WO2021200286A1 - Solar cell and method for manufacturing solar cell - Google Patents

Solar cell and method for manufacturing solar cell Download PDF

Info

Publication number
WO2021200286A1
WO2021200286A1 PCT/JP2021/011481 JP2021011481W WO2021200286A1 WO 2021200286 A1 WO2021200286 A1 WO 2021200286A1 JP 2021011481 W JP2021011481 W JP 2021011481W WO 2021200286 A1 WO2021200286 A1 WO 2021200286A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
conductive layer
power generation
layer
hole
Prior art date
Application number
PCT/JP2021/011481
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 会田
俊介 功刀
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022511926A priority Critical patent/JPWO2021200286A1/ja
Publication of WO2021200286A1 publication Critical patent/WO2021200286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to solar cells and methods for manufacturing solar cells.
  • the present application claims priority based on Japanese Patent Application No. 2020-065358 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
  • Crystalline silicon-based solar cells are widely used as solar cells.
  • crystalline silicon-based solar cells have problems such as stable supply of high-purity silicon as a raw material and high cost.
  • a solid-state junction type photoelectric conversion element for example, a dye-sensitized solar cell (DSC)
  • DSC dye-sensitized solar cell
  • the solid-state junction type photoelectric conversion element (hereinafter referred to as a solar cell) has a structure as shown in FIGS. 14 and 15, for example.
  • 14 and 15 are views showing an example of a schematic configuration of the structure of a conventional solar cell.
  • the solar cell 500 has a plurality of first conductors formed on the insulating base material 510 and the surface side (upper surface) A of the insulating base material 510 with an interval of 520 G.
  • a scribing groove 530H penetrating in the thickness direction is formed to expose the first conductive layer 520, and the scribing groove 530H is filled with a conductive material constituting the second conductive layer 540 to conduct conductivity.
  • the first conductive layer 520 and the second conductive layer 540 are electrically connected to each other by forming the portion 541, and as a result, the power generation layers 30 arranged adjacent to each other are sequentially electrically connected by the conductive portion 541.
  • leader wires (not shown) are connected to the first conductive layer 520F located on one end side F and the first conductive layer 520R located on the other end side R, respectively.
  • each power generation layer 530 electrons are generated when sunlight is irradiated, and these electrons move from each power generation layer 530 to the first conductive layer 520, and are sequentially adjacent to the other end side via the conductive portion 541. It moves toward the first conductive layer 520 of R.
  • the holes generated in the power generation layer 530 move to the second conductive layer 540 on the surface side A.
  • a plurality of power generation layers 530 are connected in series to form an electric module. Then, the electric energy generated by the solar cell 500 is taken out to the outside through the leader line (not shown).
  • the scribe groove 530H is formed by irradiating the power generation layer 530 with a laser beam to remove the power generation layer 530 in the power generation layer scribing step when manufacturing the solar cell 500.
  • a pulse laser is irradiated to form a power generation layer 530 with substantially circular (for example, several tens of ⁇ m in diameter) through holes (not shown) overlapping without intervals. By doing so, a continuous scribing groove 530H was formed. Then, the conductive material used for forming the second conductive layer 540 is connected to the first conductive layer 520 through the scribe groove 530H to form the conductive portion 541.
  • the conductive portion 541 is not connected to the first conductive layer 520, and the conduction between the first conductive layer 520 and the second conductive layer 540 is obtained. I can't. Further, as shown by reference numerals 520X in FIGS. 14 and 15, when the first conductive layer 520 is removed and the insulating base material 510 is exposed, the conductive portion 541 is no longer connected to the first conductive layer 520. Conduction between the first conductive layer 520 and the second conductive layer 540 cannot be obtained. Therefore, in the scribe groove 530H, it is required that the surface of the first conductive layer 520 is surely exposed, the conduction by the conductive portion 541 is surely obtained, and the first conductive layer 520 is not damaged.
  • the present invention has been made in consideration of such circumstances, and provides a solar cell and a method for manufacturing a solar cell capable of ensuring stable conduction between the first conductive layer and the second conductive layer.
  • the purpose is.
  • the present invention proposes the following means.
  • a plurality of first conductive layers arranged at intervals on one surface of an insulating base material and a plurality of first conductive layers arranged so as to cover the surfaces of the first conductive layers.
  • the power generation layer including the photoelectric conversion layer and the plurality of second conductive layers provided on the surface side of the power generation layer at intervals facing each other of the first conductive layers.
  • a plurality of second conductive layers arranged so as to overlap with the first conductive layer adjacent to the first conductive layer facing each other are provided, and the overlap is provided.
  • a plurality of through holes are arranged in the portion along the surface direction of the power generation layer and penetrate the power generation layer in the thickness direction, and the through holes are boundaries between the power generation layer and the first conductive layer.
  • the plurality of second conductive layers are sequentially electrically connected through the through holes communicating with the first conductive layer adjacent to the first conductive layer facing each other. Is.
  • the plurality of first conductive layers formed on one surface of the insulating base material and arranged at intervals, and the surfaces of the plurality of the first conductive layers (that is, the first one).
  • the surface of the conductive layer opposite to the insulating base material) is arranged so as to cover the power generation layer including the photoelectric conversion layer, and a plurality of first conductive layers are spaced apart from each other on the surface side of the power generation layer.
  • a plurality of second conductive layers provided with a gap, and an overlapping portion that overlaps with the first conductive layer adjacent to the first conductive layer facing the first conductive layer when viewed from a direction perpendicular to the surface of the power generation layer.
  • a plurality of arranged second conductive layers are provided, and a plurality of through holes are provided which are arranged along the surface direction of the power generation layer at the overlapping portion and penetrate the power generation layer in the thickness direction. Since it has reached a position beyond the boundary between the layer and the first conductive layer, the contact between the second conductive layer (the conductive material constituting the layer) and the first conductive layer beyond the boundary with the first conductive layer through the through hole. The area increases. As a result, stable conduction between the first conductive layer and the second conductive layer can be ensured.
  • the through hole when the through hole reaches a position beyond the boundary between the power generation layer and the first conductive layer, it means that at least a part of the through hole has penetrated to the first conductive layer.
  • one end of the through hole may be formed inside the first conductive layer.
  • one end of the through hole is formed inside the first conductive layer that advances along the thickness direction of the first conductive layer. That is, since one end of the through hole is formed inside the first conductive layer, the contact area between the second conductive layer (the conductive material constituting the second conductive layer) and the first conductive layer is further increased. Reliable continuity can be ensured.
  • one end of the through hole means not the top of the through hole on the tip side but the surface of the tip, for example, when the end of the through hole is flat, the entire flat portion is the first conductor. It means that it is invading (biting) into the layer. Further, when the through hole becomes thinner toward the tip side, it means that at least a part of the through hole is in surface contact with the first conductive layer.
  • the solar cell according to (1) or (2) above may have a recessed recess in the first conductive layer at one end of the through hole.
  • one end of the through hole is provided with a recessed recess in the first conductive layer. A part of the peripheral surface of this recess is exposed in the first conductive layer.
  • the through holes may be formed at a pitch larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
  • the through holes are formed at a pitch larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer, the first conductive layer is divided.
  • a peripheral surface that is conductive with the second electrode layer is formed over the entire inner peripheral surface of the recess.
  • the through holes may be formed at a pitch of 1 times or less the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
  • the through holes are formed at a pitch of 1 times or less the dimension along the arrangement direction of the recesses on the surface of the first conductive layer, the inner peripheral surface of the recesses. Since the peripheral surface capable of conducting with the second electrode layer is continuously formed in the arrangement direction of the recesses, stable conduction between the first conductive layer and the second conductive layer can be ensured.
  • the recesses of the plurality of through holes are arranged at intervals along the surface direction of the first conductive layer, so that the conductive material constituting the second conductive layer is at least with the first conductive layer. Conduction is possible on the peripheral surface, and stable conduction between the first conductive layer and the second conductive layer is ensured.
  • the dimension in the arrangement direction of the concave portion is the diameter of the concave portion.
  • the concave portion has another shape, it is the dimension in the arrangement direction of the concave portion on the surface of the first conductive layer.
  • the recess is formed in a circular shape on the surface of the first conductive layer in a plan view or an elliptical shape having a long axis or a short axis along the arrangement direction.
  • the through holes may be formed at a pitch larger than twice the circular radius of the recess or the semi-major axis or semi-minor axis of the elliptical shape.
  • the recess is formed in a circular shape on the surface of the first conductive layer in a plan view or an elliptical shape having a long axis or a short axis along the arrangement direction, and the through hole is formed. Since it is formed with a pitch larger than twice the circular radius of the recess or the semi-major axis or semi-minor axis of the elliptical shape, the pitch of the through holes can be easily and efficiently sized along the arrangement direction of the through holes. It can be set larger than 1 time. It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semimajor axis) of the recess.
  • the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer. You may.
  • the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer, so that damage to the first conductive layer is suppressed. can do.
  • the depth of the recess may be 100% with respect to the thickness of the first conductive layer.
  • the first conductive layer is not divided and stable conduction can be ensured. ..
  • the through holes have a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer. It may be formed by.
  • the through holes are formed at a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer, and the plurality of through holes are formed in the power generation layer. Since the first conductive layer and the second conductive layer are arranged by the conductive material in the through hole, the first conductive layer and the second conductive layer are arranged so as to be arranged at intervals along the surface direction of Stable continuity can be ensured.
  • the through holes By forming the through holes at intervals on the surface of the power generation layer or circumscribing at the ends in the arrangement direction in this way, the margin when removing the power generation layer is increased, and the power generation layer is surely formed.
  • the laser power can be increased to the extent that a through hole is formed in the. Further, even if there is a large variation when the laser power is increased, a through hole in which the connection portion is secured can be formed, and a through hole in which the first conductive layer is exposed can be efficiently formed in the power generation layer. Stable conduction can be ensured between the first conductive layer and the second conductive layer.
  • the through holes are provided at a pitch smaller than 1 times the dimension along the arrangement direction of the through holes on the surface of the power generation layer. It may have been.
  • the second through hole is provided on the inner peripheral surface of the recess. Since the peripheral surface that can conduct with the electrode layer is continuously formed in the arrangement direction of the recesses, stable conduction between the first conductive layer and the second conductive layer can be ensured.
  • the power generation layer of the through hole forming portion is completely removed by a laser pulse to expose the first conductive layer, and the end face of the conductive material constituting the second conductive layer is exposed.
  • the first conductive layer is brought into contact with the surface and electrically connected.
  • the laser pulse energy is too weak, the power generation layer remains, and the power generation layer is sandwiched between the first conductive layer and the second conductive layer, resulting in high connection resistance. The power generation performance will deteriorate.
  • the laser pulse energy is made too strong, the entire power generation layer can be removed, but the first conductive layer is also removed by cutting, so that the connection resistance becomes high and the power generation performance deteriorates. It ends up.
  • the laser pulse energy (output) should be stronger than the strength that the power generation layer can remove and penetrate. It is desirable that the energy is used to remove only a part of the first conductive layer in the hole portion. Therefore, by arranging the through holes at intervals on the surface of the power generation layer or forming them so as to circumscribe at the ends in the arrangement direction, the margin when the laser pulse energy (output) is increased becomes large, and the first 1 It is possible to prevent the conductive layer from being divided.
  • the through hole when the through hole is formed by irradiating the laser, it is removed from the central portion of the irradiated circle, so that the first conductive layer is removed only in the central portion of the through hole. It may be pulsed laser energy.
  • the first conductive layer is cut in a line shape by arranging through holes penetrating the power generation layer at intervals on the surface of the power generation layer or forming them so as to circumscribe the ends in the arrangement direction. It is not divided and is cut into dots, and it is possible to take a large number of portions where the first conductive layer and the second conductive layer are connected, and the power generation performance is improved.
  • the dimension in the arrangement direction of the through hole is the diameter of the through hole.
  • the through hole has another shape, it is the dimension in the arrangement direction on the surface of the power generation layer of the through hole.
  • the through hole has a circular shape on the surface of the power generation layer in a plan view or follows the arrangement direction of the through hole. It is formed in an elliptical shape having a major axis or a minor axis, and the through holes may be formed at a pitch equal to or more than twice the radius of the circular shape or the semimajor axis or the minor axis of the elliptical shape.
  • the through hole is formed in a circular shape on the surface of the plan view power generation layer or an elliptical shape having a long axis or a short axis along the arrangement direction of the through holes, and penetrates. Since the holes are formed at a pitch that is at least twice the radius of the circle or the semi-major axis or the semi-minor axis of the ellipse, the pitch of the through holes can be easily and efficiently sized along the arrangement direction of the through holes. It can be set to 1 times or more. It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semi-major axis or short radius) of the through holes.
  • the through hole When the through hole is circular in a plan view, the through hole preferably has a diameter of about ⁇ 50 ⁇ m.
  • the diameter of the surface of the first conductive layer of the through hole is preferably about ⁇ 1 ⁇ m to 45 ⁇ m, and more preferably ⁇ 5 ⁇ m to 10 ⁇ m.
  • the through holes may be arranged in a plurality of rows.
  • the through-hole rows are arranged in a plurality of rows, the conductive area between the first conductive layer and the second conductive layer becomes large, and the first conductive layer and the second conductive layer The continuity between can be made more stable.
  • a second aspect of the present invention is a method for manufacturing a solar cell, comprising a first conductive layer, a power generation layer including a photoelectric conversion layer, and a conductive material including a second conductive layer in this order.
  • the first step of forming the first conductive layer and the power generation layer in this order on one surface of the base material and the pulse laser are used to arrange the first conductive layer and the power generation layer along the surface direction of the power generation layer to generate the power generation.
  • This is a method for manufacturing a solar cell, comprising a third step of forming the second conductive layer.
  • a first step of forming a first conductive layer and a power generation layer including a photoelectric conversion layer on one surface of a base material in this order, and a pulse laser are used.
  • the third step of forming the second conductive layer on the power generation layer with the conductive material is provided. Therefore, the contact area between the second conductive layer (the conductive material constituting the second conductive material) and the first conductive layer beyond the boundary with the first conductive layer through the through hole increases. As a result, stable conduction between the first conductive layer and the second conductive layer can be ensured.
  • one end of the through hole may be formed in the first conductive layer.
  • one end of the through hole is formed in the first conductive layer, so that the second conductive layer (the conductive material constituting the second conductive layer) and the first one.
  • the contact area with the conductive layer is further increased, and reliable conduction can be ensured.
  • the through hole having a recessed recess in the first conductive layer may be formed at the end portion.
  • the end portion of the through hole is provided with a recessed recess in the first conductive layer, the conductive material constituting the second conductive layer and at least the first conductive layer It is possible to conduct conduction on the peripheral surface of the first conductive layer and the second conductive layer, and it is possible to secure stable conduction with the first conductive layer and the second conductive layer.
  • the method for manufacturing a solar cell according to (15) above makes the through hole larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer. It may be formed by pitch. According to the method for manufacturing a solar cell according to the present invention, in the second step, the through holes are formed at a pitch larger than one times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer. Therefore, since they are arranged at intervals along the surface direction of the first conductive layer, it is possible to prevent the first conductive layer from being divided.
  • the recesses of the plurality of through holes are arranged at intervals along the surface direction of the first conductive layer, so that the conductive material constituting the second conductive layer has a peripheral surface with the first conductive layer. Conduction is possible over the entire circumference of the above, and stable conduction between the first conductive layer and the second conductive layer is ensured.
  • the concave portion has a circular shape in a plan view
  • the dimension in the arrangement direction of the concave portion is the diameter of the concave portion.
  • the concave portion has another shape, it is the dimension in the arrangement direction of the concave portion on the surface of the first conductive layer.
  • the method for manufacturing a solar cell according to (16) above has a circular shape on the surface of the first conductive layer in a plan view or a long axis or a short axis along the arrangement direction in the second step.
  • the through hole having the concave portion formed in the elliptical shape may be formed at a pitch larger than twice the circular radius of the concave portion or the semi-major axis or short radius of the elliptical shape.
  • the shape of the surface of the first conductive layer in a plan view is formed into a circular shape or an elliptical shape having a long axis or a short axis along the arrangement direction.
  • the pitch of the through holes can be easily and efficiently set in the direction of the arrangement of the through holes. It can be set to be larger than 1 times the along dimension. It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semimajor axis) of the recess.
  • the depth of the recess is set within a range of less than 80% with respect to the thickness of the first conductive layer. It may be formed. According to the method for manufacturing a solar cell according to the above aspect, the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer, so that the first conductive layer is damaged. Can be suppressed.
  • the through holes are arranged in the arrangement direction of the through holes on the surface of the power generation layer. It may be formed at a pitch of 1 times or more the along dimension.
  • a plurality of through holes are formed at a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer. Since the through holes are arranged at intervals along the surface direction of the power generation layer or extrinsically at the ends in the arrangement direction, the conductive material in the through holes causes the first conductive layer and the second conductive layer to be arranged. Stable continuity can be ensured.
  • the method for manufacturing a solar cell according to any one of (13) to (19) above, in the second step, has a circular shape on the surface of the power generation layer in a plan view or an arrangement of the through holes.
  • the through hole formed in an elliptical shape having a long axis or a short axis along the direction may be formed at a pitch equal to or more than twice the radius of the circular shape or the long radius or the short radius of the elliptical shape.
  • an elliptical through hole having a circular shape on the surface of the power generation layer in a plan view or an elliptical shape having a long axis or a short axis along the arrangement direction is formed.
  • the pitch of the through holes can be easily and efficiently increased to at least one times the dimension along the arrangement direction of the through holes. Can be set. It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semi-major axis or short radius) of the through holes.
  • the through holes may be formed in a plurality of rows in the second step.
  • the conduction between the first conductive layer and the second conductive layer can be more stabilized.
  • the solar cell and the method for manufacturing a solar cell according to the present invention stable conduction between the first conductive layer and the second conductive layer can be ensured.
  • FIG. 1 is a vertical cross-sectional view shown by arrow II-II in FIG. 1 for explaining a schematic configuration of a solar cell according to a first embodiment. It is a figure explaining the schematic structure of the solar cell which concerns on 1st Embodiment, and is the perspective view which conceptually shows the through-hole row before the 2nd conductive layer of the arrow III part in FIG. 2 is formed.
  • (B) is a vertical cross-sectional view shown by arrow VIB-VIB in (a). It is a vertical sectional view explaining the schematic structure of the solar cell which concerns on 2nd Embodiment of this invention. It is a figure explaining the schematic structure of the solar cell which concerns on 2nd Embodiment, and is the perspective view which conceptually shows the through-hole row before the 2nd conductive layer of the arrow VIII part in FIG. 7 is formed. It is a figure explaining the schematic structure of the solar cell which concerns on the 1st modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a).
  • b) is a vertical sectional view shown by arrow IXB-IXB in (a). It is a figure explaining the schematic structure of the solar cell which concerns on the 2nd modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a). b) is a vertical sectional view shown by arrow XB-XB in (a). It is a figure explaining the schematic structure of the solar cell which concerns on the 3rd modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a).
  • FIG. 1 is a vertical cross-sectional view shown by arrow XV-XV in FIG. 1 for explaining a schematic configuration of a conventional solar cell.
  • FIGS. 1 to 5 are views for explaining a schematic configuration of a solar cell according to a first embodiment of the present invention
  • FIG. 1 is a plan view
  • FIG. 2 is a vertical section shown by arrow view II-II in FIG. It is a plan view
  • FIG. 3 is a perspective view conceptually showing a row of through holes before the second conductive layer of the arrow III portion in FIG. 2 is formed.
  • 4A and 4B are views for explaining the schematic configuration of the through-hole rows, and FIG.
  • FIG. 4A is a plan view of the arrangement of the through-hole rows as viewed from the upper surface (surface) side of the power generation layer, and is a plan view of FIG. (B) is a vertical cross-sectional view shown by arrow IVB-IVB in (a) of FIG.
  • FIG. 5 is a vertical cross-sectional view for conceptually explaining the power generation layer.
  • the figures shown in the present specification may be partially or wholly enlarged for the sake of explanation.
  • one end side is indicated by reference numeral F
  • the other end side is indicated by reference numeral R
  • the upper surface (surface) side is indicated by reference numeral A.
  • the lower limit value and the upper limit value are included in the numerical limitation range described with “ ⁇ ” in between.
  • the numerical value indicated as “greater than or equal to” includes the value in the numerical range.
  • the value indicated as “less than” does not include the value in the numerical range.
  • the solar cell 100 includes, for example, an insulating base material 10, a plurality of first conductive layers 20 formed on the upper surface of the insulating base material 10, and a plurality of first conductive layers 20.
  • a power generation layer 30 arranged so as to cover the surfaces of the plurality of first conductive layers 20, a plurality of second conductive layers 40 formed on the surface side of the power generation layer 30, and a through-hole row 50 penetrating the power generation layer 30. And have.
  • a leader wire (not shown) extending to the outside is connected to the first conductive layer 20F (20) on the one end side F and the first conductive layer 20R (20) on the other end side R.
  • each power generation layer 30 moves toward the first conductive layer 20 in each power generation layer 30. Then, the electrons that have moved to the first conductive layer 20 pass through the conductive portion 41 formed in the through-hole row 50 and formed of the conductive material forming the second conductive layer 40, and the first conductive layer on the other end side R. Move to 20. In this way, the electrons generated in each of the power generation layers 30 sequentially move to the first conductive layer 20 on the other end side R arranged adjacent to each other. The holes generated in the power generation layer 30 move to the second conductive layer 40 on the surface side A. As a result, the solar cell 100 functions as an electric module having a plurality of power generation layers 30 arranged in series.
  • the insulating base material 10 is formed, for example, in a rectangular shape in a plan view.
  • the insulating base material 10 has an insulating property.
  • the material for forming the insulating base material 10 is not particularly limited, but a known insulator may be applied, and in addition to the insulating resin, for example, a metal oxide constituting the insulating layer of a conventional electronic device is used. May be good. Specifically, zirconium dioxide, silicon dioxide, aluminum oxide (AlO, Al 2 O 3) , magnesium oxide (MgO), nickel oxide (NiO) and the like. Of these, aluminum oxide (III) (Al 2 O 3 ) is particularly preferable.
  • the insulator forming the insulating base material 10 may be one kind or two or more kinds.
  • the material of the insulating base material 10 is a synthetic resin
  • a polyacrylic resin, a polycarbonate resin, a polyester resin, a polyimide resin, a polystyrene resin, a polyvinyl chloride resin, a polyamide resin or the like may be used as the synthetic resin.
  • polyester resins particularly polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), are suitable for producing thin, light and flexible solar cells.
  • the thickness of the insulating base material 1 is not particularly limited, and is preferably 0.01 mm to 3 mm, for example.
  • a structure in which a metal oxide and a synthetic resin are laminated, or a structure in which the entire surface side of the metal foil is insulated may be used.
  • the first conductive layer 20 is formed (laminated) on the surface side (upper surface) A of the insulating base material 10.
  • the first conductive layer 20 is formed (laminated) on the surface side (upper surface) A of the insulating base material 10.
  • four (plurality) first conductive layers 20 formed in a rectangular shape in a plan view are arranged along the surface of the insulating base material 10 at a distance of 20 G from each other.
  • the material of the first conductive layer 20 is not particularly limited as long as it has conductivity, and for example, gold, silver, copper, aluminum, tungsten, nickel, titanium, niobium, molybdenum, cobalt, ruthenium, indium, tin and chromium. In addition to any one or more metals selected from the group consisting of these, alloys or oxides thereof, or a laminated film thereof is suitable.
  • the thickness of the first conductive layer 20 is not particularly limited, and is preferably 10 nm to 1000 nm, for example.
  • the power generation layer 30 is formed (laminated) on the surface side (upper surface) A of the first conductive layer 20 so as to cover the first conductive layer 20. Specifically, it is formed so as to cover the surface side (upper surface) A of the first conductive layer 20 and fill the interval 20G formed between the adjacent first conductive layers 20.
  • a through hole row 50 penetrating in the thickness direction is formed in the power generation layer 30.
  • the through-hole row 50 is arranged in the overlapping portion 42 where the first conductive layer 20 and the second conductive layer 40 overlap when viewed in a plan view, and is formed along the interval 20G between the first conductive layers 20.
  • the through-hole rows 50 are arranged linearly (along the straight line) along the plane direction of the power generation layer 30 when viewed in a plan view, and are formed at intervals. It is provided with a plurality of through holes 51.
  • the through hole 51 is formed by, for example, irradiating a laser beam oscillated by a pulse laser processing apparatus.
  • the through hole 51 shown in FIG. 3 is conceptually shown, and the vertical cross-sectional shape is not limited to this.
  • the through hole 51 is formed in a substantially circular shape in a plan view, and for example, the diameter D1 on the surface of the power generation layer 30 is set to ⁇ 50 ⁇ m.
  • the diameter D1 of the through hole 51 can be arbitrarily set, but for example, it is preferably set to 10 ⁇ m or more and 100 ⁇ m or less.
  • the pitch P shown in FIG. 4A is the distance between the centers of the adjacent through holes 51.
  • the pitch P of the through holes 51 in the through hole row 50 can be arbitrarily set.
  • the pitch (cycle) P for irradiating the pulse laser is 1 times (radius) the diameter D1 (50 ⁇ m) of the through hole 51. Double) Set larger.
  • the pitch P of the through hole 51 is set to, for example, 1 time or more and 2 times or less (2 times or more and 4 times or less with respect to the radius) with respect to the diameter D1 of the through hole 51.
  • the pitch P of the through hole 51 is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the through hole 51 reaches the surface (upper surface) of the first conductive layer 20 on the tip side, exposes the surface of the first conductive layer 20 to the surface side (opening side) A of the through hole 51, and the through hole 51.
  • the end portion (the surface on the tip end side) of the above reaches a position beyond the boundary between the power generation layer 30 and the first conductive layer 20, and is formed so as to enter the first conductive layer 20.
  • the conductive material constituting the second conductive layer 40 is configured to be able to conduct surface contact with the first conductive layer 20 at the end of the through hole 51.
  • the power generation layer 30 includes, for example, a hole transport layer 31, a photoelectric conversion layer 32, and an electron transport layer 33 in this embodiment. Further, for example, it is preferable that the electron transport layer 33, the photoelectric conversion layer 32, and the hole transport layer 31 are arranged in this order from the first conductive layer 20. Further, although the hole transport layer 31 and the electron transport layer 33 are not essential, it is preferable to include them.
  • the photoelectric conversion layer 32 absorbs light, electrons and holes are generated in the layer.
  • the holes are received by the hole transport layer 31 and move to the working electrode (positive electrode) formed by the second conductive layer 40.
  • the electrons move to the counter electrode (negative electrode) formed by the first conductive layer 20 via the electron transport layer 33.
  • the hole transport layer 31 functions as a layer for transporting the holes generated in the photoelectric conversion layer 32 to the second conductive layer 40.
  • the hole transport layer 31 is preferably arranged between the second conductive layer 40 and the photoelectric conversion layer 32.
  • a part of the hole transport layer 31 may be immersed in the photoelectric conversion layer 32 (may form a complicated structure with the photoelectric conversion layer 32), or may be formed into a thin film on the photoelectric conversion layer 32. It may be arranged.
  • the preferable lower limit is 1 nm and the preferable upper limit is 2000 nm.
  • the thickness of the hole transport layer 31 when it exists in the form of a thin film is preferably 1 nm or more and the upper limit is 2000 nm or less.
  • the thickness of the hole transport layer 31 is 1 nm or more, electrons can be sufficiently blocked. If the thickness of the hole transport layer 31 is 2000 nm or less, resistance during hole transport is unlikely to occur, and the photoelectric conversion efficiency becomes high.
  • the thickness of the hole transport layer 31 is more preferably in the range of 3 nm or more and 1000 nm or less, and further preferably 5 nm or more and 500 nm or less.
  • the material of the hole transport layer 31 is not particularly limited and may be an organic material or an inorganic material, for example, a P-type conductive polymer, a P-type low molecular weight organic semiconductor, and a P-type metal oxide. , P-type metal sulfide, surfactant and the like. Specific examples thereof include compounds having a thiophene skeleton such as poly (3-alkylthiophene). For example, a conductive polymer having a triphenylamine skeleton, a polyparaphenylene vinylene skeleton, a polyvinylcarbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton and the like can also be mentioned.
  • a compound having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton and the like can be mentioned.
  • the type of material constituting the hole transport layer 31 may be one type or two or more types.
  • the photoelectric conversion layer 32 is a layer that converts the received light into electrical energy and performs photoelectric conversion.
  • the photoelectric conversion layer contains a perovskite compound, and electrons are generated by the perovskite compound by light irradiation.
  • the type of perovskite compound is not particularly limited, and a known perovskite compound used in a solar cell can be applied, has a crystal structure, and exhibits light absorption by bandgap excitation like a typical compound semiconductor. Is preferable.
