WO2021187456A1 - Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article - Google Patents

Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article Download PDF

Info

Publication number
WO2021187456A1
WO2021187456A1 PCT/JP2021/010519 JP2021010519W WO2021187456A1 WO 2021187456 A1 WO2021187456 A1 WO 2021187456A1 JP 2021010519 W JP2021010519 W JP 2021010519W WO 2021187456 A1 WO2021187456 A1 WO 2021187456A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
polymer
powder
gas
tetrafluoroethylene
Prior art date
Application number
PCT/JP2021/010519
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 中尾
敦美 山邊
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020227033873A priority Critical patent/KR20220155311A/en
Priority to CN202180017361.5A priority patent/CN115175953A/en
Priority to JP2022508364A priority patent/JPWO2021187456A1/ja
Publication of WO2021187456A1 publication Critical patent/WO2021187456A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a method for producing a surface-modified tetrafluoroethylene polymer, a method for producing a modified powder, a liquid composition, a method for producing a modified molded product, and a modified molded product.
  • the tetrafluoroethylene polymer has excellent physical properties such as releasability, electrical insulation, water and oil repellency, chemical resistance, weather resistance, and heat resistance, and the liquid composition in which the powder is dispersed can be molded in various ways. It is useful as a material that can easily form an object (Patent Document 1).
  • Patent Document 1 the tetrafluoroethylene-based polymer has extremely low polarity and has poor interaction with other compounds such as a liquid dispersion medium, so that the dispersibility of the powder is still insufficient. Therefore, in order to improve the dispersibility of the powder and adjust the liquid physical characteristics of the liquid composition, an adjusting agent such as a surfactant or a thickener is often added to the liquid composition.
  • the tetrafluoroethylene polymer film has excellent physical properties such as electrical insulation, water and oil repellency, chemical resistance, and heat resistance, and is useful as a printed circuit board material (Patent Document 2).
  • Patent Document 2 the film of the tetrafluoroethylene polymer is not yet sufficiently adhesive. Therefore, it has been studied to modify the surface of the film for the purpose of improving the surface physical properties such as adhesiveness.
  • Patent Document 3 describes a method of introducing a peroxide functional group onto the surface of a film by plasma-treating a polytetrafluoroethylene film in an atmosphere near atmospheric pressure containing a rare gas.
  • the tetrafluoroethylene polymer is a low-polarity polymer having excellent insulation resistance and dielectric breakdown, and the surface of the molded product is difficult to be easily modified. Further, the behavior when the tetrafluoroethylene polymer is subjected to plasma treatment is not fully known, and the effect may be difficult to stabilize and the effect may not be sustained.
  • Patent Document 3 a polytetrafluoroethylene film is plasma-treated to introduce a peroxide functional group on the surface, further immersed in water to introduce a hydroxyl group on the surface, and a silane coupling agent is further acted on.
  • the film is surface-modified.
  • the present inventors have investigated a plasma treatment method that highly modifies the surface of a tetrafluoroethylene polymer powder.
  • a plasma treatment method that highly modifies the surface of a tetrafluoroethylene polymer powder.
  • the surface is modified, and the surface physical properties such as the wettability of the powder and the surface physical properties are prepared without impairing the physical properties.
  • the dispersibility of the liquid composition is improved.
  • the present inventors highly modify the surface of the tetrafluoroethylene-based polymer molded product, which does not require the combination as described in Patent Document 3.
  • the possible plasma processing conditions were examined. As a result, it was found that when such a molded product is treated under predetermined plasma treatment conditions, a stable layer is formed. Further, it has been found that the formation of such a layer improves the wettability of the molded product and improves the surface physical properties such as adhesiveness without impairing the physical properties of the tetrafluoroethylene polymer of the entire molded product.
  • An object of the present invention is to provide a method for highly modifying a tetrafluoroethylene polymer to improve its physical properties.
  • An object of the present invention is to provide a method for highly surface-modifying a tetrafluoroethylene polymer powder to improve its surface physical characteristics, and a liquid composition prepared from the method and having excellent liquid physical characteristics such as dispersibility. do.
