WO2021192449A1 - Parking brake control device - Google Patents

Parking brake control device Download PDF

Info

Publication number
WO2021192449A1
WO2021192449A1 PCT/JP2020/046589 JP2020046589W WO2021192449A1 WO 2021192449 A1 WO2021192449 A1 WO 2021192449A1 JP 2020046589 W JP2020046589 W JP 2020046589W WO 2021192449 A1 WO2021192449 A1 WO 2021192449A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
parking brake
threshold value
wheel
electric motor
Prior art date
Application number
PCT/JP2020/046589
Other languages
French (fr)
Japanese (ja)
Inventor
真人 宇野
真梨 高橋
健 坂口
学 廣谷
サンディプ プラネ
一樹 弘山
修一 黒須
Original Assignee
日立Astemo上田株式会社
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo上田株式会社, 日立Astemo株式会社 filed Critical 日立Astemo上田株式会社
Priority to JP2022509265A priority Critical patent/JP7486572B2/en
Publication of WO2021192449A1 publication Critical patent/WO2021192449A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure

Definitions

  • the present invention relates to a parking brake control device.
  • a parking brake control device a device that transmits the power of an electric motor to a wheel brake via a cable to brake the wheels while the vehicle is running is known (see Patent Document 1). Specifically, in this technique, when braking the wheels, the stroke of the cable is increased at a constant gradient by simply activating the electric motor.
  • an object of the present invention is to prevent the wheels from suddenly locking when the power of the electric motor is mechanically transmitted to the friction member to brake the wheels while the vehicle is running.
  • the present invention that solves the above problems is to control a parking brake device that mechanically transmits the power generated by the forward rotation of the electric motor to the friction member and presses the friction member against the rotating body that rotates integrally with the wheel.
  • Parking brake control device includes an apply control means for executing apply control for rotating the electric motor in the forward direction when the start condition for operating the parking brake device is satisfied while the vehicle is running, and the apply control device.
  • the stop control means for executing the stop control for stopping the rotation of the electric motor based on the wheel deceleration in the above, and the release control means for executing the release control for rotating the electric motor in the reverse direction based on the slip amount. Be prepared.
  • the braking force based on the electric motor of the parking brake device can be appropriately controlled according to the wheel deceleration while the vehicle is running. Can be prevented from suddenly locking.
  • stop control means may execute the stop control when the wheel deceleration exceeds a predetermined threshold value.
  • the threshold value may be a fixed value.
  • the parking brake control device includes a threshold value setting means for setting the threshold value based on the vehicle body speed or the elapsed time from receiving the signal of the operation switch for operating the parking brake device. You may.
  • the parking brake control device sets the road surface ⁇ estimating means for estimating the road surface ⁇ and the threshold value as the first threshold value when the road surface ⁇ is equal to or less than a predetermined value, and when the road surface ⁇ is larger than the predetermined value.
  • a threshold setting means for setting the threshold value to a second threshold value smaller than the first threshold value may be provided.
  • the vehicle 2 transmits hydraulic pressure to the wheel brakes FR, FL, RR, RL provided on the front, rear, left and right wheels 3, and the wheel brakes FR, FL, RR, RL to each wheel.
  • the vehicle brake hydraulic pressure control device 1 for performing the braking of No. 3 is provided.
  • Each wheel brake FR, FL on the front side is provided with a brake rotor BR and a wheel cylinder 4.
  • Each of the rear wheel brakes RR and RL includes a brake rotor BR as an example of a rotating body, a wheel cylinder 4, and a parking brake device 200.
  • the wheel cylinder 4 and the parking brake device 200 apply a braking force to the wheel 3 by pressing a friction pad 260 (see FIG. 3) as an example of the friction member against the brake rotor BR that rotates integrally with the wheel 3. doing.
  • the vehicle brake fluid pressure control device 1 mainly includes a hydraulic pressure unit 10 that brakes the wheels 3 by hydraulic pressure, and a control unit 100.
  • the hydraulic unit 10 is provided with an oil passage and various parts.
  • the control unit 100 appropriately controls various parts in the hydraulic pressure unit 10.
  • the hydraulic pressure unit 10 is connected to a master cylinder 5 as a hydraulic pressure source and each wheel cylinder 4. Then, the brake hydraulic pressure generated in the master cylinder 5 according to the pedaling force of the brake pedal 6 (braking operation of the driver) is controlled by the control unit 100 and the hydraulic pressure unit 10 and then supplied to the wheel cylinder 4.
  • the control unit 100 is connected to a wheel speed sensor 91 that detects the wheel speed of each wheel 3, a parking switch 92 as an example of an operation switch, and an accelerator sensor 93 that detects the movement of the accelerator pedal 7.
  • the parking switch 92 is a switch for operating the parking brake device 200, and is provided near the driver's seat.
  • the parking switch 92 can be configured to be turned on, for example, when the driver pulls a parking lever (not shown) operated by the driver, and turned off when the driver releases the parking lever.
  • the control unit 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an input / output circuit, from the parking switch 92, the sensors 91, 93, and the like. Control is executed by performing various arithmetic processes based on the input of the above and the programs and data stored in the ROM. The details of the control unit 100 will be described later.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the hydraulic pressure unit 10 is arranged between the master cylinder 5 and the wheel brakes FR, FL, RR, RL.
  • the hydraulic unit 10 is configured by arranging an oil passage and various solenoid valves in a pump body 11 which is a substrate having an oil passage (hydraulic passage) through which brake fluid flows.
  • the output ports 5a and 5b of the master cylinder 5 are connected to the input ports 11a of the pump body 11, and the output ports 11b of the pump body 11 are connected to the wheel brakes FL, RR, RL and FR. Then, in a normal state, the pedaling force of the brake pedal 6 is transmitted to each wheel brake FL, RR, RL, FR because the input port 11a to the output port 11b in the pump body 11 are in communication with each other. It has become like.
  • the hydraulic system connected to the output port 5a of the master cylinder 5 is connected to the wheel brakes FL and RR, and the hydraulic system connected to the output port 5b of the master cylinder 5 is connected to the wheel brakes RL and FR.
  • Each of these systems has a substantially similar configuration.
  • Each hydraulic pressure system has a pressure regulating valve 12 which is a normally open type proportional solenoid valve capable of adjusting the difference in hydraulic pressure upstream and downstream according to the current supplied on the hydraulic path connecting the input port 11a and the output port 11b. Is provided.
  • the pressure regulating valve 12 is provided in parallel with a check valve 12a that allows flow only to the output port 11b side.
  • the hydraulic paths on the wheel brake FL, RR, RL, and FR sides of the pressure regulating valve 12 branch off in the middle, and each is connected to the output port 11b.
  • Each inlet valve 13 is provided in parallel with a check valve 13a that allows flow only to the pressure regulating valve 12 side.
  • a reservoir 16, a check valve 16a, a pump 17, and an orifice 17a for temporarily absorbing excess brake fluid are arranged in order from the outlet valve 14 side.
  • the check valve 16a is arranged so as to allow only flow toward between the pressure regulating valve 12 and the inlet valve 13.
  • the pump 17 is driven by a motor 21 and is provided so as to generate pressure between the pressure regulating valve 12 and the inlet valve 13.
  • the orifice 17a dampens the pulsation of the pressure of the brake fluid discharged from the pump 17 and the pulsation generated by the operation of the pressure regulating valve 12.
  • the introduction hydraulic passage 19A connecting the input port 11a and the pressure regulating valve 12 and the portion between the check valve 16a and the pump 17 in the reflux hydraulic passage 19B are connected by an suction hydraulic passage 19C.
  • a suction valve 15 which is a normally closed solenoid valve is provided in the suction hydraulic pressure passage 19C.
  • each solenoid valve is not normally energized, and the brake fluid pressure introduced from the input port 11a passes through the pressure regulating valve 12 and the inlet valve 13 to the output port 11b. It is output and is applied to each wheel brake FL, RR, RL, FR as it is.
  • the corresponding inlet valve 13 is closed and the outlet valve 14 is opened to return the brake fluid.
  • the brake fluid can be drained from the wheel cylinder 4 by allowing the brake fluid to flow to the reservoir 16 through the hydraulic path 19B.
  • the suction valve 15 is opened and the motor 21 is driven to pressurize the pump 17. Therefore, the brake fluid can be positively supplied to the wheel brakes FL, RR, RL, and FR. Further, when it is desired to adjust the degree of pressurization of the wheel brakes FL, RR, RL, FR, it can be adjusted by adjusting the current flowing through the pressure regulating valve 12.
  • the wheel brakes RR and RL include a wheel cylinder 4, a parking brake device 200, a pair of friction pads 260, and a brake rotor BR.
  • Each friction pad 260 is arranged so as to sandwich the brake rotor BR.
  • the parking brake device 200 includes an electric motor 210, a speed reducer 220, and a nut 250.
  • the wheel cylinder 4 includes a housing 230 and a brake piston 240.
  • the electric motor 210 is a motor that can rotate in the forward and reverse directions, and an output shaft (not shown) is connected to the speed reducer 220.
  • the speed reducer 220 is a mechanism for reducing the power of the electric motor 210, and is provided with a plurality of gears inside.
  • a male screw portion 222 is formed on the output shaft 221 of the speed reducer 220.
  • the housing 230 has a cylinder hole 231 that movably supports the brake piston 240 in the axial direction of the speed reducer 220.
  • the cylinder hole 231 is formed in a bottomed cylindrical shape that opens toward the friction pad 260 side.
  • the brake piston 240 is formed in a bottomed cylindrical shape, and is arranged in the cylinder hole 231 with its opening facing the bottom surface of the cylinder hole 231.
  • One friction pad 260 is attached to the brake piston 240.
  • Brake fluid is supplied from the above-mentioned hydraulic unit 10 into the hydraulic chamber 232 formed by the brake piston 240 and the cylinder hole 231 via the oil passage 233 formed in the housing 230 and the like. ing.
  • the brake piston 240 can press the friction pad 260 against the brake rotor BR by advancing toward the friction pad 260 by the hydraulic pressure applied from the hydraulic pressure unit 10. That is, the wheel brakes RR and RL have a function of pressing the friction pad 260 against the brake rotor BR by the hydraulic pressure from the hydraulic pressure unit 10.
  • the nut 250 has a female screw portion 251 that is screwed into the male screw portion 222 of the output shaft 221 of the speed reducer 220.
  • the nut 250 is arranged in the brake piston 240, is non-rotatable relative to the brake piston 240, and is movably engaged in the axial direction. As a result, the nut 250 can move forward toward the friction pad 260 when the electric motor 210 is rotated in the forward direction, and the friction pad 260 can be pressed against the brake rotor BR via the brake piston 240. There is.
  • the parking brake device 200 has a function of mechanically transmitting the power generated by the forward rotation of the electric motor 210 to the friction pad 260 without using hydraulic pressure, and pressing the friction pad 260 against the brake rotor BR. ing.
  • the control unit 100 includes a wheel speed acquisition means 110, a vehicle body speed calculation means 120, a slip amount calculation means 130, a wheel deceleration calculation means 140, a hydraulic braking means 150, and a mechanical type. It includes a braking means 160 and a storage means 170.
  • the control unit 100 functions as a parking brake control device for controlling the parking brake device 200.
  • the wheel speed acquisition means 110 has a function of acquiring the wheel speed Vw of each wheel 3 from each wheel speed sensor 91.
  • the wheel speed acquisition means 110 acquires the wheel speed Vw of each wheel 3
  • the acquired wheel speed Vw is output to the vehicle body speed calculation means 120, the slip amount calculation means 130, and the wheel deceleration calculation means 140.
  • the vehicle body speed calculation means 120 has a function of calculating (estimating) the vehicle body speed Vc by a known calculation method based on the wheel speed Vw output from the wheel speed acquisition means 110.
  • Various methods can be used to calculate the vehicle body speed Vc.
  • the wheel speed Vw of the front wheels is set to the vehicle body speed Vc, and the magnitude of the acceleration or deceleration of the wheel speed Vw of the front wheels is large.
  • a method of converting the vehicle body speed Vc so that the acceleration or deceleration of the vehicle body speed Vc becomes the upper limit value can be mentioned.
  • the vehicle body speed Vc may be calculated based on the acceleration in the front-rear direction.
  • the vehicle body speed calculating means 120 outputs the calculated vehicle body speed Vc to the slip amount calculating means 130 and the hydraulic braking means 150.
  • the slip amount calculating means 130 has a function of calculating the slip amount SL of each wheel 3 based on the wheel speed Vw output from the wheel speed acquiring means 110 and the vehicle body speed Vc output from the vehicle body speed calculating means 120. have. Specifically, the slip amount SL can be obtained as the difference between the vehicle body speed Vc and the wheel speed Vw. When the slip amount calculation means 130 calculates the slip amount SL, the calculated slip amount SL is output to the hydraulic braking means 150 and the mechanical braking means 160.
  • the slip amount SL is a value obtained by subtracting the wheel speed Vw from the vehicle body speed Vc, but the present invention is not limited to this and is represented by (Vc-Vw) / Vc.
  • the slip ratio may be used as the slip amount SL.
  • the wheel deceleration calculation means 140 has a function of calculating the wheel deceleration Dw of each wheel 3 based on the wheel speed Vw of each wheel 3.
  • the wheel deceleration Dw can be calculated, for example, by subtracting the current value from the previous value of the wheel speed Vw.
  • the wheel deceleration calculation means 140 calculates the wheel deceleration Dw of each wheel 3, the calculated wheel deceleration Dw is output to the mechanical braking means 160.
  • the hydraulic braking means 150 has a function of executing hydraulic braking control in which the hydraulic unit 10 brakes each wheel 3 for each wheel 3 based on an ON signal output from the parking switch 92 while the vehicle is running. doing. Specifically, the hydraulic braking means 150 executes the hydraulic braking control when the conditions such that the vehicle body speed Vc is equal to or higher than a predetermined value and the parking switch 92 is ON are satisfied.
  • the hydraulic braking control includes an emergency brake control for increasing the brake hydraulic pressure by the pump 17 and a lock suppression control for suppressing the lock of the wheel 3.
  • the hydraulic braking means 150 receives an ON signal output from the parking switch 92 while the vehicle is traveling, the hydraulic braking means 150 starts emergency braking control and then executes lock suppression control.
  • the hydraulic braking means 150 operates the motor 21 of the hydraulic unit 10 based on the ON signal from the parking switch 92 in the emergency brake control.
  • the hydraulic braking means 150 reduces the brake hydraulic pressure of each wheel 3 in a reduced pressure state, an increased pressure state, or a holding state based on the wheel acceleration Aw estimated from the wheel speed Vw and the slip amount SL. It is determined for each wheel 3 whether or not to use. Specifically, the hydraulic braking means 150 determines that the wheel 3 is about to lock when the slip amount SL is equal to or higher than a predetermined threshold SLth and the wheel acceleration Aw is 0 or lower, and applies the brake hydraulic pressure. Decide to reduce the pressure.
  • the hydraulic braking means 150 determines that the brake hydraulic pressure is kept in the holding state when the wheel acceleration Aw is larger than 0, the slip amount SL becomes less than a predetermined threshold SLth, and the wheel acceleration Aw becomes less than the predetermined threshold SLth. When it is 0 or less, it is determined to increase the brake fluid pressure.
  • the hydraulic braking means 150 When the hydraulic braking means 150 decides to reduce the brake hydraulic pressure, the hydraulic braking means 150 closes the inlet valve 13 of the hydraulic unit 10 and opens the outlet valve 14 to the inlet valve 13 and the outlet valve 14. Executes depressurization control to control the current of. Further, the hydraulic braking means 150 controls the current to the inlet valve 13 and the outlet valve 14 so as to close both the inlet valve 13 and the outlet valve 14 when it is determined to keep the brake hydraulic pressure in the holding state. Execute retention control.
