WO2021192428A1 - Battery monitoring device - Google Patents

Battery monitoring device Download PDF

Info

Publication number
WO2021192428A1
WO2021192428A1 PCT/JP2020/045182 JP2020045182W WO2021192428A1 WO 2021192428 A1 WO2021192428 A1 WO 2021192428A1 JP 2020045182 W JP2020045182 W JP 2020045182W WO 2021192428 A1 WO2021192428 A1 WO 2021192428A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage detection
cell
battery module
control circuit
Prior art date
Application number
PCT/JP2020/045182
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 潤
大 高工
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202080098578.9A priority Critical patent/CN115298923A/en
Priority to JP2022509259A priority patent/JPWO2021192428A1/ja
Publication of WO2021192428A1 publication Critical patent/WO2021192428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery monitoring device.
  • the present application claims priority based on Japanese Patent Application No. 2020-055526 filed in Japan on March 26, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a voltage detection device in which a plurality of voltage detection circuits provided corresponding to each battery module of a battery are connected in series to a microcomputer by a communication line.
  • a plurality of voltage detection circuits and a microcomputer perform daisy communication via a communication line, so that the detection voltage of each voltage detection circuit is transmitted to the microcomputer.
  • the order of detection voltages received by a control device depends on the connection order of each voltage detection circuit. Therefore, the control device can relatively easily grasp the connection order of each voltage detection circuit, that is, the connection order of each battery module.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery monitoring device capable of easily grasping the connection order of a plurality of battery modules in a communication method other than DG communication.
  • the battery monitoring device is provided corresponding to each of a plurality of battery modules connected in series, and measures the voltages of the plurality of battery cells constituting each battery module.
  • a plurality of voltage detection circuits that detect each as a voltage; a control circuit that controls the charging state of the plurality of the battery cells by communicating with the voltage detection circuit by a communication method other than daisy communication; and each of the battery cells.
  • the control circuit comprises a discharge means provided corresponding to each of the battery cells for discharging; the control circuit connects the battery cells at the ends in the connection relationship of the battery cells in one battery module.
  • each of the voltage detection circuits includes a non-volatile memory in which an identification code is stored; , The identification code is received from all the voltage detection circuits at the time of connection with each of the voltage detection circuits; based on the identification code, each of the battery modules is connected to each of the battery cells in a connection relationship. An instruction is given to discharge the battery cell at least at either end, and at that time, based on a variation in parameters detected by the voltage detection circuit of the other battery module other than the instruction for discharging. Identify other adjacent battery modules.
  • the voltage detection circuit is the voltage of the battery cell at the end of each battery module.
  • the battery at the end of each battery module is detected when the control circuit discharges the battery cell at the end of each battery module.
  • Other adjacent battery modules are identified based on cell voltage fluctuations.
  • the voltage detection circuit is parallel to the battery cell at the end of each battery module.
  • the control circuit comprises a parameter variation based on the current detected by the current detector when the battery cell at the end of each battery module is discharged. , Identify other adjacent battery modules.
  • the communication method may be wireless communication.
  • the battery monitoring device A includes a plurality of voltage detection circuits D1 to Dn and one control circuit M, and detects the voltage of the assembled battery B to detect the voltage of the assembled battery B. Control the charging status.
  • the battery monitoring device A controls the state of charge of the assembled battery B mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • "n" indicates a natural number.
  • the assembled battery B is a secondary battery mounted on the vehicle as a high-voltage power source, and can be charged and discharged freely.
  • the assembled battery B has a plurality of battery modules J1 to Jn connected in series, and outputs a DC voltage of, for example, several hundred volts.
  • Each of the plurality of battery modules J1 to Jn has a plurality of battery cells C connected in series, and outputs a DC voltage corresponding to the number of battery cells C.
  • the plurality of battery cells C are single batteries, and each of them outputs a DC voltage of about several volts.
  • the assembled battery B outputs a high voltage (DC voltage) of, for example, several hundred volts according to the number of battery modules, that is, the number of battery cells C.
  • the assembled battery B needs to accurately control the charge / discharge state, unlike a secondary battery that outputs a relatively low DC voltage such as a lead storage battery mounted on a general vehicle.
  • the assembled battery B is, for example, a lithium ion battery.
  • the plurality of voltage detection circuits D1 to Dn are provided corresponding to each of the plurality of battery modules J1 to Jn described above.
  • the plurality of voltage detection circuits D1 to Dn are the output voltages of the plurality of battery cells C constituting each of the battery modules J1 to Jn, that is, the inter-terminal voltage (cell voltage) between the positive terminal and the negative end of each battery cell C. ) Are detected respectively. That is, the first voltage detection circuit D1 is connected to the first battery module J1, the second voltage detection circuit D2 is connected to the second battery module J2, ...,
  • the nth voltage detection circuit Dn is the nth battery module Jn. It is connected to the.
  • Each of these voltage detection circuits D1 to Dn has a wireless communication function for wireless communication with the control circuit M, and transmits the detected cell voltage to the control circuit M by a predetermined wireless communication method. That is, in the present embodiment, a wireless communication method is adopted as a communication method other than DG communication.
  • Each of the voltage detection circuits D1 to Dn includes discharge circuits (discharge means) CH1 to CH8 associated with each battery cell C. When each voltage detection circuit D1 to Dn receives a control command from the control circuit M, each voltage detection circuit D1 to Dn forcibly discharges each battery cell C.
  • a fluctuation detection circuit K is provided in each of the voltage detection circuits D1 to Dn. As shown in the figure, these fluctuation detection circuits K are provided corresponding to the battery cells C (one) at the low voltage side end, and amplify the signal for detecting the voltage (cell voltage) of the battery cells C. An amplifier for this purpose, or a current detector provided in parallel with the battery cell C. The fluctuation detection circuit K detects fluctuations in the cell voltage of the battery cells C (one) at the low voltage side end or fluctuations in the cell current flowing through the battery cells C.
  • An individual identification number is assigned to each of the plurality of voltage detection circuits D1 to Dn.
  • This individual identification number is an identification code uniquely set in advance for each of the voltage detection circuits D1 to Dn, and is stored in advance in the non-volatile memory provided in each voltage detection circuits D1 to Dn. ..
  • Each voltage detection circuit D1 to Dn is a communication node (CMU node) in wireless communication with the control circuit M, and by performing wireless communication with the control circuit M using an individual identification number, the control circuit M can be used. Let them identify themselves (individuals).
  • the control circuit M is a microcomputer that controls the charging state of the assembled battery B, that is, a plurality of battery cells C by communicating with each of the voltage detection circuits D1 to Dn (CMU node) by the above-mentioned predetermined wireless communication method. .. That is, the control circuit M detects the charged state of the assembled battery B, that is, each battery cell C, based on the cell voltage received from the voltage detection circuits D1 to Dn (CMU node) via wireless communication. Further, the control circuit M controls the charging state of the assembled battery B by transmitting a control command generated based on the detection result to each voltage detection circuits D1 to Dn (CMU node) via wireless communication. ..
  • the control circuit M includes a non-volatile memory in which a control program and various control data are stored, a calculation unit that executes calculations based on the control program, a volatile memory that temporarily stores the calculation results of the calculation unit, and voltage detection.
  • a communication unit or the like that performs wireless communication with circuits D1 to Dn (CMU node) is provided.
  • the control circuit M acquires the above-mentioned individual identification number from each of the voltage detection circuits D1 to Dn (CMU node), and is individually connected to each voltage detection circuit D1 to Dn (CMU node) based on the individual identification number. Wireless communication is performed. Although not shown, the control circuit M is connected to the upper control system of the vehicle by wired communication.
  • the control circuit M can perform wireless communication that identifies (identifies) an individual of each voltage detection circuit D1 to Dn (CMU node) by using the individual identification number as described above. However, the control circuit M stores control data indicating individual identification numbers of the voltage detection circuits D1 to Dn (CMU node) before performing wireless communication with the voltage detection circuits D1 to Dn (CMU node). Not. Further, the control circuit M does not store control data indicating the connection positions of the voltage detection circuits D1 to Dn (CMU nodes) with respect to the battery modules J1 to Jn.
  • the control circuit M has an individual identification number (first individual identification number) of the first voltage detection circuit D1 (CMU node) and an individual identification number (second individual identification number) of the second voltage detection circuit D2 (CMU node). , ..., The individual identification number (nth individual identification number) of the nth voltage detection circuit Dn (CMU node) is not recognized at the initial stage. Further, in the control circuit M, the first voltage detection circuit D1 (CMU node) is connected to the first battery module J1, and the second voltage detection circuit D2 (CMU node) is connected to the second battery module J2. The connection position such as is not recognized.
  • the control circuit M initially determines which battery module J1 to Jn the cell voltage acquired from each voltage detection circuit D1 to Dn (CMU node) is related to among the plurality of battery modules J1 to Jn connected in series. I can't recognize it. It is indispensable for the control circuit M to recognize the individual identification number and the connection position in order to control the charge / discharge state of the assembled battery B.
  • step S1 When the ignition switch (IG) of the vehicle changes from the "OFF” state to the “ON” state, this state change is notified from the upper control system to the control circuit M.
  • the control circuit M recognizes this "IG ON” (step S1), it determines whether or not the connection positions of the battery modules J1 to Jn with respect to the voltage detection circuits D1 to Dn have been recognized (step S2). ..
  • connection position data connection position data indicating the connection position described above is stored in the non-volatile memory of the control circuit M.
  • the process of FIG. 2 is not executed.
  • the control circuit M confirms whether or not the connection position data is stored in the non-volatile memory, and if the connection position data is stored, the determination in step S2 is set to "Yes”. If the connection position data is not stored, the determination in step S2 is set to "No". Then, when the determination in step S2 is "Yes", the control circuit M ends all the processing. On the other hand, when the determination in step S2 is "No", it is determined whether or not the pairing instruction is received from the upper control system (step S3).
  • step S3 The determination in step S3 is "Yes” when the control circuit M has already received the pairing instruction from the host control system and is stored in the non-volatile memory, and when the pairing instruction is not stored in the non-volatile memory. Is "No”. If the determination in step S3 is "Yes”, the process proceeds to step S4, and the control circuit M receives a pairing instruction (BMU pairing instruction) from the host control system. Then, the control circuit M transmits a request for acquiring the individual identification number to all the voltage detection circuits D1 to Dn (all CMU nodes) (step S5). On the other hand, if the determination in step S3 is "No", the determination in step 3 is performed again.
  • BMU pairing instruction BMU pairing instruction
  • step S6 when the control circuit M receives the individual identification number from all the voltage detection circuits D1 to Dn (all CMU nodes), the control circuit M determines “Yes” and proceeds to step S7. On the other hand, if the determination in step S6 is "No", the determination in step 6 is performed again.
  • step S7 one of the voltage detection circuits D1 to Dn (CMU node) is individually selected, and the discharge circuit corresponding to the specific battery cell C is provided for the selected voltage detection circuit (CMU node). By operating the battery cell C, the specific battery cell C is forcibly discharged.
  • the specific battery cell C is a battery cell C (one) at the high voltage side end in the connection relationship of the plurality of battery cells C in each battery module J1 to Jn.
  • the control circuit M is a battery located at the high voltage side end in the second battery module J2 connected to the second voltage detection circuit D2.
  • the cell C that is, the battery cell C located on the highest potential side of the plurality of battery cells C connected in series is forcibly discharged as the specific battery cell C.
  • step S8 the control circuit M is connected in one battery module connected to one voltage detection circuit (CMU node) individually selected from the voltage detection circuits D1 to Dn (CMU node) in this way.
  • CMU node voltage detection circuit
  • the control circuit M proceeds to step S9.
  • step S9 another battery module (adjacent node) adjacent to the changed battery cell C is recognized. After step S9, the process proceeds to step S11.
  • the height is said to be high. There is no other battery module adjacent to the high voltage side of the battery cell C at the end of the voltage side. Therefore, in this case, the cell voltage or cell current of the battery cell C does not fluctuate with respect to the other battery modules. That is, in this case, the determination in step S8 is "No".
  • step S10 the control circuit M assigns one voltage detection circuit (CMU node) to the highest level node, that is, the battery module located at the highest level in the connection position among the plurality of battery modules J1 to Jn in the assembled battery B. Recognize that it is a connected MCU node.
  • CMU node voltage detection circuit
  • step S10 it is determined whether or not the processes up to step S10 have been completed for all of the plurality of battery modules J1 to Jn. If the result is "No” in step S11, the process returns to step S7. On the other hand, if "Yes” in step S11, the process ends.
  • the control circuit M specifies the positional relationship of all the battery modules J1 to Jn constituting the assembled battery B by repeating the processes of steps S7 to S10 for all the battery modules J1 to Jn (all CMU nodes).
  • the battery cell C at the end of the connection relationship of the battery cell C in one battery module is forcibly discharged to discharge the battery cell C. It is possible to identify another battery module adjacent to one battery module in the connection relationship. Therefore, according to the present embodiment, it is possible to easily grasp the connection order of the plurality of battery modules J1 to Jn in a wireless communication method other than DG communication.
  • the present invention is not limited to the above embodiment, and for example, the following modifications can be considered.
  • the battery cell C (one) at the high voltage side end is set as a specific battery cell C, but this is the only one in the present invention. Not limited to.
  • the connection relationship of a plurality of battery cells C in the battery module instead of using the battery cell C (one) at the high voltage side end as a specific battery cell C, the connection of the plurality of battery cells C in the battery module.
  • the battery cell C (1 piece) at the low voltage side end may be used as the specific battery cell C.
  • the control circuit M can identify another battery module adjacent to the low voltage side based on the fluctuation of the cell voltage or the cell current of the battery cell C at the high voltage side end.
  • connection relationship of the plurality of battery cells C in the battery module instead of using the battery cell C (one) at the high voltage side end as a specific battery cell C, a plurality of batteries in the battery module.
  • the battery cells C (two) at the high voltage side end and the low voltage side end may be designated as the specific battery cells C.
  • the cell voltage or cell current of the battery cell C fluctuates.
  • the control circuit M can simultaneously identify two other battery modules adjacent to the high voltage side and the low voltage side based on the fluctuation of the cell voltage or the cell current of the two other battery modules. ..
  • a wireless communication method is adopted as a communication method other than DG communication, but the present invention is not limited to this.
  • a network communication method such as CAN may be adopted.
  • a Battery monitoring device B group battery C Battery cell CH1 to CH8 Discharge circuit (discharge means) D1 to Dn voltage detection circuit J1 to Jn battery module M control circuit K fluctuation detection circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