  • An object of the present invention is to provide a method for highly surface-modifying a molded product of a tetrafluoroethylene-based polymer to improve the surface physical characteristics thereof, and a molded product of a highly surface-modified tetrafluoroethylene-based polymer. do.
  • the present invention has the following aspects.
  • ⁇ 1> A method for producing a modified tetrafluoroethylene polymer, wherein the tetrafluoroethylene polymer is plasma-treated in an atmosphere near atmospheric pressure to obtain a surface-modified tetrafluoroethylene polymer.
  • ⁇ 2> A method for producing a modified powder, in which a tetrafluoroethylene polymer powder is plasma-treated in an atmosphere near atmospheric pressure to modify the surface of the powder.
  • the powder is plasma-treated in an atmosphere near atmospheric pressure containing a reducing gas having a hydrogen atom to obtain a powder formed by introducing a hydrogen atom into the tetrafluoroethylene polymer.
  • ⁇ 4> The production method of ⁇ 2> or ⁇ 3>, wherein the plasma treatment is performed in an atmosphere in which air is shielded.
  • ⁇ 5> The production method of ⁇ 2> to ⁇ 4>, wherein the powder is plasma-treated in advance in an atmosphere containing a rare gas before the plasma treatment is performed.
  • ⁇ 6> The production method of ⁇ 2> to ⁇ 5> above, wherein the atmosphere contains at least one gas of a reducing gas having a hydrogen atom, a vinyl compound and a vinylidene compound.
  • ⁇ 7> The production method of ⁇ 2> to ⁇ 6>, wherein the atmosphere further contains a rare gas.
  • ⁇ 8> The production method of ⁇ 2> to ⁇ 7> above, wherein the pressure near the atmospheric pressure is 0.08 to 0.12 MPa.
  • ⁇ 9> The production method of ⁇ 2> to ⁇ 8> above, wherein the average particle size of the powder is 50 ⁇ m or less.
  • ⁇ 10> The production method of ⁇ 2> to ⁇ 9> above, wherein the tetrafluoroethylene polymer is a tetrafluoroethylene polymer having a fluorine content of 70 to 76% by mass.
  • ⁇ 11> The method for producing ⁇ 2> to ⁇ 10> above, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
  • ⁇ 12> A liquid composition containing the modified powder obtained by any of the production methods ⁇ 2> to ⁇ 11> and a liquid dispersion medium in which the modified powder is dispersed.
  • ⁇ 13> The liquid composition of ⁇ 12> above, wherein the modified powder has an average particle size of 50 ⁇ m or less.
  • ⁇ 14> The liquid composition of ⁇ 12> or ⁇ 13>, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a fluorine content of 70 to 76% by mass.
  • ⁇ 15> The liquid composition of ⁇ 12> to ⁇ 14> above, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
  • ⁇ 16> The tetrafluoroethylene polymer in which the surface layer of a molded product having at least a part of the surface layer containing a tetrafluoroethylene polymer is plasma-treated in an atmosphere near atmospheric pressure containing a reducing gas having a hydrogen atom.
  • ⁇ 17> The manufacturing method of ⁇ 16>, wherein the plasma treatment is performed in an atmosphere in which air is shielded.
  • ⁇ 18> The production method according to ⁇ 16> or ⁇ 17>, wherein the surface layer is plasma-treated in advance in an atmosphere that does not contain a reducing gas before the plasma treatment is performed.
  • ⁇ 19> The production method of ⁇ 16> to ⁇ 18> above, wherein the reducing gas is hydrogen gas, ammonia gas, or hydrocarbon gas.
  • the atmosphere of the plasma treatment further contains nitrogen gas or a rare gas.
  • the pressure near the atmospheric pressure is 0.08 to 0.12 MPa.
  • the molded product having at least a part of the surface layer containing the tetrafluoroethylene polymer is a film of the tetrafluoroethylene polymer or a laminate having a base material layer and a layer of the tetrafluoroethylene polymer.