  • the hydraulic braking means 150 decides to increase the brake hydraulic pressure, the current to the inlet valve 13 and the outlet valve 14 so as to open the inlet valve 13 and close the outlet valve 14.
  • the pressure boost control is executed.
  • the hydraulic braking means 150 includes an abnormality determining means 151 and a switching means 152.
  • the abnormality determining means 151 has a function of determining whether or not an abnormality has occurred in the hydraulic pressure unit 10. When the abnormality determining means 151 determines that an abnormality has occurred in the hydraulic pressure unit 10, it outputs an abnormality signal indicating that fact to the switching means 152.
  • the switching means 152 When the switching means 152 receives an abnormality signal from the abnormality determining means 151 while the vehicle is running, the switching means 152 has a function of switching from the hydraulic braking control to the mechanical braking control in which the electric motor 210 of the parking brake device 200 brakes the rear wheels 32. Have. Specifically, when the switching means 152 receives an abnormality signal from the abnormality determining means 151 during the hydraulic braking control, the hydraulic braking control is terminated and the mechanical braking means 160 is in the ON / OFF state of the parking switch 92. Outputs a signal indicating.
  • the switching means 152 When the switching means 152 receives an abnormality signal from the abnormality determining means 151 before starting the hydraulic braking control, the mechanical braking means 160 is turned on by turning on the parking switch 92 without starting the hydraulic braking control. Outputs a signal indicating the OFF state.
  • the switching means 152 also has a function of switching from hydraulic braking control to mechanical braking control when the vehicle 2 is stopped, specifically when the vehicle body speed Vc becomes a value close to 0 (for example, 0). There is. Specifically, when the vehicle body speed Vc becomes a value close to 0, the switching means 152 terminates the hydraulic braking control and signals the mechanical braking means 160 to indicate the ON / OFF state of the parking switch 92. Is output.
  • the hydraulic braking means 150 has a function of terminating the hydraulic braking control not only when the control is switched by the switching means 152 but also when a request for canceling the hydraulic braking control is received by the driver's operation while the vehicle is running. doing. Specifically, the hydraulic braking means 150 ends the hydraulic braking control on the request that the ON signal is no longer received from the parking switch 92 or the signal is received from the accelerator sensor 93 as a release request.
  • the hydraulic braking control release request is received by the driver's operation while the vehicle is running, the vehicle 2 is stopped, and the hydraulic pressure unit 10 is used. Three conditions have been set for the occurrence of an abnormality. Then, the hydraulic braking means 150 terminates the hydraulic braking control when at least one of the plurality of termination conditions is satisfied. Specifically, the hydraulic braking means 150 executes the decompression control when at least one of the plurality of termination conditions is satisfied, and terminates the hydraulic braking control.
  • the mechanical braking means 160 has a function of executing mechanical braking control when receiving a signal from the switching means 152.
  • the mechanical braking control includes dynamic operation control performed while the vehicle is running and static operation control performed when the vehicle 2 is stopped.
  • the mechanical braking means 160 executes dynamic operation control when the vehicle 2 is running, and executes static operation control when the vehicle 2 is stopped.
  • the mechanical braking means 160 includes an apply control means 161 capable of executing apply control for increasing the braking force of the wheel 3, and a stop control means 162 capable of executing stop control for maintaining the braking force of the wheel 3.
  • the release control means 163 capable of executing release control for reducing the braking force of the wheel 3 is provided.
  • the apply control is a control in which the nut 250 is advanced toward the brake rotor BR at a constant speed by rotating the electric motor 210 in the forward direction. Specifically, in apply control, the clamping force of the pair of friction pads 260 is increased by supplying a constant current to the electric motor 210.
  • Stop control is a control that stops the nut 250 by stopping the rotation of the electric motor 210.
  • the release control is a control in which the nut 250 is retracted at a constant speed so as to be separated from the brake rotor BR by rotating the electric motor 210 in the reverse direction.
  • the mechanical braking means 160 executes only apply control when performing static operation control. Further, when performing dynamic operation control, the mechanical braking means 160 appropriately selects and executes apply control, stop control, and release control.
  • the apply control means 161 has a function of executing apply control when a predetermined start condition (start condition of mechanical braking control) is satisfied.
  • the apply control means 161 is an apply control in static operation control when a start condition such that the vehicle body speed Vc is close to 0 (for example, 0) and the parking switch 92 is in the ON state is satisfied. (That is, control for rotating the electric motor 210 in the forward direction for a predetermined time) is executed.
  • the apply control means 161 executes apply control in dynamic operation control when a start condition such that the vehicle body speed Vc is equal to or higher than a predetermined value and the parking switch 92 is in the ON state is satisfied. That is, the apply control means 161 executes the apply control when the start condition for operating the parking brake device 200 is satisfied while the vehicle is running.
  • the apply control means 161 ends the apply control when the stop control or the release control described later is started. Specifically, the apply control means 161 executes the apply control when the wheel deceleration Dw is less than a predetermined threshold value Dth during the period when the release control described later is not executed.
  • the stop control means 162 has a function of executing stop control based on the wheel deceleration Dw output from the wheel deceleration calculation means 140. Specifically, the stop control means 162 stops the current supply to the electric motor 210 and executes the stop control at least when the wheel deceleration Dw during the apply control is equal to or higher than a predetermined threshold value Dth. More specifically, the stop control means 162 executes stop control when the wheel deceleration Dw is equal to or higher than a predetermined threshold value Dth during a period in which release control described later is not executed.
  • the threshold value Dth is set as a fixed value.
  • the release control means 163 has a function of executing release control based on the slip amount SL output from the slip amount calculation means 130. Specifically, the release control means 163 executes release control when the slip amount SL becomes equal to or higher than the threshold value SLth.
  • the mechanical braking means 160 executes apply control when SL ⁇ SLth and Dw ⁇ Dth, and stops control when SL ⁇ SLth and Dw ⁇ Dth. It is executed, and release control is executed when SL ⁇ SLth.
  • the storage means 170 stores the above-mentioned thresholds SLth, Dth, and the like.
  • the thresholds SLth and Dth are appropriately set by experiments, simulations, and the like.
  • the mechanical braking means 160 When the mechanical braking means 160 receives a signal from the parking switch 92 via the hydraulic braking means 150 indicating that the parking switch 92 is in the ON state, the mechanical braking means 160 starts the mechanical braking control shown in the flowchart shown in FIG.
  • the mechanical braking means 160 first acquires the wheel deceleration Dw (S1). After step S1, the mechanical braking means 160 determines whether or not the vehicle 2 is running based on the vehicle body speed Vc (S2).
  • step S2 When it is determined in step S2 that the vehicle 2 is not running, that is, the vehicle 2 is stopped (No), the mechanical braking means 160 executes static operation control, that is, apply control for a predetermined time. This control is terminated. If it is determined in step S2 that the vehicle 2 is running (Yes), the mechanical braking means 160 determines whether or not the slip amount SL is less than the threshold SLth (S3).
  • step S3 If it is determined in step S3 that SL ⁇ SLth (No), the mechanical braking means 160 executes release control (S7). If it is determined in step S3 that SL ⁇ SLth (Yes), the mechanical braking means 160 determines whether or not the wheel deceleration Dw is equal to or greater than the threshold value Dth (S4).
  • step S4 If it is determined in step S4 that Dw ⁇ Dth (Yes), the mechanical braking means 160 executes stop control (S5). If it is determined in step S4 that Dw ⁇ Dth (No), the mechanical braking means 160 executes apply control (S6).
  • the mechanical braking means 160 applies the ON signal of the parking switch 92 to hydraulic braking. It is received via the means 150, and the electric motor 210 is driven based on this ON signal to execute apply control. That is, the mechanical braking means 160 determines that SL ⁇ SLth and Dw ⁇ Dth at the time t1, and executes the apply control.
  • the mechanical braking means 160 executes stop control. That is, the mechanical braking means 160 determines at time t2 that SL ⁇ SLth and Dw ⁇ Dth, and executes stop control.
  • the mechanical braking means 160 executes apply control when SL ⁇ SLth and Dw ⁇ Dth (time t3 to t4, t5 to t6, t7 to t8), and SL ⁇ SLth. And, when Dw ⁇ Dth, stop control is executed (time t4 to t5, t6 to t7, t8 to t9). Then, when the slip amount SL becomes equal to or higher than the threshold value SLth (time t9), the mechanical braking means 160 executes release control.
  • the mechanical braking means 160 executes stop control or apply control based on the wheel deceleration Dw at that time.
  • the mechanical braking means 160 executes stop control at time t10.
  • the mechanical braking means 160 executes stop control (time t10 to t11, t12 to) or apply control (time t11 to t12) based on the slip amount SL and the wheel deceleration Dw. ..
  • the following effects can be obtained in the present embodiment.
  • the braking force based on the electric motor 210 of the parking brake device 200 can be appropriately controlled according to the wheel deceleration Dw while the vehicle is running. It is possible to prevent sudden locking.
  • the stop control is executed when the wheel deceleration Dw becomes equal to or higher than the threshold value Dth, it is possible to suppress the wheel 3 from decelerating significantly due to the continuation of the apply control by the stop control.
  • the present invention is not limited to the above embodiment, and can be used in various forms as illustrated below.
  • members and processes substantially similar to those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the threshold value Dth is set to a fixed value, but the present invention is not limited to this, and the threshold value Dth may be set to a different value depending on the conditions.
  • the threshold value Dth may be set based on the road surface ⁇ .
  • a modified example of setting the threshold value Dth based on the road surface ⁇ will be described below.
  • control unit 100 includes the same means 110 to 170 as in the above embodiment, and also includes a road surface ⁇ estimating means 180 for estimating the road surface ⁇ and a threshold value setting means 164. Further prepared.
  • the road surface ⁇ estimating means 180 has a function of estimating the road surface ⁇ corresponding to each wheel 3 based on the wheel deceleration Dw of each wheel 3 and the brake fluid pressure in each wheel brake FR, FL, RR, RL. Have. Specifically, the road surface ⁇ estimation means 180 attaches to each wheel 3 based on the wheel deceleration Dw of each wheel 3, the brake fluid pressure in each wheel brake FR, FL, RR, RL, and the road surface ⁇ estimation map. The corresponding road surface ⁇ is estimated.
  • the road surface ⁇ estimation map is a map preset for associating the magnitude (absolute value) of the wheel deceleration Dw, the brake fluid pressure, and the road surface ⁇ , and is preset by experiments, simulations, or the like. ing.
  • the road surface ⁇ estimation map the road surface ⁇ is set to be smaller as the wheel deceleration Dw is larger (on the low friction coefficient side), and the road surface ⁇ is set to be smaller as the brake fluid pressure is smaller. ..
  • the road surface ⁇ estimation means 180 estimates the road surface ⁇ by linear interpolation when the magnitudes of the brake fluid pressure and the wheel deceleration Dw are values other than the values shown in the road surface ⁇ estimation map.
  • the road surface ⁇ estimating means 180 outputs the estimated road surface ⁇ to the mechanical braking means 160.
  • the mechanical braking means 160 includes the same means 161 to 163 as in the above embodiment, and further includes a threshold value setting means 164.
  • the threshold value setting means 164 has a function of setting the threshold value Dth based on the road surface ⁇ output from the road surface ⁇ estimation means 180. Specifically, the threshold value setting means 164 sets the threshold value Dth based on the threshold value setting map set in advance for associating the road surface ⁇ with the threshold value Dth and the road surface ⁇ output from the road surface ⁇ estimation means 180. ing.
  • the threshold value Dth is set to decrease as the road surface ⁇ increases. That is, the threshold value setting means 164 sets the threshold value Dth to the first threshold value Dth1 when the road surface ⁇ is equal to or less than a predetermined value, and sets the threshold value Dth to a second threshold value smaller than the first threshold value Dth1 when the road surface ⁇ is larger than the predetermined value. It is set to the threshold value Dth2.
  • the mechanical braking means 160 executes mechanical braking control according to the flowchart shown in FIG.
  • a new step S21 is provided between steps S3 and S4 in the flowchart shown in FIG.
  • step S21 the mechanical braking means 160 sets the threshold value Dth based on the estimated road surface ⁇ and the threshold value setting map.
  • step S4 the mechanical braking means 160 compares the wheel deceleration Dw with the threshold Dth set in step S21.
  • the method of setting the threshold value Dth is not limited to the above modification.
  • the threshold value setting means 164 may set the threshold value Dth based on the vehicle body speed Vc or the elapsed time from receiving the signal of the parking switch 92.
  • the smaller the vehicle body speed Vc the larger the threshold Dth may be set. According to this, when the vehicle body speed Vc is small, the wheels 3 are difficult to lock. Therefore, by increasing the threshold value Dth to make it difficult to enter the stop control, a good braking force can be given to the vehicle 2. ..
  • the wheel deceleration Dw is set to be a positive value when the vehicle 2 is decelerated, but the present invention is not limited to this, and the wheel deceleration is set to be a positive value when the vehicle is accelerating. It may be set. That is, the wheel deceleration Dw may be calculated by subtracting the previous value from the current value of the wheel speed Vw. In this case, the stop control may be executed when the wheel deceleration, which becomes a negative value at the time of deceleration, exceeds the negative threshold value on the negative side (direction away from 0).
  • the signal from the parking switch 92 is configured to be output to the mechanical braking means 160 via the hydraulic braking means 150, but the present invention is not limited to this.
  • the signal from the parking switch 92 may be configured to be output directly to the mechanical braking means 160. That is, regardless of whether the hydraulic pressure unit 10 is normal or abnormal, the mechanical braking control (dynamic operation control) may be executed when the parking switch 92 is turned on while the vehicle is running.
  • control unit 100 of the vehicle brake hydraulic pressure control device 1 is exemplified as the parking brake control device, but the present invention is not limited to this, and the parking brake control device is, for example, an ECU that controls an engine or the like. It may be (Electronic Control Unit) or the like.
  • the parking brake device 200 including the electric motor 210, the speed reducer 220, the nut 250 and the brake piston 240 has been illustrated, but the present invention is not limited to this, and the power of the electric motor is mechanically friction member.
  • Any parking brake device may be used.
  • the parking brake device may transmit the power of the electric motor to the friction member via a wire.
  • the clamping force is unlikely to suddenly increase during the apply control due to the elongation of the wire, so that the present invention is particularly effective in the nut type parking brake device 200 as in the above embodiment.
  • the wheel brakes FR, FL, RR, and RL a so-called disc brake provided with a brake rotor BR has been exemplified, but the present invention is not limited to this, and the wheel brake is, for example, a drum brake. May be good.
  • the rotating body may be a drum that rotates integrally with the wheel
  • the friction member may be a brake shoe that is in sliding contact with the inner peripheral surface of the drum.
  • the operation switch is not limited to the parking switch 92 that detects the movement of the parking lever as in the above embodiment, and may be, for example, a switch that is turned on by the pushing operation of the driver and turned off by the pushing operation again. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

