WO2021192161A1 - Optical scanning device, control method for optical scanning device, and distance measuring device - Google Patents

Optical scanning device, control method for optical scanning device, and distance measuring device Download PDF

Info

Publication number
WO2021192161A1
WO2021192161A1 PCT/JP2020/013732 JP2020013732W WO2021192161A1 WO 2021192161 A1 WO2021192161 A1 WO 2021192161A1 JP 2020013732 W JP2020013732 W JP 2020013732W WO 2021192161 A1 WO2021192161 A1 WO 2021192161A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
rotation axis
optical scanning
resonance frequency
axis
Prior art date
Application number
PCT/JP2020/013732
Other languages
French (fr)
Japanese (ja)
Inventor
恭彦 伊藤
伸顕 紺野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020547429A priority Critical patent/JP6833127B1/en
Priority to PCT/JP2020/013732 priority patent/WO2021192161A1/en
Publication of WO2021192161A1 publication Critical patent/WO2021192161A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present disclosure relates to an optical scanning device, a control method for the optical scanning device, and a distance measuring device.
  • Patent Document 1 discloses an optical scanning device that changes the posture of a mirror by a piezoelectric actuator.
  • the mirror swings in the vertical direction by applying a drive voltage having a serrated waveform to the vertical drive source (more specifically, the piezoelectric actuator), and the horizontal drive source.
  • the piezoelectric actuator is subjected to a sinusoidal driving voltage, so that the mirror swings in the horizontal direction.
  • the optical scanning apparatus described in Patent Document 1 performs vertical mirror control using a driving voltage having a serrated waveform.
  • the period during which the scanning speed becomes constant can be lengthened by utilizing the ascending period or descending period of the serrated waveform.
  • ringing that is, distortion of the waveform due to signal vibration
  • Patent Document 1 since an optical scanning device is used for displaying an image, the above ringing causes deterioration in image quality (for example, horizontal stripes).
  • the present disclosure has been made to solve the above-mentioned problems, and the purpose of the present disclosure is to ensure the degree of freedom in determining the drive signal of the mirror, and to perform unstable operation of the mirror due to a resonance phenomenon (for example,). , Ringing), a control method for the optical scanning device, and a distance measuring device.
  • a resonance phenomenon for example,. , Ringing
  • the optical scanning device of the present disclosure includes a mirror, a mirror actuator, an adjusting mechanism, and a control device.
  • the mirror is configured to be rotatable around an axis of rotation and is configured to reflect light.
  • the mirror actuator is configured to rotate the mirror around the axis of rotation.
  • the adjusting mechanism is configured to apply a force to the mirror to change the resonance frequency around the rotation axis of the mirror.
  • the control device is configured to control the mirror actuator and the adjusting mechanism.
  • the control device is configured to control the mirror actuator by a waveform signal.
  • the control device is configured to control the resonance frequency around the rotation axis of the mirror so that the resonance frequency around the rotation axis of the mirror is separated from the frequency component included in the waveform signal by controlling the adjustment mechanism. ..
  • FIG. 1 It is a figure which shows the schematic structure of the optical scanning apparatus which concerns on Embodiment 1 of this disclosure. It is a perspective view which shows the structure of the MEMS mirror shown in FIG. It is a figure which shows the upper surface structure of the MEMS mirror shown in FIG. It is a figure which shows the cross-sectional structure along the IV-IV line in FIG. It is a figure which shows the cross-sectional structure along the VV line in FIG. It is a figure which shows the cross-sectional structure along the VI-VI line in FIG. It is a figure which shows the control method of the optical scanning apparatus which concerns on Embodiment 1 of this disclosure.
  • FIG. 2 It is a figure which shows an example of the direction of the electric current and the magnetic field when a mirror is driven in the optical scanning apparatus which concerns on Embodiment 1 of this disclosure. It is a figure which shows the Lorentz force generated by the electric current and the magnetic field shown in FIG. It is a figure which shows the torque generated by the Lorentz force shown in FIG. 2 is a diagram showing the reflection direction of the light beam incident on the MEMS mirror shown in FIGS. 2 to 6. It is a figure which shows the posture detection circuit which comprises the piezoresistive element shown in FIG. It is a figure which shows an example of the drive signal of the mirror in the control method of the optical scanning apparatus which concerns on Embodiment 1 of this disclosure.
  • the X-axis, Y-axis, and Z-axis in each figure indicate three axes that are orthogonal to each other.
  • "+” may be added to the direction indicated by the arrow
  • "-" may be added to the opposite direction to indicate each direction.
  • the direction indicated by the arrow on the X-axis may be written as "+ X”
  • the opposite direction may be written as "-X”.
  • the + Z direction may be referred to as “up” and the ⁇ Z direction may be referred to as “down”.
  • FIG. 1 is a diagram showing a schematic configuration of an optical scanning device 100 according to a first embodiment of the present disclosure.
  • the optical scanning device 100 includes a MEMS mirror 1, magnets 2a and 2b, and a control device 3. Permanent magnets can be used as the magnets 2a and 2b. Although the details will be described later, the magnets 2a and 2b are arranged so as to sandwich the MEMS mirror 1 and are configured to apply a magnetic field in the Y-axis direction to the MEMS mirror 1.
  • MEMS is an abbreviation for "Micro Electro Mechanical Systems", which incorporates minute electrical elements and minute mechanical elements on a single substrate using various microfabrication technologies such as semiconductor manufacturing technology and laser processing technology. It means a system (or device).
  • control device 3 a microcomputer equipped with a processor, RAM (Random Access Memory), and a storage device can be adopted.
  • the processor for example, a CPU (Central Processing Unit) can be adopted.
  • the number of processors included in the control device 3 is arbitrary, and may be one or a plurality.
  • the RAM functions as a working memory that temporarily stores the data processed by the processor.
  • the storage device is configured to be able to store the stored information.
  • the storage device stores information used in the program (for example, maps, mathematical formulas, and various parameters).
  • the processor executes the program stored in the storage device to execute the processes shown in FIGS. 7 and 17, which will be described later.
  • control device 3 various processes in the control device 3 are not limited to execution by software, and can also be executed by dedicated hardware (electronic circuit).
  • FPGA Field-Programmable Gate Array
  • microcomputer It is also possible to realize the same control function by dividing the functions of software and hardware.
  • FIG. 2 is a perspective view showing the configuration of the MEMS mirror 1.
  • the MEMS mirror 1 includes a mirror portion 5 for scanning light, hinges (for example, beams 11 and 12) for supporting the mirror portion 5, and a mirror actuator for rotating the mirror portion 5. (Details will be described later).
  • the light incident on the mirror unit 5 is reflected by the mirror unit 5 (more specifically, the mirror 10 described later).
  • the MEMS mirror 1 is configured so that the reflection angle of light can be adjusted by rotating the mirror unit 5, and the light is scanned in a predetermined scanning range.
  • the operation of the MEMS mirror 1 is controlled by the control device 3 (FIG. 1).
  • the control device 3 is configured to control the direction of the light reflected by the mirror unit 5 by causing the hinge to be twisted by the mirror actuator.
  • the MEMS mirror 1 includes beams 11 and 12, support members 4a and 4b, fixing members 6a and 6b, base materials 7a and 7b, movable electrodes 51 and 52, and fixed electrodes 61 and 62.
  • the base material 7a is a rectangular frame arranged so as to surround the mirror portion 5.
  • the base material 7b is a rectangular plate located below the mirror portion 5.
  • a gap is provided between the base material 7a and the base material 7b.
  • Each of the support members 4a and 4b and the fixing members 6a and 6b is arranged on the base material 7a.
  • an insulating layer 55 is arranged between the base material 7a and the support members 4a and 4b, between the base material 7a and the fixing members 6a and 6b, and between the mirror portion 5 and the base material 7b. ing.
  • FIG. 3 is a diagram showing the upper surface structure of the MEMS mirror 1.
  • FIG. 4 is a diagram showing a cross-sectional structure along the IV-IV line in FIG.
  • FIG. 5 is a diagram showing a cross-sectional structure along the VV line in FIG.
  • FIG. 6 is a diagram showing a cross-sectional structure along the VI-VI line in FIG.
  • the mirror portion 5 includes a base material 50 and a mirror 10 provided on the base material 50.
  • the mirror portion 5 has a mirror 10 on its surface.
  • the mirror 10 is configured to be rotatable around the X-axis and to reflect light.
  • the mirror 10 is, for example, a rectangular reflective film. Since the mirror 10 constitutes a part of the mirror portion 5, when the mirror portion 5 rotates, the mirror 10 also rotates. As the mirror 10 rotates around the X axis, the reflection angle of the light incident on the mirror 10 changes.
  • Beams 11 and 12 are connected to the first end (end on the ⁇ X side) and the second end (end on the + X side) corresponding to both ends of the mirror portion 5 in the X-axis direction, respectively.
  • each of the beam 11 and the beam 12 has a long shape in the X-axis direction and functions as a rotation axis of the mirror 10. More specifically, each of the beam 11 and the beam 12 functions as a torsion type elastic hinge.
  • the axis X1 in FIG. 3 is an axis parallel to the X axis and indicates the position of the rotation axis of the mirror 10.
  • Each of the beam 11 and the beam 12 is formed along the axis X1.
  • the mirror 10 can rotate around the axis X1 (hereinafter, also referred to as “X1 rotation”).
  • the base material 7a is fixed to a housing (not shown), and the mirror portion 5 (including the mirror 10) rotates relative to the base material 7a.
  • the MEMS mirror 1 has a structure that is line-symmetrical with respect to the axis X1.
  • the support member 4a is arranged on the side of the base material 7a on the ⁇ X side, and is connected to the first end of the mirror portion 5 via the beam 11.
  • the beam 11 may be formed integrally with the support member 4a and the base material 50, or may be formed separately from the support member 4a and the base material 50 and joined to each of the support member 4a and the base material 50. ..
  • the support member 4b is arranged on the + X side of the base material 7a and is connected to the second end of the mirror portion 5 via the beam 12.
  • the beam 12 may be formed integrally with the support member 4b and the base material 50, or may be formed separately from the support member 4b and the base material 50 and joined to each of the support member 4b and the base material 50. ..
  • Piezoresistive elements 91 and 92 are provided at the boundary between the support member 4a and the beam 11.
  • the piezoresistive element 91 is located on the + Y side of the shaft X1
  • the piezoresistive element 92 is located on the ⁇ Y side of the shaft X1.
  • Piezoresistive elements 93 and 94 are provided at the boundary between the support member 4b and the beam 12.
  • the piezoresistive element 93 is located on the + Y side of the shaft X1
  • the piezoresistive element 94 is located on the ⁇ Y side of the shaft X1.
  • the piezoresistive elements 91, 92, 93, 94 are electrically insulated from each of the mirror 10, the movable electrodes 51, 52, the fixed electrodes 61, 62, and the beams 11, 12. Although details will be described later, in the first embodiment, the piezoresistive elements 91, 92, 93, 94 are connected so as to form a bridge circuit (see FIG. 12).
  • the control device 3 (FIG. 1) is configured to acquire a rotation position (hereinafter, also referred to as “X rotation angle”) around the axis X1 of the mirror 10 based on the midpoint voltage of the bridge circuit. In the non-rotated state, the X rotation angle of the mirror 10 is "0".
  • Movable electrodes 51 and 52 are provided at the third end (+ Y side end) and the fourth end (-Y side end) corresponding to both ends of the mirror portion 5 in the Y-axis direction, respectively.
  • the movable electrodes 51 and 52 (including the comb tooth electrodes described later) are electrically connected to each of the mirror 10, the beams 11, 12 and the support members 4a, 4b, and are electrically equipotentially connected to these. be.
  • the movable electrodes 51 and 52 are electrically insulated from the fixed electrodes 61 and 62, the drive wiring 53, and the piezoresistive elements 91, 92, 93, and 94, respectively.
  • Each of the movable electrodes 51 and 52 is provided on the side surface of the base material 50.
  • Each of the movable electrodes 51 and 52 may be formed integrally with the base material 50, or may be formed separately from the base material 50 and bonded to the base material 50. Since the movable electrodes 51 and 52 and the mirror portion 5 (including the mirror 10 and the base material 50) change their postures integrally, the movable electrodes 51 and 52 also rotate in conjunction with the X1 rotation of the mirror 10.
  • the fixing members 6a and 6b are arranged on the + Y side and the ⁇ Y side of the base material 7a, respectively.
  • the fixing members 6a and 6b are not directly connected to the mirror portion 5. Since the rotational force of the mirror portion 5 is absorbed by the elastic deformation of each of the beams 11 and 12, it is not transmitted to the base material 7a. Therefore, the fixing members 6a and 6b are not interlocked with the X1 rotation of the mirror 10.
  • the fixed electrode 61 is provided on the side surface of the fixing member 6a on the ⁇ Y side.
  • the fixed electrode 61 may be formed integrally with the fixing member 6a, or may be formed separately from the fixing member 6a and joined to the fixing member 6a.
  • the fixed electrode 62 is provided on the + Y side side surface of the fixing member 6b.
  • the fixed electrode 62 may be formed integrally with the fixing member 6b, or may be formed separately from the fixing member 6b and joined to the fixing member 6b. Since the fixed electrodes 61 and 62 are supported by the fixing members 6a and 6b, they are not interlocked with the X1 rotation of the mirror 10. Although the wiring in the MEMS mirror 1 is omitted in FIGS. 3 to 6, the fixed electrode 61 (including each comb tooth electrode described later) and the fixed electrode 62 (including each comb tooth electrode described later) are They are electrically connected to each other and are electrically equipotential. On the other hand, the fixed electrodes 61 and 62 are electrically insulated from the mirror 10, the movable electrodes 51 and 52, the drive wiring 53, and the piezoresistive elements 91, 92, 93, 94, respectively.
  • each of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 is formed in a comb-teeth shape.
  • the side surface of the mirror portion 5 on which the movable electrode 51 is formed (the side surface on the + Y side) and the side surface of the fixing member 6a on which the fixed electrode 61 is formed (the side surface on the ⁇ Y side) face each other.
  • the comb teeth of both the movable electrode 51 and the fixed electrode 61 are arranged alternately, each comb tooth electrode of the movable electrode 51 and each comb tooth electrode of the fixed electrode 61 face each other.
  • the side surface of the mirror portion 5 (the side surface on the ⁇ Y side) on which the movable electrode 52 is formed and the side surface (the side surface on the + Y side) of the fixing member 6b on which the fixed electrode 62 is formed face each other. Further, since the comb teeth of both the movable electrode 52 and the fixed electrode 62 are arranged alternately, each comb tooth electrode of the movable electrode 52 and each comb tooth electrode of the fixed electrode 62 face each other.
  • the capacitance between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 can be increased. Therefore, a large electrostatic force can be generated between the electrodes with a small applied voltage. Details will be described later, but in the first embodiment, the fixed electrodes 61 and 62 are grounded, and a positive potential is applied to the movable electrodes 51 and 52.
  • the drive wiring 53 is provided on the support member 4a, the beam 11, and the base material 50. However, an insulating film 54 is arranged between each of the support member 4a, the beam 11, and the base material 50 and the drive wiring 53.
  • the drive wiring 53 is electrically insulated from the mirror 10, the movable electrodes 51, 52, the fixed electrodes 61, 62, the beams 11, 12, and the piezoresistive elements 91, 92, 93, 94 by the insulating film 54.
  • the electrode pads 56 and 57 are provided at the + Y side and ⁇ Y side ends of the support member 4a, respectively, and are located at both ends of the drive wiring 53.
  • the drive wiring 53 is a wiring that connects the electrode pad 56 and the electrode pad 57.
  • the drive wiring 53 crosses the beam 11 from the support member 4a to reach the mirror portion 5, goes around the outer edge portion of the mirror portion 5 (around the mirror 10) once, and returns to the support member 4a across the beam 11 again.
  • a voltage between the electrode pad 56 and the electrode pad 57 a current flows through the drive wiring 53.
  • the MEMS mirror 1 includes a base material 7a, a support member 4a (first support member) provided on the base material 7a via an insulating layer 55, and a support member 4b (first support member).
  • 2 support member a fixing member 6a (first fixing member) and a fixing member 6b (second fixing member) provided on the base material 7a via an insulating layer 55, a mirror portion 5, and a beam 11 (first fixing member).
  • 1 beam) and 12 (second beam) are provided.
  • the first end (-X side end) and the second end (+ X side end) located at both ends of the mirror portion 5 in the X-axis direction (direction of the rotation axis) are supported members 4a via beams 11 and 12, respectively. And 4b.
  • the movable electrode 51 (first movable electrode) and the movable electrode 52 (second movable electrode) are the third ends (+ Y side ends) located at both ends of the mirror portion 5 in the Y-axis direction (direction orthogonal to the rotation axis), respectively. ) And the fourth end (the end on the ⁇ Y side).
  • the fixed electrode 61 (first fixed electrode) supported by the fixed member 6a and the fixed electrode 62 (second fixed electrode) supported by the fixed member 6b face the movable electrode 51 and the movable electrode 52, respectively. It is arranged to do.
  • Each of the beams 11 and 12 functions as a rotation axis of the mirror portion 5 (including the mirror 10).
  • the mirror portion 5 has a structure that is line-symmetrical with respect to the axis X1 (rotational axis). Further, the movable electrode 51 and the fixed electrode 61, and the movable electrode 52 and the fixed electrode 62 are formed line-symmetrically with respect to the axis X1 (rotational axis).
  • the structure of the MEMS mirror 1 shown in FIGS. 2 to 6 can be manufactured by using, for example, an SOI (Silicon On Insulator) substrate.
  • the SOI substrate is a substrate having a silicon substrate, a surface silicon layer (for example, a single crystal silicon layer), and an insulating layer (for example, a silicon oxide layer or a silicon nitride layer) formed between them.
  • the insulating layer 55 corresponds to the insulating layer of the SOI substrate.
  • Semiconductor microfabrication technology and MEMS device technology can be applied to the manufacture of the MEMS mirror 1.
  • the base materials 7a and 7b can be formed by processing the silicon substrate of the SOI substrate.
  • the mirror 10 By repeating processes such as film formation, doping (for example, ion implantation or thermal diffusion), patterning (for example, patterning by lithography), and etching, the mirror 10, the beams 11, 12, the support members 4a, 4b, and the fixing member 6a are repeated. , 6b, movable electrodes 51, 52, fixed electrodes 61, 62, drive wiring 53, electrode pads 56, 57, and piezo resistance elements 91, 92, 93, 94 can be formed.
  • the base material 50 of the mirror portion 5, the beams 11 and 12, the movable electrodes 51 and 52, and the support members 4a and 4b can be easily integrally molded.
  • the mirror 10 is formed of a metal film such as an Au film.
  • Each of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 can be formed by, for example, imparting conductivity to the surface silicon layer by impurities.
  • Each of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 may be formed of conductive silicon to which B (boron) is added as an impurity.
  • B boron
  • P phosphorus
  • the drive wiring 53 and the electrode pads 56 and 57 are formed of, for example, Al (aluminum).
  • the present invention is not limited to this, and at least one of the drive wiring 53 and the electrode pads 56 and 57 may be formed of Au (gold).
  • the piezoresistive elements 91, 92, 93, 94 can be formed, for example, by diffusing B (boron) as an impurity in the surface silicon layer so that the resistance value changes according to the applied stress. can.
  • B boron
  • P phosphorus
  • the material of each part in the MEMS mirror 1 is not limited to the above-mentioned material, and can be changed as appropriate. However, as the material of the mirror 10, a material that easily reflects the scanned light is suitable.
  • the material of the mirror 10 may be determined according to the wavelength of the light being scanned.
  • As the electrode material a material that can withstand the application of voltage is suitable.
  • As the wiring material a material having low electrical resistance is suitable. Since the piezoresistive elements 91, 92, 93, and 94 are used for detecting the attitude of the mirror 10, a material whose electrical resistance changes according to a stress change accompanying the rotation of the mirror 10 is suitable as a material for each piezoresistive element. ing.
  • each of the 94s may be electrically connected to an external circuit (eg, power supply circuit or detection circuit) by wiring.
  • the electrical connection may be made by wire bonding.
  • the control device 3 (FIG. 1) is electrically connected to each of the movable electrodes 51 and 52, the fixed electrodes 61 and 62, and the electrode pads 56 and 57.
  • the control device 3 is configured so that a voltage signal can be applied between the electrode pad 56 and the electrode pad 57.
  • control device 3 is configured so that a voltage signal can be applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62.
  • the piezoresistive elements 91, 92, 93, 94 are connected by wiring provided outside the MEMS mirror 1 to form a bridge circuit (see FIG. 12 described later).
  • FIG. 7 is a diagram for explaining the process executed by the control device 3 shown in FIG. With reference to FIG. 7, scanning conditions such as a scanning range and a driving frequency are input to the control device 3.
  • the scanning range is the range in which light is scanned by the MEMS mirror 1.
  • the drive frequency corresponds to the frequency of the drive signal of the mirror 10.
  • the frame rate ie, the number of frames processed per unit time
  • the drive frequency is determined, for example, to obtain the desired frame rate.
  • the drive frequency can be arbitrarily set, and may be, for example, about several tens of Hz.
  • step S1 the control device 3 determines a current signal (hereinafter, also referred to as “drive current signal”) to be passed through the drive wiring 53 in order to scan light in the scanning range.
  • the drive current signal is a waveform signal and corresponds to an example of a “waveform signal for controlling a mirror actuator”.
  • the frequency of the fundamental wave included in the drive current signal corresponds to an example of "drive frequency”.
  • the control device 3 generates a voltage signal (hereinafter, also referred to as “drive voltage signal”) for flowing the drive current signal determined in step S1 to the drive wiring 53.
  • the current flowing through the drive wiring 53 is controlled by the drive voltage signal.
  • FIG. 8 is a diagram showing an example of the directions of the current and the magnetic field (magnetic flux density) when the mirror 10 is driven.
  • a magnetic field in the Y-axis direction is applied by the magnets 2a and 2b.
  • the direction of the magnetic flux density B of the magnetic field is the direction from the magnet 2a to the magnet 2b (direction of ⁇ Y).
  • a current flows from the electrode pad 57 to the electrode pad 56 in the drive wiring 53.
  • the edge R1 on the + Y side the movable electrode 51 side shown in FIG.
  • the portion parallel to the X axis of the drive wiring 53 (hereinafter referred to as “R1 wiring”) has a direction in which the current J1 is ⁇ X. Flow to.
  • the portion parallel to the X axis of the drive wiring 53 (hereinafter referred to as “R2 wiring”) has a direction in which the current J2 is + X. Flow to.
  • the vectors of the currents J1 and J2 and the vector of the magnetic flux density B are orthogonal to each other.
  • FIG. 9 is a diagram showing the Lorentz force generated by the current and the magnetic field (magnetic flux density) shown in FIG.
  • a Lorentz force Fmag1 in the + Z direction is generated by the current J1 flowing through the R1 wiring and the magnetic flux density B.
  • a Lorentz force Fmag2 in the direction of ⁇ Z is generated by the current J2 flowing through the R2 wiring and the magnetic flux density B.
  • FIG. 10 is a diagram showing the torque generated by the Lorentz force shown in FIG. With reference to FIG. 9 and FIG. 10, the Lorentz forces Fmag1 and Fmag2 shown in FIG. 9 generate a torque Tmag around the axis X1.
  • the torque Tmag twists the beams 11 and 12 that support the mirror portion 5, and the mirror portion 5 (including the mirror 10 shown in FIGS. 3 to 6) rotates around the axis X1.
  • the magnitude of the Lorentz force Fmag generated when a current J is passed from the electrode pad 57 to the electrode pad 56 through the drive wiring 53 is determined by the magnetic flux density as shown in the following equation (1). It corresponds to the product of B, the length L of the portion of the drive wiring 53 parallel to the X axis (see FIG. 8), and the current J. Since the current J1 and the current J2 have the same magnitude (J) and the R1 wiring and the R2 wiring have the same length (L), the Lorentz forces Fmag1 and Fmag2 have the same magnitude (Fmag).
  • the magnitude of the torque Tmag around the shaft X1 is the point where the Lorentz force Fmag generated at the two locations of the R1 wiring and the R2 wiring and the force applied from the shaft X1 (rotating shaft) are applied (that is,). , Corresponds to the product of the distance Rmag to the above two places). Since the MEMS mirror 1 has a structure that is line-symmetrical with respect to the axis X1, the distance between the R1 wiring and the axis X1 and the distance between the R2 wiring and the axis X1 have the same dimensions (Rmag).
  • Tmag 2 x Fmag x Rmag ... (2)
  • the torque Tmec corresponds to the product of the spring constant Kmec in the twisting direction of the beams 11 and 12 and the X rotation angle ⁇ x of the mirror portion 5 (or the mirror 10).
  • the mirror unit 5 changes its posture so that the torque Tmag due to the Lorentz force and the torque Tmec due to the restoring force of the beams 11 and 12 are balanced.
  • the control device 3 (FIG. 1) can control the posture (more specifically, the X rotation angle) of the mirror unit 5 by the drive current signal.
  • the mirror 10 (FIGS. 3 to 6) included in the mirror portion 5 also rotates.
  • FIG. 11 is a diagram showing the reflection direction of the light beam incident on the MEMS mirror 1 of the optical scanning device 100.
  • the light beam incident on the MEMS mirror 1 of the optical scanning apparatus 100 is reflected by the mirror 10 and then emitted from the optical scanning apparatus 100.
  • the mirror 10 rotates X1
  • the reflecting surface of the mirror 10 is tilted by an X rotation angle ⁇ x from the reference surface (that is, the reflecting surface when the mirror 10 is not rotated).
  • the optical axis of the light beam reflected by the mirror 10 is only 2 ⁇ x (that is, an angle twice the X rotation angle ⁇ x) from the reference direction (that is, the reflection direction when the mirror 10 is not rotated). It will tilt.
  • the direction of the light emitted from the optical scanning device 100 changes according to the X rotation angle ⁇ x of the mirror 10.
  • the control device 3 (FIG. 1) can control the X rotation angle ⁇ x of the mirror 10 by the drive current signal.
  • the control device 3 controls the mirror actuator (including the magnets 2a and 2b and the drive wiring 53) with a drive current signal (that is, a periodic signal), whereby the mirror unit 5 (including the mirror 10) is determined.
  • the posture is repeated periodically. More specifically, the mirror 10 swings around the axis X1 by repeating forward rotation and reverse rotation. As a result, the optical axis of the light emitted from the optical scanning device 100 periodically repeats a fixed direction.
  • the optical scanning device 100 can scan light by such mirror control.
  • FIG. 12 is a diagram showing a posture detection circuit composed of the piezoresistive elements 91, 92, 93, 94.
  • the piezoresistive elements 91, 92, 93, 94 are connected by wiring to form a bridge circuit (posture detection circuit) as shown in FIG.
  • FIGS. 12 illustrate a bridge circuit
  • the piezoresistive elements 91, 92, 93, 94 are arranged at the roots of the beams 11 and 12 (support members 4a, 4b side), and the X rotation angle ⁇ x of the mirror 10 is set.
  • stress is generated in the piezoresistive elements 91, 92, 93, 94. Due to such a stress change, the resistance value of each piezoresistive element changes.
  • the stress applied to the piezoresistive elements 91 and 94 and the piezoresistive elements 92 and 93 is opposite, and the direction of resistance change (+/-) is also The opposite is true.
  • a constant voltage is applied to the bridge circuit shown in FIG.
  • a voltage Vc corresponding to the resistance value of each piezoresistive element is output to the midpoint of the bridge circuit. Since the resistance value of each piezoresistive element changes according to the twist angle of the beams 11 and 12 (that is, the X rotation angle of the mirror 10), the control device 3 (FIG. 1) is output to the midpoint of the bridge circuit. The X rotation angle of the mirror 10 can be acquired based on the voltage Vc.
  • the resonance frequency around the axis X1 of the mirror 10 (hereinafter, also referred to as "X1 resonance frequency”) is close to the frequency of the harmonics included in the drive current signal. , Ringing is likely to occur. Therefore, in the optical scanning apparatus 100 according to the first embodiment, ringing is suppressed by controlling the X1 resonance frequency of the mirror 10 by the adjustment signal described below.
  • step S3 the control device 3 applies a voltage signal (hereinafter, “adjustment signal”) applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 (that is, between the comb tooth electrodes). Also called).
  • the X1 resonance frequency of the mirror 10 can be controlled by this adjustment signal. Details will be described later, but in step S3, the target value of the X1 resonance frequency is first determined, and the adjustment signal is determined so that the X1 resonance frequency of the mirror 10 approaches the target value.
  • the control device 3 generates the adjustment signal determined in step S3 in step S4.
  • the comb teeth of both the movable electrode 51 and the fixed electrode 61 are arranged alternately, so that each comb tooth electrode of the movable electrode 51 and each comb tooth electrode of the fixed electrode 61 are arranged alternately. Is opposed to. Further, by arranging the comb teeth of both the movable electrode 52 and the fixed electrode 62 in a staggered manner, each comb tooth electrode of the movable electrode 52 and each comb tooth electrode of the fixed electrode 62 face each other.
  • the capacitance C is proportional to the facing area of the comb-tooth electrodes and inversely proportional to the gap between the comb-tooth electrodes.
  • the facing area of the comb tooth electrodes changes according to the X rotation angle ⁇ x of the mirror 10.
  • ⁇ C / ⁇ x differential value of capacitance rotation angle
  • the generated electrostatic force Feel has a relationship as shown in the following formula (4).
  • the positive / negative voltage between the comb tooth electrodes can be set arbitrarily, but in the first embodiment, the fixed electrodes 61 and 62 are negative (grounded) and the movable electrodes 51 and 52 are positive.
  • an electrostatic force Feel (-1 / 2) ⁇ ( ⁇ C / ⁇ x) ⁇ (Vele) 2 ... (4)
  • the electrostatic force Feel acts in the direction of reducing the absolute value of the X rotation angle ⁇ x of the mirror 10.
  • a portion where the comb-tooth electrodes of the movable electrode 51 and the fixed electrode 61 face each other (hereinafter, also referred to as a “first comb-tooth facing portion”) and a portion where the comb-tooth electrodes of the movable electrode 52 and the fixed electrode 62 face each other (hereinafter, also referred to as a “first comb-tooth facing portion”).
  • electrostatic force Feel is generated at two locations. Due to these electrostatic force Feels, a torque tele is generated around the axis X1. The direction of the torque TV is opposite to that of the torque Tmag (FIG. 10) described above, and is the same as the direction of the torque Tmec due to the mechanical restoring force of the beams 11 and 12. The torque Tele acts to increase the restoring force of the beams 11 and 12 with respect to the X1 rotation of the mirror 10.
  • the magnitude of the torque tele is determined by the electrostatic force Feel generated at the two locations and the point where the force is applied from the axis X1 (rotating axis) (that is, the first and second comb tooth facing portions). ) Corresponds to the product of the distance Rele. Since the MEMS mirror 1 has a structure that is axisymmetric with respect to the axis X1, the distance between the first comb tooth facing portion and the axis X1 and the distance between the second comb tooth facing portion and the axis X1 are the same dimensions ( Rele).
  • the magnitude of the electrostatic force Feel is basically proportional to the X rotation angle ⁇ x of the mirror 10.
  • the torque Tele is also proportional to the X rotation angle ⁇ x of the mirror 10. Therefore, the electrostatic force Feel and the torque Tele can be expressed by the following equations (6) and (7), respectively. It should be noted that each of " ⁇ " in the equation (6) and “Kele” in the equation (7) is a proportionality constant.
  • Kele 2 ⁇ ⁇ Relay ⁇ (Vele) 2 ... (8) Kele can be equivalently treated as a spring constant for the X1 rotation of the mirror 10. Since the Kele is proportional to the square of the voltage Vele between the comb tooth electrodes, the Kele (spring constant) can be controlled by the above-mentioned adjustment signal.
  • a voltage adjustment signal
  • torque is applied in the direction of restoring the posture of the mirror 10 (that is, the direction of reducing the absolute value of the X rotation angle ⁇ x). Tele occurs.
  • Applying a voltage between the comb-tooth electrodes can be treated as equivalent to increasing the rigidity of the beams 11 and 12 and increasing the spring constant with respect to the X1 rotation of the mirror 10.
  • the X1 resonance frequency of the mirror 10 is determined by the mechanical properties of the structure that supports the mirror 10.
  • the X1 resonance frequency fmec of the mirror 10 when no voltage is applied between the comb tooth electrodes is the moment of inertia M around the X axis of the mirror 10 and the spring around the X axis of the mirror 10 as shown in the following equation (9). It can be represented by the constant Kmec.
  • the X1 resonance frequency of the mirror 10 is increased by applying a voltage (adjustment signal) between the comb tooth electrodes.
  • step S5 the control device 3 applies the drive voltage signal generated in step S2 to both ends (electrode pads 56, 57) of the drive wiring 53, and is generated in step S4.
  • the adjustment signal is applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 (that is, between the comb tooth electrodes).
  • a drive voltage signal is applied to both ends of the drive wiring 53, a drive current signal flows through the drive wiring 53.
  • FIG. 13 is a diagram showing an example of a drive signal of the mirror 10 (that is, a drive current signal flowing through the drive wiring 53).
  • the horizontal axis represents time and the vertical axis represents current value.
  • this drive signal is a serrated waveform signal.
  • the rising period of the serrated waveform (for example, the period during which the mirror 10 rotates forward) can be used to lengthen the period during which the scanning speed becomes constant.
  • the drive frequency (frequency of the drive signal) is fd
  • the drive cycle (cycle of the drive signal) is 1 / fd.
  • FIG. 14 is a diagram showing an example of a frequency component included in the drive signal of the mirror 10 (that is, the drive current signal flowing through the drive wiring 53).
  • the horizontal axis represents frequency and the vertical axis represents amplitude.
  • this drive signal includes a fundamental wave frequency fd and a plurality of harmonic frequencies nfd.
  • the frequency of the harmonic is n times the frequency (fd) of the fundamental wave (nfd), and n is an integer of 2 or more.
  • the frequency of the second harmonic is twice the frequency of fd (2fd).
  • the frequency of the third harmonic is three times the frequency of fd (3fd).
  • FIG. 15 is a diagram showing an example of the X1 resonance frequency of the mirror 10 in which ringing is likely to occur.
  • the horizontal axis represents frequency and the vertical axis represents amplitude.
  • the X1 resonance frequency fo of the mirror 10 coincides with the frequency (3fd) of the third harmonic.
  • the X1 resonance frequency fo of the mirror 10 matches the frequency (nfd) of the harmonics included in the drive signal of the mirror 10, the rotational displacement of the mirror 10 is amplified by the resonance phenomenon, and ringing is likely to occur.
  • FIG. 16 is a diagram showing a transition of the X rotation angle ⁇ x of the mirror 10 when ringing occurs.
  • the waveform generated by the resonance phenomenon (for example, the waveform having a period of 1/3 fd) is superimposed on the waveform of the desired X rotational displacement ( ⁇ x), and the mirror 10
  • the X rotation angle ⁇ x deviates from a desired angle. Therefore, when ringing occurs, the scanning accuracy of light is impaired.
  • the control device 3 has a frequency component included in the drive signal (drive current signal) of the mirror 10 by the processing of steps S3 to S5 of FIG. 7 described above.
  • the X1 resonance frequency of the mirror 10 is controlled so that the X1 resonance frequency of the mirror 10 is separated from the mirror 10.
  • FIG. 17 is a flowchart showing details of the process related to the determination of the adjustment signal executed in S3 of FIG. 7.
  • control device 3 has a frequency response characteristic (in step S10) with respect to the X1 rotational displacement of the mirror 10 when no voltage (adjustment signal) is applied between the comb tooth electrodes.
  • X rotation mirror characteristic a frequency response characteristic with respect to the X1 rotational displacement of the mirror 10 when no voltage (adjustment signal) is applied between the comb tooth electrodes.
  • the control device 3 acquires the X-rotation mirror characteristic obtained in advance and stored in the storage device (not shown) by reading it from the storage device in step S10.
  • a plurality of X-rotating mirror characteristics measured in different environments are prepared in the storage device, and in step S10, the control device 3 reads the X-rotating mirror characteristics corresponding to the current environment from the storage device. You may.
  • the control device 3 may periodically measure the X-rotation mirror characteristic and update the data in the storage device with the measured data. For example, the control device 3 may measure the X rotation mirror characteristic each time the optical scanning device 100 (including the control device 3) is activated.
  • the X-rotating mirror characteristic can be obtained by frequency sweeping the drive current signal flowing through the drive wiring 53 as a sine wave in a state where no voltage (adjustment signal) is applied between the comb-tooth electrodes.
  • the amplitude of the drive current signal used when obtaining the X-rotation mirror characteristic may be a value close to the amplitude of the drive current signal used during optical scanning in order to reduce the influence of the hard spring effect and the soft spring effect.
  • the amplitude is not limited to this, and the amplitude of the drive current signal used when obtaining the X rotation mirror characteristic is basically arbitrary.
  • FIG. 18 is a diagram showing a first example of the X rotation mirror characteristic.
  • the X-rotation mirror characteristic according to the first example shows the relationship between the frequency and the amplitude of the X1 rotation displacement (waveform) of the mirror 10.
  • FIG. 19 is a diagram showing a second example of the X rotation mirror characteristic. With reference to FIG. 19, the X-rotation mirror characteristic according to the second example shows the relationship between the frequency and the phase of the X1 rotation displacement (waveform) of the mirror 10.
  • the control device 3 acquires the mechanical X1 resonance frequency fmec of the mirror 10 based on the X rotation mirror characteristic acquired in step S10. ..
  • the amplitude of the X1 rotation displacement (waveform) of the mirror 10 shows a peak when the drive frequency becomes fmec.
  • the phase of the X1 rotation displacement (waveform) of the mirror 10 changes abruptly.
  • the control device 3 can acquire the mechanical X1 resonance frequency fmec of the mirror 10 by using at least one of the X rotation mirror characteristic shown in FIG. 18 and the X rotation mirror characteristic shown in FIG. 19, for example. ..
  • the mechanical X1 resonance frequency fmec of the mirror 10 may be obtained in advance and stored in the storage device of the control device 3.
  • step S12 the control device 3 acquires the drive current signal determined in step S1 of FIG. Then, in step S13, the control device 3 sets a target value of the X1 resonance frequency (hereinafter, also referred to as “target X frequency”) so that the X1 resonance frequency of the mirror 10 is separated from the frequency component included in the drive current signal. decide. More specifically, the control device 3 uses the following equation (11) based on the drive frequency fd corresponding to the frequency of the fundamental wave included in the drive current signal and the mechanical X1 resonance frequency fmec of the mirror 10. Find the N that meets.
  • target X frequency a target value of the X1 resonance frequency
  • N indicates the order (integer of 1 or more) of the frequency component included in the drive current signal.
  • the control device 3 uses the equation (11) to specify the order (N) of the frequency component closest to fmec in the drive current signal. Then, the control device 3 calculates the target X frequency according to the following equation (12) using N specified by the equation (11).
  • step S14 the control device 3 increases the Kele (spring constant due to the electrostatic force Fele) and the Vele (between the comb tooth electrodes) so that the feel represented by the above equation (10) matches the target X frequency. Calculate the applied voltage).
  • the control device 3 can obtain the Kele from the file (target X frequency) by using the above equation (10).
  • the control device 3 can obtain a Vele (for example, a DC voltage) from the Kele by using the above equation (8).
  • the constants ( ⁇ , Relay, M, and Kmec) in each equation are obtained in advance and stored in the storage device of the control device 3.
  • the Vele (DC voltage signal) determined as described above corresponds to the adjustment signal.
  • step S5 of FIG. 7 the X1 resonance frequency of the mirror 10 is controlled by the adjustment signal determined as described above. As a result, the X1 resonance frequency of the mirror 10 is controlled to the target X frequency.
  • the control device 3 of the optical scanning device 100 executes the control method of the optical scanning device shown in FIGS. 7 and 17.