  • CH 3 NH 3 PbI 3 which is a known perovskite compound, has an extinction coefficient (cm -1 ) per unit thickness that is an order of magnitude higher than that of a sensitizing dye of a dye-sensitized solar cell. There is.
  • the thickness of the photoelectric conversion layer 32 is not particularly limited, and is preferably 10 nm to 10000 nm, more preferably 50 nm to 1000 nm, and even more preferably 100 nm to 500 nm.
  • the thickness of the photoelectric conversion layer 32 is at least the lower limit of the above range, the light absorption efficiency of the photoelectric conversion layer 32 is increased, and more excellent photoelectric conversion efficiency can be obtained.
  • the thickness of the photoelectric conversion layer 32 is not more than the upper limit of the above range, the efficiency of photoelectrons generated in the photoelectric conversion layer 32 reaching the first conductive layer 20 is improved, and more excellent photoelectric conversion efficiency is obtained. Be done.
  • the electron transport layer 33 functions as a layer for transporting the electrons generated in the photoelectric conversion layer 32 to the first conductive layer 20.
  • the material of the electron transport layer 33 is not particularly limited, and may be an organic material or an inorganic material.
  • an N-type semiconductor of a known electron transport layer of a solar cell can be applied.
  • the inorganic material include copper compounds such as CuI, CuSCN, CuO and Cu2O, and nickel compounds such as NiO.
  • the electron transport layer 33 may be composed of only a thin-film electron transport layer (buffer layer), but preferably includes a porous electron transport layer 33.
  • the photoelectric conversion layer 32 is a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited, a more complicated composite film (more complicated structure) can be obtained, and photoelectric conversion can be obtained. Since the efficiency is high, it is preferable that the composite film is formed on the porous electron transport layer.
  • the preferred lower limit of the thickness of the electron transport layer 33 is 1 nm, and the preferred upper limit is 2000 nm. That is, the thickness of the electron transport layer 33 is preferably 1 nm or more and 2000 nm or less. When the thickness of the electron transport layer 33 is 1 nm or more, holes can be sufficiently blocked. When the thickness of the electron transport layer 33 is 2000 nm or less, it is unlikely to become a resistance during electron transport, and the photoelectric conversion efficiency becomes high.
  • the thickness of the electron transport layer 33 is more preferably 3 nm or more and 1000 nm or less, and further preferably 5 nm or more and 500 nm or less.
  • the type of material constituting the electron transport layer 33 may be one type or two or more types.
  • the number of layers of the electron transport layer 33 may be one layer or two or more layers.
  • the total thickness of the electron transport layer 33 is not particularly limited, but is preferably about 5 nm to 500 nm, for example. When it is 5 nm or more, the effect of suppressing the above loss can be sufficiently obtained, and when it is 500 nm or less, the internal resistance can be suppressed low.
  • the thickness of the power generation layer 30 is not particularly limited, and for example, 10 nm to 10 ⁇ m is preferable, 50 nm to 1 ⁇ m is more preferable, and 100 nm to 1 ⁇ m is further preferable.
  • the thickness of the power generation layer 30 is at least the lower limit of the above range, a high electromotive force can be obtained.
  • the thickness of the power generation layer 30 is not more than the upper limit value in the above range, the internal resistance can be further reduced.
  • the second conductive layer 40 is formed (laminated) on the front surface side (upper surface) A of the power generation layer 30.
  • the second conductive layer 40 is formed on the surface side (upper surface) A of the adjacent power generation layer 30 so as to face each of the plurality of first conductive layers at a distance of 40 G.
  • Each of the second conductive layers 40 is formed with an overlapping portion 42 with the first conductive layer 20 adjacent to the first conductive layer facing the first conductive layer when viewed from a direction (planar view) perpendicular to the surface of the power generation layer. There is.
  • the conductive material constituting the second conductive layer 40 fills, for example, the through-hole rows 50 formed between the four adjacent power generation layers 30 and covers the surface side (upper surface) A of the power generation layers 30. Is formed in.
  • the second conductive layer 40 arranged on the other end side R of FIGS. 1 and 2 since the power generation layer 30 corresponding to the other end side R is not arranged, the second conductive layer 40 is passed through the other end side R of the power generation layer 30. It is formed so that the end faces are sequentially electrically connected to the first conductive layer 20 through the through holes 51 that reach the first conductive layer 20 facing each other and communicate with the first conductive layer 20. ..
  • the material for forming the second conductive layer 40 is not particularly limited as long as it is a conductive layer, and a material capable of forming a transparent layer is preferable.
  • metal oxides such as tin-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), tin dioxide (SnO2), and zinc oxide (ZnO) are suitable.
  • inorganic transparent conductive films such as gallium-added zinc oxide (GZO), aluminum-added zinc oxide (AZO), indium, gallium, zinc, and amorphous semiconductors (IGZO) composed of oxygen, and conductive carbon films such as graphene.
  • An ultrathin metal film capable of transmitting light or a laminated film thereof may be used.
  • any one or more metals selected from the group consisting of gold, silver, copper, aluminum, tungsten, nickel and chromium can be applied.
  • the type of material constituting the second conductive layer 40 may be one type or two or more types.
  • the thickness of the second conductive layer 40 may be arbitrarily set, and is preferably 10 nm to 500 nm, for example.
  • the solar cell 100 may be formed so that, for example, the through holes 51 arranged adjacent to each other are circumscribed in the arrangement direction.
  • FIG. 6 is a diagram for explaining a schematic configuration when the through holes 51 are externally attached to the solar cell 100, and FIG. 6 (a) is a plane in which the arrangement of the through hole rows is viewed from the upper surface (surface) side of the power generation layer.
  • FIG. 6B is a vertical cross-sectional view shown by arrow VIB-VIB in FIG. 6A.
  • the pitch P of the through holes 51 in the solar cell 100 is formed to be once (twice the radius) the diameter D1 of the through holes 51. Therefore, the wall portion of the power generation layer 30 is not formed between the through holes 51, but the surface of the first conductive layer 20 is exposed substantially flat to form the second conductive layer 40.
  • the conductive material is connected to the first conductive layer 20 at the end face, and the first conductive layer 20 and the second conductive layer 40 are stably conductive.
  • the method for manufacturing the solar cell 100 according to the first embodiment is, for example, a first step of forming a first conductive layer 20 and a power generation layer 30 on the upper surface (one surface) of the insulating base material 10 in this order.
  • a third step of sticking a conductive material on the power generation layer 30 to form the second conductive layer 40 is an example, and is not limited to the following manufacturing method.
  • the insulating base material 10 can use the above-mentioned insulating base material, and can be manufactured by a well-known manufacturing method.
  • the first conductive layer 20 and the power generation layer 30 are formed in this order on the upper surface (surface, one surface) of the insulating base material 10.
  • the method of forming the first conductive layer 20 on the upper surface of the insulating base material 10 is not particularly limited, and for example, a well-known film forming method such as a sputtering method or a vapor deposition method can be applied.
  • the method of forming the power generation layer 30 on the first conductive layer 20 is not particularly limited, and examples thereof include known film forming methods such as a sputtering method, a coating method, and a vapor deposition method.
  • film forming methods such as a sputtering method, a coating method, and a vapor deposition method.
  • the electron transport layer 33 is formed on the first conductive layer 20.
  • the method for forming the electron transport layer 33 is not particularly limited, and examples of a known method capable of forming a dense layer made of an N-type semiconductor with a desired thickness include a sputtering method, a vapor deposition method, and a dispersion including a precursor of the N-type semiconductor. Examples thereof include a sol-gel method in which a liquid is applied.
  • Examples of the precursor of the N-type semiconductor include titanium tetrachloride (TiCl 4 ), peroxotitanic acid (PTA), titanium alkoxide such as titanium ethoxyoxide and titanium isopropoxide (TTIP), zinc alkoxide, alkoxysilane, and zirconium. Examples thereof include metal alkoxides such as alkoxides.
  • a base layer (not shown) may be formed between the electron transport layer 33 and the photoelectric conversion layer 32.
  • the method is not particularly limited, and for example, a method for forming a porous semiconductor layer that supports a sensitizing dye of a conventional dye-sensitized solar cell can be applied.
  • a paste containing fine particles and a binder made of an N-type semiconductor or an insulator is applied to the surface of the electron transport layer 33 by a doctor blade method, dried, and fired to obtain a porous surface made of fine particles.
  • a formation can be formed.
  • a porous or non-porous base layer made of the fine particles can be formed.
  • a photoelectric conversion layer 32 made of a perovskite compound is formed on the surface of the base layer.
  • the method for forming the photoelectric conversion layer 32 is not particularly limited, and examples thereof include the following methods. That is, a raw material solution in which a perovskite compound or a precursor of a perovskite compound is dissolved is applied to the surface of the base layer, impregnated inside the base layer, and a solution layer composed of a solution having a desired thickness is present on the surface. , A method of drying the solvent.
  • the raw material solution applied to the base layer permeates into the porous membrane of the base layer, crystallization proceeds as the solvent dries, and the perovskite compound adheres and deposits in the porous membrane. Further, by applying a sufficient amount of the raw material solution, the raw material solution that has not penetrated into the porous film is formed with an upper layer made of a perovskite compound on the surface of the base layer as the solvent dries.
  • the perovskite compound constituting the upper layer and the perovskite compound inside the base layer are integrally formed, and integrally constitute the photoelectric conversion layer 32.
  • the perovskite compound used in the present embodiment is not particularly limited as long as it can generate an electromotive force by light absorption, and a known perovskite compound can be applied.
  • examples of the precursor contained in the raw material solution include a halide of lead.
  • a single raw material solution containing a lead halide may be applied to the base layer, or a mixed raw material solution containing two types of halides individually may be applied to the base layer.
  • the solvent of the raw material solution is not particularly limited as long as it is a solvent that dissolves the raw material and does not damage the underlying layer, and is, for example, an ester, a ketone, an ether, an alcohol, a glycol ether, an amide, a nitrile, a carbonate, or a halogenated hydrocarbon. , Glyco, sulfone, sulfoxide, formamide and other compounds.
  • the concentration of the raw material in the raw material solution is not particularly limited, and is preferably a concentration that is sufficiently dissolved and has a viscosity that allows the raw material solution to permeate into the porous membrane.
  • the amount of the raw material solution to be applied to the base layer is not particularly limited, and for example, the upper that permeates all or at least a part of the porous film and has a thickness of about 1 nm to 1 ⁇ m on the surface of the porous film.
  • the coating amount is preferably such that a layer is formed.
  • the method of applying the raw material solution to the base layer is not particularly limited, and known methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method can be applied.
  • the method of drying the raw material solution applied to the base layer is not particularly limited, and known methods such as natural drying, vacuum drying, and warm air drying can be applied.
  • the drying temperature of the raw material solution applied to the base layer may be a temperature at which crystallization of the perovskite compound proceeds sufficiently, and examples thereof include a range of 40 to 150 ° C.
  • the method for forming the hole transport layer 31 is not particularly limited.
  • a solution in which a P-type semiconductor is dissolved or dispersed in a solvent in which the perovskite compound constituting the photoelectric conversion layer 32 is difficult to dissolve is prepared, and this solution is photoelectrically converted.
  • a method of obtaining the hole transport layer 31 by applying it to the surface of the layer 32 and drying it can be mentioned. By the above steps, a layer including the electron transport layer 33, the photoelectric conversion layer 32, and the hole transport layer 31 can be formed in this order.
  • a pulsed laser is used to linearly view a plurality of through holes 51 arranged at intervals of penetrating in the thickness direction along the plane direction of the power generation layer 30. By forming, a through hole row 50 is formed.
  • the laser irradiation device can use an ultraviolet laser, a green laser, or an infrared laser, and a green laser is desirable from the viewpoint of workability and cost.
  • the conditions for forming the through hole 51 are shown below.
  • the following conditions show an example and are not limited to the following conditions.
  • the pulse frequency is preferably 10 kHz to 500 kHz. Further, in order to scan the laser pulse with high accuracy by the galvanometer mirror method, the pulse frequency is preferably 100 kHz to 300 kHz, for example. ⁇ output ⁇ The laser output is preferably about 0.5 ⁇ J to 60 ⁇ J per pulse.
  • the scanning speed when scanning with the galvanometer mirror is preferably, for example, 0.1 m / sec to 10 m / sec. Further, from the viewpoint of processing accuracy, the scanning speed is preferably, for example, 3 m / sec to 6 m / sec.
  • the second conductive layer 40 is formed on the power generation layer 30.
  • the method for forming the second conductive layer 40 is not particularly limited, and examples thereof include known film forming methods such as a sputtering method and a vapor deposition method.
  • the method for manufacturing the solar cell 100 is an example, and is not limited to the above method, and can be arbitrarily set as long as the gist of the invention is not changed.
  • a through-hole row 50 penetrating the power generation layer 30 is formed in a region of the first conductive layer 20 and the second conductive layer 40 corresponding to the overlapping portion 42 in the plane direction. Then, the conductive material forming the second conductive layer 40 extends into the through-hole row 50 and reaches the first conductive layer 20, so that the conductive material forming the second conductive layer 40 is first on the end face. It is electrically connected to the conductive layer 20. As a result, damage to the first conductive layer 20 is suppressed, and through holes 51 in which the first conductive layer 20 is exposed are efficiently formed in the power generation layer 30, and the first conductive layer 20 and the second conductive layer 40 are formed. Stable continuity can be ensured during the period.
  • the through hole 51 is formed beyond the boundary between the power generation layer 30 and the first conductive layer 20, it is connected to the first conductive layer 20 through the through hole 51.
  • the contact area between the second conductive layer (conducting material) 40 and the first conductive layer 20 that crosses the boundary increases. As a result, stable conduction between the first conductive layer 20 and the second conductive layer 40 can be ensured.
  • the method for manufacturing the solar cell 100 since a plurality of through holes 51 penetrating in the thickness direction along the surface direction of the power generation layer 30 are formed at intervals of 30 G, power generation is performed.
  • the density of the laser power (output) in the layer 30 is relatively low as compared with the case where the continuous scribing groove is formed, and the margin when removing the power generation layer 30 can be increased.
  • the laser power can be increased to the extent that a through hole is surely formed in the power generation layer 30, and further, the density of the laser power becomes relatively low, so that the laser power is increased and a large variation occurs. Even if it does occur, it is possible to prevent damage to the first conductive layer 20.
  • FIGS. 7 and 8 are views for explaining the schematic configuration of the solar cell according to the second embodiment of the present invention
  • FIG. 7 is a vertical sectional view
  • FIG. 8 is a second conductivity of the arrow VIII portion in FIG. It is a perspective view which conceptually shows the through hole row before a layer is formed.
  • the solar cell 200 includes, for example, an insulating base material 10, a first conductive layer 20, a power generation layer 30, a second conductive layer 40, and power generation.
  • a through-hole row 250 penetrating the layer 30 is provided.
  • the electrons generated in each power generation layer 30 move toward the second conductive layer 40 in each power generation layer 30. Then, the electrons that have moved to the second conductive layer 40 pass through the conductive portion 241 formed in the through-hole row 250 and formed of the conductive material constituting the second conductive layer 40, and the first conductive layer on the other end side R. Move to 20 in sequence.
  • the second embodiment is different from the first embodiment in that the through hole row 250 and the through hole 251 are provided instead of the through hole row 50 and the through hole 51. Others are the same as those in the first embodiment, so the same reference numerals are given and the description thereof will be omitted.
  • the through hole row 250 includes, for example, a plurality of through holes 251 formed at intervals.
  • the through hole row 250 is formed in the overlapping portion 42.
  • the through hole 251 penetrates the power generation layer 30 and extends in the thickness direction of the first conductive layer 20, and the tip side (end portion) enters the first conductive layer 20 to form a digging recess (recess). It has 252.
  • the conductive material constituting the second conductive layer 40 is configured to make surface contact with the first conductive layer 20 in the recess (end) 252 of the through hole 251.
  • the depth t1 of the digging recess (recess) 252 is preferably formed in a range of 0% or more and less than 80% with respect to the thickness t0 of the first conductive layer 20, for example, 2% or more and 70% or less. It is more preferable that it is formed in the range of 5% or more and 50% or less.
  • the proportion of through holes in which the first conductive layer is removed and the insulating base material is exposed is 0%. preferable.
  • the laser power is increased.
  • the laser output is preferably about 20 ⁇ J, but when the recess 252 is formed, it is preferably 25 ⁇ J.
  • the through hole 251 is formed in a substantially circular shape in a plan view, and for example, the diameter D1 on the surface of the power generation layer 30 is set to ⁇ 50 ⁇ m.
  • the diameter D1 of the through hole 251 can be arbitrarily set, but it is preferably set to, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the pitch P of the through holes 251 in the through hole row 250 can be arbitrarily set.
  • the pitch (cycle) P for irradiating the pulse laser is once the diameter D1 (50 ⁇ m) of the through hole 251 (radius). Double) Set larger.
  • the pitch P of the through hole 251 is set to, for example, 1 time or more and 2 times or less (2 times or more and 4 times or less with respect to the radius) with respect to the diameter D1 of the through hole 251.
  • the pitch P of the through hole 51 is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the through hole 251 is provided with a digging recess 252 formed in the first conductive layer 20, and conduction is possible on the peripheral surface of the digging recess 252, so that the conduction area is large.
  • the conduction between the first conductive layer 20 and the second conductive layer 40 can be stabilized.
  • the depth t1 of the dug recess 252 is formed in a range of less than 80% with respect to the thickness t0 of the first conductive layer 20, damage to the first conductive layer 20 is suppressed.
  • FIG. 9 is a diagram illustrating a schematic configuration of a solar cell according to a first modification of the second embodiment
  • FIG. 9A is a view of the arrangement of through-hole rows as viewed from the upper surface (surface) side of the power generation layer. It is a plan view
  • FIG. 9B is a vertical sectional view shown by arrow IXB-IXB in FIG. 9A. Note that FIG. 9 illustrates a multi-stage cylindrical through hole in the power generation layer 30 and the first conductive layer 20 for convenience.
  • the through hole 251 in the modified example (second embodiment) has a diameter D2 of the dug recess (recess) 252 on the surface of the first conductive layer 20 smaller than the diameter D1 on the surface of the power generation layer 30.
  • the first modification differs from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 in the through hole 251 is smaller than the diameter D1 on the surface of the power generation layer 30. It is a point that is said to be. As shown in FIG. 9, the pitch P of the through hole 251 is formed to be larger than the diameter D1 on the surface of the power generation layer 30 of the through hole 251. As a result, the adjacent through holes 251 are arranged with an interval of 21G.
  • the depth t1 of the dug recess (recess) 252 of the through hole 251 is preferably formed in a range of 0% or more and less than 80% with respect to the thickness t0 of the first conductive layer 20, for example, 2%. It is more preferably formed in the range of 70% or more, and further preferably formed in the range of 5% or more and 50% or less. In addition, it may be formed larger than 80% with respect to the thickness t0 of the first conductive layer 20. Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
  • the through hole 251 may have a diameter D2 of the dug recess (recess) 252 on the surface of the first conductive layer 20 smaller than the diameter D1 on the surface of the power generation layer 30, and the through hole 251 may have, for example, a mortar shape. It may be formed in a bowl shape or the like. The same applies hereinafter.
  • the pitch P of the through hole 251 is formed to be larger than the diameter D1 of the through hole 251 and the adjacent through holes 251 are arranged at intervals and dug. Since the diameter D2 of the recess (recess) 252 is smaller than the diameter D1 of the through hole 251, the first conductive layer 20 is not divided, and the conduction on the peripheral surface of the recess (recess) 252 is not divided. Can be secured.
  • FIG. 10 is a diagram illustrating a schematic configuration of a solar cell according to a second modification of the second embodiment
  • FIG. 10A is a view of the arrangement of through-hole rows as viewed from the upper surface (surface) side of the power generation layer. It is a plan view
  • FIG. 10B is a vertical cross-sectional view shown by arrow XB-XB in FIG. 10A.
  • the second modification is different from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 in the through hole 251 is smaller than the diameter D1 on the surface of the power generation layer 30.
  • the pitch P of the through hole 251 is formed to be 1 times the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and the adjacent through hole 251 is the power generation layer 30. It is a point that is circumscribed on the surface of.
  • the pitch P of the through hole 251 is formed to be once (twice the radius) the diameter D1 on the surface of the power generation layer 30 of the through hole 251. That is, the pitch P of the through hole 251 is formed to be larger than the diameter D2 on the surface of the first conductive layer 20 of the digging recess (recess) 252. As a result, the adjacent digging recesses (recesses) 252 are arranged with an interval of 21G.
  • the pitch P of the through hole 251 is formed to be smaller than the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and larger than the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 so as to be adjacent to each other.
  • the through holes 251 may be formed so as to overlap on the surface of the power generation layer 30.
  • the depth t1 of the dug recess (recess) 252 of the through hole 251 is preferably formed in a range of 0% or more and less than 80% with respect to the thickness t0 of the first conductive layer 20, for example, 2%. It is more preferably formed in the range of 70% or more, and further preferably formed in the range of 5% or more and 50% or less. In addition, it may be formed larger than 80% with respect to the thickness t0 of the first conductive layer 20. Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
  • the pitch P of the through holes 251 is formed to be smaller than the diameter D1 on the surface of the power generation layer 30 of the through holes 251 and the adjacent through holes 251 are arranged so as to overlap each other.
  • the adjacent digging recesses (recesses) 252 are arranged at intervals, the first conductive layer 20 is not divided, and the peripheral surface of the digging recesses (recesses) 252. Conduction can be ensured.
  • FIG. 11 is a diagram illustrating a schematic configuration of a solar cell according to a third modification of the second embodiment
  • FIG. 11A is a view of the arrangement of through-hole rows from the upper surface (surface) side of the power generation layer. It is a plan view
  • FIG. 11 (b) is a vertical cross-sectional view shown by arrow XIB-XIB in FIG. 11 (a).
  • the third modification is different from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 is smaller than the diameter D1 on the surface of the power generation layer 30.
  • the pitch P of the through hole 251 is formed to be 1 times the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and the adjacent through hole 251 is externally attached on the surface of the power generation layer 30.
  • the point that the depth t1 of the digging recess (recess) 252 is formed to be 100% with respect to the thickness t0 of the first conductive layer 20 so that the surface of the insulating base material 10 is exposed. be.
  • Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
  • the pitch P of the through hole 251 is formed to be 1 times the diameter D1 of the through hole 251 and the adjacent through holes 251 are arranged circumscribed. Since the diameter D2 of the recess (recess) 252 is smaller than the diameter D1 of the through hole 251 so that the first conductive layer 20 is not divided and the surface of the insulating base material 10 is exposed, the through hole 251 Is formed, so that continuity can be ensured on the peripheral surface of the digging recess (recess) 252.
  • FIG. 12 is a diagram illustrating a schematic configuration of a solar cell according to a fourth modification of the second embodiment
  • FIG. 12A is a view of the arrangement of through-hole rows from the upper surface (surface) side of the power generation layer. It is a plan view
  • FIG. 12B is a vertical cross-sectional view shown by arrow XIIB-XIIB in FIG. 12A.
  • the fourth modification is different from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the digging recess (recess) 252 in the through hole 251 is smaller than the diameter D1 on the surface of the power generation layer 30.
  • the pitch P of the through hole 251 is formed to be smaller than the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and the adjacent through hole 251 is the power generation layer 30.
  • the points are arranged so as to overlap on the surface (that is, the through holes 251 are provided at a pitch smaller than 1 times the dimension along the arrangement direction of the through holes 251 on the surface of the power generation layer 30).
  • the depth t1 of the digging recess (recess) 252 is formed to be 100% with respect to the thickness t0 of the first conductive layer 20, and the surface of the insulating base material 10 is exposed.
  • Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
  • the pitch P of the through hole 251 is formed to be larger than the diameter D2 on the surface of the first conductive layer 20 of the digging recess (recess) 252. That is, they are arranged with an interval of 21G between the adjacent digging recesses (recesses) 252.
  • the adjacent through holes 251 are arranged so as to overlap each other, and the digging recess (recess) 252 penetrates the first conductive layer 20 and reaches the insulating base material 10.
  • the adjacent digging recesses (recesses) 252 are arranged with an interval of 21G, the first conductive layer 20 is not divided, and the peripheral surface of the digging recesses (recesses) 252. Conduction can be ensured.
  • FIG. 13 is a perspective view conceptually showing a group of through-hole rows before the formation of the second conductive layer for explaining the schematic configuration of the solar cell according to the third embodiment of the present invention.
  • the solar cell 300 includes, for example, an insulating base material 10, a first conductive layer 20, a power generation layer 30, a second conductive layer 40, and a power generation layer 30. It is provided with a through-hole row group 350 that penetrates.
  • the third embodiment is different from the second embodiment in that it includes a through-hole row group 350 composed of a plurality of rows of through-hole rows 250 having an interval of 30 G formed between adjacent through-holes 251.
  • the first modification to the fourth modification of the second embodiment may be applied to the third embodiment. Others are the same as those of the second embodiment and the first to fourth modifications thereof, so the same reference numerals are given and the description thereof will be omitted.
  • the through-hole row group 350 includes two rows (plurality of rows) of through-hole rows 250.
  • the through hole row group 350 is formed in the overlapping portion 42.
  • the distance 31G between the two through-hole rows 250 in the through-hole row group 350 can be arbitrarily set, but the distance 31G between the through-hole rows 250 is, for example, 50 ⁇ m (twice the radius, the width of the through-hole row). It is set to 1x). It is preferable that the interval 31G of the through-hole rows 250 is set to 1 times or more and 2 times (1 times the width of the through-hole rows) or less with respect to the diameter D1 of the through-holes 251 constituting the through-hole row 250.
  • the same configuration as the first modification to the fourth modification of the second embodiment may be applied to the arrangement of the through hole rows 250 in the third embodiment. That is, the through-hole rows 250 may be circumscribed on the surface of the power generation layer 30, or may be arranged so as to overlap.
  • the through-hole row group 350 can be formed by, for example, irradiating a laser beam emitted from a laser transmitting device (not shown) twice (multiple times). Further, the laser irradiation heads may be arranged in parallel as many as the number of through-hole rows to irradiate.
  • the through-hole rows 250 are provided with the through-hole row groups 350 arranged in a plurality of rows, the conduction area between the first conductive layer 20 and the second conductive layer 40 is increased. This makes it possible to make the conduction between the first conductive layer 20 and the second conductive layer 40 more stable.
  • the solar cell solid-state junction type photoelectric conversion element
  • the light absorption layer is limited to the perovskite layer. It may be set arbitrarily.
  • the through holes 251 constituting the through hole row 250 are formed in a range in which the depth t1 of the digging recess 252 is less than 80% with respect to the thickness t0 of the first conductive layer 20.
  • the depth t1 of the digging recess 252 with respect to the thickness t0 of the first conductive layer 20 can be arbitrarily set.
  • the digging recess 252 may be formed in a range larger than 80% with respect to the thickness t0 of the first conductive layer 20.
  • a plurality of through holes 51 and 251 form through hole rows 50 and 250 and the through holes 51 and 251 are arranged linearly in a plan view in the plane direction of the power generation layer 30.
  • the arrangement (plan view) of the plurality of through holes 51 and 251 in the plane direction of the power generation layer 30 may be arbitrarily set.
  • the plurality of through holes 51 and 251 may be set in the plane direction of the power generation layer 30. It may be arranged along the plan view curve.
  • the through-hole row 250 instead of the through-hole row 250 according to the third embodiment, the through-hole row 50 may be arranged, or the through-hole row 250 and the through-hole row 50 may be arranged in combination.
  • the plurality of through holes 51 and 251 may be arranged in a staggered shape or any other form, for example.
  • the through holes 51 and 251 are formed in a substantially circular shape in a plan view. good. Further, in the case of an elliptical shape in a plan view, it is possible to arbitrarily set whether the through holes 51 and 251 are arranged along the long axis, along the short axis, or along other directions. Can be done. When the through holes 51 and 251 have an elliptical shape, the pitch of the through holes 51 and 251 can be set based on the semi-major axis or the short radius of the elliptical shape of the recess.
  • the through hole 251 is provided with the recessed recess 252 formed in a substantially circular shape in a plan view.
  • the digging recess 252 may be provided. Further, when the digging recess 252 has an elliptical shape in a plan view, whether the through holes 251 are arranged along the long axis, along the short axis, or along another direction. You can set it as you like.
  • the through holes 51 and 251 are formed with a apparent diameter of ⁇ 50 ⁇ m and a pitch P of 50 ⁇ m has been described, but the diameter D1 and the pitch P of the through holes 51 can be arbitrarily set. ..
  • the through hole 51 is formed in a cylindrical shape and the through hole 251 is formed in a cylindrical shape or a multi-stage cylindrical shape has been described, but the shapes of the through holes 51 and 251 are arbitrarily set. It is possible to do. For example, it may be formed in a mortar shape, a bowl shape, or another shape.
  • the through-hole row group 350 includes two rows (plurality of rows) of through-hole rows 250 has been described.
  • the through-hole row group 350 has three or more rows of through-hole rows 250. It may be a provided configuration.
  • the through-hole row group may be configured to include a plurality of through-hole rows 50, or may be a configuration in which the through-hole row 50 and the through-hole row 250 are combined.
  • the arrangement direction of the through holes 251 (51) may be arbitrarily set.
  • the arrangement of the through holes 251 (51) may be arranged so as to be close to or separated from each other in any one of the arrangement directions, or partially close to or separated from each other in any one (range) of the arrangement directions. ..
  • a conductive path other than the through-hole row 50 may be provided.
  • the present invention stable conduction between the first conductive layer and the second conductive layer can be ensured. Can be done. Therefore, it has high industrial applicability.
  • Insulating base material 10
  • First conductive layer 30
  • Power generation layer 40
  • Second conductive layer 50
  • Through hole rows 51 251 Through holes
  • 252 Excavation recesses (recesses, ends) 350 through-hole row group 100, 200, 300 Solar cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This solar cell (100) is provided with: a plurality of first conductive layers (20) formed on an upper surface of an insulating base material (10) and arranged at an interval (20G); a power generation layer (30) disposed so as to cover a surface of the plurality of first conductive layers (20); and a plurality of second conductive layers (40) formed on an upper surface side of the power generation layer (30) and each disposed with an overlapping portion (42) overlapping an adjacent one of the first conductive layers (20) in a plane direction. The solar cell (100) is further provided with a through-hole row (50) formed in the power generation layer (30) and comprising a plurality of through-holes (51) formed at an interval in a region corresponding to the overlapping portion (42). The plurality of second conductive layers (40) are successively electrically connected via the through-hole row (50) corresponding to a plurality of adjacent first conductive layers (20) among the plurality of first conductive layers (20).