The purpose of the present invention is to prevent wheels from suddenly locking when motive power of an electric motor is mechanically transmitted to a friction member to brake the wheels while a vehicle is traveling. A parking brake control device (control part 100) controls a parking brake device 200 that mechanically transmits motive power generated by forward rotation of an electric motor 210 to a friction member to press the friction member against a rotational solid that rotates integrally with wheels. The parking brake control device comprises an apply control means 161 that executes apply control causing the electric motor 210 to rotate forward when a start condition for operating the parking brake device 200 is satisfied while the vehicle is traveling, a stop control means 162 that executes stop control causing the rotation of the electric motor 210 to stop on the basis of the wheel deceleration rate during apply control, and a release control means 163 that executes release control causing the electric motor 210 to rotate in reverse on the basis of the amount of slip.

Description

パーキングブレーキ制御装置Parking brake controller
 本発明は、パーキングブレーキ制御装置に関する。 The present invention relates to a parking brake control device.
 従来、パーキングブレーキ制御装置として、車両の走行中に、電動モータの動力をケーブルを介して車輪ブレーキに伝達して車輪の制動を行うものが知られている(特許文献1参照)。具体的に、この技術では、車輪の制動を行う際に、単に電動モータを起動することで、一定の勾配でケーブルのストロークを増加している。 Conventionally, as a parking brake control device, a device that transmits the power of an electric motor to a wheel brake via a cable to brake the wheels while the vehicle is running is known (see Patent Document 1). Specifically, in this technique, when braking the wheels, the stroke of the cable is increased at a constant gradient by simply activating the electric motor.
特開2013-95258号公報Japanese Unexamined Patent Publication No. 2013-95258
 しかしながら、従来技術では、ケーブルのストロークを一定の勾配で増加させているため、車輪が急にロックしやすいといった問題がある。このため、ロックしそうなときにケーブルのストロークを減少させると、制動力の減少量が大きくなりすぎる問題がある。 However, in the conventional technology, since the stroke of the cable is increased at a constant gradient, there is a problem that the wheels are likely to lock suddenly. Therefore, if the stroke of the cable is reduced when it is likely to be locked, there is a problem that the amount of reduction in the braking force becomes too large.
 そこで、本発明は、車両の走行中に電動モータの動力を機械的に摩擦部材に伝達して車輪の制動を行う場合において、車輪が急にロックするのを抑えることを目的とする。 Therefore, an object of the present invention is to prevent the wheels from suddenly locking when the power of the electric motor is mechanically transmitted to the friction member to brake the wheels while the vehicle is running.
 前記課題を解決する本発明は、電動モータの正回転により発生する動力を機械的に摩擦部材に伝達して前記摩擦部材を車輪と一体に回転する回転体に押し当てるパーキングブレーキ装置を制御するためのパーキングブレーキ制御装置である。
 前記パーキングブレーキ制御装置は、車両走行中において前記パーキングブレーキ装置を作動させるための開始条件が満たされた場合に、前記電動モータを正回転させるアプライ制御を実行するアプライ制御手段と、前記アプライ制御中における車輪減速度に基づいて、前記電動モータの回転を停止させるストップ制御を実行するストップ制御手段と、スリップ量に基づいて、前記電動モータを逆回転させるリリース制御を実行するリリース制御手段と、を備える。
The present invention that solves the above problems is to control a parking brake device that mechanically transmits the power generated by the forward rotation of the electric motor to the friction member and presses the friction member against the rotating body that rotates integrally with the wheel. Parking brake control device.
The parking brake control device includes an apply control means for executing apply control for rotating the electric motor in the forward direction when the start condition for operating the parking brake device is satisfied while the vehicle is running, and the apply control device. The stop control means for executing the stop control for stopping the rotation of the electric motor based on the wheel deceleration in the above, and the release control means for executing the release control for rotating the electric motor in the reverse direction based on the slip amount. Be prepared.
 この構成によれば、アプライ制御中において車輪減速度に基づいてストップ制御を行うことで、車両走行中においてパーキングブレーキ装置の電動モータに基づく制動力を車輪減速度に応じて適宜制御できるので、車輪が急にロックするのを抑えることができる。 According to this configuration, by performing stop control based on the wheel deceleration during apply control, the braking force based on the electric motor of the parking brake device can be appropriately controlled according to the wheel deceleration while the vehicle is running. Can be prevented from suddenly locking.
 また、前記ストップ制御手段は、前記車輪減速度が所定の閾値を超えた場合に前記ストップ制御を実行してもよい。 Further, the stop control means may execute the stop control when the wheel deceleration exceeds a predetermined threshold value.
 これによれば、車輪が大きく減速するのを、ストップ制御により抑えることができる。 According to this, it is possible to suppress the wheel from decelerating significantly by stop control.
 また、前記閾値は、固定値であってもよい。 Further, the threshold value may be a fixed value.
 また、前記パーキングブレーキ制御装置は、車体速度、または、前記パーキングブレーキ装置を作動させるための作動スイッチの信号を受信してからの経過時間に基づいて、前記閾値を設定する閾値設定手段を備えていてもよい。 Further, the parking brake control device includes a threshold value setting means for setting the threshold value based on the vehicle body speed or the elapsed time from receiving the signal of the operation switch for operating the parking brake device. You may.
 また、前記パーキングブレーキ制御装置は、路面μを推定する路面μ推定手段と、路面μが所定値以下の場合に前記閾値を第1閾値に設定し、路面μが前記所定値よりも大きい場合に前記閾値を前記第1閾値よりも小さな第2閾値に設定する閾値設定手段と、を備えていてもよい。 Further, the parking brake control device sets the road surface μ estimating means for estimating the road surface μ and the threshold value as the first threshold value when the road surface μ is equal to or less than a predetermined value, and when the road surface μ is larger than the predetermined value. A threshold setting means for setting the threshold value to a second threshold value smaller than the first threshold value may be provided.
 これによれば、路面μに応じて適切なストップ制御を行うことができる。 According to this, appropriate stop control can be performed according to the road surface μ.
本発明の一実施形態に係るパーキングブレーキ制御装置を備えた車両の構成図である。It is a block diagram of the vehicle provided with the parking brake control device which concerns on one Embodiment of this invention. 液圧ユニットの構成を示す構成図である。It is a block diagram which shows the structure of a hydraulic pressure unit. 後側の車輪ブレーキの構造を示す図である。It is a figure which shows the structure of the wheel brake on the rear side. 制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a control part. 機械式制動手段の動作を示すフローチャートである。It is a flowchart which shows the operation of a mechanical braking means. 動的作動制御の一例を示すタイムチャートである。It is a time chart which shows an example of dynamic operation control. 変形例に係る制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part which concerns on the modification. 変形例に係る機械式制動手段の動作を示すフローチャートである。It is a flowchart which shows the operation of the mechanical braking means which concerns on a modification.
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 図1に示すように、車両2は、前後左右の各車輪3に設けられる車輪ブレーキFR,FL,RR,RLと、各車輪ブレーキFR,FL,RR,RLに液圧を伝達して各車輪3の制動を行う車両用ブレーキ液圧制御装置1と、を備えている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the vehicle 2 transmits hydraulic pressure to the wheel brakes FR, FL, RR, RL provided on the front, rear, left and right wheels 3, and the wheel brakes FR, FL, RR, RL to each wheel. The vehicle brake hydraulic pressure control device 1 for performing the braking of No. 3 is provided.
 前側の各車輪ブレーキFR,FLは、ブレーキロータBRと、ホイールシリンダ4とを備えている。後側の各車輪ブレーキRR,RLは、回転体の一例としてのブレーキロータBRと、ホイールシリンダ4と、パーキングブレーキ装置200とを備えている。ホイールシリンダ4およびパーキングブレーキ装置200は、車輪3と一体に回転するブレーキロータBRに対して摩擦部材の一例としての摩擦パッド260(図3参照)を押し当てることで、車輪3に制動力を付与している。 Each wheel brake FR, FL on the front side is provided with a brake rotor BR and a wheel cylinder 4. Each of the rear wheel brakes RR and RL includes a brake rotor BR as an example of a rotating body, a wheel cylinder 4, and a parking brake device 200. The wheel cylinder 4 and the parking brake device 200 apply a braking force to the wheel 3 by pressing a friction pad 260 (see FIG. 3) as an example of the friction member against the brake rotor BR that rotates integrally with the wheel 3. doing.
 車両用ブレーキ液圧制御装置1は、液圧により車輪3の制動を行う液圧ユニット10と、制御部100とを主に備えている。液圧ユニット10には、油路や各種部品が設けられている。制御部100は、液圧ユニット10内の各種部品を適宜制御している。 The vehicle brake fluid pressure control device 1 mainly includes a hydraulic pressure unit 10 that brakes the wheels 3 by hydraulic pressure, and a control unit 100. The hydraulic unit 10 is provided with an oil passage and various parts. The control unit 100 appropriately controls various parts in the hydraulic pressure unit 10.
 液圧ユニット10には、液圧源としてのマスタシリンダ5と、各ホイールシリンダ4とが接続されている。そして、ブレーキペダル6の踏力(ドライバの制動操作)に応じてマスタシリンダ5で発生したブレーキ液圧が、制御部100および液圧ユニット10で制御された上でホイールシリンダ4に供給される。 The hydraulic pressure unit 10 is connected to a master cylinder 5 as a hydraulic pressure source and each wheel cylinder 4. Then, the brake hydraulic pressure generated in the master cylinder 5 according to the pedaling force of the brake pedal 6 (braking operation of the driver) is controlled by the control unit 100 and the hydraulic pressure unit 10 and then supplied to the wheel cylinder 4.
 制御部100には、各車輪3の車輪速度を検出する車輪速センサ91と、作動スイッチの一例としてのパーキングスイッチ92と、アクセルペダル7の動きを検出するアクセルセンサ93とが接続されている。パーキングスイッチ92は、パーキングブレーキ装置200を作動させるためのスイッチであり、運転席付近に設けられている。パーキングスイッチ92は、例えば、ドライバによって操作される図示せぬパーキングレバーをドライバが引いたときにONとなり、パーキングレバーからドライバが手を離したときにOFFとなるように構成することができる。 The control unit 100 is connected to a wheel speed sensor 91 that detects the wheel speed of each wheel 3, a parking switch 92 as an example of an operation switch, and an accelerator sensor 93 that detects the movement of the accelerator pedal 7. The parking switch 92 is a switch for operating the parking brake device 200, and is provided near the driver's seat. The parking switch 92 can be configured to be turned on, for example, when the driver pulls a parking lever (not shown) operated by the driver, and turned off when the driver releases the parking lever.
 そして、この制御部100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)および入出力回路を備えており、パーキングスイッチ92や各センサ91,93などからの入力と、ROMに記憶されたプログラムやデータに基づいて各種演算処理を行うことによって、制御を実行する。なお、制御部100の詳細は、後述することとする。 The control unit 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an input / output circuit, from the parking switch 92, the sensors 91, 93, and the like. Control is executed by performing various arithmetic processes based on the input of the above and the programs and data stored in the ROM. The details of the control unit 100 will be described later.
 図2に示すように、液圧ユニット10は、マスタシリンダ5と、車輪ブレーキFR,FL,RR,RLとの間に配置されている。 As shown in FIG. 2, the hydraulic pressure unit 10 is arranged between the master cylinder 5 and the wheel brakes FR, FL, RR, RL.
 液圧ユニット10は、ブレーキ液が流通する油路(液圧路)を有する基体であるポンプボディ11に油路と各種の電磁バルブが配置されることで構成されている。マスタシリンダ5の出力ポート5a,5bは、ポンプボディ11の入力ポート11aに接続され、ポンプボディ11の出力ポート11bは、各車輪ブレーキFL,RR,RL,FRに接続されている。そして、通常時はポンプボディ11内の入力ポート11aから出力ポート11bまでが連通した油路となっていることで、ブレーキペダル6の踏力が各車輪ブレーキFL,RR,RL,FRに伝達されるようになっている。なお、マスタシリンダ5の出力ポート5aに接続された液圧系統は、車輪ブレーキFL,RRに接続され、マスタシリンダ5の出力ポート5bに接続された液圧系統は、車輪ブレーキRL,FRに接続され、これらの各系統は、略同様の構成を有している。 The hydraulic unit 10 is configured by arranging an oil passage and various solenoid valves in a pump body 11 which is a substrate having an oil passage (hydraulic passage) through which brake fluid flows. The output ports 5a and 5b of the master cylinder 5 are connected to the input ports 11a of the pump body 11, and the output ports 11b of the pump body 11 are connected to the wheel brakes FL, RR, RL and FR. Then, in a normal state, the pedaling force of the brake pedal 6 is transmitted to each wheel brake FL, RR, RL, FR because the input port 11a to the output port 11b in the pump body 11 are in communication with each other. It has become like. The hydraulic system connected to the output port 5a of the master cylinder 5 is connected to the wheel brakes FL and RR, and the hydraulic system connected to the output port 5b of the master cylinder 5 is connected to the wheel brakes RL and FR. Each of these systems has a substantially similar configuration.
 各液圧系統には、入力ポート11aと出力ポート11bを繋ぐ液圧路上に、供給する電流に応じてその上下流の液圧の差を調整可能な常開型比例電磁弁である調圧弁12が設けられている。調圧弁12には、並列して、出力ポート11b側へのみの流れを許容するチェック弁12aが設けられている。 Each hydraulic pressure system has a pressure regulating valve 12 which is a normally open type proportional solenoid valve capable of adjusting the difference in hydraulic pressure upstream and downstream according to the current supplied on the hydraulic path connecting the input port 11a and the output port 11b. Is provided. The pressure regulating valve 12 is provided in parallel with a check valve 12a that allows flow only to the output port 11b side.
 調圧弁12よりも車輪ブレーキFL,RR,RL,FR側の液圧路は途中で分岐して、それぞれが出力ポート11bに接続されている。そして、各出力ポート11bに対応する各液圧路上には、それぞれ常開型比例電磁弁である入口弁13が配設されている。各入口弁13には、並列して、調圧弁12側へのみの流れを許容するチェック弁13aが設けられている。 The hydraulic paths on the wheel brake FL, RR, RL, and FR sides of the pressure regulating valve 12 branch off in the middle, and each is connected to the output port 11b. An inlet valve 13, which is a normally open proportional solenoid valve, is provided on each hydraulic path corresponding to each output port 11b. Each inlet valve 13 is provided in parallel with a check valve 13a that allows flow only to the pressure regulating valve 12 side.
 各出力ポート11bとこれに対応する入口弁13との間の液圧路からは、それぞれ、常閉型電磁弁からなる出口弁14を介して調圧弁12と入口弁13の間に繋がる還流液圧路19Bが設けられている。 From the hydraulic passage between each output port 11b and the corresponding inlet valve 13, the reflux liquid connected between the pressure regulating valve 12 and the inlet valve 13 via the outlet valve 14 composed of a normally closed solenoid valve, respectively. A pressure path 19B is provided.
 この還流液圧路19B上には、出口弁14側から順に、過剰なブレーキ液を一時的に吸収するリザーバ16、チェック弁16a、ポンプ17およびオリフィス17aが配設されている。チェック弁16aは、調圧弁12と入口弁13の間へ向けての流れのみを許容するように配置されている。ポンプ17は、モータ21により駆動され、調圧弁12と入口弁13の間へ向けての圧力を発生するように設けられている。オリフィス17aは、ポンプ17から吐出されたブレーキ液の圧力の脈動および調圧弁12が作動することにより発生する脈動を減衰させている。 On the reflux hydraulic pressure passage 19B, a reservoir 16, a check valve 16a, a pump 17, and an orifice 17a for temporarily absorbing excess brake fluid are arranged in order from the outlet valve 14 side. The check valve 16a is arranged so as to allow only flow toward between the pressure regulating valve 12 and the inlet valve 13. The pump 17 is driven by a motor 21 and is provided so as to generate pressure between the pressure regulating valve 12 and the inlet valve 13. The orifice 17a dampens the pulsation of the pressure of the brake fluid discharged from the pump 17 and the pulsation generated by the operation of the pressure regulating valve 12.