  • the control method of this optical scanning device is to determine the drive current signal (waveform signal for controlling the mirror actuator) (step S1 in FIG. 7), the X1 resonance frequency of the mirror 10, and the X1 resonance frequency.
  • the target X frequency (target value of the resonance frequency around the axis X1 of the mirror 10) is determined so that the difference from the frequency component of the close drive current signal becomes a predetermined target value (for example, 0.5 fd) (FIG. 17).
  • Step S13) the drive current signal is passed through the drive wiring 53 to rotate the mirror 10 by X1, and a force is applied to the mirror 10 by the above adjustment signal to change the X1 resonance frequency of the mirror 10.
  • FIG. 20 shows an example of the X1 resonance frequency of the mirror 10 when no voltage is applied between the comb tooth electrodes.
  • FIG. 21 shows an example of the X1 resonance frequency of the mirror 10 when the adjustment signal (Vele) determined by the series of processes shown in FIG. 17 is applied between the comb tooth electrodes.
  • N specified by the equation (11) is “3” in step S13 of FIG.
  • the target X frequency is "3.5 fd”. Therefore, as shown in FIG. 21, the X1 resonance frequency fo of the mirror 10 is controlled to be intermediate between 3fd and 4fd (position corresponding to 3.5fd). As a result, the difference between the X1 resonance frequency fo of the mirror 10 and the frequency (3fd) of the third harmonic becomes "0.5fd".
  • the control device 3 applies an electrostatic force between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 (that is, between the comb tooth electrodes) to strengthen the restoring force around the X axis of the mirror 10.
  • Feel can be generated. Due to such electrostatic force Feel, the X1 resonance frequency of the mirror 10 becomes high.
  • the control device 3 can keep the X1 resonance frequency of the mirror 10 away from the frequency component included in the drive current signal. Ringing is suppressed by separating the X1 resonance frequency of the mirror 10 from the frequency component of the drive current signal.
  • a method of determining the drive signal of the mirror so that the frequency component contained in the drive signal of the mirror (for example, the drive current signal) does not match the resonance frequency of the mirror can be considered.
  • a method of determining the drive signal of the mirror so that the frequency component contained in the drive signal of the mirror (for example, the drive current signal) does not match the resonance frequency of the mirror can be considered.
  • the degree of freedom in determining the drive signal of the mirror For example, when the drive frequency of the mirror (frequency of the drive signal) changes, the frame rate tends to change accordingly.
  • the frame rate shifts between the optical scanning devices, an appropriate image cannot be obtained. It is conceivable to interpolate the difference in frame rate by information processing, but adding such information processing causes an increase in processing load.
  • the control device 3 executes the processes shown in FIGS. 7 and 17, so that ringing can be suppressed without using the above filter.
  • the optical scanning device 100 applies a force to the mirror 10 in addition to a mirror actuator (for example, magnets 2a and 2b and a drive wiring 53) that rotates the mirror 10 around the axis X1 to obtain a resonance frequency around the axis X1 of the mirror 10. It is equipped with a changing adjustment mechanism.
  • the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 function as "adjustment mechanisms".
  • the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are placed between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 by applying a voltage between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. It is configured to generate an electrostatic force and change the X1 resonance frequency of the mirror 10 by the electrostatic force.
  • the control device 3 controls the mirror actuator by a waveform signal (more specifically, a drive current signal flowing through the drive wiring 53), and a voltage signal (that is, that is, between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62).
  • the X1 resonance frequency of the mirror 10 is controlled so that the X1 resonance frequency of the mirror 10 is separated from the frequency component included in the waveform signal.
  • the control device 3 changes the X1 resonance frequency of the mirror 10 according to the waveform signal (drive signal of the mirror 10). Therefore, the control device 3 can suppress ringing without changing the drive signal of the mirror 10. According to the optical scanning device 100, ringing can be suppressed while ensuring a degree of freedom in determining the drive signal of the mirror.
  • the control device is set so that the difference between the X1 resonance frequency of the mirror 10 and the frequency component of the drive current signal closest to the X1 resonance frequency becomes a predetermined target value (for example, 0.5 fd). 3 controls the X1 resonance frequency of the mirror 10.
  • the X1 resonance frequency of the mirror 10 is separated from each frequency of the fundamental wave and the harmonic contained in the drive current signal. As a result, the operation of the mirror 10 is less affected by the resonance phenomenon, and the unstable operation of the mirror 10 due to the resonance phenomenon is suppressed.
  • the target value is not limited to 0.5 fd and can be changed as appropriate.
  • the target value may be less than 0.5 fd, for example, about 0.3 fd.
  • the target value may be a fixed value or may be variable depending on the situation.
  • the Vele (adjustment signal) is determined so that the X1 resonance frequency of the mirror 10 approaches the target X frequency (see FIG. 17).
  • the present invention is not limited to this, and the control device 3 detects the X1 rotational displacement ( ⁇ x) of the mirror 10 driven by the drive current signal while changing the voltage (Vele) applied between the comb tooth electrodes, and the mirror 10 causes the mirror 10.
  • You may search for a Vele that operates stably. Through such a search, it is possible to find a Vele in which ringing is sufficiently suppressed.
  • the control device 3 may be configured to execute the process shown in FIG. 22 instead of the process shown in FIG.
  • FIG. 22 is a flowchart showing a modified example of the process shown in FIG.
  • the process shown in FIG. 22 is the same as the process shown in FIG. 17, except that step S12A is added between steps S12 and S13.
  • step S12A the difference between the mechanical X1 resonance frequency fmec of the mirror 10 acquired in step S11 and each frequency component included in the drive current signal acquired in step S12 is predetermined.
  • the control device 3 determines whether or not the value is equal to or higher than the reference value.
  • step S12A If the difference between the mechanical X1 resonance frequency fmec of the mirror 10 and the frequency component of the drive current signal closest to fmec is equal to or greater than the reference value (YES in step S12A), the processes of steps S13 and S14 are not executed, and they are not executed. When the difference between the above values is less than the reference value (NO in step S12A), the processes of steps S13 and S14 are executed.
  • the reference value used in step S12A corresponds to the minimum permissible interval and is set at an interval sufficient to suppress ringing. This reference value may be determined based on the required scanning accuracy, scanning range, and Q value (Quality factor). The reference value may be about 0.3 fd.
  • step S12A it means that the X1 resonance frequency of the mirror 10 is sufficiently separated from each frequency component of the drive current signal. Therefore, if YES is determined in step S12A, no voltage is applied between the comb tooth electrodes. On the other hand, if NO is determined in step S12A, the processes of steps S13 and S14 are executed, so that a vel (voltage signal) is applied between the comb tooth electrodes. As a result, the X1 resonance frequency of the mirror 10 is controlled so that the difference between the X1 resonance frequency of the mirror 10 and the frequency component of the drive current signal closest to the X1 resonance frequency becomes the target value (for example, 0.5 fd). Will be done.
  • the target value for example, 0.5 fd
  • the difference between the X1 resonance frequency of the mirror 10 and the frequency component of the drive current signal closest to the X1 resonance frequency is equal to or greater than the reference value (for example, 0.3 fd).
  • the X1 resonance frequency of the mirror 10 is controlled. According to such processing, the difference between the X1 resonance frequency of the mirror 10 and each frequency component of the drive current signal does not fall below the reference value. Further, when the X1 resonance frequency of the mirror 10 is sufficiently separated from each frequency component of the drive current signal, the voltage is not applied between the comb-tooth electrodes, so that the frequency of applying the voltage between the comb-tooth electrodes should be reduced. Can be done.
  • a DC voltage is applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62.
  • the control device 3 is configured to control the X1 resonance frequency of the mirror 10 based on the magnitude of the DC voltage.
  • the voltage signal applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 may be a rectangular wave voltage signal.
  • the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 may be connected to a power source via a switch, and when the switch is turned on, a power source voltage may be applied between the electrodes. By controlling the on / off of such a switch by the control device 3, the rectangular wave voltage signal described below may be applied between the electrodes.
  • FIG. 23 is a diagram showing a modified example of the voltage signal applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62.
  • the rectangular wave voltage signal is a signal that periodically repeats an on-period Ta in which a power supply voltage Von is applied between the electrodes and an off-period Tb in which a voltage is not applied between the electrodes.
  • the cycle T is composed of the on period Ta and the off period Tb. If the on / off switching cycle is sufficiently faster than the X1 resonance frequency of the mirror 10, an electric charge can be supplied to the capacitance between the comb tooth electrodes, and the restoring force of the mirror 10 with respect to the X1 rotation can be strengthened.
  • the value (Von ⁇ Ta / T) obtained by multiplying the duty ratio (Ta / T) of the rectangular wave voltage signal by the power supply voltage Von is the “Von ⁇ Ta / T) in the above equations (4), (6), and (8). It corresponds to the size of "Vele".
  • the control device 3 may be configured to control the X1 resonance frequency of the mirror 10 based on the duty ratio of the rectangular wave voltage signal. According to the square wave voltage signal, the X1 resonance frequency of the mirror 10 can be adjusted by changing the duty ratio even if the power supply voltage Von remains constant. Since the optical scanning apparatus using such a rectangular wave voltage signal does not need to be equipped with a variable voltage power supply, the apparatus can be miniaturized and simplified.
  • each of the movable electrodes 51 and 52 is provided on both side surfaces of the mirror portion 5 in the direction orthogonal to the axis X1 (rotation axis) (see FIGS. 3 and 4).
  • the distance (Rele) between the shaft X1 (rotating shaft) and the movable electrodes 51 and 52 becomes large, and a large torque tele is easily generated by the electrostatic force Feel (see the above equation (5)).
  • the positions, shapes, and numbers of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are not limited to the examples shown in FIGS. 2 to 6, and can be changed as appropriate.
  • FIG. 24 is a diagram showing a first modification of the movable electrode and the fixed electrode.
  • each of the movable electrode and the fixed electrode is not a comb-shaped electrode as shown in FIGS. 3 and 4.
  • a movable electrode is formed using the side surface of the base material of the mirror portion.
  • the four corner side surfaces (more specifically, the YY plane) of the mirror portion 5A function as movable electrodes R11 to R14.
  • the movable electrodes R11, R12, R13, and R14 are arranged on the + Y / -X side, + Y / + X side, -Y / -X side, and -Y / + X side of the mirror portion 5A, respectively.
  • Fixed electrodes 611, 612, 621, and 622 are provided so as to face the movable electrodes R11, R12, R13, and R14 in the X-axis direction, respectively.
  • Each of the fixed electrodes 611, 612, 621, 622 is not formed in a comb-teeth shape, and has a flat plate shape having a YY surface as a main surface.
  • Each of the fixed electrodes 611 and 612 is supported by the fixing member 6a, and each of the fixed electrodes 621 and 622 is supported by the fixing member 6b.
  • FIG. 25 is a diagram showing a second modification of the movable electrode and the fixed electrode.
  • the fixed electrode is formed by utilizing the side surface of the fixing member. Both side surfaces (more specifically, ZX surfaces) of the mirror portion 5B in the Y-axis direction function as movable electrodes R21 and R22. Further, the side surface on the ⁇ Y side (more specifically, the ZX surface) of the fixing member 6c functions as the fixing electrode R31, and the side surface on the + Y side (more specifically, the ZX surface) of the fixing member 6d. ) Functions as the fixed electrode R32.
  • the movable electrode R21 and the fixed electrode R31 face each other in the Y-axis direction, and an electrostatic force corresponding to the applied voltage is generated between these electrodes.
  • the movable electrode R22 and the fixed electrode R32 face each other in the Y-axis direction, and an electrostatic force corresponding to the applied voltage is generated between these electrodes.
  • the conductivity of the semiconductor substrate may be adjusted by the amount of impurities added to the semiconductor substrate (for example, the dose amount).
  • the fixed electrodes 61 and 62 are grounded and a positive potential is applied to the movable electrodes 51 and 52, but conversely, a positive potential is applied to the fixed electrodes 61 and 62.
  • the movable electrodes 51 and 52 may be grounded.
  • the mirror portion 5, the movable electrodes 51 and 52, and the fixed electrodes 61 and 62 have a structure that is axisymmetric with respect to the rotation axis of the mirror portion 5. With such a symmetrical structure, the disturbing force is canceled out, and the operation of the optical scanning apparatus 100 can be stabilized.
  • the structures of the mirror portion, the movable electrode, and the fixed electrode have symmetry in the optical scanning device.
  • the shape of the mirror is not limited to a rectangular shape, and may be, for example, a circular shape.
  • the optical scanning apparatus 100 employs two beams 11 and 12 (see FIGS. 2 to 6).
  • the position, shape, and number of beams are not limited to the examples shown in FIGS. 2 to 6, and can be changed as appropriate.
  • the magnets 2a and 2b and the drive wiring 53 are used as mirror actuators.
  • the magnets 2a and 2b are arranged so that a magnetic field is applied in a direction orthogonal to the rotation axis of the mirror portion 5 (see FIG. 8).
  • the drive wiring 53 is arranged so as to go around the outer edge portion of the mirror portion 5 once (see FIG. 8).
  • the form in which the rotational force of the mirror is generated by the magnet and the drive wiring is not limited to the form shown in FIG. 8, and may be another form.
  • the direction of the magnetic field due to the magnet, the arrangement of the magnet, and the type of the magnet may be changed.
  • the magnet is not limited to a permanent magnet, and may be an electromagnet.
  • the position, shape, and number of laps of the drive wiring can be changed as appropriate.
  • the number of laps of the drive wiring may be two or more.
  • Mirror actuators are not limited to those that use electromagnetic force.
  • a mirror actuator that uses electrostatic force to generate a rotational force in the mirror can also be adopted.
  • a mirror actuator that generates a rotational force in the mirror by utilizing the deformation of the piezoelectric film can also be adopted.
  • the piezoresistive elements 91, 92, 93, 94 are arranged at the roots (support members 4a, 4b side) of the beams 11 and 12 (see FIG. 3).
  • the position of each piezoresistive element is not limited to the position shown in FIG. 3, and may be arranged at another position where a stress change according to the posture of the mirror portion 5 (including the mirror 10) can be detected. Further, the number of piezoresistive elements can be changed as appropriate.
  • the method of detecting the posture (rotation angle) of the mirror 10 is not limited to the method using the piezoresistive element, and is arbitrary.
  • a photodetector that detects the direction of the optical axis of the light beam reflected by the mirror 10 may be provided outside the MEMS mirror 1.
  • the control device 3 may estimate the posture (rotation angle) of the mirror 10 based on the direction of the optical axis detected by the photodetector.
  • a force is applied to the mirror 10 by utilizing the electrostatic force generated when a voltage is applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62.
  • an adjustment mechanism that changes the resonance frequency around the axis X1 of the mirror 10 is adopted.
  • the present invention is not limited to this, and the adjusting mechanism may apply a force to the mirror 10 by a method other than the electrostatic force.
  • FIG. 26 is a diagram showing a modified example of the adjustment mechanism shown in FIG.
  • FIG. 27 is a diagram showing a cross-sectional structure along the line XXVII-XXVII in FIG.
  • the beams 80a to 80d and the piezoelectric structures 8a to 8d are adopted instead of the fixing members 6a and 6b shown in FIG.
  • the beams 80a and 80b are arranged on both sides of the beam 11 and are connected to each of the mirror portion 5 and the support member 4a like the beam 11.
  • the beams 80c and 80d are arranged on both sides of the beam 12 and are connected to each of the mirror portion 5 and the support member 4b like the beam 12.
  • the piezoelectric structures 8a to 8d are arranged on the beams 80a to 80d, respectively.
  • the piezoelectric structures 8a to 8d basically have the same structure.
  • the beams 80a to 80d basically have the same structure. Therefore, in the following, each of the piezoelectric structures 8a to 8d will be referred to as a “piezoelectric structure 8”, and each of the beams 80a to 80d will be referred to as a “beam 80”, except for cases where they will be described separately.
  • FIG. 28 is a diagram showing a detailed structure of the piezoelectric structure 8.
  • the piezoelectric structure 8 is formed on the beam 80.
  • the beam 80 is made of, for example, silicon.
  • the piezoelectric structure 8 has a laminated structure in which the insulating layer 81, the electrode layer 82, the piezoelectric layer 83, and the electrode layer 84 are laminated in this order from the beam 80 side.
  • the insulating layer 81 is formed of, for example, a silicon oxide layer or a silicon nitride layer.
  • Each of the electrode layers 82 and 84 is formed of, for example, a metal film.
  • the piezoelectric layer 83 is formed of, for example, lead zirconate titanate (PZT).
  • the electrode layer 82 and the electrode layer 84 are electrically insulated from each other, and a voltage can be applied between the electrode layers.
  • a voltage By applying a voltage between the electrode layer 82 and the electrode layer 84, an electric field in the Z-axis direction is applied to the piezoelectric layer 83. Due to this electric field, the piezoelectric layer 83 generates a force that expands and contracts in the X-axis direction.
  • the piezoelectric layer 83 when a voltage with the electrode layer 82 negative and the electrode layer 84 positive is applied between the electrode layers, the piezoelectric layer 83 generates a force that contracts in the X-axis direction. Such a force acts to increase the restoring force of the mirror 10 with respect to the X1 rotation.
  • the control device 3 (FIG. 1) can adjust the resonance frequency around the axis X1 of the mirror 10 based on the voltage between the electrodes.
  • the piezoelectric structures 8a to 8d are arranged on the beams 80a to 80d, respectively, but the position and number of the piezoelectric structures 8 can be changed.
  • the piezoelectric structure 8 may be arranged on the beams 11 and 12.
  • the adjustment mechanism adopted in the optical scanning apparatus 100 according to the first embodiment is configured to apply a force in the same direction as the mechanical restoring force generated by the rotational displacement of the mirror 10 to the mirror 10.
  • the present invention is not limited to this, and an adjustment mechanism that applies a force opposite to the restoring force to the mirror 10 may be adopted. According to such an adjustment mechanism, by applying a force to the mirror 10, the beams 11 and 12 can be softened and the spring constant with respect to the X1 rotation of the mirror 10 can be reduced.
  • the waveform of the mirror drive signal is not limited to the serrated waveform and can be changed as appropriate.
  • the waveform of the drive signal of the mirror may be a triangular wave instead of a serrated waveform.
  • one control device 3 (single unit) is configured to control both the mirror actuator and the adjustment mechanism, but controls the control device and the adjustment mechanism that control the mirror actuator.
  • the control device may be a separate unit.
  • the rotation axis of the mirror 10 is one axis (X-axis), and the optical scanning device 100 is configured to perform optical scanning in the one-axis direction.
  • the rotation axes of the mirror 10 are set to two axes (X-axis and Y-axis) to enable optical scanning in two-axis directions.
  • the optical scanning apparatus according to the second embodiment will be described with a focus on the differences from the optical scanning apparatus according to the first embodiment.
  • the optical scanning apparatus includes the MEMS mirror 1A described below instead of the MEMS mirror 1 shown in FIG.
  • FIG. 29 is a diagram showing a top surface structure of the MEMS mirror 1A included in the optical scanning apparatus according to the second embodiment.
  • FIG. 30 is a diagram showing a cross-sectional structure along the XXX-XXX lines in FIG. 29.
  • the MEMS mirror 1A includes an intermediate frame 20 between the mirror portion 5 and the base material 7a.
  • the base material 7c is a rectangular frame located below the intermediate frame 20, and is arranged so as to surround the base material 7b located below the mirror portion 5.
  • a gap is provided between the base material 7b and the base material 7c. Further, a gap is also provided between the base material 7a and the base material 7c.
  • the intermediate frame 20 is a rectangular frame provided on the base material 7c via an insulating layer 55.
  • the ⁇ X side end of the intermediate frame 20 is connected to the support member 4a via the beam 11B, and the + X side end of the intermediate frame 20 is connected to the support member 4b via the beam 12B.
  • the axis X2 in FIG. 29 is an axis parallel to the X axis and indicates the position of the rotation axis of the intermediate frame 20.
  • Each of the beam 11B and the beam 12B is formed along the axis X2.
  • the intermediate frame 20 is configured to be rotatable around the axis X2. By twisting each of the beam 11B and the beam 12B around the axis X2, the intermediate frame 20 can rotate around the axis X2 (hereinafter, also referred to as “X2 rotation”).
  • a comb-shaped movable electrode 51B is provided on the + Y side side surface of the intermediate frame 20, and a comb-shaped movable electrode 52B is provided on the ⁇ Y side side surface of the intermediate frame 20.
  • Each comb tooth electrode of the movable electrode 51B faces each comb tooth electrode of the fixed electrode 61 supported by the fixing member 6a.
  • Each comb tooth electrode of the movable electrode 52B faces each comb tooth electrode of the fixed electrode 62 supported by the fixing member 6b.
  • the mirror portion 5 is arranged inside the intermediate frame 20.
  • the + Y side end of the mirror portion 5 is connected to the intermediate frame 20 via the beam 11A
  • the ⁇ Y side end of the mirror portion 5 is connected to the intermediate frame 20 via the beam 12A.
  • the axis Y2 in FIG. 29 is an axis parallel to the Y axis and indicates the position of the rotation axis of the mirror portion 5.
  • Each of the beam 11A and the beam 12A is formed along the axis Y2.
  • the mirror portion 5 is configured to be rotatable around the axis Y2. By twisting each of the beam 11A and the beam 12A around the axis Y2, the mirror portion 5 can rotate around the axis Y2 (hereinafter, also referred to as “Y2 rotation”).
  • Piezoresistive elements 91B and 92B are provided at the boundary between the support member 4a and the beam 11B.
  • Piezoresistive elements 93B and 94B are provided at the boundary between the support member 4b and the beam 12B.
  • the piezoresistive elements 91B, 92B, 93B, 94B are used to detect the rotation position (hereinafter, also referred to as “frame X rotation angle”) of the intermediate frame 20 around the axis X2.
  • the detection method is the same as that of the first embodiment.
  • the control device 3 (FIG. 1) is configured to acquire the frame X rotation angle based on the outputs of the piezoresistive elements 91B, 92B, 93B, and 94B.
  • Piezoresistive elements 91A and 92A are provided at the boundary between the intermediate frame 20 and the beam 11A.
  • Piezoresistive elements 93A and 94A are provided at the boundary between the intermediate frame 20 and the beam 12A.
  • the piezoresistive elements 91A, 92A, 93A, 94A are used to detect the rotation position of the mirror unit 5 around the axis Y2 (hereinafter, also referred to as “mirror Y rotation angle”).
  • the detection method is the same as that of the first embodiment.
  • the control device 3 (FIG. 1) is configured to acquire the mirror Y rotation angle based on the outputs of the piezoresistive elements 91A, 92A, 93A, and 94A.
  • the MEMS mirror 1A has a line-symmetrical structure with respect to each of the axis X2 and the axis Y2.
  • the intermediate frame 20 and the mirror portion 5 integrally change their postures with respect to the rotation around the axis X2. Therefore, the mirror portion 5 also rotates around the axis X2 in conjunction with the X2 rotation of the intermediate frame 20 described above.
  • the X2 rotation of the intermediate frame 20 and the Y2 rotation of the mirror portion 5 make the mirror 10 rotatable both around the axis X2 and around the axis Y2.
  • the mirror 10 rotates relative to the base material 7a.
  • the frame X rotation angle corresponds to the rotation angle around the axis X2 of the mirror 10
  • the mirror Y rotation angle corresponds to the rotation angle around the axis Y2 of the mirror 10.
  • the drive wiring 53B is provided on the support member 4a, the beam 11B, and the intermediate frame 20. However, an insulating film 54 is arranged between each of the support member 4a, the beam 11B, and the intermediate frame 20 and the drive wiring 53B.
  • the electrode pads 56B and 57B are provided at the + Y side and ⁇ Y side ends of the support member 4a, respectively, and are located at both ends of the drive wiring 53B.
  • the drive wiring 53B crosses the beam 11B from the support member 4a to reach the intermediate frame 20, goes around the outer edge of the intermediate frame 20 once, crosses the beam 11B again, and returns to the support member 4a. By applying a voltage between the electrode pad 56B and the electrode pad 57B, a current flows through the drive wiring 53B.
  • the drive wiring 53A is provided on the support member 4a, the beam 11B, the intermediate frame 20, and the base material 50. However, an insulating film 54 is arranged between each of the support member 4a, the beam 11B, the intermediate frame 20, and the base material 50 and the drive wiring 53A.
  • the electrode pads 56A and 57A are provided at the + Y side and ⁇ Y side ends of the support member 4a, respectively, and are located at both ends of the drive wiring 53A.
  • the drive wiring 53A reaches the intermediate frame 20 from the support member 4a across the beam 11B, and reaches the mirror portion 5 from the intermediate frame 20 across the beam 12A.
  • the drive wiring 53A goes around the outer edge portion (around the mirror 10) of the mirror portion 5 once, crosses the beams 12A and 11B again, and returns to the support member 4a.
  • a voltage between the electrode pad 56A and the electrode pad 57A a current flows through the drive wiring 53A.
  • FIG. 31 is a diagram for explaining the arrangement of the magnets 2a and 2b in the optical scanning apparatus according to the second embodiment.
  • the magnets 2a and 2b are arranged so as to apply a magnetic field including both a component in the X-axis direction and a component in the Y-axis direction to the MEMS mirror 1A.
  • the direction of the magnetic flux density B of the magnetic field is the direction from the magnet 2a to the magnet 2b (direction of ⁇ Y / + X).
  • the drive wiring 53A and the drive wiring 53B are not electrically connected to each other, and the drive wiring 53A and the drive wiring 53B are connected by individual drive signals. Can be passed separately. Since a magnetic field as shown in FIG. 31 is applied to the MEMS mirror 1A, the control device 3 (FIG. 1) also refers to a drive current signal (hereinafter, also referred to as “first drive current signal”) to be passed through the drive wiring 53B. ) And the drive current signal (hereinafter, also referred to as “second drive current signal”) flowing through the drive wiring 53A, the X2 rotation and the Y2 rotation of the mirror 10 can be controlled.
  • first drive current signal hereinafter, also referred to as “first drive current signal”
  • second drive current signal flowing through the drive wiring 53A, the X2 rotation and the Y2 rotation of the mirror 10 can be controlled.
  • the drive wiring 53B and the magnets 2a and 2b function as a first mirror actuator that rotates the mirror 10 around an axis X2 (first rotation axis).
  • the first drive current signal corresponds to an example of "a first waveform signal for controlling the first mirror actuator”.
  • the drive wiring 53A and the magnets 2a and 2b function as a second mirror actuator that rotates the mirror 10 around the axis Y2 (second rotation axis).
  • the second drive current signal corresponds to an example of "a second waveform signal for controlling the second mirror actuator".
  • the driving principle of each mirror actuator is basically the same as that of the mirror actuator according to the first embodiment.
  • the control device 3 (FIG. 1) can control the emission direction of the light beam by controlling the X2 rotation and the Y2 rotation of the mirror 10 by the first drive current signal and the second drive current signal. Such control enables light scanning in a two-dimensional direction.
  • the optical scanning by X2 rotation is referred to as "X-axis scanning”
  • the optical scanning by Y2 rotation is referred to as "Y-axis scanning”.
  • the first drive current signal is a serrated current signal similar to the drive current signal according to the first embodiment.
  • the control device 3 (FIG. 1) provides a voltage signal (hereinafter, also referred to as “first adjustment signal”) for controlling the resonance frequency (hereinafter, also referred to as “X2 resonance frequency”) around the axis X2 of the mirror 10. It is applied between the movable electrodes 51B and 52B and the fixed electrodes 61 and 62.
  • the control device 3 (FIG. 1) controls the X2 resonance frequency of the mirror 10 by the first adjustment signal so that the X2 resonance frequency of the mirror 10 is separated from the frequency component included in the first drive current signal.
  • the control device 3 (FIG. 1)
  • the difference between the X2 resonance frequency of the mirror 10 and the frequency component of the first drive current signal closest to the X2 resonance frequency becomes the target value (or the reference value or more).
  • the X2 resonance frequency of the mirror 10 is controlled. Since the control of the resonance frequency using the adjustment signal has already been described in the first embodiment, the details will be omitted.
  • the second drive current signal is a sinusoidal current signal having a frequency close to the resonance frequency around the axis Y2 of the mirror 10 (hereinafter, also referred to as “Y2 resonance frequency”).
  • Y2 resonance frequency a frequency close to the resonance frequency around the axis Y2 of the mirror 10
  • the control device 3 (FIG. 1) suppresses the unstable operation (for example, ringing) of the mirror 10 due to the resonance phenomenon by using the first adjustment signal. This enables stable X-axis scanning.
  • Y-axis scanning a wide range of scanning becomes possible by high-speed scanning by positively utilizing the resonance phenomenon.
  • the control device 3 (FIG. 1) is based on the drive frequency fdy of the Y-axis scan (that is, the frequency of the fundamental wave included in the second drive current signal) in order to synchronize the scans in the two-axis directions with each other.
  • the scan drive frequency fdx ie, the frequency of the fundamental wave included in the first drive current signal
  • the control device 3 may determine the drive frequency (fdx) of the X-axis scan according to the following equation (13), for example.
  • the optical scanning apparatus includes a first adjusting mechanism that applies a force to the mirror 10 to change the resonance frequency around the axis X2 of the mirror 10.
  • the movable electrodes 51B and 52B and the fixed electrodes 61 and 62 function as the "first adjustment mechanism".
  • the control device 3 (FIG. 1) controls the X2 resonance frequency of the mirror 10 so that the X2 resonance frequency of the mirror 10 is separated from the frequency component included in the first drive current signal by controlling the first adjustment mechanism. By such control, the effect according to the above-described first embodiment is achieved.
  • the optical scanning apparatus includes only an adjustment mechanism related to X-axis scanning (first adjustment mechanism), and does not include an adjusting mechanism related to Y-axis scanning.
  • first adjustment mechanism an adjustment mechanism related to X-axis scanning
  • Y-axis scanning an adjustment mechanism related to Y-axis scanning
  • FIG. 32 is a diagram showing a modified example of the structure of the MEMS mirror shown in FIG. 29.
  • FIG. 33 is a diagram showing a cross-sectional structure along the line XXXIII-XXXIII in FIG. 32.
  • a comb-shaped movable electrode 51A is provided on the side surface of the mirror portion 5 on the ⁇ X side, and a comb tooth is provided on the side surface of the mirror portion 5 on the + X side.
  • a movable electrode 52A in the shape of a shape is provided.
  • the movable electrodes 51A and 52A are electrically connected to each of the mirror 10, the beams 11A and 12A, the intermediate frame 20, the beams 11B and 12B, and the support members 4a and 4b, and are electrically equipotential with these. .. Further, a comb-shaped fixed electrode 61A is provided so as to face each comb-tooth electrode of the movable electrode 51A, and a comb-tooth-shaped fixed electrode 62A is provided so as to face each comb-tooth electrode of the movable electrode 52A. Has been done.
  • the fixed electrodes 61A and 62A are provided on the base material 7c via the insulating layer 55 together with the intermediate frame 20.
  • a gap is provided between the fixed electrodes 61A and 62A and the intermediate frame 20, and the fixed electrodes 61A and 62A and the intermediate frame 20 are electrically insulated by the insulating layer 55.
  • the fixed electrode 61A and the fixed electrode 62A are electrically connected to each other by wiring (not shown), and are electrically equipotential. Since the force due to the Y2 rotation of the mirror portion 5 is absorbed by the elastic deformation of the beams 11A and 12A, each of the intermediate frame 20 and the fixed electrodes 61A and 62A is not interlocked with the Y2 rotation of the mirror 10.
  • each of the first drive current signal and the second drive current signal is a serrated current signal.
  • the MEMS mirror 1B includes, in addition to the first adjustment mechanism described above, a second adjustment mechanism that applies a force to the mirror 10 to change the resonance frequency around the axis Y2 of the mirror 10.
  • the movable electrodes 51A and 52A and the fixed electrodes 61A and 62A function as a "second adjusting mechanism".
  • the control device 3 (FIG. 1) controls the first adjusting mechanism and the second adjusting mechanism as described below.
  • the control device 3 obtains the X2 resonance frequency of the mirror 10 from the frequency component included in the first drive current signal.
  • the X2 resonance frequency of the mirror 10 is controlled so as to be separated.
  • the control device 3 applies a voltage signal for controlling the Y2 resonance frequency of the mirror 10 (hereinafter, also referred to as “second adjustment signal”) between the movable electrodes 51A and 52A and the fixed electrodes 61A and 62A.
  • second adjustment signal a voltage signal for controlling the Y2 resonance frequency of the mirror 10
  • the Y2 resonance frequency of the mirror 10 is controlled so that the Y2 resonance frequency of the mirror 10 is separated from the frequency component included in the second drive current signal. Since the control of the resonance frequency using the adjustment signal has already been described in the first embodiment, the details will be omitted.
  • the distance measuring device may be configured by the above-mentioned optical scanning device.
  • the optical scanning device (optical scanning device 200 described later) included in the ranging device according to the third embodiment is the optical scanning device (see FIGS. 29 to 31) according to the second embodiment.
  • FIG. 34 is a diagram showing a distance measuring device according to the third embodiment.
  • the ranging device 300 has a housing 305, a light source 301 that emits a light beam, an optical scanning device 200 that deflects the light beam, and a photodetector 303 in the housing 305. And. Then, the distance measuring device 300 is configured to irradiate the object with a light beam deflected by the light scanning device 200, and detect at least a part of the light reflected by the object by the photodetector 303.
  • the distance measuring device 300 further includes an information processing device 3A.
  • the information processing device 3A is configured to form a distance image by using the information about the light beam emitted from the light source 301 and the detection result by the photodetector 303.
  • the distance image is an image showing the distance to an object for each pixel.
  • the information processing device 3A may display a distance image on a display device (not shown).
  • the distance measuring method may be a TOF (Time Of Flight) method.
  • the distance measuring device 300 can acquire a distance image around the device.
  • the information processing device 3A may be configured to control the optical scanning device 200.
  • the information processing device 3A may have the same function as the control device 3 (FIG. 1) according to the second embodiment.
  • a microcomputer including a processor, RAM, and a storage device can be adopted.
  • the above storage device may store the program and information used in the program (for example, maps, mathematical formulas, and various parameters).
  • the image processing circuit may be mounted on the information processing apparatus 3A.
  • the light source 301 is configured to irradiate the MEMS mirror of the optical scanning device 200 with a light beam.
  • a laser light source can be adopted as the light source 301.
  • the wavelength of the light beam emitted by the light source 301 is arbitrary and may be in the visible region or in the infrared region.
  • a laser light source that emits a laser beam having a wavelength of 870 nm to 1500 nm is used as the light source 301.
  • FIG. 34 shows only one light source 301, the number of light sources included in the distance measuring device 300 is arbitrary, and the distance measuring device 300 may include a plurality of light sources.
  • the housing 305 is provided with a window 306 through which the light beam emitted from the light source 301 and the light beam reflected by the object are transmitted.
  • a beam splitter 302 is provided between the light source 301 and the MEMS mirror of the optical scanning device 200 in the housing 305.
  • the light beam emitted from the light source 301 passes through the beam splitter 302 and is deflected by the light scanning device 200 as shown by the line L1.
  • the light beam is reflected by a mirror (reflection film) driven by a drive signal. Then, the reflected light beam passes through the window 306 and irradiates an object outside the housing 305 (more specifically, an object within the scanning range of the optical scanning device 200).
  • the photodetector 303 is arranged at a position where such a light beam can be detected.
  • an avalanche photodiode APD
  • the light reflected by the object is taken in from the window 306 and reflected toward the beam splitter 302 by the MEMS mirror of the optical scanning device 200 as shown by the line L2, and further, the light detector 303 is reflected by the reflecting surface of the beam splitter 302. It is reflected toward. In this way, the light reflected by the object enters the photodetector 303 through the window 306, the optical scanning device 200, and the beam splitter 302.
  • the information processing device 3A acquires information on the emitted light from the light source 301 and information on the incident light from the photodetector 303.
  • the information processing device 3A can measure the distance to the object by comparing the emitted light and the incident light. For example, when an object is irradiated with a pulsed light beam, pulsed reflected light can also be obtained from the object.
  • the information processing device 3A can calculate the distance to the object from the time difference between the pulse of the emitted light and the pulse of the reflected light. Since the optical scanning device 200 scans the light beam in two dimensions, the information processing device 3A obtains a two-dimensional distance image around the device based on the above distance information and information on the scanning direction of the light beam. Can be obtained.
  • the distance measuring device 300 may function as LiDAR (Light Detection and Ringing).
  • the ranging device 300 may be mounted on the vehicle.
  • the distance measuring device 300 may be mounted on a connected car and used for obstacle detection in driving support control or automatic driving control.
  • the optical scanning device according to the second embodiment described above is adopted as the optical scanning device 200. Therefore, even in the third embodiment, the same effect as that of the second embodiment described above can be obtained.
  • the distance measuring device 300 according to the third embodiment since the ringing of the light emitted from the optical scanning device 200 is suppressed, it becomes easy to accurately detect the position and shape of the object, and a distance image with less distortion can be obtained.
  • FIG. 35 is a diagram showing a modified example of the distance measuring device shown in FIG. 34.
  • the window 306A through which the light beam (line L1) emitted from the light source 301 is transmitted and the light beam (line L2) reflected by the object are transmitted through the housing 305 of the distance measuring device 300A.
  • the window 306B to be used is provided separately. Further, in the distance measuring device 300A, the beam splitter is omitted.
  • the light beam emitted from the light source 301 is deflected by the optical scanning device 200, passes through the window 306A, and irradiates an object outside the housing 305.
  • the light reflected by the object is taken in through the window 306B and incident on the photodetector 303, as shown by line L2.
  • the information processing device 3A can calculate the distance to the object by comparing the emitted light and the reflected light.
  • the information processing device 3A can acquire a distance image around the device.
  • the optical scanning device according to the second embodiment is adopted as the optical scanning device 200, but instead of the optical scanning device according to the second embodiment, the first embodiment The optical scanning apparatus according to the above may be adopted.
  • An optical scanning device arbitrarily selected from the above-described optical scanning device according to the first embodiment and its modification and the optical scanning device according to the second embodiment and its modification is used as the optical scanning device of the distance measuring device. It may be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

