inserted through the lumen of the inner tube 20. ..
  • the space between the outer tube 21 and the inner tube 20 communicates with the inside of the balloon 3.
  • the pressure sensor 6 is arranged on the surface of the balloon 3, the inside of the balloon 3, or the space between the outer tube 21 and the inner tube 20, and is used for the heating electrode in the space between the outer tube 21 and the inner tube 20. It is preferable that the lead wire 11, the lead wire 12 for the temperature sensor, and the lead wire 17 for the pressure sensor are inserted, and the guide wire 23 is inserted through the central lumen 22 of the inner pipe 20.
  • the tip of the balloon 3 is fixed to the tip of the inner tube 20 in the longitudinal direction, and the rear end of the balloon 3 is the outer tube 21. It is preferable that the balloon is fixed to the tip portion in the longitudinal direction of the balloon.
  • the shape of the heating electrode 9 is preferably a tubular shape such as a coil shape or a cylindrical shape having a length of 10 mm to 20 mm.
  • the diameter of the electric wire of the coiled heating electrode 9 is preferably 0.1 mm to 1 mm.
  • Examples of the material of the heating electrode 9 include gold, silver, platinum or copper, or an alloy of these metals.
  • the lead wire 11 for the heating electrode connected to the heating electrode 9 is connected to the heating device 13 through the lumen 4.
  • the diameter of the lead wire 11 for the heating electrode is preferably 0.1 mm to 1 mm.
  • the material of the lead wire 11 for the heating electrode examples include copper, silver, gold, platinum or tungsten, or an alloy of these metals. Further, from the viewpoint of preventing a short circuit, it is preferable that the lead wire 11 for the heating electrode is provided with an electrically insulating protective coating such as fluororesin.
  • the heating device 13 is preferably a high frequency generator, and the frequency of the high frequency current supplied to the heating electrode 9 is preferably 100 kHz or more from the viewpoint of preventing electric shock of the patient.
  • the processor 26 in the heating device typically comprises a general purpose computer processor having a suitable front end and interface circuit for receiving signals from the balloon-equipped ablation catheter 1.
  • the processor 26 may be programmed in software to perform the functions described herein.
  • one or more of the constituent parts included in the heating device 13 may be configured as separate hardware, or a part thereof may be shared. At least a part of the heating device 13 may be configured by software. A part of the heating device 13 may be physically separated from each other. Further, the heating device 13 may be able to cooperate with some of the constituent parts by communication with other constituent parts through a network. Further, the heating device 13 may be located on a device in which a part of the components can communicate with other components via an external network, for example, a server or a database on the cloud.
  • the temperature sensor 10 is preferably fixed to the heating electrode 9 or the catheter shaft 2a from the viewpoint of stably measuring the internal temperature of the balloon 3, but from the viewpoint of measuring the surface temperature of the balloon 3, the balloon 3 It may be fixed to the inner surface.
  • Examples of the temperature sensor 10 include a thermocouple or a resistance temperature detector.
  • the temperature sensor lead wire 12 connected to the temperature sensor 10 is connected to the temperature control unit through the lumen 4.
  • the diameter of the temperature sensor lead wire 12 is preferably 0.05 mm to 0.5 mm.
  • the temperature sensor 10 is a resistance temperature detector, for example, copper, silver, gold, platinum or tungsten, or an alloy of these metals can be mentioned. Further, from the viewpoint of preventing a short circuit, it is preferable that the lead wire 12 for the temperature sensor is provided with an electrically insulating protective coating such as fluororesin. If the temperature sensor 10 is a thermocouple, it is preferably made of the same material as the thermocouple. For example, in the case of a T-type thermocouple, copper and constantan, and in the case of a K-type thermocouple, chromel and alumel are mentioned. Be done.
  • the pressure sensor 6 is connected to the pressure measuring unit 18, and the pressure measuring unit 18 is connected to the heating device 13.
  • the pressure sensor lead wire 17 can be made of the same material as the temperature sensor lead wire 12.
  • a contrast medium or a contrast medium diluted with physiological saline as the heating liquid 14.
  • an ionic contrast agent or a contrast agent diluted with physiological saline is preferable.
  • the syringe 19 communicates with the balloon 3 via the extension tube 28 and the lumen 4.
  • any device may be used as the device to be arranged outside the balloon-equipped ablation catheter 1 used for injecting and sucking the liquid into the balloon 3.
  • the vibration applying device 25 applies vibration to the liquid inside the balloon 3 by repeatedly sucking and discharging a minute volume of the heating liquid. By applying vibration to the heating liquid in the balloon, the liquid filled inside the balloon 3 is agitated, and the temperature of the balloon surface can be easily maintained uniformly.
  • Examples of the vibration applying device 25 that applies vibration to the heating liquid in the balloon include a roller pump, a diaphragm pump, a bellows pump, a vane pump, a centrifugal pump, or a device including a pump including a combination of a piston and a cylinder.
  • the estimated cauterization depth is determined from a particular reference table based on heating temperature, cauterization time and balloon volume, as well as a mathematical formula that correlates with the balloon pressure selected from the reference tables.
  • FIG. 8 shows a flowchart of the operator controlling the ablation catheter system with a balloon and the procedure using the system.
  • the surgeon first inserts a catheter into the heart and presses a balloon against the target site.
  • the surgeon sets the heating temperature and cauterization time values in the balloon-equipped ablation catheter system.
  • the processor in the balloon-equipped ablation catheter system calculates the balloon volume from the amount injected into the balloon, and the pressure is measured when the tissue comes into contact with the balloon and the operator fixes the balloon position. Based on these set values and measured values, the estimated cauterization depth by ablation using an ablation catheter with a balloon to be subsequently performed can be calculated by the following method.
  • the estimated cauterization depth (D) correlates with the balloon pressure (P) for each heating temperature, cauterization time, and balloon volume
  • the estimated cauterization depth is calculated from the following equation 1.
  • D k * P 2 + k'* P + t ⁇ ⁇ ⁇ Equation 1
  • D represents the estimated cauterization depth
  • t is the reference table based on heating temperature, cauterizing time and balloon volume. It is a constant selected from, and P represents the value of the balloon pressure.
  • the balloon pressure (P) the estimated cauterization depth (D) can be calculated by using either the balloon internal pressure or the balloon contact pressure.
  • the estimated cauterization depth (D) can be calculated using the reference table corresponding to each of the balloon internal pressure and the balloon contact pressure.
  • a reference table showing the relationship between the heating temperature, the cauterizing time and the balloon volume, and the proportionality constant k and the constant t can be prepared in advance and recorded on a processor or a recording medium.
  • the estimation formula is expressed by the following formula 2.
  • the estimated cauterization depth (D) can be obtained by substituting the measured value of the balloon volume by the measuring device into this estimation formula.
  • This estimated cauterization depth (D) is shown to the operator performing the ablation procedure using a display device such as a display.