This battery monitoring device comprises: a plurality of voltage detection circuits which are provided corresponding to a plurality of battery modules connected in series and detect the voltages of a plurality of battery cells constituting each battery module as cell voltages; a control circuit which controls the charging state of the plurality of the battery cells by communicating with the voltage detection circuit by means of a communication method other than DG communication; and a discharging means provided corresponding to each battery cell for discharging each battery cell. The control circuit instructs the voltage detection circuit to discharge the battery cell at the end by using the discharging means in the connection relationship of each battery cell in one battery module, thereby identifying the other battery module adjacent to the battery module so as to discharge the battery cell in the connection relationship.

Description

電池監視装置Battery monitoring device
 本発明は、電池監視装置に関する。
 本願は、2020年3月26日に、日本国に出願された特願2020-055526号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a battery monitoring device.
The present application claims priority based on Japanese Patent Application No. 2020-055526 filed in Japan on March 26, 2020, the contents of which are incorporated herein by reference.
 下記特許文献1には、バッテリの各電池モジュールに対応して設けられた複数の電圧検出回路が通信線によってマイコンに直列接続された電圧検出装置が開示されている。この電圧検出装置では、複数の電圧検出回路とマイコンとが通信線を介してディージー通信を行うことにより、各電圧検出回路の検出電圧がマイコンに送信される。 Patent Document 1 below discloses a voltage detection device in which a plurality of voltage detection circuits provided corresponding to each battery module of a battery are connected in series to a microcomputer by a communication line. In this voltage detection device, a plurality of voltage detection circuits and a microcomputer perform daisy communication via a communication line, so that the detection voltage of each voltage detection circuit is transmitted to the microcomputer.
日本国特開2015-136255号公報Japanese Patent Application Laid-Open No. 2015-136255
 ところで、ディージー通信では、マイコン等の制御装置が受信する検出電圧の順番が、各電圧検出回路の接続順序に依存する。そのため、制御装置は、各電圧検出回路の接続順序、つまり各電池モジュールの接続順序を、比較的容易に把握することが可能である。 By the way, in DG communication, the order of detection voltages received by a control device such as a microcomputer depends on the connection order of each voltage detection circuit. Therefore, the control device can relatively easily grasp the connection order of each voltage detection circuit, that is, the connection order of each battery module.
 しかしながら、例えば無線通信等、ディージー通信以外の通信方式では、制御装置が受信する検出電圧の順番が、各電圧検出回路の接続順と一定の関係にない。そのため、制御装置は、各電池モジュールの接続順序を容易に把握することができないという問題がある。 However, in communication methods other than DG communication, such as wireless communication, the order of detection voltages received by the control device does not have a fixed relationship with the connection order of each voltage detection circuit. Therefore, there is a problem that the control device cannot easily grasp the connection order of each battery module.
 本発明は、上述した事情に鑑みてなされたものであり、ディージー通信以外の通信方式において複数の電池モジュールの接続順序を容易に把握できる電池監視装置の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery monitoring device capable of easily grasping the connection order of a plurality of battery modules in a communication method other than DG communication.
 上記目的を達成するために、本発明は以下の態様を採用した。
(1)すなわち、本発明の一態様に係る電池監視装置は、直列に接続された複数の電池モジュールの各々に対応して設けられ、前記各電池モジュールを構成する複数の電池セルの電圧をセル電圧として各々検出する複数の電圧検出回路と;ディージー通信以外の通信方式で前記電圧検出回路と通信を行うことにより、複数の前記電池セルの充電状態を制御する制御回路と;前記各電池セルを放電するために前記各電池セルに対応して設けられた放電手段と;を備え、前記制御回路が、1つの前記電池モジュールにおける前記各電池セルの接続関係において、端部にある前記電池セルを前記放電手段により放電させるように、前記電圧検出回路に指示することによって、前記接続関係において前記電池セルを放電させるように前記電池モジュールに隣接する他の前記電池モジュールを特定する。
In order to achieve the above object, the present invention has adopted the following aspects.
(1) That is, the battery monitoring device according to one aspect of the present invention is provided corresponding to each of a plurality of battery modules connected in series, and measures the voltages of the plurality of battery cells constituting each battery module. A plurality of voltage detection circuits that detect each as a voltage; a control circuit that controls the charging state of the plurality of the battery cells by communicating with the voltage detection circuit by a communication method other than daisy communication; and each of the battery cells. The control circuit comprises a discharge means provided corresponding to each of the battery cells for discharging; the control circuit connects the battery cells at the ends in the connection relationship of the battery cells in one battery module. By instructing the voltage detection circuit to discharge by the discharging means, another battery module adjacent to the battery module is specified so as to discharge the battery cell in the connection relationship.
(2)上記(1)に記載の電池監視装置において、以下の構成を採用してもよい:前記各電圧検出回路のそれぞれが、識別符号が記憶された不揮発性メモリを備え;前記制御回路が、前記各電圧検出回路との接続時に、全ての前記各電圧検出回路から前記識別符号を受信し;前記識別符号をもとに、前記各電池モジュールのそれぞれに、前記各電池セルの接続関係において少なくとも両端部いずれかの前記電池セルを放電させるように指示を出し、その際に、前記放電の指示をした以外の他の前記電池モジュールの前記電圧検出回路が検出するパラメータの変動に基づいて、隣接する他の前記電池モジュールを特定する。 (2) In the battery monitoring device according to (1) above, the following configuration may be adopted: each of the voltage detection circuits includes a non-volatile memory in which an identification code is stored; , The identification code is received from all the voltage detection circuits at the time of connection with each of the voltage detection circuits; based on the identification code, each of the battery modules is connected to each of the battery cells in a connection relationship. An instruction is given to discharge the battery cell at least at either end, and at that time, based on a variation in parameters detected by the voltage detection circuit of the other battery module other than the instruction for discharging. Identify other adjacent battery modules.
(3)上記(1)または上記(2)に記載の電池監視装置において、以下の構成を採用してもよい:前記電圧検出回路が、前記各電池モジュールの端部にある前記電池セルの電圧を検出した信号を増幅する増幅器を備えており;前記制御回路が、前記各電池モジュールの端部にある前記電池セルを放電させた際に検出される前記各電池モジュールの端部にある前記電池セルの電圧の変動に基づいて、隣接する他の前記電池モジュールを特定する。 (3) In the battery monitoring device according to (1) or (2) above, the following configuration may be adopted: the voltage detection circuit is the voltage of the battery cell at the end of each battery module. The battery at the end of each battery module is detected when the control circuit discharges the battery cell at the end of each battery module. Other adjacent battery modules are identified based on cell voltage fluctuations.
