WO2021199383A1 - Machine learning system - Google Patents

Machine learning system Download PDF

Info

Publication number
WO2021199383A1
WO2021199383A1 PCT/JP2020/015065 JP2020015065W WO2021199383A1 WO 2021199383 A1 WO2021199383 A1 WO 2021199383A1 JP 2020015065 W JP2020015065 W JP 2020015065W WO 2021199383 A1 WO2021199383 A1 WO 2021199383A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
program
data
machine learning
processing
Prior art date
Application number
PCT/JP2020/015065
Other languages
French (fr)
Japanese (ja)
Inventor
林 英松
督 那須
紀之 尾崎
僚 柏木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/015065 priority Critical patent/WO2021199383A1/en
Priority to JP2020545824A priority patent/JP6884287B1/en
Publication of WO2021199383A1 publication Critical patent/WO2021199383A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • This disclosure relates to a machine learning system that implements machine learning.
  • Machine learning methods are useful in diagnosis by analyzing data. Since machine learning requires high processing power, machine learning may be performed in the edge computing area rather than the equipment installed at the production site. In the edge computing area, machine learning for a plurality of production facilities can be efficiently performed by concentrating machine learning for a plurality of production facilities with one device. Further, it is more efficient to distribute the diagnosis of the state of the production equipment to the equipment installed at the production site than to perform the diagnosis with the equipment in the edge computing area. If a device in the edge computing area is to perform not only machine learning but also diagnosis, there is a problem that an expensive device having a higher processing capacity is required.
  • Patent Document 1 discloses a network system having a plurality of local systems, each of which monitors and controls a plant, and an operation support providing system that provides operation support information to each local system.
  • each local system captures data indicating the operating state of the plant and detects plant abnormalities by obtaining the difference between the result of simulating the operation of the plant and the actual data captured from the plant.
  • the driving support providing system collects the data captured by each local system and uses the collected data to generate a simulation model.
  • the driving support providing system provides the generated simulation model to each local system.
  • Each local system uses the simulation model provided by the driving assistance providing system in the simulation.
  • the network system according to Patent Document 1 only transmits the simulation model generated by the operation support providing system to the local system, and the local system confirms whether or not the plant is operating according to the simulation. Therefore, according to the technique of Patent Document 1, it has not been possible to control a local system, which is a system at a production site, as a series of flows from data collection to an operation leading to productivity improvement.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a machine learning system that can control a system at a production site as a series of flows from data collection to operations leading to productivity improvement.
  • the machine learning system includes a control device for controlling production equipment, an information processing device, and an inference device.
  • the information processing device uses a data collection unit that collects status data indicating the operating status of production equipment, a data processing unit that processes the collected status data, and a trained model by machine learning using the processed status data. It has a learning unit to generate and an output processing unit to generate a program for collecting and processing state data and output a trained model.
  • the inference device outputs the inference result based on the trained model to the control device by inputting the state data that has been collected and processed by executing the program.
  • the machine learning system according to the present disclosure has the effect of being able to control the system at the production site as a series of flows from data collection to operations leading to productivity improvement.
  • the figure for demonstrating the program executed in the PLC system among the machine learning system which concerns on Embodiment 1. A flowchart showing an operation procedure of the information processing apparatus included in the machine learning system according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a machine learning system according to the first embodiment.
  • the machine learning system 1 according to the first embodiment is a data processing platform that collects data from equipment installed at a production site and executes a series of processes for feeding back the processing result of the collected data to the equipment at the production site.
  • the machine learning system 1 includes an industrial PC (Industrial Personal Computer: IPC) 2 and a PLC (Programmable Logic Controller) system 3.
  • IPC2 is a device that constitutes the above data processing platform.
  • the PLC system 3 includes a PLC 4 which is a control device for controlling production equipment, and an AI (Artificial Intelligence) system 5 which is an inference device.
  • IPC2 is an information processing device located in the edge computing area.
  • the edge computing area is an area on the data generation side with respect to the cloud computing area where centralized data processing is performed, and is a conceptual area where advanced data processing is performed. In the first embodiment, the edge computing area is an area in the factory.
  • the machine learning system 1 implements machine learning in IPC2.
  • PLC system 3 is a system installed at the production site.
  • the PLC4 controls the production equipment by executing a sequence program.
  • the AI unit 5 outputs the inference result based on the trained model to the PLC4.
  • the trained model is the result of machine learning by IPC2.
  • the AI unit 5 diagnoses the abnormality of the production equipment by inferring the presence or absence of the abnormality of the production equipment.
  • the diagnosis performed by the AI unit 5 may be either a diagnosis of an abnormality in the entire production equipment or a diagnosis of an abnormality in each component of the production equipment.
  • the AI unit 5 outputs the diagnosis result, which is the inference result, to the PLC 4.
  • the diagnosis result indicating that there is an abnormality is input from the AI unit 5
  • the PLC 4 takes measures such as stopping the operation of the production equipment or decelerating the drive source in the production equipment.
  • the PLC system 3 can prevent a situation such as production suspension due to a failure of the production equipment by such measures for the diagnosis result. As a result, the machine learning system 1 can improve the productivity.
  • the AI unit 5 may perform a life diagnosis of the production equipment or a life diagnosis of each part by inferring the life of the parts constituting the production equipment.
  • the diagnosis performed by the AI unit 5 is not limited to the diagnosis targeting the production equipment, and may be the diagnosis targeting the product manufactured by the production equipment.
  • the AI unit 5 may perform a quality diagnosis of a product.
  • the diagnosis performed by the AI unit 5 may be any diagnosis useful for improving productivity or product quality at the production site.
  • the AI unit 5 may propose the production conditions by inferring the production conditions for improving the productivity of the production equipment.
  • the AI unit 5 may output inference results useful for improving productivity at the production site or improving product quality.
  • the case where the AI unit 5 diagnoses an abnormality in the production equipment will be taken as an example.
  • IPC2 executes data processing including each process of collecting state data indicating the operating state of the production equipment, processing the collected state data, and learning using the processed state data.
  • the operating state is the state of the components of the production equipment or the state of the substance in the production equipment at the time of operation of the production equipment, and can be quantified.
  • a state is an electrical state, a mechanical state, a thermodynamic state, or a hydrodynamic state.
  • the state data is data that quantifies the operating state.
  • the state data includes data taken out from the inside of the production equipment and data obtained by detection by a sensor provided outside the production equipment. Further, the state data includes internal data representing the state of PLC4.
  • the internal data is data stored in the internal memory of the PLC4.
  • IPC2 generates a program for PLC4 to perform the same process as each process of collection and processing in the data processing flow in the order of collection, processing and learning.
  • the program generated by IPC2 may be referred to as a PLC program in the following description.
  • IPC2 outputs the generated PLC program to PLC4.
  • IPC2 also generates a trained model that is the result of machine learning.
  • IPC2 outputs the generated trained model to AI unit 5.
  • the PLC4 collects the state data and processes the collected state data by executing the PLC program.
  • the PLC 4 outputs the processed state data to the AI unit 5.
  • the AI unit 5 has an inference engine for making a diagnosis based on the trained model.
  • the AI unit 5 makes a diagnosis based on the trained model by inputting the processed state data.
  • the AI unit 5 outputs the diagnosis result to the PLC4.
  • the machine learning system 1 causes the PLC4 to perform the same collection and processing as the IPC2, and also causes the AI unit 5 to perform the diagnosis based on the learned model generated by the IPC2.
  • the machine learning system 1 can operate the PLC 4 with high responsiveness to the diagnosis result.
  • FIG. 2 is a diagram showing a configuration of an information processing device included in the machine learning system according to the first embodiment.
  • a processing program for realizing the above data processing flow is installed in IPC2.
  • FIG. 2 shows the hardware configuration of the IPC2 and the functional configuration realized by using the hardware configuration.
  • the IPC 2 includes a processor 10 that executes various processes, a memory 11 that is a built-in memory, a communication device 12 that communicates with an external device of the IPC 2, and a storage device 13 that stores various information.
  • the processor 10 is a CPU (Central Processing Unit).
  • the processor 10 may be a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 11 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory) or an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory).
  • the storage device 13 is an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the above processing program is stored in the storage device 13.
  • the processor 10 reads the processing program stored in the storage device 13 into the memory 11 and executes it.
  • the processing program may be stored in a storage medium that can be read by a computer system.
  • the IPC2 may store the processing program recorded in the storage medium in the memory 11.
  • the storage medium may be a portable storage medium that is a flexible disk, or a flash memory that is a semiconductor memory.
  • the processing program may be installed in a computer system from another computer or server device via a communication network.
  • the IPC2 has one or a plurality of data collection units 14 for collecting state data, a control unit 15 for controlling data processing in the IPC2, and a data processing unit 16 for processing the collected state data. Although two data collection units 14 are shown in FIG. 2, the IPC2 is provided with an arbitrary number of data collection units 14 according to the contents of the data processing flow executed by the IPC2.
  • the IPC2 generates a learning unit 17 that generates a trained model by machine learning using the processed state data, and a PLC program for causing the PLC4 to collect and process the state data, and outputs the PLC program to the PLC4. It has an output processing unit 18 and an output processing unit 18.
  • the PLC program is simply referred to as a program.
  • the output processing unit 18 has a program generation unit 21 that generates a program. Further, the output processing unit 18 outputs the trained model to the AI unit 5.
  • the control unit 15 has a distribution unit 19 that controls data distribution between each data collection unit 14, a data processing unit 16 and a learning unit 17, and a setting management unit 20 that manages setting information.
  • the IPC2 has a setting information storage unit 22 that stores setting information. The setting information will be described later.
  • Each function of each data collection unit 14, control unit 15, data processing unit 16, learning unit 17, and output processing unit 18 is realized by a combination of the processor 10 and software.
  • the functions of the data collection unit 14, the control unit 15, the data processing unit 16, the learning unit 17, and the output processing unit 18 may be realized by a combination of the processor 10 and the firmware, and may be realized by the combination of the processor 10, the software, and the firmware. It may be realized.
  • the software or firmware is described as a program and stored in the storage device 13.
  • the function of the setting information storage unit 22 is realized by using the storage device 13.
  • the external device 6 is a device installed outside the PLC 4 and is a device such as a sensor that detects the operating state of the production equipment.
  • the sensor include a sensor attached to a drive source of production equipment to detect vibration, a sensor to detect temperature, and the like.
  • the sensor may be either a sensor installed inside the production equipment or a sensor installed outside the production equipment.
  • the communication device 12 is communicably connected to each of the PLC 4, the AI unit 5, and the external device 6.
  • Each of the PLC 4, the AI unit 5, and the external device 6 is connected to the communication device 12 via a network by wireless communication or a network by wired communication.
  • the external device 6 transmits the state data, which is the result of detecting the operating state of the production equipment, to the IPC2.
  • the PLC4 transmits the state data, which is the internal data of the PLC4, to the IPC2.
  • the setting information stored in the setting information storage unit 22 includes the execution order of processing in each process of collection and processing, the timing of execution of each process, and the conditions for executing each process in the data processing flow executed by IPC2. Information set for the item.
  • the setting management unit 20 manages the setting information stored in the setting information storage unit 22. Further, the setting management unit 20 sends the setting information read from the setting information storage unit 22 to the distribution unit 19 or the program generation unit 21.
  • the distribution unit 19 controls data distribution between each data collection unit 14, the data processing unit 16, and the learning unit 17 based on the setting information acquired from the setting management unit 20.
  • the learning unit 17 which is a machine learning device, generates a trained model by, for example, supervised learning according to a neural network.
  • Supervised learning is learning in which a large number of sets of data, which are an input and a label as a result, are given to a machine learning device to learn the characteristics of the data set and estimate the result from the input.
  • the state data processed by the data processing unit 16 and the label which is the information of the diagnosis result are input to the learning unit 17.
  • the learning unit 17 generates learning data which is data in which the state data and the label are associated with each other.
  • the learning unit 17 generates a learned model for inferring the optimum diagnostic result from the state data and the label.
  • the learning unit 17 generates a learned model for each production facility by learning using the state data for each production facility.
  • the learning unit 17 may generate a trained model for each function by learning using the state data for each function in the production equipment.
  • the learning unit 17 may generate a learned model for each part by learning using the state data for each part constituting the production equipment.