An optical scanning device (100) is provided with a mirror (10), a mirror actuator (2a, 2b, 53), an adjustment mechanism (51, 52, 61, 62), and a controller (3). The mirror is configured to be rotatable about a rotation axis (X1) and reflect light. The mirror actuator is configured to rotate the mirror about the rotation axis (X1). The adjustment mechanism is configured to change resonant frequency about the rotation axis (X1) of the mirror by applying force to the mirror. The controller is configured to control the mirror actuator and the adjustment mechanism. The controller is configured to control the mirror actuator by a waveform signal. The controller is configured to control the adjustment mechanism to thereby control the resonant frequency about the rotation axis (X1) of the mirror such that the resonant frequency about the rotation axis (X1) of the mirror is separated from a frequency component included in the waveform signal.

Description

光走査装置、光走査装置の制御方法、及び測距装置Optical scanning device, control method of optical scanning device, and distance measuring device
 本開示は、光走査装置、光走査装置の制御方法、及び測距装置に関する。 The present disclosure relates to an optical scanning device, a control method for the optical scanning device, and a distance measuring device.
 光を走査する際に、ミラーによって光の出射方向を調整する光走査装置が知られている。たとえば、光が入射するミラーの姿勢を変化させることで、ミラーで反射される光の方向を変えることができる。特開2019-191226号公報(特許文献1)には、圧電アクチュエータによりミラーの姿勢を変化させる光走査装置が開示されている。 There is known an optical scanning device that adjusts the light emission direction with a mirror when scanning light. For example, the direction of the light reflected by the mirror can be changed by changing the posture of the mirror on which the light is incident. Japanese Unexamined Patent Publication No. 2019-191226 (Patent Document 1) discloses an optical scanning device that changes the posture of a mirror by a piezoelectric actuator.
 特許文献1に記載される光走査装置では、垂直駆動源(より特定的には、圧電アクチュエータ)に鋸歯状波形の駆動電圧が印加されることによってミラーが垂直方向に揺動し、水平駆動源(より特定的には、圧電アクチュエータ)に正弦波状の駆動電圧が印加されることによってミラーが水平方向に揺動する。 In the optical scanning device described in Patent Document 1, the mirror swings in the vertical direction by applying a drive voltage having a serrated waveform to the vertical drive source (more specifically, the piezoelectric actuator), and the horizontal drive source. (More specifically, the piezoelectric actuator) is subjected to a sinusoidal driving voltage, so that the mirror swings in the horizontal direction.
特開2019-191226号公報JP-A-2019-191226
 上記特許文献1に記載される光走査装置は、鋸歯状波形の駆動電圧を用いて垂直方向のミラー制御を行なう。こうした光走査装置では、鋸歯状波形の上昇期間又は下降期間を利用して、走査速度が一定になる期間を長くすることができる。ただし、鋸歯状波形に含まれる高周波成分がミラーの共振特性によって増幅されると、リンギング(すなわち、信号の振動に起因した波形の歪み)が生じることがある。特許文献1では、画像表示のために光走査装置を使用しているため、上記のリンギングは、画質低下(たとえば、横縞)の原因になる。 The optical scanning apparatus described in Patent Document 1 performs vertical mirror control using a driving voltage having a serrated waveform. In such an optical scanning device, the period during which the scanning speed becomes constant can be lengthened by utilizing the ascending period or descending period of the serrated waveform. However, when the high frequency component contained in the serrated waveform is amplified by the resonance characteristic of the mirror, ringing (that is, distortion of the waveform due to signal vibration) may occur. In Patent Document 1, since an optical scanning device is used for displaying an image, the above ringing causes deterioration in image quality (for example, horizontal stripes).
 特許文献1に記載される技術では、高速フーリエ変換(FFT)による解析を行なってミラーの共振周波数(より特定的には、機械的な共振周波数)を求め、ミラーの共振周波数成分が駆動信号の波形(詳しくは、電圧波形)に含まれなくなるように鋸歯状波形の駆動信号の周波数を調整することにより、リンギングの発生を抑制している。 In the technique described in Patent Document 1, analysis by high-speed Fourier transform (FFT) is performed to obtain the resonance frequency of the mirror (more specifically, the mechanical resonance frequency), and the resonance frequency component of the mirror is the drive signal. The occurrence of ringing is suppressed by adjusting the frequency of the drive signal of the serrated waveform so that it is not included in the waveform (specifically, the voltage waveform).
 しかしながら、こうした技術では、ミラーの共振周波数成分が駆動信号の波形に含まれなくなるように駆動信号を生成することが要求されるため、使用可能な駆動信号が制限され、駆動信号を決定する際の自由度が低下する。 However, such a technique requires that the drive signal be generated so that the resonance frequency component of the mirror is not included in the waveform of the drive signal, which limits the drive signals that can be used and determines the drive signal. The degree of freedom is reduced.
 本開示は、上記のような課題を解決するためになされたものであり、その目的は、ミラーの駆動信号を決定する際の自由度を確保しつつ、共振現象によるミラーの不安定動作(たとえば、リンギング)を抑制できる光走査装置、光走査装置の制御方法、及び測距装置を提供することである。 The present disclosure has been made to solve the above-mentioned problems, and the purpose of the present disclosure is to ensure the degree of freedom in determining the drive signal of the mirror, and to perform unstable operation of the mirror due to a resonance phenomenon (for example,). , Ringing), a control method for the optical scanning device, and a distance measuring device.
 本開示の光走査装置は、ミラーと、ミラーアクチュエータと、調整機構と、制御装置とを備える。ミラーは、回転軸まわりに回転可能に構成され、光を反射するように構成される。ミラーアクチュエータは、ミラーを上記回転軸まわりに回転させるように構成される。調整機構は、ミラーに力を加えてミラーの上記回転軸まわりの共振周波数を変化させるように構成される。制御装置は、ミラーアクチュエータ及び調整機構を制御するように構成される。制御装置は、波形信号によってミラーアクチュエータを制御するように構成される。制御装置は、調整機構を制御することにより、波形信号に含まれる周波数成分からミラーの上記回転軸まわりの共振周波数が離れるようにミラーの上記回転軸まわりの共振周波数を制御するように構成される。 The optical scanning device of the present disclosure includes a mirror, a mirror actuator, an adjusting mechanism, and a control device. The mirror is configured to be rotatable around an axis of rotation and is configured to reflect light. The mirror actuator is configured to rotate the mirror around the axis of rotation. The adjusting mechanism is configured to apply a force to the mirror to change the resonance frequency around the rotation axis of the mirror. The control device is configured to control the mirror actuator and the adjusting mechanism. The control device is configured to control the mirror actuator by a waveform signal. The control device is configured to control the resonance frequency around the rotation axis of the mirror so that the resonance frequency around the rotation axis of the mirror is separated from the frequency component included in the waveform signal by controlling the adjustment mechanism. ..
 上記の光走査装置、及びそれを備える測距装置においては、ミラーの駆動信号を決定する際の自由度を確保しつつ、共振現象によるミラーの不安定動作(たとえば、リンギング)を抑制することが可能になる。 In the above-mentioned optical scanning device and the distance measuring device provided with the above-mentioned optical scanning device, it is possible to suppress unstable operation (for example, ringing) of the mirror due to a resonance phenomenon while ensuring a degree of freedom in determining the drive signal of the mirror. It will be possible.
本開示の実施の形態1に係る光走査装置の概略構成を示す図である。It is a figure which shows the schematic structure of the optical scanning apparatus which concerns on Embodiment 1 of this disclosure. 図1に示したMEMSミラーの構成を示す斜視図である。It is a perspective view which shows the structure of the MEMS mirror shown in FIG. 図1に示したMEMSミラーの上面構造を示す図である。It is a figure which shows the upper surface structure of the MEMS mirror shown in FIG. 図3中のIV-IV線に沿った断面構造を示す図である。It is a figure which shows the cross-sectional structure along the IV-IV line in FIG. 図3中のV-V線に沿った断面構造を示す図である。It is a figure which shows the cross-sectional structure along the VV line in FIG. 図3中のVI-VI線に沿った断面構造を示す図である。It is a figure which shows the cross-sectional structure along the VI-VI line in FIG. 本開示の実施の形態1に係る光走査装置の制御方法を示す図である。It is a figure which shows the control method of the optical scanning apparatus which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係る光走査装置においてミラーが駆動される際の電流及び磁界の向きの一例を示す図である。It is a figure which shows an example of the direction of the electric current and the magnetic field when a mirror is driven in the optical scanning apparatus which concerns on Embodiment 1 of this disclosure. 図8に示した電流及び磁界によって生じるローレンツ力を示す図である。It is a figure which shows the Lorentz force generated by the electric current and the magnetic field shown in FIG. 図9に示したローレンツ力によって生じるトルクを示す図である。It is a figure which shows the torque generated by the Lorentz force shown in FIG. 図2~図6に示したMEMSミラーに入射した光ビームの反射方向を示す図である。2 is a diagram showing the reflection direction of the light beam incident on the MEMS mirror shown in FIGS. 2 to 6. 図3に示したピエゾ抵抗素子が構成する姿勢検出回路を示す図である。It is a figure which shows the posture detection circuit which comprises the piezoresistive element shown in FIG. 本開示の実施の形態1に係る光走査装置の制御方法におけるミラーの駆動信号の一例を示す図である。It is a figure which shows an example of the drive signal of the mirror in the control method of the optical scanning apparatus which concerns on Embodiment 1 of this disclosure. 図13に示したミラーの駆動信号に含まれる周波数成分を示す図である。It is a figure which shows the frequency component included in the drive signal of the mirror shown in FIG. リンギングが生じやすいミラーの共振周波数の一例を示す図である。It is a figure which shows an example of the resonance frequency of a mirror which is prone to ringing. リンギングが生じたときのミラーのX回転角度の推移を示す図である。It is a figure which shows the transition of the X rotation angle of a mirror when ringing occurs. 図7に示した調整信号の決定に係る処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process which concerns on the determination of the adjustment signal shown in FIG. 図17の処理において取得されるX回転ミラー特性の第1の例を示す図である。It is a figure which shows the 1st example of the X rotation mirror characteristic acquired in the process of FIG. 図17の処理において取得されるX回転ミラー特性の第2の例を示す図である。It is a figure which shows the 2nd example of the X rotation mirror characteristic acquired in the process of FIG. 本開示の実施の形態1に係る光走査装置の制御方法において、櫛歯電極間に電圧が印加されていないときのミラーの共振周波数の一例を示している。In the control method of the optical scanning apparatus according to the first embodiment of the present disclosure, an example of the resonance frequency of the mirror when no voltage is applied between the comb tooth electrodes is shown. 本開示の実施の形態1に係る光走査装置の制御方法において、調整信号が櫛歯電極間に印加されたときのミラーの共振周波数の一例を示している。In the control method of the optical scanning apparatus according to the first embodiment of the present disclosure, an example of the resonance frequency of the mirror when the adjustment signal is applied between the comb tooth electrodes is shown. 図17に示した処理の変形例を示すフローチャートである。It is a flowchart which shows the modification of the process shown in FIG. 光走査装置の制御方法において、可動電極と固定電極との間に印加される電圧信号の変形例を示す図である。It is a figure which shows the modification of the voltage signal applied between a movable electrode and a fixed electrode in the control method of an optical scanning apparatus. 図3及び図4に示した可動電極及び固定電極の第1変形例を示す図である。It is a figure which shows the 1st modification of the movable electrode and the fixed electrode shown in FIG. 3 and FIG. 図3及び図4に示した可動電極及び固定電極の第2変形例を示す図である。It is a figure which shows the 2nd modification of the movable electrode and the fixed electrode shown in FIG. 3 and FIG. 図3に示した調整機構の変形例を示す図である。It is a figure which shows the modification of the adjustment mechanism shown in FIG. 図26中のXXVII-XXVII線に沿った断面構造を示す図である。It is a figure which shows the cross-sectional structure along the line XXVII-XXVII in FIG. 図26及び図27に示した圧電構造体の詳細構造を示す図である。It is a figure which shows the detailed structure of the piezoelectric structure shown in FIG. 26 and FIG. 27. 本開示の実施の形態2に係る光走査装置が備えるMEMSミラーの上面構造を示す図である。It is a figure which shows the upper surface structure of the MEMS mirror provided in the optical scanning apparatus which concerns on Embodiment 2 of this disclosure. 図29中のXXX-XXX線に沿った断面構造を示す図である。It is a figure which shows the cross-sectional structure along the XXXX-XXX line in FIG. 本開示の実施の形態2に係る光走査装置における磁石の配置を説明するための図である。It is a figure for demonstrating the arrangement of the magnet in the optical scanning apparatus which concerns on Embodiment 2 of this disclosure. 図29に示したMEMSミラーの構造の変形例を示す図である。It is a figure which shows the modification of the structure of the MEMS mirror shown in FIG. 図32中のXXXIII-XXXIII線に沿った断面構造を示す図である。It is a figure which shows the cross-sectional structure along the line XXXXIII-XXXIII in FIG. 32. 本開示の実施の形態3に係る測距装置を示す図である。It is a figure which shows the distance measuring apparatus which concerns on Embodiment 3 of this disclosure. 図34に示した測距装置の変形例を示す図である。It is a figure which shows the modification of the distance measuring apparatus shown in FIG. 34.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。各図中のX軸、Y軸、及びZ軸は、互いに直交する3軸を示している。X軸、Y軸、及びZ軸の各々に関して、矢印が指し示す方向には「+」を、その反対の方向には「-」を付して各方向を表す場合がある。たとえば、X軸の矢印が指し示す方向は「+X」、その反対の方向は「-X」と表記する場合がある。また、+Zの方向を「上」、-Zの方向を「下」と称する場合がある。以下では、図中の同一又は相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。また、以下の各実施の形態で説明された構成を技術的に矛盾しない範囲で適宜組合わせることは出願当初から予定されている。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The X-axis, Y-axis, and Z-axis in each figure indicate three axes that are orthogonal to each other. With respect to each of the X-axis, Y-axis, and Z-axis, "+" may be added to the direction indicated by the arrow, and "-" may be added to the opposite direction to indicate each direction. For example, the direction indicated by the arrow on the X-axis may be written as "+ X", and the opposite direction may be written as "-X". Further, the + Z direction may be referred to as “up” and the −Z direction may be referred to as “down”. In the following, the same or corresponding parts in the drawings will be designated by the same reference numerals, and the explanations will not be repeated in principle. Further, it is planned from the beginning of the application that the configurations described in the following embodiments are appropriately combined within a technically consistent range.
 実施の形態1.
 図1は、本開示の実施の形態1に係る光走査装置100の概略構成を示す図である。図1を参照して、光走査装置100は、MEMSミラー1と、磁石2a,2bと、制御装置3とを備える。磁石2a,2bとしては、永久磁石を採用できる。詳細は後述するが、磁石2a,2bはMEMSミラー1を挟むように配置され、MEMSミラー1に対してY軸方向の磁界を印加するように構成される。MEMSは、「Micro Electro Mechanical Systems」の略称であり、半導体製造技術及びレーザー加工技術のような各種の微細加工技術を用いて、微小な電気要素と微小な機械要素とを1つの基板上に組み込んだシステム(又は、デバイス)を意味する。
Embodiment 1.
FIG. 1 is a diagram showing a schematic configuration of an optical scanning device 100 according to a first embodiment of the present disclosure. With reference to FIG. 1, the optical scanning device 100 includes a MEMS mirror 1, magnets 2a and 2b, and a control device 3. Permanent magnets can be used as the magnets 2a and 2b. Although the details will be described later, the magnets 2a and 2b are arranged so as to sandwich the MEMS mirror 1 and are configured to apply a magnetic field in the Y-axis direction to the MEMS mirror 1. MEMS is an abbreviation for "Micro Electro Mechanical Systems", which incorporates minute electrical elements and minute mechanical elements on a single substrate using various microfabrication technologies such as semiconductor manufacturing technology and laser processing technology. It means a system (or device).
 制御装置3としては、プロセッサ、RAM(Random Access Memory)、及び記憶装置を備えるマイクロコンピュータを採用できる。プロセッサとしては、たとえばCPU(Central Processing Unit)を採用できる。制御装置3が備えるプロセッサの数は任意であり、1つでも複数でもよい。RAMは、プロセッサによって処理されるデータを一時的に記憶する作業用メモリとして機能する。記憶装置は、格納された情報を保存可能に構成される。記憶装置には、プログラムのほか、プログラムで使用される情報(たとえば、マップ、数式、及び各種パラメータ)が記憶されている。この実施の形態1では、記憶装置に記憶されているプログラムをプロセッサが実行することで、後述する図7及び図17に示す処理が実行される。ただし、制御装置3における各種処理は、ソフトウェアによる実行に限られず、専用のハードウェア(電子回路)で実行することも可能である。マイクロコンピュータに代えて、FPGA(Field-Programmable Gate Array)を採用してもよい。また、ソフトウェア及びハードウェアの機能分割によって、同様の制御機能を実現することも可能である。 As the control device 3, a microcomputer equipped with a processor, RAM (Random Access Memory), and a storage device can be adopted. As the processor, for example, a CPU (Central Processing Unit) can be adopted. The number of processors included in the control device 3 is arbitrary, and may be one or a plurality. The RAM functions as a working memory that temporarily stores the data processed by the processor. The storage device is configured to be able to store the stored information. In addition to the program, the storage device stores information used in the program (for example, maps, mathematical formulas, and various parameters). In the first embodiment, the processor executes the program stored in the storage device to execute the processes shown in FIGS. 7 and 17, which will be described later. However, various processes in the control device 3 are not limited to execution by software, and can also be executed by dedicated hardware (electronic circuit). FPGA (Field-Programmable Gate Array) may be adopted instead of the microcomputer. It is also possible to realize the same control function by dividing the functions of software and hardware.
 図2は、MEMSミラー1の構成を示す斜視図である。図1とともに図2を参照して、MEMSミラー1は、光を走査するためのミラー部5と、ミラー部5を支えるヒンジ(たとえば、梁11,12)と、ミラー部5を回転させるミラーアクチュエータ(詳細は後述)とを備える。ミラー部5に入射した光は、ミラー部5(より特定的には、後述するミラー10)によって反射される。MEMSミラー1は、ミラー部5の回転によって光の反射角度を調整可能に構成されるとともに、所定の走査範囲において光を走査するように構成される。MEMSミラー1の動作は、制御装置3(図1)によって制御される。制御装置3は、ミラーアクチュエータによりヒンジにねじれを生じさせることによって、ミラー部5で反射される光の方向を制御するように構成される。 FIG. 2 is a perspective view showing the configuration of the MEMS mirror 1. With reference to FIG. 1 and FIG. 2, the MEMS mirror 1 includes a mirror portion 5 for scanning light, hinges (for example, beams 11 and 12) for supporting the mirror portion 5, and a mirror actuator for rotating the mirror portion 5. (Details will be described later). The light incident on the mirror unit 5 is reflected by the mirror unit 5 (more specifically, the mirror 10 described later). The MEMS mirror 1 is configured so that the reflection angle of light can be adjusted by rotating the mirror unit 5, and the light is scanned in a predetermined scanning range. The operation of the MEMS mirror 1 is controlled by the control device 3 (FIG. 1). The control device 3 is configured to control the direction of the light reflected by the mirror unit 5 by causing the hinge to be twisted by the mirror actuator.
 MEMSミラー1は、梁11,12と、支持部材4a,4bと、固定部材6a,6bと、基材7a,7bと、可動電極51,52と、固定電極61,62とを備える。基材7aは、ミラー部5を囲むように配置された矩形状の枠体である。基材7bは、ミラー部5の下方に位置する矩形状の板である。基材7aと基材7bとの間には隙間が設けられている。支持部材4a,4b及び固定部材6a,6bの各々は基材7a上に配置されている。ただし、基材7aと支持部材4a,4bとの間、基材7aと固定部材6a,6bとの間、及びミラー部5と基材7bとの間の各々には、絶縁層55が配置されている。 The MEMS mirror 1 includes beams 11 and 12, support members 4a and 4b, fixing members 6a and 6b, base materials 7a and 7b, movable electrodes 51 and 52, and fixed electrodes 61 and 62. The base material 7a is a rectangular frame arranged so as to surround the mirror portion 5. The base material 7b is a rectangular plate located below the mirror portion 5. A gap is provided between the base material 7a and the base material 7b. Each of the support members 4a and 4b and the fixing members 6a and 6b is arranged on the base material 7a. However, an insulating layer 55 is arranged between the base material 7a and the support members 4a and 4b, between the base material 7a and the fixing members 6a and 6b, and between the mirror portion 5 and the base material 7b. ing.
 図3は、MEMSミラー1の上面構造を示す図である。図4は、図3中のIV-IV線に沿った断面構造を示す図である。図5は、図3中のV-V線に沿った断面構造を示す図である。図6は、図3中のVI-VI線に沿った断面構造を示す図である。 FIG. 3 is a diagram showing the upper surface structure of the MEMS mirror 1. FIG. 4 is a diagram showing a cross-sectional structure along the IV-IV line in FIG. FIG. 5 is a diagram showing a cross-sectional structure along the VV line in FIG. FIG. 6 is a diagram showing a cross-sectional structure along the VI-VI line in FIG.
 図3~図6を参照して、ミラー部5は、基材50と、基材50上に設けられたミラー10とを備える。ミラー部5は、表面にミラー10を有する。ミラー10は、X軸まわりに回転可能に構成されるとともに、光を反射するように構成される。ミラー10は、たとえば矩形状の反射膜である。ミラー10はミラー部5の一部を構成するため、ミラー部5が回転すると、ミラー10も回転する。ミラー10がX軸まわりに回転することにより、ミラー10に入射した光の反射角度が変わる。 With reference to FIGS. 3 to 6, the mirror portion 5 includes a base material 50 and a mirror 10 provided on the base material 50. The mirror portion 5 has a mirror 10 on its surface. The mirror 10 is configured to be rotatable around the X-axis and to reflect light. The mirror 10 is, for example, a rectangular reflective film. Since the mirror 10 constitutes a part of the mirror portion 5, when the mirror portion 5 rotates, the mirror 10 also rotates. As the mirror 10 rotates around the X axis, the reflection angle of the light incident on the mirror 10 changes.
 ミラー部5のX軸方向の両端に相当する第1端(-X側の端)及び第2端(+X側の端)には、それぞれ梁11及び梁12が接続されている。この実施の形態1では、梁11及び梁12の各々が、X軸方向に長尺の形状を有し、ミラー10の回転軸として機能する。より具体的には、梁11及び梁12の各々は、ねじり型弾性ヒンジとして機能する。図3中の軸X1は、X軸に平行な軸であり、ミラー10の回転軸の位置を示している。梁11及び梁12の各々は軸X1に沿って形成されている。梁11及び梁12の各々が軸X1まわりにねじれることによって、ミラー10の軸X1まわりの回転(以下、「X1回転」とも称する)が可能になる。この実施の形態1では、基材7aが図示しない筐体に固定されており、ミラー部5(ミラー10を含む)は基材7aに対して相対的に回転する。 Beams 11 and 12 are connected to the first end (end on the −X side) and the second end (end on the + X side) corresponding to both ends of the mirror portion 5 in the X-axis direction, respectively. In the first embodiment, each of the beam 11 and the beam 12 has a long shape in the X-axis direction and functions as a rotation axis of the mirror 10. More specifically, each of the beam 11 and the beam 12 functions as a torsion type elastic hinge. The axis X1 in FIG. 3 is an axis parallel to the X axis and indicates the position of the rotation axis of the mirror 10. Each of the beam 11 and the beam 12 is formed along the axis X1. By twisting each of the beam 11 and the beam 12 around the axis X1, the mirror 10 can rotate around the axis X1 (hereinafter, also referred to as “X1 rotation”). In the first embodiment, the base material 7a is fixed to a housing (not shown), and the mirror portion 5 (including the mirror 10) rotates relative to the base material 7a.
 MEMSミラー1は、軸X1に関して線対称な構造を有する。支持部材4aは、基材7aの-X側の辺に配置され、梁11を介してミラー部5の第1端と接続されている。梁11は、支持部材4a及び基材50と一体的に形成されてもよいし、支持部材4a及び基材50とは別に形成されて支持部材4a及び基材50の各々に接合されてもよい。支持部材4bは、基材7aの+X側の辺に配置され、梁12を介してミラー部5の第2端と接続されている。梁12は、支持部材4b及び基材50と一体的に形成されてもよいし、支持部材4b及び基材50とは別に形成されて支持部材4b及び基材50の各々に接合されてもよい。 The MEMS mirror 1 has a structure that is line-symmetrical with respect to the axis X1. The support member 4a is arranged on the side of the base material 7a on the −X side, and is connected to the first end of the mirror portion 5 via the beam 11. The beam 11 may be formed integrally with the support member 4a and the base material 50, or may be formed separately from the support member 4a and the base material 50 and joined to each of the support member 4a and the base material 50. .. The support member 4b is arranged on the + X side of the base material 7a and is connected to the second end of the mirror portion 5 via the beam 12. The beam 12 may be formed integrally with the support member 4b and the base material 50, or may be formed separately from the support member 4b and the base material 50 and joined to each of the support member 4b and the base material 50. ..
 支持部材4aと梁11との境界部には、ピエゾ抵抗素子91及び92が設けられている。ピエゾ抵抗素子91は、軸X1よりも+Y側に位置し、ピエゾ抵抗素子92は、軸X1よりも-Y側に位置する。支持部材4bと梁12との境界部には、ピエゾ抵抗素子93及び94が設けられている。ピエゾ抵抗素子93は、軸X1よりも+Y側に位置し、ピエゾ抵抗素子94は、軸X1よりも-Y側に位置する。ピエゾ抵抗素子91,92,93,94は、ミラー10、可動電極51,52、固定電極61,62、及び梁11,12の各々と電気的に絶縁されている。詳細は後述するが、この実施の形態1では、ブリッジ回路が形成されるようにピエゾ抵抗素子91,92,93,94が接続されている(図12参照)。制御装置3(図1)は、ブリッジ回路の中点電圧に基づいてミラー10の軸X1まわりの回転位置(以下、「X回転角度」とも称する)を取得するように構成される。未回転状態では、ミラー10のX回転角度は「0」である。 Piezoresistive elements 91 and 92 are provided at the boundary between the support member 4a and the beam 11. The piezoresistive element 91 is located on the + Y side of the shaft X1, and the piezoresistive element 92 is located on the −Y side of the shaft X1. Piezoresistive elements 93 and 94 are provided at the boundary between the support member 4b and the beam 12. The piezoresistive element 93 is located on the + Y side of the shaft X1, and the piezoresistive element 94 is located on the −Y side of the shaft X1. The piezoresistive elements 91, 92, 93, 94 are electrically insulated from each of the mirror 10, the movable electrodes 51, 52, the fixed electrodes 61, 62, and the beams 11, 12. Although details will be described later, in the first embodiment, the piezoresistive elements 91, 92, 93, 94 are connected so as to form a bridge circuit (see FIG. 12). The control device 3 (FIG. 1) is configured to acquire a rotation position (hereinafter, also referred to as “X rotation angle”) around the axis X1 of the mirror 10 based on the midpoint voltage of the bridge circuit. In the non-rotated state, the X rotation angle of the mirror 10 is "0".
 ミラー部5のY軸方向の両端に相当する第3端(+Y側の端)及び第4端(-Y側の端)には、それぞれ可動電極51及び可動電極52が設けられている。可動電極51及び52(後述する各櫛歯電極を含む)は、ミラー10、梁11,12、及び支持部材4a,4bの各々と電気的に接続されており、これらと電気的に等電位である。一方で、可動電極51及び52は、固定電極61,62、駆動配線53、及びピエゾ抵抗素子91,92,93,94の各々とは電気的に絶縁されている。可動電極51及び52の各々は、基材50の側面に設けられている。可動電極51及び52の各々は、基材50と一体的に形成されてもよいし、基材50とは別に形成されて基材50に接合されてもよい。可動電極51,52とミラー部5(ミラー10及び基材50を含む)とは一体的に姿勢を変えるため、ミラー10のX1回転と連動して可動電極51及び可動電極52も回転する。 Movable electrodes 51 and 52 are provided at the third end (+ Y side end) and the fourth end (-Y side end) corresponding to both ends of the mirror portion 5 in the Y-axis direction, respectively. The movable electrodes 51 and 52 (including the comb tooth electrodes described later) are electrically connected to each of the mirror 10, the beams 11, 12 and the support members 4a, 4b, and are electrically equipotentially connected to these. be. On the other hand, the movable electrodes 51 and 52 are electrically insulated from the fixed electrodes 61 and 62, the drive wiring 53, and the piezoresistive elements 91, 92, 93, and 94, respectively. Each of the movable electrodes 51 and 52 is provided on the side surface of the base material 50. Each of the movable electrodes 51 and 52 may be formed integrally with the base material 50, or may be formed separately from the base material 50 and bonded to the base material 50. Since the movable electrodes 51 and 52 and the mirror portion 5 (including the mirror 10 and the base material 50) change their postures integrally, the movable electrodes 51 and 52 also rotate in conjunction with the X1 rotation of the mirror 10.
 固定部材6a、6bは、それぞれ基材7aの+Y側、-Y側の辺に配置されている。固定部材6a、6bは、直接的にはミラー部5と連結されていない。ミラー部5の回転力は、梁11及び12の各々の弾性変形によって吸収されるため、基材7aには伝達されない。このため、固定部材6a、6bは、ミラー10のX1回転とは連動しない。固定電極61は、固定部材6aの-Y側の側面に設けられている。固定電極61は、固定部材6aと一体的に形成されてもよいし、固定部材6aとは別に形成されて固定部材6aに接合されてもよい。固定電極62は、固定部材6bの+Y側の側面に設けられている。固定電極62は、固定部材6bと一体的に形成されてもよいし、固定部材6bとは別に形成されて固定部材6bに接合されてもよい。固定電極61,62は、固定部材6a、6bに支持されるため、ミラー10のX1回転とは連動しない。図3~図6では、MEMSミラー1内の配線が省略されているが、固定電極61(後述する各櫛歯電極を含む)と固定電極62(後述する各櫛歯電極を含む)とは、互いに電気的に接続されており、電気的に等電位である。一方で、固定電極61及び62は、ミラー10、可動電極51,52、駆動配線53、及びピエゾ抵抗素子91,92,93,94の各々とは電気的に絶縁されている。 The fixing members 6a and 6b are arranged on the + Y side and the −Y side of the base material 7a, respectively. The fixing members 6a and 6b are not directly connected to the mirror portion 5. Since the rotational force of the mirror portion 5 is absorbed by the elastic deformation of each of the beams 11 and 12, it is not transmitted to the base material 7a. Therefore, the fixing members 6a and 6b are not interlocked with the X1 rotation of the mirror 10. The fixed electrode 61 is provided on the side surface of the fixing member 6a on the −Y side. The fixed electrode 61 may be formed integrally with the fixing member 6a, or may be formed separately from the fixing member 6a and joined to the fixing member 6a. The fixed electrode 62 is provided on the + Y side side surface of the fixing member 6b. The fixed electrode 62 may be formed integrally with the fixing member 6b, or may be formed separately from the fixing member 6b and joined to the fixing member 6b. Since the fixed electrodes 61 and 62 are supported by the fixing members 6a and 6b, they are not interlocked with the X1 rotation of the mirror 10. Although the wiring in the MEMS mirror 1 is omitted in FIGS. 3 to 6, the fixed electrode 61 (including each comb tooth electrode described later) and the fixed electrode 62 (including each comb tooth electrode described later) are They are electrically connected to each other and are electrically equipotential. On the other hand, the fixed electrodes 61 and 62 are electrically insulated from the mirror 10, the movable electrodes 51 and 52, the drive wiring 53, and the piezoresistive elements 91, 92, 93, 94, respectively.
 この実施の形態1では、可動電極51,52及び固定電極61,62の各々が、櫛歯状に形成されている。可動電極51が形成されたミラー部5の側面(+Y側の側面)と、固定電極61が形成された固定部材6aの側面(-Y側の側面)とは対向している。また、可動電極51と固定電極61との双方の櫛歯が互い違いに配置されることで、可動電極51の各櫛歯電極と固定電極61の各櫛歯電極とが対向している。可動電極52が形成されたミラー部5の側面(-Y側の側面)と、固定電極62が形成された固定部材6bの側面(+Y側の側面)とは対向している。また、可動電極52と固定電極62との双方の櫛歯が互い違いに配置されることで、可動電極52の各櫛歯電極と固定電極62の各櫛歯電極とが対向している。上記のような櫛歯電極構造を採用することで、可動電極51,52と固定電極61,62との間の静電容量を大きくすることができる。このため、小さな印加電圧で大きな静電力を電極間に発生させることができる。詳細は後述するが、この実施の形態1では、固定電極61,62が接地され、可動電極51,52に正電位が印加される。 In the first embodiment, each of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 is formed in a comb-teeth shape. The side surface of the mirror portion 5 on which the movable electrode 51 is formed (the side surface on the + Y side) and the side surface of the fixing member 6a on which the fixed electrode 61 is formed (the side surface on the −Y side) face each other. Further, since the comb teeth of both the movable electrode 51 and the fixed electrode 61 are arranged alternately, each comb tooth electrode of the movable electrode 51 and each comb tooth electrode of the fixed electrode 61 face each other. The side surface of the mirror portion 5 (the side surface on the −Y side) on which the movable electrode 52 is formed and the side surface (the side surface on the + Y side) of the fixing member 6b on which the fixed electrode 62 is formed face each other. Further, since the comb teeth of both the movable electrode 52 and the fixed electrode 62 are arranged alternately, each comb tooth electrode of the movable electrode 52 and each comb tooth electrode of the fixed electrode 62 face each other. By adopting the comb tooth electrode structure as described above, the capacitance between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 can be increased. Therefore, a large electrostatic force can be generated between the electrodes with a small applied voltage. Details will be described later, but in the first embodiment, the fixed electrodes 61 and 62 are grounded, and a positive potential is applied to the movable electrodes 51 and 52.
 駆動配線53は、支持部材4a、梁11、及び基材50の上に設けられている。ただし、支持部材4a、梁11、及び基材50の各々と駆動配線53との間には、絶縁膜54が配置されている。駆動配線53は、絶縁膜54によって、ミラー10、可動電極51,52、固定電極61,62、梁11,12、及びピエゾ抵抗素子91,92,93,94の各々と電気的に絶縁されている。電極パッド56、57は、それぞれ支持部材4aの+Y側、-Y側の端部に設けられ、駆動配線53の両端に位置する。駆動配線53は、電極パッド56と電極パッド57とをつなぐ配線である。駆動配線53は、支持部材4aから梁11を渡ってミラー部5に至り、ミラー部5の外縁部(ミラー10の周囲)を1周し、再び梁11を渡って支持部材4aに戻る。電極パッド56と電極パッド57との間に電圧を印加することによって駆動配線53に電流が流れる。 The drive wiring 53 is provided on the support member 4a, the beam 11, and the base material 50. However, an insulating film 54 is arranged between each of the support member 4a, the beam 11, and the base material 50 and the drive wiring 53. The drive wiring 53 is electrically insulated from the mirror 10, the movable electrodes 51, 52, the fixed electrodes 61, 62, the beams 11, 12, and the piezoresistive elements 91, 92, 93, 94 by the insulating film 54. There is. The electrode pads 56 and 57 are provided at the + Y side and −Y side ends of the support member 4a, respectively, and are located at both ends of the drive wiring 53. The drive wiring 53 is a wiring that connects the electrode pad 56 and the electrode pad 57. The drive wiring 53 crosses the beam 11 from the support member 4a to reach the mirror portion 5, goes around the outer edge portion of the mirror portion 5 (around the mirror 10) once, and returns to the support member 4a across the beam 11 again. By applying a voltage between the electrode pad 56 and the electrode pad 57, a current flows through the drive wiring 53.
 図2~図6に示されるように、MEMSミラー1は、基材7aと、基材7a上に絶縁層55を介して設けられた支持部材4a(第1支持部材)及び支持部材4b(第2支持部材)と、基材7a上に絶縁層55を介して設けられた固定部材6a(第1固定部材)及び固定部材6b(第2固定部材)と、ミラー部5と、梁11(第1梁)及び梁12(第2梁)とを備える。ミラー部5のX軸方向(回転軸の方向)の両端に位置する第1端(-X側の端)及び第2端(+X側の端)はそれぞれ梁11及び12を介して支持部材4a及び4bにつながっている。可動電極51(第1可動電極)及び可動電極52(第2可動電極)はそれぞれ、ミラー部5のY軸方向(回転軸と直交する方向)の両端に位置する第3端(+Y側の端)及び第4端(-Y側の端)に設けられている。また、固定部材6aに支持される固定電極61(第1固定電極)と、固定部材6bに支持される固定電極62(第2固定電極)とはそれぞれ、可動電極51と可動電極52とに対向するように配置されている。梁11及び12の各々は、ミラー部5(ミラー10を含む)の回転軸として機能する。ミラー部5は、軸X1(回転軸)に関して線対称な構造を有する。また、可動電極51及び固定電極61と、可動電極52及び固定電極62とが、軸X1(回転軸)に関して線対称に形成されている。 As shown in FIGS. 2 to 6, the MEMS mirror 1 includes a base material 7a, a support member 4a (first support member) provided on the base material 7a via an insulating layer 55, and a support member 4b (first support member). 2 support member), a fixing member 6a (first fixing member) and a fixing member 6b (second fixing member) provided on the base material 7a via an insulating layer 55, a mirror portion 5, and a beam 11 (first fixing member). 1 beam) and 12 (second beam) are provided. The first end (-X side end) and the second end (+ X side end) located at both ends of the mirror portion 5 in the X-axis direction (direction of the rotation axis) are supported members 4a via beams 11 and 12, respectively. And 4b. The movable electrode 51 (first movable electrode) and the movable electrode 52 (second movable electrode) are the third ends (+ Y side ends) located at both ends of the mirror portion 5 in the Y-axis direction (direction orthogonal to the rotation axis), respectively. ) And the fourth end (the end on the −Y side). Further, the fixed electrode 61 (first fixed electrode) supported by the fixed member 6a and the fixed electrode 62 (second fixed electrode) supported by the fixed member 6b face the movable electrode 51 and the movable electrode 52, respectively. It is arranged to do. Each of the beams 11 and 12 functions as a rotation axis of the mirror portion 5 (including the mirror 10). The mirror portion 5 has a structure that is line-symmetrical with respect to the axis X1 (rotational axis). Further, the movable electrode 51 and the fixed electrode 61, and the movable electrode 52 and the fixed electrode 62 are formed line-symmetrically with respect to the axis X1 (rotational axis).
 図2~図6に示したMEMSミラー1の構造は、たとえばSOI(Silicon On Insulator)基板を用いて作製できる。SOI基板は、シリコン基板と、表面シリコン層(たとえば、単結晶シリコン層)と、これらの間に形成された絶縁層(たとえば、酸化シリコン層又は窒化シリコン層)とを有する基板である。SOI基板を用いたMEMSミラー1では、絶縁層55がSOI基板の絶縁層に相当する。MEMSミラー1の製造には、半導体微細加工技術及びMEMSデバイス技術を適用できる。SOI基板のシリコン基板を加工することによって基材7a及び7bを形成できる。成膜、ドーピング(たとえば、イオン注入又は熱拡散)、パターニング(たとえば、リソグラフィによるパターニング)、及びエッチングといったプロセスを繰り返し行なうことによって、ミラー10、梁11,12、支持部材4a,4b、固定部材6a,6b、可動電極51,52、固定電極61,62、駆動配線53、電極パッド56,57、及びピエゾ抵抗素子91,92,93,94を形成できる。公知のMEMSデバイス技術により、ミラー部5の基材50と、梁11,12と、可動電極51,52と、支持部材4a,4bとを、容易に一体成形することができる。ミラー10は、たとえばAu膜のような金属膜で形成される。可動電極51,52及び固定電極61,62の各々は、たとえば不純物によって表面シリコン層に導電性を付与することにより形成することができる。可動電極51,52及び固定電極61,62の各々は、不純物としてB(ボロン)が添加された導電性シリコンで形成されてもよい。ただし、不純物の種類は適宜変更可能であり、B(ボロン)の代わりにP(リン)を使用してもよい。駆動配線53及び電極パッド56,57は、たとえばAl(アルミニウム)によって形成される。ただしこれに限られず、駆動配線53と電極パッド56,57との少なくとも一方が、Au(金)によって形成されてもよい。ピエゾ抵抗素子91,92,93,94は、たとえば、印加された応力に応じて抵抗値が変化するように、表面シリコン層に対して不純物としてB(ボロン)を拡散させることにより形成することができる。ただし、不純物の種類は適宜変更可能であり、B(ボロン)の代わりにP(リン)を使用してもよい。なお、公知の基板接合技術及び成膜技術を利用して、SOI基板を用いずに、図2~図6に示したMEMSミラー1の構造を作製することも可能である。また、MEMSミラー1における各部の材料は、上述した材料に限られず、適宜変更可能である。ただし、ミラー10の材料としては、走査される光を反射しやすい材料が適している。ミラー10の材料は、走査される光の波長に合わせて決定されてもよい。電極材料としては、電圧の印加に耐え得る材料が適している。配線材料としては、電気抵抗の低い材料が適している。ピエゾ抵抗素子91,92,93,94は、ミラー10の姿勢検出に用いられるため、各ピエゾ抵抗素子の材料としては、ミラー10の回転に伴う応力変化に応じて電気抵抗が変化する材料が適している。 The structure of the MEMS mirror 1 shown in FIGS. 2 to 6 can be manufactured by using, for example, an SOI (Silicon On Insulator) substrate. The SOI substrate is a substrate having a silicon substrate, a surface silicon layer (for example, a single crystal silicon layer), and an insulating layer (for example, a silicon oxide layer or a silicon nitride layer) formed between them. In the MEMS mirror 1 using the SOI substrate, the insulating layer 55 corresponds to the insulating layer of the SOI substrate. Semiconductor microfabrication technology and MEMS device technology can be applied to the manufacture of the MEMS mirror 1. The base materials 7a and 7b can be formed by processing the silicon substrate of the SOI substrate. By repeating processes such as film formation, doping (for example, ion implantation or thermal diffusion), patterning (for example, patterning by lithography), and etching, the mirror 10, the beams 11, 12, the support members 4a, 4b, and the fixing member 6a are repeated. , 6b, movable electrodes 51, 52, fixed electrodes 61, 62, drive wiring 53, electrode pads 56, 57, and piezo resistance elements 91, 92, 93, 94 can be formed. By a known MEMS device technology, the base material 50 of the mirror portion 5, the beams 11 and 12, the movable electrodes 51 and 52, and the support members 4a and 4b can be easily integrally molded. The mirror 10 is formed of a metal film such as an Au film. Each of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 can be formed by, for example, imparting conductivity to the surface silicon layer by impurities. Each of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 may be formed of conductive silicon to which B (boron) is added as an impurity. However, the type of impurities can be changed as appropriate, and P (phosphorus) may be used instead of B (boron). The drive wiring 53 and the electrode pads 56 and 57 are formed of, for example, Al (aluminum). However, the present invention is not limited to this, and at least one of the drive wiring 53 and the electrode pads 56 and 57 may be formed of Au (gold). The piezoresistive elements 91, 92, 93, 94 can be formed, for example, by diffusing B (boron) as an impurity in the surface silicon layer so that the resistance value changes according to the applied stress. can. However, the type of impurities can be changed as appropriate, and P (phosphorus) may be used instead of B (boron). It is also possible to fabricate the structure of the MEMS mirror 1 shown in FIGS. 2 to 6 by using a known substrate bonding technique and film forming technique without using an SOI substrate. Further, the material of each part in the MEMS mirror 1 is not limited to the above-mentioned material, and can be changed as appropriate. However, as the material of the mirror 10, a material that easily reflects the scanned light is suitable. The material of the mirror 10 may be determined according to the wavelength of the light being scanned. As the electrode material, a material that can withstand the application of voltage is suitable. As the wiring material, a material having low electrical resistance is suitable. Since the piezoresistive elements 91, 92, 93, and 94 are used for detecting the attitude of the mirror 10, a material whose electrical resistance changes according to a stress change accompanying the rotation of the mirror 10 is suitable as a material for each piezoresistive element. ing.