  • ⁇ 23> The method for producing ⁇ 16> to ⁇ 22>, wherein the tetrafluoroethylene polymer has a fluorine content of 70 to 76% by mass.
  • ⁇ 24> The method for producing ⁇ 16> to ⁇ 23> above, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
  • a modified layer formed by introducing hydrogen atoms into a tetrafluoroethylene polymer is provided on at least a part of the surface, and the modified layer has a depth from the surface measured by X-ray photoelectron spectroscopy.
  • the maximum height of the peak at 284 eV to 286 eV in the region up to 1 nm is 0.2 times or more the maximum height of the peak at 289 eV to 295 eV in the region, and the content of fluorine atoms in the region is high.
  • ⁇ 28> The molded product of ⁇ 25> to ⁇ 27>, wherein the modified layer has a thickness of less than 1000 nm.
  • ⁇ 29> The molded product of ⁇ 25> to ⁇ 27> above, wherein the molded product is a film of a tetrafluoroethylene-based polymer or a laminate having a base material layer and a layer of a tetrafluoroethylene-based polymer.
  • a highly modified tetrafluoroethylene polymer can be produced.
  • a modified powder of a tetrafluoroethylene-based polymer having excellent wettability and dispersibility can be produced without impairing the physical properties of the tetrafluoroethylene-based polymer, and then a liquid having excellent liquid physical properties can be easily produced.
  • the composition can be produced. From such a liquid composition, a molded product (layered molded product, single film, etc.) having the physical characteristics of a tetrafluoroethylene polymer and having excellent adhesiveness can be easily produced.
  • a molded product of a tetrafluoroethylene polymer having a stable modified layer on at least a part of the surface which is formed by efficiently introducing hydrogen atoms into the tetrafluoroethylene polymer.
  • a tetrafluoroethylene-based polymer molded product having the physical properties of the tetrafluoroethylene-based polymer as a whole and having improved surface physical properties such as adhesiveness can be obtained.
  • the "tetrafluoroethylene-based polymer” is a polymer containing a unit (hereinafter, also referred to as "TFE unit”) based on tetrafluoroethylene (hereinafter, also referred to as "TFE”).
  • TFE unit a unit based on tetrafluoroethylene
  • glass transition point (Tg) of a polymer is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
  • DMA dynamic viscoelasticity measurement
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • DSC differential scanning calorimetry
  • (Meta) acrylate” is a general term for acrylate and methacrylate.
  • “D50” is the average particle size of the powder, which is the volume-based cumulative 50% diameter of the powder obtained by the laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the powder population as 100%, and the particle size is the point at which the cumulative volume is 50% on the cumulative curve.
  • “D90” is the cumulative volume particle size of the powder, which is the volume-based cumulative 90% diameter of the powder obtained in the same manner.
  • the "monomer-based unit” means an atomic group based on the monomer formed by polymerization of the monomer.
  • the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer.
  • the unit based on the monomer a is also simply referred to as “monomer a unit”.
  • the production method of the present invention (hereinafter, also referred to as “this method") is modified by subjecting a tetrafluoroethylene polymer (hereinafter, also referred to as "F polymer”) to plasma treatment in an atmosphere near atmospheric pressure. It is a method for producing a modified F polymer, which obtains a quality F polymer.
  • F polymer tetrafluoroethylene polymer
  • the F polymer is a powder (hereinafter, also referred to as raw powder), and the raw powder is plasma-treated in an atmosphere near atmospheric pressure.
  • a method for producing a modified powder which modifies the surface of the powder.
  • the modified powder preferably has a modified layer formed by modifying the F polymer on the surface, and the modified layer is a modified layer formed by introducing a hydrogen atom into the F polymer, or F. It is more preferable that the modified layer is formed by introducing a polymer of a vinyl compound or a vinylidene compound into the polymer.
  • the modified layer formed by introducing hydrogen atoms into the F polymer is located at 284 eV to 286 eV in the region from the surface to a depth of 1 nm as measured by X-ray photoelectron spectroscopy (hereinafter, also referred to as “ESCA”).