  • the learning unit 17 outputs the generated learned model to the output processing unit 18.
  • the program generation unit 21 generates a program for causing the PLC 4 to collect and process state data based on the setting information acquired from the setting management unit 20.
  • the program generation unit 21 generates a program for realizing the same functions as "collection” and "processing" in the data processing flow in IPC2 in PLC4.
  • the program generated by the program generation unit 21 is a ladder program written using the ladder language.
  • the program may be a program written in a language other than the ladder language, a program written in the structured ladder language, or a program written in the function block diagram language.
  • the output processing unit 18 outputs the program generated by the program generation unit 21 to the PLC 4.
  • the output processing unit 18 outputs the trained model generated by the learning unit 17 to the AI unit 5.
  • the IPC 2 provides the PLC system 3 with a program for collecting and processing the state data and a trained model for inferring the diagnostic result based on the state data.
  • FIG. 3 is a diagram for explaining a program executed in the PLC system among the machine learning systems according to the first embodiment.
  • FIG. 3 shows a program 30 executed in the PLC 4 and a diagnostic program 31 executed in the AI unit 5.
  • PLC4 holds the program 30 acquired from IPC2.
  • the PLC4 collects and processes state data in the same manner as the IPC2 by reading and executing the held program 30.
  • the diagnostic program 31 is a program for obtaining a diagnostic result based on a trained model from the state data collected and processed by executing the program 30 in PLC4.
  • the AI unit 5 holds the diagnostic program 31.
  • the AI unit 5 reads and executes the held diagnostic program 31 to diagnose an abnormality in the production equipment from the state data.
  • the ladder program is composed of a plurality of circuit blocks.
  • the circuit block is composed of a combination of a condition unit, which is a group of circuits in which contacts are connected in series or in parallel, and an operation unit, which is a group of circuits in which one or more coils are connected in series.
  • the operating unit represents the content of arithmetic processing executed when the contacts of the condition unit are conducted.
  • Program code written using the ladder language contains circuit symbols and variables that are the basic circuit elements. Circuit symbols include contacts and coils that represent processing in PLC4. Each variable is associated with each of the plurality of data areas included in the PLC4. Arithmetic data for each circuit element is stored in each memory area.
  • the arithmetic data includes bit data that expresses the distinction between on and off, and word data that expresses a numerical value.
  • the variables used in the programming of the ladder program, or the data areas to which the variables are associated, are referred to as "devices".
  • the output contact that switches on and off of, and the device number that represents the device to which the value output from the output contact is input are included.
  • the program 30 also includes a timer for managing the on / off switching of the input contact or the output contact according to the time.
  • Such a circuit element included in the program 30 realizes a function of collecting state data at a timing according to the setting information.
  • the program 30 includes, for example, an FB (function block) that smoothes data, and a counter that counts the number of times the input contact or output contact is switched on and off.
  • the PLC4 smoothes the state data by executing the FB.
  • the PLC4 extracts the state data according to the count by the counter.
  • Such a circuit element included in the program 30 realizes a function of processing state data.
  • the device that is the acquisition destination of the state data used for the diagnosis and the device that is the output destination of the diagnosis result are specified.
  • the AI unit 5 makes a diagnosis based on the processed state data and the trained model.
  • the AI unit 5 outputs the diagnosis result to the PLC4.
  • FIG. 4 is a flowchart showing an operation procedure of the information processing apparatus included in the machine learning system according to the first embodiment.
  • the IPC2 Upon receiving the command to start the generation of the trained model, the IPC2 collects the state data in step S1.
  • IPC2 processes the state data collected in step S1.
  • IPC2 generates a trained model by machine learning using state data.
  • step S4 IPC2 generates program 30, which is a ladder program for collecting and processing state data.
  • the IPC2 generates the program 30 in the program generation unit 21 based on the setting information.
  • step S5 IPC2 transmits the program 30, which is the ladder program generated in step S5, and the trained model generated in step S3 to the PLC system 3.
  • the IPC2 transmits the program 30 from the communication device 12 to the PLC4.
  • the IPC2 transmits the trained model from the communication device 12 to the AI unit 5.
  • the IPC 2 provides the program 30 and the trained model to the PLC system 3.
  • the IPC2 ends the operation according to the procedure shown in FIG.
  • step S5 the IPC2 may transmit the trained model to the PLC4 instead of the AI unit 5.
  • the PLC 4 outputs the received trained model to the AI unit 5.
  • the IPC2 may provide the trained model to the AI unit 5 via the PLC4.
  • FIG. 5 is a flowchart showing an operation procedure of the PLC system included in the machine learning system according to the first embodiment.
  • the PLC system 3 receives the program 30 which is a ladder program and the trained model.
  • the PLC system 3 receives the program 30 in the PLC 4.
  • the PLC system 3 receives the trained model in the AI unit 5.
  • the PLC system 3 may receive the program 30 and the trained model in the PLC 4.
  • the PLC system 3 receives the program 30 and the trained model at the time of the first diagnosis.
  • the PLC system 3 receives the updated trained model when the trained model is updated after the first diagnosis.
  • the PLC system 3 performs an operation for diagnosis after receiving the program 30 and the trained model.
  • the PLC system 3 collects state data at the PLC 4.
  • the PLC4 collects state data by executing the program 30 received in step S11.
  • step S13 the PLC system 3 processes the state data collected in step S12 in PLC4.
  • the PLC4 processes the state data by executing the program 30 received in step S11.
  • the PLC 4 outputs the processed state data to the AI unit 5.
  • step S14 the PLC system 3 diagnoses the production equipment in the AI unit 5.
  • the AI unit 5 obtains a diagnosis result based on the state data input from the PLC 4 and the trained model received in step S11.
  • step S15 the PLC system 3 inputs the diagnosis result obtained in step S14 from the AI unit 5 to the PLC 4. As described above, the PLC system 3 ends the operation according to the procedure shown in FIG.
  • the program generation unit 21 confirms the processing contents for each data processing element with respect to the data processing elements "collection" and "processing" included in the setting information.
  • the program generation unit 21 selects a program element which is a circuit element for realizing processing for each data processing element.
  • Program elements selected include contacts, coils, timers, counters and FBs.
  • the program generation unit 21 selects a contact point for "collection", for example. For example, for "machining", the program generation unit 21 selects an FB whose function is pre-programmed in C language.
  • the program element selected for machining may be an FB in which a ladder program for realizing a function related to "machining" is put together. By selecting the FB as the selection target, the program generation unit 21 can easily select the program element for realizing the processing for each data processing element.
  • the program generation unit 21 sets the connection relationship between the selected program elements by confirming the connection relationship between the data processing elements.
  • the connection relationship between data processing elements includes a connection relationship such as branching or joining in a data processing flow. Further, the program generation unit 21 confirms the device that is the acquisition destination of the data input to the data processing element and the device that is the input destination of the data output from the data processing element. The program generation unit 21 sets a device that is an acquisition destination of data input to the program element corresponding to the data processing element and a device that is an input destination of data output from the program element corresponding to the data processing element. ..
  • the program generation unit 21 sets the processing condition for the program element corresponding to the data processing element.
  • Set the corresponding parameters For example, when a condition regarding the data sampling time is set, the program generation unit 21 sets the time parameter of the timer, which is a program element, according to the sampling time condition.
  • the program generation unit 21 sets a parameter regarding the timing at which the contact, which is a program element, is switched according to the condition.
  • the present invention is not limited to this.
  • supervised learning reinforcement learning, unsupervised learning, semi-supervised learning, and the like can also be applied to the learning algorithm.
  • Deep learning which learns the extraction of the feature amount itself, can also be used as the learning algorithm.
  • the learning unit 17 may perform machine learning according to other known methods such as genetic programming, functional logic programming, and support vector machines.
  • the machine learning device which is the learning unit 17, is not limited to the one built in the IPC2, and may be provided outside the IPC2.
  • the machine learning device may be a device connected to the IPC2 via a network.
  • the machine learning device may exist on the cloud server.
  • the learning unit 17 may generate a trained model according to the data sets created for the plurality of machine learning systems 1.
  • the learning unit 17 may acquire data sets from a plurality of machine learning systems 1 used at the same site, or may acquire data sets from a plurality of machine learning systems 1 used at different sites. It may be used to generate a trained model.
  • a new machine learning system 1 may be added to the target for which the data set is acquired. Further, after starting the acquisition of the data set from the plurality of machine learning systems 1, a part of the plurality of machine learning systems 1 may be excluded from the target for which the data set is acquired.
  • the learning unit 17 that has learned in one machine learning system 1 may be attached to a machine learning system 1 other than the machine learning system 1.
  • the learning unit 17 attached to the other machine learning system 1 can update the trained model by re-learning in the other machine learning system 1.
  • the PLC4 When the diagnosis result is input from the AI unit 5 to the PLC4, the PLC4 causes the production equipment to be diagnosed to perform an operation according to the diagnosis result.
  • the PLC 4 stops the operation of the production equipment when the diagnosis result indicating that there is an abnormality is input from the AI unit 5. Alternatively, the PLC 4 slows down the drive source in the production equipment. Since the production equipment for which the state data is collected is specified in the program 30, the PLC4 can identify the production equipment having an abnormality.
  • the sequence program executed by the PLC4 to control the production equipment describes the processing when the PLC4 receives an interrupt signal due to a malfunction of the production equipment or the like.
  • the PLC4 receives a signal which is a diagnosis result indicating that there is an abnormality as an interrupt signal, and executes a process according to the diagnosis result as a process when the interrupt signal is received.
  • the machine learning system 1 can control the production equipment according to the diagnosis result by the AI unit 5.
  • the machine learning system 1 is not limited to the one in which the AI unit 5 makes inferences based on the trained model.
  • the inference based on the trained model may be performed by the PLC 4, and the machine learning system 1 may not be provided with the AI unit 5.
  • the PLC 4 is provided with a processing unit that collects and processes state data by executing the program 30, and an inference unit that is an inference device.
  • the inference unit outputs the inference result based on the learned model to the processing unit.
  • the processing unit and the inference unit are not shown.
  • FIG. 6 is a diagram for explaining a modified example of a program executed in the PLC system among the machine learning systems according to the first embodiment.
  • FIG. 6 shows an example of a program generated by the program generation unit 21 when the PLC4 infers a diagnosis result based on the state data.
  • the program generation unit 21 generates a program including a program 30 for collecting and processing state data and a diagnostic program 32 which is a ladder program for diagnosis.
  • the diagnostic program 32 includes FB33, which is a functional unit for performing a diagnosis based on the trained model.
  • the inference unit outputs the diagnosis result based on the learned model to the processing unit by executing the diagnosis program 32.
  • the machine learning system 1 is not limited to one that shares functions such that IPC2 is responsible for learning and PLC system 3 is responsible for data collection for diagnosis to diagnosis.
  • FIG. 7 is a diagram for explaining a first modification of the data processing flow in the machine learning system according to the first embodiment.
  • the machine learning system 1 performs from data collection to diagnosis in both the IPC 2 and the PLC system 3. That is, both the IPC2 and the PLC system 3 are responsible for collecting, processing, and diagnosing functions.
  • the machine learning system 1 can compare and verify the diagnosis result by the IPC 2 and the diagnosis result by the PLC system 3. Further, the machine learning system 1 can continue the diagnosis even if one of the IPC 2 and the PLC system 3 has a problem.
  • FIG. 8 is a diagram for explaining a second modification of the data processing flow in the machine learning system according to the first embodiment.
  • the IPC2 is responsible for collection and processing
  • the PLC system 3 is responsible for diagnosis.
  • FIG. 9 is a diagram for explaining a third modification of the data processing flow in the machine learning system according to the first embodiment.
  • the PLC system 3 is responsible for collection
  • the IPC2 is responsible for processing and diagnosis.
  • the machine learning system 1 shares the collection, processing, and diagnosis functions between the IPC 2 and the PLC system 3. By sharing collection, processing and diagnosis, the machine learning system 1 can reduce the processing load in each of the IPC 2 and the PLC system 3.
  • the IPC 2 outputs the trained model generated by the learning unit 17 and the program 30 generated by the output processing unit 18 to the PLC system 3.
  • the PLC system 3 collects and processes state data by executing the program 30 in the PLC 4.
  • the PLC system 3 outputs the inference result based on the trained model from the AI unit 5 to the PLC 4 by inputting the processed state data to the AI unit 5.
  • the machine learning system 1 has the effect of being able to control the system at the production site as a series of flows from data collection to operations leading to productivity improvement.
  • the configuration shown in the above embodiments is an example of the contents of the present disclosure.
  • the configurations shown in the embodiments can be combined with other known techniques.
  • the configurations shown in the embodiments may be combined as appropriate.
  • a part of the configuration shown in the embodiment may be omitted or changed without departing from the gist of the present disclosure.
  • 1 machine learning system 1 machine learning system, 2 IPC, 3 PLC system, 4 PLC, 5 AI unit, 6 external device, 10 processor, 11 memory, 12 communication device, 13 storage device, 14 data collection unit, 15 control unit, 16 data processing unit , 17 learning unit, 18 output processing unit, 19 distribution unit, 20 setting management unit, 21 program generation unit, 22 setting information storage unit, 30 program, 31, 32 diagnostic program, 33 FB.