  • the surgeon can perform various procedures using the estimated cauterization depth to obtain the desired cauterization depth. For example, the surgeon can obtain the desired cauterization depth by adjusting the heating temperature, cauterization time, balloon volume and balloon pressure.
  • a processor is required to obtain a set estimated cauterization depth for the obtained balloon pressure and balloon volume values in addition to the estimated cauterization depth values.
  • the heating temperature and cauterization time can be output. At this time, if there is only one combination of the required heating temperature and the cauterization time, the processor outputs the combination. When two or more combinations of the required heating temperature and the cauterization time are calculated, the combination with the shortest cauterization time is selected from the combinations and output by the processor.
  • the target estimated cauterization depth is input, and the processor calculates and displays the heating temperature and the cauterization time at which the target estimated cauterization depth is obtained based on the balloon pressure and the balloon volume obtained by the measurement. It may be output to.
  • the term "length” means the length in the longitudinal direction.
  • a polyurethane tube having an outer diameter of 3.6 mm, an inner diameter of 3.0 mm, and a length of 1000 mm was molded to form an outer tube 21. Further, a polyamide tube having an outer diameter of 1.6 mm, an inner diameter of 1.2 mm, and a length of 1100 mm was molded to form an inner tube 20. Handles 27 were connected to their rear ends.
  • a copper wire having a diameter of 0.26 mm and a length of 1700 mm and having an electrically insulating coating made of perfluoroalkoxyalkane was used as a lead wire 11 for a heating electrode, and an electrically insulating coating made of polytetrafluoroethylene was applied.
  • a constantan wire having a diameter of 0.13 mm and a length of 1500 mm was used as a lead wire 12 for a temperature sensor.
  • the electrically insulating coating applied to the lead wire 11 for the heating electrode is peeled off by 200 mm and the electrically insulating coating applied to the lead wire 12 for the temperature sensor is peeled off by 20 mm, starting from a position 25 mm from the tip of the inner tube 20.
  • the heating electrode lead wire 11 was wound around the inner tube 20 in a coil shape while sandwiching the temperature sensor lead wire 12 between the heating electrode lead wire 11 and the inner tube 20. At this time, the coiled portion of the heating electrode lead wire 11 forms the heating electrode 9, and at the starting point of the coiled portion, the heating electrode lead wire 11 and the temperature sensor lead wire 12 are electrically insulated.
  • a thermocouple which is a temperature sensor 10, was formed by contacting the portions where the electrode coating was peeled off.
  • a coil-shaped heating electrode 9 and a temperature sensor 10 having a length of 13 mm were formed on the inner tube 20.
  • the lead wire 11 for the heating electrode and the lead wire 12 for the temperature sensor were welded and fixed to each other.
  • a polyurethane tube was fixed on the inner tube 20 by heat welding at the front and rear ends of the heating electrode 9.
  • the pressure sensor 6 was fixed behind the heating electrode 9 of the inner tube 20 and the temperature sensor 10 with a polyurethane-based adhesive, and the pressure sensor lead wire 17 was connected. The other end of the pressure sensor lead wire 17 was inserted into the lumen 4 and connected to the pressure measuring unit 18 via the handle 27. By fixing the pressure sensor 6 to the inner tube 20 in this way, the balloon internal pressure can be measured.
  • the balloon 3 is inserted from the tip side of the inner tube 20, and the rear end of the balloon 3 is fixed to the tip of the outer tube 21 by heat welding, and the tip of the outer cylinder shaft and the rear end of the balloon are fixed to each other. It was the part that was made.
  • the tip of the balloon 3 was fixed to the inner tube 20 by heat welding.
  • the lead wire 11 for the heating electrode and the lead wire 12 for the temperature sensor 12 were connected to the heating device 13 by inserting the lumen 4 between the outer tube 21 and the inner tube 20 and the inside of the handle 27. ..
  • a three-way stopcock 29 is attached to the branch portion of the handle 27, a balloon volume sensor 16 is attached to one branch portion of the three-way stopcock 29, an extension tube 28 is attached to the other branch portion, and the extension tube 28 is further connected to the vibration applying device 25. bottom.
  • the volume of the balloon can be measured, and the vibration from the vibration applying device 25 is transmitted to the inside of the balloon 3 via the extension tube 28, the handle 11, and the lumen 4 between the outer tube 21 and the inner tube 20.
  • a balloon catheter of Example 1 (hereinafter, “Example 1”) was prepared by forming a path for applying vibration to the liquid. As described above, in the first embodiment, the balloon internal pressure, the balloon volume, and the heating temperature of the balloon 3 can be measured.
  • Example 2 the balloon catheter of Example 2 was prepared. The differences from Example 1 will be described below.
  • a pressure sensor 6 was attached to the surface of the balloon 3 with a polyurethane-based adhesive, and a pressure sensor lead wire 17 was attached to the pressure sensor 6.
  • the pressure sensor lead wire 17 has the same specifications as the temperature sensor lead wire 12 except that the material is copper wire.
  • the pressure sensor lead wire 17 was routed in the same manner as the temperature sensor lead wire 12, and the other end on the hand side was connected to the pressure measurement unit 18.
  • FIG. 10 shows an experimental system for evaluating the relationship between the balloon internal pressure and the cauterization depth using the system of Example 1.
  • a plate-shaped electrode 43 (model number 354; manufactured by ValleyLab), which is a counter electrode plate of the heating electrode 9 attached to the inner wall of the water tank 42, was connected to the heating device 13.
  • the balloon 3 of the ablation catheter 1 with a balloon was immersed in the water tank 42 in a state of being pressed against the myocardium 45 having a shape imitating a pulmonary vein, and the internal pressure of the balloon was measured.
  • the three-way stopcock 29 was switched so that the vibration applying device 25 and the lumen 4 communicated with each other.
  • the heating device 13 and the vibration applying device 25 were operated at the same time, the balloon 3 was heated at a heating temperature of 70 ° C., and ablation was performed for 180 seconds.
  • the ablated myocardium 45 was removed and incised and the ablation depth was measured using a scale or image.
  • FIG. 11 is a graph showing the relationship between the balloon internal pressure and the cauterization depth during ablation for each balloon volume (mL) using one embodiment of the present invention.
  • the horizontal axis represents the balloon internal pressure (mmgHG), and the vertical axis represents the cauterization depth (mm).
  • the cauterization depth and the balloon internal pressure are correlated with each other for each balloon volume.
  • a reference table for the correlation between the cauterization depth and the balloon internal pressure for each balloon volume was created, and it was confirmed that the following formula holds as an estimation formula for the cauterization depth based on the correlation with each other. did it.
  • FIG. 12 shows an enlarged detailed view of the vicinity of the balloon of the experimental system for evaluating the balloon contact pressure and the cauterization depth using the system of Example 2.