(4)上記(1)または上記(2)に記載の電池監視装置において、以下の構成を採用してもよい:前記電圧検出回路が、前記各電池モジュールの端部にある前記電池セルに並行に設けられた電流検出器を備えており;前記制御回路が、前記各電池モジュールの端部にある前記電池セルを放電させた際に前記電流検出器が検出する電流に基づいたパラメータの変動により、隣接する他の前記電池モジュールを特定する。 (4) In the battery monitoring device according to (1) or (2) above, the following configuration may be adopted: the voltage detection circuit is parallel to the battery cell at the end of each battery module. The control circuit comprises a parameter variation based on the current detected by the current detector when the battery cell at the end of each battery module is discharged. , Identify other adjacent battery modules.
(5)上記(1)~上記(4)の何れか1項に記載の電池監視装置において、前記通信方式が無線通信であってもよい。 (5) In the battery monitoring device according to any one of (1) to (4) above, the communication method may be wireless communication.
 本発明の上記態様によれば、ディージー通信以外の通信方式において複数の電池モジュールの接続順を容易に把握可能な電池監視装置を提供できる。 According to the above aspect of the present invention, it is possible to provide a battery monitoring device capable of easily grasping the connection order of a plurality of battery modules in a communication method other than DG communication.
本発明の一実施形態に係る電池監視装置Aの機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the battery monitoring apparatus A which concerns on one Embodiment of this invention. 同電池監視装置Aの動作を示すフローチャートである。It is a flowchart which shows the operation of the battery monitoring apparatus A. 同実施形態において、特定の電池セルCaを強制放電させた際のセル電圧の変動を示す模式図である。In the same embodiment, it is a schematic diagram which shows the fluctuation of the cell voltage when the specific battery cell Ca is forcibly discharged. 同実施形態において、特定の電池セルCaを強制放電させた際のセル電圧の変動を示す模式図である。In the same embodiment, it is a schematic diagram which shows the fluctuation of the cell voltage when the specific battery cell Ca is forcibly discharged.
 以下、図面を参照して、本発明の一実施形態に係る電池監視装置について説明する。
 本実施形態に係る電池監視装置Aは、図1に示すように、複数の電圧検出回路D1~Dnと1つの制御回路Mとを備え、組電池Bの電圧を検出することにより組電池Bの充電状態を制御する。電池監視装置Aは、電気自動車あるいはハイブリッド自動車等の車両に搭載された組電池Bの充電状態を制御する。なお、本実施形態の説明において「n」は自然数を示す。
Hereinafter, the battery monitoring device according to the embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the battery monitoring device A according to the present embodiment includes a plurality of voltage detection circuits D1 to Dn and one control circuit M, and detects the voltage of the assembled battery B to detect the voltage of the assembled battery B. Control the charging status. The battery monitoring device A controls the state of charge of the assembled battery B mounted on a vehicle such as an electric vehicle or a hybrid vehicle. In the description of this embodiment, "n" indicates a natural number.
 組電池Bは、高圧電源として車両に搭載された二次電池であり、充放電自在である。組電池Bは、複数の電池モジュールJ1~Jnが直列接続されたものであり、例えば数百ボルトの直流電圧を出力する。複数の電池モジュールJ1~Jnは、各々、複数の電池セルCが直列接続されたものであり、電池セルCの数に応じた直流電圧を出力する。複数の電池セルCは、単電池であり、各々が数ボルト程度の直流電圧を出力する。 The assembled battery B is a secondary battery mounted on the vehicle as a high-voltage power source, and can be charged and discharged freely. The assembled battery B has a plurality of battery modules J1 to Jn connected in series, and outputs a DC voltage of, for example, several hundred volts. Each of the plurality of battery modules J1 to Jn has a plurality of battery cells C connected in series, and outputs a DC voltage corresponding to the number of battery cells C. The plurality of battery cells C are single batteries, and each of them outputs a DC voltage of about several volts.
 組電池Bは、電池モジュール数、つまり電池セルCの数に応じて、例えば数百ボルトの高電圧(直流電圧)を出力する。組電池Bは、一般的な車両に搭載される鉛蓄電池等の比較的低圧な直流電圧を出力する二次電池とは異なり、充放電状態を正確に制御する必要がある。組電池Bは、例えばリチウムイオン電池である。 The assembled battery B outputs a high voltage (DC voltage) of, for example, several hundred volts according to the number of battery modules, that is, the number of battery cells C. The assembled battery B needs to accurately control the charge / discharge state, unlike a secondary battery that outputs a relatively low DC voltage such as a lead storage battery mounted on a general vehicle. The assembled battery B is, for example, a lithium ion battery.
 複数の電圧検出回路D1~Dnは、上述した複数の電池モジュールJ1~Jnの各々に対応して設けられている。複数の電圧検出回路D1~Dnは、電池モジュールJ1~Jnのそれぞれを構成する複数の電池セルCの出力電圧、つまり各電池セルCのプラス端子とマイナス端との間における端子間電圧(セル電圧)を各々検出する。すなわち、第1電圧検出回路D1は第1電池モジュールJ1に接続され、第2電圧検出回路D2は第2電池モジュールJ2に接続され、・・・、第n電圧検出回路Dnは第n電池モジュールJnに接続されている。 The plurality of voltage detection circuits D1 to Dn are provided corresponding to each of the plurality of battery modules J1 to Jn described above. The plurality of voltage detection circuits D1 to Dn are the output voltages of the plurality of battery cells C constituting each of the battery modules J1 to Jn, that is, the inter-terminal voltage (cell voltage) between the positive terminal and the negative end of each battery cell C. ) Are detected respectively. That is, the first voltage detection circuit D1 is connected to the first battery module J1, the second voltage detection circuit D2 is connected to the second battery module J2, ..., The nth voltage detection circuit Dn is the nth battery module Jn. It is connected to the.
 これら電圧検出回路D1~Dnのそれぞれが、制御回路Mとの間で無線通信するための無線通信機能を備えており、検出した上記セル電圧を所定の無線通信方式で制御回路Mに送信する。すなわち、本実施形態では、ディージー通信以外の通信方式として無線通信方式を採用する。
 各電圧検出回路D1~Dnは、個々の電池セルC毎に対応付けられた放電回路(放電手段)CH1~CH8を備えている。各電圧検出回路D1~Dnは、制御回路Mから制御指令を受信した場合に、個々の電池セルCを強制放電させる。
Each of these voltage detection circuits D1 to Dn has a wireless communication function for wireless communication with the control circuit M, and transmits the detected cell voltage to the control circuit M by a predetermined wireless communication method. That is, in the present embodiment, a wireless communication method is adopted as a communication method other than DG communication.
Each of the voltage detection circuits D1 to Dn includes discharge circuits (discharge means) CH1 to CH8 associated with each battery cell C. When each voltage detection circuit D1 to Dn receives a control command from the control circuit M, each voltage detection circuit D1 to Dn forcibly discharges each battery cell C.
 電圧検出回路D1~Dnのそれぞれに、変動検出回路Kが設けられている。これら変動検出回路Kは、図示するように低電圧側端部にある電池セルC(1個)に対応して設けられており、当該電池セルCの電圧(セル電圧)を検出した信号を増幅するための増幅器、あるいは上記電池セルCに対して並行に設けられた電流検出器である。変動検出回路Kは、低電圧側端部にある電池セルC(1個)のセル電圧の変動あるいは上記電池セルCに流れるセル電流の変動を検出する。 A fluctuation detection circuit K is provided in each of the voltage detection circuits D1 to Dn. As shown in the figure, these fluctuation detection circuits K are provided corresponding to the battery cells C (one) at the low voltage side end, and amplify the signal for detecting the voltage (cell voltage) of the battery cells C. An amplifier for this purpose, or a current detector provided in parallel with the battery cell C. The fluctuation detection circuit K detects fluctuations in the cell voltage of the battery cells C (one) at the low voltage side end or fluctuations in the cell current flowing through the battery cells C.