 図2~図6には、MEMSミラー1からの配線の引出しを示していないが、可動電極51,52、固定電極61,62、電極パッド56,57、及びピエゾ抵抗素子91,92,93,94の各々は、配線によって外部の回路(たとえば、電源回路又は検出回路)と電気的に接続されてもよい。電気的な接続は、ワイヤボンディングによって行なわれてもよい。この実施の形態1では、制御装置3(図1)が、可動電極51,52、固定電極61,62、及び電極パッド56,57の各々と電気的に接続されている。制御装置3は、電極パッド56と電極パッド57との間に電圧信号を印加可能に構成される。また、制御装置3は、可動電極51,52と固定電極61,62との間に電圧信号を印加可能に構成される。ピエゾ抵抗素子91,92,93,94は、MEMSミラー1の外に設けられた配線によって接続され、ブリッジ回路(後述する図12参照)を形成している。 Although the drawing of the wiring from the MEMS mirror 1 is not shown in FIGS. 2 to 6, the movable electrodes 51 and 52, the fixed electrodes 61 and 62, the electrode pads 56 and 57, and the piezo resistance elements 91, 92, 93, Each of the 94s may be electrically connected to an external circuit (eg, power supply circuit or detection circuit) by wiring. The electrical connection may be made by wire bonding. In the first embodiment, the control device 3 (FIG. 1) is electrically connected to each of the movable electrodes 51 and 52, the fixed electrodes 61 and 62, and the electrode pads 56 and 57. The control device 3 is configured so that a voltage signal can be applied between the electrode pad 56 and the electrode pad 57. Further, the control device 3 is configured so that a voltage signal can be applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. The piezoresistive elements 91, 92, 93, 94 are connected by wiring provided outside the MEMS mirror 1 to form a bridge circuit (see FIG. 12 described later).
 図7は、図1に示した制御装置3によって実行される処理について説明するための図である。図7を参照して、制御装置3には、走査範囲及び駆動周波数のような走査条件が入力される。走査範囲は、MEMSミラー1によって光が走査される範囲である。駆動周波数は、ミラー10の駆動信号の周波数に相当する。駆動周波数に応じて、フレームレート(すなわち、単位時間あたりに処理されるフレーム数)が変化する傾向がある。駆動周波数は、たとえば所望のフレームレートが得られるように決定される。駆動周波数は、任意に設定可能であり、たとえば数十Hz程度であってもよい。 FIG. 7 is a diagram for explaining the process executed by the control device 3 shown in FIG. With reference to FIG. 7, scanning conditions such as a scanning range and a driving frequency are input to the control device 3. The scanning range is the range in which light is scanned by the MEMS mirror 1. The drive frequency corresponds to the frequency of the drive signal of the mirror 10. The frame rate (ie, the number of frames processed per unit time) tends to change depending on the drive frequency. The drive frequency is determined, for example, to obtain the desired frame rate. The drive frequency can be arbitrarily set, and may be, for example, about several tens of Hz.
 制御装置3は、ステップS1において、走査範囲において光を走査するために駆動配線53に流す電流信号(以下、「駆動電流信号」とも称する)を決定する。駆動電流信号は、波形信号であり、「ミラーアクチュエータを制御するための波形信号」の一例に相当する。駆動電流信号に含まれる基本波の周波数は、「駆動周波数」の一例に相当する。駆動配線53に電流が流れることによって、ミラー10が駆動され、ミラー10のX回転角度が変わる。駆動電流信号は、たとえばミラー10で反射された光が所望の方向に走査されるように決定される。制御装置3は、ステップS2において、ステップS1において決定された駆動電流信号を駆動配線53に流すための電圧信号(以下、「駆動電圧信号」とも称する)を生成する。駆動配線53に流れる電流は、駆動電圧信号によって制御される。 In step S1, the control device 3 determines a current signal (hereinafter, also referred to as “drive current signal”) to be passed through the drive wiring 53 in order to scan light in the scanning range. The drive current signal is a waveform signal and corresponds to an example of a “waveform signal for controlling a mirror actuator”. The frequency of the fundamental wave included in the drive current signal corresponds to an example of "drive frequency". When a current flows through the drive wiring 53, the mirror 10 is driven and the X rotation angle of the mirror 10 changes. The drive current signal is determined so that, for example, the light reflected by the mirror 10 is scanned in a desired direction. In step S2, the control device 3 generates a voltage signal (hereinafter, also referred to as “drive voltage signal”) for flowing the drive current signal determined in step S1 to the drive wiring 53. The current flowing through the drive wiring 53 is controlled by the drive voltage signal.
 図8は、ミラー10が駆動される際の電流及び磁界(磁束密度)の向きの一例を示す図である。図8を参照して、この例では、磁石2a,2bによってY軸方向の磁界が印加されている。磁界の磁束密度Bの向きは、磁石2aから磁石2bへの向き(-Yの向き)である。駆動配線53には、電極パッド57から電極パッド56への電流が流れる。ミラー部5の+Y側(図3に示した可動電極51側)の縁R1では、駆動配線53のX軸に平行な部分(以下、「R1配線」と称する)を電流J1が-Xの向きに流れる。ミラー部5の-Y側(図3に示した可動電極52側)の縁R2では、駆動配線53のX軸に平行な部分(以下、「R2配線」と称する)を電流J2が+Xの向きに流れる。電流J1,J2のベクトルと磁束密度Bのベクトルとは直交する。 FIG. 8 is a diagram showing an example of the directions of the current and the magnetic field (magnetic flux density) when the mirror 10 is driven. With reference to FIG. 8, in this example, a magnetic field in the Y-axis direction is applied by the magnets 2a and 2b. The direction of the magnetic flux density B of the magnetic field is the direction from the magnet 2a to the magnet 2b (direction of −Y). A current flows from the electrode pad 57 to the electrode pad 56 in the drive wiring 53. At the edge R1 on the + Y side (the movable electrode 51 side shown in FIG. 3) of the mirror portion 5, the portion parallel to the X axis of the drive wiring 53 (hereinafter referred to as “R1 wiring”) has a direction in which the current J1 is −X. Flow to. At the edge R2 of the mirror portion 5 on the −Y side (the movable electrode 52 side shown in FIG. 3), the portion parallel to the X axis of the drive wiring 53 (hereinafter referred to as “R2 wiring”) has a direction in which the current J2 is + X. Flow to. The vectors of the currents J1 and J2 and the vector of the magnetic flux density B are orthogonal to each other.
 図9は、図8に示した電流及び磁界(磁束密度)によって生じるローレンツ力を示す図である。図9を参照して、ミラー部5の縁R1では、R1配線を流れる電流J1と磁束密度Bとによって+Zの向きのローレンツ力Fmag1が生じる。ミラー部5の縁R2では、R2配線を流れる電流J2と磁束密度Bとによって-Zの向きのローレンツ力Fmag2が生じる。 FIG. 9 is a diagram showing the Lorentz force generated by the current and the magnetic field (magnetic flux density) shown in FIG. With reference to FIG. 9, at the edge R1 of the mirror portion 5, a Lorentz force Fmag1 in the + Z direction is generated by the current J1 flowing through the R1 wiring and the magnetic flux density B. At the edge R2 of the mirror portion 5, a Lorentz force Fmag2 in the direction of −Z is generated by the current J2 flowing through the R2 wiring and the magnetic flux density B.
 図10は、図9に示したローレンツ力によって生じるトルクを示す図である。図9とともに図10を参照して、図9に示したローレンツ力Fmag1,Fmag2によって、軸X1まわりのトルクTmagが生じる。このトルクTmagによりミラー部5を支持する梁11及び12がねじれ、ミラー部5(図3~図6に示したミラー10を含む)が軸X1まわりに回転する。 FIG. 10 is a diagram showing the torque generated by the Lorentz force shown in FIG. With reference to FIG. 9 and FIG. 10, the Lorentz forces Fmag1 and Fmag2 shown in FIG. 9 generate a torque Tmag around the axis X1. The torque Tmag twists the beams 11 and 12 that support the mirror portion 5, and the mirror portion 5 (including the mirror 10 shown in FIGS. 3 to 6) rotates around the axis X1.
 図8~図10を参照して、電極パッド57から駆動配線53を通じて電極パッド56に電流Jを流したときに生じるローレンツ力Fmagの大きさは、下記式(1)に示すように、磁束密度Bと、駆動配線53のX軸に平行な部分の長さL(図8参照)と、電流Jとの積に相当する。なお、電流J1と電流J2とは同じ大きさ(J)になり、R1配線及びR2配線は同じ長さ(L)を有するため、ローレンツ力Fmag1及びFmag2は同じ大きさ(Fmag)になる。 With reference to FIGS. 8 to 10, the magnitude of the Lorentz force Fmag generated when a current J is passed from the electrode pad 57 to the electrode pad 56 through the drive wiring 53 is determined by the magnetic flux density as shown in the following equation (1). It corresponds to the product of B, the length L of the portion of the drive wiring 53 parallel to the X axis (see FIG. 8), and the current J. Since the current J1 and the current J2 have the same magnitude (J) and the R1 wiring and the R2 wiring have the same length (L), the Lorentz forces Fmag1 and Fmag2 have the same magnitude (Fmag).
  Fmag=B×J×L  …(1)
 軸X1まわりのトルクTmagの大きさは、下記式(2)に示すように、R1配線及びR2配線の2箇所で生じるローレンツ力Fmagと、軸X1(回転軸)からみた力の加わる点(すなわち、上記2箇所)までの距離Rmagとの積に相当する。なお、MEMSミラー1は、軸X1に関して線対称な構造を有するため、R1配線と軸X1との距離と、R2配線と軸X1との距離とは、同じ寸法(Rmag)になる。
Fmag = B × J × L… (1)
As shown in the following equation (2), the magnitude of the torque Tmag around the shaft X1 is the point where the Lorentz force Fmag generated at the two locations of the R1 wiring and the R2 wiring and the force applied from the shaft X1 (rotating shaft) are applied (that is,). , Corresponds to the product of the distance Rmag to the above two places). Since the MEMS mirror 1 has a structure that is line-symmetrical with respect to the axis X1, the distance between the R1 wiring and the axis X1 and the distance between the R2 wiring and the axis X1 have the same dimensions (Rmag).
  Tmag=2×Fmag×Rmag  …(2)
 トルクTmagによってミラー部5がX軸まわりに回転すると、ミラー部5を支持する梁11及び12がねじれる。この際、梁11,12の復元力(すなわち、梁11,12が元の状態に戻ろうとする力)によって、トルクTmagとは逆向きのトルクTmecがミラー部5に加わる。トルクTmecは、下記式(3)に示すように、梁11,12のねじれ方向のばね定数Kmecと、ミラー部5(又は、ミラー10)のX回転角度θxとの積に相当する。
Tmag = 2 x Fmag x Rmag ... (2)
When the mirror portion 5 is rotated around the X axis by the torque Tmag, the beams 11 and 12 supporting the mirror portion 5 are twisted. At this time, due to the restoring force of the beams 11 and 12 (that is, the force of the beams 11 and 12 to return to the original state), a torque Tmec opposite to the torque Tmag is applied to the mirror portion 5. As shown in the following equation (3), the torque Tmec corresponds to the product of the spring constant Kmec in the twisting direction of the beams 11 and 12 and the X rotation angle θx of the mirror portion 5 (or the mirror 10).
  Tmec=-Kmec×θx  …(3)
 駆動配線53に前述の駆動電流信号が流れると、ミラー部5は、ローレンツ力によるトルクTmagと梁11,12の復元力によるトルクTmecとが釣り合うように姿勢を変える。制御装置3(図1)は、駆動電流信号によってミラー部5の姿勢(より特定的には、X回転角度)を制御することができる。ミラー部5が回転することで、ミラー部5に含まれるミラー10(図3~図6)も回転する。
Tmec = -Kmec x θx ... (3)
When the above-mentioned drive current signal flows through the drive wiring 53, the mirror unit 5 changes its posture so that the torque Tmag due to the Lorentz force and the torque Tmec due to the restoring force of the beams 11 and 12 are balanced. The control device 3 (FIG. 1) can control the posture (more specifically, the X rotation angle) of the mirror unit 5 by the drive current signal. As the mirror portion 5 rotates, the mirror 10 (FIGS. 3 to 6) included in the mirror portion 5 also rotates.
 図11は、光走査装置100のMEMSミラー1に入射した光ビームの反射方向を示す図である。図1及び図2とともに図11を参照して、光走査装置100のMEMSミラー1に入射した光ビームは、ミラー10で反射された後、光走査装置100から出射される。ミラー10がX1回転すると、ミラー10の反射面は、基準面(すなわち、ミラー10が未回転状態であるときの反射面)からX回転角度θxだけ傾く。これにより、ミラー10で反射される光ビームの光軸は、基準方向(すなわち、ミラー10が未回転状態であるときの反射方向)から2θx(すなわち、X回転角度θxの2倍の角度)だけ傾くことになる。 FIG. 11 is a diagram showing the reflection direction of the light beam incident on the MEMS mirror 1 of the optical scanning device 100. With reference to FIGS. 1 and 2, the light beam incident on the MEMS mirror 1 of the optical scanning apparatus 100 is reflected by the mirror 10 and then emitted from the optical scanning apparatus 100. When the mirror 10 rotates X1, the reflecting surface of the mirror 10 is tilted by an X rotation angle θx from the reference surface (that is, the reflecting surface when the mirror 10 is not rotated). As a result, the optical axis of the light beam reflected by the mirror 10 is only 2θx (that is, an angle twice the X rotation angle θx) from the reference direction (that is, the reflection direction when the mirror 10 is not rotated). It will tilt.
 上記のように、光走査装置100(図1)から出射される光の方向は、ミラー10のX回転角度θxに応じて変わる。制御装置3(図1)は、駆動電流信号によってミラー10のX回転角度θxを制御できる。制御装置3は、ミラーアクチュエータ(磁石2a,2b及び駆動配線53を含む)を駆動電流信号(すなわち、周期的な信号)で制御することにより、ミラー部5(ミラー10を含む)は、決まった姿勢を周期的に繰り返す。より具体的には、ミラー10は、軸X1まわりに順回転と逆回転とを繰り返すことによって揺動する。これにより、光走査装置100から出射される光の光軸は、決まった方向を周期的に繰り返すようになる。光走査装置100は、こうしたミラー制御により光を走査することができる。 As described above, the direction of the light emitted from the optical scanning device 100 (FIG. 1) changes according to the X rotation angle θx of the mirror 10. The control device 3 (FIG. 1) can control the X rotation angle θx of the mirror 10 by the drive current signal. The control device 3 controls the mirror actuator (including the magnets 2a and 2b and the drive wiring 53) with a drive current signal (that is, a periodic signal), whereby the mirror unit 5 (including the mirror 10) is determined. The posture is repeated periodically. More specifically, the mirror 10 swings around the axis X1 by repeating forward rotation and reverse rotation. As a result, the optical axis of the light emitted from the optical scanning device 100 periodically repeats a fixed direction. The optical scanning device 100 can scan light by such mirror control.
 ミラー部5(ミラー10を含む)の姿勢は、図3及び図6に示したピエゾ抵抗素子91,92,93,94によって検出される。図12は、ピエゾ抵抗素子91,92,93,94が構成する姿勢検出回路を示す図である。図3及び図6とともに図12を参照して、ピエゾ抵抗素子91,92,93,94は、配線によって接続され、図12に示すようなブリッジ回路(姿勢検出回路)を形成している。図3及び図6に示されるように、ピエゾ抵抗素子91,92,93,94は梁11,12の根元(支持部材4a,4b側)に配置されており、ミラー10のX回転角度θxが変化すると、ピエゾ抵抗素子91,92,93,94に応力が生じる。こうした応力変化に起因して、各ピエゾ抵抗素子の抵抗値が変化する。ミラー10のX1回転によって梁11,12がねじれるとき、ピエゾ抵抗素子91,94とピエゾ抵抗素子92,93とでは、印加される応力が逆向きであり、抵抗変化の方向(+/-)も逆になる。図12に示されるブリッジ回路に一定の電圧を加えた状態では、各ピエゾ抵抗素子の抵抗値に応じた電圧Vcがブリッジ回路の中点に出力される。各ピエゾ抵抗素子の抵抗値は梁11,12のねじれ角度(すなわち、ミラー10のX回転角度)に応じて変化するため、制御装置3(図1)は、ブリッジ回路の中点に出力される電圧Vcに基づいてミラー10のX回転角度を取得できる。 The posture of the mirror unit 5 (including the mirror 10) is detected by the piezoresistive elements 91, 92, 93, 94 shown in FIGS. 3 and 6. FIG. 12 is a diagram showing a posture detection circuit composed of the piezoresistive elements 91, 92, 93, 94. With reference to FIG. 12 together with FIGS. 3 and 6, the piezoresistive elements 91, 92, 93, 94 are connected by wiring to form a bridge circuit (posture detection circuit) as shown in FIG. As shown in FIGS. 3 and 6, the piezoresistive elements 91, 92, 93, 94 are arranged at the roots of the beams 11 and 12 ( support members 4a, 4b side), and the X rotation angle θx of the mirror 10 is set. When changed, stress is generated in the piezoresistive elements 91, 92, 93, 94. Due to such a stress change, the resistance value of each piezoresistive element changes. When the beams 11 and 12 are twisted by the X1 rotation of the mirror 10, the stress applied to the piezoresistive elements 91 and 94 and the piezoresistive elements 92 and 93 is opposite, and the direction of resistance change (+/-) is also The opposite is true. When a constant voltage is applied to the bridge circuit shown in FIG. 12, a voltage Vc corresponding to the resistance value of each piezoresistive element is output to the midpoint of the bridge circuit. Since the resistance value of each piezoresistive element changes according to the twist angle of the beams 11 and 12 (that is, the X rotation angle of the mirror 10), the control device 3 (FIG. 1) is output to the midpoint of the bridge circuit. The X rotation angle of the mirror 10 can be acquired based on the voltage Vc.
 ところで、駆動電流信号によってミラー10が駆動されるときに、ミラー10の軸X1まわりの共振周波数(以下、「X1共振周波数」とも称する)が、駆動電流信号に含まれる高調波の周波数に近いと、リンギングが生じやすくなる。そこで、この実施の形態1に係る光走査装置100では、以下に説明する調整信号によってミラー10のX1共振周波数を制御することで、リンギングを抑制している。 By the way, when the mirror 10 is driven by the drive current signal, the resonance frequency around the axis X1 of the mirror 10 (hereinafter, also referred to as "X1 resonance frequency") is close to the frequency of the harmonics included in the drive current signal. , Ringing is likely to occur. Therefore, in the optical scanning apparatus 100 according to the first embodiment, ringing is suppressed by controlling the X1 resonance frequency of the mirror 10 by the adjustment signal described below.
 再び図7を参照して、制御装置3は、ステップS3において、可動電極51,52と固定電極61,62との間(すなわち、櫛歯電極間)に印加する電圧信号(以下、「調整信号」とも称する)を決定する。この調整信号によって、ミラー10のX1共振周波数を制御することができる。詳細は後述するが、ステップS3においては、まず、X1共振周波数の目標値が決定され、ミラー10のX1共振周波数を目標値に近づけるように、調整信号が決定される。制御装置3は、ステップS4において、ステップS3において決定された調整信号を生成する。 With reference to FIG. 7 again, in step S3, the control device 3 applies a voltage signal (hereinafter, “adjustment signal”) applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 (that is, between the comb tooth electrodes). Also called). The X1 resonance frequency of the mirror 10 can be controlled by this adjustment signal. Details will be described later, but in step S3, the target value of the X1 resonance frequency is first determined, and the adjustment signal is determined so that the X1 resonance frequency of the mirror 10 approaches the target value. The control device 3 generates the adjustment signal determined in step S3 in step S4.
 図3~図5に示されるように、可動電極51と固定電極61との双方の櫛歯が互い違いに配置されることで、可動電極51の各櫛歯電極と固定電極61の各櫛歯電極とは対向する。また、可動電極52と固定電極62との双方の櫛歯が互い違いに配置されることで、可動電極52の各櫛歯電極と固定電極62の各櫛歯電極とは対向する。対向する1組の櫛歯電極間の静電容量Cを、平行平板モデルで考えると、静電容量Cは、櫛歯電極の対向面積に比例し、櫛歯電極間のギャップに反比例する。このうち、櫛歯電極の対向面積は、ミラー10のX回転角度θxに応じて変化する。櫛歯電極間に電圧Veleが印加されると、ミラー10のX回転角度θxに対する静電容量の変化量(∂C/∂θx:静電容量の回転角度微分値)と、櫛歯電極間に発生する静電力Feleとは、下記式(4)に示すような関係を有する。なお、櫛歯電極間の電圧の正/負は任意に設定できるが、この実施の形態1では、固定電極61,62が負(接地)、可動電極51,52が正である。 As shown in FIGS. 3 to 5, the comb teeth of both the movable electrode 51 and the fixed electrode 61 are arranged alternately, so that each comb tooth electrode of the movable electrode 51 and each comb tooth electrode of the fixed electrode 61 are arranged alternately. Is opposed to. Further, by arranging the comb teeth of both the movable electrode 52 and the fixed electrode 62 in a staggered manner, each comb tooth electrode of the movable electrode 52 and each comb tooth electrode of the fixed electrode 62 face each other. Considering the capacitance C between one set of facing comb-tooth electrodes in a parallel flat plate model, the capacitance C is proportional to the facing area of the comb-tooth electrodes and inversely proportional to the gap between the comb-tooth electrodes. Of these, the facing area of the comb tooth electrodes changes according to the X rotation angle θx of the mirror 10. When a voltage Vele is applied between the comb-tooth electrodes, the amount of change in capacitance with respect to the X rotation angle θx of the mirror 10 (∂C / ∂θx: differential value of capacitance rotation angle) and between the comb-tooth electrodes The generated electrostatic force Feel has a relationship as shown in the following formula (4). The positive / negative voltage between the comb tooth electrodes can be set arbitrarily, but in the first embodiment, the fixed electrodes 61 and 62 are negative (grounded) and the movable electrodes 51 and 52 are positive.
  Fele=(-1/2)×(∂C/∂θx)×(Vele)  …(4)
 上記のように、櫛歯電極間には、電圧Veleの2乗に比例する静電力Feleが発生する。静電力Feleは、ミラー10のX回転角度θxの絶対値を小さくする方向に働く。可動電極51及び固定電極61の各櫛歯電極が対向する部位(以下、「第1櫛歯対向部位」とも称する)と、可動電極52及び固定電極62の各櫛歯電極が対向する部位(以下、「第2櫛歯対向部位」とも称する)との、2箇所で静電力Feleが生じる。これらの静電力Feleによって、軸X1まわりのトルクTeleが生じる。トルクTeleの向きは、前述したトルクTmag(図10)とは逆向きであり、梁11,12の機械的な復元力によるトルクTmecと同じ向きである。トルクTeleは、ミラー10のX1回転に対する梁11,12の復元力を強めるように作用する。トルクTeleの大きさは、下記式(5)に示すように、2箇所で生じる静電力Feleと、軸X1(回転軸)からみた力の加わる点(すなわち、第1及び第2櫛歯対向部位)までの距離Releとの積に相当する。なお、MEMSミラー1は、軸X1に関して線対称な構造を有するため、第1櫛歯対向部位と軸X1との距離と、第2櫛歯対向部位と軸X1との距離とは、同じ寸法(Rele)になる。
Feel = (-1 / 2) × (∂C / ∂θx) × (Vele) 2 … (4)
As described above, an electrostatic force Feel proportional to the square of the voltage Vele is generated between the comb tooth electrodes. The electrostatic force Feel acts in the direction of reducing the absolute value of the X rotation angle θx of the mirror 10. A portion where the comb-tooth electrodes of the movable electrode 51 and the fixed electrode 61 face each other (hereinafter, also referred to as a “first comb-tooth facing portion”) and a portion where the comb-tooth electrodes of the movable electrode 52 and the fixed electrode 62 face each other (hereinafter, also referred to as a “first comb-tooth facing portion”). , Also referred to as "second comb tooth facing portion"), electrostatic force Feel is generated at two locations. Due to these electrostatic force Feels, a torque tele is generated around the axis X1. The direction of the torque TV is opposite to that of the torque Tmag (FIG. 10) described above, and is the same as the direction of the torque Tmec due to the mechanical restoring force of the beams 11 and 12. The torque Tele acts to increase the restoring force of the beams 11 and 12 with respect to the X1 rotation of the mirror 10. As shown in the following formula (5), the magnitude of the torque tele is determined by the electrostatic force Feel generated at the two locations and the point where the force is applied from the axis X1 (rotating axis) (that is, the first and second comb tooth facing portions). ) Corresponds to the product of the distance Rele. Since the MEMS mirror 1 has a structure that is axisymmetric with respect to the axis X1, the distance between the first comb tooth facing portion and the axis X1 and the distance between the second comb tooth facing portion and the axis X1 are the same dimensions ( Rele).
  Tele=2×Fele×Rele  …(5)
 静電力Feleの大きさは、基本的には、ミラー10のX回転角度θxに対して比例する。また、トルクTeleも、ミラー10のX回転角度θxに対して比例する。このため、静電力Fele、トルクTeleは、それぞれ下記式(6)、(7)によって表わすことができる。なお、式(6)中の「α」と式(7)中の「Kele」との各々は比例定数である。
Tele = 2 x Feel x Relay ... (5)
The magnitude of the electrostatic force Feel is basically proportional to the X rotation angle θx of the mirror 10. The torque Tele is also proportional to the X rotation angle θx of the mirror 10. Therefore, the electrostatic force Feel and the torque Tele can be expressed by the following equations (6) and (7), respectively. It should be noted that each of "α" in the equation (6) and "Kele" in the equation (7) is a proportionality constant.
  Fele=-α×θx×(Vele)  …(6)
  Tele=-Kele×θx  …(7)
 式(5)~(7)から分かるように、Keleは、下記式(8)によって表わすことができる。
Feel = −α × θx × (Vele) 2 … (6)
Tele = -Kele x θx ... (7)
As can be seen from the formulas (5) to (7), Kele can be expressed by the following formula (8).
  Kele=2α×Rele×(Vele)  …(8)
 Keleは、等価的に、ミラー10のX1回転に関するばね定数として扱うことができる。Keleは、櫛歯電極間の電圧Veleの2乗に比例するため、前述した調整信号によってKele(ばね定数)を制御することができる。ミラー10がX1回転した状態で、櫛歯電極間に電圧(調整信号)が印加されると、ミラー10の姿勢を復元する方向(すなわち、X回転角度θxの絶対値を小さくする方向)にトルクTeleが生ずる。櫛歯電極間に電圧を印加することは、梁11,12の剛性を高めてミラー10のX1回転に対するばね定数を大きくすることと等価に扱うことができる。
Kele = 2α × Relay × (Vele) 2 … (8)
Kele can be equivalently treated as a spring constant for the X1 rotation of the mirror 10. Since the Kele is proportional to the square of the voltage Vele between the comb tooth electrodes, the Kele (spring constant) can be controlled by the above-mentioned adjustment signal. When a voltage (adjustment signal) is applied between the comb tooth electrodes while the mirror 10 is rotated X1, torque is applied in the direction of restoring the posture of the mirror 10 (that is, the direction of reducing the absolute value of the X rotation angle θx). Tele occurs. Applying a voltage between the comb-tooth electrodes can be treated as equivalent to increasing the rigidity of the beams 11 and 12 and increasing the spring constant with respect to the X1 rotation of the mirror 10.
 櫛歯電極間に電圧(調整信号)が印加されない場合、ミラー10のX1共振周波数は、ミラー10を支持する構造の機械的な性質によって決まる。櫛歯電極間に電圧が印加されない場合のミラー10のX1共振周波数fmecは、下記式(9)に示すように、ミラー10のX軸まわりの慣性モーメントMと、ミラー10のX軸まわりのばね定数Kmecとによって表わすことができる。 When no voltage (adjustment signal) is applied between the comb tooth electrodes, the X1 resonance frequency of the mirror 10 is determined by the mechanical properties of the structure that supports the mirror 10. The X1 resonance frequency fmec of the mirror 10 when no voltage is applied between the comb tooth electrodes is the moment of inertia M around the X axis of the mirror 10 and the spring around the X axis of the mirror 10 as shown in the following equation (9). It can be represented by the constant Kmec.
  fmec=(1/2)×π×√(Kmec/M)  …(9)
 他方、櫛歯電極間に電圧(調整信号)が印加された場合には、櫛歯電極間の静電力によってトルクTeleが発生し、トルクTeleによってミラー10のX軸まわりのばね定数は大きくなる。この際、ミラー10のX軸まわりのばね定数は、前述の式(8)で表わされるKeleだけ大きくなる。櫛歯電極間に電圧が印加される場合のミラー10のX1共振周波数feleは、下記式(10)によって表わすことができる。
fmec = (1/2) × π × √ (Kmec / M)… (9)
On the other hand, when a voltage (adjustment signal) is applied between the comb-tooth electrodes, a torque tele is generated by the electrostatic force between the comb-tooth electrodes, and the torque tele increases the spring constant around the X-axis of the mirror 10. At this time, the spring constant around the X-axis of the mirror 10 is increased by the Kele represented by the above equation (8). The X1 resonance frequency feel of the mirror 10 when a voltage is applied between the comb tooth electrodes can be expressed by the following equation (10).
  fele=(1/2)×π×√((Kmec+Kele)/M)  …(10)
 式(9)及び(10)から分かるように、櫛歯電極間に電圧(調整信号)が印加されることによってミラー10のX1共振周波数は高くなる。
feel = (1/2) × π × √ ((Kmec + Kele) / M)… (10)
As can be seen from the equations (9) and (10), the X1 resonance frequency of the mirror 10 is increased by applying a voltage (adjustment signal) between the comb tooth electrodes.
 再び図7を参照して、制御装置3は、ステップS5において、ステップS2で生成された駆動電圧信号を駆動配線53の両端(電極パッド56,57)に印加するとともに、ステップS4で生成された調整信号を可動電極51,52と固定電極61,62との間(すなわち、櫛歯電極間)に印加する。駆動電圧信号が駆動配線53の両端に印加されると、駆動電流信号が駆動配線53に流れる。 With reference to FIG. 7 again, in step S5, the control device 3 applies the drive voltage signal generated in step S2 to both ends (electrode pads 56, 57) of the drive wiring 53, and is generated in step S4. The adjustment signal is applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 (that is, between the comb tooth electrodes). When a drive voltage signal is applied to both ends of the drive wiring 53, a drive current signal flows through the drive wiring 53.
 図13は、ミラー10の駆動信号(すなわち、駆動配線53に流れる駆動電流信号)の一例を示す図である。図13において、横軸は時間、縦軸は電流値を示している。図13を参照して、この駆動信号は、鋸歯状波形の信号である。鋸歯状波形の上昇期間(たとえば、ミラー10が順回転する期間)を利用して、走査速度が一定になる期間を長くすることができる。駆動周波数(駆動信号の周波数)はfdであり、駆動周期(駆動信号の周期)は1/fdである。 FIG. 13 is a diagram showing an example of a drive signal of the mirror 10 (that is, a drive current signal flowing through the drive wiring 53). In FIG. 13, the horizontal axis represents time and the vertical axis represents current value. With reference to FIG. 13, this drive signal is a serrated waveform signal. The rising period of the serrated waveform (for example, the period during which the mirror 10 rotates forward) can be used to lengthen the period during which the scanning speed becomes constant. The drive frequency (frequency of the drive signal) is fd, and the drive cycle (cycle of the drive signal) is 1 / fd.
 図14は、ミラー10の駆動信号(すなわち、駆動配線53に流れる駆動電流信号)に含まれる周波数成分の一例を示す図である。図14において、横軸は周波数、縦軸は振幅を示している。図14を参照して、この駆動信号は、基本波の周波数fdと、複数の高調波の周波数nfdとを含む。高調波の周波数は、基本波の周波数(fd)のn倍の周波数(nfd)であり、nは2以上の整数である。たとえば、第2次高調波の周波数は、fdの2倍の周波数(2fd)である。第3次高調波の周波数は、fdの3倍の周波数(3fd)である。 FIG. 14 is a diagram showing an example of a frequency component included in the drive signal of the mirror 10 (that is, the drive current signal flowing through the drive wiring 53). In FIG. 14, the horizontal axis represents frequency and the vertical axis represents amplitude. With reference to FIG. 14, this drive signal includes a fundamental wave frequency fd and a plurality of harmonic frequencies nfd. The frequency of the harmonic is n times the frequency (fd) of the fundamental wave (nfd), and n is an integer of 2 or more. For example, the frequency of the second harmonic is twice the frequency of fd (2fd). The frequency of the third harmonic is three times the frequency of fd (3fd).
 図15は、リンギングが生じやすいミラー10のX1共振周波数の一例を示す図である。図15において、横軸は周波数、縦軸は振幅を示している。図15を参照して、この例では、ミラー10のX1共振周波数foが、第3次高調波の周波数(3fd)と一致する。ミラー10のX1共振周波数foが、ミラー10の駆動信号に含まれる高調波の周波数(nfd)と一致すると、共振現象によりミラー10の回転変位が増幅され、リンギングが生じやすくなる。図16は、リンギングが生じたときのミラー10のX回転角度θxの推移を示す図である。図16を参照して、リンギングが生じると、共振現象によって生じる波形(たとえば、周期1/3fdの波形)が、所望のX回転変位(θx)の波形に重畳されることになり、ミラー10のX回転角度θxは所望の角度からずれる。このため、リンギングが生じると、光の走査精度が損なわれる。 FIG. 15 is a diagram showing an example of the X1 resonance frequency of the mirror 10 in which ringing is likely to occur. In FIG. 15, the horizontal axis represents frequency and the vertical axis represents amplitude. With reference to FIG. 15, in this example, the X1 resonance frequency fo of the mirror 10 coincides with the frequency (3fd) of the third harmonic. When the X1 resonance frequency fo of the mirror 10 matches the frequency (nfd) of the harmonics included in the drive signal of the mirror 10, the rotational displacement of the mirror 10 is amplified by the resonance phenomenon, and ringing is likely to occur. FIG. 16 is a diagram showing a transition of the X rotation angle θx of the mirror 10 when ringing occurs. With reference to FIG. 16, when ringing occurs, the waveform generated by the resonance phenomenon (for example, the waveform having a period of 1/3 fd) is superimposed on the waveform of the desired X rotational displacement (θx), and the mirror 10 The X rotation angle θx deviates from a desired angle. Therefore, when ringing occurs, the scanning accuracy of light is impaired.
 この実施の形態1に係る光走査装置100(図1)では、制御装置3が、前述した図7のステップS3~S5の処理によって、ミラー10の駆動信号(駆動電流信号)に含まれる周波数成分からミラー10のX1共振周波数が離れるように、ミラー10のX1共振周波数を制御する。図17は、図7のS3において実行される調整信号の決定に係る処理の詳細を示すフローチャートである。 In the optical scanning device 100 (FIG. 1) according to the first embodiment, the control device 3 has a frequency component included in the drive signal (drive current signal) of the mirror 10 by the processing of steps S3 to S5 of FIG. 7 described above. The X1 resonance frequency of the mirror 10 is controlled so that the X1 resonance frequency of the mirror 10 is separated from the mirror 10. FIG. 17 is a flowchart showing details of the process related to the determination of the adjustment signal executed in S3 of FIG. 7.
 図1~図6とともに図17を参照して、制御装置3は、ステップS10において、櫛歯電極間に電圧(調整信号)が印加されていない場合のミラー10のX1回転変位に対する周波数応答特性(以下、「X回転ミラー特性」とも称する)を取得する。 With reference to FIGS. 1 to 6, the control device 3 has a frequency response characteristic (in step S10) with respect to the X1 rotational displacement of the mirror 10 when no voltage (adjustment signal) is applied between the comb tooth electrodes. Hereinafter, it is also referred to as "X rotation mirror characteristic").
 この実施の形態1では、予め求められて記憶装置(図示せず)に記憶されたX回転ミラー特性を、制御装置3がステップS10において上記記憶装置から読み出すことによって取得する。異なる環境(たとえば、温度)で測定された複数のX回転ミラー特性を記憶装置に用意し、ステップS10において、制御装置3が、現在の環境に対応するX回転ミラー特性を記憶装置から読み出すようにしてもよい。制御装置3は、定期的にX回転ミラー特性を測定して、測定されたデータで記憶装置内のデータを更新してもよい。たとえば、制御装置3は、光走査装置100(制御装置3を含む)が起動するたびにX回転ミラー特性を測定してもよい。X回転ミラー特性は、櫛歯電極間に電圧(調整信号)が印加されていない状態で、駆動配線53に流れる駆動電流信号を正弦波として周波数掃引することによって求めることができる。X回転ミラー特性を求める際に使用する駆動電流信号の振幅は、ハードスプリング効果及びソフトスプリング効果の影響を小さくするために、光走査時に使用する駆動電流信号の振幅に近い値にしてもよい。ただしこれに限られず、X回転ミラー特性を求める際に使用する駆動電流信号の振幅は、基本的には任意である。 In the first embodiment, the control device 3 acquires the X-rotation mirror characteristic obtained in advance and stored in the storage device (not shown) by reading it from the storage device in step S10. A plurality of X-rotating mirror characteristics measured in different environments (for example, temperature) are prepared in the storage device, and in step S10, the control device 3 reads the X-rotating mirror characteristics corresponding to the current environment from the storage device. You may. The control device 3 may periodically measure the X-rotation mirror characteristic and update the data in the storage device with the measured data. For example, the control device 3 may measure the X rotation mirror characteristic each time the optical scanning device 100 (including the control device 3) is activated. The X-rotating mirror characteristic can be obtained by frequency sweeping the drive current signal flowing through the drive wiring 53 as a sine wave in a state where no voltage (adjustment signal) is applied between the comb-tooth electrodes. The amplitude of the drive current signal used when obtaining the X-rotation mirror characteristic may be a value close to the amplitude of the drive current signal used during optical scanning in order to reduce the influence of the hard spring effect and the soft spring effect. However, the amplitude is not limited to this, and the amplitude of the drive current signal used when obtaining the X rotation mirror characteristic is basically arbitrary.
 駆動周波数を変えながらミラー10をX1回転させると、駆動周波数に応じてミラー10のX1回転変位(波形)が変化する。駆動周波数ごとにミラー10のX1回転変位(波形)を測定することで、以下に説明するX回転ミラー特性を取得することができる。図18は、X回転ミラー特性の第1の例を示す図である。図18を参照して、第1の例に係るX回転ミラー特性は、ミラー10のX1回転変位(波形)の周波数と振幅との関係を示す。図19は、X回転ミラー特性の第2の例を示す図である。図19を参照して、第2の例に係るX回転ミラー特性は、ミラー10のX1回転変位(波形)の周波数と位相との関係を示す。 When the mirror 10 is rotated X1 while changing the drive frequency, the X1 rotation displacement (waveform) of the mirror 10 changes according to the drive frequency. By measuring the X1 rotational displacement (waveform) of the mirror 10 for each drive frequency, the X rotational mirror characteristics described below can be acquired. FIG. 18 is a diagram showing a first example of the X rotation mirror characteristic. With reference to FIG. 18, the X-rotation mirror characteristic according to the first example shows the relationship between the frequency and the amplitude of the X1 rotation displacement (waveform) of the mirror 10. FIG. 19 is a diagram showing a second example of the X rotation mirror characteristic. With reference to FIG. 19, the X-rotation mirror characteristic according to the second example shows the relationship between the frequency and the phase of the X1 rotation displacement (waveform) of the mirror 10.
 再び図1~図6とともに図17を参照して、ステップS11では、制御装置3が、上記ステップS10で取得したX回転ミラー特性に基づいて、ミラー10の機械的なX1共振周波数fmecを取得する。たとえば、図18に示したX回転ミラー特性では、駆動周波数がfmecになったときに、ミラー10のX1回転変位(波形)の振幅がピークを示す。また、図19に示したX回転ミラー特性では、駆動周波数がfmecになったときに、ミラー10のX1回転変位(波形)の位相が急激に変化する。制御装置3は、たとえば、図18に示したX回転ミラー特性と図19に示したX回転ミラー特性との少なくとも一方を用いて、ミラー10の機械的なX1共振周波数fmecを取得することができる。なお、ミラー10の機械的なX1共振周波数fmecは、予め求められて制御装置3の記憶装置に記憶されていてもよい。 With reference to FIGS. 1 to 6 again, in step S11, the control device 3 acquires the mechanical X1 resonance frequency fmec of the mirror 10 based on the X rotation mirror characteristic acquired in step S10. .. For example, in the X rotation mirror characteristic shown in FIG. 18, the amplitude of the X1 rotation displacement (waveform) of the mirror 10 shows a peak when the drive frequency becomes fmec. Further, in the X rotation mirror characteristic shown in FIG. 19, when the drive frequency becomes fmec, the phase of the X1 rotation displacement (waveform) of the mirror 10 changes abruptly. The control device 3 can acquire the mechanical X1 resonance frequency fmec of the mirror 10 by using at least one of the X rotation mirror characteristic shown in FIG. 18 and the X rotation mirror characteristic shown in FIG. 19, for example. .. The mechanical X1 resonance frequency fmec of the mirror 10 may be obtained in advance and stored in the storage device of the control device 3.