 入力ポート11aと調圧弁12を繋ぐ導入液圧路19Aと、還流液圧路19Bにおけるチェック弁16aとポンプ17の間の部分とは、吸入液圧路19Cにより接続されている。そして、吸入液圧路19Cには、常閉型電磁弁である吸入弁15が配設されている。 The introduction hydraulic passage 19A connecting the input port 11a and the pressure regulating valve 12 and the portion between the check valve 16a and the pump 17 in the reflux hydraulic passage 19B are connected by an suction hydraulic passage 19C. A suction valve 15 which is a normally closed solenoid valve is provided in the suction hydraulic pressure passage 19C.
 以上のような構成の液圧ユニット10は、通常時には、各電磁弁に通電がなされず、入力ポート11aから導入されたブレーキ液圧は、調圧弁12、入口弁13を通って出力ポート11bに出力され、各車輪ブレーキFL,RR,RL,FRにそのまま付与される。そして、アンチロックブレーキ制御を行う場合など、車輪ブレーキFL,RR,RL,FR内の過剰なブレーキ液圧を減圧する場合には、対応する入口弁13を閉じ、出口弁14を開くことで還流液圧路19Bを通してブレーキ液をリザーバ16へと流し、ホイールシリンダ4内のブレーキ液を抜くことができる。また、ドライバのブレーキペダル6の操作が無い場合に車輪ブレーキFL,RR,RL,FRの加圧を行う場合には、吸入弁15を開き、モータ21を駆動することで、ポンプ17の加圧力により積極的に車輪ブレーキFL,RR,RL,FRへブレーキ液を供給することができる。さらに、車輪ブレーキFL,RR,RL,FRの加圧の程度を調整したい場合には、調圧弁12に流す電流を調整することで調整することができる。 In the hydraulic unit 10 having the above configuration, each solenoid valve is not normally energized, and the brake fluid pressure introduced from the input port 11a passes through the pressure regulating valve 12 and the inlet valve 13 to the output port 11b. It is output and is applied to each wheel brake FL, RR, RL, FR as it is. When the excessive brake fluid pressure in the wheel brakes FL, RR, RL, and FR is reduced, such as when performing anti-lock brake control, the corresponding inlet valve 13 is closed and the outlet valve 14 is opened to return the brake fluid. The brake fluid can be drained from the wheel cylinder 4 by allowing the brake fluid to flow to the reservoir 16 through the hydraulic path 19B. Further, when the wheel brakes FL, RR, RL, and FR are pressurized when the driver's brake pedal 6 is not operated, the suction valve 15 is opened and the motor 21 is driven to pressurize the pump 17. Therefore, the brake fluid can be positively supplied to the wheel brakes FL, RR, RL, and FR. Further, when it is desired to adjust the degree of pressurization of the wheel brakes FL, RR, RL, FR, it can be adjusted by adjusting the current flowing through the pressure regulating valve 12.
 図3に示すように、車輪ブレーキRR,RLは、ホイールシリンダ4と、パーキングブレーキ装置200と、一対の摩擦パッド260と、ブレーキロータBRとを備えている。各摩擦パッド260は、ブレーキロータBRを挟み込むように配置されている。 As shown in FIG. 3, the wheel brakes RR and RL include a wheel cylinder 4, a parking brake device 200, a pair of friction pads 260, and a brake rotor BR. Each friction pad 260 is arranged so as to sandwich the brake rotor BR.
 パーキングブレーキ装置200は、電動モータ210と、減速機220と、ナット250とを備えている。ホイールシリンダ4は、ハウジング230と、ブレーキピストン240とを備えている。 The parking brake device 200 includes an electric motor 210, a speed reducer 220, and a nut 250. The wheel cylinder 4 includes a housing 230 and a brake piston 240.
 電動モータ210は、正逆回転可能なモータであり、図示せぬ出力軸が減速機220に接続されている。 The electric motor 210 is a motor that can rotate in the forward and reverse directions, and an output shaft (not shown) is connected to the speed reducer 220.
 減速機220は、電動モータ210の動力を減速するための機構であり、内部に複数のギヤを備えている。減速機220の出力軸221には、雄ネジ部222が形成されている。 The speed reducer 220 is a mechanism for reducing the power of the electric motor 210, and is provided with a plurality of gears inside. A male screw portion 222 is formed on the output shaft 221 of the speed reducer 220.
 ハウジング230は、ブレーキピストン240を減速機220の軸方向に移動可能に支持するシリンダ穴231を有している。シリンダ穴231は、摩擦パッド260側に向けて開口する有底円筒状に形成されている。 The housing 230 has a cylinder hole 231 that movably supports the brake piston 240 in the axial direction of the speed reducer 220. The cylinder hole 231 is formed in a bottomed cylindrical shape that opens toward the friction pad 260 side.
 ブレーキピストン240は、有底円筒状に形成され、その開口がシリンダ穴231の底面に向けられた状態でシリンダ穴231内に配置されている。ブレーキピストン240には、一方の摩擦パッド260が取り付けられている。ブレーキピストン240とシリンダ穴231とによって形成された液圧室232内には、ハウジング230に形成された油路233等を介して、前述した液圧ユニット10からブレーキ液が供給されるようになっている。これにより、ブレーキピストン240は、液圧ユニット10から付与される液圧によって、摩擦パッド260に向って前進することで、摩擦パッド260をブレーキロータBRに押し当てることが可能となっている。つまり、車輪ブレーキRR,RLは、液圧ユニット10からの液圧によって、摩擦パッド260をブレーキロータBRに押し当てる機能を有している。 The brake piston 240 is formed in a bottomed cylindrical shape, and is arranged in the cylinder hole 231 with its opening facing the bottom surface of the cylinder hole 231. One friction pad 260 is attached to the brake piston 240. Brake fluid is supplied from the above-mentioned hydraulic unit 10 into the hydraulic chamber 232 formed by the brake piston 240 and the cylinder hole 231 via the oil passage 233 formed in the housing 230 and the like. ing. As a result, the brake piston 240 can press the friction pad 260 against the brake rotor BR by advancing toward the friction pad 260 by the hydraulic pressure applied from the hydraulic pressure unit 10. That is, the wheel brakes RR and RL have a function of pressing the friction pad 260 against the brake rotor BR by the hydraulic pressure from the hydraulic pressure unit 10.
 ナット250は、減速機220の出力軸221の雄ネジ部222に螺合する雌ネジ部251を有している。ナット250は、ブレーキピストン240内に配置され、ブレーキピストン240に対して相対回転不能で、かつ、軸方向に移動可能に係合している。これにより、ナット250は、電動モータ210を正回転させたときに、摩擦パッド260に向って前進して、ブレーキピストン240を介して摩擦パッド260をブレーキロータBRに押し当てることが可能となっている。また、電動モータ210を逆回転させたときには、ナット250が摩擦パッド260から離れる方向に後退することで、ブレーキロータBRへの摩擦パッド260の押圧力が解除されるようになっている。つまり、パーキングブレーキ装置200は、電動モータ210の正回転により発生する動力を液圧を介さずに機械的に摩擦パッド260に伝達して、摩擦パッド260をブレーキロータBRに押し当てる機能を有している。 The nut 250 has a female screw portion 251 that is screwed into the male screw portion 222 of the output shaft 221 of the speed reducer 220. The nut 250 is arranged in the brake piston 240, is non-rotatable relative to the brake piston 240, and is movably engaged in the axial direction. As a result, the nut 250 can move forward toward the friction pad 260 when the electric motor 210 is rotated in the forward direction, and the friction pad 260 can be pressed against the brake rotor BR via the brake piston 240. There is. Further, when the electric motor 210 is rotated in the reverse direction, the nut 250 retracts in the direction away from the friction pad 260, so that the pressing force of the friction pad 260 on the brake rotor BR is released. That is, the parking brake device 200 has a function of mechanically transmitting the power generated by the forward rotation of the electric motor 210 to the friction pad 260 without using hydraulic pressure, and pressing the friction pad 260 against the brake rotor BR. ing.
 次に、制御部100の詳細について説明する。
 図4に示すように、制御部100は、車輪速度取得手段110と、車体速度算出手段120と、スリップ量算出手段130と、車輪減速度算出手段140と、液圧式制動手段150と、機械式制動手段160と、記憶手段170とを備えている。制御部100は、パーキングブレーキ装置200を制御するためのパーキングブレーキ制御装置として機能している。
Next, the details of the control unit 100 will be described.
As shown in FIG. 4, the control unit 100 includes a wheel speed acquisition means 110, a vehicle body speed calculation means 120, a slip amount calculation means 130, a wheel deceleration calculation means 140, a hydraulic braking means 150, and a mechanical type. It includes a braking means 160 and a storage means 170. The control unit 100 functions as a parking brake control device for controlling the parking brake device 200.
 車輪速度取得手段110は、各車輪速センサ91から各車輪3の車輪速度Vwを取得する機能を有している。車輪速度取得手段110は、各車輪3の車輪速度Vwを取得すると、取得した各車輪速度Vwを車体速度算出手段120、スリップ量算出手段130および車輪減速度算出手段140に出力する。 The wheel speed acquisition means 110 has a function of acquiring the wheel speed Vw of each wheel 3 from each wheel speed sensor 91. When the wheel speed acquisition means 110 acquires the wheel speed Vw of each wheel 3, the acquired wheel speed Vw is output to the vehicle body speed calculation means 120, the slip amount calculation means 130, and the wheel deceleration calculation means 140.
 車体速度算出手段120は、車輪速度取得手段110から出力されてくる車輪速度Vwに基づき、公知の計算方法により車体速度Vcを算出(推定)する機能を有している。車体速度Vcの算出方法は、様々な方法を利用できるが、一例を挙げるとすると、例えば、原則として前輪の車輪速度Vwを車体速度Vcとし、前輪の車輪速度Vwの加速度または減速度の大きさが所定の上限値の大きさを超えた場合には、車体速度Vcの加速度または減速度が上限値になるように、車体速度Vcを換算する方法が挙げられる。なお、車両に前後方向の加速度を検出する加速度センサが設けられる場合には、車体速度Vcは、前後方向の加速度に基づいて算出してもよい。車体速度算出手段120は、車体速度Vcを算出すると、算出した車体速度Vcをスリップ量算出手段130および液圧式制動手段150に出力する。 The vehicle body speed calculation means 120 has a function of calculating (estimating) the vehicle body speed Vc by a known calculation method based on the wheel speed Vw output from the wheel speed acquisition means 110. Various methods can be used to calculate the vehicle body speed Vc. For example, for example, the wheel speed Vw of the front wheels is set to the vehicle body speed Vc, and the magnitude of the acceleration or deceleration of the wheel speed Vw of the front wheels is large. When exceeds the magnitude of the predetermined upper limit value, a method of converting the vehicle body speed Vc so that the acceleration or deceleration of the vehicle body speed Vc becomes the upper limit value can be mentioned. If the vehicle is provided with an acceleration sensor that detects acceleration in the front-rear direction, the vehicle body speed Vc may be calculated based on the acceleration in the front-rear direction. When the vehicle body speed Vc is calculated, the vehicle body speed calculating means 120 outputs the calculated vehicle body speed Vc to the slip amount calculating means 130 and the hydraulic braking means 150.
 スリップ量算出手段130は、車輪速度取得手段110から出力されてくる車輪速度Vwと、車体速度算出手段120から出力されてくる車体速度Vcとに基づき、各車輪3のスリップ量SLを算出する機能を有している。具体的に、スリップ量SLは、車体速度Vcと車輪速度Vwとの差として求めることができる。スリップ量算出手段130は、スリップ量SLを算出すると、算出したスリップ量SLを液圧式制動手段150および機械式制動手段160に出力する。 The slip amount calculating means 130 has a function of calculating the slip amount SL of each wheel 3 based on the wheel speed Vw output from the wheel speed acquiring means 110 and the vehicle body speed Vc output from the vehicle body speed calculating means 120. have. Specifically, the slip amount SL can be obtained as the difference between the vehicle body speed Vc and the wheel speed Vw. When the slip amount calculation means 130 calculates the slip amount SL, the calculated slip amount SL is output to the hydraulic braking means 150 and the mechanical braking means 160.
 なお、本実施形態では、スリップ量SLとして、車体速度Vcから車輪速度Vwを減算した値を用いることとするが、本発明はこれに限定されず、(Vc-Vw)/Vcで表されるスリップ率をスリップ量SLとして用いてもよい。 In the present embodiment, the slip amount SL is a value obtained by subtracting the wheel speed Vw from the vehicle body speed Vc, but the present invention is not limited to this and is represented by (Vc-Vw) / Vc. The slip ratio may be used as the slip amount SL.
 車輪減速度算出手段140は、各車輪3の車輪速度Vwに基づいて、各車輪3の車輪減速度Dwを算出する機能を有している。ここで、車輪減速度Dwは、正の値である場合には減速していることを示し、負の値である場合には加速していることを示している。車輪減速度Dwは、例えば、車輪速度Vwの前回値から今回値を引くことで算出することができる。車輪減速度算出手段140は、各車輪3の車輪減速度Dwを算出すると、算出した各車輪減速度Dwを機械式制動手段160に出力する。 The wheel deceleration calculation means 140 has a function of calculating the wheel deceleration Dw of each wheel 3 based on the wheel speed Vw of each wheel 3. Here, when the wheel deceleration Dw is a positive value, it indicates that the vehicle is decelerating, and when it is a negative value, it indicates that the vehicle is accelerating. The wheel deceleration Dw can be calculated, for example, by subtracting the current value from the previous value of the wheel speed Vw. When the wheel deceleration calculation means 140 calculates the wheel deceleration Dw of each wheel 3, the calculated wheel deceleration Dw is output to the mechanical braking means 160.
 液圧式制動手段150は、車両走行中においてパーキングスイッチ92から出力されるON信号に基づいて、液圧ユニット10による各車輪3の制動を車輪3ごとに行う液圧式制動制御を実行する機能を有している。詳しくは、液圧式制動手段150は、車体速度Vcが所定値以上、かつ、パーキングスイッチ92がON状態である、といった条件が揃ったときに、液圧式制動制御を実行する。 The hydraulic braking means 150 has a function of executing hydraulic braking control in which the hydraulic unit 10 brakes each wheel 3 for each wheel 3 based on an ON signal output from the parking switch 92 while the vehicle is running. doing. Specifically, the hydraulic braking means 150 executes the hydraulic braking control when the conditions such that the vehicle body speed Vc is equal to or higher than a predetermined value and the parking switch 92 is ON are satisfied.
 液圧式制動制御は、ポンプ17によってブレーキ液圧を増圧させる緊急ブレーキ制御と、車輪3のロックを抑えるためのロック抑制制御とを含んでいる。液圧式制動手段150は、車両走行中においてパーキングスイッチ92から出力されるON信号を受けると、緊急ブレーキ制御を開始し、その後ロック抑制制御を実行する。 The hydraulic braking control includes an emergency brake control for increasing the brake hydraulic pressure by the pump 17 and a lock suppression control for suppressing the lock of the wheel 3. When the hydraulic braking means 150 receives an ON signal output from the parking switch 92 while the vehicle is traveling, the hydraulic braking means 150 starts emergency braking control and then executes lock suppression control.
 液圧式制動手段150は、緊急ブレーキ制御において、パーキングスイッチ92からのON信号に基づいて、液圧ユニット10のモータ21を作動させる。 The hydraulic braking means 150 operates the motor 21 of the hydraulic unit 10 based on the ON signal from the parking switch 92 in the emergency brake control.
 液圧式制動手段150は、ロック抑制制御において、車輪速度Vwから推定される車輪加速度Awとスリップ量SLとに基づいて、各車輪3のブレーキ液圧を減圧状態、増圧状態および保持状態のいずれにするかを車輪3ごとに判定している。詳しくは、液圧式制動手段150は、スリップ量SLが所定の閾値SLth以上であり、かつ、車輪加速度Awが0以下である場合に車輪3がロックしそうになったと判定して、ブレーキ液圧を減圧状態にすることを決定する。また、液圧式制動手段150は、車輪加速度Awが0よりも大きい場合に、ブレーキ液圧を保持状態にすることを決定し、スリップ量SLが所定の閾値SLth未満となり、かつ、車輪加速度Awが0以下である場合に、ブレーキ液圧を増圧状態にすることを決定する。 In the lock suppression control, the hydraulic braking means 150 reduces the brake hydraulic pressure of each wheel 3 in a reduced pressure state, an increased pressure state, or a holding state based on the wheel acceleration Aw estimated from the wheel speed Vw and the slip amount SL. It is determined for each wheel 3 whether or not to use. Specifically, the hydraulic braking means 150 determines that the wheel 3 is about to lock when the slip amount SL is equal to or higher than a predetermined threshold SLth and the wheel acceleration Aw is 0 or lower, and applies the brake hydraulic pressure. Decide to reduce the pressure. Further, the hydraulic braking means 150 determines that the brake hydraulic pressure is kept in the holding state when the wheel acceleration Aw is larger than 0, the slip amount SL becomes less than a predetermined threshold SLth, and the wheel acceleration Aw becomes less than the predetermined threshold SLth. When it is 0 or less, it is determined to increase the brake fluid pressure.