 複数の電圧検出回路D1~Dnのそれぞれには、個体識別番号が各々に割り当てられている。この個体識別番号は、各電圧検出回路D1~Dnのそれぞれに対して予め固有に設定された識別符号であり、各電圧検出回路D1~Dnに備えられた不揮発性メモリ内に予め記憶されている。各電圧検出回路D1~Dnは、制御回路Mとの無線通信における通信ノード(CMUノード)であり、個体識別番号を用いて制御回路Mとの間で無線通信を行うことにより、制御回路Mに自身(個体)を識別させる。 An individual identification number is assigned to each of the plurality of voltage detection circuits D1 to Dn. This individual identification number is an identification code uniquely set in advance for each of the voltage detection circuits D1 to Dn, and is stored in advance in the non-volatile memory provided in each voltage detection circuits D1 to Dn. .. Each voltage detection circuit D1 to Dn is a communication node (CMU node) in wireless communication with the control circuit M, and by performing wireless communication with the control circuit M using an individual identification number, the control circuit M can be used. Let them identify themselves (individuals).
 制御回路Mは、上述した所定の無線通信方式で各電圧検出回路D1~Dn(CMUノード)と通信を行うことにより、組電池B、つまり複数の電池セルCの充電状態を制御するマイコンである。すなわち、制御回路Mは、無線通信を介して各電圧検出回路D1~Dn(CMUノード)から受信したセル電圧に基づいて組電池B、つまり各電池セルCの充電状態を検出する。さらに、制御回路Mは、この検出結果に基づいて生成した制御指令を、無線通信を介して各電圧検出回路D1~Dn(CMUノード)に送信することにより、組電池Bの充電状態を制御する。 The control circuit M is a microcomputer that controls the charging state of the assembled battery B, that is, a plurality of battery cells C by communicating with each of the voltage detection circuits D1 to Dn (CMU node) by the above-mentioned predetermined wireless communication method. .. That is, the control circuit M detects the charged state of the assembled battery B, that is, each battery cell C, based on the cell voltage received from the voltage detection circuits D1 to Dn (CMU node) via wireless communication. Further, the control circuit M controls the charging state of the assembled battery B by transmitting a control command generated based on the detection result to each voltage detection circuits D1 to Dn (CMU node) via wireless communication. ..
 制御回路Mは、制御プログラムや各種制御データが記憶された不揮発性メモリ、前記制御プログラムに基づく演算を実行する演算部、前記演算部の演算結果を一時的に記憶する揮発性メモリ、各電圧検出回路D1~Dn(CMUノード)と無線通信を行う通信部等を備える。 The control circuit M includes a non-volatile memory in which a control program and various control data are stored, a calculation unit that executes calculations based on the control program, a volatile memory that temporarily stores the calculation results of the calculation unit, and voltage detection. A communication unit or the like that performs wireless communication with circuits D1 to Dn (CMU node) is provided.
 制御回路Mは、上述した個体識別番号を各電圧検出回路D1~Dn(CMUノード)から各々取得し、この個体識別番号に基づいて各電圧検出回路D1~Dn(CMUノード)との間で個別に無線通信を行う。制御回路Mは、図示していないが、車両の上位制御系と有線通信によって接続されている。 The control circuit M acquires the above-mentioned individual identification number from each of the voltage detection circuits D1 to Dn (CMU node), and is individually connected to each voltage detection circuit D1 to Dn (CMU node) based on the individual identification number. Wireless communication is performed. Although not shown, the control circuit M is connected to the upper control system of the vehicle by wired communication.
 制御回路Mは、上述したように個体識別番号を用いることにより各電圧検出回路D1~Dn(CMUノード)の個体を識別(特定)した無線通信を行うことができる。しかしながら、制御回路Mは、各電圧検出回路D1~Dn(CMUノード)と無線通信を行う前の段階では、各電圧検出回路D1~Dn(CMUノード)の個体識別番号を示す制御データを記憶していない。また、制御回路Mは、各電圧検出回路D1~Dn(CMUノード)の各電池モジュールJ1~Jnに対する接続位置を示す制御データを記憶していない。 The control circuit M can perform wireless communication that identifies (identifies) an individual of each voltage detection circuit D1 to Dn (CMU node) by using the individual identification number as described above. However, the control circuit M stores control data indicating individual identification numbers of the voltage detection circuits D1 to Dn (CMU node) before performing wireless communication with the voltage detection circuits D1 to Dn (CMU node). Not. Further, the control circuit M does not store control data indicating the connection positions of the voltage detection circuits D1 to Dn (CMU nodes) with respect to the battery modules J1 to Jn.
 すなわち、制御回路Mは、第1電圧検出回路D1(CMUノード)の個体識別番号(第1個体識別番号)、第2電圧検出回路D2(CMUノード)の個体識別番号(第2個体識別番号)、・・・、第n電圧検出回路Dn(CMUノード)の個体識別番号(第n個体識別番号)を、初期には認識していない。
 また、制御回路Mは、第1電圧検出回路D1(CMUノード)が第1電池モジュールJ1に接続され、また第2電圧検出回路D2(CMUノード)が第2電池モジュールJ2に接続されていること等の接続位置を、認識していない。
That is, the control circuit M has an individual identification number (first individual identification number) of the first voltage detection circuit D1 (CMU node) and an individual identification number (second individual identification number) of the second voltage detection circuit D2 (CMU node). , ..., The individual identification number (nth individual identification number) of the nth voltage detection circuit Dn (CMU node) is not recognized at the initial stage.
Further, in the control circuit M, the first voltage detection circuit D1 (CMU node) is connected to the first battery module J1, and the second voltage detection circuit D2 (CMU node) is connected to the second battery module J2. The connection position such as is not recognized.
 したがって、制御回路Mは、各電圧検出回路D1~Dn(CMUノード)から取得したセル電圧が直列接続された複数の電池モジュールJ1~Jnのうちどの電池モジュールに関するセル電圧なのかを、初期には認識することができない。制御回路Mが上記個体識別番号及び接続位置を認識することは、組電池Bの充放電状態を制御する上で必須の事項である。 Therefore, the control circuit M initially determines which battery module J1 to Jn the cell voltage acquired from each voltage detection circuit D1 to Dn (CMU node) is related to among the plurality of battery modules J1 to Jn connected in series. I can't recognize it. It is indispensable for the control circuit M to recognize the individual identification number and the connection position in order to control the charge / discharge state of the assembled battery B.
 次に、上記接続位置を認識するための電池監視装置Aの動作について、図2のフローチャートに沿って説明する。 Next, the operation of the battery monitoring device A for recognizing the connection position will be described with reference to the flowchart of FIG.
 車両のイグニッションスイッチ(IG)が「OFF」状態から「ON」状態に変化すると、この状態変化が上位制御系から制御回路Mに通達される。制御回路Mは、この「IG ON」を認識すると(ステップS1)、各電圧検出回路D1~Dnに対する各電池モジュールJ1~Jnの接続位置が認識済みであるか否かを判断する(ステップS2)。 When the ignition switch (IG) of the vehicle changes from the "OFF" state to the "ON" state, this state change is notified from the upper control system to the control circuit M. When the control circuit M recognizes this "IG ON" (step S1), it determines whether or not the connection positions of the battery modules J1 to Jn with respect to the voltage detection circuits D1 to Dn have been recognized (step S2). ..
 すなわち、過去の「IG ON」時にも図2の処理が実行されるので、上述した接続位置を示す制御データ(接続位置データ)が制御回路Mの不揮発性メモリに記憶されている。一方、初めての「IG ON」の時には、図2の処理が実行されていない状態である。 That is, since the process of FIG. 2 is executed even at the time of "IG ON" in the past, the control data (connection position data) indicating the connection position described above is stored in the non-volatile memory of the control circuit M. On the other hand, at the time of "IG ON" for the first time, the process of FIG. 2 is not executed.