  • the overall arrangement is the same as in FIG. 35 L of physiological saline was placed in the water tank 42 and kept at 37 ° C.
  • the plate-shaped electrode 43 (model number 354; manufactured by ValleyLab), which is a counter electrode plate of the heating electrode 9, attached to the inner wall of the water tank 42 was connected to the heating device 13.
  • the balloon 3 of the ablation catheter 1 with a balloon was immersed in the water tank 42 in a state of being pressed against the myocardium 45 having a shape imitating a pulmonary vein, and the balloon contact pressure was measured.
  • the vibration applying device 25 and the lumen 4 were communicated with each other, the heating device 13 and the vibration applying device 25 were operated at the same time, the balloon 3 was heated at a heating temperature of 73 ° C., and ablation was performed for 180 seconds.
  • the ablated myocardium 45 was taken out and incised, and the ablation depth was measured using a scale or an image.
  • FIG. 13 is a graph showing the relationship between the balloon contact pressure during ablation and the cauterization depth according to an embodiment of the present invention.
  • the horizontal axis represents the balloon contact pressure, and the vertical axis represents the cauterization depth.
  • the ablation is started by inputting the relationship between the heating temperature, the cauterization time, the balloon volume, the balloon pressure and the cauterization depth into the processor in advance. Prior to this, the surgeon can know the estimated cauterization depth or can be controlled by the processor to achieve the cauterization depth desired by the surgeon.
  • the present invention can be used as a balloon catheter for treating arrhythmia such as atrial fibrillation, endometriosis, cancer or hypertension.
  • Inner tube 21 ... ⁇ Outer tube, 22 ⁇ ⁇ ⁇ central lumen, 23 ⁇ ⁇ ⁇ guide wire, 25 ⁇ ⁇ ⁇ vibration applying device, 26 ⁇ ⁇ ⁇ processor, 27 ⁇ ⁇ ⁇ handle, 28 ⁇ ⁇ ⁇ extension tube, 29 ⁇ ⁇ ⁇ three sides Live plug, 42 ... water tank, 43 ... counter electrode plate, 44 ... cauterization test device, 45 ... pig myocardium, 46 ... funnel (for meat holding), 47 ... contact pressure sensor

Abstract

本発明は、バルーン付きアブレーションカテーテルシステムのアブレーション時に焼灼深度を推定するための方法及びシステムに関するものである。本発明は、カテーテルシャフトと、上記カテーテルシャフトに取り付けられたバルーンと、上記カテーテルシャフトを長軸方向に貫通して上記バルーン内部と連通するルーメンと、上記バルーン内部に配置された加熱電極及び温度センサと、上記加熱電極に電気的エネルギーを加える加熱装置と、圧力センサと、バルーン体積センサと、ジェネレータの加熱温度、ジェネレータの焼灼時間、上記圧力センサから得られたバルーン圧力の値及び上記バルーン体積センサから得られたバルーン体積の値を変数として、推定焼灼深度を算出するプロセッサと、を備える、アブレーションカテーテルシステムを提供する。

Description

バルーン付きアブレーションカテーテルシステム及びその制御方法
 本発明は、アブレーション時の焼灼深度を推定することが可能なバルーン付きアブレーションカテーテルシステム及びその制御方法に関するものである。
 カテーテルアブレーション治療は、心臓の心腔内にアブレーション用カテーテルを挿入し、焼灼等の方法により不整脈等の原因となる心筋組織を破壊し治療を行う方法である。カテーテルアブレーションは、主に、発作性上室性頻拍、心房頻拍、心房粗動及び発作性心室頻拍等の頻脈性不整脈の治療のために施され、心臓電気生理学的検査で不整脈の発生機序及び発生部位を診断した後に、アブレーション用カテーテルを心腔内から不整脈の発生部位へと到達させ、カテーテルの先端を加熱する等の方法によって標的部位を破壊する治療法である。
 この治療方法に用いるためのアブレーションカテーテルとして、様々なカテーテルが開発されており、例えば、カテーテルの先端部に長さ4mm~8mm、直径2mm~3mmの金属製電極を有すると共に、金属製電極部を不整脈の原因となる心筋組織に点状に接触させ、不整脈の発生源を隔離するアブレーションカテーテルや、カテーテルの先端にバルーンを取付けると共に、心房内でバルーンを加熱することが可能なバルーン付きアブレーションカテーテルが知られている。
 また、カテーテルアブレーション治療を効果的に行なうためには、所望の深さの焼灼深度をえることが重要であるため、上記のバルーン付きアブレーションカテーテルでは、バルーンと接触する心筋組織の焼灼深度を正確に推定することが求められている。
 特許文献1には、カテーテルの先端部に金属製電極を有し、対象組織にかかる力を測定し、アブレーションプローブの通電時間で力を積分することで、推定された病変部サイズ(深度、体積又は面積)をリアルタイムで供給することが可能なカテーテルが記載されている。