Abstract

A machine learning system is provided with a PLC (4) which is a control device that controls production equipment, an IPC (2) which is an information processing device, and an AI unit (5) which is an inference device. The IPC (2) has a data collection unit (14) which collects state data indicating an operating state of the production equipment, a data processing unit (16) which processes the collected state data, a learning unit (17) which generates a learned model by means of machine learning using the state data which has undergone processing, and an output processing unit (18) which generates a program for carrying out collection and processing of the state data and outputs a learned model. The AI unit (5) outputs, to the PLC (4), inference results based on the learned model when the state data which has undergone collection and processing by execution of the program is input.

Description

機械学習システムMachine learning system
 本開示は、機械学習を実施する機械学習システムに関する。 This disclosure relates to a machine learning system that implements machine learning.
 工場などの生産現場では、生産設備の異常によるトラブルが発生することがある。生産現場では、異常の発生を早期に把握することによって、生産設備の故障による生産停止といった事態を未然に防ぐことが求められる。また、将来の異常発生を予測することによって、予防保全のための措置が取られる場合もある。生産設備が正常である場合でも、生産される製品の品質が低下し、歩留まりが低下することがある。生産現場では、生産設備の異常または製品の品質低下といった現象による生産性の低下に対する措置が講じられている。そこで、従来、生産現場から収集されたデータの解析によって、生産設備の状態についての診断を行う種々の手法が提案されている。 At production sites such as factories, troubles may occur due to abnormalities in production equipment. At the production site, it is required to prevent the situation such as production stoppage due to the failure of the production equipment by grasping the occurrence of the abnormality at an early stage. In addition, preventive maintenance measures may be taken by predicting future outbreaks. Even if the production equipment is normal, the quality of the products produced may deteriorate and the yield may decrease. At the production site, measures are taken against the decrease in productivity due to phenomena such as abnormalities in production equipment or deterioration in product quality. Therefore, conventionally, various methods for diagnosing the state of production equipment by analyzing data collected from a production site have been proposed.
 データの解析による診断において、機械学習の手法は有用である。機械学習には高い処理能力が求められることから、機械学習は、生産現場に設置される装置ではなく、エッジコンピューティング領域において実施されることがある。エッジコンピューティング領域では、1つの装置にて複数の生産設備を対象とする機械学習を集中して行うことで、複数の生産設備についての機械学習を効率的に行い得る。また、生産設備の状態についての診断は、エッジコンピューティング領域の装置にて行うよりも、生産現場に設置される装置に分散させるほうが効率的である。エッジコンピューティング領域の装置に機械学習のみならず診断も行わせることとすると、より高い処理能力を備える高価な装置が必要となるという課題がある。 Machine learning methods are useful in diagnosis by analyzing data. Since machine learning requires high processing power, machine learning may be performed in the edge computing area rather than the equipment installed at the production site. In the edge computing area, machine learning for a plurality of production facilities can be efficiently performed by concentrating machine learning for a plurality of production facilities with one device. Further, it is more efficient to distribute the diagnosis of the state of the production equipment to the equipment installed at the production site than to perform the diagnosis with the equipment in the edge computing area. If a device in the edge computing area is to perform not only machine learning but also diagnosis, there is a problem that an expensive device having a higher processing capacity is required.
 特許文献1には、各々がプラントの監視および制御を行う複数のローカルシステムと、各ローカルシステムへ運転支援情報を提供する運転支援提供システムとを有するネットワークシステムが開示されている。特許文献1によると、各ローカルシステムは、プラントの運転状態を示すデータを取り込むとともに、プラントの運転をシミュレーションした結果とプラントから取り込まれた実際のデータとの差異を求めることによってプラントの異常を検知する。運転支援提供システムは、各ローカルシステムによって取り込まれたデータを収集して、収集されたデータを用いてシミュレーションモデルを生成する。運転支援提供システムは、生成されたシミュレーションモデルを各ローカルシステムへ提供する。各ローカルシステムは、シミュレーションにおいて、運転支援提供システムによって提供されたシミュレーションモデルを用いる。 Patent Document 1 discloses a network system having a plurality of local systems, each of which monitors and controls a plant, and an operation support providing system that provides operation support information to each local system. According to Patent Document 1, each local system captures data indicating the operating state of the plant and detects plant abnormalities by obtaining the difference between the result of simulating the operation of the plant and the actual data captured from the plant. do. The driving support providing system collects the data captured by each local system and uses the collected data to generate a simulation model. The driving support providing system provides the generated simulation model to each local system. Each local system uses the simulation model provided by the driving assistance providing system in the simulation.
特開2002-304211号公報JP-A-2002-304211
 特許文献1にかかるネットワークシステムは、運転支援提供システムによって生成されたシミュレーションモデルをローカルシステムへ送信し、シミュレーションどおりにプラントが動作しているか否かをローカルシステムが確認するにとどまる。このため、特許文献1の技術によると、データの収集から生産性向上につながる動作までの一連の流れとして、生産現場のシステムであるローカルシステムを制御することが可能とはされていなかった。 The network system according to Patent Document 1 only transmits the simulation model generated by the operation support providing system to the local system, and the local system confirms whether or not the plant is operating according to the simulation. Therefore, according to the technique of Patent Document 1, it has not been possible to control a local system, which is a system at a production site, as a series of flows from data collection to an operation leading to productivity improvement.
 本開示は、上記に鑑みてなされたものであって、データの収集から生産性向上につながる動作まで一連の流れとして生産現場のシステムを制御可能とする機械学習システムを得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a machine learning system that can control a system at a production site as a series of flows from data collection to operations leading to productivity improvement.
 上述した課題を解決し、目的を達成するために、本開示にかかる機械学習システムは、生産設備を制御する制御装置と、情報処理装置と、推論装置とを備える。情報処理装置は、生産設備の動作状態を示す状態データを収集するデータ収集部と、収集された状態データを加工するデータ処理部と、加工を経た状態データを用いた機械学習によって学習済モデルを生成する学習部と、状態データの収集および加工を行わせるためのプログラムを生成するとともに学習済モデルを出力する出力処理部と、を有する。推論装置は、プログラムの実行による収集および加工を経た状態データが入力されることによって学習済モデルに基づいた推論結果を制御装置へ出力する。 In order to solve the above-mentioned problems and achieve the object, the machine learning system according to the present disclosure includes a control device for controlling production equipment, an information processing device, and an inference device. The information processing device uses a data collection unit that collects status data indicating the operating status of production equipment, a data processing unit that processes the collected status data, and a trained model by machine learning using the processed status data. It has a learning unit to generate and an output processing unit to generate a program for collecting and processing state data and output a trained model. The inference device outputs the inference result based on the trained model to the control device by inputting the state data that has been collected and processed by executing the program.
 本開示にかかる機械学習システムは、データの収集から生産性向上につながる動作まで一連の流れとして生産現場のシステムを制御することができるという効果を奏する。 The machine learning system according to the present disclosure has the effect of being able to control the system at the production site as a series of flows from data collection to operations leading to productivity improvement.
実施の形態1にかかる機械学習システムの構成を示す図The figure which shows the structure of the machine learning system which concerns on Embodiment 1. 実施の形態1にかかる機械学習システムに含まれる情報処理装置の構成を示す図The figure which shows the structure of the information processing apparatus included in the machine learning system which concerns on Embodiment 1. 実施の形態1にかかる機械学習システムのうちPLCシステムにおいて実行されるプログラムについて説明するための図The figure for demonstrating the program executed in the PLC system among the machine learning system which concerns on Embodiment 1. 実施の形態1にかかる機械学習システムに含まれる情報処理装置の動作手順を示すフローチャートA flowchart showing an operation procedure of the information processing apparatus included in the machine learning system according to the first embodiment. 実施の形態1にかかる機械学習システムに含まれるPLCシステムの動作手順を示すフローチャートA flowchart showing an operation procedure of the PLC system included in the machine learning system according to the first embodiment. 実施の形態1にかかる機械学習システムのうちPLCシステムにおいて実行されるプログラムの変形例について説明するための図The figure for demonstrating the modification of the program executed in the PLC system among the machine learning system which concerns on Embodiment 1. 実施の形態1にかかる機械学習システムにおけるデータ処理フローの第1変形例について説明するための図The figure for demonstrating the 1st modification of the data processing flow in the machine learning system which concerns on Embodiment 1. 実施の形態1にかかる機械学習システムにおけるデータ処理フローの第2変形例について説明するための図The figure for demonstrating the 2nd modification of the data processing flow in the machine learning system which concerns on Embodiment 1. 実施の形態1にかかる機械学習システムにおけるデータ処理フローの第3変形例について説明するための図The figure for demonstrating the 3rd modification of the data processing flow in the machine learning system which concerns on Embodiment 1.
 以下に、実施の形態にかかる機械学習システムを図面に基づいて詳細に説明する。 The machine learning system according to the embodiment will be described in detail below based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる機械学習システムの構成を示す図である。実施の形態1にかかる機械学習システム1は、生産現場に設置された機器類からデータを収集し、収集されたデータの処理結果を生産現場の機器へフィードバックする一連の処理を実行するデータ処理プラットフォームを有する。機械学習システム1は、産業用PC(Industrial Personal Computer:IPC)2と、PLC(Programmable Logic Controller)システム3とを有する。IPC2は、上記データ処理プラットフォームを構成する装置である。PLCシステム3は、生産設備を制御する制御装置であるPLC4と、推論装置であるAI(Artificial Intelligence)システム5とを有する。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a machine learning system according to the first embodiment. The machine learning system 1 according to the first embodiment is a data processing platform that collects data from equipment installed at a production site and executes a series of processes for feeding back the processing result of the collected data to the equipment at the production site. Has. The machine learning system 1 includes an industrial PC (Industrial Personal Computer: IPC) 2 and a PLC (Programmable Logic Controller) system 3. IPC2 is a device that constitutes the above data processing platform. The PLC system 3 includes a PLC 4 which is a control device for controlling production equipment, and an AI (Artificial Intelligence) system 5 which is an inference device.
 IPC2は、エッジコンピューティング領域に位置する情報処理装置である。エッジコンピューティング領域とは、データの集中処理を行うクラウドコンピューティング領域に対してデータの生成元側の領域であって、高度なデータ処理が行われる概念上の領域とする。実施の形態1では、エッジコンピューティング領域は、工場内の領域とする。機械学習システム1は、IPC2において機械学習を実施する。 IPC2 is an information processing device located in the edge computing area. The edge computing area is an area on the data generation side with respect to the cloud computing area where centralized data processing is performed, and is a conceptual area where advanced data processing is performed. In the first embodiment, the edge computing area is an area in the factory. The machine learning system 1 implements machine learning in IPC2.
 PLCシステム3は、生産現場に設置されるシステムである。PLC4は、シーケンスプログラムを実行することによって生産設備を制御する。AIユニット5は、学習済モデルに基づいた推論結果をPLC4へ出力する。学習済モデルは、IPC2による機械学習の結果である。 PLC system 3 is a system installed at the production site. The PLC4 controls the production equipment by executing a sequence program. The AI unit 5 outputs the inference result based on the trained model to the PLC4. The trained model is the result of machine learning by IPC2.
 実施の形態1において、AIユニット5は、生産設備の異常の有無を推論することによって、生産設備の異常を診断する。AIユニット5が実施する診断は、生産設備全体における異常の診断と、生産設備の構成要素ごとにおける異常の診断とのどちらであっても良い。AIユニット5は、推論結果である診断結果をPLC4へ出力する。PLC4は、異常があることを示す診断結果がAIユニット5から入力された場合に、生産設備の運転の停止、または生産設備における駆動源の減速といった措置をとる。PLCシステム3は、診断結果に対するこのような措置によって、生産設備の故障による生産停止といった事態を未然に防ぐことができる。これにより、機械学習システム1は、生産性の向上を図ることができる。 In the first embodiment, the AI unit 5 diagnoses the abnormality of the production equipment by inferring the presence or absence of the abnormality of the production equipment. The diagnosis performed by the AI unit 5 may be either a diagnosis of an abnormality in the entire production equipment or a diagnosis of an abnormality in each component of the production equipment. The AI unit 5 outputs the diagnosis result, which is the inference result, to the PLC 4. When the diagnosis result indicating that there is an abnormality is input from the AI unit 5, the PLC 4 takes measures such as stopping the operation of the production equipment or decelerating the drive source in the production equipment. The PLC system 3 can prevent a situation such as production suspension due to a failure of the production equipment by such measures for the diagnosis result. As a result, the machine learning system 1 can improve the productivity.
 AIユニット5は、生産設備を構成する部品の寿命を推論することによって、生産設備の寿命診断または部品ごとの寿命診断を行っても良い。AIユニット5が実施する診断は、生産設備を対象とする診断に限られず、生産設備によって製造される製品を対象とする診断であっても良い。例えば、AIユニット5は、製品の品質診断を行っても良い。AIユニット5が実施する診断は、生産現場における生産性の向上または製品の品質向上のために有用な診断であれば良い。 The AI unit 5 may perform a life diagnosis of the production equipment or a life diagnosis of each part by inferring the life of the parts constituting the production equipment. The diagnosis performed by the AI unit 5 is not limited to the diagnosis targeting the production equipment, and may be the diagnosis targeting the product manufactured by the production equipment. For example, the AI unit 5 may perform a quality diagnosis of a product. The diagnosis performed by the AI unit 5 may be any diagnosis useful for improving productivity or product quality at the production site.