 制御回路Mは、このような事情から、不揮発性メモリに接続位置データが記憶されているか否かを確認することにより、接続位置データが記憶されている場合はステップS2の判断を「Yes」とし、接続位置データが記憶されていない場合にはステップS2の判断を「No」とする。そして、制御回路Mは、ステップS2の判断が「Yes」の場合は全ての処理を終了する。一方、ステップS2の判断が「No」の場合には、ペアリング指示を上位制御系から受信しているか否かを判断する(ステップS3)。 Due to such circumstances, the control circuit M confirms whether or not the connection position data is stored in the non-volatile memory, and if the connection position data is stored, the determination in step S2 is set to "Yes". If the connection position data is not stored, the determination in step S2 is set to "No". Then, when the determination in step S2 is "Yes", the control circuit M ends all the processing. On the other hand, when the determination in step S2 is "No", it is determined whether or not the pairing instruction is received from the upper control system (step S3).
 ステップS3の判断は、制御回路Mがペアリング指示を上位制御系から既に受信して不揮発性メモリに記憶されている場合に「Yes」となり、ペアリング指示が不揮発性メモリに記憶されていない場合には「No」となる。
 ステップS3での判断が「Yes」である場合は、ステップS4へと進み、制御回路Mが、上位制御系からペアリング指示(BMUペアリング指示)を受信する。すると、制御回路Mは、全ての電圧検出回路D1~Dn(全CMUノード)に対して個体識別番号の取得要求を送信する(ステップS5)。一方、ステップS3での判断が「No」である場合には、ステップ3の判断を再度行う。
The determination in step S3 is "Yes" when the control circuit M has already received the pairing instruction from the host control system and is stored in the non-volatile memory, and when the pairing instruction is not stored in the non-volatile memory. Is "No".
If the determination in step S3 is "Yes", the process proceeds to step S4, and the control circuit M receives a pairing instruction (BMU pairing instruction) from the host control system. Then, the control circuit M transmits a request for acquiring the individual identification number to all the voltage detection circuits D1 to Dn (all CMU nodes) (step S5). On the other hand, if the determination in step S3 is "No", the determination in step 3 is performed again.
 ステップS5の後は、ステップS6へと進む。このステップS6において、制御回路Mは、全ての電圧検出回路D1~Dn(全CMUノード)から個体識別番号を受信した場合に「Yes」と判断してステップS7に進む。一方、ステップS6での判断が「No」である場合には、ステップ6の判断を再度行う。
 ステップS7では、各電圧検出回路D1~Dn(CMUノード)の中から1つを個別に選択し、当該選択した1つの電圧検出回路(CMUノード)について特定の電池セルCに対応する放電回路を作動させることにより、前記特定の電池セルCを強制放電させる。
After step S5, the process proceeds to step S6. In step S6, when the control circuit M receives the individual identification number from all the voltage detection circuits D1 to Dn (all CMU nodes), the control circuit M determines “Yes” and proceeds to step S7. On the other hand, if the determination in step S6 is "No", the determination in step 6 is performed again.
In step S7, one of the voltage detection circuits D1 to Dn (CMU node) is individually selected, and the discharge circuit corresponding to the specific battery cell C is provided for the selected voltage detection circuit (CMU node). By operating the battery cell C, the specific battery cell C is forcibly discharged.
 上記特定の電池セルCは、各電池モジュールJ1~Jnにおける複数の電池セルCの接続関係において、高電圧側端部にある電池セルC(1個)である。例えば、制御回路Mは、第2電圧検出回路D2(第2CMUノード)を個別に選択した場合、第2電圧検出回路D2に接続された第2電池モジュールJ2において、高電圧側端部にある電池セルC、つまり直列接続された複数の電池セルCのうち、最も高電位側に位置する電池セルCを前記特定の電池セルCとして強制放電させる。 The specific battery cell C is a battery cell C (one) at the high voltage side end in the connection relationship of the plurality of battery cells C in each battery module J1 to Jn. For example, when the second voltage detection circuit D2 (second CMU node) is individually selected, the control circuit M is a battery located at the high voltage side end in the second battery module J2 connected to the second voltage detection circuit D2. The cell C, that is, the battery cell C located on the highest potential side of the plurality of battery cells C connected in series is forcibly discharged as the specific battery cell C.
 このような特定の電池セルCの強制放電によって、組電池Bを構成する複数の電池モジュールJ1~Jn、つまり複数の電池セルCの接続関係において、上記特定の電池セルCに隣接する電池セルC(隣接電池セル)のセル電圧あるいはセル電流が本来のセル電圧あるいはセル電流から変動する。 Due to such forced discharge of the specific battery cell C, the battery cells C adjacent to the specific battery cell C in the connection relationship of the plurality of battery modules J1 to Jn constituting the assembled battery B, that is, the plurality of battery cells C. The cell voltage or cell current of (adjacent battery cell) fluctuates from the original cell voltage or cell current.
 図3Aに示すように、例えば第2電圧検出回路D2(第2CMUノード)について、第2電池モジュールJ2の高電圧側端部にある電池セルCaを特定の電池セルCとして強制放電させると、この電池セルCaの高電圧側に隣接する第1電池モジュールJ1(他の電池モジュール)の低電圧側端部にある電池セルCのセル電圧あるいはセル電流が変化する。 As shown in FIG. 3A, for example, when the battery cell Ca at the high voltage side end of the second battery module J2 is forcibly discharged as a specific battery cell C in the second voltage detection circuit D2 (second CMU node), this The cell voltage or cell current of the battery cell C at the low voltage side end of the first battery module J1 (another battery module) adjacent to the high voltage side of the battery cell Ca changes.
 ステップS7に続いてステップS8へと進む。このステップS8において、制御回路Mは、このように各電圧検出回路D1~Dn(CMUノード)の中から個別に選択した1つの電圧検出回路(CMUノード)に接続された1つの電池モジュールにおける接続端部の電池セルCを放電させた際に、変動検出回路Kの検出結果に基づいて高電圧側端部の電池セルCにセル電圧やセル電流の変動が発生したか否かを判断する。
 そして、制御回路Mは、この電圧やセル電流の変動が発生(ステップS8:Yes)すると、ステップS9に進む。ステップS9では、当該変動した電池セルCに隣接する他の電池モジュール(隣接ノード)を認識する。ステップS9の後は、ステップS11へと進む。
Following step S7, the process proceeds to step S8. In step S8, the control circuit M is connected in one battery module connected to one voltage detection circuit (CMU node) individually selected from the voltage detection circuits D1 to Dn (CMU node) in this way. When the battery cell C at the end is discharged, it is determined whether or not the cell voltage or cell current fluctuates in the battery cell C at the end on the high voltage side based on the detection result of the fluctuation detection circuit K.
Then, when the fluctuation of the voltage or the cell current occurs (step S8: Yes), the control circuit M proceeds to step S9. In step S9, another battery module (adjacent node) adjacent to the changed battery cell C is recognized. After step S9, the process proceeds to step S11.
 ここで、図3Bに示すように、第1電圧検出回路D1(第1CMUノード)に接続された第1電池モジュールJ1の高電圧側端部にある電池セルCを強制放電させた場合、当該高電圧側端部の電池セルCの高電圧側に隣接する他の電池モジュールは存在しない。したがって、この場合には、他の電池モジュールについて電池セルCのセル電圧あるいはセル電流の変動が発生しない。すなわち、この場合にはステップS8の判断が「No」となる。 Here, as shown in FIG. 3B, when the battery cell C at the high voltage side end of the first battery module J1 connected to the first voltage detection circuit D1 (first CMU node) is forcibly discharged, the height is said to be high. There is no other battery module adjacent to the high voltage side of the battery cell C at the end of the voltage side. Therefore, in this case, the cell voltage or cell current of the battery cell C does not fluctuate with respect to the other battery modules. That is, in this case, the determination in step S8 is "No".
 このような場合、ステップS8からステップS10へと進む。
 ステップS10では、制御回路Mが、1つの電圧検出回路(CMUノード)を最上位ノードつまり、組電池Bにおける複数の電池モジュールJ1~Jnのうち、接続位置において最も最上位に位置する電池モジュールに接続されたMCUノードであると認識する。
In such a case, the process proceeds from step S8 to step S10.