 特許文献2及び3には、カテーテルチューブの先端にバルーンを有するバルーン付きアブレーションカテーテルであって、高周波発生装置及びバルーン表面温度均一化装置を備えたバルーン付きアブレーションカテーテルシステムが報告されている。
特開2010-259810 特開2003-102850 特開2010-240004
 特許文献1で示されたカテーテルでは、高周波通電によって直接、対象組織を焼灼する際に、カテーテル先端部に配置されたアブレーションヘッドに通電するとともに、アブレーションヘッド自身にかかる接触力を測定することで、対象組織との接触抵抗を推定し、病変部サイズをリアルタイムで供給することを可能としている。一方、バルーンを用いたアブレーションでは、加熱装置によって温められたバルーンの熱伝導によって組織を焼灼するため、特許文献1で示された方法を直接バルーンカテーテルにおける焼灼深度の推定に利用することができない。
 特許文献2及び3では、バルーンと接触する組織をできるだけ均一に高周波加温して、患部を安全に至適温度で温熱治療することが可能な高周波加温バルーンカテーテルが報告されている。組織の焼灼深度はバルーン接触温度と高周波通電時間に比例する例が示されているが、バルーン表面温度が一定であっても、バルーンと組織の接触状態によって焼灼深度が異なり、焼灼が十分に行われない可能性がある。
 上記の問題を解決するため、本発明者らは鋭意研究を重ねた結果、以下の(1)~(7)の発明を見出した。
(1) カテーテルシャフトと、上記カテーテルシャフトに取り付けられたバルーンと、上記カテーテルシャフトを長軸方向に貫通して上記バルーン内部と連通するルーメンと、上記バルーン内部に配置された加熱電極及び温度センサと、上記加熱電極に電気的エネルギーを加える加熱装置と、圧力センサと、バルーン体積センサと、ジェネレータの加熱温度、ジェネレータの焼灼時間、上記圧力センサから得られたバルーン圧力の値及び上記バルーン体積センサから得られたバルーン体積の値を変数として、推定焼灼深度を算出するプロセッサと、を備える、アブレーションカテーテルシステム。
(2) 上記推定焼灼深度は、加熱温度、焼灼時間及びバルーン体積に基づく参照テーブル並びにバルーン圧力と相関する数式から求められる、(1)記載のアブレーションカテーテルシステム。
(3) 上記数式は、以下の式1である、(2)記載のアブレーションカテーテルシステム。
 D=k*P+k’*P+t ・・・式1
 [式中、Dは推定焼灼深度を表し、k及びk’はバルーン体積、及び加熱温度及び焼灼時間に基づく参照テーブルから参照された比例定数、tはバルーン体積、及び加熱温度及び焼灼時間に基づく参照テーブルから参照された定数であり、Pはバルーン圧力の値を表す。]
(4) 上記プロセッサから出力された推定焼灼深度を表示可能な表示装置を備えた、(1)~(3)のいずれか記載のアブレーションカテーテルシステム。
(5) 上記圧力センサは、バルーン表面又はバルーン内部に設置される、(1)~(4)のいずれか記載のアブレーションカテーテルシステム。
(6) 上記プロセッサは、得られた上記バルーン圧力及び上記バルーン体積の値に対して、設定された推定焼灼深度を得るために必要な上記加熱温度及び上記焼灼時間を出力する、(1)~(5)のいずれか記載のアブレーションカテーテルシステム。
(7) バルーンの圧力を測定する工程と、バルーンの体積を測定する工程と、上記ジェネレータの加熱温度、上記ジェネレータの焼灼時間、上記バルーンの圧力及び上記バルーンの体積のデータに基づき、焼灼深度を推定する工程と、を備えた、アブレーションシステムの制御方法。
 本発明のバルーン付きアブレーションカテーテルシステム及びその制御方法によれば、バルーン圧力、バルーン体積、加熱温度及び焼灼時間の設定から、アブレーションの焼灼深度を推定することができるため、確実に患部を焼灼することができる。
第一の実施形態に係るバルーンカテーテルの概略図である。 図1に示すバルーンカテーテルのA-A’での断面図である。 第一の実施形態の変形例における、A-A’での断面図である。 第一の実施形態のさらに別の変形例のバルーン近傍の概略図である。 図4に示すバルーンカテーテルの、B-B’での断面図を示す。 第一の実施形態の更にさらに変形例のバルーン近傍の概略図である。 図6に示すバルーンカテーテルの、C-C’での断面図である。 本発明のバルーン付きアブレーションカテーテルシステムの制御に関するフローチャートを示す。 本発明のバルーン付きアブレーションカテーテルシステムの制御に関する手技のフローチャートを示す。 バルーンカテーテルによる焼灼深度を測定するための評価系を示した概略図である。 バルーンの内圧と焼灼深度の関係を示すグラフである。 図12の評価系の焼灼部位の拡大概略図である。 バルーンの接触圧力と焼灼深度の関係を示すグラフである。
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明するが、本発明はこれらの態様に限定されるものではない。なお、同一の要素には同一符号を用いるものとして、重複する説明は省略する。また、図面の比率は説明のものとは必ずしも一致しない。
 本発明のアブレーションカテーテルシステムは、カテーテルシャフトと、上記カテーテルシャフトに取り付けられたバルーンと、上記カテーテルシャフトを長軸方向に貫通して上記バルーン内部と連通するルーメンと、上記バルーン内部に配置された加熱電極及び温度センサと、上記加熱電極に電気的エネルギーを加える加熱装置と、圧力センサと、バルーン体積センサと、ジェネレータの加熱温度、ジェネレータの焼灼時間、上記圧力センサから得られたバルーン圧力の値及び上記バルーン体積センサから得られたバルーン体積の値を変数として、推定焼灼深度を算出するプロセッサと、を備えることを特徴としている。
 ここで、「焼灼深度」とは、バルーンが接触する焼灼対象組織の最表面から不可逆的な変性が起きた対象組織の最深面までの垂直方向の距離(mm)のことを指す。
 また、本明細書で用いる「バルーン圧力」とは、バルーン内部にかかる「バルーン内圧」又はバルーンが焼灼対象組織に押しつけられて発生する圧力である「バルーン接触圧力」を指す。
 本発明の第一実施形態に係るバルーン付きアブレーションカテーテル1を、図1を用いて説明する。
 図1に示されるバルーン付きアブレーションカテーテルシステム15は、大きく分けてバルーン付きアブレーションカテーテル1、バルーン圧力を計測するための圧力センサ6と圧力測定ユニット18からなる圧力測定部、バルーン体積センサ16とシリンジ19と振動付与装置25からなる液体調整部及び加熱電極9に電力を供給する加熱装置13から構成される。
 バルーン付きアブレーションカテーテル1は、カテーテルシャフト2aの先端側に膨張及び収縮可能なバルーン3を備え、バルーン3の先端部及び後端部はカテーテルシャフト2aに固定されている。カテーテルシャフト2aは、その内部を貫通するルーメン4を有し、ルーメン4は、カテーテルシャフト2aの先端部でバルーン3の内部に設けた側孔5によって、バルーン3の内部と連通している。カテーテルシャフト2aの基端側のルーメン4は、三方活栓29を介して、バルーン体積センサ16に接続され、バルーン体積センサ16は延長チューブ28を介して振動付与装置25に接続されている。加熱電極9は、バルーン3内部で、カテーテルシャフト2aに固定されており、温度センサ10は、加熱電極9の基端に固定されている。加熱電極9に接続された加熱電極用リード線11と、温度センサ10に接続された温度センサ用リード線12とは、ルーメン4を挿通して、加熱装置13に接続されている。圧力センサ6は、圧力センサ用リード線17に接続されており、圧力測定ユニット18に接続されている。
 圧力センサ6はバルーン3の表面、バルーン3の内部又はルーメン4内に設置されることが好ましい。図1の第一実施形態に係るバルーン付きアブレーションカテーテル1では、圧力センサ6は、バルーン3の内部、かつ、ルーメン4内に設置されている。