 ステップS12では、制御装置3が、図7のステップS1において決定された駆動電流信号を取得する。そして、制御装置3は、ステップS13において、上記駆動電流信号に含まれる周波数成分からミラー10のX1共振周波数が離れるように、X1共振周波数の目標値(以下、「目標X周波数」とも称する)を決定する。より具体的には、制御装置3は、駆動電流信号に含まれる基本波の周波数に相当する駆動周波数fdと、ミラー10の機械的なX1共振周波数fmecとに基づいて、下記式(11)を満たすNを求める。 In step S12, the control device 3 acquires the drive current signal determined in step S1 of FIG. Then, in step S13, the control device 3 sets a target value of the X1 resonance frequency (hereinafter, also referred to as “target X frequency”) so that the X1 resonance frequency of the mirror 10 is separated from the frequency component included in the drive current signal. decide. More specifically, the control device 3 uses the following equation (11) based on the drive frequency fd corresponding to the frequency of the fundamental wave included in the drive current signal and the mechanical X1 resonance frequency fmec of the mirror 10. Find the N that meets.
  (N-0.5)×fd<fmec≦(N+0.5)×fd  …(11)
 式(11)中の「N」は、駆動電流信号に含まれる周波数成分の次数(1以上の整数)を示す。制御装置3は、式(11)を用いて、駆動電流信号においてfmecに最も近い周波数成分の次数(N)を特定する。そして、制御装置3は、式(11)によって特定されたNを用いて、下記式(12)に従って目標X周波数を算出する。
(N-0.5) × fd <fmec ≦ (N + 0.5) × fd… (11)
“N” in the equation (11) indicates the order (integer of 1 or more) of the frequency component included in the drive current signal. The control device 3 uses the equation (11) to specify the order (N) of the frequency component closest to fmec in the drive current signal. Then, the control device 3 calculates the target X frequency according to the following equation (12) using N specified by the equation (11).
  目標X周波数=(N+0.5)×fd  …(12)
 続けて、制御装置3は、ステップS14において、前述した式(10)で示されるfeleを上記目標X周波数と一致させるように、Kele(静電力Feleによるばね定数)及びVele(櫛歯電極間に印加される電圧)を算出する。制御装置3は、前述の式(10)を用いて、fele(目標X周波数)からKeleを求めることができる。制御装置3は、前述の式(8)を用いて、KeleからVele(たとえば、直流電圧)を求めることができる。各式中の定数(α、Rele、M、及びKmec)は、予め求められて制御装置3の記憶装置に記憶されている。
Target X frequency = (N + 0.5) x fd ... (12)
Subsequently, in step S14, the control device 3 increases the Kele (spring constant due to the electrostatic force Fele) and the Vele (between the comb tooth electrodes) so that the feel represented by the above equation (10) matches the target X frequency. Calculate the applied voltage). The control device 3 can obtain the Kele from the file (target X frequency) by using the above equation (10). The control device 3 can obtain a Vele (for example, a DC voltage) from the Kele by using the above equation (8). The constants (α, Relay, M, and Kmec) in each equation are obtained in advance and stored in the storage device of the control device 3.
 上記のように決定されたVele(直流電圧信号)が、調整信号に相当する。図7のステップS5では、上記のように決定された調整信号によってミラー10のX1共振周波数が制御される。これにより、ミラー10のX1共振周波数が上記目標X周波数に制御される。 The Vele (DC voltage signal) determined as described above corresponds to the adjustment signal. In step S5 of FIG. 7, the X1 resonance frequency of the mirror 10 is controlled by the adjustment signal determined as described above. As a result, the X1 resonance frequency of the mirror 10 is controlled to the target X frequency.
 上記のように、この実施の形態1に係る光走査装置100の制御装置3は、図7及び図17に示される光走査装置の制御方法を実行する。この光走査装置の制御方法は、駆動電流信号(ミラーアクチュエータを制御するための波形信号)を決定すること(図7のステップS1)と、ミラー10のX1共振周波数と、このX1共振周波数に最も近い駆動電流信号の周波数成分との差が所定の目標値(たとえば、0.5fd)となるように目標X周波数(ミラー10の軸X1まわりの共振周波数の目標値)を決定すること(図17のステップS13)と、駆動電流信号を駆動配線53に流してミラー10をX1回転させるとともに、上記の調整信号によってミラー10に力を加えてミラー10のX1共振周波数を変化させることによりミラー10のX1共振周波数を目標X周波数に制御すること(図7のステップS5)とを含む。 As described above, the control device 3 of the optical scanning device 100 according to the first embodiment executes the control method of the optical scanning device shown in FIGS. 7 and 17. The control method of this optical scanning device is to determine the drive current signal (waveform signal for controlling the mirror actuator) (step S1 in FIG. 7), the X1 resonance frequency of the mirror 10, and the X1 resonance frequency. The target X frequency (target value of the resonance frequency around the axis X1 of the mirror 10) is determined so that the difference from the frequency component of the close drive current signal becomes a predetermined target value (for example, 0.5 fd) (FIG. 17). Step S13), the drive current signal is passed through the drive wiring 53 to rotate the mirror 10 by X1, and a force is applied to the mirror 10 by the above adjustment signal to change the X1 resonance frequency of the mirror 10. This includes controlling the X1 resonance frequency to the target X frequency (step S5 in FIG. 7).
 以下、図20及び図21を用いて、上記共振周波数制御の動作例について説明する。図20は、櫛歯電極間に電圧が印加されていないときのミラー10のX1共振周波数の一例を示している。図20を参照して、ミラー10のX1共振周波数foが、第3次高調波の周波数(3fd)と略一致しているため、この状態ではリンギングが生じやすくなる。図21は、図17に示した一連の処理によって決定された調整信号(Vele)が櫛歯電極間に印加されたときのミラー10のX1共振周波数の一例を示している。図21を参照して、ミラー10のX1共振周波数foが第3次高調波の周波数(3fd)に近接する場合、図17のステップS13において、式(11)によって特定されるNは「3」であり、目標X周波数は「3.5fd」となる。このため、ミラー10のX1共振周波数foは、図21に示すように、3fdと4fdとの中間(3.5fdに相当する位置)に制御される。これにより、ミラー10のX1共振周波数foと第3次高調波の周波数(3fd)との差が「0.5fd」となる。制御装置3は、可動電極51,52と固定電極61,62との間(すなわち、櫛歯電極間)に電圧を印加することにより、ミラー10のX軸まわりの復元力を強めるような静電力Feleを発生させることができる。こうした静電力Feleによりミラー10のX1共振周波数は高くなる。制御装置3は、静電力Feleの大きさを調整することで、駆動電流信号に含まれる周波数成分からミラー10のX1共振周波数を遠ざけることができる。ミラー10のX1共振周波数が駆動電流信号の周波数成分から離れることで、リンギングが抑制される。 Hereinafter, an operation example of the resonance frequency control will be described with reference to FIGS. 20 and 21. FIG. 20 shows an example of the X1 resonance frequency of the mirror 10 when no voltage is applied between the comb tooth electrodes. With reference to FIG. 20, since the X1 resonance frequency fo of the mirror 10 substantially matches the frequency (3fd) of the third harmonic, ringing is likely to occur in this state. FIG. 21 shows an example of the X1 resonance frequency of the mirror 10 when the adjustment signal (Vele) determined by the series of processes shown in FIG. 17 is applied between the comb tooth electrodes. With reference to FIG. 21, when the X1 resonance frequency fo of the mirror 10 is close to the frequency (3 fd) of the third harmonic, N specified by the equation (11) is “3” in step S13 of FIG. The target X frequency is "3.5 fd". Therefore, as shown in FIG. 21, the X1 resonance frequency fo of the mirror 10 is controlled to be intermediate between 3fd and 4fd (position corresponding to 3.5fd). As a result, the difference between the X1 resonance frequency fo of the mirror 10 and the frequency (3fd) of the third harmonic becomes "0.5fd". The control device 3 applies an electrostatic force between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 (that is, between the comb tooth electrodes) to strengthen the restoring force around the X axis of the mirror 10. Feel can be generated. Due to such electrostatic force Feel, the X1 resonance frequency of the mirror 10 becomes high. By adjusting the magnitude of the electrostatic force Feel, the control device 3 can keep the X1 resonance frequency of the mirror 10 away from the frequency component included in the drive current signal. Ringing is suppressed by separating the X1 resonance frequency of the mirror 10 from the frequency component of the drive current signal.
 リンギングを抑制する方法として、ミラーの駆動信号(たとえば、駆動電流信号)に含まれる周波数成分がミラーの共振周波数と一致しないようにミラーの駆動信号を決定する方法も考えられる。しかし、こうした方法では、ミラーの駆動信号を決定する際の自由度が損なわれる。たとえば、ミラーの駆動周波数(駆動信号の周波数)が変わると、それに応じてフレームレートも変わる傾向がある。複数の光走査装置を用いて広範囲にわたって光を走査して画像を作成する場合には、それら光走査装置間でフレームレートがずれると、適切な画像が得られなくなる。フレームレートの違いを情報処理によって補間することも考えられるが、こうした情報処理を追加することは、処理負荷の増大を招く。 As a method of suppressing ringing, a method of determining the drive signal of the mirror so that the frequency component contained in the drive signal of the mirror (for example, the drive current signal) does not match the resonance frequency of the mirror can be considered. However, such a method impairs the degree of freedom in determining the drive signal of the mirror. For example, when the drive frequency of the mirror (frequency of the drive signal) changes, the frame rate tends to change accordingly. When light is scanned over a wide range using a plurality of optical scanning devices to create an image, if the frame rate shifts between the optical scanning devices, an appropriate image cannot be obtained. It is conceivable to interpolate the difference in frame rate by information processing, but adding such information processing causes an increase in processing load.
 また、急峻な特性を有するフィルタ(たとえば、ノッチフィルタ)を用いてミラーの駆動信号に含まれる特定の周波数成分を除去することによりリンギングを抑制する方法も考えられる。しかし、フィルタの追加はコストの上昇を招く。また、こうした方法では、ミラーの特性に合ったフィルタを準備するための工程が必要になり、作業負担が大きくなる。 It is also conceivable to suppress ringing by removing a specific frequency component included in the drive signal of the mirror using a filter having steep characteristics (for example, a notch filter). However, the addition of filters leads to increased costs. Further, in such a method, a step for preparing a filter suitable for the characteristics of the mirror is required, which increases the work load.
 この実施の形態1に係る光走査装置100では、制御装置3が図7及び図17に示した処理を実行することにより、上記のようなフィルタを用いずにリンギングを抑制することができる。光走査装置100は、ミラー10を軸X1まわりに回転させるミラーアクチュエータ(たとえば、磁石2a,2b及び駆動配線53)に加えて、ミラー10に力を加えてミラー10の軸X1まわりの共振周波数を変化させる調整機構を備える。具体的には、可動電極51,52及び固定電極61,62が、「調整機構」として機能する。可動電極51,52及び固定電極61,62は、可動電極51,52と固定電極61,62との間に電圧が印加されることにより可動電極51,52と固定電極61,62との間に静電力を生じさせて、その静電力によりミラー10のX1共振周波数を変化させるように構成される。制御装置3は、波形信号(より特定的には、駆動配線53に流す駆動電流信号)によってミラーアクチュエータを制御するとともに、可動電極51,52と固定電極61,62との間に電圧信号(すなわち、調整機構を制御するための調整信号)を印加することにより、上記波形信号に含まれる周波数成分からミラー10のX1共振周波数が離れるようにミラー10のX1共振周波数を制御する。制御装置3は、上記波形信号(ミラー10の駆動信号)に応じて、ミラー10のX1共振周波数を変更する。このため、制御装置3は、ミラー10の駆動信号を変更することなく、リンギングを抑制することができる。上記光走査装置100によれば、ミラーの駆動信号を決定する際の自由度を確保しつつリンギングを抑制することが可能になる。 In the optical scanning device 100 according to the first embodiment, the control device 3 executes the processes shown in FIGS. 7 and 17, so that ringing can be suppressed without using the above filter. The optical scanning device 100 applies a force to the mirror 10 in addition to a mirror actuator (for example, magnets 2a and 2b and a drive wiring 53) that rotates the mirror 10 around the axis X1 to obtain a resonance frequency around the axis X1 of the mirror 10. It is equipped with a changing adjustment mechanism. Specifically, the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 function as "adjustment mechanisms". The movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are placed between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 by applying a voltage between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. It is configured to generate an electrostatic force and change the X1 resonance frequency of the mirror 10 by the electrostatic force. The control device 3 controls the mirror actuator by a waveform signal (more specifically, a drive current signal flowing through the drive wiring 53), and a voltage signal (that is, that is, between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62). By applying an adjustment signal for controlling the adjustment mechanism), the X1 resonance frequency of the mirror 10 is controlled so that the X1 resonance frequency of the mirror 10 is separated from the frequency component included in the waveform signal. The control device 3 changes the X1 resonance frequency of the mirror 10 according to the waveform signal (drive signal of the mirror 10). Therefore, the control device 3 can suppress ringing without changing the drive signal of the mirror 10. According to the optical scanning device 100, ringing can be suppressed while ensuring a degree of freedom in determining the drive signal of the mirror.
 この実施の形態1では、ミラー10のX1共振周波数と、このX1共振周波数に最も近い駆動電流信号の周波数成分との差が所定の目標値(たとえば、0.5fd)となるように、制御装置3がミラー10のX1共振周波数を制御する。ミラー10のX1共振周波数は、駆動電流信号に含まれる基本波及び高調波の各周波数から離れる。これにより、ミラー10の動作が共振現象の影響を受けにくくなり、共振現象によるミラー10の不安定動作が抑制される。なお、上記目標値は、0.5fdに限られず、適宜変更可能である。目標値は、0.5fd未満であってもよく、たとえば0.3fd程度であってもよい。目標値は、固定値であってもよいし、状況に応じて可変であってもよい。 In the first embodiment, the control device is set so that the difference between the X1 resonance frequency of the mirror 10 and the frequency component of the drive current signal closest to the X1 resonance frequency becomes a predetermined target value (for example, 0.5 fd). 3 controls the X1 resonance frequency of the mirror 10. The X1 resonance frequency of the mirror 10 is separated from each frequency of the fundamental wave and the harmonic contained in the drive current signal. As a result, the operation of the mirror 10 is less affected by the resonance phenomenon, and the unstable operation of the mirror 10 due to the resonance phenomenon is suppressed. The target value is not limited to 0.5 fd and can be changed as appropriate. The target value may be less than 0.5 fd, for example, about 0.3 fd. The target value may be a fixed value or may be variable depending on the situation.
 上記実施の形態1では、目標X周波数が決定された後、ミラー10のX1共振周波数を目標X周波数に近づけるようにVele(調整信号)が決定される(図17参照)。しかしこれに限られず、制御装置3は、櫛歯電極間に印加される電圧(Vele)を変えながら、駆動電流信号によって駆動されるミラー10のX1回転変位(θx)を検出し、ミラー10が安定動作するようなVeleを探索してもよい。こうした探索によって、リンギングが十分抑制されるVeleを見つけることができる。 In the first embodiment, after the target X frequency is determined, the Vele (adjustment signal) is determined so that the X1 resonance frequency of the mirror 10 approaches the target X frequency (see FIG. 17). However, the present invention is not limited to this, and the control device 3 detects the X1 rotational displacement (θx) of the mirror 10 driven by the drive current signal while changing the voltage (Vele) applied between the comb tooth electrodes, and the mirror 10 causes the mirror 10. You may search for a Vele that operates stably. Through such a search, it is possible to find a Vele in which ringing is sufficiently suppressed.
 制御装置3は、図17に示した処理に代えて、図22に示す処理を実行するように構成されてもよい。図22は、図17に示した処理の変形例を示すフローチャートである。図22に示す処理は、ステップS12とステップS13との間に、ステップS12Aが追加されたこと以外は、図17に示した処理と同じである。図22を参照して、ステップS12Aでは、ステップS11において取得されたミラー10の機械的なX1共振周波数fmecと、ステップS12において取得された駆動電流信号に含まれる各周波数成分との差が所定の基準値以上であるか否かを、制御装置3が判断する。ミラー10の機械的なX1共振周波数fmecと、fmecに最も近い駆動電流信号の周波数成分との差が基準値以上であれば(ステップS12AにおいてYES)ステップS13及びS14の処理は実行されず、それらの差が基準値未満である場合(ステップS12AにおいてNO)には、ステップS13及びS14の処理が実行される。ステップS12Aで使用される基準値は、許容最小間隔に相当し、リンギングを抑制するために十分な間隔に設定される。この基準値は、要求される走査精度、走査範囲、及びQ値(Quality factor)に基づいて決定されてもよい。基準値は0.3fd程度であってもよい。 The control device 3 may be configured to execute the process shown in FIG. 22 instead of the process shown in FIG. FIG. 22 is a flowchart showing a modified example of the process shown in FIG. The process shown in FIG. 22 is the same as the process shown in FIG. 17, except that step S12A is added between steps S12 and S13. With reference to FIG. 22, in step S12A, the difference between the mechanical X1 resonance frequency fmec of the mirror 10 acquired in step S11 and each frequency component included in the drive current signal acquired in step S12 is predetermined. The control device 3 determines whether or not the value is equal to or higher than the reference value. If the difference between the mechanical X1 resonance frequency fmec of the mirror 10 and the frequency component of the drive current signal closest to fmec is equal to or greater than the reference value (YES in step S12A), the processes of steps S13 and S14 are not executed, and they are not executed. When the difference between the above values is less than the reference value (NO in step S12A), the processes of steps S13 and S14 are executed. The reference value used in step S12A corresponds to the minimum permissible interval and is set at an interval sufficient to suppress ringing. This reference value may be determined based on the required scanning accuracy, scanning range, and Q value (Quality factor). The reference value may be about 0.3 fd.
 ステップS12AにおいてYESと判断されることは、ミラー10のX1共振周波数が駆動電流信号の各周波数成分から十分離れていることを意味する。このため、ステップS12AにおいてYESと判断された場合には、櫛歯電極間に電圧が印加されない。一方、ステップS12AにおいてNOと判断された場合には、ステップS13及びS14の処理が実行されることで、櫛歯電極間にVele(電圧信号)が印加される。これにより、ミラー10のX1共振周波数と、このX1共振周波数に最も近い駆動電流信号の周波数成分との差が目標値(たとえば、0.5fd)となるように、ミラー10のX1共振周波数が制御される。 If YES is determined in step S12A, it means that the X1 resonance frequency of the mirror 10 is sufficiently separated from each frequency component of the drive current signal. Therefore, if YES is determined in step S12A, no voltage is applied between the comb tooth electrodes. On the other hand, if NO is determined in step S12A, the processes of steps S13 and S14 are executed, so that a vel (voltage signal) is applied between the comb tooth electrodes. As a result, the X1 resonance frequency of the mirror 10 is controlled so that the difference between the X1 resonance frequency of the mirror 10 and the frequency component of the drive current signal closest to the X1 resonance frequency becomes the target value (for example, 0.5 fd). Will be done.
 上記図22に示す処理によれば、ミラー10のX1共振周波数と、このX1共振周波数に最も近い駆動電流信号の周波数成分との差が基準値(たとえば、0.3fd)以上となるように、ミラー10のX1共振周波数が制御される。こうした処理によれば、ミラー10のX1共振周波数と駆動電流信号の各周波数成分との差が基準値を下回らなくなる。また、ミラー10のX1共振周波数が駆動電流信号の各周波数成分から十分離れている場合には、櫛歯電極間に電圧が印加されないため、櫛歯電極間に電圧を印加する頻度を少なくすることができる。 According to the process shown in FIG. 22, the difference between the X1 resonance frequency of the mirror 10 and the frequency component of the drive current signal closest to the X1 resonance frequency is equal to or greater than the reference value (for example, 0.3 fd). The X1 resonance frequency of the mirror 10 is controlled. According to such processing, the difference between the X1 resonance frequency of the mirror 10 and each frequency component of the drive current signal does not fall below the reference value. Further, when the X1 resonance frequency of the mirror 10 is sufficiently separated from each frequency component of the drive current signal, the voltage is not applied between the comb-tooth electrodes, so that the frequency of applying the voltage between the comb-tooth electrodes should be reduced. Can be done.
 上記実施の形態1では、可動電極51,52と固定電極61,62との間には直流電圧が印加される。制御装置3は、この直流電圧の大きさに基づいて、ミラー10のX1共振周波数を制御するように構成される。しかしこれに限られず、可動電極51,52と固定電極61,62との間に印加される電圧信号は、矩形波電圧信号であってもよい。可動電極51,52と固定電極61,62とがスイッチを介して電源に接続され、スイッチがオンされると、電源電圧が電極間に印加されるようにしてもよい。こうしたスイッチのオン/オフを制御装置3が制御することによって、以下に説明する矩形波電圧信号が電極間に印加されてもよい。 In the first embodiment, a DC voltage is applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. The control device 3 is configured to control the X1 resonance frequency of the mirror 10 based on the magnitude of the DC voltage. However, the present invention is not limited to this, and the voltage signal applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 may be a rectangular wave voltage signal. The movable electrodes 51 and 52 and the fixed electrodes 61 and 62 may be connected to a power source via a switch, and when the switch is turned on, a power source voltage may be applied between the electrodes. By controlling the on / off of such a switch by the control device 3, the rectangular wave voltage signal described below may be applied between the electrodes.
 図23は、可動電極51,52と固定電極61,62との間に印加される電圧信号の変形例を示す図である。図23を参照して、この矩形波電圧信号は、電極間に電源電圧Vonが印加されるオン期間Taと、電極間に電圧が印加されないオフ期間Tbとを、周期的に繰り返す信号である。オン期間Taとオフ期間Tbとによって周期Tが構成される。オン/オフの切替え周期がミラー10のX1共振周波数と比べて十分速ければ、櫛歯電極間の静電容量に電荷を供給し、ミラー10のX1回転に対する復元力を強めることができる。この場合、矩形波電圧信号のデューティ比(Ta/T)に電源電圧Vonを乗じた値(Von×Ta/T)が、前述の式(4)、(6)、及び(8)中の「Vele」の大きさに相当する。制御装置3は、上記矩形波電圧信号のデューティ比に基づいて、ミラー10のX1共振周波数を制御するように構成されてもよい。上記矩形波電圧信号によれば、電源電圧Vonが一定のままでも、デューティ比を変更することで、ミラー10のX1共振周波数を調整することができる。こうした矩形波電圧信号を採用した光走査装置では、電圧可変式の電源を搭載しなくてもよいため、装置の小型化及び簡略化を図ることができる。 FIG. 23 is a diagram showing a modified example of the voltage signal applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. With reference to FIG. 23, the rectangular wave voltage signal is a signal that periodically repeats an on-period Ta in which a power supply voltage Von is applied between the electrodes and an off-period Tb in which a voltage is not applied between the electrodes. The cycle T is composed of the on period Ta and the off period Tb. If the on / off switching cycle is sufficiently faster than the X1 resonance frequency of the mirror 10, an electric charge can be supplied to the capacitance between the comb tooth electrodes, and the restoring force of the mirror 10 with respect to the X1 rotation can be strengthened. In this case, the value (Von × Ta / T) obtained by multiplying the duty ratio (Ta / T) of the rectangular wave voltage signal by the power supply voltage Von is the “Von × Ta / T) in the above equations (4), (6), and (8). It corresponds to the size of "Vele". The control device 3 may be configured to control the X1 resonance frequency of the mirror 10 based on the duty ratio of the rectangular wave voltage signal. According to the square wave voltage signal, the X1 resonance frequency of the mirror 10 can be adjusted by changing the duty ratio even if the power supply voltage Von remains constant. Since the optical scanning apparatus using such a rectangular wave voltage signal does not need to be equipped with a variable voltage power supply, the apparatus can be miniaturized and simplified.
 上記実施の形態1では、可動電極51及び52の各々が、軸X1(回転軸)に直交する方向のミラー部5の両側面に設けられている(図3及び図4参照)。こうした構造では、軸X1(回転軸)と可動電極51,52との距離(Rele)が大きくなり、静電力Feleによって大きなトルクTeleを発生させやすくなる(前述の式(5)参照)。ただし、可動電極51,52及び固定電極61,62の各々の位置、形状、及び数は、図2~図6に示した例に限られず、適宜変更可能である。 In the first embodiment, each of the movable electrodes 51 and 52 is provided on both side surfaces of the mirror portion 5 in the direction orthogonal to the axis X1 (rotation axis) (see FIGS. 3 and 4). In such a structure, the distance (Rele) between the shaft X1 (rotating shaft) and the movable electrodes 51 and 52 becomes large, and a large torque tele is easily generated by the electrostatic force Feel (see the above equation (5)). However, the positions, shapes, and numbers of the movable electrodes 51 and 52 and the fixed electrodes 61 and 62 are not limited to the examples shown in FIGS. 2 to 6, and can be changed as appropriate.
 図24は、可動電極及び固定電極の第1変形例を示す図である。図24を参照して、この例では、可動電極及び固定電極の各々が図3及び図4に示したような櫛歯状の電極ではない。ミラー部の基材の側面を利用して可動電極が形成される。ミラー部5Aの四隅の側面(より特定的には、Y-Z面)が可動電極R11~R14として機能する。可動電極R11、R12、R13、R14は、それぞれミラー部5Aの+Y/-X側、+Y/+X側、-Y/-X側、-Y/+X側に配置される。可動電極R11、R12、R13、R14に対してそれぞれX軸方向に対向するように固定電極611、612、621、622が設けられている。固定電極611,612,621,622の各々は、櫛歯状には形成されておらず、Y-Z面を主面とする平板形状を有する。固定電極611及び612の各々は固定部材6aに支持され、固定電極621及び622の各々は固定部材6bに支持される。可動電極R11~R14と固定電極611,612,621,622とが対向することで、電極間に印加される電圧に応じた静電力が電極間に発生する。 FIG. 24 is a diagram showing a first modification of the movable electrode and the fixed electrode. With reference to FIG. 24, in this example, each of the movable electrode and the fixed electrode is not a comb-shaped electrode as shown in FIGS. 3 and 4. A movable electrode is formed using the side surface of the base material of the mirror portion. The four corner side surfaces (more specifically, the YY plane) of the mirror portion 5A function as movable electrodes R11 to R14. The movable electrodes R11, R12, R13, and R14 are arranged on the + Y / -X side, + Y / + X side, -Y / -X side, and -Y / + X side of the mirror portion 5A, respectively. Fixed electrodes 611, 612, 621, and 622 are provided so as to face the movable electrodes R11, R12, R13, and R14 in the X-axis direction, respectively. Each of the fixed electrodes 611, 612, 621, 622 is not formed in a comb-teeth shape, and has a flat plate shape having a YY surface as a main surface. Each of the fixed electrodes 611 and 612 is supported by the fixing member 6a, and each of the fixed electrodes 621 and 622 is supported by the fixing member 6b. When the movable electrodes R11 to R14 and the fixed electrodes 611, 612, 621, 622 face each other, an electrostatic force corresponding to the voltage applied between the electrodes is generated between the electrodes.
 図25は、可動電極及び固定電極の第2変形例を示す図である。図25を参照して、この例では、固定部材の側面を利用して固定電極が形成される。ミラー部5BのY軸方向の両側面(より特定的には、Z-X面)が可動電極R21及びR22として機能する。また、固定部材6cの-Y側の側面(より特定的には、Z-X面)が固定電極R31として機能し、固定部材6dの+Y側の側面(より特定的には、Z-X面)が固定電極R32として機能する。可動電極R21と固定電極R31とはY軸方向に対向し、これらの電極間には、印加される電圧に応じた静電力が発生する。可動電極R22と固定電極R32とはY軸方向に対向し、これらの電極間には、印加される電圧に応じた静電力が発生する。 FIG. 25 is a diagram showing a second modification of the movable electrode and the fixed electrode. With reference to FIG. 25, in this example, the fixed electrode is formed by utilizing the side surface of the fixing member. Both side surfaces (more specifically, ZX surfaces) of the mirror portion 5B in the Y-axis direction function as movable electrodes R21 and R22. Further, the side surface on the −Y side (more specifically, the ZX surface) of the fixing member 6c functions as the fixing electrode R31, and the side surface on the + Y side (more specifically, the ZX surface) of the fixing member 6d. ) Functions as the fixed electrode R32. The movable electrode R21 and the fixed electrode R31 face each other in the Y-axis direction, and an electrostatic force corresponding to the applied voltage is generated between these electrodes. The movable electrode R22 and the fixed electrode R32 face each other in the Y-axis direction, and an electrostatic force corresponding to the applied voltage is generated between these electrodes.
 図24及び図25のいずれに示した変形例においても、可動電極と固定電極との電極間距離を小さくすることで、電極間に大きな静電力を発生させやすくなる。また、可動電極と固定電極との対向面積を大きくすることによっても、電極間に大きな静電力を発生させやすくなる。半導体基板(たとえば、シリコン基板)を電極として機能させるために、半導体基板に添加する不純物の量(たとえば、ドーズ量)によって半導体基板の導電性を調整してもよい。 In both the modified examples shown in FIGS. 24 and 25, by reducing the distance between the movable electrode and the fixed electrode, it becomes easy to generate a large electrostatic force between the electrodes. Further, by increasing the facing area between the movable electrode and the fixed electrode, it becomes easy to generate a large electrostatic force between the electrodes. In order to make the semiconductor substrate (for example, a silicon substrate) function as an electrode, the conductivity of the semiconductor substrate may be adjusted by the amount of impurities added to the semiconductor substrate (for example, the dose amount).
 上記の実施の形態1では、固定電極61,62が接地され、可動電極51,52に正電位が印加される例を示したが、逆に、固定電極61,62に正電位が印加され、可動電極51,52が接地されるようにしてもよい。 In the first embodiment described above, the fixed electrodes 61 and 62 are grounded and a positive potential is applied to the movable electrodes 51 and 52, but conversely, a positive potential is applied to the fixed electrodes 61 and 62. The movable electrodes 51 and 52 may be grounded.
 上記実施の形態1に係る光走査装置100では、ミラー部5、可動電極51,52、及び固定電極61,62が、ミラー部5の回転軸に関して線対称な構造を有する。こうした対称構造により、外乱となる力が相殺されて、光走査装置100の動作を安定させることができる。しかし、光走査装置においてミラー部、可動電極、及び固定電極の構造に対称性を持たせることは必須ではない。また、ミラーの形状は、矩形状に限られず、たとえば円形状であってもよい。 In the optical scanning apparatus 100 according to the first embodiment, the mirror portion 5, the movable electrodes 51 and 52, and the fixed electrodes 61 and 62 have a structure that is axisymmetric with respect to the rotation axis of the mirror portion 5. With such a symmetrical structure, the disturbing force is canceled out, and the operation of the optical scanning apparatus 100 can be stabilized. However, it is not essential that the structures of the mirror portion, the movable electrode, and the fixed electrode have symmetry in the optical scanning device. Further, the shape of the mirror is not limited to a rectangular shape, and may be, for example, a circular shape.
 上記実施の形態1に係る光走査装置100では、2本の梁11,12を採用している(図2~図6参照)。しかし、梁の位置、形状、及び数は、図2~図6に示した例に限られず、適宜変更可能である。 The optical scanning apparatus 100 according to the first embodiment employs two beams 11 and 12 (see FIGS. 2 to 6). However, the position, shape, and number of beams are not limited to the examples shown in FIGS. 2 to 6, and can be changed as appropriate.
 上記実施の形態1に係る光走査装置100では、磁石2a,2b及び駆動配線53を、ミラーアクチュエータとして採用している。磁石2a,2bは、ミラー部5の回転軸と直交する方向に磁界が印加されるように配置されている(図8参照)。また、駆動配線53は、ミラー部5の外縁部を1周するように配置されている(図8参照)。しかし、磁石及び駆動配線によってミラーの回転力を生じさせる形態は、図8に示した形態に限られず、別の形態であってもよい。たとえば、磁石による磁界の方向、磁石の配置、及び磁石の種類を変更してもよい。磁石は、永久磁石に限られず、電磁石であってもよい。また、駆動配線の位置、形状、及び周回数も、適宜変更可能である。駆動配線の周回数を2周以上にしてもよい。 In the optical scanning device 100 according to the first embodiment, the magnets 2a and 2b and the drive wiring 53 are used as mirror actuators. The magnets 2a and 2b are arranged so that a magnetic field is applied in a direction orthogonal to the rotation axis of the mirror portion 5 (see FIG. 8). Further, the drive wiring 53 is arranged so as to go around the outer edge portion of the mirror portion 5 once (see FIG. 8). However, the form in which the rotational force of the mirror is generated by the magnet and the drive wiring is not limited to the form shown in FIG. 8, and may be another form. For example, the direction of the magnetic field due to the magnet, the arrangement of the magnet, and the type of the magnet may be changed. The magnet is not limited to a permanent magnet, and may be an electromagnet. Further, the position, shape, and number of laps of the drive wiring can be changed as appropriate. The number of laps of the drive wiring may be two or more.
 ミラーアクチュエータは、電磁力を利用するものには限られない。たとえば、静電力を利用してミラーに回転力を生じさせるミラーアクチュエータも採用可能である。また、圧電膜の変形を利用してミラーに回転力を生じさせるミラーアクチュエータも採用可能である。 Mirror actuators are not limited to those that use electromagnetic force. For example, a mirror actuator that uses electrostatic force to generate a rotational force in the mirror can also be adopted. Further, a mirror actuator that generates a rotational force in the mirror by utilizing the deformation of the piezoelectric film can also be adopted.
 上記実施の形態1に係る光走査装置100では、ピエゾ抵抗素子91,92,93,94が梁11,12の根元(支持部材4a,4b側)に配置されている(図3参照)。しかし、各ピエゾ抵抗素子の位置は、図3に示した位置に限られず、ミラー部5(ミラー10を含む)の姿勢に応じた応力変化を検出可能な他の位置に配置されてもよい。また、ピエゾ抵抗素子の数も適宜変更可能である。 In the optical scanning apparatus 100 according to the first embodiment, the piezoresistive elements 91, 92, 93, 94 are arranged at the roots ( support members 4a, 4b side) of the beams 11 and 12 (see FIG. 3). However, the position of each piezoresistive element is not limited to the position shown in FIG. 3, and may be arranged at another position where a stress change according to the posture of the mirror portion 5 (including the mirror 10) can be detected. Further, the number of piezoresistive elements can be changed as appropriate.
 ミラー10の姿勢(回転角度)を検出する方式は、上記ピエゾ抵抗素子を用いた方式に限られず任意である。たとえば、MEMSミラー1の外に、ミラー10で反射された光ビームの光軸の方向を検出する光検出器を設けてもよい。制御装置3は、この光検出器により検出された光軸の方向に基づいてミラー10の姿勢(回転角度)を推定してもよい。 The method of detecting the posture (rotation angle) of the mirror 10 is not limited to the method using the piezoresistive element, and is arbitrary. For example, a photodetector that detects the direction of the optical axis of the light beam reflected by the mirror 10 may be provided outside the MEMS mirror 1. The control device 3 may estimate the posture (rotation angle) of the mirror 10 based on the direction of the optical axis detected by the photodetector.
 上記実施の形態1に係る光走査装置100では、可動電極51,52と固定電極61,62との間に電圧が印加されたときに発生する静電力を利用してミラー10に力を加えることにより、ミラー10の軸X1まわりの共振周波数を変化させる調整機構を採用している。しかしこれに限られず、調整機構は、静電力以外の方法でミラー10に力を加えてもよい。 In the optical scanning apparatus 100 according to the first embodiment, a force is applied to the mirror 10 by utilizing the electrostatic force generated when a voltage is applied between the movable electrodes 51 and 52 and the fixed electrodes 61 and 62. As a result, an adjustment mechanism that changes the resonance frequency around the axis X1 of the mirror 10 is adopted. However, the present invention is not limited to this, and the adjusting mechanism may apply a force to the mirror 10 by a method other than the electrostatic force.
 図26は、図3に示した調整機構の変形例を示す図である。図27は、図26中のXXVII-XXVII線に沿った断面構造を示す図である。図26及び図27を参照して、この例では、図3に示した固定部材6a,6bの代わりに、梁80a~80d及び圧電構造体8a~8dを採用している。梁80a及び80bは、梁11の両脇に配置され、梁11と同様、ミラー部5及び支持部材4aの各々と接続されている。梁80c及び80dは、梁12の両脇に配置され、梁12と同様、ミラー部5及び支持部材4bの各々と接続されている。圧電構造体8a~8dは、それぞれ梁80a~80d上に配置されている。圧電構造体8a~8dは、基本的には同じ構造を有する。また、梁80a~80dも、基本的には同じ構造を有する。このため、以下では、区別して説明する場合を除いて、圧電構造体8a~8dの各々を「圧電構造体8」と記載し、梁80a~80dの各々を「梁80」と記載する。 FIG. 26 is a diagram showing a modified example of the adjustment mechanism shown in FIG. FIG. 27 is a diagram showing a cross-sectional structure along the line XXVII-XXVII in FIG. With reference to FIGS. 26 and 27, in this example, the beams 80a to 80d and the piezoelectric structures 8a to 8d are adopted instead of the fixing members 6a and 6b shown in FIG. The beams 80a and 80b are arranged on both sides of the beam 11 and are connected to each of the mirror portion 5 and the support member 4a like the beam 11. The beams 80c and 80d are arranged on both sides of the beam 12 and are connected to each of the mirror portion 5 and the support member 4b like the beam 12. The piezoelectric structures 8a to 8d are arranged on the beams 80a to 80d, respectively. The piezoelectric structures 8a to 8d basically have the same structure. Further, the beams 80a to 80d basically have the same structure. Therefore, in the following, each of the piezoelectric structures 8a to 8d will be referred to as a “piezoelectric structure 8”, and each of the beams 80a to 80d will be referred to as a “beam 80”, except for cases where they will be described separately.
 図28は、圧電構造体8の詳細構造を示す図である。図28を参照して、圧電構造体8は梁80上に形成されている。梁80は、たとえばシリコンで形成されている。圧電構造体8は、梁80側から、絶縁層81、電極層82、圧電層83、電極層84の順に積層された積層構造を有する。絶縁層81は、たとえば酸化シリコン層又は窒化シリコン層で形成されている。電極層82及び84の各々は、たとえば金属膜で形成されている。圧電層83は、たとえばチタン酸ジルコン酸鉛(PZT)で形成されている。電極層82と電極層84とは、互いに電気的に絶縁されており、これら電極層間に電圧を印加可能に構成される。電極層82と電極層84との間に電圧が印加されることによりZ軸方向の電界が圧電層83に印加される。この電界により、圧電層83はX軸方向に伸縮する力を発生する。たとえば、電極層82を負、電極層84を正とする電圧を電極層間に印加すると、圧電層83はX軸方向に収縮する力を発生する。こうした力は、ミラー10のX1回転に対する復元力を強めるように作用する。復元力の大きさは、電極層間の電圧に応じて変化する。このため、制御装置3(図1)は、電極層間の電圧に基づいてミラー10の軸X1まわりの共振周波数を調整できる。なお、図26に示す例では、圧電構造体8a~8dがそれぞれ梁80a~80d上に配置されているが、圧電構造体8の位置及び数は変更可能である。たとえば、圧電構造体8が梁11,12上に配置されてもよい。 FIG. 28 is a diagram showing a detailed structure of the piezoelectric structure 8. With reference to FIG. 28, the piezoelectric structure 8 is formed on the beam 80. The beam 80 is made of, for example, silicon. The piezoelectric structure 8 has a laminated structure in which the insulating layer 81, the electrode layer 82, the piezoelectric layer 83, and the electrode layer 84 are laminated in this order from the beam 80 side. The insulating layer 81 is formed of, for example, a silicon oxide layer or a silicon nitride layer. Each of the electrode layers 82 and 84 is formed of, for example, a metal film. The piezoelectric layer 83 is formed of, for example, lead zirconate titanate (PZT). The electrode layer 82 and the electrode layer 84 are electrically insulated from each other, and a voltage can be applied between the electrode layers. By applying a voltage between the electrode layer 82 and the electrode layer 84, an electric field in the Z-axis direction is applied to the piezoelectric layer 83. Due to this electric field, the piezoelectric layer 83 generates a force that expands and contracts in the X-axis direction. For example, when a voltage with the electrode layer 82 negative and the electrode layer 84 positive is applied between the electrode layers, the piezoelectric layer 83 generates a force that contracts in the X-axis direction. Such a force acts to increase the restoring force of the mirror 10 with respect to the X1 rotation. The magnitude of the restoring force changes according to the voltage between the electrodes. Therefore, the control device 3 (FIG. 1) can adjust the resonance frequency around the axis X1 of the mirror 10 based on the voltage between the electrodes. In the example shown in FIG. 26, the piezoelectric structures 8a to 8d are arranged on the beams 80a to 80d, respectively, but the position and number of the piezoelectric structures 8 can be changed. For example, the piezoelectric structure 8 may be arranged on the beams 11 and 12.
 上記実施の形態1に係る光走査装置100において採用される調整機構は、ミラー10の回転変位に伴って生じる機械的な復元力と同じ向きの力をミラー10に加えるように構成される。しかしこれに限られず、上記復元力と逆向きの力をミラー10に加える調整機構を採用してもよい。こうした調整機構によれば、ミラー10に力を加えることにより梁11,12をやわらかくしてミラー10のX1回転に対するばね定数を小さくすることが可能になる。 The adjustment mechanism adopted in the optical scanning apparatus 100 according to the first embodiment is configured to apply a force in the same direction as the mechanical restoring force generated by the rotational displacement of the mirror 10 to the mirror 10. However, the present invention is not limited to this, and an adjustment mechanism that applies a force opposite to the restoring force to the mirror 10 may be adopted. According to such an adjustment mechanism, by applying a force to the mirror 10, the beams 11 and 12 can be softened and the spring constant with respect to the X1 rotation of the mirror 10 can be reduced.
 ミラーの駆動信号の波形は、鋸歯状波形に限られず、適宜変更可能である。ミラーの駆動信号の波形は、鋸歯状波形ではなく、三角波であってもよい。 The waveform of the mirror drive signal is not limited to the serrated waveform and can be changed as appropriate. The waveform of the drive signal of the mirror may be a triangular wave instead of a serrated waveform.
 上記の実施の形態1では、1つの制御装置3(単一のユニット)が、ミラーアクチュエータ及び調整機構の両方を制御するように構成されるが、ミラーアクチュエータを制御する制御装置と調整機構を制御する制御装置とは、別々のユニットであってもよい。 In the first embodiment described above, one control device 3 (single unit) is configured to control both the mirror actuator and the adjustment mechanism, but controls the control device and the adjustment mechanism that control the mirror actuator. The control device may be a separate unit.