  • the maximum height of the peak (hereinafter, also referred to as “peak H”) is 0.2 times the maximum height of the peak (hereinafter, also referred to as “peak F”) in the region from 289 eV to 295 eV. It is preferably more than that, and more preferably 1 times or more.
  • QuanteraII (manufactured by ULVAC-PHI) is used for surface measurement by ESCA.
  • a monochromatic AlK ⁇ ray is used as the X-ray source at 100 W, and a neutralizing gun using an ion gun and a barium oxide emitter is used to prevent charging of the sample surface, while the photoelectron detection area is 100 ⁇ m ⁇ , the photoelectron detection angle is 45 degrees, and the pass.
  • the energy is 55 eV.
  • the content ratio of fluorine atoms can be calculated from various peak intensities (N1s, O1s, C1s and F1s orbitals) detected by measurement. Further, the depth from the surface can be determined based on the sputtering rate of the SiO 2 sputtering film using C60 ions as the sputtering ions.
  • Peak H and peak F are, in this order, a photoelectron peak (C1s) based on the 1s orbital of a carbon atom and a photoelectron peak (F1s) based on the 1s orbital of a fluorine atom.
  • the peak H is a carbon atom and a hydrogen atom.
  • the peak and peak F derived from the single bond (CH bond) of the above can be regarded as the peak derived from the single bond (CF bond) of a carbon atom and a fluorine atom.
  • a photoelectron peak (O1s) based on the 1s orbital of an oxygen atom and a photoelectron peak (N1s) based on the 1s orbital of a nitrogen atom (hereinafter, also referred to as "other peaks”). (Note) is possible.
  • the content ratio [atm%] of fluorine atoms in the region is preferably 55% or less, and more preferably 40% or less.
  • the content ratio of fluorine atoms is a value calculated by the following procedure. In the range including the photoelectron peak of C1s, the photoelectron peak of O1s, the photoelectron peak of N1s and the photoelectron peak of F1s in ESCA, the background is subtracted and each element (carbon atom, oxygen atom, nitrogen atom and fluorine atom) is subtracted. ) Peak intensity is calculated.
  • the correction value of the peak intensity obtained by dividing the peak intensity by the relative sensitivity coefficient peculiar to the element is obtained for each of the above four elements, and the ratio of the peak intensity (correction value) of the fluorine atom to the total of the correction values is "fluorine atom". Content ratio of ".
  • the maximum height of the peak H of the surface of the raw powder is preferably less than 0.2 times, more preferably 0.1 times or less of the maximum height of the peak F.
  • the surface of the raw powder preferably has a fluorine atom content of more than 55%, more preferably 60% or more.
  • the plasma treatment in Method 1 is performed in the vicinity of atmospheric pressure, in other words, in an atmosphere with high gas density, it is considered that the gas contained in the atmosphere is partially converted into plasma. Further, it is considered that the gas contained in the atmosphere not only becomes plasma by itself, but also forms electrically neutral radicals and the like, and also serves as a denaturing component of the polymer. That is, in the plasma treatment in the present method 1, since the plasma treatment proceeds in such a state, it is considered that the F polymer is easily denatured efficiently.
  • the gas contains a reducing gas having a hydrogen atom
  • hydrogen radicals act on the CF bonds of the F polymer activated by plasma to modify the polymer.
  • the atomic radius of the hydrogen atom and the atomic radius of the fluorine atom are about the same, and it is considered that this action is more likely to be enhanced.
  • the present method 1 it is considered that non-fluorine atoms or molecules are efficiently introduced into the F polymer contained on the surface of the raw powder. Further, since the cutting of the F polymer on the surface of the raw powder by plasma is suppressed and the molecular weight reduction thereof is suppressed, the surface state of the modified F polymer is likely to be stable. According to this method 1, it is considered that a powder having the physical characteristics and excellent surface physical characteristics of the F polymer was obtained by such an action mechanism, and then a liquid composition having excellent dispersibility could be easily prepared.