In step S10, the control circuit M assigns one voltage detection circuit (CMU node) to the highest level node, that is, the battery module located at the highest level in the connection position among the plurality of battery modules J1 to Jn in the assembled battery B. Recognize that it is a connected MCU node.
 そして、制御回路Mは、ステップS7で個別に選択した1つの電圧検出回路(CMUノード)についてステップS10までの処理が完了すると、ステップS11へと進む。ステップS11では、複数の電池モジュールJ1~Jnの全てについてステップS10までの処理が完了したか否かを判断する。ステップS11で「No」である場合には、処理をステップS7へと戻す。一方、ステップS11で「Yes」である場合には、処理が終了する。
 制御回路Mは、全ての電池モジュールJ1~Jn(全CMUノード)についてステップS7~S10までの処理を繰り返すことにより、組電池Bを構成する全ての電池モジュールJ1~Jnの位置関係を特定する。
Then, when the processing up to step S10 is completed for one voltage detection circuit (CMU node) individually selected in step S7, the control circuit M proceeds to step S11. In step S11, it is determined whether or not the processes up to step S10 have been completed for all of the plurality of battery modules J1 to Jn. If the result is "No" in step S11, the process returns to step S7. On the other hand, if "Yes" in step S11, the process ends.
The control circuit M specifies the positional relationship of all the battery modules J1 to Jn constituting the assembled battery B by repeating the processes of steps S7 to S10 for all the battery modules J1 to Jn (all CMU nodes).
 本実施形態によれば、組電池Bを構成する複数の電池モジュールJ1~Jnのうち、1つの電池モジュールにおける電池セルCの接続関係において端部にある電池セルCを強制放電させることによって、上記接続関係において1つの電池モジュールに隣接する他の電池モジュールを特定することが可能である。したがって、本実施形態によれば、ディージー通信以外の無線通信方式において複数の電池モジュールJ1~Jnの接続順を容易に把握することが可能である。 According to the present embodiment, among the plurality of battery modules J1 to Jn constituting the assembled battery B, the battery cell C at the end of the connection relationship of the battery cell C in one battery module is forcibly discharged to discharge the battery cell C. It is possible to identify another battery module adjacent to one battery module in the connection relationship. Therefore, according to the present embodiment, it is possible to easily grasp the connection order of the plurality of battery modules J1 to Jn in a wireless communication method other than DG communication.
 なお、本発明は上記実施形態のみに限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、電池モジュールにおける複数の電池セルCの接続関係において、高電圧側端部にある電池セルC(1個)を特定の電池セルCとしたが、本発明はこれのみに限定されない。電池モジュールにおける複数の電池セルCの接続関係において、高電圧側端部にある電池セルC(1個)を特定の電池セルCとすることに代えて、電池モジュールにおける複数の電池セルCの接続関係において低電圧側端部にある電池セルC(1個)を特定の電池セルCとしてもよい。
The present invention is not limited to the above embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, in the connection relationship of a plurality of battery cells C in the battery module, the battery cell C (one) at the high voltage side end is set as a specific battery cell C, but this is the only one in the present invention. Not limited to. In the connection relationship of a plurality of battery cells C in the battery module, instead of using the battery cell C (one) at the high voltage side end as a specific battery cell C, the connection of the plurality of battery cells C in the battery module. In relation to this, the battery cell C (1 piece) at the low voltage side end may be used as the specific battery cell C.
 この場合、前記特定の電池セルCの低電圧側に隣接する他の電池モジュールの高電圧側端部にある電池セルCのセル電圧あるいはセル電流が変化する。制御回路Mは、上記高電圧側端部にある電池セルCのセル電圧あるいはセル電流の変動に基づいて、低電圧側に隣接する他の電池モジュールを特定することができる。 In this case, the cell voltage or cell current of the battery cell C at the high voltage side end of the other battery module adjacent to the low voltage side of the specific battery cell C changes. The control circuit M can identify another battery module adjacent to the low voltage side based on the fluctuation of the cell voltage or the cell current of the battery cell C at the high voltage side end.
(2)また、電池モジュールにおける複数の電池セルCの接続関係において高電圧側端部にある電池セルC(1個)を特定の電池セルCとすることに代えて、電池モジュールにおける複数の電池セルCの接続関係において高電圧側端部及び低電圧側端部にある電池セルC(2個)を特定の電池セルCとしてもよい。 (2) Further, in the connection relationship of the plurality of battery cells C in the battery module, instead of using the battery cell C (one) at the high voltage side end as a specific battery cell C, a plurality of batteries in the battery module. In the connection relationship of the cells C, the battery cells C (two) at the high voltage side end and the low voltage side end may be designated as the specific battery cells C.
 この場合、高電圧側に隣接する他の電池モジュールの低電圧側端部にある電池セルCのセル電圧あるいはセル電流と、低電圧側に隣接する他の電池モジュールの高電圧側端部にある電池セルCのセル電圧あるいはセル電流とが変動する。制御回路Mは、このような2つの他の電池モジュールの、セル電圧あるいはセル電流の変動に基づいて、高電圧側及び低電圧側に隣接する2つの他の電池モジュールを同時に特定することができる。 In this case, the cell voltage or cell current of the battery cell C at the low voltage side end of the other battery module adjacent to the high voltage side and the high voltage side end of the other battery module adjacent to the low voltage side. The cell voltage or cell current of the battery cell C fluctuates. The control circuit M can simultaneously identify two other battery modules adjacent to the high voltage side and the low voltage side based on the fluctuation of the cell voltage or the cell current of the two other battery modules. ..
(3)上記実施形態では、各電池モジュールJ1~Jnにおける複数の電池セルCの接続関係において端部にある電池セルCを放電させた際に検出されるセル電圧あるいはセル電流の変動に基づいて他の電池モジュールを特定したが、本発明はこれのみに限定されない。例えば、セル電圧あるいはセル電流の変動に代えて、あるいはセル電圧あるいはセル電流の変動に加えて、電池セルCの内部インピーダンスの変動に基づいて他の電池モジュールを特定してもよい。 (3) In the above embodiment, based on the fluctuation of the cell voltage or the cell current detected when the battery cell C at the end is discharged in the connection relationship of the plurality of battery cells C in each battery module J1 to Jn. Other battery modules have been identified, but the invention is not limited to this. For example, other battery modules may be identified based on fluctuations in the internal impedance of the battery cell C in place of fluctuations in cell voltage or cell current, or in addition to fluctuations in cell voltage or cell current.
(4)上記実施形態では、ディージー通信以外の通信方式において無線通信方式を採用したが、本発明はこれのみに限定されない。例えば、CANなどのネットワーク通信方式を採用しても良い。 (4) In the above embodiment, a wireless communication method is adopted as a communication method other than DG communication, but the present invention is not limited to this. For example, a network communication method such as CAN may be adopted.
 本発明の上記態様によれば、ディージー通信以外の通信方式において複数の電池モジュールの接続順を容易に把握可能な電池監視装置を提供できる。 According to the above aspect of the present invention, it is possible to provide a battery monitoring device capable of easily grasping the connection order of a plurality of battery modules in a communication method other than DG communication.
 A 電池監視装置
 B 組電池
 C 電池セル
 CH1~CH8 放電回路(放電手段)
 D1~Dn 電圧検出回路
 J1~Jn 電池モジュール
 M 制御回路
 K 変動検出回路
A Battery monitoring device B group battery C Battery cell CH1 to CH8 Discharge circuit (discharge means)
D1 to Dn voltage detection circuit J1 to Jn battery module M control circuit K fluctuation detection circuit