 液圧式制動手段150は、ブレーキ液圧を減圧状態にすることに決定した場合には、液圧ユニット10の入口弁13を閉じ、出口弁14を開くように、入口弁13および出口弁14への電流を制御する減圧制御を実行する。また、液圧式制動手段150は、ブレーキ液圧を保持状態にすることに決定した場合には、入口弁13および出口弁14を共に閉じるように、入口弁13および出口弁14への電流を制御する保持制御を実行する。 When the hydraulic braking means 150 decides to reduce the brake hydraulic pressure, the hydraulic braking means 150 closes the inlet valve 13 of the hydraulic unit 10 and opens the outlet valve 14 to the inlet valve 13 and the outlet valve 14. Executes depressurization control to control the current of. Further, the hydraulic braking means 150 controls the current to the inlet valve 13 and the outlet valve 14 so as to close both the inlet valve 13 and the outlet valve 14 when it is determined to keep the brake hydraulic pressure in the holding state. Execute retention control.
 さらに、液圧式制動手段150は、ブレーキ液圧を増圧状態にすることに決定した場合には、入口弁13を開き、出口弁14を閉じるように、入口弁13および出口弁14への電流を制御する増圧制御を実行する。 Further, when the hydraulic braking means 150 decides to increase the brake hydraulic pressure, the current to the inlet valve 13 and the outlet valve 14 so as to open the inlet valve 13 and close the outlet valve 14. The pressure boost control is executed.
 液圧式制動手段150は、異常判定手段151と、切替手段152と、を備えている。異常判定手段151は、液圧ユニット10に異常が発生したか否かを判定する機能を有している。異常判定手段151は、液圧ユニット10に異常が発生したと判定すると、そのことを示す異常信号を切替手段152に出力する。 The hydraulic braking means 150 includes an abnormality determining means 151 and a switching means 152. The abnormality determining means 151 has a function of determining whether or not an abnormality has occurred in the hydraulic pressure unit 10. When the abnormality determining means 151 determines that an abnormality has occurred in the hydraulic pressure unit 10, it outputs an abnormality signal indicating that fact to the switching means 152.
 切替手段152は、車両走行中において異常判定手段151から異常信号を受信すると、液圧式制動制御から、パーキングブレーキ装置200の電動モータ210により後輪32の制動を行う機械式制動制御に切り替える機能を有している。具体的に、切替手段152は、液圧式制動制御中において異常判定手段151から異常信号を受信すると、液圧式制動制御を終了するとともに、機械式制動手段160にパーキングスイッチ92のON・OFFの状態を示す信号を出力する。なお、切替手段152は、液圧式制動制御を開始する前に、異常判定手段151から異常信号を受信すると、液圧式制動制御を開始することなく、機械式制動手段160にパーキングスイッチ92のON・OFFの状態を示す信号を出力する。 When the switching means 152 receives an abnormality signal from the abnormality determining means 151 while the vehicle is running, the switching means 152 has a function of switching from the hydraulic braking control to the mechanical braking control in which the electric motor 210 of the parking brake device 200 brakes the rear wheels 32. Have. Specifically, when the switching means 152 receives an abnormality signal from the abnormality determining means 151 during the hydraulic braking control, the hydraulic braking control is terminated and the mechanical braking means 160 is in the ON / OFF state of the parking switch 92. Outputs a signal indicating. When the switching means 152 receives an abnormality signal from the abnormality determining means 151 before starting the hydraulic braking control, the mechanical braking means 160 is turned on by turning on the parking switch 92 without starting the hydraulic braking control. Outputs a signal indicating the OFF state.
 また、切替手段152は、車両2が停止した場合、詳しくは車体速度Vcが0に近い値(例えば0)になった場合に、液圧式制動制御から機械式制動制御に切り替える機能も有している。具体的に、切替手段152は、車体速度Vcが0に近い値になった場合に、液圧式制動制御を終了するとともに、機械式制動手段160にパーキングスイッチ92のON・OFFの状態を示す信号を出力する。 Further, the switching means 152 also has a function of switching from hydraulic braking control to mechanical braking control when the vehicle 2 is stopped, specifically when the vehicle body speed Vc becomes a value close to 0 (for example, 0). There is. Specifically, when the vehicle body speed Vc becomes a value close to 0, the switching means 152 terminates the hydraulic braking control and signals the mechanical braking means 160 to indicate the ON / OFF state of the parking switch 92. Is output.
 液圧式制動手段150は、切替手段152により制御を切り替える場合の他、車両走行中におけるドライバの操作による液圧式制動制御の解除要求を受けたときにも、液圧式制動制御を終了する機能を有している。詳しくは、液圧式制動手段150は、パーキングスイッチ92からON信号を受信しなくなったこと、または、アクセルセンサ93から信号を受信したことを解除要求として、液圧式制動制御を終了する。 The hydraulic braking means 150 has a function of terminating the hydraulic braking control not only when the control is switched by the switching means 152 but also when a request for canceling the hydraulic braking control is received by the driver's operation while the vehicle is running. doing. Specifically, the hydraulic braking means 150 ends the hydraulic braking control on the request that the ON signal is no longer received from the parking switch 92 or the signal is received from the accelerator sensor 93 as a release request.
 つまり、本実施形態における液圧式制動制御の終了条件としては、車両走行中のドライバの操作による液圧式制動制御の解除要求を受けたこと、車両2が停止したこと、および、液圧ユニット10に異常が発生したことの3つの条件が設定されている。そして、液圧式制動手段150は、複数の終了条件のうち少なくとも1つの条件が満たされた場合に、液圧式制動制御を終了する。詳しくは、液圧式制動手段150は、複数の終了条件のうち少なくとも1つの条件が満たされると、減圧制御を実行して、液圧式制動制御を終了する。 That is, as the termination conditions of the hydraulic braking control in the present embodiment, the hydraulic braking control release request is received by the driver's operation while the vehicle is running, the vehicle 2 is stopped, and the hydraulic pressure unit 10 is used. Three conditions have been set for the occurrence of an abnormality. Then, the hydraulic braking means 150 terminates the hydraulic braking control when at least one of the plurality of termination conditions is satisfied. Specifically, the hydraulic braking means 150 executes the decompression control when at least one of the plurality of termination conditions is satisfied, and terminates the hydraulic braking control.
 機械式制動手段160は、切替手段152から信号を受けると、機械式制動制御を実行する機能を有している。機械式制動制御は、車両走行中に行う動的作動制御と、車両2が停止している際に行う静的作動制御とを含んでいる。機械式制動手段160は、車両2が走行中である場合には、動的作動制御を実行し、車両2が停止している場合には、静的作動制御を実行する。 The mechanical braking means 160 has a function of executing mechanical braking control when receiving a signal from the switching means 152. The mechanical braking control includes dynamic operation control performed while the vehicle is running and static operation control performed when the vehicle 2 is stopped. The mechanical braking means 160 executes dynamic operation control when the vehicle 2 is running, and executes static operation control when the vehicle 2 is stopped.
 機械式制動手段160は、車輪3の制動力を増加させるためのアプライ制御を実行可能なアプライ制御手段161と、車輪3の制動力を保持するためのストップ制御を実行可能なストップ制御手段162と、車輪3の制動力を減少させるためのリリース制御を実行可能なリリース制御手段163を備えている。 The mechanical braking means 160 includes an apply control means 161 capable of executing apply control for increasing the braking force of the wheel 3, and a stop control means 162 capable of executing stop control for maintaining the braking force of the wheel 3. The release control means 163 capable of executing release control for reducing the braking force of the wheel 3 is provided.
 ここで、アプライ制御は、電動モータ210を正回転させることで、ナット250をブレーキロータBRに向けて一定速度で前進させる制御である。詳しくは、アプライ制御では、電動モータ210に一定の電流を供給することで、一対の摩擦パッド260のクランプ力を増加させる。 Here, the apply control is a control in which the nut 250 is advanced toward the brake rotor BR at a constant speed by rotating the electric motor 210 in the forward direction. Specifically, in apply control, the clamping force of the pair of friction pads 260 is increased by supplying a constant current to the electric motor 210.
 ストップ制御は、電動モータ210の回転を停止させることで、ナット250を停止させる制御である。リリース制御は、電動モータ210を逆回転させることで、ナット250をブレーキロータBRから離れるように一定速度で後退させる制御である。 Stop control is a control that stops the nut 250 by stopping the rotation of the electric motor 210. The release control is a control in which the nut 250 is retracted at a constant speed so as to be separated from the brake rotor BR by rotating the electric motor 210 in the reverse direction.
 機械式制動手段160は、静的作動制御を行う場合には、アプライ制御のみを実行する。また、機械式制動手段160は、動的作動制御を行う場合には、アプライ制御、ストップ制御およびリリース制御を適宜選択して実行する。 The mechanical braking means 160 executes only apply control when performing static operation control. Further, when performing dynamic operation control, the mechanical braking means 160 appropriately selects and executes apply control, stop control, and release control.
 アプライ制御手段161は、所定の開始条件(機械式制動制御の開始条件)が満たされた場合に、アプライ制御を実行する機能を有している。 The apply control means 161 has a function of executing apply control when a predetermined start condition (start condition of mechanical braking control) is satisfied.
 詳しくは、アプライ制御手段161は、車体速度Vcが0に近い値(例えば0)で、かつ、パーキングスイッチ92がON状態であるといった開始条件が満たされた場合に、静的作動制御におけるアプライ制御(つまり、所定時間、電動モータ210を正回転させる制御)を実行する。 Specifically, the apply control means 161 is an apply control in static operation control when a start condition such that the vehicle body speed Vc is close to 0 (for example, 0) and the parking switch 92 is in the ON state is satisfied. (That is, control for rotating the electric motor 210 in the forward direction for a predetermined time) is executed.
 アプライ制御手段161は、車体速度Vcが所定値以上、かつ、パーキングスイッチ92がON状態であるといった開始条件が満たされた場合に、動的作動制御におけるアプライ制御を実行する。つまり、アプライ制御手段161は、車両走行中において、パーキングブレーキ装置200を作動させるための開始条件が満たされた場合に、アプライ制御を実行する。 The apply control means 161 executes apply control in dynamic operation control when a start condition such that the vehicle body speed Vc is equal to or higher than a predetermined value and the parking switch 92 is in the ON state is satisfied. That is, the apply control means 161 executes the apply control when the start condition for operating the parking brake device 200 is satisfied while the vehicle is running.
 アプライ制御手段161は、後述するストップ制御またはリリース制御を開始する場合に、アプライ制御を終了する。詳しくは、アプライ制御手段161は、後述するリリース制御を実行していない期間において車輪減速度Dwが所定の閾値Dth未満である場合に、アプライ制御を実行している。 The apply control means 161 ends the apply control when the stop control or the release control described later is started. Specifically, the apply control means 161 executes the apply control when the wheel deceleration Dw is less than a predetermined threshold value Dth during the period when the release control described later is not executed.
 ストップ制御手段162は、車輪減速度算出手段140から出力されてくる車輪減速度Dwに基づいて、ストップ制御を実行する機能を有している。詳しくは、ストップ制御手段162は、少なくともアプライ制御中における車輪減速度Dwが所定の閾値Dth以上である場合に、電動モータ210への電流供給を停止して、ストップ制御を実行する。より詳しくは、ストップ制御手段162は、後述するリリース制御を実行していない期間において、車輪減速度Dwが所定の閾値Dth以上である場合にストップ制御を実行する。なお、本実施形態では、閾値Dthを固定値としている。 The stop control means 162 has a function of executing stop control based on the wheel deceleration Dw output from the wheel deceleration calculation means 140. Specifically, the stop control means 162 stops the current supply to the electric motor 210 and executes the stop control at least when the wheel deceleration Dw during the apply control is equal to or higher than a predetermined threshold value Dth. More specifically, the stop control means 162 executes stop control when the wheel deceleration Dw is equal to or higher than a predetermined threshold value Dth during a period in which release control described later is not executed. In this embodiment, the threshold value Dth is set as a fixed value.
 リリース制御手段163は、スリップ量算出手段130から出力されてくるスリップ量SLに基づいて、リリース制御を実行する機能を有している。詳しくは、リリース制御手段163は、スリップ量SLが閾値SLth以上になった場合にリリース制御を実行する。 The release control means 163 has a function of executing release control based on the slip amount SL output from the slip amount calculation means 130. Specifically, the release control means 163 executes release control when the slip amount SL becomes equal to or higher than the threshold value SLth.
 つまり、機械式制動手段160は、動的作動制御において、SL<SLth、かつ、Dw<Dthである場合にアプライ制御を実行し、SL<SLth、かつ、Dw≧Dthである場合にストップ制御を実行し、SL≧SLthである場合にリリース制御を実行している。 That is, in the dynamic operation control, the mechanical braking means 160 executes apply control when SL <SLth and Dw <Dth, and stops control when SL <SLth and Dw ≧ Dth. It is executed, and release control is executed when SL ≧ SLth.
 記憶手段170は、前述した各閾値SLth,Dthなどを記憶している。なお、各閾値SLth,Dthは、実験やシミュレーション等により適宜設定される。 The storage means 170 stores the above-mentioned thresholds SLth, Dth, and the like. The thresholds SLth and Dth are appropriately set by experiments, simulations, and the like.
 次に、制御部100の機械式制動制御の動作について詳細に説明する。
 機械式制動手段160は、パーキングスイッチ92から液圧式制動手段150を介してパーキングスイッチ92がON状態であることを示す信号を受信すると、図5に示すフローチャートに示す機械式制動制御を開始する。
Next, the operation of the mechanical braking control of the control unit 100 will be described in detail.
When the mechanical braking means 160 receives a signal from the parking switch 92 via the hydraulic braking means 150 indicating that the parking switch 92 is in the ON state, the mechanical braking means 160 starts the mechanical braking control shown in the flowchart shown in FIG.
 機械式制動制御において、機械式制動手段160は、まず、車輪減速度Dwを取得する(S1)。ステップS1の後、機械式制動手段160は、車体速度Vcに基づいて、車両2が走行中であるか否かを判定する(S2)。 In the mechanical braking control, the mechanical braking means 160 first acquires the wheel deceleration Dw (S1). After step S1, the mechanical braking means 160 determines whether or not the vehicle 2 is running based on the vehicle body speed Vc (S2).
 ステップS2において車両2が走行中でない、つまり車両2が停止していると判断した場合には(No)、機械式制動手段160は、静的作動制御、つまり所定時間の間アプライ制御を実行して本制御を終了する。ステップS2において車両2が走行中であると判断した場合には(Yes)、機械式制動手段160は、スリップ量SLが閾値SLth未満であるか否かを判断する(S3)。 When it is determined in step S2 that the vehicle 2 is not running, that is, the vehicle 2 is stopped (No), the mechanical braking means 160 executes static operation control, that is, apply control for a predetermined time. This control is terminated. If it is determined in step S2 that the vehicle 2 is running (Yes), the mechanical braking means 160 determines whether or not the slip amount SL is less than the threshold SLth (S3).
 ステップS3においてSL≧SLthであると判断した場合には(No)、機械式制動手段160は、リリース制御を実行する(S7)。ステップS3においてSL<SLthであると判断した場合には(Yes)、機械式制動手段160は、車輪減速度Dwが閾値Dth以上であるか否かを判断する(S4)。 If it is determined in step S3 that SL ≧ SLth (No), the mechanical braking means 160 executes release control (S7). If it is determined in step S3 that SL <SLth (Yes), the mechanical braking means 160 determines whether or not the wheel deceleration Dw is equal to or greater than the threshold value Dth (S4).
 ステップS4においてDw≧Dthであると判断した場合には(Yes)、機械式制動手段160は、ストップ制御を実行する(S5)。ステップS4においてDw<Dthであると判断した場合には(No)、機械式制動手段160は、アプライ制御を実行する(S6)。 If it is determined in step S4 that Dw ≧ Dth (Yes), the mechanical braking means 160 executes stop control (S5). If it is determined in step S4 that Dw <Dth (No), the mechanical braking means 160 executes apply control (S6).
 次に、機械式制動手段160による動的作動制御の一例について図6を参照して詳細に説明する。
 図6に示すように、例えば液圧ユニット10が異常である場合において、ドライバがパーキングスイッチ92をONにすると(時刻t1)、機械式制動手段160は、パーキングスイッチ92のON信号を液圧式制動手段150を介して受信し、このON信号に基づいて電動モータ210を駆動してアプライ制御を実行する。つまり、機械式制動手段160は、時刻t1において、SL<SLth、かつ、Dw<Dthであると判断してアプライ制御を実行する。
Next, an example of dynamic operation control by the mechanical braking means 160 will be described in detail with reference to FIG.
As shown in FIG. 6, for example, when the hydraulic pressure unit 10 is abnormal and the driver turns on the parking switch 92 (time t1), the mechanical braking means 160 applies the ON signal of the parking switch 92 to hydraulic braking. It is received via the means 150, and the electric motor 210 is driven based on this ON signal to execute apply control. That is, the mechanical braking means 160 determines that SL <SLth and Dw <Dth at the time t1, and executes the apply control.