  • the fluorine content of the F polymer is preferably 70 to 76% by mass.
  • the F polymer having a high fluorine content is excellent in physical properties (electrical properties, etc.) of the F polymer, but has a particularly low polarity, so that the surface physical properties (wetting property, etc.) of the raw powder are poor. According to this method, even in such a raw powder, a modified powder having improved surface physical properties can be obtained without impairing the physical properties of the entire F polymer.
  • the melting temperature of the F polymer is preferably 180 ° C. or higher, preferably 200 to 325 ° C., and more preferably 280 to 320 ° C.
  • the glass transition point of the F polymer is preferably 30 to 150 ° C, more preferably 75 to 125 ° C.
  • F-polymers include polytetrafluoroethylene (PTFE), polymers (PFA) containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units), or copolymers containing units based on TFE and hexafluoropropylene (PFA).
  • PTFE polytetrafluoroethylene
  • PFA polymers
  • PAVE perfluoro (alkyl vinyl ether)
  • PFA copolymers containing units based on TFE and hexafluoropropylene
  • FEP is preferred, and PFA or FEP is particularly preferred.
  • These polymers may further contain units based on other com
  • CF 2 CFOCF 3
  • CF 2 CFOCF 2 CF 3
  • CF 2 CFOCF 2 CF 3
  • PPVE CFOCF 2 CF 2 CF 3
  • the F polymer preferably has an atomic group containing an oxygen atom. According to this method, it is easy to obtain a modified molded product having further improved surface physical properties without impairing the physical properties of the F polymer based on the atomic group.
  • the atomic group may be contained in the monomer unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter aspect include an F polymer having the atomic group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
  • the atomic group containing an oxygen atom is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable.
  • the hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue.
  • a group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred, and an acid anhydride residue. Is particularly preferable.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800, per 1 ⁇ 10 6 carbon atoms in the main chain. From 1500 pieces is more preferable.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the method described in International Publication No. 2020/145133.
  • Preferable embodiments of the F polymer include a polymer (1) containing TFE units and PAVE units and having atomic groups containing oxygen atoms, or TFE units and PAVE units, and 2 PAVE units for all monomer units.
  • Examples thereof include the polymer (2) containing 0.0 to 5.0 mol% and having no atomic group containing oxygen atoms. Since these polymers form microspherulites in the molded product, the formation of the modified layer according to the first method is more likely to proceed.
  • the polymer (1) is preferably a polymer containing a TFE unit, a PAVE unit, and a monomer unit having a hydroxyl group-containing group or a carbonyl group-containing group.
  • the polymer (1) has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on the monomer, respectively, based on all the units. It is preferable to include it.
  • the monomer is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”). Specific examples of the polymer (1) include the polymers described in WO 2018/16644.
  • the polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all monomer units. Is preferable.
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
  • the fact that the polymer (2) does not have an atomic group containing an oxygen atom means that the atomic group containing an oxygen atom contained in the polymer has a ratio of 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. It means that the number is less than 500.
  • the number of atomic groups containing oxygen atoms is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of atomic groups containing oxygen atoms is usually zero.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate an atomic group containing an oxygen atom as a terminal group of the polymer chain, and is an F polymer having an atomic group containing an oxygen atom. May be produced by fluorination treatment. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
  • the raw powder is preferably composed of an F polymer.
  • the content of the F polymer in the raw powder is preferably 80% by mass or more, and more preferably 100% by mass.
  • Other components that can be contained in the raw powder include heat-resistant resins such as aromatic polyester, polyamide-imide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide.
  • the D50 of the raw powder is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 8 ⁇ m or less.
  • the D50 of the raw powder is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the D90 of the raw powder is preferably less than 100 ⁇ m, more preferably 90 ⁇ m or less. If the raw powders D50 and D90 are in such a range, the surface area thereof becomes large, and the modification of the raw powder is more likely to proceed.
  • the plasma treatment in this method 1 is performed in an atmosphere near atmospheric pressure.