Description

太陽電池及び太陽電池製造方法Solar cells and solar cell manufacturing methods
 この発明は、太陽電池及び太陽電池製造方法に関する。
 本願は、2020年3月31日に、日本に出願された特願2020-065358号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to solar cells and methods for manufacturing solar cells.
The present application claims priority based on Japanese Patent Application No. 2020-065358 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
 近年、クリーンな発電源として、光エネルギーを直接かつ即時に電力に変換することができ、二酸化炭素を排出しないエネルギー源として、太陽電池等の電気モジュールを用いた太陽光発電が注目されている。 In recent years, as a clean power generation source, light energy can be directly and immediately converted into electric power, and as an energy source that does not emit carbon dioxide, photovoltaic power generation using an electric module such as a solar cell has been attracting attention.
 太陽電池としては、主に結晶シリコン系太陽電池が広く普及している。しかしながら、結晶シリコン系太陽電池は、原料である高純度シリコンの安定供給やコスト高であるという課題がある。
 一方、比較的簡易に製造することが可能とされ、かつ原材料の単価が安価である点から、例えば、固体接合型光電変換素子(例えば、色素増感型太陽電池(DSC))が次世代太陽電池として期待されている。
Crystalline silicon-based solar cells are widely used as solar cells. However, crystalline silicon-based solar cells have problems such as stable supply of high-purity silicon as a raw material and high cost.
On the other hand, a solid-state junction type photoelectric conversion element (for example, a dye-sensitized solar cell (DSC)) is a next-generation solar cell because it can be manufactured relatively easily and the unit price of raw materials is low. It is expected as a battery.
 そのなかで、近年、ペロブスカイト化合物を含む発電層を備えた固体接合型光電変換素子が高い光電変換効率を示すことが報告され、新たな光電変換素子として注目を集めている(例えば、非特許文献1。)。
 また、固体接合型光電変換素子の性能を向上するための種々の技術が開示されている(例えば、特許文献1参照。)。
Among them, in recent years, it has been reported that a solid-bonded photoelectric conversion element provided with a power generation layer containing a perovskite compound exhibits high photoelectric conversion efficiency, and is attracting attention as a new photoelectric conversion element (for example, non-patent documents). 1.).
Further, various techniques for improving the performance of the solid-state junction type photoelectric conversion element are disclosed (see, for example, Patent Document 1).
 固体接合型光電変換素子(以下、太陽電池という)は、例えば、図14、図15に示すような構造を備えている。図14、図15は、従来の太陽電池の構造の概略構成の一例を示す図である。 The solid-state junction type photoelectric conversion element (hereinafter referred to as a solar cell) has a structure as shown in FIGS. 14 and 15, for example. 14 and 15 are views showing an example of a schematic configuration of the structure of a conventional solar cell.
 太陽電池500は、図14、図15に示すように、例えば、絶縁性基材510と、絶縁性基材510の表面側(上面)Aに間隔520Gをあけて形成された複数の第1導電層520と、複数の第1導電層520の表面を覆うように配置された発電層530と、発電層530の表面側Aに間隔540Gをあけて形成された複数の第2導電層540とを、備えている。 As shown in FIGS. 14 and 15, for example, the solar cell 500 has a plurality of first conductors formed on the insulating base material 510 and the surface side (upper surface) A of the insulating base material 510 with an interval of 520 G. The layer 520, the power generation layer 530 arranged so as to cover the surfaces of the plurality of first conductive layers 520, and the plurality of second conductive layers 540 formed on the surface side A of the power generation layer 530 with an interval of 540 G. , Prepared.
 また、発電層530には、厚さ方向に貫通するスクライブ溝530Hが形成されて第1導電層520が露出され、このスクライブ溝530Hに第2導電層540を構成する導電材が充填されて導電部541を構成し、第1導電層520と第2導電層540とを電気的に接続され、結果的に、隣接配置された発電層30は導電部541により順次電気的に接続される。
 また、第1導電層520は、一端側Fに位置される第1導電層520Fと、他端側Rに位置される第1導電層520Rに、それぞれ引出線(不図示)が接続される。
Further, in the power generation layer 530, a scribing groove 530H penetrating in the thickness direction is formed to expose the first conductive layer 520, and the scribing groove 530H is filled with a conductive material constituting the second conductive layer 540 to conduct conductivity. The first conductive layer 520 and the second conductive layer 540 are electrically connected to each other by forming the portion 541, and as a result, the power generation layers 30 arranged adjacent to each other are sequentially electrically connected by the conductive portion 541.
Further, in the first conductive layer 520, leader wires (not shown) are connected to the first conductive layer 520F located on one end side F and the first conductive layer 520R located on the other end side R, respectively.
 それぞれの発電層530では、太陽光が照射されると電子が生成され、この電子は、それぞれの発電層530から第1導電層520に移動し、導電部541を介して順次隣接する他端側Rの第1導電層520に向かって移動する。発電層530で生成した正孔は、表面側Aの第2導電層540に移動する。その結果、複数の発電層530が直列的に接続された電気モジュールを構成する。
 そして、太陽電池500で発電された電気エネルギーは、上記引出線(不図示)を通じて外部に取り出される。
In each power generation layer 530, electrons are generated when sunlight is irradiated, and these electrons move from each power generation layer 530 to the first conductive layer 520, and are sequentially adjacent to the other end side via the conductive portion 541. It moves toward the first conductive layer 520 of R. The holes generated in the power generation layer 530 move to the second conductive layer 540 on the surface side A. As a result, a plurality of power generation layers 530 are connected in series to form an electric module.
Then, the electric energy generated by the solar cell 500 is taken out to the outside through the leader line (not shown).
 スクライブ溝530Hは、太陽電池500を製造する際に、発電層スクライビング工程において、発電層530にレーザービームを照射して発電層530を除去することにより形成される。 The scribe groove 530H is formed by irradiating the power generation layer 530 with a laser beam to remove the power generation layer 530 in the power generation layer scribing step when manufacturing the solar cell 500.
 従来の発電層スクライビング工程は、例えば、パルスレーザーを照射させて発電層530に平面視略円形(例えば、直径数十μm)の貫通孔(不図示)を間隔をあけずにオーバーラップさせながら形成することで、連続的なスクライブ溝530Hを形成していた。そして、第2導電層540を形成する際の導電材を、スクライブ溝530Hを通じて第1導電層520に接続させて導電部541を形成している。 In the conventional power generation layer scribing step, for example, a pulse laser is irradiated to form a power generation layer 530 with substantially circular (for example, several tens of μm in diameter) through holes (not shown) overlapping without intervals. By doing so, a continuous scribing groove 530H was formed. Then, the conductive material used for forming the second conductive layer 540 is connected to the first conductive layer 520 through the scribe groove 530H to form the conductive portion 541.
 このとき、スクライブ溝530Hが第1導電層520を適切に露出させていないと、導電部541が第1導電層520と接続されず、第1導電層520と第2導電層540の導通が得られない。
 また、図14、図15に符号520Xで示すように、第1導電層520が除去されて絶縁性基材510が露出してしまうと、導電部541が第1導電層520と接続されなくなり、第1導電層520と第2導電層540の導通が得られなくなる。
 そこで、スクライブ溝530Hは、第1導電層520の表面が確実に露出されて導電部541による導通が確実に得られて、第1導電層520にダメージが生じないことが求められる。
At this time, if the scribe groove 530H does not properly expose the first conductive layer 520, the conductive portion 541 is not connected to the first conductive layer 520, and the conduction between the first conductive layer 520 and the second conductive layer 540 is obtained. I can't.
Further, as shown by reference numerals 520X in FIGS. 14 and 15, when the first conductive layer 520 is removed and the insulating base material 510 is exposed, the conductive portion 541 is no longer connected to the first conductive layer 520. Conduction between the first conductive layer 520 and the second conductive layer 540 cannot be obtained.
Therefore, in the scribe groove 530H, it is required that the surface of the first conductive layer 520 is surely exposed, the conduction by the conductive portion 541 is surely obtained, and the first conductive layer 520 is not damaged.
日本国特開2017-028027号公報Japanese Patent Application Laid-Open No. 2017-028027
 しかしながら、発電層スクライビング工程で、スクライビング溝を形成する際に、スクライビング溝の状況を確認しながらレーザーパワーを調整することは量産の中では困難である。
 そこで、レーザービームパワー(出力)のバラツキや発電層にバラツキがある場合でも、導通を安定して確保することが可能な技術が求められる。
However, it is difficult in mass production to adjust the laser power while checking the condition of the scribing groove when forming the scribing groove in the power generation layer scribing process.
Therefore, there is a need for a technology that can stably secure continuity even when there are variations in laser beam power (output) and power generation layers.
 本発明は、このような事情を考慮してなされたものであり、第1導電層と第2導電層との安定した導通を確保することが可能な太陽電池及び太陽電池の製造方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and provides a solar cell and a method for manufacturing a solar cell capable of ensuring stable conduction between the first conductive layer and the second conductive layer. The purpose is.
 上記課題を解決するために、この発明は以下の手段を提案している。
(1)この発明の第一態様は、絶縁性基材の一方の面上に間隔をあけて配置された複数の第1導電層と、複数の前記第1導電層の表面を覆うように配置され、かつ、光電変換層を含む発電層と、前記発電層の表面側に複数の前記第1導電層とそれぞれ対向して間隔をあけて設けられた複数の第2導電層であって、前記発電層の表面と垂直の方向から見たときに、対向する第1導電層に隣接する第1導電層と重なり合う重なり部分を設けて配置された複数の第2導電層と、を備え、前記重なり部分において前記発電層の面方向に沿って配列され、前記発電層を厚さ方向に貫通する複数の貫通孔とが設けられ、前記貫通孔は、前記発電層と前記第1導電層との境界を越える位置に達し、複数の前記第2導電層は、それぞれが対向する第1導電層に隣接する第1導電層に連通する前記貫通孔を介して順次電気的に接続されている、太陽電池である。
In order to solve the above problems, the present invention proposes the following means.
(1) In the first aspect of the present invention, a plurality of first conductive layers arranged at intervals on one surface of an insulating base material and a plurality of first conductive layers arranged so as to cover the surfaces of the first conductive layers. The power generation layer including the photoelectric conversion layer and the plurality of second conductive layers provided on the surface side of the power generation layer at intervals facing each other of the first conductive layers. When viewed from a direction perpendicular to the surface of the power generation layer, a plurality of second conductive layers arranged so as to overlap with the first conductive layer adjacent to the first conductive layer facing each other are provided, and the overlap is provided. A plurality of through holes are arranged in the portion along the surface direction of the power generation layer and penetrate the power generation layer in the thickness direction, and the through holes are boundaries between the power generation layer and the first conductive layer. The plurality of second conductive layers are sequentially electrically connected through the through holes communicating with the first conductive layer adjacent to the first conductive layer facing each other. Is.
 上記態様に係る太陽電池によれば、絶縁性基材の一方の面に形成され間隔をあけて配置された複数の第1導電層と、複数の前記第1導電層の表面(即ち、第1導電層の絶縁性基材とは反対側の面)を覆うように配置され、かつ、光電変換層を含む発電層と、発電層の表面側に複数の第1導電層とそれぞれ対向して間隔をあけて設けられた複数の第2導電層であって、発電層の表面と垂直の方向から見たときに、対向する第1導電層に隣接する第1導電層と重なり合う重なり部分を設けて配置された複数の第2導電層と、を備え、重なり部分において発電層の面方向に沿って配列され、発電層を厚さ方向に貫通する複数の貫通孔が設けられ、貫通孔は、発電層と第1導電層との境界を越える位置に達しているので、貫通孔を通じて第1導電層との境界を越えた第2導電層(を構成する導電材)と第1導電層との接触面積が増加する。
 その結果、第1導電層と第2導電層との安定した導通を確保することができる。
According to the solar cell according to the above aspect, the plurality of first conductive layers formed on one surface of the insulating base material and arranged at intervals, and the surfaces of the plurality of the first conductive layers (that is, the first one). The surface of the conductive layer opposite to the insulating base material) is arranged so as to cover the power generation layer including the photoelectric conversion layer, and a plurality of first conductive layers are spaced apart from each other on the surface side of the power generation layer. A plurality of second conductive layers provided with a gap, and an overlapping portion that overlaps with the first conductive layer adjacent to the first conductive layer facing the first conductive layer when viewed from a direction perpendicular to the surface of the power generation layer. A plurality of arranged second conductive layers are provided, and a plurality of through holes are provided which are arranged along the surface direction of the power generation layer at the overlapping portion and penetrate the power generation layer in the thickness direction. Since it has reached a position beyond the boundary between the layer and the first conductive layer, the contact between the second conductive layer (the conductive material constituting the layer) and the first conductive layer beyond the boundary with the first conductive layer through the through hole. The area increases.
As a result, stable conduction between the first conductive layer and the second conductive layer can be ensured.
 ここで、貫通孔が、発電層と第1導電層との境界を越える位置に達するとは、貫通孔の少なくとも一部が第1導電層まで入り込んでいることをいう。 Here, when the through hole reaches a position beyond the boundary between the power generation layer and the first conductive layer, it means that at least a part of the through hole has penetrated to the first conductive layer.
(2)上記(1)に記載の太陽電池は、前記貫通孔の一方の端部は、前記第1導電層の内部に形成されていてもよい。 (2) In the solar cell according to (1) above, one end of the through hole may be formed inside the first conductive layer.
 上記態様に係る太陽電池によれば、貫通孔の一方の端部は、第1導電層の厚み方向に沿って進んだ第1導電層の内部に形成されている。すなわち、貫通孔の一方の端部は、前記第1導電層の内部に形成されているので、第2導電層(を構成する導電材)と第1導電層との接触面積がより増加するとともに確実な導通を確保することができる。 According to the solar cell according to the above aspect, one end of the through hole is formed inside the first conductive layer that advances along the thickness direction of the first conductive layer. That is, since one end of the through hole is formed inside the first conductive layer, the contact area between the second conductive layer (the conductive material constituting the second conductive layer) and the first conductive layer is further increased. Reliable continuity can be ensured.
 ここで、貫通孔の一方の端部とは、貫通孔の先端側の頂部ではなく先端部の面をいい、例えば、貫通孔の端部が平坦である場合は平坦な部分全体が第1導電層に入り込んで(喰い込んで)いることをいう。また、貫通孔が先端側に向かって細くなる場合には、少なくとも一部が第1導電層と面接触していることをいう。 Here, one end of the through hole means not the top of the through hole on the tip side but the surface of the tip, for example, when the end of the through hole is flat, the entire flat portion is the first conductor. It means that it is invading (biting) into the layer. Further, when the through hole becomes thinner toward the tip side, it means that at least a part of the through hole is in surface contact with the first conductive layer.
(3)上記(1)又は(2)に記載の太陽電池は、前記貫通孔の一方の端部は、前記第1導電層内にくぼんだ凹部を備えていてもよい。 (3) The solar cell according to (1) or (2) above may have a recessed recess in the first conductive layer at one end of the through hole.
 上記態様に係る太陽電池によれば、貫通孔の一方の端部は、第1導電層内にくぼんだ凹部を備えている。この凹部の周面の一部が第1導電層内において露出している。これにより、第2導電層を構成する導電材と少なくとも第1導電層との周面における導通が可能となり、第1導電層と第2導電層と安定的な導通を確保することができる。 According to the solar cell according to the above aspect, one end of the through hole is provided with a recessed recess in the first conductive layer. A part of the peripheral surface of this recess is exposed in the first conductive layer. As a result, conduction between the conductive material constituting the second conductive layer and at least the peripheral surface of the first conductive layer becomes possible, and stable conduction between the first conductive layer and the second conductive layer can be ensured.
(4)上記(3)に記載の太陽電池は、前記貫通孔は、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍より大きいピッチで形成されていてもよい。 (4) In the solar cell according to (3) above, the through holes may be formed at a pitch larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
 上記態様に係る太陽電池によれば、貫通孔は、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍より大きいピッチで形成されているので、第1導電層が分断されるのが防止され、凹部の内周面全周にわたって第2電極層と導通可能な周面が形成される。
 その結果、第1導電層と第2導電層のより安定した導通を確保することができる。
According to the solar cell according to the above aspect, since the through holes are formed at a pitch larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer, the first conductive layer is divided. A peripheral surface that is conductive with the second electrode layer is formed over the entire inner peripheral surface of the recess.
As a result, more stable conduction between the first conductive layer and the second conductive layer can be ensured.
(5)上記(3)に記載の太陽電池は、前記貫通孔は、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍以下のピッチで形成されてもよい。 (5) In the solar cell according to (3) above, the through holes may be formed at a pitch of 1 times or less the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
 上記態様に係る太陽電池によれば、前記貫通孔は、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍以下のピッチで形成されているので、凹部の内周面に第2電極層と導通可能な周面が、凹部の配列方向に連続して形成されるので、第1導電層と第2導電層の安定した導通を確保することができる。 According to the solar cell according to the above aspect, since the through holes are formed at a pitch of 1 times or less the dimension along the arrangement direction of the recesses on the surface of the first conductive layer, the inner peripheral surface of the recesses. Since the peripheral surface capable of conducting with the second electrode layer is continuously formed in the arrangement direction of the recesses, stable conduction between the first conductive layer and the second conductive layer can be ensured.
 貫通孔を形成するときに、意図的に、ぎりぎり第1導電層に孔があく程度のレーザーパルスエネルギーで切削して発電層の除去不足(接続抵抗高)を回避することを狙っていても、レーザー強度のばらつきが生じた場合に、第1導電層に凹部が形成されてしまう場合があるが、その凹部が第1導電層を分断してしまわないことで、凹部同士に間隔が確保されるように貫通孔を形成する。 When forming the through hole, even if the purpose is to cut with laser pulse energy to the extent that the first conductive layer is barely perforated to avoid insufficient removal of the power generation layer (high connection resistance). When the laser intensity varies, recesses may be formed in the first conductive layer, but the recesses do not divide the first conductive layer, so that the recesses are spaced apart from each other. A through hole is formed as described above.
 このように、複数の貫通孔の凹部が、第1導電層の面方向に沿って間隔をあけて配置されることで、第2導電層を構成する導電材は、少なくとも第1導電層との周面における導通が可能となり、第1導電層と第2導電層の安定的な導通が確保される。 In this way, the recesses of the plurality of through holes are arranged at intervals along the surface direction of the first conductive layer, so that the conductive material constituting the second conductive layer is at least with the first conductive layer. Conduction is possible on the peripheral surface, and stable conduction between the first conductive layer and the second conductive layer is ensured.
 ここで、凹部が平面視円形状である場合は、凹部の配列方向における寸法は凹部の直径である。また、凹部が他の形状である場合は、第1導電層の表面における凹部の配列方向の寸法である。 Here, when the concave portion has a circular shape in a plan view, the dimension in the arrangement direction of the concave portion is the diameter of the concave portion. When the concave portion has another shape, it is the dimension in the arrangement direction of the concave portion on the surface of the first conductive layer.
(6)上記(4)に記載の太陽電池は、前記凹部は、平面視前記第1導電層の表面における形状が円形状又は前記配列方向に沿った長軸もしくは短軸を有する楕円形状に形成されていて、前記貫通孔は、前記凹部の円形状の半径又は楕円形状の長半径もしくは短半径の2倍より大きいピッチで形成されていてもよい。 (6) In the solar cell according to (4) above, the recess is formed in a circular shape on the surface of the first conductive layer in a plan view or an elliptical shape having a long axis or a short axis along the arrangement direction. The through holes may be formed at a pitch larger than twice the circular radius of the recess or the semi-major axis or semi-minor axis of the elliptical shape.
 上記態様に係る太陽電池によれば、凹部は、平面視第1導電層の表面における形状が円形状又は配列方向に沿った長軸もしくは短軸を有する楕円形状に形成されていて、貫通孔は、凹部の円形状の半径又は楕円形状の長半径もしくは短半径の2倍より大きいピッチで形成されているので、貫通孔のピッチを、容易かつ効率的に貫通孔の配列方向に沿った寸法の1倍より大きく設定することができる。
 なお、貫通孔のピッチを、凹部の半径(又は長半径)に対して4倍以下に形成することが好適である。
According to the solar cell according to the above aspect, the recess is formed in a circular shape on the surface of the first conductive layer in a plan view or an elliptical shape having a long axis or a short axis along the arrangement direction, and the through hole is formed. Since it is formed with a pitch larger than twice the circular radius of the recess or the semi-major axis or semi-minor axis of the elliptical shape, the pitch of the through holes can be easily and efficiently sized along the arrangement direction of the through holes. It can be set larger than 1 time.
It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semimajor axis) of the recess.
(7)上記(3)~(6)のいずれか一項に記載の太陽電池は、前記凹部の深さは、前記第1導電層の厚さに対して80%未満の範囲で形成されていてもよい。 (7) In the solar cell according to any one of (3) to (6) above, the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer. You may.
 上記態様に係る太陽電池によれば、凹部の深さは、前記第1導電層の厚さに対して80%未満の範囲で形成されているので、第1導電層にダメージが生じるのを抑制することができる。 According to the solar cell according to the above aspect, the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer, so that damage to the first conductive layer is suppressed. can do.
(8)上記(3)~(6)のいずれか一項に記載の太陽電池は、前記凹部の深さは、前記第1導電層の厚さに対して100%であってもよい。 (8) In the solar cell according to any one of (3) to (6) above, the depth of the recess may be 100% with respect to the thickness of the first conductive layer.
 上記態様に係る太陽電池によれば、凹部の深さは、第1導電層の厚さに対して100%であるので、第1導電層が分断されることがなく、安定した導通が確保できる。 According to the solar cell according to the above aspect, since the depth of the recess is 100% with respect to the thickness of the first conductive layer, the first conductive layer is not divided and stable conduction can be ensured. ..
(9)上記(1)~(8)のいずれか一項に記載の太陽電池は、前記貫通孔は、前記発電層の表面における前記貫通孔の配列方向に沿った寸法の1倍以上のピッチで形成されていてもよい。 (9) In the solar cell according to any one of (1) to (8) above, the through holes have a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer. It may be formed by.
 上記態様に係る太陽電池によれば、貫通孔は、前記発電層の表面における前記貫通孔の配列方向に沿った寸法の1倍以上のピッチで形成されていて、複数の貫通孔が、発電層の面方向に沿って間隔をあけて配置され又は配列方向の端部で外接して配置されるように形成されているので、貫通孔内の導電材によって第1導電層と第2導電層との安定的な導通を確保することができる。 According to the solar cell according to the above aspect, the through holes are formed at a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer, and the plurality of through holes are formed in the power generation layer. Since the first conductive layer and the second conductive layer are arranged by the conductive material in the through hole, the first conductive layer and the second conductive layer are arranged so as to be arranged at intervals along the surface direction of Stable continuity can be ensured.
 このように貫通孔を、発電層の表面において間隔をあけて配置し又は配列方向の端部で外接するように形成することによって、発電層を除去する際のマージンが大きくなり、発電層に確実に貫通孔が形成される程度にレーザーパワーを大きくすることができる。また、レーザーパワーを大きくした場合に大きなバラツキがあっても、接続部分が確保された貫通孔を形成することができ、発電層に第1導電層が露出する貫通孔を効率的に形成して第1伝導層と第2導電層の間に安定した導通を確保することができる。 By forming the through holes at intervals on the surface of the power generation layer or circumscribing at the ends in the arrangement direction in this way, the margin when removing the power generation layer is increased, and the power generation layer is surely formed. The laser power can be increased to the extent that a through hole is formed in the. Further, even if there is a large variation when the laser power is increased, a through hole in which the connection portion is secured can be formed, and a through hole in which the first conductive layer is exposed can be efficiently formed in the power generation layer. Stable conduction can be ensured between the first conductive layer and the second conductive layer.
(10)上記(1)~(8)のいずれか一項に記載の太陽電池は、貫通孔は、発電層の表面における貫通孔の配列方向に沿った寸法の1倍よりも小さいピッチで設けられていてもよい。 (10) In the solar cell according to any one of (1) to (8) above, the through holes are provided at a pitch smaller than 1 times the dimension along the arrangement direction of the through holes on the surface of the power generation layer. It may have been.
 上記態様に係る太陽電池によれば、貫通孔は、発電層の表面における貫通孔の配列方向に沿った寸法の1倍よりも小さいピッチで設けられているので、凹部の内周面に第2電極層と導通可能な周面が、凹部の配列方向に連続して形成されるので、第1導電層と第2導電層の安定した導通を確保することができる。 According to the solar cell according to the above aspect, since the through holes are provided at a pitch smaller than 1 times the dimension along the arrangement direction of the through holes on the surface of the power generation layer, the second through hole is provided on the inner peripheral surface of the recess. Since the peripheral surface that can conduct with the electrode layer is continuously formed in the arrangement direction of the recesses, stable conduction between the first conductive layer and the second conductive layer can be ensured.
 第1導電層と第2導電層を接続するには、貫通孔形成部分の発電層をレーザーパルスによって全て除去して第1導電層を露出させ、第2導電層を構成する導電材の端面を第1導電層の表面に接触させて電気的に接続することが理想である。
 しかしながら、レーザーパルスで発電層を切削するときに、レーザーパルスエネルギーが弱すぎると発電層が残って、第1導電層と第2導電層の間に発電層が挟まることで接続抵抗が高くなり、発電性能が低下してしまう。
 一方、レーザーパルスエネルギーを強くしすぎると発電層を全て除去できるが、第1導電層まで切削除去してしまい、第1導電層まで除去されるため接続抵抗が高くなり、発電性能が低下してしまう。
In order to connect the first conductive layer and the second conductive layer, the power generation layer of the through hole forming portion is completely removed by a laser pulse to expose the first conductive layer, and the end face of the conductive material constituting the second conductive layer is exposed. Ideally, the first conductive layer is brought into contact with the surface and electrically connected.
However, when cutting the power generation layer with a laser pulse, if the laser pulse energy is too weak, the power generation layer remains, and the power generation layer is sandwiched between the first conductive layer and the second conductive layer, resulting in high connection resistance. The power generation performance will deteriorate.
On the other hand, if the laser pulse energy is made too strong, the entire power generation layer can be removed, but the first conductive layer is also removed by cutting, so that the connection resistance becomes high and the power generation performance deteriorates. It ends up.
 したがって、接続抵抗を低く、理想的な第1導電層と第2導電層の接続状態を形成するためには、レーザーパルスエネルギー(出力)を発電層が除去できる強度より強くして、かつ、貫通孔の部分の第1導電層の一部のみを除去するエネルギーとするのが望ましい。 そこで、貫通孔を、発電層の表面において間隔をあけて配置し又は配列方向の端部で外接するように形成することで、レーザーパルスエネルギー(出力)を強くした場合におけるマージンが大きくなり、第1導電層が分断されてしまうのが防止できる。
 また、レーザーパルスによる膜の除去において、レーザーを照射して貫通孔を形成する際に、照射される円の中心部分から除去されるため、貫通孔の中心部分だけ第1導電層が除去されるパルスレーザーエネルギーとしてもよい。
Therefore, in order to reduce the connection resistance and form an ideal connection state between the first conductive layer and the second conductive layer, the laser pulse energy (output) should be stronger than the strength that the power generation layer can remove and penetrate. It is desirable that the energy is used to remove only a part of the first conductive layer in the hole portion. Therefore, by arranging the through holes at intervals on the surface of the power generation layer or forming them so as to circumscribe at the ends in the arrangement direction, the margin when the laser pulse energy (output) is increased becomes large, and the first 1 It is possible to prevent the conductive layer from being divided.
Further, in the removal of the film by the laser pulse, when the through hole is formed by irradiating the laser, it is removed from the central portion of the irradiated circle, so that the first conductive layer is removed only in the central portion of the through hole. It may be pulsed laser energy.
 レーザーパルスにより貫通孔を配列して形成するとき、貫通孔と貫通孔のピッチが狭いと、上記貫通孔の中心部分だけあいている孔が配列方向に連続して繋がり、第1導電層が分断されてしまう。その結果、第2導電層が第1導電層と接続される部分が小さくなり、発電性能が低下してしまう。
 上述のように、発電層を貫通する貫通孔を、発電層の表面において間隔をあけて配置し又は配列方向の端部で外接するように形成することで、第1導電層がライン状に切削され分断されることはなく、ドット状に切削される状態となり第1導電層と第2導電層の接続する部分を多くとることが可能となり、発電性能が高くなる。
When the through holes are arranged and formed by a laser pulse, if the pitch between the through holes is narrow, the holes open only in the central portion of the through holes are continuously connected in the arrangement direction, and the first conductive layer is divided. Will be done. As a result, the portion where the second conductive layer is connected to the first conductive layer becomes smaller, and the power generation performance deteriorates.
As described above, the first conductive layer is cut in a line shape by arranging through holes penetrating the power generation layer at intervals on the surface of the power generation layer or forming them so as to circumscribe the ends in the arrangement direction. It is not divided and is cut into dots, and it is possible to take a large number of portions where the first conductive layer and the second conductive layer are connected, and the power generation performance is improved.
 ここで、貫通孔が平面視円形状である場合は、貫通孔の配列方向における寸法は貫通孔の直径である。また、貫通孔が他の形状である場合は、貫通孔の発電層表面における配列方向の寸法である。 Here, when the through hole has a circular shape in a plan view, the dimension in the arrangement direction of the through hole is the diameter of the through hole. When the through hole has another shape, it is the dimension in the arrangement direction on the surface of the power generation layer of the through hole.
(11)上記(1)~(10)のいずれか一項に記載の太陽電池は、前記貫通孔は、平面視前記発電層の表面における形状が円形状又は前記貫通孔の配列方向に沿った長軸もしくは短軸を有する楕円形状に形成されていて、前記貫通孔は、前記円形状の半径又は前記楕円形状の長半径もしくは短半径の2倍以上のピッチで形成されていてもよい。 (11) In the solar cell according to any one of (1) to (10) above, the through hole has a circular shape on the surface of the power generation layer in a plan view or follows the arrangement direction of the through hole. It is formed in an elliptical shape having a major axis or a minor axis, and the through holes may be formed at a pitch equal to or more than twice the radius of the circular shape or the semimajor axis or the minor axis of the elliptical shape.
 上記態様に係る太陽電池によれば、貫通孔は、平面視発電層の表面における形状が円形状又は貫通孔の配列方向に沿った長軸もしくは短軸を有する楕円形状に形成されていて、貫通孔は、円形状の半径又は楕円形状の長半径もしくは短半径の2倍以上のピッチで形成されているので、貫通孔のピッチを、容易かつ効率的に貫通孔の配列方向に沿った寸法の1倍以上に設定することができる。
 なお、貫通孔のピッチを、貫通孔の半径(又は長半径もしくは短半径)に対して4倍以下に形成することが好適である。
According to the solar cell according to the above aspect, the through hole is formed in a circular shape on the surface of the plan view power generation layer or an elliptical shape having a long axis or a short axis along the arrangement direction of the through holes, and penetrates. Since the holes are formed at a pitch that is at least twice the radius of the circle or the semi-major axis or the semi-minor axis of the ellipse, the pitch of the through holes can be easily and efficiently sized along the arrangement direction of the through holes. It can be set to 1 times or more.
It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semi-major axis or short radius) of the through holes.
 また、貫通孔が平面視円形である場合は、貫通孔は直径φ50μm程度が好適である。また、貫通孔の第1導電層の表面における直径はφ1μm~45μm程度が好適であり、直径φ5μm~10μmとすることがより好適である。 When the through hole is circular in a plan view, the through hole preferably has a diameter of about φ50 μm. The diameter of the surface of the first conductive layer of the through hole is preferably about φ1 μm to 45 μm, and more preferably φ5 μm to 10 μm.
(12)上記(1)~(11)のいずれか一項に記載の太陽電池は、前記貫通孔が、複数列に配置されていてもよい。 (12) In the solar cell according to any one of (1) to (11) above, the through holes may be arranged in a plurality of rows.
 上記態様に係る太陽電池によれば、貫通孔列が、複数列に配置されているので、第1導電層と第2導電層との導通面積が大きくなり、第1導電層と第2導電層の間の導通をより安定させることができる。 According to the solar cell according to the above aspect, since the through-hole rows are arranged in a plurality of rows, the conductive area between the first conductive layer and the second conductive layer becomes large, and the first conductive layer and the second conductive layer The continuity between can be made more stable.