 バルーン3を心筋組織へ到達させる観点から、カテーテルシャフト2aの長さは、0.5m~2mが好ましい。
 また、血管内へ挿入する観点から、カテーテルシャフト2aの直径は、3m~5mmであることが好ましい。
 カテーテルシャフト2aの材料は、抗血栓性に優れる可撓性材料であることが好ましい。抗血栓性に優れる可撓性材料は、フッ素ポリマー、ポリアミド、ポリウレタン系ポリマー又はポリイミド等が挙げられるが、これらに限定されるものではない。
 不整脈の発生部位に密着できる観点から、バルーン3の形状は血管にフィットできる形状であればよいが、例えば、左心房の肺静脈接合部に適合するサイズは、直径が15mm~40mmの球状が好ましい。球状としては、真球状、扁球状及び長球状のものも含まれるが、真球状のバルーンであることが好ましい。また、これらの球状は略球状のものも含まれる。
 バルーン3の膜厚は、20μm~100μmが好ましい。
 バルーン3の材料は、抗血栓性に優れた伸縮性のある材料が好ましく、ポリウレタン系の高分子材料がより好ましい。
ポリウレタン系の高分子材料は、例えば、熱可塑性ポリエーテルウレタン、ポリエーテルポリウレタンウレア、フッ素ポリエーテルウレタンウレア、ポリエーテルポリウレタンウレア樹脂又はポリエーテルポリウレタンウレアアミドが挙げられる。
 第一実施形態に係るカテーテルシャフトの構造は、図2に示すように、カテーテルシャフト2aのルーメン内に加熱電極用リード線11と温度センサ用リード線12及び圧力センサ用リード線17が挿通し、ルーメンの内部と各リード線との間隙を、加熱用液体14が通過する構造である。また、カテーテルシャフトの構造の変形例としては、図3に示すように、バルーン3の内部に連通した加熱用液体14が通過するルーメン4aと、加熱電極用リード線11、温度センサ用リード線12及び圧力センサリード線17が挿通するルーメン4bとを有する、ダブルルーメンのカテーテルシャフト2bのような構造であっても構わない。
 圧力センサ6の測定方式は、抵抗線式及び静電容量式等が挙げられるが、これらに限定されるものではない。
 また、カテーテルシャフトは、図4又は図6に示すように、外管21のルーメンに内管20が挿入されている、二重管式のカテーテルシャフト2cであっても構わない。図4に示す二重管式のカテーテルシャフト2cの場合、カテーテルシャフト2cの構造は、図5に示すように、外管21と内管20との間の空間がバルーン3の内部に連通し、バルーン3の表面、バルーン3の内部又はルーメン4に、圧力センサ6が配置されており、内管20のルーメンに加熱電極用リード線11及び温度センサ用リード線12が挿通していることが好ましい。また、図6に示す二重管式のカテーテルシャフト2cの場合、カテーテルシャフト2cの構造は、図7に示すように、外管21と内管20との間の空間がバルーン3の内部に連通し、バルーン3の表面、バルーン3の内部又は外管21と内管20との間の空間に圧力センサ6が配置されており、外管21と内管20との間の空間に加熱電極用リード線11、温度センサ用リード線12及び圧力センサリード線17が挿通しており、内管20の中心ルーメン22にガイドワイヤ23が挿通していることが好ましい。
 二重管式のカテーテルシャフト2cの場合、図4及び図6に示すように、バルーン3の先端部は内管20の長手方向における先端部に固定され、バルーン3の後端部は外管21の長手方向における先端部に固定されることが好ましい。
 加熱電極9の形状は、長さが10mm~20mmのコイル状又は円筒状等の、筒状の形状が好ましい。
 実用性の観点から、コイル状の加熱電極9の電線の直径は、0.1mm~1mmが好ましい。
 加熱電極9の材料は、例えば、金、銀、プラチナ若しくは銅又はこれら金属の合金が挙げられる。
 加熱電極9に接続された加熱電極用リード線11は、ルーメン4を挿通して加熱装置13に接続される。
 実用性の観点から、加熱電極用リード線11の直径は、0.1mm~1mmが好ましい。
 加熱電極用リード線11の材料は、例えば、銅、銀、金、白金若しくはタングステン又はこれら金属の合金が挙げられる。また、短絡を防止する観点から、加熱電極用リード線11にはフッ素樹脂等の電気絶縁性保護被覆が施されていることが好ましい。
 加熱装置13は高周波発生装置であることが好ましく、患者の感電を防ぐ観点から、加熱電極9に供給する高周波電流の周波数は、100kHz以上が好ましい。
 加熱装置内のプロセッサ26は、典型的には、バルーン付きアブレーションカテーテル1から信号を受信するための好適なフロントエンド及びインターフェ一ス回路を有する汎用コンピュータプロセッサを備える。プロセッサ26は、本明細書に記載される機能を実行するためにソフトウェアにおいてプログラム化され得る。また、加熱装置13に含まれる構成部の一以上が、別個のハードウェアとして構成されていてもよいし、一部分を共有するようにしてもよい。加熱装置13の少なくとも一部をソフトウェアで構成してもよい。加熱装置13の一部分が物理的に離間して配置されていてもよい。また、加熱装置13は、その一部の構成部が、他の構成部との間でネットワークを通じた通信によって連携可能であってもよい。また、加熱装置13は、その一部の構成部が、他の構成部との間で外部ネットワークを通じて通信可能な装置、例えばクラウド上のサーバやデータベース上にあってもよい。
 温度センサ10は、バルーン3の内部温度を安定して測定する観点から、加熱電極9又はカテーテルシャフト2aに固定されていることが好ましいが、バルーン3の表面温度を測定する観点から、バルーン3の内面に固定されていても構わない。
 温度センサ10としては、例えば、熱電対又は測温抵抗体が挙げられる。
 温度センサ10に接続された温度センサ用リード線12は、ルーメン4を挿通して温度制御ユニットに接続される。
 実用性の観点から、温度センサ用リード線12の直径は、0.05mm~0.5mmであることが好ましい。
 温度センサ用リード線12の材料は、温度センサ10が測温抵抗体であれば、例えば、銅、銀、金、白金若しくはタングステン又はこれら金属の合金が挙げられる。また、短絡を防止する観点から、温度センサ用リード線12にはフッ素樹脂等の電気絶縁性保護被覆が施されていることが好ましい。また、温度センサ10が熱電対であれば、熱電対と同じ材料であることが好ましく、例えば、T型熱電対の場合には銅とコンスタンタン、K型熱電対の場合にはクロメルとアルメルが挙げられる。
 圧力センサ6は、圧力測定ユニット18に接続され、圧力測定ユニット18は加熱装置13に接続される。圧力センサリード線17は、温度センサリード線12と同様の材質を用いることが出来る。
 膨張したバルーン3をX線透視画像で確認する観点から、加熱用液体14は、造影剤又は生理食塩水で希釈した造影剤を用いることが好ましい。なお、導電性を有する観点から、加熱電極9に高周波電流を供給する場合には、イオン系造影剤又は生理食塩水で希釈した造影剤が好ましい。
 シリンジ19は、延長チューブ28とルーメン4を介してバルーン3に通じている。また、シリンジ19の他、バルーン3の内部に対し液体を注入・吸引するために用いるバルーン付きアブレーションカテーテル1の外部に配置する装置は、どのような装置を用いてもよい。しかしながら、バルーン3の加熱温度を安定化させるため、微小体積の加熱用液体の吸引と吐出を繰り返してバルーン3内部の液体に振動を付与する振動付与装置25であることが好ましい。バルーン内の加熱用液体に振動を付与することにより、バルーン3の内部に充填された液体が撹拌され、バルーン表面の温度が均一に維持されやすくなる。
 バルーン内の加熱用液体に振動を付与する振動付与装置25としては、例えば、ローラーポンプ、ダイヤフラムポンプ、ベローズポンプ、ベーンポンプ、遠心ポンプ又はピストンとシリンダの組み合わせからなるポンプを備える装置が挙げられる。