Claims (5)

  1.  直列に接続された複数の電池モジュールの各々に対応して設けられ、前記各電池モジュールを構成する複数の電池セルの電圧をセル電圧として各々検出する複数の電圧検出回路と;
     ディージー通信以外の通信方式で前記電圧検出回路と通信を行うことにより、複数の前記電池セルの充電状態を制御する制御回路と;
     前記各電池セルを放電するために前記各電池セルに対応して設けられた放電手段と;
    を備え、
     前記制御回路が、1つの前記電池モジュールにおける前記各電池セルの接続関係において、端部にある前記電池セルを前記放電手段により放電させるように、前記電圧検出回路に指示することによって、
     前記接続関係において前記電池セルを放電させるように前記電池モジュールに隣接する他の前記電池モジュールを特定する
    ことを特徴とする電池監視装置。
    A plurality of voltage detection circuits provided corresponding to each of a plurality of battery modules connected in series and detecting the voltages of the plurality of battery cells constituting each battery module as cell voltages;
    With a control circuit that controls the charging state of a plurality of the battery cells by communicating with the voltage detection circuit by a communication method other than DG communication;
    With the discharging means provided corresponding to each battery cell for discharging each battery cell;
    With
    By instructing the voltage detection circuit that the control circuit discharges the battery cells at the ends by the discharging means in the connection relationship of the battery cells in one battery module.
    A battery monitoring device comprising identifying another battery module adjacent to the battery module so as to discharge the battery cell in the connection relationship.
  2.  前記各電圧検出回路のそれぞれが、識別符号が記憶された不揮発性メモリを備え;
     前記制御回路が、前記各電圧検出回路との接続時に、全ての前記各電圧検出回路から前記識別符号を受信し;
     前記識別符号をもとに、前記各電池モジュールのそれぞれに、前記各電池セルの接続関係において少なくとも両端部いずれかの前記電池セルを放電させるように指示を出し、その際に、前記放電の指示をした以外の他の前記電池モジュールの前記電圧検出回路が検出するパラメータの変動に基づいて、隣接する他の前記電池モジュールを特定する;
    ことを特徴とする請求項1に記載の電池監視装置。
    Each of the voltage detection circuits has a non-volatile memory in which the identification code is stored;
    When the control circuit is connected to each of the voltage detection circuits, the control circuit receives the identification code from all the voltage detection circuits;
    Based on the identification code, each of the battery modules is instructed to discharge the battery cells at least at both ends in the connection relationship of the battery cells, and at that time, the discharge instruction is given. The other adjacent battery module is identified based on the variation of the parameters detected by the voltage detection circuit of the other battery module other than the above.
    The battery monitoring device according to claim 1.
  3.  前記電圧検出回路が、前記各電池モジュールの端部にある前記電池セルの電圧を検出した信号を増幅する増幅器を備えており;
     前記制御回路が、前記各電池モジュールの端部にある前記電池セルを放電させた際に検出される前記各電池モジュールの端部にある前記電池セルの電圧の変動に基づいて、隣接する他の前記電池モジュールを特定する;
    ことを特徴とする請求項1または2に記載の電池監視装置。
    The voltage detection circuit comprises an amplifier at the end of each battery module that amplifies a signal that detects the voltage of the battery cell;
    Other adjacent batteries based on fluctuations in the voltage of the battery cell at the end of each battery module detected when the control circuit discharges the battery cell at the end of each battery module. Identify the battery module;
    The battery monitoring device according to claim 1 or 2.
  4.  前記電圧検出回路が、前記各電池モジュールの端部にある前記電池セルに並行に設けられた電流検出器を備えており;
     前記制御回路が、前記各電池モジュールの端部にある前記電池セルを放電させた際に前記電流検出器が検出する電流に基づいたパラメータの変動により、隣接する他の前記電池モジュールを特定する;
    ことを特徴とする請求項1または2に記載の電池監視装置。
    The voltage detection circuit comprises a current detector provided in parallel with the battery cell at the end of each battery module;
    The control circuit identifies other adjacent battery modules by varying parameters based on the current detected by the current detector when the battery cells at the ends of each battery module are discharged;
    The battery monitoring device according to claim 1 or 2.
  5.  前記通信方式が無線通信である
    ことを特徴とする請求項1~4のいずれか一項に記載の電池監視装置。
    The battery monitoring device according to any one of claims 1 to 4, wherein the communication method is wireless communication.
PCT/JP2020/045182 2020-03-26 2020-12-04 Battery monitoring device WO2021192428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080098578.9A CN115298923A (en) 2020-03-26 2020-12-04 Battery monitoring device
JP2022509259A JPWO2021192428A1 (en) 2020-03-26 2020-12-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055526 2020-03-26
JP2020055526 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192428A1 true WO2021192428A1 (en) 2021-09-30