(13)この発明の第二態様は、第1導電層と、光電変換層を含む発電層と、第2導電層を含む導電材と、をこの順に備えた太陽電池の製造方法であって、基材の一方の面に、前記第1導電層と、前記発電層と、をこの順に形成する第1工程と、パルスレーザーを用いて、前記発電層の面方向に沿って配列され、前記発電層を厚さ方向に貫通して形成された複数の貫通孔を、前記発電層と前記第1導電層との境界を越えて形成する第2工程と、前記導電材により前記発電層の上に前記第2導電層を形成する第3工程と、を備える、太陽電池の製造方法である。 (13) A second aspect of the present invention is a method for manufacturing a solar cell, comprising a first conductive layer, a power generation layer including a photoelectric conversion layer, and a conductive material including a second conductive layer in this order. The first step of forming the first conductive layer and the power generation layer in this order on one surface of the base material and the pulse laser are used to arrange the first conductive layer and the power generation layer along the surface direction of the power generation layer to generate the power generation. A second step of forming a plurality of through holes formed by penetrating the layer in the thickness direction beyond the boundary between the power generation layer and the first conductive layer, and the conductive material on the power generation layer. This is a method for manufacturing a solar cell, comprising a third step of forming the second conductive layer.
 上記態様に係る太陽電池の製造方法によれば、基材の一方の面に、第1導電層と、光電変換層を含む発電層とをこの順に形成する第1工程と、パルスレーザーを用いて、発電層の面方向に沿って配列され、発電層を厚さ方向に貫通して形成された複数の貫通孔を、発電層と第1導電層との境界を越えて形成する第2工程と、導電材により発電層の上に第2導電層を形成する第3工程と、を備えている。
 したがって、貫通孔を通じて第1導電層との境界を越えた第2導電層(を構成する導電材)と第1導電層との接触面積が増加する。
 その結果、第1導電層と第2導電層との安定した導通を確保することができる。
According to the method for manufacturing a solar cell according to the above aspect, a first step of forming a first conductive layer and a power generation layer including a photoelectric conversion layer on one surface of a base material in this order, and a pulse laser are used. A second step of forming a plurality of through holes arranged along the plane direction of the power generation layer and penetrating the power generation layer in the thickness direction beyond the boundary between the power generation layer and the first conductive layer. The third step of forming the second conductive layer on the power generation layer with the conductive material is provided.
Therefore, the contact area between the second conductive layer (the conductive material constituting the second conductive material) and the first conductive layer beyond the boundary with the first conductive layer through the through hole increases.
As a result, stable conduction between the first conductive layer and the second conductive layer can be ensured.
(14)上記(13)に記載の太陽電池の製造方法は、前記第2工程において、前記貫通孔の一方の端部を、前記第1導電層に形成してもよい。 (14) In the method for manufacturing a solar cell according to the above (13), in the second step, one end of the through hole may be formed in the first conductive layer.
 上記態様に係る太陽電池の製造方法によれば、第2工程において、貫通孔の一方の端部を、第1導電層に形成するので、第2導電層(を構成する導電材)と第1導電層との接触面積がより増加するとともに確実な導通を確保することができる。 According to the method for manufacturing a solar cell according to the above aspect, in the second step, one end of the through hole is formed in the first conductive layer, so that the second conductive layer (the conductive material constituting the second conductive layer) and the first one. The contact area with the conductive layer is further increased, and reliable conduction can be ensured.
(15)上記(14)に記載の太陽電池の製造方法は、前記第2工程において、前記端部に前記第1導電層内にくぼむ凹部を有する前記貫通孔を形成してもよい。 (15) In the method for manufacturing a solar cell according to (14) above, in the second step, the through hole having a recessed recess in the first conductive layer may be formed at the end portion.
 上記態様に係る太陽電池の製造方法によれば、貫通孔の端部は、第1導電層内にくぼんだ凹部を備えているので、第2導電層を構成する導電材と少なくとも第1導電層との周面における導通が可能となり、第1導電層と第2導電層と安定的な導通を確保することができる。 According to the method for manufacturing a solar cell according to the above aspect, since the end portion of the through hole is provided with a recessed recess in the first conductive layer, the conductive material constituting the second conductive layer and at least the first conductive layer It is possible to conduct conduction on the peripheral surface of the first conductive layer and the second conductive layer, and it is possible to secure stable conduction with the first conductive layer and the second conductive layer.
(16)上記(15)に記載の太陽電池の製造方法は、前記第2工程において、前記貫通孔を、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍より大きいピッチで形成してもよい。
 この発明に係る太陽電池の製造方法によれば、前記第2工程において、前記貫通孔を、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍より大きいピッチで形成するので、第1導電層の面方向に沿って間隔をあけて配置されるので、第1導電層が分断されるのが防止される。
 このように、複数の貫通孔の凹部が、第1導電層の面方向に沿って間隔をあけて配置されるので、第2導電層を構成する導電材は、第1導電層との周面の全周にわたって導通が可能となり、第1導電層と第2導電層の安定的な導通が確保される。
 ここで、凹部が平面視円形状である場合は、凹部の配列方向における寸法は凹部の直径である。また、凹部が他の形状である場合は、第1導電層の表面における凹部の配列方向の寸法である。
(16) The method for manufacturing a solar cell according to (15) above, in the second step, makes the through hole larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer. It may be formed by pitch.
According to the method for manufacturing a solar cell according to the present invention, in the second step, the through holes are formed at a pitch larger than one times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer. Therefore, since they are arranged at intervals along the surface direction of the first conductive layer, it is possible to prevent the first conductive layer from being divided.
In this way, the recesses of the plurality of through holes are arranged at intervals along the surface direction of the first conductive layer, so that the conductive material constituting the second conductive layer has a peripheral surface with the first conductive layer. Conduction is possible over the entire circumference of the above, and stable conduction between the first conductive layer and the second conductive layer is ensured.
Here, when the concave portion has a circular shape in a plan view, the dimension in the arrangement direction of the concave portion is the diameter of the concave portion. When the concave portion has another shape, it is the dimension in the arrangement direction of the concave portion on the surface of the first conductive layer.
(17)上記(16)に記載の太陽電池の製造方法は、前記第2工程において、平面視前記第1導電層の表面における形状が円形状又は前記配列方向に沿った長軸もしくは短軸を有する楕円形状に形成された前記凹部を有する貫通孔を、前記凹部の円形状の半径又は楕円形状の長半径もしくは短半径の2倍より大きいピッチで形成してもよい。
 この発明に係る太陽電池の製造方法によれば、第2工程において、平面視第1導電層の表面における形状が円形状又は配列方向に沿った長軸もしくは短軸を有する楕円形状に形成された凹部を有する貫通孔を、凹部の円形状の半径又は楕円形状の長半径もしくは短半径の2倍より大きいピッチで形成するので、貫通孔のピッチを、容易かつ効率的に貫通孔の配列方向に沿った寸法の1倍より大きく設定することができる。
 なお、貫通孔のピッチを、凹部の半径(又は長半径)に対して4倍以下に形成することが好適である。
(17) The method for manufacturing a solar cell according to (16) above has a circular shape on the surface of the first conductive layer in a plan view or a long axis or a short axis along the arrangement direction in the second step. The through hole having the concave portion formed in the elliptical shape may be formed at a pitch larger than twice the circular radius of the concave portion or the semi-major axis or short radius of the elliptical shape.
According to the method for manufacturing a solar cell according to the present invention, in the second step, the shape of the surface of the first conductive layer in a plan view is formed into a circular shape or an elliptical shape having a long axis or a short axis along the arrangement direction. Since the through holes having the recesses are formed at a pitch larger than twice the circular radius of the recesses or the semi-major axis or the semi-minor axis of the elliptical shape, the pitch of the through holes can be easily and efficiently set in the direction of the arrangement of the through holes. It can be set to be larger than 1 times the along dimension.
It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semimajor axis) of the recess.
(18)上記(15)~(17)のいずれか一項に記載の太陽電池の製造方法は、前記凹部の深さを、前記第1導電層の厚さに対して80%未満の範囲で形成してもよい。
 上記態様に係る太陽電池の製造方法によれば、凹部の深さは、第1導電層の厚さに対して80%未満の範囲で形成されているので、第1導電層にダメージが生じるのを抑制することができる。
(18) In the method for manufacturing a solar cell according to any one of (15) to (17) above, the depth of the recess is set within a range of less than 80% with respect to the thickness of the first conductive layer. It may be formed.
According to the method for manufacturing a solar cell according to the above aspect, the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer, so that the first conductive layer is damaged. Can be suppressed.
(19)上記(13)~(18)のいずれか一項に記載の太陽電池の製造方法は、前記第2工程において、前記貫通孔を、前記発電層の表面における前記貫通孔の配列方向に沿った寸法の1倍以上のピッチで形成してもよい。
 上記態様に係る太陽電池の製造方法によれば、第2工程において、貫通孔を、発電層の表面における貫通孔の配列方向に沿った寸法の1倍以上のピッチで形成することで、複数の貫通孔が、発電層の面方向に沿って間隔をあけて配置され又は配列方向の端部で外接して配置されるので、貫通孔内の導電材によって第1導電層と第2導電層との安定的な導通を確保することができる。
(19) In the method for manufacturing a solar cell according to any one of (13) to (18) above, in the second step, the through holes are arranged in the arrangement direction of the through holes on the surface of the power generation layer. It may be formed at a pitch of 1 times or more the along dimension.
According to the method for manufacturing a solar cell according to the above aspect, in the second step, a plurality of through holes are formed at a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer. Since the through holes are arranged at intervals along the surface direction of the power generation layer or extrinsically at the ends in the arrangement direction, the conductive material in the through holes causes the first conductive layer and the second conductive layer to be arranged. Stable continuity can be ensured.
(20)上記(13)~(19)のいずれか一項に記載の太陽電池の製造方法は、前記第2工程において、平面視前記発電層の表面における形状が円形状又は前記貫通孔の配列方向に沿った長軸もしくは短軸を有する楕円形状に形成された前記貫通孔を、前記円形状の半径又は前記楕円形状の長半径もしくは短半径の2倍以上のピッチで形成してもよい。
 上記態様に係る太陽電池の製造方法によれば、第2工程において、平面視前記発電層の表面における形状が円形状又は前記配列方向に沿った長軸もしくは短軸を有する楕円形状の貫通孔を、円形状の半径又は楕円形状の長半径もしくは短半径の2倍以上のピッチで形成するので、貫通孔のピッチを、容易かつ効率的に貫通孔の配列方向に沿った寸法の1倍以上に設定することができる。
 なお、貫通孔のピッチを、貫通孔の半径(又は長半径もしくは短半径)に対して4倍以下に形成することが好適である。
(20) The method for manufacturing a solar cell according to any one of (13) to (19) above, in the second step, has a circular shape on the surface of the power generation layer in a plan view or an arrangement of the through holes. The through hole formed in an elliptical shape having a long axis or a short axis along the direction may be formed at a pitch equal to or more than twice the radius of the circular shape or the long radius or the short radius of the elliptical shape.
According to the method for manufacturing a solar cell according to the above aspect, in the second step, an elliptical through hole having a circular shape on the surface of the power generation layer in a plan view or an elliptical shape having a long axis or a short axis along the arrangement direction is formed. , Since it is formed with a pitch that is at least twice the radius of the circle or the semi-major axis or the semi-minor axis of the ellipse, the pitch of the through holes can be easily and efficiently increased to at least one times the dimension along the arrangement direction of the through holes. Can be set.
It is preferable that the pitch of the through holes is formed to be 4 times or less the radius (or semi-major axis or short radius) of the through holes.
(21)上記(13)~(20)のいずれか一項に記載の太陽電池の製造方法は、前記第2工程において、前記貫通孔を、複数列に形成してもよい。 (21) In the method for manufacturing a solar cell according to any one of (13) to (20) above, the through holes may be formed in a plurality of rows in the second step.
 上記態様に係る太陽電池の製造方法によれば、第2工程において、貫通孔を、複数列に形成するので、第1導電層と第2導電層の間の導通をより安定させることができる。 According to the method for manufacturing a solar cell according to the above aspect, since the through holes are formed in a plurality of rows in the second step, the conduction between the first conductive layer and the second conductive layer can be more stabilized.
 この発明に係る太陽電池、太陽電池の製造方法によれば、第1導電層と第2導電層との安定した導通を確保することができる。 According to the solar cell and the method for manufacturing a solar cell according to the present invention, stable conduction between the first conductive layer and the second conductive layer can be ensured.
本発明の第1実施形態に係る太陽電池の概略構成を説明する平面図である。It is a top view explaining the schematic structure of the solar cell which concerns on 1st Embodiment of this invention. 第1実施形態に係る太陽電池の概略構成を説明する図1に矢視II-IIで示す縦断面図である。FIG. 1 is a vertical cross-sectional view shown by arrow II-II in FIG. 1 for explaining a schematic configuration of a solar cell according to a first embodiment. 第1実施形態に係る太陽電池の概略構成を説明する図であり、図2における矢印III部分の第2導電層が形成される前の貫通孔列を概念的に示す斜視図である。It is a figure explaining the schematic structure of the solar cell which concerns on 1st Embodiment, and is the perspective view which conceptually shows the through-hole row before the 2nd conductive layer of the arrow III part in FIG. 2 is formed. 第1実施形態に係る太陽電池における貫通孔列の概略構成を説明する図であり、(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、(b)は(a)に矢視IVB―IVBで示す縦断面図である。It is a figure explaining the schematic structure of the through-hole row in the solar cell which concerns on 1st Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (b). ) Is a vertical sectional view shown by arrow IVB-IVB in (a). 第1実施形態に係る太陽電池における発電層を概念的に説明する縦断面図である。It is a vertical sectional view conceptually explaining the power generation layer in the solar cell which concerns on 1st Embodiment. 第1実施形態の太陽電池において貫通孔が外接する場合の概略構成を説明する図であり、(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、(b)は(a)に矢視VIB―VIBで示す縦断面図である。It is a figure explaining the schematic structure at the time of the through hole circumscribing in the solar cell of 1st Embodiment, (a) is the plan view which the arrangement of the through hole row was seen from the upper surface (surface) side of the power generation layer. (B) is a vertical cross-sectional view shown by arrow VIB-VIB in (a). 本発明の第2実施形態に係る太陽電池の概略構成を説明する縦断面図である。It is a vertical sectional view explaining the schematic structure of the solar cell which concerns on 2nd Embodiment of this invention. 第2実施形態に係る太陽電池の概略構成を説明する図であり、図7における矢印VIII部分の第2導電層が形成される前の貫通孔列を概念的に示す斜視図である。It is a figure explaining the schematic structure of the solar cell which concerns on 2nd Embodiment, and is the perspective view which conceptually shows the through-hole row before the 2nd conductive layer of the arrow VIII part in FIG. 7 is formed. 第2実施形態の第1変形例に係る太陽電池の概略構成を説明する図であり、(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、(b)は(a)に矢視IXB―IXBで示す縦断面図である。It is a figure explaining the schematic structure of the solar cell which concerns on the 1st modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a). b) is a vertical sectional view shown by arrow IXB-IXB in (a). 第2実施形態の第2変形例に係る太陽電池の概略構成を説明する図であり、(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、(b)は(a)に矢視XB―XBで示す縦断面図である。It is a figure explaining the schematic structure of the solar cell which concerns on the 2nd modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a). b) is a vertical sectional view shown by arrow XB-XB in (a). 第2実施形態の第3変形例に係る太陽電池の概略構成を説明する図であり、(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、(b)は(a)に矢視XIB―XIBで示す縦断面図である。It is a figure explaining the schematic structure of the solar cell which concerns on the 3rd modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a). b) is a vertical sectional view shown by arrow XIB-XIB in (a). 第2実施形態の第4変形例に係る太陽電池の概略構成を説明する図であり、(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、(b)は(a)に矢視XIIB―XIIBで示す縦断面図である。It is a figure explaining the schematic structure of the solar cell which concerns on 4th modification of 2nd Embodiment, (a) is the plan view which the arrangement of the through-hole row is seen from the upper surface (surface) side of the power generation layer, (a). b) is a vertical sectional view shown by arrow XIIB-XIIB in (a). 本発明の第3実施形態に係る太陽電池の概略構成を説明する第2導電層が形成される前の貫通孔列群を概念的に示す斜視図である。It is a perspective view which conceptually shows the group of through-hole rows before the formation of the 2nd conductive layer which explains the schematic structure of the solar cell which concerns on 3rd Embodiment of this invention. 従来の太陽電池の概略構成を説明する内部を部分に示す平面図である。It is a top view which shows the inside part | part explaining the schematic structure of the conventional solar cell. 従来の太陽電池の概略構成を説明する図1に矢視XV-XVで示す縦断面図である。FIG. 1 is a vertical cross-sectional view shown by arrow XV-XV in FIG. 1 for explaining a schematic configuration of a conventional solar cell.
〔第1実施形態〕
 以下、図1~図5を参照し、本発明の第1実施形態に係る太陽電池について説明する。 図1~図5は、本発明の第1実施形態に係る太陽電池の概略構成を説明する図であり、図1は平面図であり、図2は図1に矢視II-IIで示す縦断面図である。また、図3は図2における矢印III部分の第2導電層が形成される前の貫通孔列を概念的に示す斜視図である。また、図4は貫通孔列の概略構成を説明する図であり、図4の(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、図4の(b)は図4の(a)に矢視IVB―IVBで示す縦断面図である。また、図5は発電層を概念的に説明する縦断面図である。なお、本明細書で示す図は、説明のために一部又は全体を拡大している場合がある。
[First Embodiment]
Hereinafter, the solar cell according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5. 1 to 5 are views for explaining a schematic configuration of a solar cell according to a first embodiment of the present invention, FIG. 1 is a plan view, and FIG. 2 is a vertical section shown by arrow view II-II in FIG. It is a plan view. Further, FIG. 3 is a perspective view conceptually showing a row of through holes before the second conductive layer of the arrow III portion in FIG. 2 is formed. 4A and 4B are views for explaining the schematic configuration of the through-hole rows, and FIG. 4A is a plan view of the arrangement of the through-hole rows as viewed from the upper surface (surface) side of the power generation layer, and is a plan view of FIG. (B) is a vertical cross-sectional view shown by arrow IVB-IVB in (a) of FIG. Further, FIG. 5 is a vertical cross-sectional view for conceptually explaining the power generation layer. The figures shown in the present specification may be partially or wholly enlarged for the sake of explanation.
 本明細書において、一端側を符号Fで、他端側を符号Rで、上面(表面)側を符号Aで示している。
 また、本明細書において、「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「以上」と示す数値には、その値が数値範囲に含まれる。「未満」と示す数値には、その値が数値範囲に含まれない。
In the present specification, one end side is indicated by reference numeral F, the other end side is indicated by reference numeral R, and the upper surface (surface) side is indicated by reference numeral A.
Further, in the present specification, the lower limit value and the upper limit value are included in the numerical limitation range described with “~” in between. The numerical value indicated as "greater than or equal to" includes the value in the numerical range. The value indicated as "less than" does not include the value in the numerical range.
 第1実施形態に係る太陽電池100は、図1、図2に示すように、例えば、絶縁性基材10と、絶縁性基材10の上面に形成された複数の第1導電層20と、複数の第1導電層20の表面を覆うように配置された発電層30と、発電層30の表面側に形成された複数の第2導電層40と、発電層30を貫通する貫通孔列50とを、備えている。
 また、一端側Fの第1導電層20F(20)と、他端側Rの第1導電層20R(20)には、外部に延在する引出線(不図示)が接続される。
As shown in FIGS. 1 and 2, the solar cell 100 according to the first embodiment includes, for example, an insulating base material 10, a plurality of first conductive layers 20 formed on the upper surface of the insulating base material 10, and a plurality of first conductive layers 20. A power generation layer 30 arranged so as to cover the surfaces of the plurality of first conductive layers 20, a plurality of second conductive layers 40 formed on the surface side of the power generation layer 30, and a through-hole row 50 penetrating the power generation layer 30. And have.
Further, a leader wire (not shown) extending to the outside is connected to the first conductive layer 20F (20) on the one end side F and the first conductive layer 20R (20) on the other end side R.
 それぞれの発電層30で生成された電子は、それぞれの発電層30において、第1導電層20に向かって移動する。そして、第1導電層20に移動した電子は、貫通孔列50内に形成され且つ第2導電層40を構成する導電材で形成された導電部41を通して、他端側Rの第1導電層20に移動する。このようにして、それぞれの発電層30で生成された電子が、隣接配置された他端側Rの第1導電層20に順次移動する。発電層30で生成した正孔は、表面側Aの第2導電層40に移動する。
 その結果、太陽電池100は、直列に配置された複数の発電層30を備えた電気モジュールとして機能する。
The electrons generated in each power generation layer 30 move toward the first conductive layer 20 in each power generation layer 30. Then, the electrons that have moved to the first conductive layer 20 pass through the conductive portion 41 formed in the through-hole row 50 and formed of the conductive material forming the second conductive layer 40, and the first conductive layer on the other end side R. Move to 20. In this way, the electrons generated in each of the power generation layers 30 sequentially move to the first conductive layer 20 on the other end side R arranged adjacent to each other. The holes generated in the power generation layer 30 move to the second conductive layer 40 on the surface side A.
As a result, the solar cell 100 functions as an electric module having a plurality of power generation layers 30 arranged in series.
<絶縁性基材>
 絶縁性基材10は、図1、図2に示すように、例えば、平面視矩形に形成されている。 絶縁性基材10は絶縁性を有している。
 絶縁性基材10を形成する材料は特に限定されないが、公知の絶縁体を適用してもよく、絶縁性樹脂のほか、例えば、従来の電子デバイスの絶縁層を構成する金属酸化物を用いてもよい。具体的には、二酸化ジルコニウム、二酸化珪素、酸化アルミニウム(AlO、Al)、酸化マグネシウム(MgO)、酸化ニッケル(NiO)等が例示できる。これらのうち、特に酸化アルミニウム(III)(Al)が好ましい。
 絶縁性基材10を形成する絶縁体は、1種であってもよく、2種以上であってもよい。
<Insulating base material>
As shown in FIGS. 1 and 2, the insulating base material 10 is formed, for example, in a rectangular shape in a plan view. The insulating base material 10 has an insulating property.
The material for forming the insulating base material 10 is not particularly limited, but a known insulator may be applied, and in addition to the insulating resin, for example, a metal oxide constituting the insulating layer of a conventional electronic device is used. May be good. Specifically, zirconium dioxide, silicon dioxide, aluminum oxide (AlO, Al 2 O 3) , magnesium oxide (MgO), nickel oxide (NiO) and the like. Of these, aluminum oxide (III) (Al 2 O 3 ) is particularly preferable.
The insulator forming the insulating base material 10 may be one kind or two or more kinds.
 絶縁性基材10の材料が合成樹脂である場合、その合成樹脂としては、例えば、ポリアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂等を用いてもよい。これらのなかでも、ポリエステル樹脂、特にポリエチレンナフタレート(PEN)やポリエチレンテレフタレート(PET)が、薄く、軽く、かつフレキシブルな太陽電池を製造するうえで好適である。 絶縁性基材1の厚さは特に限定されず、例えば、0.01mm~3mmが好ましい。 When the material of the insulating base material 10 is a synthetic resin, for example, a polyacrylic resin, a polycarbonate resin, a polyester resin, a polyimide resin, a polystyrene resin, a polyvinyl chloride resin, a polyamide resin or the like may be used as the synthetic resin. good. Among these, polyester resins, particularly polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), are suitable for producing thin, light and flexible solar cells. The thickness of the insulating base material 1 is not particularly limited, and is preferably 0.01 mm to 3 mm, for example.
 また、金属酸化物と合成樹脂を積層した構造物や、金属箔の表面側の全面に絶縁処理(例えば、に酸化処理、アルマイト処理、絶縁材料の塗布等)したものを用いてもよい。 Further, a structure in which a metal oxide and a synthetic resin are laminated, or a structure in which the entire surface side of the metal foil is insulated (for example, oxidation treatment, alumite treatment, coating of an insulating material, etc.) may be used.
<第1導電層>
 第1導電層20は、図1、図2に示すように、絶縁性基材10の表面側(上面)Aに形成(積層)されている。
 この実施形態では、例えば、平面視矩形に形成された4つ(複数)の第1導電層20が、絶縁性基材10の表面上に沿って、互いに間隔20Gをあけて配置されている。
<First conductive layer>
As shown in FIGS. 1 and 2, the first conductive layer 20 is formed (laminated) on the surface side (upper surface) A of the insulating base material 10.
In this embodiment, for example, four (plurality) first conductive layers 20 formed in a rectangular shape in a plan view are arranged along the surface of the insulating base material 10 at a distance of 20 G from each other.
 第1導電層20の材料は導電性を有していれば特に限定されず、例えば、金、銀、銅、アルミニウム、タングステン、ニッケル、チタン、ニオブ、モリブデン、コバルト、ルテニウム、インジウム、スズ及びクロムからなる群から選択されるいずれか1種以上の金属のほか、これらの合金類または酸化物、あるいはその積層膜が好適である。
 また、第1導電層20の厚さは特に限定されず、例えば、10nm~1000nmが好ましい。
The material of the first conductive layer 20 is not particularly limited as long as it has conductivity, and for example, gold, silver, copper, aluminum, tungsten, nickel, titanium, niobium, molybdenum, cobalt, ruthenium, indium, tin and chromium. In addition to any one or more metals selected from the group consisting of these, alloys or oxides thereof, or a laminated film thereof is suitable.
The thickness of the first conductive layer 20 is not particularly limited, and is preferably 10 nm to 1000 nm, for example.
<発電層>
 発電層30は、図1、図2に示すように、例えば、第1導電層20の表面側(上面)Aに、第1導電層20を覆うように形成(積層)されている。具体的には、第1導電層20の表面側(上面)Aを覆うとともに、隣接する第1導電層20の間に形成された間隔20Gを充填するように形成されている。
<Power generation layer>
As shown in FIGS. 1 and 2, for example, the power generation layer 30 is formed (laminated) on the surface side (upper surface) A of the first conductive layer 20 so as to cover the first conductive layer 20. Specifically, it is formed so as to cover the surface side (upper surface) A of the first conductive layer 20 and fill the interval 20G formed between the adjacent first conductive layers 20.
 発電層30には、図1~図3に示すように、厚さ方向に貫通する貫通孔列50が形成されている。貫通孔列50は、平面視したときに、第1導電層20と第2導電層40とが重なり合う重なり部分42に配置され、第1導電層20間の間隔20Gに沿って形成されている。
 貫通孔列50は、図3、図4に示すように、平面視したときに、発電層30の面方向に沿って直線的(直線に沿って)に配置され、間隔をあけて形成された複数の貫通孔51を備えている。
 貫通孔51は、例えば、パルスレーザー加工装置が発振するレーザービームを照射することにより形成されている。なお、図3に示す貫通孔51は概念的に示すものであり、縦断面形状はこれに限定されない。
As shown in FIGS. 1 to 3, a through hole row 50 penetrating in the thickness direction is formed in the power generation layer 30. The through-hole row 50 is arranged in the overlapping portion 42 where the first conductive layer 20 and the second conductive layer 40 overlap when viewed in a plan view, and is formed along the interval 20G between the first conductive layers 20.
As shown in FIGS. 3 and 4, the through-hole rows 50 are arranged linearly (along the straight line) along the plane direction of the power generation layer 30 when viewed in a plan view, and are formed at intervals. It is provided with a plurality of through holes 51.
The through hole 51 is formed by, for example, irradiating a laser beam oscillated by a pulse laser processing apparatus. The through hole 51 shown in FIG. 3 is conceptually shown, and the vertical cross-sectional shape is not limited to this.
 貫通孔51は、平面視略円形に形成されていて、例えば、発電層30の表面における直径D1がφ50μmに設定されている。貫通孔51の直径D1については任意に設定することが可能であるが、例えば、10μm以上100μm以下に設定することが好適である。 The through hole 51 is formed in a substantially circular shape in a plan view, and for example, the diameter D1 on the surface of the power generation layer 30 is set to φ50 μm. The diameter D1 of the through hole 51 can be arbitrarily set, but for example, it is preferably set to 10 μm or more and 100 μm or less.
 図4の(a)に示すピッチPは、隣接する貫通孔51同士の中心間の距離である。貫通孔列50における貫通孔51のピッチPは任意に設定することが可能である。貫通孔51の間隔30Gをあける(間隔30G>0(μm))場合には、例えば、パルスレーザーを照射するピッチ(周期)Pを、貫通孔51の直径D1(50μm)の1倍(半径の2倍)より大きく設定する。
 また、貫通孔51のピッチPは、例えば、貫通孔51の直径D1に対して1倍以上2倍以下(半径に対して2倍以上4倍以下)に設定することが好適である。
The pitch P shown in FIG. 4A is the distance between the centers of the adjacent through holes 51. The pitch P of the through holes 51 in the through hole row 50 can be arbitrarily set. When the interval 30G of the through hole 51 is provided (interval 30G> 0 (μm)), for example, the pitch (cycle) P for irradiating the pulse laser is 1 times (radius) the diameter D1 (50 μm) of the through hole 51. Double) Set larger.
Further, it is preferable that the pitch P of the through hole 51 is set to, for example, 1 time or more and 2 times or less (2 times or more and 4 times or less with respect to the radius) with respect to the diameter D1 of the through hole 51.
 すなわち、例えば、貫通孔51の直径D1が10μm以上100μm以下である場合は、貫通孔51のピッチPは10μm以上200μm以下であることが好適であり、10μm以上100μm以下であることがより好適である。 That is, for example, when the diameter D1 of the through hole 51 is 10 μm or more and 100 μm or less, the pitch P of the through hole 51 is preferably 10 μm or more and 200 μm or less, and more preferably 10 μm or more and 100 μm or less. be.
 また、貫通孔51は、先端側が第1導電層20の表面(上面)に到達して、第1導電層20の表面を貫通孔51の表面側(開口側)Aに露出し、貫通孔51の端部(先端側の面)が発電層30と第1導電層20との境界を越える位置に達し、第1導電層20に入り込むように形成されている。
 そして、第2導電層40を構成する導電材は、貫通孔51の端部において、第1導電層20と面接触して導通することが可能に構成されている。
Further, the through hole 51 reaches the surface (upper surface) of the first conductive layer 20 on the tip side, exposes the surface of the first conductive layer 20 to the surface side (opening side) A of the through hole 51, and the through hole 51. The end portion (the surface on the tip end side) of the above reaches a position beyond the boundary between the power generation layer 30 and the first conductive layer 20, and is formed so as to enter the first conductive layer 20.
The conductive material constituting the second conductive layer 40 is configured to be able to conduct surface contact with the first conductive layer 20 at the end of the through hole 51.
 発電層30は、図5に示すように、この実施形態では、例えば、正孔輸送層31と、光電変換層32と、電子輸送層33と、を備えている。また、例えば、電子輸送層33、光電変換層32、正孔輸送層31は、第1導電層20からこの順に配置されることが好適である。また、正孔輸送層31、電子輸送層33は必須ではないがこれらを備えていることが好適である。 As shown in FIG. 5, the power generation layer 30 includes, for example, a hole transport layer 31, a photoelectric conversion layer 32, and an electron transport layer 33 in this embodiment. Further, for example, it is preferable that the electron transport layer 33, the photoelectric conversion layer 32, and the hole transport layer 31 are arranged in this order from the first conductive layer 20. Further, although the hole transport layer 31 and the electron transport layer 33 are not essential, it is preferable to include them.
 太陽電池100において、光電変換層32が光を吸収すると、層内で電子及び正孔が発生する。正孔は正孔輸送層31に受容され、第2導電層40が構成する作用極(正極)に移動する。一方、電子は電子輸送層33を介して第1導電層20が構成する対極(負極)に移動する。 In the solar cell 100, when the photoelectric conversion layer 32 absorbs light, electrons and holes are generated in the layer. The holes are received by the hole transport layer 31 and move to the working electrode (positive electrode) formed by the second conductive layer 40. On the other hand, the electrons move to the counter electrode (negative electrode) formed by the first conductive layer 20 via the electron transport layer 33.
(正孔輸送層)
 正孔輸送層31は、光電変換層32で発生した正孔を、第2導電層40へと輸送する層として機能する。
 正孔輸送層31は、第2導電層40と光電変換層32の間に配置されていることが好適である。
 正孔輸送層31は、その一部が光電変換層32に浸漬していてもよい(光電変換層32と入り組んだ構造を形成していてもよい)し、光電変換層32上に薄膜状に配置されてもよい。正孔輸送層31が薄膜状に存在する時の厚さは、好ましい下限は1nm、好ましい上限は2000nmである。すなわち、正孔輸送層31を薄膜状に存在する時の厚さは、1nm以上上限は2000nm以下とすることが好適である。正孔輸送層31の厚さが1nm以上であれば、充分に電子をブロックできるようになる。正孔輸送層31の厚さが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。正孔輸送層31の厚さを3nm以上1000nm以下の範囲とすることがより好適であり、5nm以上500nm以下とすることはさらに好適である。
(Hole transport layer)