 いくつかの実施形態では、推定焼灼深度は、加熱温度、焼灼時間及びバルーン体積に基づく特定の参照テーブル並びに参照テーブルから選択されるバルーン圧力と相関する数式から求められる。例示的な実施形態として、術者によるバルーン付きアブレーションカテーテルシステムの制御とそれを用いた手技のフローチャートを図8に示す。アブレーション手技において、まず術者は心臓にカテーテルを挿入し、標的部位にバルーンを押し当てる。その後、術者は加熱温度及び焼灼時間の数値をバルーン付きアブレーションカテーテルシステムに設定する。バルーン付きアブレーションカテーテルシステム内のプロセッサは、バルーンへの注入量からバルーン体積を計算し、圧力は組織とバルーンが接触し、術者がバルーン位置を固定した時に測定される。この設定値及び測定値により、続いて実施しようとするバルーン付きアブレーションカテーテルを用いたアブレーションによる推定焼灼深度を、以下の手法により算出することが出来る。
 推定焼灼深度(D)は、加熱温度、焼灼時間、バルーン体積ごとにバルーン圧力(P)と相関することから、推定焼灼深度は、以下の式1から算出される。
 D=k*P+k’*P+t ・・・式1
 [式中、Dは推定焼灼深度を表し、k及びk’は加熱温度、焼灼時間及びバルーン体積に基づく参照テーブルから選択された比例定数、tは加熱温度、焼灼時間及びバルーン体積に基づく参照テーブルから選択された定数であり、Pはバルーン圧力の値を表す。]
 ここで、バルーン圧力(P)としては、バルーン内圧又はバルーン接触圧力のどちらを用いても推定焼灼深度(D)を算出することができる。加えて、参照テーブルとしては、バルーン内圧又はバルーン接触圧力のそれぞれに対応した参照テーブルを用いて推定焼灼深度(D)を算出することができる。
 また、加熱温度、焼灼時間及びバルーン体積と、比例定数k及び定数tとの関係を示す参照テーブルは、予め作成されており、プロセッサ又は記録媒体に記録してあるものを用いることができる。
 例えば、加熱温度73℃、焼灼時間3分、バルーン体積10mLの場合、プロセッサが事前に保有している参照テーブルの数値を参照することで、k=0、k’=0.084、t=0.59の値が得られる。その値を代入すると、推定式は以下の式2で表される。この推定式に対し、測定装置によるバルーン体積の測定値を代入することで推定焼灼深度(D)が得られる。
 D=0.084*P+0.59 ・・・式2
 この推定焼灼深度(D)は、アブレーション手技を実行する術者に対し、ディスプレイ等の表示装置を用いて示される。術者は目的の焼灼深度を得るために、推定焼灼深度を用いて様々な処置を行なうことができる。例えば、術者は、加熱温度、焼灼時間、バルーン体積及びバルーン圧力を調整することによって目的の焼灼深度が得られる。
 他の実施形態では、図9に示すように、プロセッサは、推定焼灼深度の数値に加えて、得られたバルーン圧力及びバルーン体積の値に対して、設定された推定焼灼深度を得るために必要な加熱温度及び焼灼時間を出力することができる。このとき、必要な加熱温度と焼灼時間の組み合わせが1つの場合はその組み合わせをプロセッサが出力するようする。また、必要な加熱温度と焼灼時間の組み合わせが2つ以上算出された場合、その組み合わせの中から焼灼時間が最も短くなる組み合わせを選択し、プロセッサが出力する。
 さらに別の実施形態では、目標の推定焼灼深度を入力し、測定により得られたバルーン圧力及びバルーン体積に基づいて、目標の推定焼灼深度が得られる加熱温度及び焼灼時間をプロセッサが算出し表示装置に出力するようにしてもよい。
 以下、本発明のバルーンカテーテルの具体的な実施例を説明する。なお、「長さ」というときには、長手方向における長さを表すものとする。
(バルーン付きアブレーションカテーテルシステムの作製)
 ポリウレタン製チューブを用いたブロー成形によって、直径30mm、厚み15μmのポリウレタン製のバルーン3を作製した。
 外径3.6mm、内径3.0mm、長さ1000mmのポリウレタン製チューブを成形し、外管21とした。また、外径1.6mm、内径1.2mm、長さ1100mmのポリアミド製チューブを成形し、内管20とした。それらの後端にハンドル27を接続した。
 パーフルオロアルコキシアルカン製の電気絶縁性の被膜が施された直径0.26mm、長さ1700mmの銅線を加熱電極用リード線11とし、ポリテトラフルオロエチレン製の電気絶縁性の被覆が施された直径0.13mm、長さ1500mmのコンスタンタン線を温度センサ用リード線12とした。
 加熱電極用リード線11に施された電気絶縁性の被膜を200mm及び温度センサ用リード線12に施された電気絶縁性の被膜を20mm剥ぎ、内管20の先端から25mmの位置を開始点として、加熱電極用リード線11と内管20の間に温度センサ用リード線12を挟みながら加熱電極用リード線11を内管20にコイル状に巻きつけた。この際、加熱電極用リード線11のコイル状になった部分が加熱電極9を形成するとともに、コイル状に巻き付ける部分の始点において、加熱電極用リード線11及び温度センサ用リード線12の電気絶縁性の被膜が剥がされた部分同士が接触することで温度センサ10である熱電対が形成された。結果として、長さ13mmのコイル状の加熱電極9及び温度センサ10が内管20上に形成された。温度センサ10が形成された部分では、加熱電極用リード線11と温度センサ用リード線12同士を溶接して固定した。
 ズレ防止のため、加熱電極9の先端及び後端において、内管20上にポリウレタン製チューブを熱溶着で固定した。
 内管20の加熱電極9と温度センサ10の後方に圧力センサ6をポリウレタン系の接着剤で固定し、圧力センサリード線17を接続した。圧力センサリード線17の他端は、ルーメン4に挿通し、ハンドル27を介して圧力測定ユニット18に接続した。このように、内管20に圧力センサ6を固定することで、バルーン内圧を測定することができる。
 バルーン3を、内管20の先端側から挿入し、バルーン3の後端部を外管21の先端部に熱溶着で固定し、これを外筒シャフトの先端とバルーンの後端部が互いに固定された部分とした。またバルーン3の先端部は、内管20に熱溶着で固定した。
 加熱電極用リード線11及び温度センサ用リード線12の後端側の線は、外管21と内管20との間のルーメン4と、ハンドル27の内部を挿通させ、加熱装置13に接続した。
 ハンドル27が有する分岐部に三方活栓29を取り付け、三方活栓29の一方の分岐部にバルーン体積センサ16を、他方の分岐部に延長チューブ28を取り付け、さらに延長チューブ28を振動付与装置25に接続した。これにより、バルーン体積を測定することができ、かつ振動付与装置25からの振動を、延長チューブ28、ハンドル11及び外管21と内管20との間のルーメン4を介して、バルーン3内部の液体に振動を付与する経路を形成させ、実施例1のバルーンカテーテル(以下、「実施例1」)を作成した。以上のように、実施例1は、バルーン3のバルーン内圧、バルーン体積、加熱温度を測定することが出来る。
 次に他の実施形態として、実施例2のバルーンカテーテルを作成した。以下実施例1との相違点を記載する。
 バルーン3の表面に、圧力センサ6をポリウレタン系の接着剤で取り付け、圧力センサ6に圧力センサリード線17を取り付けた。なお圧力センサリード線17は、材質を銅線とした以外は温度センサリード線12と同様の仕様とした。圧力センサリード線17は、温度センサリード線12と同様に取り回し、手元側の他端を圧力測定ユニット18に接続した。このように、バルーン3の表面に圧力センサ6を固定することで、バルーン内圧に代えてバルーン接触圧力を測定することができる、実施例2のバルーンカテーテル(以下、「実施例2」)を作成した。以上のように、実施例2は、バルーン3の接触圧力、バルーン体積及び加熱温度を測定することが出来る。
(バルーン付きアブレーションカテーテルシステムの使用準備)