  • the pressure near atmospheric pressure is 0.1 ⁇ 0.02 MPa, and the pressure is 0.08 to 0.12 MPa from the viewpoint of controlling the generation of plasma in the atmosphere and enhancing the action of hydrogen-reduced species. From the viewpoint of shielding the outside air and suppressing the mixing of components that inhibit the plasma treatment, it is more preferably atmospheric pressure (0.101325 MPa) or more and 0.12 MPa or less.
  • the plasma treatment in Method 1 is preferably carried out in an atmosphere containing a reducing gas having a hydrogen atom, a gas containing any one of a vinyl compound and a vinylidene compound.
  • a reducing gas having a hydrogen atom hydrogen gas, ammonia gas or hydrocarbon gas is preferable, hydrogen gas, ammonia gas, methane gas or ethylene gas is more preferable, and the viewpoint of the ability to act as a hydrogen reducing species in the above-mentioned action mechanism Therefore, hydrogen gas or ammonia gas is more preferable, and hydrogen gas is most preferable.
  • Two or more types of reducing gas may be used in combination.
  • the vinyl compound is preferably acrylic acid or acrylate. Two or more kinds of vinyl compounds may be used in combination.
  • the vinyl compound is preferably methacrylic acid or methacrylate. Two or more kinds of vinylidene compounds may be used in combination.
  • the atmosphere in the plasma treatment may consist of only one of the above gases, or may further contain other gases, and from the viewpoint of controlling the generation of plasma, a reducing gas and further other gases. And are preferably included.
  • the other gas is preferably a water vapor, a nitrogen gas or a rare gas, more preferably a rare gas, further preferably a helium gas, an argon gas or a neon gas, and an argon gas from the above viewpoint. Is the most preferable.
  • the concentration of the reducing gas having a hydrogen atom in the atmosphere in the plasma treatment or the gas containing any one of the vinyl compound and the vinylidene compound is preferably more than 99% by volume, preferably 99.5% by volume or more. Is more preferable, and 99.9% by volume or more is further preferable.
  • the upper limit of the concentration of the gas is 100% by volume.
  • the atmosphere contains the gas and the noble gas, the total concentration of the gas and the noble gas may be within the range. If the gas concentration in the atmosphere is within such a range, the above-mentioned mechanism of action is likely to be enhanced.
  • Such an atmosphere can be formed by using a high-purity gas or a method of shielding air from the atmosphere in the plasma treatment described later.
  • the gas composition of the atmosphere preferably contains reducing gas in an amount of 0.1% by volume or more, and more preferably more than 1% by volume.
  • the gas composition of the atmosphere preferably contains 100% by volume or less of the reducing gas, and more preferably less than 50% by volume.
  • Preferable specific examples of the gas composition of the atmosphere include a gas composition containing 75 to 99.5% by volume and 0.5 to 25% by volume of a rare gas and a hydrogen gas in this order, and a rare gas and an ammonia gas. In order, a gas composition containing 75 to 99% by volume and 1 to 25% by volume can be mentioned. Moreover, it is preferable that oxygen gas is not contained in these gas compositions.
  • the plasma treatment in Method 1 is preferably carried out in a gas atmosphere containing a reducing gas having a hydrogen atom, or in a gas atmosphere containing the vinyl compound or vinylidene compound.
  • a modified powder formed by introducing hydrogen atoms on the surface of the modified powder was obtained, and in the latter case, a polyvinyl compound chain or a polyvinylidene compound chain was introduced on the surface of the modified powder.
  • Quality powder is obtained.
  • the vinyl compound or vinylidene compound include acrylic acid, methacrylic acid, methyl acrylate, and methyl methacrylate, and acrylic acid is preferable. In this case, it is easy to introduce the (meth) acrylic chain and the (meth) acrylate chain densely on the surface of the raw powder.
  • the content concentration (volume basis) of the vinyl compound or vinylidene compound in the gas atmosphere is preferably 1200 to 1400 ppm.