 実施の形態1において、AIユニット5は、生産設備の生産性を向上するための生産条件を推論することによって、生産条件を提案するものであっても良い。AIユニット5は、生産現場における生産性の向上または製品の品質向上のために有用な推論結果を出力するものであれば良い。以下の説明では、AIユニット5が生産設備の異常を診断する場合を例とする。 In the first embodiment, the AI unit 5 may propose the production conditions by inferring the production conditions for improving the productivity of the production equipment. The AI unit 5 may output inference results useful for improving productivity at the production site or improving product quality. In the following description, the case where the AI unit 5 diagnoses an abnormality in the production equipment will be taken as an example.
 IPC2は、生産設備の動作状態を示す状態データの収集と、収集された状態データの加工と、加工を経た状態データを用いた学習との各工程を含むデータ処理を実行する。動作状態とは、生産設備の動作時における生産設備の構成要素の状態あるいは生産設備内の物質の状態であって、定量が可能であるものとする。状態とは、電気的な状態、機械的な状態、熱力学的な状態あるいは流体力学的な状態である。状態データは、動作状態を定量したデータである。状態データには、生産設備の内部から取り出されるデータと、生産設備の外部に設けられたセンサでの検出によって得られるデータとが含まれる。また、状態データには、PLC4の状態を表す内部データが含まれる。内部データは、PLC4の内部メモリに格納されるデータである。 IPC2 executes data processing including each process of collecting state data indicating the operating state of the production equipment, processing the collected state data, and learning using the processed state data. The operating state is the state of the components of the production equipment or the state of the substance in the production equipment at the time of operation of the production equipment, and can be quantified. A state is an electrical state, a mechanical state, a thermodynamic state, or a hydrodynamic state. The state data is data that quantifies the operating state. The state data includes data taken out from the inside of the production equipment and data obtained by detection by a sensor provided outside the production equipment. Further, the state data includes internal data representing the state of PLC4. The internal data is data stored in the internal memory of the PLC4.
 IPC2は、収集、加工および学習の順序によるデータ処理フローのうちの収集および加工の各工程と同じ工程をPLC4にも行わせるためのプログラムを生成する。IPC2によって生成されるプログラムを、以下の説明においてPLCプログラムと称することがある。IPC2は、生成されたPLCプログラムをPLC4へ出力する。また、IPC2は、機械学習の結果である学習済モデルを生成する。IPC2は、生成された学習済モデルをAIユニット5へ出力する。 IPC2 generates a program for PLC4 to perform the same process as each process of collection and processing in the data processing flow in the order of collection, processing and learning. The program generated by IPC2 may be referred to as a PLC program in the following description. IPC2 outputs the generated PLC program to PLC4. IPC2 also generates a trained model that is the result of machine learning. IPC2 outputs the generated trained model to AI unit 5.
 PLC4は、PLCプログラムを実行することによって、状態データの収集と、収集された状態データの加工とを行う。PLC4は、加工を経た状態データをAIユニット5へ出力する。AIユニット5は、学習済モデルに基づく診断を行うための推論エンジンを有する。AIユニット5は、加工を経た状態データが入力されることによって、学習済モデルに基づいた診断を行う。AIユニット5は、診断結果をPLC4へ出力する。 The PLC4 collects the state data and processes the collected state data by executing the PLC program. The PLC 4 outputs the processed state data to the AI unit 5. The AI unit 5 has an inference engine for making a diagnosis based on the trained model. The AI unit 5 makes a diagnosis based on the trained model by inputting the processed state data. The AI unit 5 outputs the diagnosis result to the PLC4.
 このように、機械学習システム1は、IPC2と同様の収集および加工をPLC4に行わせるとともに、IPC2にて生成された学習済モデルに基づく診断をAIユニット5に行わせる。機械学習システム1は、診断結果に対して高い応答性でPLC4を動作させることができる。 In this way, the machine learning system 1 causes the PLC4 to perform the same collection and processing as the IPC2, and also causes the AI unit 5 to perform the diagnosis based on the learned model generated by the IPC2. The machine learning system 1 can operate the PLC 4 with high responsiveness to the diagnosis result.
 図2は、実施の形態1にかかる機械学習システムに含まれる情報処理装置の構成を示す図である。IPC2には、上記データ処理フローを実現するための処理プログラムがインストールされる。図2には、IPC2が有するハードウェア構成と、ハードウェア構成を使用して実現される機能構成とを示している。 FIG. 2 is a diagram showing a configuration of an information processing device included in the machine learning system according to the first embodiment. A processing program for realizing the above data processing flow is installed in IPC2. FIG. 2 shows the hardware configuration of the IPC2 and the functional configuration realized by using the hardware configuration.
 IPC2は、各種処理を実行するプロセッサ10と、内蔵メモリであるメモリ11と、IPC2の外部の装置との通信を行う通信装置12と、各種情報を記憶する記憶装置13とを有する。 The IPC 2 includes a processor 10 that executes various processes, a memory 11 that is a built-in memory, a communication device 12 that communicates with an external device of the IPC 2, and a storage device 13 that stores various information.
 プロセッサ10は、CPU(Central Processing Unit)である。プロセッサ10は、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)であっても良い。メモリ11は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)またはEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)である。記憶装置13は、HDD(Hard Disk Drive)またはSSD(Solid State Drive)である。上記の処理プログラムは、記憶装置13に格納される。プロセッサ10は、記憶装置13に格納されている処理プログラムをメモリ11に読み出して実行する。 The processor 10 is a CPU (Central Processing Unit). The processor 10 may be a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). The memory 11 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory) or an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). The storage device 13 is an HDD (Hard Disk Drive) or an SSD (Solid State Drive). The above processing program is stored in the storage device 13. The processor 10 reads the processing program stored in the storage device 13 into the memory 11 and executes it.
 処理プログラムは、コンピュータシステムによる読み取りが可能とされた記憶媒体に記憶されたものであっても良い。IPC2は、記憶媒体に記録された処理プログラムをメモリ11へ格納しても良い。記憶媒体は、フレキシブルディスクである可搬型記憶媒体、あるいは半導体メモリであるフラッシュメモリであっても良い。処理プログラムは、他のコンピュータあるいはサーバ装置から通信ネットワークを介してコンピュータシステムへインストールされても良い。 The processing program may be stored in a storage medium that can be read by a computer system. The IPC2 may store the processing program recorded in the storage medium in the memory 11. The storage medium may be a portable storage medium that is a flexible disk, or a flash memory that is a semiconductor memory. The processing program may be installed in a computer system from another computer or server device via a communication network.
 IPC2は、状態データを収集する1つまたは複数のデータ収集部14と、IPC2におけるデータ処理を制御する制御部15と、収集された状態データを加工するデータ処理部16とを有する。図2には2つのデータ収集部14を示しているが、IPC2には、IPC2が実行するデータ処理フローの内容に従い任意の数のデータ収集部14が設けられる。 The IPC2 has one or a plurality of data collection units 14 for collecting state data, a control unit 15 for controlling data processing in the IPC2, and a data processing unit 16 for processing the collected state data. Although two data collection units 14 are shown in FIG. 2, the IPC2 is provided with an arbitrary number of data collection units 14 according to the contents of the data processing flow executed by the IPC2.
 IPC2は、加工を経た状態データを用いた機械学習によって学習済モデルを生成する学習部17と、状態データの収集および加工をPLC4に行わせるためのPLCプログラムを生成してPLCプログラムをPLC4へ出力する出力処理部18と、を有する。以下、PLCプログラムを単にプログラムと称する。出力処理部18は、プログラムを生成するプログラム生成部21を有する。また、出力処理部18は、学習済モデルをAIユニット5へ出力する。 The IPC2 generates a learning unit 17 that generates a trained model by machine learning using the processed state data, and a PLC program for causing the PLC4 to collect and process the state data, and outputs the PLC program to the PLC4. It has an output processing unit 18 and an output processing unit 18. Hereinafter, the PLC program is simply referred to as a program. The output processing unit 18 has a program generation unit 21 that generates a program. Further, the output processing unit 18 outputs the trained model to the AI unit 5.
 制御部15は、各データ収集部14、データ処理部16および学習部17の間におけるデータ配信を制御する配信部19と、設定情報を管理する設定管理部20とを有する。IPC2は、設定情報を蓄積する設定情報蓄積部22を有する。設定情報については後述する。 The control unit 15 has a distribution unit 19 that controls data distribution between each data collection unit 14, a data processing unit 16 and a learning unit 17, and a setting management unit 20 that manages setting information. The IPC2 has a setting information storage unit 22 that stores setting information. The setting information will be described later.
 各データ収集部14、制御部15、データ処理部16、学習部17および出力処理部18の各機能は、プロセッサ10とソフトウェアの組み合わせによって実現される。各データ収集部14、制御部15、データ処理部16、学習部17および出力処理部18の各機能は、プロセッサ10およびファームウェアの組み合わせによって実現されても良く、プロセッサ10、ソフトウェアおよびファームウェアの組み合わせによって実現されても良い。ソフトウェアまたはファームウェアは、プログラムとして記述され、記憶装置13に格納される。設定情報蓄積部22の機能は、記憶装置13を使用して実現される。 Each function of each data collection unit 14, control unit 15, data processing unit 16, learning unit 17, and output processing unit 18 is realized by a combination of the processor 10 and software. The functions of the data collection unit 14, the control unit 15, the data processing unit 16, the learning unit 17, and the output processing unit 18 may be realized by a combination of the processor 10 and the firmware, and may be realized by the combination of the processor 10, the software, and the firmware. It may be realized. The software or firmware is described as a program and stored in the storage device 13. The function of the setting information storage unit 22 is realized by using the storage device 13.
 外部機器6は、PLC4の外部に設置された機器であって、生産設備の動作状態を検出するセンサなどの機器である。センサとしては、生産設備の駆動源に取り付けられて振動を検出するセンサ、温度を検出するセンサなどが挙げられる。センサは、生産設備の内部に設置されるセンサと、生産設備の外部に設置されるセンサとのどちらであっても良い。 The external device 6 is a device installed outside the PLC 4 and is a device such as a sensor that detects the operating state of the production equipment. Examples of the sensor include a sensor attached to a drive source of production equipment to detect vibration, a sensor to detect temperature, and the like. The sensor may be either a sensor installed inside the production equipment or a sensor installed outside the production equipment.
 通信装置12は、PLC4、AIユニット5および外部機器6の各々と通信可能に接続される。PLC4、AIユニット5および外部機器6の各々は、無線通信によるネットワーク、あるいは有線通信によるネットワークを介して、通信装置12に接続される。外部機器6は、生産設備の動作状態を検出した結果である状態データをIPC2へ送信する。PLC4は、PLC4の内部データである状態データをIPC2へ送信する。 The communication device 12 is communicably connected to each of the PLC 4, the AI unit 5, and the external device 6. Each of the PLC 4, the AI unit 5, and the external device 6 is connected to the communication device 12 via a network by wireless communication or a network by wired communication. The external device 6 transmits the state data, which is the result of detecting the operating state of the production equipment, to the IPC2. The PLC4 transmits the state data, which is the internal data of the PLC4, to the IPC2.
 設定情報蓄積部22に蓄積される設定情報は、IPC2が実行するデータ処理フローのうち収集および加工の各工程における処理の実行順序、各工程が実行されるタイミング、各工程が実行される条件といった項目について設定された情報である。設定管理部20は、設定情報蓄積部22に保存される設定情報を管理する。また、設定管理部20は、設定情報蓄積部22から読み出された設定情報を配信部19またはプログラム生成部21へ送る。配信部19は、設定管理部20から取得した設定情報に基づいて、各データ収集部14、データ処理部16および学習部17の間におけるデータ配信を制御する。 The setting information stored in the setting information storage unit 22 includes the execution order of processing in each process of collection and processing, the timing of execution of each process, and the conditions for executing each process in the data processing flow executed by IPC2. Information set for the item. The setting management unit 20 manages the setting information stored in the setting information storage unit 22. Further, the setting management unit 20 sends the setting information read from the setting information storage unit 22 to the distribution unit 19 or the program generation unit 21. The distribution unit 19 controls data distribution between each data collection unit 14, the data processing unit 16, and the learning unit 17 based on the setting information acquired from the setting management unit 20.
 機械学習装置である学習部17は、例えば、ニューラルネットワークに従って、いわゆる教師あり学習によって、学習済モデルを生成する。教師あり学習とは、ある入力と、結果であるラベルとであるデータの組を大量に機械学習装置へ与えることで、データセットが有する特徴を学習し、入力から結果を推定する学習である。学習部17には、データ処理部16での加工を経た状態データと、診断結果の情報であるラベルとが入力される。学習部17は、状態データとラベルとを互いに関連付けたデータである学習用データを生成する。学習部17は、状態データとラベルとから最適な診断結果を推論するための学習済モデルを生成する。 The learning unit 17, which is a machine learning device, generates a trained model by, for example, supervised learning according to a neural network. Supervised learning is learning in which a large number of sets of data, which are an input and a label as a result, are given to a machine learning device to learn the characteristics of the data set and estimate the result from the input. The state data processed by the data processing unit 16 and the label which is the information of the diagnosis result are input to the learning unit 17. The learning unit 17 generates learning data which is data in which the state data and the label are associated with each other. The learning unit 17 generates a learned model for inferring the optimum diagnostic result from the state data and the label.
 学習部17は、生産設備ごとの状態データを用いた学習によって、生産設備ごとの学習済モデルを生成する。学習部17は、生産設備における機能ごとの状態データを用いた学習によって、機能ごとの学習済モデルを生成しても良い。学習部17は、生産設備を構成する部品ごとの状態データを用いた学習によって、部品ごとの学習済モデルを生成しても良い。学習部17は、生成された学習済モデルを出力処理部18へ出力する。 The learning unit 17 generates a learned model for each production facility by learning using the state data for each production facility. The learning unit 17 may generate a trained model for each function by learning using the state data for each function in the production equipment. The learning unit 17 may generate a learned model for each part by learning using the state data for each part constituting the production equipment. The learning unit 17 outputs the generated learned model to the output processing unit 18.