 造影剤(オムニパーク(登録商標);第一三共製)と、生理食塩水との、体積比1:1の混合溶液を加熱用液体14としてシリンジから供給し、バルーン3の内部及びルーメン4の空気抜き作業を行ってから、バルーン3を最大径が26mm~33mmになるように膨張させた。
(バルーン内圧と焼灼深度の評価)
 図10に、実施例1のシステムを用いたバルーン内圧と焼灼深度の関係を評価するための実験系を示す。三方活栓29を切り替えて延長チューブ28内の空気抜き作業を行ってから、さらに三方活栓29を切り替えて、圧力センサ6と、ルーメン4とを連通させた。
 水槽42に生理食塩水を35L入れて、37℃に保温した。水槽42の内壁に貼られた、加熱電極9の対極板である板状電極43(型番354;ValleyLab社製)を、加熱装置13に接続した。
 バルーン付きアブレーションカテーテル1のバルーン3を、肺静脈を模した形状の心筋45に押し当てた状態で水槽42に浸漬させ、バルーン内圧を測定した。
 三方活栓29を切り替えて、振動付与装置25と、ルーメン4とを連通させた。加熱装置13及び振動付与装置25を同時に作動させ、加熱温度70℃でバルーン3を加熱して、180秒間アブレーションを実施した。
焼灼された心筋45を取り出して切開し、スケール又は画像を用いて焼灼深度を測定した。
 図11は、本発明の一実施形を用いた、バルーン体積(mL)ごとのアブレーション中のバルーン内圧と焼灼深度の関係を示すグラフである。横軸にバルーン内圧(mmgHG)、縦軸に焼灼深度(mm)を表す。
 図11に示したグラフにより、バルーン体積毎に、焼灼深度とバルーン内圧は互いに相関する関係にある。この図に基づくバルーン体積毎の焼灼深度とバルーン内圧の関係から互いに相関する関係に関する参照テーブルを作成し、また、互いに相関する関係に基づいて焼灼深度の推定式として次の式が成り立つことが確認できた。
 D=k*P+k’*P+t  ・・・式1
 [式中、k及びk’は比例定数、tは定数である。]
(バルーン接触圧力と焼灼深度の評価)
 図12に、実施例2のシステムを用いたバルーン接触圧力と焼灼深度を評価するための実験系のバルーン近傍の拡大詳細図を示す。全体の配置は図10と同様である。水槽42に生理食塩水を35L入れて、37℃に保温した。水槽42の内壁に貼られた、加熱電極9の対極板である板状電極43(型番354;ValleyLab社製)は、加熱装置13に接続した。
 バルーン付きアブレーションカテーテル1のバルーン3を、肺静脈を模した形状の心筋45に押し当てた状態で水槽42に浸漬させ、バルーン接触圧力を測定した。
 振動付与装置25と、ルーメン4とを連通させ、加熱装置13及び振動付与装置25を同時に作動させ、加熱温度73℃でバルーン3を加熱して、180秒間アブレーションを実施した。
 焼灼された心筋45を取り出して切開し、スケール又は画像を用いて焼灼深度を測定した。
 図13は、本発明の一実施形態に従って、アブレーション中のバルーン接触圧力と焼灼深度の関係を示すグラフである。横軸にバルーン接触圧力、縦軸に焼灼深度を表す。
 図13の結果から、バルーン接触圧力に相関して焼灼深度が上昇することが判り、この結果から次の式が成り立つことが確認できた。
 D=k*P+k’*P+t  ・・・式1
 [式中、k及びk’は比例定数、tは定数である。]
 以上の実施例1及び2のアブレーションカテーテルシステムに基づく焼灼深度の結果から、予め加熱温度、焼灼時間、バルーン体積、バルーン圧力と焼灼深度の関係をプロセッサにインプットしておくことで、アブレーションを開始する前に、術者は推定焼灼深度を知ることができ、あるいはプロセッサによって術者が望む焼灼深度になるよう、コントロールできる。
 本発明は、心房細動等の不整脈、子宮内膜症、癌又は高血圧等の治療を行うためのバルーンカテーテルとして用いることができる。
 1・・・バルーン付きアブレーションカテーテル、2・・・カテーテルシャフト(2a、2b、2c)、3・・・バルーン、4・・・ルーメン、5・・・先端部の側孔、6・・・圧力センサ、9・・・加熱電極、10・・・温度センサ、11・・・加熱電極リード線、12・・・温度センサリード線、13・・・加熱装置、14・・・加熱用液体、15・・・バルーン付きアブレーションカテーテルシステム、16・・・バルーン体積センサ、17・・・圧力センサリード線、18・・・圧力測定ユニット、19・・・シリンジ、20・・・内管、21・・・外管、22・・・中心ルーメン、23・・・ガイドワイヤ、25・・・振動付与装置、26・・・プロセッサ、27・・・ハンドル、28・・・延長チューブ、29・・・三方活栓、42・・・水槽、43・・・対極板、44・・・焼灼試験装置、45・・・ブタ心筋、46・・・ロート(肉押さえ用)、47・・・接触圧力センサ

Claims (7)

  1.  カテーテルシャフトと、
     前記カテーテルシャフトに取り付けられたバルーンと、
     前記カテーテルシャフトを長軸方向に貫通して前記バルーン内部と連通するルーメンと、
     前記バルーン内部に配置された加熱電極及び温度センサと、
     前記加熱電極に電気的エネルギーを加える加熱装置と、
     圧力センサと、
     バルーン体積センサと、
     ジェネレータの加熱温度、ジェネレータの焼灼時間、前記圧力センサから得られたバルーン圧力の値及び前記バルーン体積センサから得られたバルーン体積の値を変数として、推定焼灼深度を算出するプロセッサと、
     を備える、アブレーションカテーテルシステム。
  2.  前記推定焼灼深度は、加熱温度、焼灼時間及びバルーン体積に基づく参照テーブル並びにバルーン圧力と相関する数式から求められる、請求項1記載のアブレーションカテーテルシステム。
  3.  前記数式は、以下の式1である、請求項2記載のアブレーションカテーテルシステム。
     D=k*P+k’*P+t ・・・式1
     [式中、Dは推定焼灼深度を表し、k及びk’はバルーン体積、及び加熱温度及び焼灼時間に基づく参照テーブルから参照された比例定数、tはバルーン体積、及び加熱温度及び焼灼時間に基づく参照テーブルから参照された定数であり、Pはバルーン圧力の値を表す。]
  4.  前記プロセッサから出力された推定焼灼深度を表示可能な表示装置を備えた、請求項1~3のいずれか一項記載のアブレーションカテーテルシステム。
  5.  前記圧力センサは、バルーン表面又はバルーン内部に設置される、請求項1~4のいずれか一項記載のアブレーションカテーテルシステム。
  6.  前記プロセッサは、得られた前記バルーン圧力及び前記バルーン体積の値に対して、設定された推定焼灼深度を得るために必要な前記加熱温度及び前記焼灼時間を出力する、請求項1~5のいずれか一項記載のアブレーションカテーテルシステム。
  7.  バルーンの圧力を測定する工程と、
     バルーンの体積を測定する工程と、
     前記ジェネレータの加熱温度、前記ジェネレータの焼灼時間、前記バルーンの圧力及び前記バルーンの体積のデータに基づき、焼灼深度を推定する工程と、
     を備えた、アブレーションシステムの制御方法。
PCT/JP2021/013837 2020-03-31 2021-03-31 バルーン付きアブレーションカテーテルシステム及びその制御方法 WO2021201101A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21779546.7A EP4129223A4 (en) 2020-03-31 2021-03-31 BALLOON ABLATION CATHETER SYSTEM AND METHODS OF CONTROLLING THE SAME
KR1020227026876A KR20220159353A (ko) 2020-03-31 2021-03-31 벌룬 부착 어블레이션 카테터 시스템 및 그 제어 방법