 アプライ制御中において、車輪減速度Dwが閾値Dth以上になると(時刻t2)、機械式制動手段160は、ストップ制御を実行する。つまり、機械式制動手段160は、時刻t2において、SL<SLth、かつ、Dw≧Dthであると判断してストップ制御を実行する。 During apply control, when the wheel deceleration Dw becomes equal to or higher than the threshold value Dth (time t2), the mechanical braking means 160 executes stop control. That is, the mechanical braking means 160 determines at time t2 that SL <SLth and Dw ≧ Dth, and executes stop control.
 その後は、同様にして、機械式制動手段160は、SL<SLth、かつ、Dw<Dthである場合にアプライ制御を実行し(時刻t3~t4,t5~t6,t7~t8)、SL<SLth、かつ、Dw≧Dthである場合にストップ制御を実行する(時刻t4~t5,t6~t7,t8~t9)。そして、スリップ量SLが閾値SLth以上になると(時刻t9)、機械式制動手段160は、リリース制御を実行する。 After that, similarly, the mechanical braking means 160 executes apply control when SL <SLth and Dw <Dth (time t3 to t4, t5 to t6, t7 to t8), and SL <SLth. And, when Dw ≧ Dth, stop control is executed (time t4 to t5, t6 to t7, t8 to t9). Then, when the slip amount SL becomes equal to or higher than the threshold value SLth (time t9), the mechanical braking means 160 executes release control.
 その後、スリップ量SLが閾値SLth未満になると(時刻t10)、機械式制動手段160は、そのときの車輪減速度Dwに基づいてストップ制御またはアプライ制御を実行する。本実施形態では、時刻t10での車輪減速度Dwが閾値Dth以上であるため、機械式制動手段160は、時刻t10においてストップ制御を実行する。その後は、前述と同様にして、機械式制動手段160は、スリップ量SLと車輪減速度Dwに基づいてストップ制御(時刻t10~t11,t12~)またはアプライ制御(時刻t11~t12)を実行する。 After that, when the slip amount SL becomes less than the threshold value SLth (time t10), the mechanical braking means 160 executes stop control or apply control based on the wheel deceleration Dw at that time. In the present embodiment, since the wheel deceleration Dw at time t10 is equal to or greater than the threshold value Dth, the mechanical braking means 160 executes stop control at time t10. After that, in the same manner as described above, the mechanical braking means 160 executes stop control (time t10 to t11, t12 to) or apply control (time t11 to t12) based on the slip amount SL and the wheel deceleration Dw. ..
 以上によれば、本実施形態において以下のような効果を得ることができる。
 アプライ制御中において車輪減速度Dwに基づいてストップ制御を行うことで、車両走行中においてパーキングブレーキ装置200の電動モータ210に基づく制動力を車輪減速度Dwに応じて適宜制御できるので、車輪3が急にロックするのを抑えることができる。
Based on the above, the following effects can be obtained in the present embodiment.
By performing stop control based on the wheel deceleration Dw during apply control, the braking force based on the electric motor 210 of the parking brake device 200 can be appropriately controlled according to the wheel deceleration Dw while the vehicle is running. It is possible to prevent sudden locking.
 車輪減速度Dwが閾値Dth以上となった場合にストップ制御を実行するので、アプライ制御が継続されることによって車輪3が大きく減速するのを、ストップ制御により抑えることができる。 Since the stop control is executed when the wheel deceleration Dw becomes equal to or higher than the threshold value Dth, it is possible to suppress the wheel 3 from decelerating significantly due to the continuation of the apply control by the stop control.
 なお、本発明は前記実施形態に限定されることなく、以下に例示するように様々な形態で利用できる。以下の説明においては、前記実施形態と略同様の部材や処理には同一の符号を付し、その説明は省略する。 The present invention is not limited to the above embodiment, and can be used in various forms as illustrated below. In the following description, members and processes substantially similar to those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 前記実施形態では、閾値Dthを固定値としたが、本発明はこれに限定されず、条件に応じて閾値Dthを異なる値に設定してもよい。例えば、閾値Dthを路面μに基づいて設定してもよい。以下に、閾値Dthを路面μに基づいて設定する変形例について説明する。 In the above embodiment, the threshold value Dth is set to a fixed value, but the present invention is not limited to this, and the threshold value Dth may be set to a different value depending on the conditions. For example, the threshold value Dth may be set based on the road surface μ. A modified example of setting the threshold value Dth based on the road surface μ will be described below.
 図7に示すように、変形例に係る制御部100は、前記実施形態と同様の各手段110~170を備える他、路面μを推定する路面μ推定手段180と、閾値設定手段164と、をさらに備えている。 As shown in FIG. 7, the control unit 100 according to the modified example includes the same means 110 to 170 as in the above embodiment, and also includes a road surface μ estimating means 180 for estimating the road surface μ and a threshold value setting means 164. Further prepared.
 路面μ推定手段180は、各車輪3の車輪減速度Dwと、各車輪ブレーキFR,FL,RR,RL内のブレーキ液圧とに基づいて、各車輪3に対応した路面μを推定する機能を有している。具体的に、路面μ推定手段180は、各車輪3の車輪減速度Dwと、各車輪ブレーキFR,FL,RR,RL内のブレーキ液圧と、路面μ推定マップとに基づいて各車輪3に対応した路面μを推定している。 The road surface μ estimating means 180 has a function of estimating the road surface μ corresponding to each wheel 3 based on the wheel deceleration Dw of each wheel 3 and the brake fluid pressure in each wheel brake FR, FL, RR, RL. Have. Specifically, the road surface μ estimation means 180 attaches to each wheel 3 based on the wheel deceleration Dw of each wheel 3, the brake fluid pressure in each wheel brake FR, FL, RR, RL, and the road surface μ estimation map. The corresponding road surface μ is estimated.
 ここで、路面μ推定マップは、車輪減速度Dwの大きさ(絶対値)と、ブレーキ液圧と、路面μとを関連付けるために予め設定されたマップであり、実験やシミュレーション等により予め設定されている。この路面μ推定マップでは、車輪減速度Dwの大きさが大きくなるほど、路面μが小さくなり(低摩擦係数側になり)、ブレーキ液圧が小さくなるほど、路面μが小さくなるように設定されている。 Here, the road surface μ estimation map is a map preset for associating the magnitude (absolute value) of the wheel deceleration Dw, the brake fluid pressure, and the road surface μ, and is preset by experiments, simulations, or the like. ing. In this road surface μ estimation map, the road surface μ is set to be smaller as the wheel deceleration Dw is larger (on the low friction coefficient side), and the road surface μ is set to be smaller as the brake fluid pressure is smaller. ..
 路面μ推定手段180は、ブレーキ液圧や車輪減速度Dwの大きさが路面μ推定マップに示す数値以外の数値である場合には、線形補間により路面μを推定する。路面μ推定手段180は、推定した路面μを機械式制動手段160に出力する。 The road surface μ estimation means 180 estimates the road surface μ by linear interpolation when the magnitudes of the brake fluid pressure and the wheel deceleration Dw are values other than the values shown in the road surface μ estimation map. The road surface μ estimating means 180 outputs the estimated road surface μ to the mechanical braking means 160.
 機械式制動手段160は、前記実施形態と同様の各手段161~163を備える他、閾値設定手段164をさらに備えている。閾値設定手段164は、路面μ推定手段180から出力されてくる路面μに基づいて閾値Dthを設定する機能を有している。詳しくは、閾値設定手段164は、路面μと閾値Dthとを関連付けるために予め設定された閾値設定マップと、路面μ推定手段180から出力されてくる路面μとに基づいて、閾値Dthを設定している。 The mechanical braking means 160 includes the same means 161 to 163 as in the above embodiment, and further includes a threshold value setting means 164. The threshold value setting means 164 has a function of setting the threshold value Dth based on the road surface μ output from the road surface μ estimation means 180. Specifically, the threshold value setting means 164 sets the threshold value Dth based on the threshold value setting map set in advance for associating the road surface μ with the threshold value Dth and the road surface μ output from the road surface μ estimation means 180. ing.
 閾値設定マップでは、路面μが大きくなるほど、閾値Dthが小さくなるように設定されている。つまり、閾値設定手段164は、路面μが所定値以下の場合に閾値Dthを第1閾値Dth1に設定し、路面μが所定値よりも大きい場合に閾値Dthを第1閾値Dth1よりも小さな第2閾値Dth2に設定している。 In the threshold value setting map, the threshold value Dth is set to decrease as the road surface μ increases. That is, the threshold value setting means 164 sets the threshold value Dth to the first threshold value Dth1 when the road surface μ is equal to or less than a predetermined value, and sets the threshold value Dth to a second threshold value smaller than the first threshold value Dth1 when the road surface μ is larger than the predetermined value. It is set to the threshold value Dth2.
 本変形例に係る機械式制動手段160は、図8に示すフローチャートに従って機械式制動制御を実行する。ここで、図8に示すフローチャートでは、図5に示すフローチャートにおけるステップS3,S4の間に新たなステップS21を設けている。 The mechanical braking means 160 according to this modification executes mechanical braking control according to the flowchart shown in FIG. Here, in the flowchart shown in FIG. 8, a new step S21 is provided between steps S3 and S4 in the flowchart shown in FIG.
 ステップS21において、機械式制動手段160は、推定した路面μと、閾値設定マップとに基づいて、閾値Dthを設定する。ステップS21の後のステップS4において、機械式制動手段160は、車輪減速度Dwを、ステップS21で設定した閾値Dthと比較する。 In step S21, the mechanical braking means 160 sets the threshold value Dth based on the estimated road surface μ and the threshold value setting map. In step S4 after step S21, the mechanical braking means 160 compares the wheel deceleration Dw with the threshold Dth set in step S21.
 以上、本変形例によれば、路面μに応じて適切な閾値Dthを設定することができるので、路面μに応じた適切なストップ制御を行うことができる。 As described above, according to this modification, since an appropriate threshold value Dth can be set according to the road surface μ, appropriate stop control can be performed according to the road surface μ.
 なお、閾値Dthの設定方法は、前記変形例に限定されるものではない。例えば、閾値設定手段164は、車体速度Vc、または、パーキングスイッチ92の信号を受信してからの経過時間に基づいて、閾値Dthを設定してもよい。 The method of setting the threshold value Dth is not limited to the above modification. For example, the threshold value setting means 164 may set the threshold value Dth based on the vehicle body speed Vc or the elapsed time from receiving the signal of the parking switch 92.
 具体的には、車体速度Vcが小さいほど、閾値Dthを大きな値に設定してもよい。これによれば、車体速度Vcが小さい場合には、車輪3がロックし難いため、閾値Dthを大きくしてストップ制御に入り難くすることで、車両2に良好な制動力を付与することができる。 Specifically, the smaller the vehicle body speed Vc, the larger the threshold Dth may be set. According to this, when the vehicle body speed Vc is small, the wheels 3 are difficult to lock. Therefore, by increasing the threshold value Dth to make it difficult to enter the stop control, a good braking force can be given to the vehicle 2. ..
 また、前述した経過時間が長いほど、閾値Dthを大きな値に設定してもよい。これによれば、経過時間が長い場合には、車体速度Vcが十分小さな値となって車輪3がロックし難くなるため、閾値Dthを大きくしてストップ制御に入り難くすることで、車両2に良好な制動力を付与することができる。 Further, the longer the elapsed time described above, the larger the threshold Dth may be set. According to this, when the elapsed time is long, the vehicle body speed Vc becomes a sufficiently small value and it becomes difficult for the wheel 3 to lock. Therefore, by increasing the threshold value Dth to make it difficult to enter the stop control, the vehicle 2 A good braking force can be applied.
 前記実施形態では、車輪減速度Dwを車両2の減速時に正の値となるように設定したが、本発明はこれに限定されず、車両の加速時に正の値となるように車輪減速度を設定してもよい。つまり、車輪速度Vwの今回値から前回値を引くことで、車輪減速度Dwを算出してもよい。この場合、減速時に負の値となる車輪減速度が、負の閾値をマイナス側(0から離れる方向)に超えた場合に、ストップ制御を実行すればよい。 In the above embodiment, the wheel deceleration Dw is set to be a positive value when the vehicle 2 is decelerated, but the present invention is not limited to this, and the wheel deceleration is set to be a positive value when the vehicle is accelerating. It may be set. That is, the wheel deceleration Dw may be calculated by subtracting the previous value from the current value of the wheel speed Vw. In this case, the stop control may be executed when the wheel deceleration, which becomes a negative value at the time of deceleration, exceeds the negative threshold value on the negative side (direction away from 0).
 前記実施形態では、パーキングスイッチ92からの信号が液圧式制動手段150を介して機械式制動手段160に出力されるように構成したが、本発明はこれに限定されるものではない。例えば、パーキングスイッチ92からの信号が機械式制動手段160に直接出力されるように構成されていてもよい。つまり、液圧ユニット10の正常・異常に関わらず、車両走行中にパーキングスイッチ92をONすると機械式制動制御(動的作動制御)が実行されるように構成されてもよい。 In the above embodiment, the signal from the parking switch 92 is configured to be output to the mechanical braking means 160 via the hydraulic braking means 150, but the present invention is not limited to this. For example, the signal from the parking switch 92 may be configured to be output directly to the mechanical braking means 160. That is, regardless of whether the hydraulic pressure unit 10 is normal or abnormal, the mechanical braking control (dynamic operation control) may be executed when the parking switch 92 is turned on while the vehicle is running.
 前記実施形態では、パーキングブレーキ制御装置として車両用ブレーキ液圧制御装置1の制御部100を例示したが、本発明はこれに限定されず、パーキングブレーキ制御装置は、例えば、エンジンなどを制御するECU(Electronic Control Unit)などであってもよい。 In the above embodiment, the control unit 100 of the vehicle brake hydraulic pressure control device 1 is exemplified as the parking brake control device, but the present invention is not limited to this, and the parking brake control device is, for example, an ECU that controls an engine or the like. It may be (Electronic Control Unit) or the like.
 前記実施形態では、電動モータ210、減速機220、ナット250およびブレーキピストン240を備えたパーキングブレーキ装置200を例示したが、本発明はこれに限定されず、電動モータの動力を機械的に摩擦部材に伝達するパーキングブレーキ装置であればどのようなものであってもよい。例えば、パーキングブレーキ装置は、電動モータの動力をワイヤを介して摩擦部材に伝達するものであってもよい。ただし、ワイヤタイプのものでは、ワイヤの伸びにより、アプライ制御時におけるクランプ力の急激な上昇は起こりにくいため、前記実施形態のようなナットタイプのパーキングブレーキ装置200において本発明が特に有効になる。 In the above embodiment, the parking brake device 200 including the electric motor 210, the speed reducer 220, the nut 250 and the brake piston 240 has been illustrated, but the present invention is not limited to this, and the power of the electric motor is mechanically friction member. Any parking brake device may be used. For example, the parking brake device may transmit the power of the electric motor to the friction member via a wire. However, in the wire type, the clamping force is unlikely to suddenly increase during the apply control due to the elongation of the wire, so that the present invention is particularly effective in the nut type parking brake device 200 as in the above embodiment.
 前記実施形態では、車輪ブレーキFR,FL,RR,RLとして、ブレーキロータBRを備えた、いわゆるディスクブレーキを例示したが、本発明はこれに限定されず、車輪ブレーキは、例えばドラムブレーキであってもよい。この場合、回転体を、車輪と一体に回転するドラムとし、摩擦部材を、ドラムの内周面に摺接するブレーキシューとしてもよい。 In the above embodiment, as the wheel brakes FR, FL, RR, and RL, a so-called disc brake provided with a brake rotor BR has been exemplified, but the present invention is not limited to this, and the wheel brake is, for example, a drum brake. May be good. In this case, the rotating body may be a drum that rotates integrally with the wheel, and the friction member may be a brake shoe that is in sliding contact with the inner peripheral surface of the drum.
 また、作動スイッチは、前記実施形態のようなパーキングレバーの動きを検知するパーキングスイッチ92に限られず、例えば、ドライバの押し動作によってONとなり再度の押し動作によりOFFとなるスイッチなどであってもよい。 Further, the operation switch is not limited to the parking switch 92 that detects the movement of the parking lever as in the above embodiment, and may be, for example, a switch that is turned on by the pushing operation of the driver and turned off by the pushing operation again. ..
 また、前記した実施形態および変形例で説明した各要素を、任意に組み合わせて実施してもよい。 Further, each element described in the above-described embodiment and modification may be arbitrarily combined and implemented.