 プログラム生成部21は、設定管理部20から取得した設定情報に基づいて、状態データの収集および加工をPLC4に行わせるためのプログラムを生成する。プログラム生成部21は、IPC2におけるデータ処理フローのうち「収集」および「加工」と同様の機能をPLC4においても実現するためのプログラムを生成する。 The program generation unit 21 generates a program for causing the PLC 4 to collect and process state data based on the setting information acquired from the setting management unit 20. The program generation unit 21 generates a program for realizing the same functions as "collection" and "processing" in the data processing flow in IPC2 in PLC4.
 実施の形態1において、プログラム生成部21によって生成されるプログラムは、ラダー言語を使用して記述されたラダープログラムとする。プログラムは、ラダー言語以外の言語で記述されたプログラムであっても良く、構造化ラダー言語で記述されたプログラム、あるいはファンクションブロックダイアグラム言語で記述されたプログラムであっても良い。 In the first embodiment, the program generated by the program generation unit 21 is a ladder program written using the ladder language. The program may be a program written in a language other than the ladder language, a program written in the structured ladder language, or a program written in the function block diagram language.
 出力処理部18は、プログラム生成部21によって生成されたプログラムをPLC4へ出力する。出力処理部18は、学習部17によって生成された学習済モデルをAIユニット5へ出力する。これにより、IPC2は、状態データの収集および加工のためのプログラムと、状態データに基づいた診断結果を推論するための学習済モデルとをPLCシステム3へ提供する。 The output processing unit 18 outputs the program generated by the program generation unit 21 to the PLC 4. The output processing unit 18 outputs the trained model generated by the learning unit 17 to the AI unit 5. As a result, the IPC 2 provides the PLC system 3 with a program for collecting and processing the state data and a trained model for inferring the diagnostic result based on the state data.
 図3は、実施の形態1にかかる機械学習システムのうちPLCシステムにおいて実行されるプログラムについて説明するための図である。図3には、PLC4において実行されるプログラム30と、AIユニット5において実行される診断プログラム31とを示している。 FIG. 3 is a diagram for explaining a program executed in the PLC system among the machine learning systems according to the first embodiment. FIG. 3 shows a program 30 executed in the PLC 4 and a diagnostic program 31 executed in the AI unit 5.
 PLC4は、IPC2から取得したプログラム30を保持する。PLC4は、保持されたプログラム30を読み出して実行することによって、IPC2と同様に、状態データの収集および加工を行う。 PLC4 holds the program 30 acquired from IPC2. The PLC4 collects and processes state data in the same manner as the IPC2 by reading and executing the held program 30.
 診断プログラム31は、PLC4でのプログラム30の実行による収集および加工を経た状態データから、学習済モデルに基づいた診断結果を求めるためのプログラムである。AIユニット5は、診断プログラム31を保持する。AIユニット5は、保持された診断プログラム31を読み出して実行することによって、状態データから生産設備の異常を診断する。 The diagnostic program 31 is a program for obtaining a diagnostic result based on a trained model from the state data collected and processed by executing the program 30 in PLC4. The AI unit 5 holds the diagnostic program 31. The AI unit 5 reads and executes the held diagnostic program 31 to diagnose an abnormality in the production equipment from the state data.
 ラダープログラムは、複数の回路ブロックによって構成される。回路ブロックは、接点が直列あるいは並列に接続されたひとかたまりの回路である条件部と、1つ以上のコイルが直列に接続されたひとかたまりの回路である動作部とを組み合わせて構成される。動作部は、条件部の接点が導通されたときに実行される演算処理の内容を表す。ラダー言語を使用して作成されたプログラムコードは、基本的な回路要素である回路記号および変数を含む。回路記号にはPLC4での処理を表す接点およびコイルが含まれる。各変数は、PLC4が有する複数のデータ領域の各々に対応付けられている。各メモリ領域には、回路要素ごとにおける演算データが格納される。演算データには、オンとオフとの区別を表現するビットデータと、数値を表現するワードデータとが含まれる。ラダープログラムのプログラミングにおいて使用される変数、あるいは変数が対応付けられているデータ領域は、「デバイス」と称される。 The ladder program is composed of a plurality of circuit blocks. The circuit block is composed of a combination of a condition unit, which is a group of circuits in which contacts are connected in series or in parallel, and an operation unit, which is a group of circuits in which one or more coils are connected in series. The operating unit represents the content of arithmetic processing executed when the contacts of the condition unit are conducted. Program code written using the ladder language contains circuit symbols and variables that are the basic circuit elements. Circuit symbols include contacts and coils that represent processing in PLC4. Each variable is associated with each of the plurality of data areas included in the PLC4. Arithmetic data for each circuit element is stored in each memory area. The arithmetic data includes bit data that expresses the distinction between on and off, and word data that expresses a numerical value. The variables used in the programming of the ladder program, or the data areas to which the variables are associated, are referred to as "devices".
 プログラム30には、例えば、データ収集部14で取得された内部データである値が格納されていたデバイスを表すデバイス番号、デバイスからのデータ入力のオンとオフを切り換える入力接点、デバイスへのデータ出力のオンとオフを切り換える出力接点、出力接点から出力された値が入力されるデバイスを表すデバイス番号が含まれる。また、プログラム30には、時間によって入力接点または出力接点のオンとオフの切り換えを管理するためのタイマが含まれる。プログラム30に含まれるこのような回路要素によって、設定情報に従ったタイミングにおいて状態データを収集する機能が実現される。 In the program 30, for example, a device number representing a device in which a value which is internal data acquired by the data collection unit 14 is stored, an input contact for switching on / off of data input from the device, and data output to the device. The output contact that switches on and off of, and the device number that represents the device to which the value output from the output contact is input are included. The program 30 also includes a timer for managing the on / off switching of the input contact or the output contact according to the time. Such a circuit element included in the program 30 realizes a function of collecting state data at a timing according to the setting information.
 プログラム30には、例えば、データを平滑化するFB(ファンクションブロック)、入力接点または出力接点においてオンオフが切り換えられた回数をカウントするカウンタが含まれる。PLC4は、当該FBを実行することによって、状態データの平滑処理を行う。PLC4は、当該カウンタによるカウントに従って状態データの抽出を行う。プログラム30に含まれるこのような回路要素によって、状態データを加工する機能が実現される。 The program 30 includes, for example, an FB (function block) that smoothes data, and a counter that counts the number of times the input contact or output contact is switched on and off. The PLC4 smoothes the state data by executing the FB. The PLC4 extracts the state data according to the count by the counter. Such a circuit element included in the program 30 realizes a function of processing state data.
 診断プログラム31には、診断に使用される状態データの取得先であるデバイスと、診断結果の出力先であるデバイスとが特定されている。AIユニット5は、診断プログラム31を実行することによって、加工済みの状態データと学習済モデルとに基づいた診断を行う。AIユニット5は、診断結果をPLC4へ出力する。 In the diagnostic program 31, the device that is the acquisition destination of the state data used for the diagnosis and the device that is the output destination of the diagnosis result are specified. By executing the diagnosis program 31, the AI unit 5 makes a diagnosis based on the processed state data and the trained model. The AI unit 5 outputs the diagnosis result to the PLC4.
 次に、IPC2の動作について説明する。図4は、実施の形態1にかかる機械学習システムに含まれる情報処理装置の動作手順を示すフローチャートである。IPC2は、学習済モデルの生成を開始するためのコマンドを受け取ると、ステップS1において状態データを収集する。ステップS2において、IPC2は、ステップS1において収集された状態データを加工する。ステップS3において、IPC2は、状態データを用いた機械学習によって学習済モデルを生成する。 Next, the operation of IPC2 will be described. FIG. 4 is a flowchart showing an operation procedure of the information processing apparatus included in the machine learning system according to the first embodiment. Upon receiving the command to start the generation of the trained model, the IPC2 collects the state data in step S1. In step S2, IPC2 processes the state data collected in step S1. In step S3, IPC2 generates a trained model by machine learning using state data.
 ステップS4において、IPC2は、状態データの収集および加工を行うためのラダープログラムであるプログラム30を生成する。IPC2は、プログラム生成部21において、設定情報に基づいてプログラム30を生成する。 In step S4, IPC2 generates program 30, which is a ladder program for collecting and processing state data. The IPC2 generates the program 30 in the program generation unit 21 based on the setting information.
 ステップS5において、IPC2は、ステップS5において生成されたラダープログラムであるプログラム30と、ステップS3において生成された学習済モデルとをPLCシステム3へ送信する。IPC2は、通信装置12からPLC4へプログラム30を送信する。IPC2は、通信装置12からAIユニット5へ学習済モデルを送信する。これにより、IPC2は、プログラム30と学習済モデルとをPLCシステム3へ提供する。以上により、IPC2は、図4に示す手順による動作を終了する。 In step S5, IPC2 transmits the program 30, which is the ladder program generated in step S5, and the trained model generated in step S3 to the PLC system 3. The IPC2 transmits the program 30 from the communication device 12 to the PLC4. The IPC2 transmits the trained model from the communication device 12 to the AI unit 5. As a result, the IPC 2 provides the program 30 and the trained model to the PLC system 3. As described above, the IPC2 ends the operation according to the procedure shown in FIG.
 なお、ステップS5において、IPC2は、AIユニット5ではなくPLC4へ学習済モデルを送信しても良い。この場合、PLC4は、受信された学習済モデルをAIユニット5へ出力する。このように、IPC2は、PLC4を経由してAIユニット5へ学習済モデルを提供しても良い。 Note that in step S5, the IPC2 may transmit the trained model to the PLC4 instead of the AI unit 5. In this case, the PLC 4 outputs the received trained model to the AI unit 5. In this way, the IPC2 may provide the trained model to the AI unit 5 via the PLC4.
 次に、PLCシステム3の動作について説明する。図5は、実施の形態1にかかる機械学習システムに含まれるPLCシステムの動作手順を示すフローチャートである。PLCシステム3は、ステップS11において、ラダープログラムであるプログラム30と学習済モデルとを受信する。PLCシステム3は、PLC4においてプログラム30を受信する。PLCシステム3は、AIユニット5において学習済モデルを受信する。なお、PLCシステム3は、上述するように、PLC4においてプログラム30と学習済モデルとを受信しても良い。PLCシステム3は、プログラム30と学習済モデルとを、初回の診断時に受信する。PLCシステム3は、初回の診断以降において学習済モデルの更新があった場合に、更新された学習済モデルを受信する。 Next, the operation of the PLC system 3 will be described. FIG. 5 is a flowchart showing an operation procedure of the PLC system included in the machine learning system according to the first embodiment. In step S11, the PLC system 3 receives the program 30 which is a ladder program and the trained model. The PLC system 3 receives the program 30 in the PLC 4. The PLC system 3 receives the trained model in the AI unit 5. As described above, the PLC system 3 may receive the program 30 and the trained model in the PLC 4. The PLC system 3 receives the program 30 and the trained model at the time of the first diagnosis. The PLC system 3 receives the updated trained model when the trained model is updated after the first diagnosis.
 PLCシステム3は、プログラム30と学習済モデルとを受信してから、診断のための動作を行う。ステップS12において、PLCシステム3は、PLC4において状態データを収集する。PLC4は、ステップS11において受信されたプログラム30を実行することによって、状態データを収集する。 The PLC system 3 performs an operation for diagnosis after receiving the program 30 and the trained model. In step S12, the PLC system 3 collects state data at the PLC 4. The PLC4 collects state data by executing the program 30 received in step S11.
 ステップS13において、PLCシステム3は、ステップS12において収集された状態データをPLC4において加工する。PLC4は、ステップS11において受信されたプログラム30を実行することによって、状態データを加工する。PLC4は、加工された状態データをAIユニット5へ出力する。 In step S13, the PLC system 3 processes the state data collected in step S12 in PLC4. The PLC4 processes the state data by executing the program 30 received in step S11. The PLC 4 outputs the processed state data to the AI unit 5.
 ステップS14において、PLCシステム3は、AIユニット5において生産設備を診断する。AIユニット5は、PLC4から入力された状態データと、ステップS11において受信された学習済モデルとに基づいて、診断結果を求める。ステップS15において、PLCシステム3は、ステップS14において得られた診断結果をAIユニット5からPLC4へ入力する。以上により、PLCシステム3は、図5に示す手順による動作を終了する。 In step S14, the PLC system 3 diagnoses the production equipment in the AI unit 5. The AI unit 5 obtains a diagnosis result based on the state data input from the PLC 4 and the trained model received in step S11. In step S15, the PLC system 3 inputs the diagnosis result obtained in step S14 from the AI unit 5 to the PLC 4. As described above, the PLC system 3 ends the operation according to the procedure shown in FIG.
 次に、IPC2において、データ処理フローの設定情報に基づいてプログラム30を生成する方法について説明する。プログラム生成部21は、設定情報に含まれるデータ処理要素である「収集」および「加工」について、データ処理要素ごとの処理の内容を確認する。プログラム生成部21は、データ処理要素ごとの処理を実現するための回路要素であるプログラム要素を選択する。選択されるプログラム要素には、接点、コイル、タイマ、カウンタおよびFBなどが含まれる。 Next, in IPC2, a method of generating the program 30 based on the setting information of the data processing flow will be described. The program generation unit 21 confirms the processing contents for each data processing element with respect to the data processing elements "collection" and "processing" included in the setting information. The program generation unit 21 selects a program element which is a circuit element for realizing processing for each data processing element. Program elements selected include contacts, coils, timers, counters and FBs.
 プログラム生成部21は、例えば、「収集」については接点を選択する。プログラム生成部21は、例えば、「加工」については、C言語によってあらかじめ機能がプログラミングされたFBを選択する。加工のために選択されるプログラム要素は、「加工」についての機能を実現するためのラダープログラムが纏められたFBであっても良い。プログラム生成部21は、FBを選択の対象とすることによって、データ処理要素ごとの処理を実現するためのプログラム要素を容易に選択することが可能となる。 The program generation unit 21 selects a contact point for "collection", for example. For example, for "machining", the program generation unit 21 selects an FB whose function is pre-programmed in C language. The program element selected for machining may be an FB in which a ladder program for realizing a function related to "machining" is put together. By selecting the FB as the selection target, the program generation unit 21 can easily select the program element for realizing the processing for each data processing element.