 実施の形態2.
 実施の形態1では、ミラー10の回転軸が1軸(X軸)であり、光走査装置100は1軸方向に光走査を行なうように構成されている。実施の形態2では、ミラー10の回転軸を2軸(X軸及びY軸)にして、2軸方向の光走査を可能にする。以下では、実施の形態1に係る光走査装置との相違点を中心に、実施の形態2に係る光走査装置について説明する。
Embodiment 2.
In the first embodiment, the rotation axis of the mirror 10 is one axis (X-axis), and the optical scanning device 100 is configured to perform optical scanning in the one-axis direction. In the second embodiment, the rotation axes of the mirror 10 are set to two axes (X-axis and Y-axis) to enable optical scanning in two-axis directions. Hereinafter, the optical scanning apparatus according to the second embodiment will be described with a focus on the differences from the optical scanning apparatus according to the first embodiment.
 実施の形態2に係る光走査装置は、図3に示したMEMSミラー1の代わりに、以下に説明するMEMSミラー1Aを備える。図29は、実施の形態2に係る光走査装置が備えるMEMSミラー1Aの上面構造を示す図である。図30は、図29中のXXX-XXX線に沿った断面構造を示す図である。 The optical scanning apparatus according to the second embodiment includes the MEMS mirror 1A described below instead of the MEMS mirror 1 shown in FIG. FIG. 29 is a diagram showing a top surface structure of the MEMS mirror 1A included in the optical scanning apparatus according to the second embodiment. FIG. 30 is a diagram showing a cross-sectional structure along the XXX-XXX lines in FIG. 29.
 図29及び図30を参照して、MEMSミラー1Aは、ミラー部5と基材7aとの間に、中間フレーム20を備える。基材7cは、中間フレーム20の下方に位置する矩形状の枠体であり、ミラー部5の下方に位置する基材7bを囲むように配置されている。基材7bと基材7cとの間には隙間が設けられている。また、基材7aと基材7cとの間にも隙間が設けられている。 With reference to FIGS. 29 and 30, the MEMS mirror 1A includes an intermediate frame 20 between the mirror portion 5 and the base material 7a. The base material 7c is a rectangular frame located below the intermediate frame 20, and is arranged so as to surround the base material 7b located below the mirror portion 5. A gap is provided between the base material 7b and the base material 7c. Further, a gap is also provided between the base material 7a and the base material 7c.
 中間フレーム20は、基材7c上に絶縁層55を介して設けられた矩形状の枠体である。中間フレーム20の-X側の端は梁11Bを介して支持部材4aにつながっており、中間フレーム20の+X側の端は梁12Bを介して支持部材4bにつながっている。図29中の軸X2は、X軸に平行な軸であり、中間フレーム20の回転軸の位置を示している。梁11B及び梁12Bの各々は軸X2に沿って形成されている。中間フレーム20は、軸X2まわりに回転可能に構成される。梁11B及び梁12Bの各々が軸X2まわりにねじれることによって、中間フレーム20の軸X2まわりの回転(以下、「X2回転」とも称する)が可能になる。 The intermediate frame 20 is a rectangular frame provided on the base material 7c via an insulating layer 55. The −X side end of the intermediate frame 20 is connected to the support member 4a via the beam 11B, and the + X side end of the intermediate frame 20 is connected to the support member 4b via the beam 12B. The axis X2 in FIG. 29 is an axis parallel to the X axis and indicates the position of the rotation axis of the intermediate frame 20. Each of the beam 11B and the beam 12B is formed along the axis X2. The intermediate frame 20 is configured to be rotatable around the axis X2. By twisting each of the beam 11B and the beam 12B around the axis X2, the intermediate frame 20 can rotate around the axis X2 (hereinafter, also referred to as “X2 rotation”).
 中間フレーム20の+Y側の側面には櫛歯状の可動電極51Bが設けられており、中間フレーム20の-Y側の側面には櫛歯状の可動電極52Bが設けられている。可動電極51Bの各櫛歯電極は、固定部材6aに支持される固定電極61の各櫛歯電極と対向している。可動電極52Bの各櫛歯電極は、固定部材6bに支持される固定電極62の各櫛歯電極と対向している。 A comb-shaped movable electrode 51B is provided on the + Y side side surface of the intermediate frame 20, and a comb-shaped movable electrode 52B is provided on the −Y side side surface of the intermediate frame 20. Each comb tooth electrode of the movable electrode 51B faces each comb tooth electrode of the fixed electrode 61 supported by the fixing member 6a. Each comb tooth electrode of the movable electrode 52B faces each comb tooth electrode of the fixed electrode 62 supported by the fixing member 6b.
 ミラー部5は、中間フレーム20の内側に配置されている。ミラー部5の+Y側の端は梁11Aを介して中間フレーム20につながっており、ミラー部5の-Y側の端は梁12Aを介して中間フレーム20につながっている。図29中の軸Y2は、Y軸に平行な軸であり、ミラー部5の回転軸の位置を示している。梁11A及び梁12Aの各々は軸Y2に沿って形成されている。ミラー部5は、軸Y2まわりに回転可能に構成される。梁11A及び梁12Aの各々が軸Y2まわりにねじれることによって、ミラー部5の軸Y2まわりの回転(以下、「Y2回転」とも称する)が可能になる。 The mirror portion 5 is arranged inside the intermediate frame 20. The + Y side end of the mirror portion 5 is connected to the intermediate frame 20 via the beam 11A, and the −Y side end of the mirror portion 5 is connected to the intermediate frame 20 via the beam 12A. The axis Y2 in FIG. 29 is an axis parallel to the Y axis and indicates the position of the rotation axis of the mirror portion 5. Each of the beam 11A and the beam 12A is formed along the axis Y2. The mirror portion 5 is configured to be rotatable around the axis Y2. By twisting each of the beam 11A and the beam 12A around the axis Y2, the mirror portion 5 can rotate around the axis Y2 (hereinafter, also referred to as “Y2 rotation”).
 支持部材4aと梁11Bとの境界部には、ピエゾ抵抗素子91B及び92Bが設けられている。支持部材4bと梁12Bとの境界部には、ピエゾ抵抗素子93B及び94Bが設けられている。ピエゾ抵抗素子91B,92B,93B,94Bは、中間フレーム20の軸X2まわりの回転位置(以下、「フレームX回転角度」とも称する)を検出するために使用される。検出方法は、実施の形態1と同様である。制御装置3(図1)は、ピエゾ抵抗素子91B,92B,93B,94Bの出力に基づいてフレームX回転角度を取得するように構成される。 Piezoresistive elements 91B and 92B are provided at the boundary between the support member 4a and the beam 11B. Piezoresistive elements 93B and 94B are provided at the boundary between the support member 4b and the beam 12B. The piezoresistive elements 91B, 92B, 93B, 94B are used to detect the rotation position (hereinafter, also referred to as “frame X rotation angle”) of the intermediate frame 20 around the axis X2. The detection method is the same as that of the first embodiment. The control device 3 (FIG. 1) is configured to acquire the frame X rotation angle based on the outputs of the piezoresistive elements 91B, 92B, 93B, and 94B.
 中間フレーム20と梁11Aとの境界部には、ピエゾ抵抗素子91A及び92Aが設けられている。中間フレーム20と梁12Aとの境界部には、ピエゾ抵抗素子93A及び94Aが設けられている。ピエゾ抵抗素子91A,92A,93A,94Aは、ミラー部5の軸Y2まわりの回転位置(以下、「ミラーY回転角度」とも称する)を検出するために使用される。検出方法は、実施の形態1と同様である。制御装置3(図1)は、ピエゾ抵抗素子91A,92A,93A,94Aの出力に基づいてミラーY回転角度を取得するように構成される。 Piezoresistive elements 91A and 92A are provided at the boundary between the intermediate frame 20 and the beam 11A. Piezoresistive elements 93A and 94A are provided at the boundary between the intermediate frame 20 and the beam 12A. The piezoresistive elements 91A, 92A, 93A, 94A are used to detect the rotation position of the mirror unit 5 around the axis Y2 (hereinafter, also referred to as “mirror Y rotation angle”). The detection method is the same as that of the first embodiment. The control device 3 (FIG. 1) is configured to acquire the mirror Y rotation angle based on the outputs of the piezoresistive elements 91A, 92A, 93A, and 94A.
 MEMSミラー1Aは、図29に示されるように、軸X2及び軸Y2の各々に関して線対称な構造を有する。軸X2まわりの回転に対しては中間フレーム20とミラー部5(ミラー10を含む)とが一体的に姿勢を変える。このため、上述した中間フレーム20のX2回転と連動してミラー部5も軸X2まわりに回転する。中間フレーム20のX2回転とミラー部5のY2回転とによって、ミラー10は軸X2まわり及び軸Y2まわりの両方に回転可能になる。ミラー10は基材7aに対して相対的に回転する。フレームX回転角度は、ミラー10の軸X2まわりの回転角度に相当し、ミラーY回転角度は、ミラー10の軸Y2まわりの回転角度に相当する。 As shown in FIG. 29, the MEMS mirror 1A has a line-symmetrical structure with respect to each of the axis X2 and the axis Y2. The intermediate frame 20 and the mirror portion 5 (including the mirror 10) integrally change their postures with respect to the rotation around the axis X2. Therefore, the mirror portion 5 also rotates around the axis X2 in conjunction with the X2 rotation of the intermediate frame 20 described above. The X2 rotation of the intermediate frame 20 and the Y2 rotation of the mirror portion 5 make the mirror 10 rotatable both around the axis X2 and around the axis Y2. The mirror 10 rotates relative to the base material 7a. The frame X rotation angle corresponds to the rotation angle around the axis X2 of the mirror 10, and the mirror Y rotation angle corresponds to the rotation angle around the axis Y2 of the mirror 10.
 駆動配線53Bは、支持部材4a、梁11B、及び中間フレーム20の上に設けられている。ただし、支持部材4a、梁11B、及び中間フレーム20の各々と駆動配線53Bとの間には、絶縁膜54が配置されている。電極パッド56B、57Bは、それぞれ支持部材4aの+Y側、-Y側の端部に設けられ、駆動配線53Bの両端に位置する。駆動配線53Bは、支持部材4aから梁11Bを渡って中間フレーム20に至り、中間フレーム20の外縁部を1周し、再び梁11Bを渡って支持部材4aに戻る。電極パッド56Bと電極パッド57Bとの間に電圧を印加することによって駆動配線53Bに電流が流れる。 The drive wiring 53B is provided on the support member 4a, the beam 11B, and the intermediate frame 20. However, an insulating film 54 is arranged between each of the support member 4a, the beam 11B, and the intermediate frame 20 and the drive wiring 53B. The electrode pads 56B and 57B are provided at the + Y side and −Y side ends of the support member 4a, respectively, and are located at both ends of the drive wiring 53B. The drive wiring 53B crosses the beam 11B from the support member 4a to reach the intermediate frame 20, goes around the outer edge of the intermediate frame 20 once, crosses the beam 11B again, and returns to the support member 4a. By applying a voltage between the electrode pad 56B and the electrode pad 57B, a current flows through the drive wiring 53B.
 駆動配線53Aは、支持部材4a、梁11B、中間フレーム20、及び基材50の上に設けられている。ただし、支持部材4a、梁11B、中間フレーム20、及び基材50の各々と駆動配線53Aとの間には、絶縁膜54が配置されている。電極パッド56A、57Aは、それぞれ支持部材4aの+Y側、-Y側の端部に設けられ、駆動配線53Aの両端に位置する。駆動配線53Aは、支持部材4aから梁11Bを渡って中間フレーム20に至り、中間フレーム20から梁12Aを渡ってミラー部5に至る。そして、駆動配線53Aは、ミラー部5の外縁部(ミラー10の周囲)を1周し、再び梁12A,11Bを渡って支持部材4aに戻る。電極パッド56Aと電極パッド57Aとの間に電圧を印加することによって駆動配線53Aに電流が流れる。 The drive wiring 53A is provided on the support member 4a, the beam 11B, the intermediate frame 20, and the base material 50. However, an insulating film 54 is arranged between each of the support member 4a, the beam 11B, the intermediate frame 20, and the base material 50 and the drive wiring 53A. The electrode pads 56A and 57A are provided at the + Y side and −Y side ends of the support member 4a, respectively, and are located at both ends of the drive wiring 53A. The drive wiring 53A reaches the intermediate frame 20 from the support member 4a across the beam 11B, and reaches the mirror portion 5 from the intermediate frame 20 across the beam 12A. Then, the drive wiring 53A goes around the outer edge portion (around the mirror 10) of the mirror portion 5 once, crosses the beams 12A and 11B again, and returns to the support member 4a. By applying a voltage between the electrode pad 56A and the electrode pad 57A, a current flows through the drive wiring 53A.
 この実施の形態2では、磁石2a,2b(図1)の配置を、実施の形態1とは異なる配置に変更している。図31は、実施の形態2に係る光走査装置における磁石2a,2bの配置を説明するための図である。図31を参照して、磁石2a,2bは、MEMSミラー1Aに対してX軸方向の成分とY軸方向の成分との両方を含む磁界を印加するように配置されている。磁界の磁束密度Bの向きは、磁石2aから磁石2bへの向き(-Y/+Xの向き)である。 In the second embodiment, the arrangement of the magnets 2a and 2b (FIG. 1) is changed to a different arrangement from that of the first embodiment. FIG. 31 is a diagram for explaining the arrangement of the magnets 2a and 2b in the optical scanning apparatus according to the second embodiment. With reference to FIG. 31, the magnets 2a and 2b are arranged so as to apply a magnetic field including both a component in the X-axis direction and a component in the Y-axis direction to the MEMS mirror 1A. The direction of the magnetic flux density B of the magnetic field is the direction from the magnet 2a to the magnet 2b (direction of −Y / + X).
 図29~図31を参照して、この実施の形態2では、駆動配線53Aと駆動配線53Bとは、互いに電気的に接続されておらず、個別の駆動信号によって駆動配線53Aと駆動配線53Bとに別々に電流を流すことができる。MEMSミラー1Aには、図31に示されるような磁界が印加されているため、制御装置3(図1)は、駆動配線53Bに流す駆動電流信号(以下、「第1駆動電流信号」とも称する)と、駆動配線53Aに流す駆動電流信号(以下、「第2駆動電流信号」とも称する)とによって、ミラー10のX2回転及びY2回転を制御することができる。この実施の形態2では、駆動配線53B及び磁石2a,2bが、ミラー10を軸X2(第1回転軸)まわりに回転させる第1ミラーアクチュエータとして機能する。第1駆動電流信号は、「第1ミラーアクチュエータを制御するための第1波形信号」の一例に相当する。また、駆動配線53A及び磁石2a,2bが、ミラー10を軸Y2(第2回転軸)まわりに回転させる第2ミラーアクチュエータとして機能する。第2駆動電流信号は、「第2ミラーアクチュエータを制御するための第2波形信号」の一例に相当する。各ミラーアクチュエータの駆動原理は、基本的には、実施の形態1に係るミラーアクチュエータと同じである。 With reference to FIGS. 29 to 31, in the second embodiment, the drive wiring 53A and the drive wiring 53B are not electrically connected to each other, and the drive wiring 53A and the drive wiring 53B are connected by individual drive signals. Can be passed separately. Since a magnetic field as shown in FIG. 31 is applied to the MEMS mirror 1A, the control device 3 (FIG. 1) also refers to a drive current signal (hereinafter, also referred to as “first drive current signal”) to be passed through the drive wiring 53B. ) And the drive current signal (hereinafter, also referred to as “second drive current signal”) flowing through the drive wiring 53A, the X2 rotation and the Y2 rotation of the mirror 10 can be controlled. In the second embodiment, the drive wiring 53B and the magnets 2a and 2b function as a first mirror actuator that rotates the mirror 10 around an axis X2 (first rotation axis). The first drive current signal corresponds to an example of "a first waveform signal for controlling the first mirror actuator". Further, the drive wiring 53A and the magnets 2a and 2b function as a second mirror actuator that rotates the mirror 10 around the axis Y2 (second rotation axis). The second drive current signal corresponds to an example of "a second waveform signal for controlling the second mirror actuator". The driving principle of each mirror actuator is basically the same as that of the mirror actuator according to the first embodiment.
 MEMSミラー1Aに入射した光ビームは、ミラー10で反射された後、光走査装置から出射される。制御装置3(図1)は、第1駆動電流信号及び第2駆動電流信号によってミラー10のX2回転及びY2回転を制御することにより、光ビームの出射方向を制御することができる。こうした制御により、2次元方向の光走査が可能になる。以下、X2回転による光走査を「X軸走査」、Y2回転による光走査を「Y軸走査」と称する。 The light beam incident on the MEMS mirror 1A is reflected by the mirror 10 and then emitted from the optical scanning device. The control device 3 (FIG. 1) can control the emission direction of the light beam by controlling the X2 rotation and the Y2 rotation of the mirror 10 by the first drive current signal and the second drive current signal. Such control enables light scanning in a two-dimensional direction. Hereinafter, the optical scanning by X2 rotation is referred to as "X-axis scanning", and the optical scanning by Y2 rotation is referred to as "Y-axis scanning".
 第1駆動電流信号は、実施の形態1に係る駆動電流信号と同様、鋸歯状波形の電流信号である。制御装置3(図1)は、ミラー10の軸X2まわりの共振周波数(以下、「X2共振周波数」とも称する)を制御するための電圧信号(以下、「第1調整信号」とも称する)を、可動電極51B,52Bと固定電極61,62との間に印加する。制御装置3(図1)は、上記の第1調整信号によって、第1駆動電流信号に含まれる周波数成分からミラー10のX2共振周波数が離れるようにミラー10のX2共振周波数を制御する。制御装置3(図1)は、たとえば、ミラー10のX2共振周波数と、このX2共振周波数に最も近い第1駆動電流信号の周波数成分との差が目標値(又は、基準値以上)となるようにミラー10のX2共振周波数を制御する。なお、調整信号を用いた共振周波数の制御については、実施の形態1において既述であるため、詳細は割愛する。 The first drive current signal is a serrated current signal similar to the drive current signal according to the first embodiment. The control device 3 (FIG. 1) provides a voltage signal (hereinafter, also referred to as “first adjustment signal”) for controlling the resonance frequency (hereinafter, also referred to as “X2 resonance frequency”) around the axis X2 of the mirror 10. It is applied between the movable electrodes 51B and 52B and the fixed electrodes 61 and 62. The control device 3 (FIG. 1) controls the X2 resonance frequency of the mirror 10 by the first adjustment signal so that the X2 resonance frequency of the mirror 10 is separated from the frequency component included in the first drive current signal. In the control device 3 (FIG. 1), for example, the difference between the X2 resonance frequency of the mirror 10 and the frequency component of the first drive current signal closest to the X2 resonance frequency becomes the target value (or the reference value or more). The X2 resonance frequency of the mirror 10 is controlled. Since the control of the resonance frequency using the adjustment signal has already been described in the first embodiment, the details will be omitted.
 一方、第2駆動電流信号は、ミラー10の軸Y2まわりの共振周波数(以下、「Y2共振周波数」とも称する)に近い周波数の正弦波電流信号である。こうした第2駆動電流信号を採用した場合には、ミラー10の動作が共振現象の影響を受けやすくなり、Y2回転変位の振幅を大きくすることができる。 On the other hand, the second drive current signal is a sinusoidal current signal having a frequency close to the resonance frequency around the axis Y2 of the mirror 10 (hereinafter, also referred to as “Y2 resonance frequency”). When such a second drive current signal is adopted, the operation of the mirror 10 is easily affected by the resonance phenomenon, and the amplitude of the Y2 rotational displacement can be increased.
 上記のように、ミラー10のX2回転に関しては、制御装置3(図1)が、第1調整信号を用いて共振現象によるミラー10の不安定動作(たとえば、リンギング)を抑制する。これにより、安定したX軸走査が可能になる。一方、Y軸走査では、共振現象を積極的に利用することで、高速走査によって広範囲の走査が可能になる。 As described above, regarding the X2 rotation of the mirror 10, the control device 3 (FIG. 1) suppresses the unstable operation (for example, ringing) of the mirror 10 due to the resonance phenomenon by using the first adjustment signal. This enables stable X-axis scanning. On the other hand, in Y-axis scanning, a wide range of scanning becomes possible by high-speed scanning by positively utilizing the resonance phenomenon.
 制御装置3(図1)は、2軸方向の走査を互いに同期させるために、Y軸走査の駆動周波数fdy(すなわち、第2駆動電流信号に含まれる基本波の周波数)に基づいて、X軸走査の駆動周波数fdx(すなわち、第1駆動電流信号に含まれる基本波の周波数)を決定してもよい。制御装置3は、たとえば下記式(13)に従ってX軸走査の駆動周波数(fdx)を決定してもよい。 The control device 3 (FIG. 1) is based on the drive frequency fdy of the Y-axis scan (that is, the frequency of the fundamental wave included in the second drive current signal) in order to synchronize the scans in the two-axis directions with each other. The scan drive frequency fdx (ie, the frequency of the fundamental wave included in the first drive current signal) may be determined. The control device 3 may determine the drive frequency (fdx) of the X-axis scan according to the following equation (13), for example.
  fdx=(p/q)×fdy  …(13)
 式(13)中の「p」及び「q」の各々は、任意に設定可能である。たとえば予め実験又はシミュレーションによって求められた適切な自然数がp,qに設定される。
fdx = (p / q) x fdy ... (13)
Each of "p" and "q" in the formula (13) can be arbitrarily set. For example, appropriate natural numbers obtained in advance by experiments or simulations are set in p and q.
 この実施の形態2に係る光走査装置は、ミラー10に力を加えてミラー10の軸X2まわりの共振周波数を変化させる第1調整機構を備える。具体的には、可動電極51B,52B及び固定電極61,62が、「第1調整機構」として機能する。制御装置3(図1)は、第1調整機構を制御することにより、第1駆動電流信号に含まれる周波数成分からミラー10のX2共振周波数が離れるようにミラー10のX2共振周波数を制御する。こうした制御によって、前述した実施の形態1に準ずる効果が奏される。 The optical scanning apparatus according to the second embodiment includes a first adjusting mechanism that applies a force to the mirror 10 to change the resonance frequency around the axis X2 of the mirror 10. Specifically, the movable electrodes 51B and 52B and the fixed electrodes 61 and 62 function as the "first adjustment mechanism". The control device 3 (FIG. 1) controls the X2 resonance frequency of the mirror 10 so that the X2 resonance frequency of the mirror 10 is separated from the frequency component included in the first drive current signal by controlling the first adjustment mechanism. By such control, the effect according to the above-described first embodiment is achieved.
 上記実施の形態2に係る光走査装置は、X軸走査に関する調整機構(第1調整機構)のみを備え、Y軸走査に関する調整機構は備えない。しかしこれに限られず、図29及び図30に示した構造に対して、Y軸走査に関する調整機構を追加してもよい。 The optical scanning apparatus according to the second embodiment includes only an adjustment mechanism related to X-axis scanning (first adjustment mechanism), and does not include an adjusting mechanism related to Y-axis scanning. However, the present invention is not limited to this, and an adjustment mechanism related to Y-axis scanning may be added to the structures shown in FIGS. 29 and 30.
 図32は、図29に示したMEMSミラーの構造の変形例を示す図である。図33は、図32中のXXXIII-XXXIII線に沿った断面構造を示す図である。図32及び図33を参照して、MEMSミラー1Bにおいては、ミラー部5の-X側の側面に櫛歯状の可動電極51Aが設けられており、ミラー部5の+X側の側面に櫛歯状の可動電極52Aが設けられている。可動電極51A,52Aは、ミラー10、梁11A,12A、中間フレーム20、梁11B,12B、及び支持部材4a,4bの各々と電気的に接続されており、これらと電気的に等電位である。また、可動電極51Aの各櫛歯電極と対向するように櫛歯状の固定電極61Aが設けられており、可動電極52Aの各櫛歯電極と対向するように櫛歯状の固定電極62Aが設けられている。固定電極61A,62Aは、中間フレーム20とともに、基材7c上に絶縁層55を介して設けられている。固定電極61A,62Aと中間フレーム20との間には隙間が設けられており、固定電極61A,62Aと中間フレーム20とは、絶縁層55によって電気的に絶縁されている。ただし、固定電極61Aと固定電極62Aとは、図示しない配線によって互いに電気的に接続されており、電気的に等電位である。ミラー部5のY2回転による力は、梁11A及び12Aの各々の弾性変形によって吸収されるため、中間フレーム20及び固定電極61A,62Aの各々はミラー10のY2回転とは連動しない。 FIG. 32 is a diagram showing a modified example of the structure of the MEMS mirror shown in FIG. 29. FIG. 33 is a diagram showing a cross-sectional structure along the line XXXIII-XXXIII in FIG. 32. With reference to FIGS. 32 and 33, in the MEMS mirror 1B, a comb-shaped movable electrode 51A is provided on the side surface of the mirror portion 5 on the −X side, and a comb tooth is provided on the side surface of the mirror portion 5 on the + X side. A movable electrode 52A in the shape of a shape is provided. The movable electrodes 51A and 52A are electrically connected to each of the mirror 10, the beams 11A and 12A, the intermediate frame 20, the beams 11B and 12B, and the support members 4a and 4b, and are electrically equipotential with these. .. Further, a comb-shaped fixed electrode 61A is provided so as to face each comb-tooth electrode of the movable electrode 51A, and a comb-tooth-shaped fixed electrode 62A is provided so as to face each comb-tooth electrode of the movable electrode 52A. Has been done. The fixed electrodes 61A and 62A are provided on the base material 7c via the insulating layer 55 together with the intermediate frame 20. A gap is provided between the fixed electrodes 61A and 62A and the intermediate frame 20, and the fixed electrodes 61A and 62A and the intermediate frame 20 are electrically insulated by the insulating layer 55. However, the fixed electrode 61A and the fixed electrode 62A are electrically connected to each other by wiring (not shown), and are electrically equipotential. Since the force due to the Y2 rotation of the mirror portion 5 is absorbed by the elastic deformation of the beams 11A and 12A, each of the intermediate frame 20 and the fixed electrodes 61A and 62A is not interlocked with the Y2 rotation of the mirror 10.
 この変形例では、第1駆動電流信号及び第2駆動電流信号の各々が、鋸歯状波形の電流信号である。MEMSミラー1Bは、前述の第1調整機構に加えて、ミラー10に力を加えてミラー10の軸Y2まわりの共振周波数を変化させる第2調整機構を備える。具体的には、可動電極51A,52A及び固定電極61A,62Aが、「第2調整機構」として機能する。制御装置3(図1)は、以下に説明するように第1調整機構及び第2調整機構を制御する。 In this modification, each of the first drive current signal and the second drive current signal is a serrated current signal. The MEMS mirror 1B includes, in addition to the first adjustment mechanism described above, a second adjustment mechanism that applies a force to the mirror 10 to change the resonance frequency around the axis Y2 of the mirror 10. Specifically, the movable electrodes 51A and 52A and the fixed electrodes 61A and 62A function as a "second adjusting mechanism". The control device 3 (FIG. 1) controls the first adjusting mechanism and the second adjusting mechanism as described below.
 制御装置3は、可動電極51B,52Bと固定電極61,62との間に前述の第1調整信号を印加することにより、第1駆動電流信号に含まれる周波数成分からミラー10のX2共振周波数が離れるようにミラー10のX2共振周波数を制御する。また、制御装置3は、ミラー10のY2共振周波数を制御するための電圧信号(以下、「第2調整信号」とも称する)を、可動電極51A,52Aと固定電極61A,62Aとの間に印加することにより、第2駆動電流信号に含まれる周波数成分からミラー10のY2共振周波数が離れるようにミラー10のY2共振周波数を制御する。なお、調整信号を用いた共振周波数の制御については、実施の形態1において既述であるため、詳細は割愛する。 By applying the above-mentioned first adjustment signal between the movable electrodes 51B and 52B and the fixed electrodes 61 and 62, the control device 3 obtains the X2 resonance frequency of the mirror 10 from the frequency component included in the first drive current signal. The X2 resonance frequency of the mirror 10 is controlled so as to be separated. Further, the control device 3 applies a voltage signal for controlling the Y2 resonance frequency of the mirror 10 (hereinafter, also referred to as “second adjustment signal”) between the movable electrodes 51A and 52A and the fixed electrodes 61A and 62A. By doing so, the Y2 resonance frequency of the mirror 10 is controlled so that the Y2 resonance frequency of the mirror 10 is separated from the frequency component included in the second drive current signal. Since the control of the resonance frequency using the adjustment signal has already been described in the first embodiment, the details will be omitted.
 上記のような制御により、X軸走査及びY軸走査の両方に関して、共振現象によるミラー10の不安定動作(たとえば、リンギング)を抑制することが可能になる。これにより、安定したX軸走査及びY軸走査が可能になる。 With the above control, it is possible to suppress unstable operation (for example, ringing) of the mirror 10 due to the resonance phenomenon in both X-axis scanning and Y-axis scanning. This enables stable X-axis scanning and Y-axis scanning.
 実施の形態3.
 上述した光走査装置によって測距装置を構成してもよい。実施の形態3に係る測距装置が備える光走査装置(後述する光走査装置200)は、上記実施の形態2に係る光走査装置(図29~図31参照)である。
Embodiment 3.
The distance measuring device may be configured by the above-mentioned optical scanning device. The optical scanning device (optical scanning device 200 described later) included in the ranging device according to the third embodiment is the optical scanning device (see FIGS. 29 to 31) according to the second embodiment.
 図34は、実施の形態3に係る測距装置を示す図である。図34を参照して、測距装置300は、筐体305を有し、筐体305内に、光ビームを出射する光源301と、光ビームを偏向する光走査装置200と、光検出器303とを備える。そして、測距装置300は、光走査装置200により偏向された光ビームを物体に照射し、物体で反射された光の少なくとも一部を光検出器303によって検出するように構成される。測距装置300は、情報処理装置3Aをさらに備える。情報処理装置3Aは、光源301から出射される光ビームに関する情報と、光検出器303による検出結果とを用いて、距離画像を形成するように構成される。距離画像は、物体との距離を画素ごとに示す画像である。情報処理装置3Aは、図示しない表示装置に距離画像を表示させてもよい。測距方式は、TOF(Time Of Flight)方式であってもよい。測距装置300は、装置周辺の距離画像を取得することができる。 FIG. 34 is a diagram showing a distance measuring device according to the third embodiment. With reference to FIG. 34, the ranging device 300 has a housing 305, a light source 301 that emits a light beam, an optical scanning device 200 that deflects the light beam, and a photodetector 303 in the housing 305. And. Then, the distance measuring device 300 is configured to irradiate the object with a light beam deflected by the light scanning device 200, and detect at least a part of the light reflected by the object by the photodetector 303. The distance measuring device 300 further includes an information processing device 3A. The information processing device 3A is configured to form a distance image by using the information about the light beam emitted from the light source 301 and the detection result by the photodetector 303. The distance image is an image showing the distance to an object for each pixel. The information processing device 3A may display a distance image on a display device (not shown). The distance measuring method may be a TOF (Time Of Flight) method. The distance measuring device 300 can acquire a distance image around the device.
 情報処理装置3Aは、光走査装置200を制御するように構成されてもよい。情報処理装置3Aは、実施の形態2に係る制御装置3(図1)と同様の機能を有してもよい。情報処理装置3Aとしては、プロセッサ、RAM、及び記憶装置を備えるマイクロコンピュータを採用できる。上記の記憶装置には、プログラムと、プログラムで使用される情報(たとえば、マップ、数式、及び各種パラメータ)とが記憶されていてもよい。画像処理回路が情報処理装置3Aに搭載されていてもよい。 The information processing device 3A may be configured to control the optical scanning device 200. The information processing device 3A may have the same function as the control device 3 (FIG. 1) according to the second embodiment. As the information processing device 3A, a microcomputer including a processor, RAM, and a storage device can be adopted. The above storage device may store the program and information used in the program (for example, maps, mathematical formulas, and various parameters). The image processing circuit may be mounted on the information processing apparatus 3A.
 光源301は、光走査装置200のMEMSミラーに光ビームを照射するように構成される。光源301としては、たとえばレーザ光源を採用できる。光源301が出射する光ビームの波長は任意であり、可視域であってもよいし、赤外域であってもよい。この実施の形態3では、波長870nm~1500nmのレーザ光を出射するレーザ光源を、光源301として採用する。図34には、1つの光源301のみを示しているが、測距装置300が備える光源の数は任意であり、測距装置300は複数の光源を備えてもよい。 The light source 301 is configured to irradiate the MEMS mirror of the optical scanning device 200 with a light beam. As the light source 301, for example, a laser light source can be adopted. The wavelength of the light beam emitted by the light source 301 is arbitrary and may be in the visible region or in the infrared region. In the third embodiment, a laser light source that emits a laser beam having a wavelength of 870 nm to 1500 nm is used as the light source 301. Although FIG. 34 shows only one light source 301, the number of light sources included in the distance measuring device 300 is arbitrary, and the distance measuring device 300 may include a plurality of light sources.
 筐体305には、光源301から出射される光ビームと、物体で反射された光ビームとが透過する窓306が設けられている。筐体305内において、光源301と光走査装置200のMEMSミラーとの間には、ビームスプリッタ302が設けられている。 The housing 305 is provided with a window 306 through which the light beam emitted from the light source 301 and the light beam reflected by the object are transmitted. A beam splitter 302 is provided between the light source 301 and the MEMS mirror of the optical scanning device 200 in the housing 305.
 光源301から出射された光ビームは、線L1で示すように、ビームスプリッタ302を通過し、光走査装置200により偏向される。光走査装置200においては、駆動信号によって駆動されるミラー(反射膜)で光ビームが反射される。そして、反射された光ビームは、窓306を透過し、筐体305外の物体(より特定的には、光走査装置200の走査範囲内にある物体)に照射される。 The light beam emitted from the light source 301 passes through the beam splitter 302 and is deflected by the light scanning device 200 as shown by the line L1. In the optical scanning device 200, the light beam is reflected by a mirror (reflection film) driven by a drive signal. Then, the reflected light beam passes through the window 306 and irradiates an object outside the housing 305 (more specifically, an object within the scanning range of the optical scanning device 200).
 筐体305外の上記物体で反射された光ビームは、窓306を通じて筐体305内に入射する。光検出器303は、こうした光ビームを検出可能な位置に配置される。光検出器303としては、たとえばアバランシェフォトダイオード(APD)を採用できる。物体で反射された光は、線L2で示すように、窓306から取り込まれ、光走査装置200のMEMSミラーでビームスプリッタ302の方へ反射され、さらにビームスプリッタ302の反射面で光検出器303の方へ反射される。このように、物体で反射された光は、窓306、光走査装置200、及びビームスプリッタ302を経て、光検出器303に入射する。 The light beam reflected by the object outside the housing 305 enters the housing 305 through the window 306. The photodetector 303 is arranged at a position where such a light beam can be detected. As the photodetector 303, for example, an avalanche photodiode (APD) can be adopted. The light reflected by the object is taken in from the window 306 and reflected toward the beam splitter 302 by the MEMS mirror of the optical scanning device 200 as shown by the line L2, and further, the light detector 303 is reflected by the reflecting surface of the beam splitter 302. It is reflected toward. In this way, the light reflected by the object enters the photodetector 303 through the window 306, the optical scanning device 200, and the beam splitter 302.
 情報処理装置3Aは、出射光に関する情報を光源301から取得し、入射光に関する情報を光検出器303から取得する。情報処理装置3Aは、出射光と入射光とを比較することで、上記物体までの距離を測定することができる。たとえば、パルス状の光ビームを物体に照射すると、物体からもパルス状の反射光が得られる。情報処理装置3Aは、出射光のパルスと反射光のパルスとの時間差により物体までの距離を算出できる。光走査装置200は2次元的に光ビームを走査するため、情報処理装置3Aは、上記の距離情報と、光ビームの走査方向に関する情報とに基づいて、装置周辺の2次元的な距離画像を取得することができる。 The information processing device 3A acquires information on the emitted light from the light source 301 and information on the incident light from the photodetector 303. The information processing device 3A can measure the distance to the object by comparing the emitted light and the incident light. For example, when an object is irradiated with a pulsed light beam, pulsed reflected light can also be obtained from the object. The information processing device 3A can calculate the distance to the object from the time difference between the pulse of the emitted light and the pulse of the reflected light. Since the optical scanning device 200 scans the light beam in two dimensions, the information processing device 3A obtains a two-dimensional distance image around the device based on the above distance information and information on the scanning direction of the light beam. Can be obtained.
 測距装置300は、LiDAR(Light Detection and Ranging)として機能してもよい。測距装置300は、車両に搭載されてもよい。測距装置300は、コネクテッドカーに搭載され、運転支援制御又は自動運転制御における障害物検知に用いられてもよい。 The distance measuring device 300 may function as LiDAR (Light Detection and Ringing). The ranging device 300 may be mounted on the vehicle. The distance measuring device 300 may be mounted on a connected car and used for obstacle detection in driving support control or automatic driving control.
 以上説明した実施の形態3に係る測距装置300では、前述した実施の形態2に係る光走査装置が、光走査装置200として採用されている。このため、実施の形態3によっても、前述した実施の形態2に準ずる効果が奏される。実施の形態3に係る測距装置300では、光走査装置200からの出射光のリンギングが抑制されるため、物体の位置及び形を正確に検出しやすくなり、ひずみの少ない距離画像が得られる。 In the distance measuring device 300 according to the third embodiment described above, the optical scanning device according to the second embodiment described above is adopted as the optical scanning device 200. Therefore, even in the third embodiment, the same effect as that of the second embodiment described above can be obtained. In the distance measuring device 300 according to the third embodiment, since the ringing of the light emitted from the optical scanning device 200 is suppressed, it becomes easy to accurately detect the position and shape of the object, and a distance image with less distortion can be obtained.
 実施の形態3に係る測距装置300では、物体からの反射光(線L2)が出射光(線L1)と同じ光学系を経由して光検出器303に導かれているが、筐体305内の光学系及び光の経路は適宜変更可能である。図35は、図34に示した測距装置の変形例を示す図である。図35を参照して、測距装置300Aの筐体305には、光源301から出射される光ビーム(線L1)が透過する窓306Aと、物体で反射された光ビーム(線L2)が透過する窓306Bとが、別々に設けられている。また、測距装置300Aにおいては、ビームスプリッタが割愛されている。光源301から出射された光ビームは、線L1で示すように、光走査装置200により偏向され、窓306Aを透過し、筐体305外の物体に照射される。物体で反射された光は、線L2で示すように、窓306Bから取り込まれ、光検出器303に入射する。こうした測距装置300Aにおいても、情報処理装置3Aは、出射光と反射光とを比較することで物体までの距離を算出できる。情報処理装置3Aは、装置周辺の距離画像を取得できる。 In the ranging device 300 according to the third embodiment, the reflected light (line L2) from the object is guided to the photodetector 303 via the same optical system as the emitted light (line L1), but the housing 305 The optical system and the path of light inside can be changed as appropriate. FIG. 35 is a diagram showing a modified example of the distance measuring device shown in FIG. 34. With reference to FIG. 35, the window 306A through which the light beam (line L1) emitted from the light source 301 is transmitted and the light beam (line L2) reflected by the object are transmitted through the housing 305 of the distance measuring device 300A. The window 306B to be used is provided separately. Further, in the distance measuring device 300A, the beam splitter is omitted. As shown by the line L1, the light beam emitted from the light source 301 is deflected by the optical scanning device 200, passes through the window 306A, and irradiates an object outside the housing 305. The light reflected by the object is taken in through the window 306B and incident on the photodetector 303, as shown by line L2. Even in such a distance measuring device 300A, the information processing device 3A can calculate the distance to the object by comparing the emitted light and the reflected light. The information processing device 3A can acquire a distance image around the device.
 上記実施の形態3に係る測距装置300では、光走査装置200として、実施の形態2に係る光走査装置を採用したが、実施の形態2に係る光走査装置の代わりに、実施の形態1に係る光走査装置を採用してもよい。上述した実施の形態1及びその変形例に係る光走査装置と、実施の形態2及びその変形例に係る光走査装置とから任意に選ばれた光走査装置を、測距装置の光走査装置として適用してもよい。 In the distance measuring device 300 according to the third embodiment, the optical scanning device according to the second embodiment is adopted as the optical scanning device 200, but instead of the optical scanning device according to the second embodiment, the first embodiment The optical scanning apparatus according to the above may be adopted. An optical scanning device arbitrarily selected from the above-described optical scanning device according to the first embodiment and its modification and the optical scanning device according to the second embodiment and its modification is used as the optical scanning device of the distance measuring device. It may be applied.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1,1A,1B MEMSミラー、2a,2b 磁石、3 制御装置、3A 情報処理装置、4a,4b 支持部材、5,5A,5B ミラー部、6a,6b,6c,6d 固定部材、7a,7b,7c,50 基材、8,8a~8d 圧電構造体、10 ミラー、11,11A,11B,12,12A,12B,80,80a~80d 梁、20 中間フレーム、51,51A,51B,52,52A,52B,R11~R14,R21,R22 可動電極、53,53A,53B 駆動配線、54 絶縁膜、55 絶縁層、56,56A,56B,57,57A,57B 電極パッド、61,61A,62,62A,64A,R31,R32 固定電極、81 絶縁層、82,84 電極層、83 圧電層、91~94,91A~94A,91B~94B ピエゾ抵抗素子、100,200 光走査装置、300,300A 測距装置、301 光源、302 ビームスプリッタ、303 光検出器、305 筐体、306,306A,306B 窓。 1,1A, 1B MEMS mirror, 2a, 2b magnet, 3 control device, 3A information processing device, 4a, 4b support member, 5,5A, 5B mirror part, 6a, 6b, 6c, 6d fixing member, 7a, 7b, 7c, 50 base material, 8,8a to 8d piezoelectric structure, 10 mirror, 11,11A, 11B, 12,12A, 12B, 80,80a to 80d beam, 20 intermediate frame, 51,51A, 51B, 52,52A , 52B, R11 to R14, R21, R22 Movable electrodes, 53, 53A, 53B Drive wiring, 54 Insulation film, 55 Insulation layer, 56, 56A, 56B, 57, 57A, 57B Electrode pads, 61, 61A, 62, 62A , 64A, R31, R32 fixed electrode, 81 insulating layer, 82,84 electrode layer, 83 piezoelectric layer, 91 to 94, 91A to 94A, 91B to 94B piezo resistance element, 100, 200 optical scanning device, 300, 300A ranging Equipment, 301 light source, 302 beam splitter, 303 light detector, 305 housing, 306, 306A, 306B window.