Claims (5)

  1.  電動モータの正回転により発生する動力を機械的に摩擦部材に伝達して前記摩擦部材を車輪と一体に回転する回転体に押し当てるパーキングブレーキ装置を制御するためのパーキングブレーキ制御装置であって、
     車両走行中において前記パーキングブレーキ装置を作動させるための開始条件が満たされた場合に、前記電動モータを正回転させるアプライ制御を実行するアプライ制御手段と、
     前記アプライ制御中における車輪減速度に基づいて、前記電動モータの回転を停止させるストップ制御を実行するストップ制御手段と、
     スリップ量に基づいて、前記電動モータを逆回転させるリリース制御を実行するリリース制御手段と、を備えたことを特徴とするパーキングブレーキ制御装置。
    A parking brake control device for controlling a parking brake device that mechanically transmits the power generated by the forward rotation of an electric motor to a friction member and presses the friction member against a rotating body that rotates integrally with a wheel.
    When the start condition for operating the parking brake device is satisfied while the vehicle is running, the apply control means for executing the apply control for rotating the electric motor in the forward direction and the apply control means.
    A stop control means for executing stop control for stopping the rotation of the electric motor based on the wheel deceleration during the apply control.
    A parking brake control device including a release control means for executing release control for rotating the electric motor in the reverse direction based on a slip amount.
  2.  前記ストップ制御手段は、前記車輪減速度が所定の閾値を超えた場合に前記ストップ制御を実行することを特徴とする請求項1に記載のパーキングブレーキ制御装置。 The parking brake control device according to claim 1, wherein the stop control means executes the stop control when the wheel deceleration exceeds a predetermined threshold value.
  3.  前記閾値は、固定値であることを特徴とする請求項2に記載のパーキングブレーキ制御装置。 The parking brake control device according to claim 2, wherein the threshold value is a fixed value.
  4.  車体速度、または、前記パーキングブレーキ装置を作動させるための作動スイッチの信号を受信してからの経過時間に基づいて、前記閾値を設定する閾値設定手段を備えたことを特徴とする請求項2に記載のパーキングブレーキ制御装置。 The second aspect of the invention is characterized in that the threshold value setting means for setting the threshold value is provided based on the vehicle body speed or the elapsed time from receiving the signal of the operation switch for operating the parking brake device. The parking brake control device described.
  5.  路面μを推定する路面μ推定手段と、
     路面μが所定値以下の場合に前記閾値を第1閾値に設定し、路面μが前記所定値よりも大きい場合に前記閾値を前記第1閾値よりも小さな第2閾値に設定する閾値設定手段と、を備えたことを特徴とする請求項2に記載のパーキングブレーキ制御装置。
    Road surface μ estimation means for estimating road surface μ and
    A threshold setting means for setting the threshold value to the first threshold value when the road surface μ is equal to or less than a predetermined value, and setting the threshold value to a second threshold value smaller than the first threshold value when the road surface μ is larger than the predetermined value. The parking brake control device according to claim 2, further comprising.
PCT/JP2020/046589 2020-03-26 2020-12-14 Parking brake control device WO2021192449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509265A JP7486572B2 (en) 2020-03-26 2020-12-14 Parking brake control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055981 2020-03-26
JP2020055981 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192449A1 true WO2021192449A1 (en) 2021-09-30