  • the gas atmosphere in this case preferably contains another gas from the viewpoint of controlling the generation of plasma.
  • a preferred embodiment of the other gas is similar to that of the other gas in the above-mentioned atmosphere containing a reducing gas having a hydrogen atom.
  • the plasma treatment in this method 1 is preferably performed in an atmosphere in which air (particularly oxygen gas) is shielded from the viewpoint of suppressing the mixing of components that inhibit the plasma treatment, and in an atmosphere in which the air is completely shielded. It is more preferable to do so.
  • the method of shielding air include a method of increasing the atmospheric pressure in plasma processing to atmospheric pressure or higher, and a method of installing an obstacle wall in the plasma processing device to suppress air mixing.
  • a method of arranging the raw powder and causing plasma discharge in a plasma chamber filled with a raw material gas such as a reducing gas so as to have atmospheric conditions, or an electrode facing the raw powder A method of plasma discharge while supplying the raw material gas so as to satisfy the atmospheric conditions can be mentioned.
  • the voltage during plasma discharge is preferably 5 to 20 kV.
  • the frequency of the power supply during plasma discharge is preferably 50 Hz to 100 MHz.
  • the discharge power density with respect to the electrode area during plasma discharge is preferably 1 to 400 W ⁇ min / cm 2.
  • the discharge time during plasma discharge is preferably 0.1 seconds to 300 minutes with respect to the target raw powder.
  • the temperature at the time of plasma discharge is preferably 0 to 300 ° C, more preferably 10 to 50 ° C.
  • a hydrogen atom or either a polyvinyl compound chain or a polyvinylidene compound chain is more easily introduced into the F polymer existing on the surface of the raw powder containing the F polymer on the surface, and the entire F polymer is easily introduced. It is easy to obtain a modified powder with highly improved surface physical properties such as wettability without impairing the physical properties of hydrogen.
  • a more selective and dense modified layer can be easily formed.
  • the modified powder obtained by this method 1 has improved surface physical properties such as wettability, and has high dispersibility in a liquid dispersion medium.
  • the sedimentation rate of the modified powder is preferably 60% or less, more preferably 50% or less, still more preferably 40% or less.
  • the liquid dispersion medium may be water or a non-aqueous dispersion medium.
  • the non-aqueous dispersion medium one or more liquid compounds selected from the group consisting of amides, ketones and esters are preferable, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone or cyclopentanone are more preferable.
  • the present composition a liquid composition (hereinafter, also referred to as “the present composition”) containing the modified powder obtained by the present method 1 and the liquid composition and in which the modified powder is dispersed.
  • the content of the modified powder in the present composition is preferably 1 to 60% by mass, more preferably 10 to 50% by mass.
  • the content of the liquid dispersion medium is preferably 40 to 99% by mass, more preferably 50 to 90% by mass.
  • the composition may further contain an inorganic filler or another resin (polymer) different from the F polymer. Since the modified powder has excellent wettability and dispersibility, the composition tends to have excellent dispersion stability even in such a case. In particular, even if PTFE is contained as another resin, it is easy to prepare a liquid composition having a high degree of dispersibility. Such a liquid composition is preferably prepared by mixing a modified powder and an aqueous dispersion containing a PTFE powder.
  • the viscosity of this composition is more preferably 50 to 1000 mPa ⁇ s, more preferably 75 to 500 mPa ⁇ s.
  • the present composition is excellent in coatability.
  • the thixotropy of the present composition is preferably 1.0 to 2.2. In this case, the composition is excellent in coatability and homogeneity.
  • the thixotropy is calculated by dividing the viscosity of the present composition measured under the condition of a rotation speed of 30 rpm by the viscosity of the present composition measured under the condition of a rotation speed of 60 rpm.
  • This composition has excellent dispersion stability, and can form a molded product having excellent crack resistance and strong adhesiveness to a substrate without impairing the physical characteristics of the F polymer.
  • this composition is applied to the surface of a base material and heated to form a polymer layer containing an F polymer (hereinafter, also referred to as “F layer (1)”), the base material layer and the F layer can be formed. It is possible to manufacture a laminate having.