US17/915,052 US20230157741A1 (en) 2020-03-31 2021-03-31 Balloon ablation catheter system and method of controlling same
CN202180025227.XA CN115279291A (zh) 2020-03-31 2021-03-31 带球囊的消融导管系统及其控制方法
JP2021519186A JPWO2021201101A1 (ja) 2020-03-31 2021-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-063087 2020-03-31
JP2020063087 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201101A1 true WO2021201101A1 (ja) 2021-10-07

Family

ID=77929513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013837 WO2021201101A1 (ja) 2020-03-31 2021-03-31 バルーン付きアブレーションカテーテルシステム及びその制御方法

Country Status (7)

Country Link
US (1) US20230157741A1 (ja)
EP (1) EP4129223A4 (ja)
JP (1) JPWO2021201101A1 (ja)
KR (1) KR20220159353A (ja)
CN (1) CN115279291A (ja)
TW (1) TW202203860A (ja)
WO (1) WO2021201101A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05500179A (ja) * 1989-09-08 1993-01-21 ボストン サイエンティフィック コーポレイション 生理学的低圧力血管形成術
JP2003102850A (ja) 2001-09-28 2003-04-08 Shutaro Satake 高周波加温バルーンカテーテル
WO2010070766A1 (ja) * 2008-12-19 2010-06-24 有限会社日本エレクテル バルーンカテーテルシステム
JP2010240004A (ja) 2009-04-01 2010-10-28 Nippon Erekuteru:Kk 高周波加温バルーンカテーテルシステム
JP2010259810A (ja) 2009-05-08 2010-11-18 Endosense Sa カテーテルアブレーション治療において病変部サイズを制御するための方法および装置
JP2014504896A (ja) * 2010-11-16 2014-02-27 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド アブレーション治療中の組織内損傷形成を表す情報を提示するためのシステムと方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868736A (en) * 1996-04-12 1999-02-09 Ep Technologies, Inc. Systems and methods to control tissue heating or ablation with porous electrode structures
US10517670B2 (en) * 2015-07-16 2019-12-31 Biosense Webster (Israel) Ltd. Estimation of lesion size
US20200205890A1 (en) * 2017-07-25 2020-07-02 Affera, Inc. Ablation catheters and related systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05500179A (ja) * 1989-09-08 1993-01-21 ボストン サイエンティフィック コーポレイション 生理学的低圧力血管形成術
JP2003102850A (ja) 2001-09-28 2003-04-08 Shutaro Satake 高周波加温バルーンカテーテル
WO2010070766A1 (ja) * 2008-12-19 2010-06-24 有限会社日本エレクテル バルーンカテーテルシステム
JP2010240004A (ja) 2009-04-01 2010-10-28 Nippon Erekuteru:Kk 高周波加温バルーンカテーテルシステム
JP2010259810A (ja) 2009-05-08 2010-11-18 Endosense Sa カテーテルアブレーション治療において病変部サイズを制御するための方法および装置
JP2014504896A (ja) * 2010-11-16 2014-02-27 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド アブレーション治療中の組織内損傷形成を表す情報を提示するためのシステムと方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129223A4

Also Published As

Publication number Publication date
KR20220159353A (ko) 2022-12-02
JPWO2021201101A1 (ja) 2021-10-07
CN115279291A (zh) 2022-11-01
TW202203860A (zh) 2022-02-01
EP4129223A4 (en) 2024-04-17
US20230157741A1 (en) 2023-05-25
EP4129223A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP6571217B2 (ja) 医療装置
CA2760082C (en) Ablation catheter with balloon and ablation catheter system with balloon
WO2010070766A1 (ja) バルーンカテーテルシステム
US10675088B2 (en) Temperature controlled short duration ablation
US20110152857A1 (en) Apparatus and Methods For Electrophysiology Procedures
US10973574B2 (en) Temperature controlled short duration ablation
US10893904B2 (en) Temperature controlled short duration ablation
US10507058B2 (en) Temperature controlled short duration ablation
JP2024045716A (ja) 温度制御されたパルスrfアブレーション
WO2021201101A1 (ja) バルーン付きアブレーションカテーテルシステム及びその制御方法
JP2004305251A (ja) 肺静脈電気的隔離用バルーンカテーテル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021519186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779546

Country of ref document: EP

Effective date: 20221031