Family

ID=77891191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046589 WO2021192449A1 (en) 2020-03-26 2020-12-14 Parking brake control device

Country Status (2)

Country Link
JP (1) JP7486572B2 (en)
WO (1) WO2021192449A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306299A (en) * 2005-04-28 2006-11-09 Hi-Lex Corporation Control device for electric parking brake
JP2013095258A (en) * 2011-10-31 2013-05-20 Hi-Lex Corporation Parking brake device
JP2015047945A (en) * 2013-08-30 2015-03-16 日立オートモティブシステムズ株式会社 Brake system
WO2016104680A1 (en) * 2014-12-27 2016-06-30 マツダ株式会社 Brake device
JP2016124408A (en) * 2014-12-27 2016-07-11 日立オートモティブシステムズ株式会社 Electric braking system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306299A (en) * 2005-04-28 2006-11-09 Hi-Lex Corporation Control device for electric parking brake
JP2013095258A (en) * 2011-10-31 2013-05-20 Hi-Lex Corporation Parking brake device
JP2015047945A (en) * 2013-08-30 2015-03-16 日立オートモティブシステムズ株式会社 Brake system
WO2016104680A1 (en) * 2014-12-27 2016-06-30 マツダ株式会社 Brake device
JP2016124408A (en) * 2014-12-27 2016-07-11 日立オートモティブシステムズ株式会社 Electric braking system

Also Published As

Publication number Publication date
JPWO2021192449A1 (en) 2021-09-30
JP7486572B2 (en) 2024-05-17

Similar Documents

Publication Publication Date Title
US7234784B2 (en) Brake device for a two-wheeled motor vehicle, and method of using same
US8788172B2 (en) Method and device for controlling an electrohydraulic braking system for motor vehicles
US6957870B2 (en) Braking pressure control apparatus capable of switching between two brake operating states using power-operated and manually operated pressure sources, respectively
JP2649935B2 (en) Anti-lock device with hydraulic multi-circuit brake device for road vehicles
US7188911B2 (en) Brake device for a two-wheeled motor vehicle, and method of using same
US20050168059A1 (en) Brake system for a motorcycle, and method of using same
JP6849822B2 (en) Electric booster and brake control device
JPH09290746A (en) Braking force controller
CN109941247B (en) Braking force control device for vehicle
JP4935760B2 (en) Brake control device
US8915555B2 (en) Brake control device for vehicle
WO2021020371A1 (en) Braking control device for vehicle
JP2009505882A (en) Method and brake system for motorcycle brake pressure adjustment
KR100976216B1 (en) Brake System For a Vehicle
WO2021192449A1 (en) Parking brake control device
KR100297932B1 (en) Vehicle brake device
CN109070853B (en) Vehicle brake device
WO2021261413A1 (en) Parking brake control device
JP4017359B2 (en) Anti-skid device
JP7476494B2 (en) Vehicle brake control device
JP6333000B2 (en) Brake control device for vehicle
JP2018086865A (en) Brake control device for vehicle
JP6502714B2 (en) Brake fluid pressure control device for vehicle
WO2010038292A1 (en) Device and method for controlling interlocking brake for motorcycle including abs
JPH01301447A (en) Anti-lock brake controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927969

Country of ref document: EP

Kind code of ref document: A1