Claims (10)

  1.  回転軸まわりに回転可能に構成され、光を反射するミラーと、
     前記ミラーを前記回転軸まわりに回転させるミラーアクチュエータと、
     前記ミラーに力を加えて前記ミラーの前記回転軸まわりの共振周波数を変化させる調整機構と、
     前記ミラーアクチュエータ及び前記調整機構を制御する制御装置とを備え、
     前記制御装置は、波形信号によって前記ミラーアクチュエータを制御するように構成され、
     前記制御装置は、前記調整機構を制御することにより、前記波形信号に含まれる周波数成分から前記ミラーの前記回転軸まわりの共振周波数が離れるように前記ミラーの前記回転軸まわりの共振周波数を制御する、光走査装置。
    A mirror that is configured to rotate around the axis of rotation and reflects light,
    A mirror actuator that rotates the mirror around the rotation axis,
    An adjustment mechanism that applies force to the mirror to change the resonance frequency around the rotation axis of the mirror.
    The mirror actuator and the control device for controlling the adjustment mechanism are provided.
    The control device is configured to control the mirror actuator by a waveform signal.
    By controlling the adjustment mechanism, the control device controls the resonance frequency around the rotation axis of the mirror so that the resonance frequency around the rotation axis of the mirror is separated from the frequency component included in the waveform signal. , Optical scanning device.
  2.  前記調整機構は、
     前記ミラーの前記回転軸まわりの回転と連動するように構成される可動電極と、
     前記ミラーの前記回転軸まわりの回転と連動しないように構成される固定電極とを含み、
     前記調整機構は、前記可動電極と前記固定電極との間に電圧が印加されることにより前記可動電極と前記固定電極との間に静電力を生じさせて、その静電力により前記ミラーの前記回転軸まわりの共振周波数を変化させるように構成され、
     前記制御装置は、前記可動電極と前記固定電極との間に電圧信号を印加するように構成される、請求項1に記載の光走査装置。
    The adjustment mechanism
    A movable electrode configured to be interlocked with the rotation of the mirror around the rotation axis,
    Includes a fixed electrode configured not to interlock with the rotation of the mirror around the axis of rotation.
    The adjusting mechanism generates an electrostatic force between the movable electrode and the fixed electrode by applying a voltage between the movable electrode and the fixed electrode, and the electrostatic force causes the rotation of the mirror. It is configured to change the resonance frequency around the axis,
    The optical scanning device according to claim 1, wherein the control device is configured to apply a voltage signal between the movable electrode and the fixed electrode.
  3.  前記調整機構は、前記ミラーの前記回転軸まわりの回転に対する復元力を強めるように前記ミラーに力を加えるように構成され、
     前記可動電極及び前記固定電極の各々は、櫛歯状に形成されており、
     前記可動電極と前記固定電極とは双方の櫛歯が互い違いになるように配置されている、請求項2に記載の光走査装置。
    The adjusting mechanism is configured to apply a force to the mirror so as to increase the restoring force of the mirror with respect to rotation about the rotation axis.
    Each of the movable electrode and the fixed electrode is formed in a comb-teeth shape.
    The optical scanning apparatus according to claim 2, wherein the movable electrode and the fixed electrode are arranged so that both comb teeth are staggered.
  4.  前記制御装置は、前記ミラーの前記回転軸まわりの共振周波数と、この共振周波数に最も近い前記波形信号の前記周波数成分との差が目標値又は基準値以上となるように、前記ミラーの前記回転軸まわりの共振周波数を制御する、請求項2に記載の光走査装置。 The control device rotates the mirror so that the difference between the resonance frequency around the rotation axis of the mirror and the frequency component of the waveform signal closest to the resonance frequency becomes a target value or a reference value or more. The optical scanning device according to claim 2, wherein the resonance frequency around the axis is controlled.
  5.  前記電圧信号は、直流電圧信号であり、
     前記制御装置は、前記電圧信号の直流電圧の大きさに基づいて、前記ミラーの前記回転軸まわりの共振周波数を制御する、請求項2~4のいずれか1項に記載の光走査装置。
    The voltage signal is a DC voltage signal and
    The optical scanning device according to any one of claims 2 to 4, wherein the control device controls a resonance frequency around the rotation axis of the mirror based on the magnitude of the DC voltage of the voltage signal.
  6.  前記電圧信号は、矩形波電圧信号であり、
     前記制御装置は、前記電圧信号のデューティ比に基づいて、前記ミラーの前記回転軸まわりの共振周波数を制御する、請求項2~4のいずれか1項に記載の光走査装置。
    The voltage signal is a square wave voltage signal.
    The optical scanning device according to any one of claims 2 to 4, wherein the control device controls a resonance frequency around the rotation axis of the mirror based on the duty ratio of the voltage signal.
  7.  基材と、
     前記基材上に直接的又は間接的に設けられた第1支持部材及び第2支持部材と、
     前記基材上に直接的又は間接的に設けられた第1固定部材及び第2固定部材と、
     表面に前記ミラーを有するミラー部と、
     第1梁及び第2梁とをさらに備え、
     前記ミラー部の前記回転軸の方向の両端に位置する第1端及び第2端はそれぞれ、前記第1梁及び前記第2梁を介して前記第1支持部材及び前記第2支持部材につながっており、
     前記可動電極は、第1可動電極及び第2可動電極を含み、
     前記第1可動電極及び前記第2可動電極はそれぞれ、前記ミラー部の前記回転軸とは直交する方向の両端に位置する第3端及び第4端に設けられており、
     前記固定電極は、前記第1固定部材に支持される第1固定電極と、前記第2固定部材に支持される第2固定電極とを含み、
     前記第1固定電極及び前記第2固定電極はそれぞれ、前記第1可動電極及び前記第2可動電極に対向するように配置され、
     前記第1梁及び前記第2梁の各々は、前記回転軸として機能し、
     前記第1可動電極及び前記第1固定電極と、前記第2可動電極及び前記第2固定電極とは、前記回転軸に関して線対称に形成されている、請求項2~4のいずれか1項に記載の光走査装置。
    With the base material
    A first support member and a second support member provided directly or indirectly on the base material,
    The first fixing member and the second fixing member provided directly or indirectly on the base material,
    A mirror portion having the mirror on the surface and
    Further equipped with a first beam and a second beam,
    The first end and the second end of the mirror portion located at both ends in the direction of the rotation axis are connected to the first support member and the second support member via the first beam and the second beam, respectively. Ori,
    The movable electrode includes a first movable electrode and a second movable electrode.
    The first movable electrode and the second movable electrode are provided at the third and fourth ends of the mirror portion located at both ends in a direction orthogonal to the rotation axis, respectively.
    The fixed electrode includes a first fixed electrode supported by the first fixed member and a second fixed electrode supported by the second fixed member.
    The first fixed electrode and the second fixed electrode are arranged so as to face the first movable electrode and the second movable electrode, respectively.
    Each of the first beam and the second beam functions as the rotation axis and functions as the rotation axis.
    The first movable electrode and the first fixed electrode, and the second movable electrode and the second fixed electrode are formed line-symmetrically with respect to the rotation axis, according to any one of claims 2 to 4. The optical scanning device according to the description.
  8.  前記回転軸は、第1回転軸であり、
     前記ミラーアクチュエータは、第1ミラーアクチュエータであり、
     前記波形信号は、第1波形信号であり、
     前記調整機構は、第1調整機構であり、
     前記ミラーは、前記第1回転軸に直交する第2回転軸まわりにも回転可能に構成され、
     当該光走査装置は、
     前記ミラーを前記第2回転軸まわりに回転させる第2ミラーアクチュエータと、
     前記ミラーに力を加えて前記ミラーの前記第2回転軸まわりの共振周波数を変化させる第2調整機構とをさらに備え、
     前記制御装置は、第2波形信号によって前記第2ミラーアクチュエータを制御するように構成され、
     前記制御装置は、前記第2調整機構を制御することにより、前記第2波形信号に含まれる周波数成分から前記ミラーの前記第2回転軸まわりの共振周波数が離れるように前記ミラーの前記第2回転軸まわりの共振周波数を制御する、請求項1~4のいずれか1項に記載の光走査装置。
    The rotation axis is the first rotation axis, and is
    The mirror actuator is a first mirror actuator.
    The waveform signal is a first waveform signal and
    The adjustment mechanism is a first adjustment mechanism.
    The mirror is configured to be rotatable around a second rotation axis orthogonal to the first rotation axis.
    The optical scanning device is
    A second mirror actuator that rotates the mirror around the second rotation axis,
    Further provided with a second adjusting mechanism that applies a force to the mirror to change the resonance frequency around the second rotation axis of the mirror.
    The control device is configured to control the second mirror actuator by a second waveform signal.
    By controlling the second adjustment mechanism, the control device performs the second rotation of the mirror so that the resonance frequency around the second rotation axis of the mirror is separated from the frequency component included in the second waveform signal. The optical scanning device according to any one of claims 1 to 4, which controls the resonance frequency around the axis.
  9.  光ビームを出射する光源と、前記光ビームを偏向する光走査装置と、光検出器とを備え、前記光走査装置により偏向された光ビームを物体に照射し、前記物体で反射された光の少なくとも一部を前記光検出器によって検出するように構成される測距装置であって、
     前記光源から出射される光ビームに関する情報と、前記光検出器による検出結果とを用いて、距離画像を形成する情報処理装置をさらに備え、
     前記光走査装置は、請求項1~8のいずれか1項に記載の光走査装置である、測距装置。
    A light source that emits a light beam, an optical scanning device that deflects the light beam, and a photodetector are provided, and an object is irradiated with a light beam deflected by the optical scanning device, and the light reflected by the object A ranging device configured to detect at least a part by the photodetector.
    An information processing device that forms a distance image using the information about the light beam emitted from the light source and the detection result by the photodetector is further provided.
    The optical scanning device is a distance measuring device according to any one of claims 1 to 8.
  10.  回転軸まわりに回転可能に構成され、光を反射するミラーと、前記ミラーを前記回転軸まわりに回転させるミラーアクチュエータとを備える光走査装置の制御方法であって、
     前記ミラーアクチュエータを制御するための波形信号を決定することと、
     前記ミラーの前記回転軸まわりの共振周波数と、この共振周波数に最も近い前記波形信号の周波数成分との差が目標値又は基準値以上となるように、前記ミラーの前記回転軸まわりの共振周波数の目標値である目標周波数を決定することと、
     前記波形信号によって前記ミラーアクチュエータを制御して前記ミラーを前記回転軸まわりに回転させるとともに、前記ミラーに力を加えて前記ミラーの前記回転軸まわりの共振周波数を変化させることにより前記ミラーの前記回転軸まわりの共振周波数を前記目標周波数に制御することとを含む、光走査装置の制御方法。
    A control method for an optical scanning device including a mirror that is rotatably configured around a rotation axis and reflects light, and a mirror actuator that rotates the mirror around the rotation axis.
    Determining the waveform signal for controlling the mirror actuator and
    The resonance frequency of the mirror around the rotation axis so that the difference between the resonance frequency around the rotation axis of the mirror and the frequency component of the waveform signal closest to the resonance frequency becomes equal to or more than a target value or a reference value. Determining the target frequency, which is the target value,
    The mirror actuator is controlled by the waveform signal to rotate the mirror around the rotation axis, and a force is applied to the mirror to change the resonance frequency around the rotation axis of the mirror to rotate the mirror. A method for controlling an optical scanning device, which comprises controlling a resonance frequency around an axis to the target frequency.
PCT/JP2020/013732 2020-03-26 2020-03-26 Optical scanning device, control method for optical scanning device, and distance measuring device WO2021192161A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020547429A JP6833127B1 (en) 2020-03-26 2020-03-26 Optical scanning device, control method of optical scanning device, and distance measuring device
PCT/JP2020/013732 WO2021192161A1 (en) 2020-03-26 2020-03-26 Optical scanning device, control method for optical scanning device, and distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013732 WO2021192161A1 (en) 2020-03-26 2020-03-26 Optical scanning device, control method for optical scanning device, and distance measuring device