 次に、プログラム生成部21は、データ処理要素同士の接続関係を確認することによって、選択されたプログラム要素同士の接続関係を設定する。データ処理要素同士の接続関係には、データ処理フローにおける分岐または結合といった接続関係が含まれる。また、プログラム生成部21は、データ処理要素へ入力されるデータの取得先であるデバイスと、データ処理要素から出力されるデータの入力先であるデバイスとを確認する。プログラム生成部21は、データ処理要素に対応するプログラム要素へ入力されるデータの取得先であるデバイスと、データ処理要素に対応するプログラム要素から出力されるデータの入力先であるデバイスとを設定する。 Next, the program generation unit 21 sets the connection relationship between the selected program elements by confirming the connection relationship between the data processing elements. The connection relationship between data processing elements includes a connection relationship such as branching or joining in a data processing flow. Further, the program generation unit 21 confirms the device that is the acquisition destination of the data input to the data processing element and the device that is the input destination of the data output from the data processing element. The program generation unit 21 sets a device that is an acquisition destination of data input to the program element corresponding to the data processing element and a device that is an input destination of data output from the program element corresponding to the data processing element. ..
 データのサンプリング時間、またはデータ処理のタイミングといった処理条件を含むデータ処理要素がデータ処理フローに含まれている場合、プログラム生成部21は、当該データ処理要素に対応するプログラム要素について、当該処理条件に対応するパラメータを設定する。例えば、データのサンプリング時間についての条件が設定されている場合、プログラム生成部21は、プログラム要素であるタイマの時間パラメータを、サンプリング時間の条件に従って設定する。データ処理のタイミングについての条件が設定されている場合、プログラム生成部21は、プログラム要素である接点が切り換わるタイミングについてのパラメータを、当該条件に従って設定する。 When a data processing element including a processing condition such as a data sampling time or a data processing timing is included in the data processing flow, the program generation unit 21 sets the processing condition for the program element corresponding to the data processing element. Set the corresponding parameters. For example, when a condition regarding the data sampling time is set, the program generation unit 21 sets the time parameter of the timer, which is a program element, according to the sampling time condition. When a condition regarding the timing of data processing is set, the program generation unit 21 sets a parameter regarding the timing at which the contact, which is a program element, is switched according to the condition.
 なお、実施の形態1では、学習部17が用いる学習アルゴリズムに教師あり学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムには、教師あり学習以外にも、強化学習、教師なし学習、または半教師あり学習等を適用することもできる。学習アルゴリズムには、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもできる。学習部17は、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行しても良い。 In the first embodiment, the case where supervised learning is applied to the learning algorithm used by the learning unit 17 has been described, but the present invention is not limited to this. In addition to supervised learning, reinforcement learning, unsupervised learning, semi-supervised learning, and the like can also be applied to the learning algorithm. Deep learning, which learns the extraction of the feature amount itself, can also be used as the learning algorithm. The learning unit 17 may perform machine learning according to other known methods such as genetic programming, functional logic programming, and support vector machines.
 学習部17である機械学習装置は、IPC2に内蔵されるものに限られず、IPC2の外部に設けられたものであっても良い。機械学習装置は、ネットワークを介してIPC2に接続される装置であっても良い。機械学習装置は、クラウドサーバ上に存在していても良い。 The machine learning device, which is the learning unit 17, is not limited to the one built in the IPC2, and may be provided outside the IPC2. The machine learning device may be a device connected to the IPC2 via a network. The machine learning device may exist on the cloud server.
 学習部17は、複数の機械学習システム1に対して作成されるデータセットに従って学習済モデルを生成しても良い。学習部17は、同一の現場で使用される複数の機械学習システム1からデータセットを取得しても良く、あるいは、互いに異なる現場で使用される複数の機械学習システム1から取得されるデータセットを利用して学習済モデルを生成しても良い。学習部17がデータセットの取得を開始した後に、データセットが取得される対象に新たな機械学習システム1が追加されても良い。また、複数の機械学習システム1からのデータセットの取得を開始した後に、データセットが取得される対象から、複数の機械学習システム1のうちの一部が除外されても良い。 The learning unit 17 may generate a trained model according to the data sets created for the plurality of machine learning systems 1. The learning unit 17 may acquire data sets from a plurality of machine learning systems 1 used at the same site, or may acquire data sets from a plurality of machine learning systems 1 used at different sites. It may be used to generate a trained model. After the learning unit 17 starts acquiring the data set, a new machine learning system 1 may be added to the target for which the data set is acquired. Further, after starting the acquisition of the data set from the plurality of machine learning systems 1, a part of the plurality of machine learning systems 1 may be excluded from the target for which the data set is acquired.
 ある1つの機械学習システム1において学習を行った学習部17は、当該機械学習システム1以外の機械学習システム1に取り付けられても良い。当該他の機械学習システム1に取り付けられた学習部17は、当該他の機械学習システム1における再学習によって、学習済モデルを更新することができる。 The learning unit 17 that has learned in one machine learning system 1 may be attached to a machine learning system 1 other than the machine learning system 1. The learning unit 17 attached to the other machine learning system 1 can update the trained model by re-learning in the other machine learning system 1.
 PLC4は、AIユニット5からPLC4へ診断結果が入力されると、診断対象である生産設備に、診断結果に応じた動作を行わせる。PLC4は、異常があることを示す診断結果がAIユニット5から入力された場合に、生産設備の運転を停止させる。または、PLC4は、生産設備における駆動源を減速させる。プログラム30には状態データが収集される対象である生産設備が特定されているため、PLC4は、異常がある生産設備を特定することができる。PLC4が生産設備を制御するために実行するシーケンスプログラムには、生産設備等の不具合による割込信号をPLC4が受信した場合の処理が記述されている。PLC4は、異常があることを示す診断結果である信号を割込信号として受信し、割込信号を受信した場合の処理として、診断結果に応じた処理を実行する。これにより、機械学習システム1は、AIユニット5による診断結果に応じて生産設備を制御することが可能となる。 When the diagnosis result is input from the AI unit 5 to the PLC4, the PLC4 causes the production equipment to be diagnosed to perform an operation according to the diagnosis result. The PLC 4 stops the operation of the production equipment when the diagnosis result indicating that there is an abnormality is input from the AI unit 5. Alternatively, the PLC 4 slows down the drive source in the production equipment. Since the production equipment for which the state data is collected is specified in the program 30, the PLC4 can identify the production equipment having an abnormality. The sequence program executed by the PLC4 to control the production equipment describes the processing when the PLC4 receives an interrupt signal due to a malfunction of the production equipment or the like. The PLC4 receives a signal which is a diagnosis result indicating that there is an abnormality as an interrupt signal, and executes a process according to the diagnosis result as a process when the interrupt signal is received. As a result, the machine learning system 1 can control the production equipment according to the diagnosis result by the AI unit 5.
 次に、実施の形態1の変形例について説明する。機械学習システム1は、学習済モデルに基づいた推論をAIユニット5が行うものに限られない。学習済モデルに基づいた推論はPLC4が行っても良く、機械学習システム1にはAIユニット5が設けられなくても良い。この場合、PLC4には、プログラム30の実行による状態データの収集および加工を行う処理部と、推論装置である推論部とが設けられる。制御装置としての処理部でのプログラム30の実行による収集および加工を経た状態データが推論部へ入力されることによって、推論部は、学習済モデルに基づいた推論結果を処理部へ出力する。なお、処理部および推論部の図示は省略する。 Next, a modified example of the first embodiment will be described. The machine learning system 1 is not limited to the one in which the AI unit 5 makes inferences based on the trained model. The inference based on the trained model may be performed by the PLC 4, and the machine learning system 1 may not be provided with the AI unit 5. In this case, the PLC 4 is provided with a processing unit that collects and processes state data by executing the program 30, and an inference unit that is an inference device. When the state data collected and processed by the execution of the program 30 in the processing unit as the control device is input to the inference unit, the inference unit outputs the inference result based on the learned model to the processing unit. The processing unit and the inference unit are not shown.
 図6は、実施の形態1にかかる機械学習システムのうちPLCシステムにおいて実行されるプログラムの変形例について説明するための図である。図6には、状態データに基づいた診断結果をPLC4が推論する場合に、プログラム生成部21によって生成されるプログラムの例を示している。プログラム生成部21は、状態データの収集および加工のためのプログラム30と、診断のためのラダープログラムである診断プログラム32とを含むプログラムを生成する。診断プログラム32は、学習済モデルに基づいた診断を実行するための機能部であるFB33を含む。推論部は、診断プログラム32を実行することによって、学習済モデルに基づいた診断結果を処理部へ出力する。 FIG. 6 is a diagram for explaining a modified example of a program executed in the PLC system among the machine learning systems according to the first embodiment. FIG. 6 shows an example of a program generated by the program generation unit 21 when the PLC4 infers a diagnosis result based on the state data. The program generation unit 21 generates a program including a program 30 for collecting and processing state data and a diagnostic program 32 which is a ladder program for diagnosis. The diagnostic program 32 includes FB33, which is a functional unit for performing a diagnosis based on the trained model. The inference unit outputs the diagnosis result based on the learned model to the processing unit by executing the diagnosis program 32.
 機械学習システム1は、IPC2が学習を担い、かつPLCシステム3が診断のためのデータ収集から診断までを担うというように機能を分担するものに限られない。図7は、実施の形態1にかかる機械学習システムにおけるデータ処理フローの第1変形例について説明するための図である。第1変形例において、機械学習システム1は、IPC2とPLCシステム3との双方においてデータ収集から診断までを行う。すなわち、IPC2とPLCシステム3とは、ともに収集、加工および診断の各機能を担う。IPC2とPLCシステム3との双方が診断を行うことによって、機械学習システム1は、IPC2による診断結果とPLCシステム3による診断結果との比較および検証を行うことができる。また、機械学習システム1は、IPC2およびPLCシステム3のうちの一方に不具合が生じた場合でも、診断を継続することができる。 The machine learning system 1 is not limited to one that shares functions such that IPC2 is responsible for learning and PLC system 3 is responsible for data collection for diagnosis to diagnosis. FIG. 7 is a diagram for explaining a first modification of the data processing flow in the machine learning system according to the first embodiment. In the first modification, the machine learning system 1 performs from data collection to diagnosis in both the IPC 2 and the PLC system 3. That is, both the IPC2 and the PLC system 3 are responsible for collecting, processing, and diagnosing functions. When both the IPC 2 and the PLC system 3 perform the diagnosis, the machine learning system 1 can compare and verify the diagnosis result by the IPC 2 and the diagnosis result by the PLC system 3. Further, the machine learning system 1 can continue the diagnosis even if one of the IPC 2 and the PLC system 3 has a problem.
 図8は、実施の形態1にかかる機械学習システムにおけるデータ処理フローの第2変形例について説明するための図である。第2変形例において、機械学習システム1は、IPC2が収集および加工を担い、かつPLCシステム3が診断を担う。図9は、実施の形態1にかかる機械学習システムにおけるデータ処理フローの第3変形例について説明するための図である。第3変形例において、機械学習システム1は、PLCシステム3が収集を担い、かつIPC2が加工および診断を担う。第2変形例および第3変形例では、機械学習システム1は、収集、加工および診断の各機能をIPC2とPLCシステム3とで分担する。収集、加工および診断の分担によって、機械学習システム1は、IPC2とPLCシステム3との各々における処理負担を低減させることができる。 FIG. 8 is a diagram for explaining a second modification of the data processing flow in the machine learning system according to the first embodiment. In the second modification, in the machine learning system 1, the IPC2 is responsible for collection and processing, and the PLC system 3 is responsible for diagnosis. FIG. 9 is a diagram for explaining a third modification of the data processing flow in the machine learning system according to the first embodiment. In the third modification, in the machine learning system 1, the PLC system 3 is responsible for collection, and the IPC2 is responsible for processing and diagnosis. In the second modification and the third modification, the machine learning system 1 shares the collection, processing, and diagnosis functions between the IPC 2 and the PLC system 3. By sharing collection, processing and diagnosis, the machine learning system 1 can reduce the processing load in each of the IPC 2 and the PLC system 3.
 実施の形態1によると、IPC2は、学習部17で生成された学習済モデルと出力処理部18にて生成されたプログラム30とをPLCシステム3へ出力する。PLCシステム3は、PLC4でのプログラム30の実行によって状態データの収集および加工を行う。PLCシステム3は、加工を経た状態データをAIユニット5へ入力させることによって、学習済モデルに基づいた推論結果をAIユニット5からPLC4へ出力する。以上により、機械学習システム1は、データの収集から生産性向上につながる動作まで一連の流れとして生産現場のシステムを制御できるという効果を奏する。 According to the first embodiment, the IPC 2 outputs the trained model generated by the learning unit 17 and the program 30 generated by the output processing unit 18 to the PLC system 3. The PLC system 3 collects and processes state data by executing the program 30 in the PLC 4. The PLC system 3 outputs the inference result based on the trained model from the AI unit 5 to the PLC 4 by inputting the processed state data to the AI unit 5. As described above, the machine learning system 1 has the effect of being able to control the system at the production site as a series of flows from data collection to operations leading to productivity improvement.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものである。実施の形態に示した構成は、別の公知の技術と組み合わせることが可能である。実施の形態に示した構成同士は、適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、実施の形態に示した構成の一部は、省略または変更することが可能である。 The configuration shown in the above embodiments is an example of the contents of the present disclosure. The configurations shown in the embodiments can be combined with other known techniques. The configurations shown in the embodiments may be combined as appropriate. A part of the configuration shown in the embodiment may be omitted or changed without departing from the gist of the present disclosure.
 1 機械学習システム、2 IPC、3 PLCシステム、4 PLC、5 AIユニット、6 外部機器、10 プロセッサ、11 メモリ、12 通信装置、13 記憶装置、14 データ収集部、15 制御部、16 データ処理部、17 学習部、18 出力処理部、19 配信部、20 設定管理部、21 プログラム生成部、22 設定情報蓄積部、30 プログラム、31,32 診断プログラム、33 FB。 1 machine learning system, 2 IPC, 3 PLC system, 4 PLC, 5 AI unit, 6 external device, 10 processor, 11 memory, 12 communication device, 13 storage device, 14 data collection unit, 15 control unit, 16 data processing unit , 17 learning unit, 18 output processing unit, 19 distribution unit, 20 setting management unit, 21 program generation unit, 22 setting information storage unit, 30 program, 31, 32 diagnostic program, 33 FB.