The hole transport layer 31 functions as a layer for transporting the holes generated in the photoelectric conversion layer 32 to the second conductive layer 40.
The hole transport layer 31 is preferably arranged between the second conductive layer 40 and the photoelectric conversion layer 32.
A part of the hole transport layer 31 may be immersed in the photoelectric conversion layer 32 (may form a complicated structure with the photoelectric conversion layer 32), or may be formed into a thin film on the photoelectric conversion layer 32. It may be arranged. When the hole transport layer 31 is present in the form of a thin film, the preferable lower limit is 1 nm and the preferable upper limit is 2000 nm. That is, the thickness of the hole transport layer 31 when it exists in the form of a thin film is preferably 1 nm or more and the upper limit is 2000 nm or less. When the thickness of the hole transport layer 31 is 1 nm or more, electrons can be sufficiently blocked. If the thickness of the hole transport layer 31 is 2000 nm or less, resistance during hole transport is unlikely to occur, and the photoelectric conversion efficiency becomes high. The thickness of the hole transport layer 31 is more preferably in the range of 3 nm or more and 1000 nm or less, and further preferably 5 nm or more and 500 nm or less.
 正孔輸送層31の材料は特に限定されず、有機材料であってもよく、無機材料であってもよく、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられる。具体的には例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。例えば、トリフェニルアミン骨格、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物等が挙げられる。更に、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸、CuSCN、CuI等の銅化合物、カーボンナノチューブ、グラフェン等のカーボン含有材料等が挙げられる。
 正孔輸送層31を構成する材料の種類は、1種類でもよく、2種類以上でもよい。
The material of the hole transport layer 31 is not particularly limited and may be an organic material or an inorganic material, for example, a P-type conductive polymer, a P-type low molecular weight organic semiconductor, and a P-type metal oxide. , P-type metal sulfide, surfactant and the like. Specific examples thereof include compounds having a thiophene skeleton such as poly (3-alkylthiophene). For example, a conductive polymer having a triphenylamine skeleton, a polyparaphenylene vinylene skeleton, a polyvinylcarbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton and the like can also be mentioned. Further, for example, a compound having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton and the like can be mentioned. Further, molybdenum oxide, vanadium oxide, tungsten oxide, nickel oxide, copper oxide, tin oxide, molybdenum sulfide, tungsten sulfide, copper sulfide, tin sulfide, etc., fluorogroup-containing phosphonic acid, carbonyl group-containing phosphonic acid, CuSCN, CuI, etc. Examples thereof include carbon-containing materials such as copper compounds, carbon nanotubes, and graphene.
The type of material constituting the hole transport layer 31 may be one type or two or more types.
(光電変換層)
 光電変換層32は、受光した光を電気エネルギーに変換し、光電変換を行う層である。光電変換層は、ペロブスカイト化合物を含んでおり、光照射によってペロブスカイト化合物で電子が生成されるようになっている。
 ペロブスカイト化合物の種類は、特に限定されず、公知の太陽電池に使用されるペロブスカイト化合物が適用可能であり、結晶構造を有し、典型的な化合物半導体と同様にバンドギャップ励起による光吸収を示すものが好ましい。例えば、公知のペロブスカイト化合物であるCHNHPbIは、色素増感太陽電池の増感色素と比べて、単位厚さ当たりの吸光係数(cm-1)が1桁高いことが知られている。
(Photoelectric conversion layer)
The photoelectric conversion layer 32 is a layer that converts the received light into electrical energy and performs photoelectric conversion. The photoelectric conversion layer contains a perovskite compound, and electrons are generated by the perovskite compound by light irradiation.
The type of perovskite compound is not particularly limited, and a known perovskite compound used in a solar cell can be applied, has a crystal structure, and exhibits light absorption by bandgap excitation like a typical compound semiconductor. Is preferable. For example, it is known that CH 3 NH 3 PbI 3 , which is a known perovskite compound, has an extinction coefficient (cm -1 ) per unit thickness that is an order of magnitude higher than that of a sensitizing dye of a dye-sensitized solar cell. There is.
 光電変換層32の厚さは特に限定されず、例えば、10nm~10000nmが好ましく、50nm~1000nmがより好ましく、100nm~500nmがさらに好ましい。
 光電変換層32の厚さが、上記範囲の下限値以上であると、光電変換層32における光の吸収効率が高まり、より優れた光電変換効率が得られる。
 光電変換層32の厚さが、上記範囲の上限値以下であると、光電変換層32内で発生した光電子が第1導電層20に到達する効率が向上し、より優れた光電変換効率が得られる。
The thickness of the photoelectric conversion layer 32 is not particularly limited, and is preferably 10 nm to 10000 nm, more preferably 50 nm to 1000 nm, and even more preferably 100 nm to 500 nm.
When the thickness of the photoelectric conversion layer 32 is at least the lower limit of the above range, the light absorption efficiency of the photoelectric conversion layer 32 is increased, and more excellent photoelectric conversion efficiency can be obtained.
When the thickness of the photoelectric conversion layer 32 is not more than the upper limit of the above range, the efficiency of photoelectrons generated in the photoelectric conversion layer 32 reaching the first conductive layer 20 is improved, and more excellent photoelectric conversion efficiency is obtained. Be done.
(電子輸送層)
 電子輸送層33は、光電変換層32で発生した電子を、第1導電層20へと輸送する層として機能する。
 電子輸送層33の材料は特に限定されず、有機材料であってもよく、無機材料であってもよく、例えば、公知の太陽電池の電子輸送層のN型半導体が適用できる。
 無機材料としては、例えば、CuI、CuSCN、CuO、Cu2O等の銅化合物やNiOなどのニッケル化合物などが挙げられる。
(Electronic transport layer)
The electron transport layer 33 functions as a layer for transporting the electrons generated in the photoelectric conversion layer 32 to the first conductive layer 20.
The material of the electron transport layer 33 is not particularly limited, and may be an organic material or an inorganic material. For example, an N-type semiconductor of a known electron transport layer of a solar cell can be applied.
Examples of the inorganic material include copper compounds such as CuI, CuSCN, CuO and Cu2O, and nickel compounds such as NiO.
 電子輸送層33は、薄膜状の電子輸送層(バッファ層)のみからなっていてもよいが、多孔質状の電子輸送層33を含むことが好ましい。特に、光電変換層32が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、より複雑な複合膜(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の電子輸送層上に複合膜が製膜されていることが好ましい。 The electron transport layer 33 may be composed of only a thin-film electron transport layer (buffer layer), but preferably includes a porous electron transport layer 33. In particular, when the photoelectric conversion layer 32 is a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited, a more complicated composite film (more complicated structure) can be obtained, and photoelectric conversion can be obtained. Since the efficiency is high, it is preferable that the composite film is formed on the porous electron transport layer.
 電子輸送層33の厚さは、好ましい下限が1nm、好ましい上限が2000nmである。すなわち、電子輸送層33の厚さは、1nm以上2000nm以下であることが好適である。電子輸送層33の厚さが1nm以上であれば、充分にホールをブロックできるようになる。電子輸送層33の厚さが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。電子輸送層33の厚さは、3nm以上1000nm以下であることがより好適であり、5nm以上500nm以下であることがさらに好適である。 The preferred lower limit of the thickness of the electron transport layer 33 is 1 nm, and the preferred upper limit is 2000 nm. That is, the thickness of the electron transport layer 33 is preferably 1 nm or more and 2000 nm or less. When the thickness of the electron transport layer 33 is 1 nm or more, holes can be sufficiently blocked. When the thickness of the electron transport layer 33 is 2000 nm or less, it is unlikely to become a resistance during electron transport, and the photoelectric conversion efficiency becomes high. The thickness of the electron transport layer 33 is more preferably 3 nm or more and 1000 nm or less, and further preferably 5 nm or more and 500 nm or less.
 電子輸送層33を構成する材料の種類は、1種類でもよく、2種類以上でもよい。
 電子輸送層33の層数は、1層であってもよく、2層以上であってもよい。
 また、電子輸送層33の合計の厚さは特に限定されないが、例えば5nm~500nm程度が好適である。5nm以上であると上記損失を抑制する効果が充分に得られ、500nm以下であると内部抵抗を低く抑えることができる。
The type of material constituting the electron transport layer 33 may be one type or two or more types.
The number of layers of the electron transport layer 33 may be one layer or two or more layers.
The total thickness of the electron transport layer 33 is not particularly limited, but is preferably about 5 nm to 500 nm, for example. When it is 5 nm or more, the effect of suppressing the above loss can be sufficiently obtained, and when it is 500 nm or less, the internal resistance can be suppressed low.
 発電層30の厚さは特に限定されず、例えば、10nm~10μmが好ましく、50nm~1μmがより好ましく、100nm~1μmがさらに好ましい。
 発電層30の厚さが上記範囲の下限値以上であると、高い起電力を得ることができる。 発電層30の厚さが上記範囲の上限値以下であると、内部抵抗をより低減することができる。
The thickness of the power generation layer 30 is not particularly limited, and for example, 10 nm to 10 μm is preferable, 50 nm to 1 μm is more preferable, and 100 nm to 1 μm is further preferable.
When the thickness of the power generation layer 30 is at least the lower limit of the above range, a high electromotive force can be obtained. When the thickness of the power generation layer 30 is not more than the upper limit value in the above range, the internal resistance can be further reduced.
<第2導電層>
 第2導電層40は、図1、図2に示すように、発電層30の表面側(上面)Aに形成(積層)されている。
 第2導電層40は、隣接する発電層30の表面側(上面)Aに複数の第1導電層とそれぞれ対向して間隔40Gをあけて形成されている。
 それぞれの第2導電層40は、発電層の表面と垂直の方向(平面視)から見たときに、対向する第1導電層に隣接する第1導電層20との重なり部分42が形成されている。
<Second conductive layer>
As shown in FIGS. 1 and 2, the second conductive layer 40 is formed (laminated) on the front surface side (upper surface) A of the power generation layer 30.
The second conductive layer 40 is formed on the surface side (upper surface) A of the adjacent power generation layer 30 so as to face each of the plurality of first conductive layers at a distance of 40 G.
Each of the second conductive layers 40 is formed with an overlapping portion 42 with the first conductive layer 20 adjacent to the first conductive layer facing the first conductive layer when viewed from a direction (planar view) perpendicular to the surface of the power generation layer. There is.
 第2導電層40を構成する導電材は、例えば、隣接する4つの発電層30の間に形成された貫通孔列50を充填するとともに、これら発電層30の表面側(上面)Aを覆うように形成されている。
 なお、図1、図2の最も他端側Rに配置された第2導電層40は、他端側Rに対応する発電層30が配置されていないので、発電層30の他端側Rを通じてそれぞれが対向する第1導電層20まで到達して、第1導電層20に連通する貫通孔51を介して、端面が第1導電層20と順次電気的に接続されるように形成されている。
The conductive material constituting the second conductive layer 40 fills, for example, the through-hole rows 50 formed between the four adjacent power generation layers 30 and covers the surface side (upper surface) A of the power generation layers 30. Is formed in.
In the second conductive layer 40 arranged on the other end side R of FIGS. 1 and 2, since the power generation layer 30 corresponding to the other end side R is not arranged, the second conductive layer 40 is passed through the other end side R of the power generation layer 30. It is formed so that the end faces are sequentially electrically connected to the first conductive layer 20 through the through holes 51 that reach the first conductive layer 20 facing each other and communicate with the first conductive layer 20. ..
 第2導電層40を形成する材料は導電性を有する層であれば特に限定されず、透明層を形成し得る材料が好適である。例えば、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、二酸化スズ(SnO2)、酸化亜鉛(ZnO)などの金属酸化物が好適である。この他、ガリウム添加酸化亜鉛(GZO)、アルミニウム添加酸化亜鉛(AZO)、インジウム、ガリウム、亜鉛、酸素から構成されるアモルファス半導体(IGZO)等の無機透明導電膜、グラフェン等の導電性カーボン膜、光透過可能な極薄金属膜やこれらの積層膜を用いてもよい。
 極薄金属膜としては、金、銀、銅、アルミニウム、タングステン、ニッケル及びクロムからなる群から選択される何れか1種以上の金属が適用できる。
 第2導電層40を構成する材料の種類は、1種類でもよく、2種類以上でもよい。
 第2導電層40の厚さは任意に設定してもよく、例えば、10nm~500nmが好適である。
The material for forming the second conductive layer 40 is not particularly limited as long as it is a conductive layer, and a material capable of forming a transparent layer is preferable. For example, metal oxides such as tin-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), tin dioxide (SnO2), and zinc oxide (ZnO) are suitable. In addition, inorganic transparent conductive films such as gallium-added zinc oxide (GZO), aluminum-added zinc oxide (AZO), indium, gallium, zinc, and amorphous semiconductors (IGZO) composed of oxygen, and conductive carbon films such as graphene. An ultrathin metal film capable of transmitting light or a laminated film thereof may be used.
As the ultrathin metal film, any one or more metals selected from the group consisting of gold, silver, copper, aluminum, tungsten, nickel and chromium can be applied.
The type of material constituting the second conductive layer 40 may be one type or two or more types.
The thickness of the second conductive layer 40 may be arbitrarily set, and is preferably 10 nm to 500 nm, for example.
 なお、第1実施形態において、図6に示すように、太陽電池100を、例えば、隣接配置された貫通孔51が配列方向において外接するように形成してもよい。
 図6は、太陽電池100において貫通孔51が外接する場合の概略構成を説明する図であり、図6の(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、図6の(b)は(a)に矢視VIB―VIBで示す縦断面図である。
In the first embodiment, as shown in FIG. 6, the solar cell 100 may be formed so that, for example, the through holes 51 arranged adjacent to each other are circumscribed in the arrangement direction.
FIG. 6 is a diagram for explaining a schematic configuration when the through holes 51 are externally attached to the solar cell 100, and FIG. 6 (a) is a plane in which the arrangement of the through hole rows is viewed from the upper surface (surface) side of the power generation layer. FIG. 6B is a vertical cross-sectional view shown by arrow VIB-VIB in FIG. 6A.
 このとき、太陽電池100における貫通孔51のピッチPは、貫通孔51の直径D1に対して1倍(半径に対して2倍)に形成されている。
 したがって、貫通孔51同士の間には発電層30の壁部は形成されていないことになるが、第1導電層20の表面が略平坦に露出することで、第2導電層40を構成する導電材が第1導電層20と端面接続されて、第1導電層20と第2導電層40とが安定して導通する。
At this time, the pitch P of the through holes 51 in the solar cell 100 is formed to be once (twice the radius) the diameter D1 of the through holes 51.
Therefore, the wall portion of the power generation layer 30 is not formed between the through holes 51, but the surface of the first conductive layer 20 is exposed substantially flat to form the second conductive layer 40. The conductive material is connected to the first conductive layer 20 at the end face, and the first conductive layer 20 and the second conductive layer 40 are stably conductive.
 次に、第1実施形態に係る太陽電池の製造方法について説明する。
 第1実施形態に係る太陽電池100の製造方法は、例えば、絶縁性基材10の上面(一方の面)に、第1導電層20と、発電層30と、をこの順に形成する第1工程と、パルスレーザーを用いて、発電層30の面方向に沿って厚さ方向に貫通する貫通孔51を間隔をあけて複数形成することにより発電層30に貫通孔列50を形成する第2工程と、発電層30の上に、導電材を張付けて第2導電層40を形成する第3工程と、を備えている。なお、この製造方法は一例であり、下記の製造法に限定されない。
Next, the method for manufacturing the solar cell according to the first embodiment will be described.
The method for manufacturing the solar cell 100 according to the first embodiment is, for example, a first step of forming a first conductive layer 20 and a power generation layer 30 on the upper surface (one surface) of the insulating base material 10 in this order. A second step of forming a through-hole row 50 in the power generation layer 30 by forming a plurality of through holes 51 penetrating in the thickness direction along the surface direction of the power generation layer 30 at intervals using a pulse laser. And a third step of sticking a conductive material on the power generation layer 30 to form the second conductive layer 40. This manufacturing method is an example, and is not limited to the following manufacturing method.
(1)絶縁性基材の準備
 絶縁性基材10は、前述の絶縁性基材を用いることが可能であり、周知の製造方法により製造することが可能である。
(1) Preparation of Insulating Base Material The insulating base material 10 can use the above-mentioned insulating base material, and can be manufactured by a well-known manufacturing method.
(2)第1工程
 第1工程は、絶縁性基材10の上面(表面、一方の面)に、第1導電層20と、発電層30と、をこの順に形成する。
(2) First Step In the first step, the first conductive layer 20 and the power generation layer 30 are formed in this order on the upper surface (surface, one surface) of the insulating base material 10.
(第1導電層20の形成)
 絶縁性基材10の上面に、第1導電層20を形成する方法は特に限定されず、例えば、スパッタ法、蒸着法等の周知の成膜方法を適用することができる。
(Formation of the first conductive layer 20)
The method of forming the first conductive layer 20 on the upper surface of the insulating base material 10 is not particularly limited, and for example, a well-known film forming method such as a sputtering method or a vapor deposition method can be applied.
 第1導電層20の上に発電層30を形成する方法は特に限定されず、例えば、スパッタ法、塗布法、蒸着法等の公知の成膜方法が挙げられる。
 光電変換層32の両側に正孔輸送層31及び電子輸送層33を備える太陽電池を得る場合は、例えば、次のような方法が挙げられる。
The method of forming the power generation layer 30 on the first conductive layer 20 is not particularly limited, and examples thereof include known film forming methods such as a sputtering method, a coating method, and a vapor deposition method.
When obtaining a solar cell having a hole transport layer 31 and an electron transport layer 33 on both sides of the photoelectric conversion layer 32, for example, the following method can be mentioned.
 第1導電層20の上に電子輸送層33を形成する。
 電子輸送層33の形成方法は特に限定されず、所望の厚さでN型半導体からなる緻密層を形成可能な公知方法として、例えば、スパッタ法、蒸着法、N型半導体の前駆体を含む分散液を塗布するゾルゲル法等が挙げられる。
The electron transport layer 33 is formed on the first conductive layer 20.
The method for forming the electron transport layer 33 is not particularly limited, and examples of a known method capable of forming a dense layer made of an N-type semiconductor with a desired thickness include a sputtering method, a vapor deposition method, and a dispersion including a precursor of the N-type semiconductor. Examples thereof include a sol-gel method in which a liquid is applied.
 N型半導体の前駆体としては、例えば、四塩化チタン(TiCl)、ペルオキソチタン酸(PTA)や、チタンエトキシド、チタンイソプロポキシド(TTIP)等のチタンアルコキシド、亜鉛アルコキシド、アルコキシシラン、ジルコニウムアルコキシド等の金属アルコキシドが挙げられる。 Examples of the precursor of the N-type semiconductor include titanium tetrachloride (TiCl 4 ), peroxotitanic acid (PTA), titanium alkoxide such as titanium ethoxyoxide and titanium isopropoxide (TTIP), zinc alkoxide, alkoxysilane, and zirconium. Examples thereof include metal alkoxides such as alkoxides.
 本態様の太陽電池において、電子輸送層33と光電変換層32との間には、下地層(不図示)を形成してもよい。
 光電変換層32を支持する下地層を形成する場合、その方法は特に限定されず、例えば、従来の色素増感太陽電池の増感色素を担持する多孔質半導体層の形成方法が適用できる。
In the solar cell of this embodiment, a base layer (not shown) may be formed between the electron transport layer 33 and the photoelectric conversion layer 32.
When forming the base layer that supports the photoelectric conversion layer 32, the method is not particularly limited, and for example, a method for forming a porous semiconductor layer that supports a sensitizing dye of a conventional dye-sensitized solar cell can be applied.
 具体例として、例えば、N型半導体又は絶縁体からなる微粒子及びバインダーを含むペーストをドクターブレード法で電子輸送層33の表面に塗布し、乾燥し、焼成することによって、微粒子からなる多孔質の下地層を形成することができる。
 また、微粒子を電子輸送層33の表面に吹き付けることによって、当該微粒子からなる多孔質又は非多孔質の下地層を成膜することができる。
As a specific example, for example, a paste containing fine particles and a binder made of an N-type semiconductor or an insulator is applied to the surface of the electron transport layer 33 by a doctor blade method, dried, and fired to obtain a porous surface made of fine particles. A formation can be formed.
Further, by spraying the fine particles onto the surface of the electron transport layer 33, a porous or non-porous base layer made of the fine particles can be formed.
 前記下地層の表面にペロブスカイト化合物からなる光電変換層32を形成する。光電変換層32を形成する方法は、特に限定されず、例えば、次の方法が挙げられる。即ち、ペロブスカイト化合物又はペロブスカイト化合物の前駆体を溶解した原料溶液を前記下地層の表面に塗布し、前記下地層内部に含浸させるとともに、表面に所望の厚さの溶液からなる溶液層がある状態で、溶媒を乾燥する方法である。 A photoelectric conversion layer 32 made of a perovskite compound is formed on the surface of the base layer. The method for forming the photoelectric conversion layer 32 is not particularly limited, and examples thereof include the following methods. That is, a raw material solution in which a perovskite compound or a precursor of a perovskite compound is dissolved is applied to the surface of the base layer, impregnated inside the base layer, and a solution layer composed of a solution having a desired thickness is present on the surface. , A method of drying the solvent.
 前記下地層に塗布した前記原料溶液の少なくとも一部は前記下地層の多孔質膜内に浸透し、溶媒の乾燥とともに結晶化が進行し、多孔質膜内にペロブスカイト化合物が付着及び堆積する。
 また、充分量の前記原料溶液を塗布することにより、多孔質膜内に浸透しなかった前記原料溶液は、溶媒の乾燥とともに前記下地層の表面にペロブスカイト化合物からなるアッパー層が形成される。前記アッパー層を構成するペロブスカイト化合物と前記下地層内部のペロブスカイト化合物は、一体的に形成されており、光電変換層32を一体的に構成する。
At least a part of the raw material solution applied to the base layer permeates into the porous membrane of the base layer, crystallization proceeds as the solvent dries, and the perovskite compound adheres and deposits in the porous membrane.
Further, by applying a sufficient amount of the raw material solution, the raw material solution that has not penetrated into the porous film is formed with an upper layer made of a perovskite compound on the surface of the base layer as the solvent dries. The perovskite compound constituting the upper layer and the perovskite compound inside the base layer are integrally formed, and integrally constitute the photoelectric conversion layer 32.
 本実施形態で使用するペロブスカイト化合物は、光吸収により起電力を発生させ得るものであれば特に限定されず、公知のペロブスカイト化合物が適用可能である。 The perovskite compound used in the present embodiment is not particularly limited as long as it can generate an electromotive force by light absorption, and a known perovskite compound can be applied.
 光電変換層32の形成において、前記原料溶液に含まれる前記前駆体としては、例えば、鉛のハロゲン化物が挙げられる。
 鉛のハロゲン化物が含まれた単一の原料溶液を前記下地層に塗布してもよいし、2種のハロゲン化物が個別に含まれた混合原料溶液を前記下地層に塗布してもよい。
In the formation of the photoelectric conversion layer 32, examples of the precursor contained in the raw material solution include a halide of lead.
A single raw material solution containing a lead halide may be applied to the base layer, or a mixed raw material solution containing two types of halides individually may be applied to the base layer.
 前記原料溶液の溶媒は、原料を溶解し、前記下地層を損なわない溶媒であれば特に限定されず、例えば、エステル、ケトン、エーテル、アルコール、グリコールエーテル、アミド、ニトリル、カーボネート、ハロゲン化炭化水素、炭化水素、スルホン、スルホキシド、ホルムアミド等の化合物が挙げられる。 The solvent of the raw material solution is not particularly limited as long as it is a solvent that dissolves the raw material and does not damage the underlying layer, and is, for example, an ester, a ketone, an ether, an alcohol, a glycol ether, an amide, a nitrile, a carbonate, or a halogenated hydrocarbon. , Glyco, sulfone, sulfoxide, formamide and other compounds.
 前記原料溶液中の原料の濃度は特に限定されず、充分に溶解され、多孔質膜内に当該原料溶液が浸透可能な程度の粘度を呈する濃度であることが好ましい。 The concentration of the raw material in the raw material solution is not particularly limited, and is preferably a concentration that is sufficiently dissolved and has a viscosity that allows the raw material solution to permeate into the porous membrane.
 前記下地層に塗布する前記原料溶液の塗布量は特に限定されず、例えば、多孔質膜内の全体又は少なくとも一部に浸透するとともに、多孔質膜の表面に厚さ1nm~1μm程度の前記アッパー層が形成される程度の塗布量が好ましい。 The amount of the raw material solution to be applied to the base layer is not particularly limited, and for example, the upper that permeates all or at least a part of the porous film and has a thickness of about 1 nm to 1 μm on the surface of the porous film. The coating amount is preferably such that a layer is formed.
 前記下地層に対する前記原料溶液の塗布方法は特に限定されず、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等の公知方法を適用できる。 The method of applying the raw material solution to the base layer is not particularly limited, and known methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method can be applied.
 前記下地層に塗布した前記原料溶液を乾燥する方法は特に限定されず、自然乾燥、減圧乾燥、温風乾燥等の公知方法を適用できる。
 前記下地層に塗布した前記原料溶液の乾燥温度は、ペロブスカイト化合物の結晶化が充分に進行する温度であればよく、例えば40~150℃の範囲が挙げられる。
The method of drying the raw material solution applied to the base layer is not particularly limited, and known methods such as natural drying, vacuum drying, and warm air drying can be applied.
The drying temperature of the raw material solution applied to the base layer may be a temperature at which crystallization of the perovskite compound proceeds sufficiently, and examples thereof include a range of 40 to 150 ° C.
 正孔輸送層31の形成方法は特に限定されず、例えば、光電変換層32を構成するペロブスカイト化合物を溶解しにくい溶媒に、P型半導体を溶解又は分散した溶液を調製し、この溶液を光電変換層32の表面に塗布し、乾かすことにより正孔輸送層31を得る方法が挙げられる。
 以上の工程により、電子輸送層33、光電変換層32及び正孔輸送層31をこの順で備える層を形成することができる。
The method for forming the hole transport layer 31 is not particularly limited. For example, a solution in which a P-type semiconductor is dissolved or dispersed in a solvent in which the perovskite compound constituting the photoelectric conversion layer 32 is difficult to dissolve is prepared, and this solution is photoelectrically converted. A method of obtaining the hole transport layer 31 by applying it to the surface of the layer 32 and drying it can be mentioned.
By the above steps, a layer including the electron transport layer 33, the photoelectric conversion layer 32, and the hole transport layer 31 can be formed in this order.
(3)第2工程
 第2工程では、パルスレーザーを用いて、発電層30の面方向に沿って厚さ方向に貫通する間隔をあけて配置された複数の貫通孔51を平面視直線的に形成することにより貫通孔列50を形成する。
(3) Second Step In the second step, a pulsed laser is used to linearly view a plurality of through holes 51 arranged at intervals of penetrating in the thickness direction along the plane direction of the power generation layer 30. By forming, a through hole row 50 is formed.
 貫通孔51を形成するレーザー照射装置としては、種々のレーザー照射装置が使用可能である。例えば、レーザー照射装置は、紫外線レーザー、グリーンレーザー、赤外線レーザーを使用することが可能であり、加工性、コストの面からグリーンレーザーが望ましい。 Various laser irradiation devices can be used as the laser irradiation device for forming the through hole 51. For example, the laser irradiation device can use an ultraviolet laser, a green laser, or an infrared laser, and a green laser is desirable from the viewpoint of workability and cost.
 貫通孔51を形成する際の条件を下記に示す。なお、下記の条件は一例を示すものであり、下記条件に限定されない。
〔パルス周波数〕
 パルス周波数は、10kHz~500KHzが望ましい。また、ガルバノミラー方式で精度よくレーザーパルスをスキャンするためには、パルス周波数は、例えば、100kHz~300KHzが望ましい。
〔出力〕
 レーザーの出力は、1パルスあたり、0.5μJ~60μJ程度とすることが望ましい。
〔スキャン速度〕
 ガルバノミラーによりスキャンする際のスキャン速度は、例えば、0.1m/sec~10m/secが望ましい。また、加工精度の点からは、スキャン速度は、例えば、3m/sec~6m/secであることが好適である。
The conditions for forming the through hole 51 are shown below. The following conditions show an example and are not limited to the following conditions.
[Pulse frequency]
The pulse frequency is preferably 10 kHz to 500 kHz. Further, in order to scan the laser pulse with high accuracy by the galvanometer mirror method, the pulse frequency is preferably 100 kHz to 300 kHz, for example.
〔output〕
The laser output is preferably about 0.5 μJ to 60 μJ per pulse.
[Scan speed]
The scanning speed when scanning with the galvanometer mirror is preferably, for example, 0.1 m / sec to 10 m / sec. Further, from the viewpoint of processing accuracy, the scanning speed is preferably, for example, 3 m / sec to 6 m / sec.
(4)第3工程
 第3工程は、発電層30の上に第2導電層40を形成する。
 第2導電層40の形成方法は特に限定されず、例えば、スパッタ法、蒸着法等の公知の成膜方法が挙げられる。
 なお、太陽電池100の製造方法は一例であり、上記方法に限定されず、発明の趣旨を変更しない範囲で任意に設定することができる。
(4) Third Step In the third step, the second conductive layer 40 is formed on the power generation layer 30.
The method for forming the second conductive layer 40 is not particularly limited, and examples thereof include known film forming methods such as a sputtering method and a vapor deposition method.
The method for manufacturing the solar cell 100 is an example, and is not limited to the above method, and can be arbitrarily set as long as the gist of the invention is not changed.
 第1実施形態に係る太陽電池100によれば、第1導電層20と第2導電層40の、面方向における重なり部分42と対応した領域に、発電層30を貫通する貫通孔列50が形成され、第2導電層40を形成する導電材がこの貫通孔列50内に延在して第1導電層20に到達することで、第2導電層40を構成する導電材が端面で第1導電層20と電気的に接続される。
 その結果、第1導電層20にダメージが生じるのを抑制するとともに発電層30に第1導電層20が露出する貫通孔51を効率的に形成して第1導電層20と第2導電層40の間に安定した導通を確保することができる。
According to the solar cell 100 according to the first embodiment, a through-hole row 50 penetrating the power generation layer 30 is formed in a region of the first conductive layer 20 and the second conductive layer 40 corresponding to the overlapping portion 42 in the plane direction. Then, the conductive material forming the second conductive layer 40 extends into the through-hole row 50 and reaches the first conductive layer 20, so that the conductive material forming the second conductive layer 40 is first on the end face. It is electrically connected to the conductive layer 20.
As a result, damage to the first conductive layer 20 is suppressed, and through holes 51 in which the first conductive layer 20 is exposed are efficiently formed in the power generation layer 30, and the first conductive layer 20 and the second conductive layer 40 are formed. Stable continuity can be ensured during the period.
 第1実施形態に係る太陽電池100によれば、貫通孔51は、発電層30と第1導電層20との境界を越えて形成されているので、貫通孔51を通じて第1導電層20との境界を越えた第2導電層(を構成する導電材)40と第1導電層20との接触面積が増加する。その結果、第1導電層20と第2導電層40との安定した導通を確保することができる。 According to the solar cell 100 according to the first embodiment, since the through hole 51 is formed beyond the boundary between the power generation layer 30 and the first conductive layer 20, it is connected to the first conductive layer 20 through the through hole 51. The contact area between the second conductive layer (conducting material) 40 and the first conductive layer 20 that crosses the boundary increases. As a result, stable conduction between the first conductive layer 20 and the second conductive layer 40 can be ensured.
 第1実施形態に係る太陽電池100の製造方法によれば、発電層30の面方向に沿って厚さ方向に貫通する複数の貫通孔51が、間隔30Gをあけて形成されているので、発電層30におけるレーザーパワー(出力)の密度が、連続的なスクライビング溝を形成する場合に比較して相対的に低くなり、発電層30を除去する際のマージンを大きくすることができる。
 その結果、発電層30に確実に貫通孔が形成される程度にレーザーパワーを大きくすることができ、さらに、レーザーパワーの密度が相対的に低くなることで、レーザーパワーを大きくして大きなバラツキが生じても、第1導電層20にダメージが生じるのを抑制することができる。
According to the method for manufacturing the solar cell 100 according to the first embodiment, since a plurality of through holes 51 penetrating in the thickness direction along the surface direction of the power generation layer 30 are formed at intervals of 30 G, power generation is performed. The density of the laser power (output) in the layer 30 is relatively low as compared with the case where the continuous scribing groove is formed, and the margin when removing the power generation layer 30 can be increased.
As a result, the laser power can be increased to the extent that a through hole is surely formed in the power generation layer 30, and further, the density of the laser power becomes relatively low, so that the laser power is increased and a large variation occurs. Even if it does occur, it is possible to prevent damage to the first conductive layer 20.
〔第2実施形態〕
 次に、図7、図8を参照して、本発明の第2実施形態について説明する。
 図7、図8は、本発明の第2実施形態に係る太陽電池の概略構成を説明する図であり、図7は縦断面図であり、図8は図7における矢印VIII部分の第2導電層が形成される前の貫通孔列を概念的に示す斜視図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. 7 and 8.
7 and 8 are views for explaining the schematic configuration of the solar cell according to the second embodiment of the present invention, FIG. 7 is a vertical sectional view, and FIG. 8 is a second conductivity of the arrow VIII portion in FIG. It is a perspective view which conceptually shows the through hole row before a layer is formed.