Publications (1)

Publication Number Publication Date
WO2021192161A1 true WO2021192161A1 (en) 2021-09-30

Family

ID=74661675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013732 WO2021192161A1 (en) 2020-03-26 2020-03-26 Optical scanning device, control method for optical scanning device, and distance measuring device

Country Status (2)

Country Link
JP (1) JP6833127B1 (en)
WO (1) WO2021192161A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022184515A (en) * 2021-06-01 2022-12-13 富士フイルム株式会社 Optical scanning device, method for driving optical scanning device, and image drawing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071594B1 (en) * 2002-11-04 2006-07-04 Microvision, Inc. MEMS scanner with dual magnetic and capacitive drive
JP2007256862A (en) * 2006-03-24 2007-10-04 Matsushita Electric Works Ltd Movable structure and method of controlling same
JP2008197139A (en) * 2007-02-08 2008-08-28 Ricoh Co Ltd Optical scanner
JP2012137692A (en) * 2010-12-27 2012-07-19 Brother Ind Ltd Image display device
WO2019176204A1 (en) * 2018-03-13 2019-09-19 三菱電機株式会社 Optical scanning device and method of control therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071594B1 (en) * 2002-11-04 2006-07-04 Microvision, Inc. MEMS scanner with dual magnetic and capacitive drive
JP2007256862A (en) * 2006-03-24 2007-10-04 Matsushita Electric Works Ltd Movable structure and method of controlling same
JP2008197139A (en) * 2007-02-08 2008-08-28 Ricoh Co Ltd Optical scanner
JP2012137692A (en) * 2010-12-27 2012-07-19 Brother Ind Ltd Image display device
WO2019176204A1 (en) * 2018-03-13 2019-09-19 三菱電機株式会社 Optical scanning device and method of control therefor

Also Published As

Publication number Publication date
JPWO2021192161A1 (en) 2021-09-30
JP6833127B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP5313666B2 (en) MEMS device, light control method, and mirror formation method
CN110892306B (en) Optical scanning device and method for adjusting optical scanning device
JP4092283B2 (en) Two-dimensional optical scanner and optical device
EP3226059B1 (en) Mems device oscillating about two axes and having a position detecting system, in particular of a piezoresistive type
JP5666955B2 (en) Optical deflector
EP3447560B1 (en) A mems reflector system
JP2007322466A (en) Optical deflector and optical equipment using the same
JP2012133242A (en) Optical scanner
CN109991732B (en) Scanning reflector device and method for driving a reflector system
EP3521894B1 (en) Mems reflector system with trajectory control
JPWO2013168385A1 (en) Optical reflection element
JP7436686B2 (en) Micromirror device and optical scanning device
JP2021121851A (en) Optical scanner
EP2706393B1 (en) Optical deflector including narrow piezoelectric sensor element between torsion bar and piezoelectric actuator
WO2021192161A1 (en) Optical scanning device, control method for optical scanning device, and distance measuring device
JPH04211217A (en) Optical deflector
JP6880385B2 (en) Optical scanning device
US20230139572A1 (en) Optical scanning device and method of driving micromirror device
US20100302612A1 (en) Oscillating structure and oscillator device using the same
JP6052341B2 (en) Optical scanning device
EP4148482B1 (en) Micromirror device and optical scanning device
EP4148481A1 (en) Micromirror device and optical scanning device
JP4973064B2 (en) Actuator, projector, optical device, optical scanner, and image forming apparatus
US10838198B2 (en) Actuator and light scanning apparatus
JP4123133B2 (en) Actuator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020547429

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926584

Country of ref document: EP

Kind code of ref document: A1