Claims (4)

  1.  生産設備を制御する制御装置と、
     前記生産設備の動作状態を示す状態データを収集するデータ収集部と、収集された状態データを加工するデータ処理部と、加工を経た状態データを用いた機械学習によって学習済モデルを生成する学習部と、状態データの収集および加工を行わせるためのプログラムを生成するとともに前記学習済モデルを出力する出力処理部と、を有する情報処理装置と、
     前記プログラムの実行による収集および加工を経た状態データが入力されることによって前記学習済モデルに基づいた推論結果を前記制御装置へ出力する推論装置と、を備えることを特徴とする機械学習システム。
    A control device that controls production equipment and
    A data collection unit that collects state data indicating the operating state of the production equipment, a data processing unit that processes the collected state data, and a learning unit that generates a trained model by machine learning using the processed state data. An information processing device having an output processing unit that generates a program for collecting and processing state data and outputs the trained model.
    A machine learning system including a reasoning device that outputs a reasoning result based on the learned model to the control device by inputting state data that has been collected and processed by executing the program.
  2.  前記出力処理部は、状態データの収集および加工を前記制御装置に行わせるための前記プログラムであるラダープログラムを生成するプログラム生成部を有し、
     前記推論装置には、前記制御装置での前記プログラムの実行による収集および加工を経た状態データが入力されることを特徴とする請求項1に記載の機械学習システム。
    The output processing unit has a program generation unit that generates a ladder program, which is the program for causing the control device to collect and process state data.
    The machine learning system according to claim 1, wherein state data that has been collected and processed by executing the program in the control device is input to the inference device.
  3.  前記プログラム生成部は、前記情報処理装置が実行する前記収集および前記加工の各工程における処理について設定された設定情報に基づいて、前記ラダープログラムを生成することを特徴とする請求項2に記載の機械学習システム。 The second aspect of claim 2, wherein the program generation unit generates the ladder program based on the setting information set for the processing in each process of the collection and the processing executed by the information processing apparatus. Machine learning system.
  4.  前記プログラム生成部は、前記加工のためのファンクションブロックを含む前記ラダープログラムを生成することを特徴とする請求項2または3に記載の機械学習システム。 The machine learning system according to claim 2 or 3, wherein the program generation unit generates the ladder program including a function block for processing.
PCT/JP2020/015065 2020-04-01 2020-04-01 Machine learning system WO2021199383A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/015065 WO2021199383A1 (en) 2020-04-01 2020-04-01 Machine learning system
JP2020545824A JP6884287B1 (en) 2020-04-01 2020-04-01 Machine learning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015065 WO2021199383A1 (en) 2020-04-01 2020-04-01 Machine learning system