Family

ID=77891080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045182 WO2021192428A1 (en) 2020-03-26 2020-12-04 Battery monitoring device

Country Status (3)

Country Link
JP (1) JPWO2021192428A1 (en)
CN (1) CN115298923A (en)
WO (1) WO2021192428A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050280A (en) * 2010-08-30 2012-03-08 Nissan Motor Co Ltd Monitor device for battery pack
WO2013051157A1 (en) * 2011-10-07 2013-04-11 日立ビークルエナジー株式会社 Battery monitoring system, host controller, and battery monitoring device
JP2013096798A (en) * 2011-10-31 2013-05-20 Panasonic Corp Battery management device
JP2020501481A (en) * 2017-07-06 2020-01-16 エルジー・ケム・リミテッド Wireless battery management system and battery pack including the same
JP2020507301A (en) * 2017-09-19 2020-03-05 エルジー・ケム・リミテッド Battery management system and battery pack including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050280A (en) * 2010-08-30 2012-03-08 Nissan Motor Co Ltd Monitor device for battery pack
WO2013051157A1 (en) * 2011-10-07 2013-04-11 日立ビークルエナジー株式会社 Battery monitoring system, host controller, and battery monitoring device
JP2013096798A (en) * 2011-10-31 2013-05-20 Panasonic Corp Battery management device
JP2020501481A (en) * 2017-07-06 2020-01-16 エルジー・ケム・リミテッド Wireless battery management system and battery pack including the same
JP2020507301A (en) * 2017-09-19 2020-03-05 エルジー・ケム・リミテッド Battery management system and battery pack including the same

Also Published As

Publication number Publication date
CN115298923A (en) 2022-11-04
JPWO2021192428A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US7564217B2 (en) Battery pack manager and method of detecting a line cut
EP1146344B1 (en) Multiplex voltage measurement apparatus
US8489347B2 (en) Battery pack monitoring apparatus
JP4237804B2 (en) Battery pack protection device and battery pack device
EP2418751B1 (en) Battery charger and battery charging method
US8659265B2 (en) Battery pack and method of sensing voltage of battery pack
US20100026241A1 (en) Apparatus and method for balancing of battery cell's charge capacity
JP6056581B2 (en) Abnormality detection device for battery pack
JP6574952B2 (en) Wiring diagnostic device, battery system, and power system
US20150263395A1 (en) Battery pack device, inspection method of battery pack device, and computer-readable storage medium
EP3432407B1 (en) Storage battery device, storage battery device control method, and program
US11424493B2 (en) Battery system
EP1118869B1 (en) Battery voltage detection apparatus and detection method
Shah et al. A practical approach of active cell balancing in a battery management system
WO2021192428A1 (en) Battery monitoring device
US20220390520A1 (en) Abnormal Cell Diagnosing Method and Battery System Applying the Same
KR102373716B1 (en) Cell balancing apparatus of battery module
CN112787367A (en) Battery control device and abnormality sensing method
EP3757591A1 (en) Voltage measurement device, voltage detection circuit, and voltage detection method
US11831464B2 (en) Network routing device and method
EP4346054A1 (en) Active battery balancing device
WO2022139143A1 (en) Battery management device and method
KR20180012566A (en) System and method for balancing between a battery cell group using lc resonance
KR20220146935A (en) Bidirectional cell balancing apparatus
JP2021192571A (en) Cell balance control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927678

Country of ref document: EP

Kind code of ref document: A1