 第2実施形態に係る太陽電池200は、図7、図8に示すように、例えば、絶縁性基材10と、第1導電層20と、発電層30と、第2導電層40と、発電層30を貫通する貫通孔列250とを、備えている。 As shown in FIGS. 7 and 8, the solar cell 200 according to the second embodiment includes, for example, an insulating base material 10, a first conductive layer 20, a power generation layer 30, a second conductive layer 40, and power generation. A through-hole row 250 penetrating the layer 30 is provided.
 それぞれの発電層30で生成された電子は、それぞれの発電層30において、第2導電層40に向かって移動する。そして、第2導電層40に移動した電子は、貫通孔列250内に形成され且つ第2導電層40を構成する導電材で形成された導電部241を通して、他端側Rの第1導電層20に順次移動する。
 第2実施形態が第1実施形態と異なるのは、貫通孔列50、貫通孔51に代えて、貫通孔列250、貫通孔251を備えている点である。その他は、第1実施形態と同様であるので同じ符号を付して説明を省略する。
The electrons generated in each power generation layer 30 move toward the second conductive layer 40 in each power generation layer 30. Then, the electrons that have moved to the second conductive layer 40 pass through the conductive portion 241 formed in the through-hole row 250 and formed of the conductive material constituting the second conductive layer 40, and the first conductive layer on the other end side R. Move to 20 in sequence.
The second embodiment is different from the first embodiment in that the through hole row 250 and the through hole 251 are provided instead of the through hole row 50 and the through hole 51. Others are the same as those in the first embodiment, so the same reference numerals are given and the description thereof will be omitted.
 貫通孔列250は、図8に示すように、例えば、間隔をあけて形成された複数の貫通孔251を備えている。貫通孔列250は、重なり部分42に形成されている。
 貫通孔251は、発電層30を貫通するとともに、第1導電層20の厚さ方向に伸び、先端側(端部)が第1導電層20内に入り込んで形成された掘込凹部(凹部)252を備えている。
 第2導電層40を構成する導電材は、貫通孔251の凹部(端部)252において、第1導電層20と面接触するように構成されている。
 掘込凹部(凹部)252の深さt1は、例えば、第1導電層20の厚さt0に対して0%以上80%未満の範囲に形成されていることが好ましく、2%以上70%以下の範囲に形成されていることがより好ましく、5%以上50%以下の範囲に形成されていることがさらに好ましい。なお、本実施形態において、図14、図15に符号520Xで示すように、第1導電層が除去されて絶縁性基材が露出してしまうような貫通孔の割合は0%であることが好ましい。
As shown in FIG. 8, the through hole row 250 includes, for example, a plurality of through holes 251 formed at intervals. The through hole row 250 is formed in the overlapping portion 42.
The through hole 251 penetrates the power generation layer 30 and extends in the thickness direction of the first conductive layer 20, and the tip side (end portion) enters the first conductive layer 20 to form a digging recess (recess). It has 252.
The conductive material constituting the second conductive layer 40 is configured to make surface contact with the first conductive layer 20 in the recess (end) 252 of the through hole 251.
The depth t1 of the digging recess (recess) 252 is preferably formed in a range of 0% or more and less than 80% with respect to the thickness t0 of the first conductive layer 20, for example, 2% or more and 70% or less. It is more preferable that it is formed in the range of 5% or more and 50% or less. In the present embodiment, as shown by reference numeral 520X in FIGS. 14 and 15, the proportion of through holes in which the first conductive layer is removed and the insulating base material is exposed is 0%. preferable.
 掘込凹部252を備えた貫通孔251を形成する際には、レーザーパワーを大きくする。例えば、凹部252を形成しない場合は、レーザー出力が20μ程度が適しているが、凹部252を形成する場合には25μJとすることが好適である。 When forming the through hole 251 provided with the digging recess 252, the laser power is increased. For example, when the recess 252 is not formed, the laser output is preferably about 20 μJ, but when the recess 252 is formed, it is preferably 25 μJ.
 貫通孔251は、平面視略円形に形成されていて、例えば、発電層30の表面における直径D1がφ50μmに設定されている。貫通孔251の直径D1については任意に設定することが可能であるが、例えば、10μm以上100μm以下に設定することが好適である。 The through hole 251 is formed in a substantially circular shape in a plan view, and for example, the diameter D1 on the surface of the power generation layer 30 is set to φ50 μm. The diameter D1 of the through hole 251 can be arbitrarily set, but it is preferably set to, for example, 10 μm or more and 100 μm or less.
 貫通孔列250における貫通孔251のピッチPは任意に設定することが可能である。貫通孔251の間隔30Gをあける(間隔30G>0(μm))場合には、例えば、パルスレーザーを照射するピッチ(周期)Pを、貫通孔251の直径D1(50μm)の1倍(半径の2倍)より大きく設定する。
 また、貫通孔251のピッチPは、例えば、貫通孔251の直径D1に対して1倍以上2倍以下(半径に対して2倍以上4倍以下)に設定することが好適である。
The pitch P of the through holes 251 in the through hole row 250 can be arbitrarily set. When the interval 30G of the through hole 251 is provided (interval 30G> 0 (μm)), for example, the pitch (cycle) P for irradiating the pulse laser is once the diameter D1 (50 μm) of the through hole 251 (radius). Double) Set larger.
Further, it is preferable that the pitch P of the through hole 251 is set to, for example, 1 time or more and 2 times or less (2 times or more and 4 times or less with respect to the radius) with respect to the diameter D1 of the through hole 251.
 すなわち、例えば、貫通孔51の直径D1が10μm以上100μm以下である場合は、貫通孔51のピッチPは10μm以上200μm以下であることが好適であり、10μm以上100μm以下であることがより好適である。 That is, for example, when the diameter D1 of the through hole 51 is 10 μm or more and 100 μm or less, the pitch P of the through hole 51 is preferably 10 μm or more and 200 μm or less, and more preferably 10 μm or more and 100 μm or less. be.
 第2実施形態に係る太陽電池200によれば、貫通孔251は、第1導電層20に形成された掘込凹部252を備え、掘込凹部252の周面における導通が可能となり、導通面積が増大することで、第1導電層20と第2導電層40の間の導通を安定させることができる。
 また、掘込凹部252の深さt1が、第1導電層20の厚さt0に対して80%未満の範囲で形成されているので、第1導電層20に対するダメージが抑制される。
According to the solar cell 200 according to the second embodiment, the through hole 251 is provided with a digging recess 252 formed in the first conductive layer 20, and conduction is possible on the peripheral surface of the digging recess 252, so that the conduction area is large. By increasing the number, the conduction between the first conductive layer 20 and the second conductive layer 40 can be stabilized.
Further, since the depth t1 of the dug recess 252 is formed in a range of less than 80% with respect to the thickness t0 of the first conductive layer 20, damage to the first conductive layer 20 is suppressed.
〔第1変形例(第2実施形態)〕
 次に、図9を参照して、本発明の第2実施形態の第1変形例について説明する。
 図9は第2実施形態の第1変形例に係る太陽電池の概略構成を説明する図であり、図9の(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、図9の(b)は図9の(a)に矢視IXB―IXBで示す縦断面図である。なお、図9では、便宜的に、発電層30、第1導電層20で多段円筒状の貫通孔を図示している。これは、変形例(第2実施形態)における貫通孔251が、第1導電層20の表面における掘込凹部(凹部)252の直径D2が、発電層30の表面における直径D1よりも小径であることを概念的に図示したものである。以下、同様とする。
[First modification (second embodiment)]
Next, a first modification of the second embodiment of the present invention will be described with reference to FIG.
FIG. 9 is a diagram illustrating a schematic configuration of a solar cell according to a first modification of the second embodiment, and FIG. 9A is a view of the arrangement of through-hole rows as viewed from the upper surface (surface) side of the power generation layer. It is a plan view, and FIG. 9B is a vertical sectional view shown by arrow IXB-IXB in FIG. 9A. Note that FIG. 9 illustrates a multi-stage cylindrical through hole in the power generation layer 30 and the first conductive layer 20 for convenience. This is because the through hole 251 in the modified example (second embodiment) has a diameter D2 of the dug recess (recess) 252 on the surface of the first conductive layer 20 smaller than the diameter D1 on the surface of the power generation layer 30. This is a conceptual illustration of this. The same shall apply hereinafter.
 第1変形例が、第2実施形態と異なるのは、貫通孔251における掘込凹部(凹部)252の第1導電層20の表面における直径D2が、発電層30の表面における直径D1よりも小径とされている点である。
 貫通孔251のピッチPは、図9に示すように、貫通孔251の発電層30の表面における直径D1よりも大きく形成されている。その結果、隣接する貫通孔251は、間隔21Gをあけて配列されている。
The first modification differs from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 in the through hole 251 is smaller than the diameter D1 on the surface of the power generation layer 30. It is a point that is said to be.
As shown in FIG. 9, the pitch P of the through hole 251 is formed to be larger than the diameter D1 on the surface of the power generation layer 30 of the through hole 251. As a result, the adjacent through holes 251 are arranged with an interval of 21G.
 貫通孔251の掘込凹部(凹部)252の深さt1は、例えば、第1導電層20の厚さt0に対して0%以上80%未満の範囲に形成されていることが好ましく、2%以上70%以下の範囲に形成されていることがより好ましく、5%以上50%以下の範囲に形成されていることがさらに好ましい。なお、第1導電層20の厚さt0に対して80%より大きく形成されていてもよい。その他は、第2実施形態と同様であるので同じ符号を付して説明を省略する。 The depth t1 of the dug recess (recess) 252 of the through hole 251 is preferably formed in a range of 0% or more and less than 80% with respect to the thickness t0 of the first conductive layer 20, for example, 2%. It is more preferably formed in the range of 70% or more, and further preferably formed in the range of 5% or more and 50% or less. In addition, it may be formed larger than 80% with respect to the thickness t0 of the first conductive layer 20. Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
 貫通孔251は、第1導電層20の表面における掘込凹部(凹部)252の直径D2が発電層30の表面における直径D1よりも小径であればよく、貫通孔251は、例えば、すり鉢状、お椀状等に形成されていてもよい。以下、同様である。 The through hole 251 may have a diameter D2 of the dug recess (recess) 252 on the surface of the first conductive layer 20 smaller than the diameter D1 on the surface of the power generation layer 30, and the through hole 251 may have, for example, a mortar shape. It may be formed in a bowl shape or the like. The same applies hereinafter.
 第2実施形態の第1変形例によれば、貫通孔251のピッチPが、貫通孔251の直径D1よりも大きく形成されて、隣接する貫通孔251は間隔をあけて配列されるとともに、掘込凹部(凹部)252の直径D2が貫通孔251の直径D1よりも小径であるので、第1導電層20が分断されることはなく、しかも掘込凹部(凹部)252の周面における導通が確保できる。 According to the first modification of the second embodiment, the pitch P of the through hole 251 is formed to be larger than the diameter D1 of the through hole 251 and the adjacent through holes 251 are arranged at intervals and dug. Since the diameter D2 of the recess (recess) 252 is smaller than the diameter D1 of the through hole 251, the first conductive layer 20 is not divided, and the conduction on the peripheral surface of the recess (recess) 252 is not divided. Can be secured.
〔第2変形例(第2実施形態)〕
 次に、図10を参照して、本発明の第2実施形態の第2変形例について説明する。
 図10は、第2実施形態の第2変形例に係る太陽電池の概略構成を説明する図であり、図10(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、図10の(b)は図10の(a)に矢視XB―XBで示す縦断面図である。
[Second variant (second embodiment)]
Next, a second modification of the second embodiment of the present invention will be described with reference to FIG.
FIG. 10 is a diagram illustrating a schematic configuration of a solar cell according to a second modification of the second embodiment, and FIG. 10A is a view of the arrangement of through-hole rows as viewed from the upper surface (surface) side of the power generation layer. It is a plan view, and FIG. 10B is a vertical cross-sectional view shown by arrow XB-XB in FIG. 10A.
 第2変形例が、第2実施形態と異なるのは、貫通孔251における掘込凹部(凹部)252の第1導電層20の表面における直径D2が、発電層30の表面における直径D1よりも小径とされている点と、図10に示すように、貫通孔251のピッチPが貫通孔251の発電層30の表面における直径D1の1倍に形成され、隣接する貫通孔251が、発電層30の表面において外接している点である。 The second modification is different from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 in the through hole 251 is smaller than the diameter D1 on the surface of the power generation layer 30. As shown in FIG. 10, the pitch P of the through hole 251 is formed to be 1 times the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and the adjacent through hole 251 is the power generation layer 30. It is a point that is circumscribed on the surface of.
 貫通孔251のピッチPは、貫通孔251の発電層30の表面における直径D1の1倍(半径の2倍)に形成されている。すなわち、貫通孔251のピッチPは、掘込凹部(凹部)252の第1導電層20の表面における直径D2よりも大きく形成されている。その結果、隣接する掘込凹部(凹部)252同士は、間隔21Gをあけて配列されている。 The pitch P of the through hole 251 is formed to be once (twice the radius) the diameter D1 on the surface of the power generation layer 30 of the through hole 251. That is, the pitch P of the through hole 251 is formed to be larger than the diameter D2 on the surface of the first conductive layer 20 of the digging recess (recess) 252. As a result, the adjacent digging recesses (recesses) 252 are arranged with an interval of 21G.
 貫通孔251のピッチPを、貫通孔251の発電層30の表面における直径D1よりも小さく、掘込凹部(凹部)252の第1導電層20の表面における直径D2よりも大きく形成して、隣接する貫通孔251が発電層30の表面においてオーバーラップするように形成してもよい。 The pitch P of the through hole 251 is formed to be smaller than the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and larger than the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 so as to be adjacent to each other. The through holes 251 may be formed so as to overlap on the surface of the power generation layer 30.
 貫通孔251の掘込凹部(凹部)252の深さt1は、例えば、第1導電層20の厚さt0に対して0%以上80%未満の範囲に形成されていることが好ましく、2%以上70%以下の範囲に形成されていることがより好ましく、5%以上50%以下の範囲に形成されていることがさらに好ましい。なお、第1導電層20の厚さt0に対して80%より大きく形成されていてもよい。その他は、第2実施形態と同様であるので同じ符号を付して説明を省略する。 The depth t1 of the dug recess (recess) 252 of the through hole 251 is preferably formed in a range of 0% or more and less than 80% with respect to the thickness t0 of the first conductive layer 20, for example, 2%. It is more preferably formed in the range of 70% or more, and further preferably formed in the range of 5% or more and 50% or less. In addition, it may be formed larger than 80% with respect to the thickness t0 of the first conductive layer 20. Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
 第2実施形態の第2変形例によれば、貫通孔251のピッチPが、貫通孔251の発電層30の表面における直径D1よりも小さく形成され、隣接する貫通孔251がオーバーラップして配列されているが、隣接する掘込凹部(凹部)252は、間隔をあけて配列されているので、第1導電層20が分断されることがなく、しかも掘込凹部(凹部)252の周面における導通が確保できる。 According to the second modification of the second embodiment, the pitch P of the through holes 251 is formed to be smaller than the diameter D1 on the surface of the power generation layer 30 of the through holes 251 and the adjacent through holes 251 are arranged so as to overlap each other. However, since the adjacent digging recesses (recesses) 252 are arranged at intervals, the first conductive layer 20 is not divided, and the peripheral surface of the digging recesses (recesses) 252. Conduction can be ensured.
〔第3変形例(第2実施形態)〕
 次に、図11を参照して、本発明の第2実施形態の第3変形例について説明する。
 図11は、第2実施形態の第3変形例に係る太陽電池の概略構成を説明する図であり、図11の(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、図11の(b)は図11の(a)に矢視XIB―XIBで示す縦断面図である。
[Third variant (second embodiment)]
Next, a third modification of the second embodiment of the present invention will be described with reference to FIG.
FIG. 11 is a diagram illustrating a schematic configuration of a solar cell according to a third modification of the second embodiment, and FIG. 11A is a view of the arrangement of through-hole rows from the upper surface (surface) side of the power generation layer. It is a plan view, and FIG. 11 (b) is a vertical cross-sectional view shown by arrow XIB-XIB in FIG. 11 (a).
 第3変形例が、第2実施形態と異なるのは、掘込凹部(凹部)252の第1導電層20の表面における直径D2が、発電層30の表面における直径D1よりも小径とされている点と、図11に示すように、貫通孔251のピッチPが貫通孔251の発電層30の表面における直径D1の1倍に形成され、隣接する貫通孔251が、発電層30の表面において外接している点と、掘込凹部(凹部)252の深さt1が第1導電層20の厚さt0に対して100%に形成されて絶縁性基材10の表面が露出されている点である。その他は、第2実施形態と同様であるので同じ符号を付して説明を省略する。 The third modification is different from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the dug recess (recess) 252 is smaller than the diameter D1 on the surface of the power generation layer 30. Point and, as shown in FIG. 11, the pitch P of the through hole 251 is formed to be 1 times the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and the adjacent through hole 251 is externally attached on the surface of the power generation layer 30. The point that the depth t1 of the digging recess (recess) 252 is formed to be 100% with respect to the thickness t0 of the first conductive layer 20 so that the surface of the insulating base material 10 is exposed. be. Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
 第2実施形態の第3変形例によれば、貫通孔251のピッチPが、貫通孔251の直径D1の1倍に形成されて隣接する貫通孔251が外接して配列されているが、掘込凹部(凹部)252の直径D2が貫通孔251の直径D1よりも小径であるので、第1導電層20が分断されることがなく、また絶縁性基材10の表面が露出する貫通孔251を形成しているので掘込凹部(凹部)252の周面における導通が確保できる。 According to the third modification of the second embodiment, the pitch P of the through hole 251 is formed to be 1 times the diameter D1 of the through hole 251 and the adjacent through holes 251 are arranged circumscribed. Since the diameter D2 of the recess (recess) 252 is smaller than the diameter D1 of the through hole 251 so that the first conductive layer 20 is not divided and the surface of the insulating base material 10 is exposed, the through hole 251 Is formed, so that continuity can be ensured on the peripheral surface of the digging recess (recess) 252.
〔第4変形例(第2実施形態)〕
 次に、図12を参照して、本発明の第2実施形態の第4変形例について説明する。
 図12は、第2実施形態の第4変形例に係る太陽電池の概略構成を説明する図であり、図12の(a)は貫通孔列の配列を発電層の上面(表面)側から見た平面図であり、図12の(b)は図12の(a)に矢視XIIB―XIIBで示す縦断面図である。
[Fourth Modified Example (Second Embodiment)]
Next, a fourth modification of the second embodiment of the present invention will be described with reference to FIG.
FIG. 12 is a diagram illustrating a schematic configuration of a solar cell according to a fourth modification of the second embodiment, and FIG. 12A is a view of the arrangement of through-hole rows from the upper surface (surface) side of the power generation layer. It is a plan view, and FIG. 12B is a vertical cross-sectional view shown by arrow XIIB-XIIB in FIG. 12A.
 第4変形例が、第2実施形態と異なるのは、貫通孔251における掘込凹部(凹部)252の第1導電層20の表面における直径D2が、発電層30の表面における直径D1よりも小径とされている点と、図12に示すように、貫通孔251のピッチPが貫通孔251の発電層30の表面における直径D1よりも小さく形成され、隣接する貫通孔251が、発電層30の表面においてオーバーラップして配列されている(すなわち、貫通孔251は、発電層30の表面における貫通孔251の配列方向に沿った寸法の1倍よりも小さいピッチで設けられている)点と、掘込凹部(凹部)252の深さt1が第1導電層20の厚さt0に対して100%に形成されて絶縁性基材10の表面が露出されている点である。その他は、第2実施形態と同様であるので同じ符号を付して説明を省略する。 The fourth modification is different from the second embodiment in that the diameter D2 on the surface of the first conductive layer 20 of the digging recess (recess) 252 in the through hole 251 is smaller than the diameter D1 on the surface of the power generation layer 30. As shown in FIG. 12, the pitch P of the through hole 251 is formed to be smaller than the diameter D1 on the surface of the power generation layer 30 of the through hole 251 and the adjacent through hole 251 is the power generation layer 30. The points are arranged so as to overlap on the surface (that is, the through holes 251 are provided at a pitch smaller than 1 times the dimension along the arrangement direction of the through holes 251 on the surface of the power generation layer 30). The point is that the depth t1 of the digging recess (recess) 252 is formed to be 100% with respect to the thickness t0 of the first conductive layer 20, and the surface of the insulating base material 10 is exposed. Others are the same as those in the second embodiment, so the same reference numerals are given and the description thereof will be omitted.
 貫通孔251のピッチPは、図12に示すように、掘込凹部(凹部)252の第1導電層20の表面における直径D2よりも大きく形成されている。
 すなわち、隣接する掘込凹部(凹部)252の間には、間隔21Gをあけて配列されている。
As shown in FIG. 12, the pitch P of the through hole 251 is formed to be larger than the diameter D2 on the surface of the first conductive layer 20 of the digging recess (recess) 252.
That is, they are arranged with an interval of 21G between the adjacent digging recesses (recesses) 252.
 第2実施形態の第4変形例によれば、隣接する貫通孔251がオーバーラップして配列され、掘込凹部(凹部)252が第1導電層20を貫通して絶縁性基材10に到達しているが、隣接する掘込凹部(凹部)252が間隔21Gをあけて配列されているので、第1導電層20が分断されることがなく、しかも掘込凹部(凹部)252の周面における導通が確保できる。 According to the fourth modification of the second embodiment, the adjacent through holes 251 are arranged so as to overlap each other, and the digging recess (recess) 252 penetrates the first conductive layer 20 and reaches the insulating base material 10. However, since the adjacent digging recesses (recesses) 252 are arranged with an interval of 21G, the first conductive layer 20 is not divided, and the peripheral surface of the digging recesses (recesses) 252. Conduction can be ensured.
〔第3実施形態〕
 次に、図13を参照して、本発明の第3実施形態について説明する。
 図13は、本発明の第3実施形態に係る太陽電池の概略構成を説明する第2導電層が形成される前の貫通孔列群を概念的に示す斜視図である。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG.
FIG. 13 is a perspective view conceptually showing a group of through-hole rows before the formation of the second conductive layer for explaining the schematic configuration of the solar cell according to the third embodiment of the present invention.
 第3実施形態に係る太陽電池300は、図13に示すように、例えば、絶縁性基材10と、第1導電層20と、発電層30と、第2導電層40と、発電層30を貫通する貫通孔列群350とを、備えている。
 第3実施形態が第2実施形態と異なるのは、隣接する貫通孔251の間に間隔30Gが形成された複数列の貫通孔列250からなる貫通孔列群350を備えている点である。
As shown in FIG. 13, the solar cell 300 according to the third embodiment includes, for example, an insulating base material 10, a first conductive layer 20, a power generation layer 30, a second conductive layer 40, and a power generation layer 30. It is provided with a through-hole row group 350 that penetrates.
The third embodiment is different from the second embodiment in that it includes a through-hole row group 350 composed of a plurality of rows of through-hole rows 250 having an interval of 30 G formed between adjacent through-holes 251.
 第3実施形態に、第2実施形態の第1変形例~第4変形例を適用してもよい。その他は、第2実施形態及びその第1変形例~第4変形例と同様であるので同じ符号を付して説明を省略する。 The first modification to the fourth modification of the second embodiment may be applied to the third embodiment. Others are the same as those of the second embodiment and the first to fourth modifications thereof, so the same reference numerals are given and the description thereof will be omitted.
 貫通孔列群350は、2列(複数列)の貫通孔列250を備えている。
 貫通孔列群350は、重なり部分42に形成されている。
 貫通孔列群350における二つの貫通孔列250の間隔31Gは、任意に設定することが可能であるが、貫通孔列250の間隔31Gは、例えば、50μm(半径の2倍、貫通孔列の幅の1倍)に設定されている。貫通孔列250の間隔31Gは、貫通孔列250を構成する貫通孔251の直径D1に対して1倍以上2倍(貫通孔列の幅の1倍)以下に設定することが好適である。
The through-hole row group 350 includes two rows (plurality of rows) of through-hole rows 250.
The through hole row group 350 is formed in the overlapping portion 42.
The distance 31G between the two through-hole rows 250 in the through-hole row group 350 can be arbitrarily set, but the distance 31G between the through-hole rows 250 is, for example, 50 μm (twice the radius, the width of the through-hole row). It is set to 1x). It is preferable that the interval 31G of the through-hole rows 250 is set to 1 times or more and 2 times (1 times the width of the through-hole rows) or less with respect to the diameter D1 of the through-holes 251 constituting the through-hole row 250.
 第3実施形態における貫通孔列250の配列に、第2実施形態の第1変形例~第4変形例と同様の構成を適用してもよい。すなわち、貫通孔列250を、発電層30の表面において外接させてもよいし、オーバーラップするように配置してもよい。 The same configuration as the first modification to the fourth modification of the second embodiment may be applied to the arrangement of the through hole rows 250 in the third embodiment. That is, the through-hole rows 250 may be circumscribed on the surface of the power generation layer 30, or may be arranged so as to overlap.
 貫通孔列群350は、例えば、レーザー発信装置(不図示)から照射するレーザービームを2回(複数回)照射して形成することが可能である。また、レーザー照射ヘッドを貫通孔列の数だけ並列に配置して照射してもよい。 The through-hole row group 350 can be formed by, for example, irradiating a laser beam emitted from a laser transmitting device (not shown) twice (multiple times). Further, the laser irradiation heads may be arranged in parallel as many as the number of through-hole rows to irradiate.
 第3実施形態に係る太陽電池300によれば、貫通孔列250が複数列に配置された貫通孔列群350を備えているので、第1導電層20と第2導電層40との導通面積を大きくすることが可能となり、第1導電層20と第2導電層40の間の導通をより安定させることができる。 According to the solar cell 300 according to the third embodiment, since the through-hole rows 250 are provided with the through-hole row groups 350 arranged in a plurality of rows, the conduction area between the first conductive layer 20 and the second conductive layer 40 is increased. This makes it possible to make the conduction between the first conductive layer 20 and the second conductive layer 40 more stable.
 なお、本発明は、上記実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
 例えば、上記実施形態においては、太陽電池(固体接合型光電変換素子)が、発電層30としてペロブスカイト層(光吸収層)を備えている場合について説明したが、光吸収層はペロブスカイト層に限定されず任意に設定してもよい。 For example, in the above embodiment, the case where the solar cell (solid-state junction type photoelectric conversion element) includes a perovskite layer (light absorption layer) as the power generation layer 30 has been described, but the light absorption layer is limited to the perovskite layer. It may be set arbitrarily.
 また、上記実施形態においては、貫通孔列250を構成する貫通孔251が、掘込凹部252の深さt1が第1導電層20の厚さt0に対して80%未満の範囲で形成されている場合について説明したが、第1導電層20厚さt0に対する掘込凹部252の深さt1については任意に設定することが可能である。例えば、掘込凹部252が第1導電層20の厚さt0に対して80%より大きな範囲で形成されていてもよい。 Further, in the above embodiment, the through holes 251 constituting the through hole row 250 are formed in a range in which the depth t1 of the digging recess 252 is less than 80% with respect to the thickness t0 of the first conductive layer 20. Although the case has been described, the depth t1 of the digging recess 252 with respect to the thickness t0 of the first conductive layer 20 can be arbitrarily set. For example, the digging recess 252 may be formed in a range larger than 80% with respect to the thickness t0 of the first conductive layer 20.
 また、上記実施形態においては、複数の貫通孔51、251が貫通孔列50、250を構成し、貫通孔51、251が発電層30の面方向に平面視直線的に配列されている場合について説明したが、発電層30の面方向における複数の貫通孔51、251の配列(平面視)は任意に設定してもよく、例えば、複数の貫通孔51、251を発電層30の面方向に沿って平面視曲線的に配置してもよい。
 また、第3実施形態に係る貫通孔列250に代えて、貫通孔列50を配列してもよいし、貫通孔列250と貫通孔列50を組み合わせて配列してもよい。
 また、複数の貫通孔51、251を、例えば、千鳥状やその他の任意の形態に配置してもよい。
Further, in the above embodiment, when a plurality of through holes 51 and 251 form through hole rows 50 and 250 and the through holes 51 and 251 are arranged linearly in a plan view in the plane direction of the power generation layer 30. As described above, the arrangement (plan view) of the plurality of through holes 51 and 251 in the plane direction of the power generation layer 30 may be arbitrarily set. For example, the plurality of through holes 51 and 251 may be set in the plane direction of the power generation layer 30. It may be arranged along the plan view curve.
Further, instead of the through-hole row 250 according to the third embodiment, the through-hole row 50 may be arranged, or the through-hole row 250 and the through-hole row 50 may be arranged in combination.
Further, the plurality of through holes 51 and 251 may be arranged in a staggered shape or any other form, for example.
 上記実施形態においては、貫通孔51、251が、平面視略円形状に形成されている場合について説明したが、例えば、平面視楕円形や長円形等、平面視円形状以外に形成されてもよい。また、平面視楕円形状である場合に、貫通孔51、251を長軸に沿って配列するか短軸に沿って配列するか又は他の向きに沿って配列するかどうかは任意に設定することができる。貫通孔51、251が楕円形状の場合、貫通孔51、251のピッチは凹部の楕円形状の長半径もしくは短半径に基づき設定することができる、 In the above embodiment, the case where the through holes 51 and 251 are formed in a substantially circular shape in a plan view has been described. good. Further, in the case of an elliptical shape in a plan view, it is possible to arbitrarily set whether the through holes 51 and 251 are arranged along the long axis, along the short axis, or along other directions. Can be done. When the through holes 51 and 251 have an elliptical shape, the pitch of the through holes 51 and 251 can be set based on the semi-major axis or the short radius of the elliptical shape of the recess.
 上記実施形態においては、貫通孔251が、平面視略円形状に形成された堀込凹部252を備えている場合について説明したが、例えば、平面視楕円形や長円形等、平面視円形状以外の堀込凹部252を備えていてもよい。また、堀込凹部252が平面視楕円形状である場合に、貫通孔251を、堀込凹部252を長軸に沿って配列するか短軸に沿って配列するか又は他の向きに沿って配列するかどうかは任意に設定することができる。 In the above embodiment, the case where the through hole 251 is provided with the recessed recess 252 formed in a substantially circular shape in a plan view has been described. The digging recess 252 may be provided. Further, when the digging recess 252 has an elliptical shape in a plan view, whether the through holes 251 are arranged along the long axis, along the short axis, or along another direction. You can set it as you like.
 また、上記実施形態においては、貫通孔51、251が平面視直径φ50μm、ピッチP50μmで形成されている場合について説明したが、貫通孔51の直径D1、ピッチPについては任意に設定することができる。 Further, in the above embodiment, the case where the through holes 51 and 251 are formed with a apparent diameter of φ50 μm and a pitch P of 50 μm has been described, but the diameter D1 and the pitch P of the through holes 51 can be arbitrarily set. ..
 また、上記実施形態においては、貫通孔51が円筒状に形成され、貫通孔251が円筒状又は多段円筒状に形成されている場合について説明したが、貫通孔51、251の形状は任意に設定することが可能である。例えば、すり鉢状、お椀状や他の形状に形成されていてもよい。 Further, in the above embodiment, the case where the through hole 51 is formed in a cylindrical shape and the through hole 251 is formed in a cylindrical shape or a multi-stage cylindrical shape has been described, but the shapes of the through holes 51 and 251 are arbitrarily set. It is possible to do. For example, it may be formed in a mortar shape, a bowl shape, or another shape.
 また、上記第3実施形態においては、貫通孔列群350が2列(複数列)の貫通孔列250を備えている場合について説明したが、例えば、貫通孔列群350が3列以上の貫通孔列250を備えた構成としてもよい。
 また、貫通孔列群が、複数の貫通孔列50を備える構成としてもよいし、貫通孔列50と貫通孔列250を組み合わせた構成としてもよい。
Further, in the third embodiment, the case where the through-hole row group 350 includes two rows (plurality of rows) of through-hole rows 250 has been described. For example, the through-hole row group 350 has three or more rows of through-hole rows 250. It may be a provided configuration.
Further, the through-hole row group may be configured to include a plurality of through-hole rows 50, or may be a configuration in which the through-hole row 50 and the through-hole row 250 are combined.
 また、上記第3実施形態においては、貫通孔列群340が発電層30の面方向において、互いに平行に配置された貫通孔列250を備えている場合について説明したが、複数の貫通孔列250(50)を備えている場合の貫通孔251(51)の配列方向については任意に設定してもよい。例えば、貫通孔251(51)の配列が配列方向のいずれかで近接又は離間したり、配列方向におけるいずれかの一(範囲)で部分的に近接、離間したりするように配列されてもよい。 Further, in the third embodiment, the case where the through-hole row group 340 includes the through-hole rows 250 arranged in parallel with each other in the plane direction of the power generation layer 30 has been described, but a plurality of through-hole rows 250 (50). ) Is provided, the arrangement direction of the through holes 251 (51) may be arbitrarily set. For example, the arrangement of the through holes 251 (51) may be arranged so as to be close to or separated from each other in any one of the arrangement directions, or partially close to or separated from each other in any one (range) of the arrangement directions. ..
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した実施形態を適宜組み合わせて適用してもよい。例えば、貫通孔列50に加えて貫通孔列50以外の導電路を備えていてもよい。 In addition, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the spirit of the present invention, and the above-described embodiments may be appropriately combined and applied. For example, in addition to the through-hole row 50, a conductive path other than the through-hole row 50 may be provided.
 本発明によれば、第1導電層と第2導電層との安定した導通を確保することができる。ができる。よって、産業上の利用可能性が高い。 According to the present invention, stable conduction between the first conductive layer and the second conductive layer can be ensured. Can be done. Therefore, it has high industrial applicability.
10 絶縁性基材
20 第1導電層
30 発電層
40 第2導電層
50、250 貫通孔列
51、251 貫通孔
252 掘込凹部(凹部、端部)
350 貫通孔列群
100、200、300 太陽電池
10 Insulating base material 20 First conductive layer 30 Power generation layer 40 Second conductive layer 50, 250 Through hole rows 51, 251 Through holes 252 Excavation recesses (recesses, ends)
350 through- hole row group 100, 200, 300 Solar cells