Publications (1)

Publication Number Publication Date
WO2021199383A1 true WO2021199383A1 (en) 2021-10-07

Family

ID=76218181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015065 WO2021199383A1 (en) 2020-04-01 2020-04-01 Machine learning system

Country Status (2)

Country Link
JP (1) JP6884287B1 (en)
WO (1) WO2021199383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084625A1 (en) * 2021-11-10 2023-05-19 三菱電機株式会社 Device for diagnosing electric motor, method for diagnosing electric motor, and device for inferring indication of abnormality in electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345425A (en) * 2002-05-22 2003-12-05 Mitsubishi Heavy Ind Ltd Remote plant monitoring/diagnosing method for enabling remote monitoring/diagnosing and its plant monitoring/ diagnosing apparatus
JP2009053939A (en) * 2007-08-27 2009-03-12 Toshiba Corp Remote monitoring/diagnosing system
JP2019215674A (en) * 2018-06-12 2019-12-19 オムロン株式会社 Abnormality detection system, setting tool device, controller, data structure of abnormality definition information, and abnormality handling function block

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345425A (en) * 2002-05-22 2003-12-05 Mitsubishi Heavy Ind Ltd Remote plant monitoring/diagnosing method for enabling remote monitoring/diagnosing and its plant monitoring/ diagnosing apparatus
JP2009053939A (en) * 2007-08-27 2009-03-12 Toshiba Corp Remote monitoring/diagnosing system
JP2019215674A (en) * 2018-06-12 2019-12-19 オムロン株式会社 Abnormality detection system, setting tool device, controller, data structure of abnormality definition information, and abnormality handling function block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084625A1 (en) * 2021-11-10 2023-05-19 三菱電機株式会社 Device for diagnosing electric motor, method for diagnosing electric motor, and device for inferring indication of abnormality in electric motor

Also Published As

Publication number Publication date
JPWO2021199383A1 (en) 2021-10-07
JP6884287B1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US11701772B2 (en) Operation prediction system and operation prediction method
Romero et al. Rethinking jidoka systems under automation & learning perspectives in the digital lean manufacturing world
JP6496274B2 (en) Machine learning device, failure prediction device, machine system and machine learning method for learning life failure condition
Garga et al. Hybrid reasoning for prognostic learning in CBM systems
US9261862B2 (en) Automation management system and method
Cohen et al. A smart process controller framework for Industry 4.0 settings
Frankowiak et al. A review of the evolution of microcontroller-based machine and process monitoring
Balogh et al. Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing
CN112240784A (en) Abnormality determination device and abnormality determination system
WO2021199383A1 (en) Machine learning system
Gama et al. Data-driven predictive maintenance
EP3674946B1 (en) System and method for detecting anomalies in cyber-physical system with determined characteristics
Köppen-Seliger et al. MAGIC: An integrated approach for diagnostic data management and operator support
Lughofer et al. Prologue: Predictive maintenance in dynamic systems
Hu et al. A systematic approach to integrated fault diagnosis of flexible manufacturing systems
Villalonga et al. Visual analytics framework for condition monitoring in cyber-physical systems
CN101646982A (en) The method and apparatus that is used for monitor system health
Lee et al. Intelligent factory agents with predictive analytics for asset management
JP7226411B2 (en) An expansion module, an industrial device, and a method for estimating a parameter of an industrial device or an internal state of a device controlled by said industrial device
Borissova et al. A concept of intelligent e-maintenance decision making system
US20230376024A1 (en) Device and Method for Identifying Anomalies in an Industrial System for Implementing a Production Process
KR20230081759A (en) Integrated management systme for clean room management based on artifical intelligence and method thereof
Machado et al. A neural network multiagent architecture applied to industrial networks for dynamic allocation of control strategies using standard function blocks
EP4136514A1 (en) Method for an intelligent alarm management in industrial processes
Elbazi et al. Digital Twin-Enabled Monitoring of Mining Haul Trucks with Expert System Integration: A Case Study in an Experimental Open-Pit Mine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928874

Country of ref document: EP

Kind code of ref document: A1