Claims (21)

  1.  絶縁性基材の一方の面上に間隔をあけて配置された複数の第1導電層と、
     複数の前記第1導電層の表面を覆うように配置され、かつ、光電変換層を含む発電層と、
     前記発電層の表面側に複数の前記第1導電層とそれぞれ対向して間隔をあけて設けられた複数の第2導電層であって、前記発電層の表面と垂直の方向から見たときに、対向する第1導電層に隣接する第1導電層と重なり合う重なり部分を設けて配置された複数の第2導電層と、を備え、
     前記重なり部分において前記発電層の面方向に沿って配列され、前記発電層を厚さ方向に貫通する複数の貫通孔が設けられ、
     前記貫通孔は、前記発電層と前記第1導電層との境界を越える位置に達し、
     複数の前記第2導電層は、それぞれが対向する第1導電層に隣接する第1導電層に連通する前記貫通孔を介して順次電気的に接続されている、太陽電池。
    A plurality of first conductive layers spaced apart from each other on one surface of the insulating substrate.
    A power generation layer arranged so as to cover the surfaces of the plurality of first conductive layers and including a photoelectric conversion layer, and a power generation layer.
    A plurality of second conductive layers provided on the surface side of the power generation layer at intervals facing each other of the first conductive layers, when viewed from a direction perpendicular to the surface of the power generation layer. A plurality of second conductive layers arranged with overlapping portions overlapping with the first conductive layer adjacent to the first conductive layer facing each other.
    A plurality of through holes are provided in the overlapping portion so as to be arranged along the surface direction of the power generation layer and penetrate the power generation layer in the thickness direction.
    The through hole reaches a position beyond the boundary between the power generation layer and the first conductive layer.
    A solar cell in which a plurality of the second conductive layers are sequentially electrically connected through the through holes communicating with the first conductive layer adjacent to the first conductive layer facing each other.
  2.  請求項1に記載の太陽電池であって、
     前記貫通孔の一方の端部は、前記第1導電層の内部に配置されている、太陽電池。
    The solar cell according to claim 1.
    One end of the through hole is a solar cell arranged inside the first conductive layer.
  3.  請求項1又は2に記載の太陽電池であって、
     前記貫通孔の一方の端部は、前記第1導電層内にくぼんだ凹部を備える、太陽電池。
    The solar cell according to claim 1 or 2.
    A solar cell having a recessed recess in the first conductive layer at one end of the through hole.
  4.  請求項3に記載の太陽電池であって、
     前記貫通孔は、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍より大きいピッチで形成されている、太陽電池。
    The solar cell according to claim 3.
    A solar cell in which the through holes are formed at a pitch larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
  5.  請求項3に記載の太陽電池であって、
     前記貫通孔は、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍以下のピッチで形成されている、太陽電池。
    The solar cell according to claim 3.
    A solar cell in which the through holes are formed at a pitch of 1 times or less the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
  6.  請求項4に記載の太陽電池であって、
     前記凹部は、平面視前記第1導電層の表面における形状が円形状又は前記配列方向に沿った長軸もしくは短軸を有する楕円形状であり、
     前記貫通孔は、前記凹部の円形状の半径又は楕円形状の長半径もしくは短半径の2倍より大きいピッチで設けられている、太陽電池。
    The solar cell according to claim 4.
    The concave portion has a circular shape on the surface of the first conductive layer in a plan view, or an elliptical shape having a major axis or a minor axis along the arrangement direction.
    A solar cell in which the through holes are provided at a pitch larger than twice the circular radius of the recess or the semi-major axis or semi-minor axis of the elliptical shape.
  7.  請求項3~6のいずれか一項に記載の太陽電池であって、
     前記凹部の深さは、前記第1導電層の厚さに対して80%未満の範囲である、太陽電池。
    The solar cell according to any one of claims 3 to 6.
    A solar cell in which the depth of the recess is in the range of less than 80% with respect to the thickness of the first conductive layer.
  8.  請求項3~6のいずれか一項に記載の太陽電池であって、
     前記凹部の深さは、前記第1導電層の厚さに対して100%である、太陽電池。
    The solar cell according to any one of claims 3 to 6.
    A solar cell in which the depth of the recess is 100% with respect to the thickness of the first conductive layer.
  9.  請求項1~8のいずれか一項に記載の太陽電池であって、
     前記貫通孔は、前記発電層の表面における前記貫通孔の配列方向に沿った寸法の1倍以上のピッチで設けられている、太陽電池。
    The solar cell according to any one of claims 1 to 8.
    A solar cell in which the through holes are provided at a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer.
  10.  請求項1~8のいずれか一項に記載の太陽電池であって、
     前記貫通孔は、前記発電層の表面における前記貫通孔の配列方向に沿った寸法の1倍よりも小さいピッチで設けられている、太陽電池。
    The solar cell according to any one of claims 1 to 8.
    A solar cell in which the through holes are provided at a pitch smaller than 1 times the dimension along the arrangement direction of the through holes on the surface of the power generation layer.
  11.  請求項1~10のいずれか一項に記載の太陽電池であって、
     前記貫通孔は、平面視前記発電層の表面における形状が円形状又は前記貫通孔の配列方向に沿った長軸もしくは短軸を有する楕円形状であり、前記貫通孔は、前記円形状の半径又は前記楕円形状の長半径もしくは短半径の2倍以上のピッチで設けられている、太陽電池。
    The solar cell according to any one of claims 1 to 10.
    The through hole has a circular shape on the surface of the power generation layer in a plan view or an elliptical shape having a major axis or a minor axis along the arrangement direction of the through hole, and the through hole has a radius of the circular shape or A solar cell provided at a pitch of twice or more the semi-major axis or the semi-minor axis of the elliptical shape.
  12.  請求項1~11のいずれか一項に記載の太陽電池であって、
     前記貫通孔は、複数列に配置されている、太陽電池。
    The solar cell according to any one of claims 1 to 11.
    The through holes are solar cells arranged in a plurality of rows.
  13.  第1導電層と、
     光電変換層を含む発電層と、
     第2導電層を含む導電材と、をこの順に備えた太陽電池の製造方法であって、
     基材の一方の面に、前記第1導電層と、前記発電層と、をこの順に形成する第1工程と、
     パルスレーザーを用いて、前記発電層の面方向に沿って配列され、前記発電層を厚さ方向に貫通して形成された複数の貫通孔を、前記発電層と前記第1導電層との境界を越える位置まで形成する第2工程と、
     前記導電材により前記発電層の上に前記第2導電層を形成する第3工程と、
    を備える、太陽電池の製造方法。
    The first conductive layer and
    A power generation layer including a photoelectric conversion layer and
    A method for manufacturing a solar cell, which comprises a conductive material including a second conductive layer in this order.
    A first step of forming the first conductive layer and the power generation layer on one surface of the base material in this order.
    A boundary between the power generation layer and the first conductive layer is formed through a plurality of through holes arranged along the surface direction of the power generation layer using a pulse laser and penetrating the power generation layer in the thickness direction. The second step of forming up to the position beyond
    A third step of forming the second conductive layer on the power generation layer with the conductive material, and
    A method of manufacturing a solar cell.
  14.  請求項13に記載の太陽電池の製造方法であって、
     前記第2工程において、
     前記貫通孔の一方の端部を、前記第1導電層の内部に形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to claim 13.
    In the second step,
    A method for manufacturing a solar cell, in which one end of the through hole is formed inside the first conductive layer.
  15.  請求項14に記載の太陽電池の製造方法であって、
     前記第2工程において、
     前記端部に前記第1導電層内にくぼむ凹部を有する前記貫通孔を形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to claim 14.
    In the second step,
    A method for manufacturing a solar cell, in which the through hole having a recessed recess in the first conductive layer is formed at the end portion.
  16.  請求項15に記載の太陽電池の製造方法であって、
     前記第2工程において、
     前記貫通孔を、前記第1導電層の表面における前記凹部の配列方向に沿った寸法の1倍より大きいピッチで形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to claim 15.
    In the second step,
    A method for manufacturing a solar cell, in which the through holes are formed at a pitch larger than 1 times the dimension along the arrangement direction of the recesses on the surface of the first conductive layer.
  17.  請求項16に記載の太陽電池の製造方法であって、
     前記第2工程において、
     平面視前記第1導電層の表面における形状が円形状又は前記配列方向に沿った長軸もしくは短軸を有する楕円形状に形成された前記凹部を有する貫通孔を、前記凹部の円形状の半径又は楕円形状の長半径もしくは短半径の2倍より大きいピッチで形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to claim 16.
    In the second step,
    Plan view A through hole having the recess formed in an elliptical shape having a circular shape on the surface of the first conductive layer or an elliptical shape having a major axis or a minor axis along the arrangement direction is formed by forming a circular radius of the recess or the circular radius of the recess. A method for manufacturing a solar cell, which is formed with a pitch larger than twice the semi-major axis or the semi-minor axis of an elliptical shape.
  18.  請求項15~17のいずれか一項に記載の太陽電池の製造方法であって、
     前記凹部の深さを、前記第1導電層の厚さに対して80%未満の範囲で形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to any one of claims 15 to 17.
    A method for manufacturing a solar cell, wherein the depth of the recess is formed in a range of less than 80% with respect to the thickness of the first conductive layer.
  19.  請求項13~18のいずれか一項に記載の太陽電池の製造方法であって、
    って、
     前記第2工程において、
     前記貫通孔を、前記発電層の表面における前記貫通孔の配列方向に沿った寸法の1倍以上のピッチで形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to any one of claims 13 to 18.
    What
    In the second step,
    A method for manufacturing a solar cell, in which the through holes are formed at a pitch of one or more times the dimension along the arrangement direction of the through holes on the surface of the power generation layer.
  20.  請求項13~19のいずれか一項に記載の太陽電池の製造方法であって、
     前記第2工程において、
     平面視前記発電層の表面における形状が円形状又は前記貫通孔の配列方向に沿った長軸もしくは短軸を有する楕円形状に形成された前記貫通孔を、前記円形状の半径又は前記楕円形状の長半径もしくは短半径の2倍以上のピッチで形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to any one of claims 13 to 19.
    In the second step,
    Plan view The through hole formed in an elliptical shape having a circular shape on the surface of the power generation layer or an elliptical shape having a major axis or a minor axis along the arrangement direction of the through hole is formed by the radius of the circular shape or the elliptical shape. A method for manufacturing a solar cell, which is formed at a pitch of twice or more a semi-major axis or a semi-minor axis.
  21.  請求項13~20のいずれか一項に記載の太陽電池の製造方法であって、
     前記第2工程において、
     前記貫通孔を、複数列に形成する、太陽電池の製造方法。
    The method for manufacturing a solar cell according to any one of claims 13 to 20.
    In the second step,
    A method for manufacturing a solar cell, in which the through holes are formed in a plurality of rows.
PCT/JP2021/011481 2020-03-31 2021-03-19 Solar cell and method for manufacturing solar cell WO2021200286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511926A JPWO2021200286A1 (en) 2020-03-31 2021-03-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020065358 2020-03-31
JP2020-065358 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200286A1 true WO2021200286A1 (en) 2021-10-07

Family

ID=77927754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011481 WO2021200286A1 (en) 2020-03-31 2021-03-19 Solar cell and method for manufacturing solar cell

Country Status (2)

Country Link
JP (1) JPWO2021200286A1 (en)
WO (1) WO2021200286A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259524A (en) * 1985-05-13 1986-11-17 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacture thereof
JPH02268472A (en) * 1989-04-10 1990-11-02 Showa Shell Sekiyu Kk Photovoltaic device and its manufacture
WO2008149835A1 (en) * 2007-06-04 2008-12-11 Kaneka Corporation Integrated thin film solar cell and method for fabricating the same
US20150214409A1 (en) * 2012-04-03 2015-07-30 Flisom Ag Thin-film photovoltaic device with wavy monolithic interconnects
JP2016051806A (en) * 2014-08-29 2016-04-11 ローム株式会社 Organic thin-film solar cell module and method for manufacturing the same, and electronic equipment
JP2017509145A (en) * 2014-01-31 2017-03-30 フリソム アクツィエンゲゼルシャフトFlisom Ag Method for thin film via segment of photovoltaic device
JP2019067914A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Manufacturing method of solar battery and the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259524A (en) * 1985-05-13 1986-11-17 Kanegafuchi Chem Ind Co Ltd Semiconductor device and manufacture thereof
JPH02268472A (en) * 1989-04-10 1990-11-02 Showa Shell Sekiyu Kk Photovoltaic device and its manufacture
WO2008149835A1 (en) * 2007-06-04 2008-12-11 Kaneka Corporation Integrated thin film solar cell and method for fabricating the same
US20150214409A1 (en) * 2012-04-03 2015-07-30 Flisom Ag Thin-film photovoltaic device with wavy monolithic interconnects
JP2017509145A (en) * 2014-01-31 2017-03-30 フリソム アクツィエンゲゼルシャフトFlisom Ag Method for thin film via segment of photovoltaic device
JP2016051806A (en) * 2014-08-29 2016-04-11 ローム株式会社 Organic thin-film solar cell module and method for manufacturing the same, and electronic equipment
JP2019067914A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Manufacturing method of solar battery and the same

Also Published As

Publication number Publication date
JPWO2021200286A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR20080052596A (en) Photovolatic devices with conductive barrier layers and foil substrates
KR101440607B1 (en) Solar cell module and method of manufacturing the same
KR102068871B1 (en) Organic-inorganic complex solar cell
US20140116493A1 (en) Solar cell module and method for manufacturing same
JP6917739B2 (en) How to make a printed solar cell module
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
KR20110070578A (en) Dye-sensitized solar cells module and method for fabricating the same
KR101140784B1 (en) Preparation method of dye-sensitized solar cell module including scattering layers
JP2011076791A (en) Photoelectric conversion element, and optical power generating device using the photoelectric conversion element
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP4771814B2 (en) Organic photoelectric conversion element
WO2021200286A1 (en) Solar cell and method for manufacturing solar cell
JP2005141996A (en) Dye-sensitized solar cell
KR20180024870A (en) Hole transport material for perovskite structure solar cell
JP2012174596A (en) Dye sensitized solar cell, method for manufacturing dye sensitized solar cell, and dye sensitized solar cell module
JP2008277422A (en) Laminated photoelectric converter
JP5077408B2 (en) Solar cell and solar cell module
JP5013741B2 (en) Photoelectric conversion device and photovoltaic power generation device
JP5075354B2 (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell
JP6927791B2 (en) Solar cells and methods for manufacturing solar cells
JP2009009851A (en) Photoelectric conversion device
KR20170132567A (en) Method of manufacturing the optical absorber layer for organic-inorganic complex solar cell, and method of manufacturing organic-inorganic complex solar cell using thereof
JP5153248B2 (en) Photoelectric conversion device and photovoltaic power generation device
JP2012160677A (en) Method for manufacturing organic solar cell, and organic solar cell
JP2011159934A (en) Organic solar cell, solar cell module, and method of manufacturing the organic solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780561

Country of ref document: EP

Kind code of ref document: A1