  • the F layer (1) may be formed on at least one side of the surface of the base material, and the F layer (1) may be formed on only one side of the base material, and the F layer (1) may be formed on both sides of the base material.
  • the F layer (1) may be formed.
  • the surface of the base material may be surface-treated with a silane coupling agent or the like.
  • the spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method The application method of the slot die coating method can be used.
  • the F layer (1) is preferably formed by firing a polymer by heating after removing the dispersion medium by heating, and the base material is heated to a temperature (100 to 300 ° C.) at which the dispersion medium volatilizes, and further bases are formed. It is particularly preferable to heat the material in a temperature range (300 to 400 ° C.) at which the polymer is fired. That is, the F layer (1) preferably contains a fired product of PTFE and PFA.
  • the thickness of the F layer (1) is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more. The upper limit of the thickness is 100 ⁇ m. In this range, the F layer having excellent crack resistance can be easily formed.
  • the peel strength between the F layer (1) and the base material layer is preferably 3 N / cm or more, more preferably 10 N / cm or more, and even more preferably 15 N / cm or more.
  • the peel strength is preferably 100 N / cm or less.
  • Examples of the material of the base material include copper, aluminum, iron, glass, resin, silicon, and ceramics.
  • Examples of the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used.
  • Specific examples of the laminate include a metal foil, a metal-clad laminate having an F layer (1) on at least one surface of the metal foil, a polyimide film, and an F layer (1) on both surfaces of the polyimide film.
  • a multilayer film having the above can be mentioned.
  • These laminates are excellent in various physical properties such as electrical characteristics, and are suitable as a printed circuit board material or the like. Specifically, such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
  • an impregnated woven fabric in which the F polymer is impregnated in the woven fabric can be obtained.
  • the impregnated woven fabric can also be said to be a coated woven fabric in which the woven fabric is coated with the F layer (1).
  • the woven fabric is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and more preferably a glass fiber woven fabric or a carbon fiber woven fabric.
  • the woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesiveness with the F layer (1).
  • the total content of the F polymer in the main woven fabric is preferably 30 to 80% by mass.
  • Examples of the method of impregnating the woven fabric with the present composition include a method of immersing the woven fabric in the present composition and a method of applying the present composition to the woven fabric.
  • the polymer When the woven fabric is dried, the polymer may be fired.
  • the method of firing the polymer include a method of passing the woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the polymer may be carried out in one step.
  • the impregnated woven fabric is excellent in characteristics such as high adhesion (adhesiveness) between the F layer (1) and the woven fabric, high surface smoothness, and little distortion.
  • thermocompression bonding the main woven fabric and the metal foil By thermocompression bonding the main woven fabric and the metal foil, a metal-clad laminate having high peel strength and resistance to warping can be obtained, which can be suitably used as a printed circuit board material.
  • the woven fabric impregnated with the present composition is placed on the surface of the base material, heated and dried to form an impregnated woven fabric layer containing the F polymer and the woven fabric, and the base material and the impregnated woven fabric are formed.
  • a laminated body in which the cloth layers are laminated in this order may be produced.
  • the mode is also not particularly limited, and if a woven fabric impregnated with the present dispersion is applied to a part or all of the inner wall surface of a member such as a tank, a pipe, or a container and the member is heated while rotating, the member can be formed.
  • An impregnated woven fabric layer can be formed on a part or all of the inner wall surface of the cloth. This manufacturing method is also useful as a lining method for the inner wall surface of members such as tanks, pipes, and containers.
  • the composition has excellent dispersion stability and can be efficiently impregnated into a porous or fibrous material.
  • porous or fibrous materials include materials other than the above-mentioned woven fabrics, specifically, plate-like, columnar or fibrous materials. These materials may be pretreated with a curable resin, a silane coupling agent, or the like, or may be further filled with an inorganic filler or the like. In addition, these materials may be twisted to form threads, cables, and wires. At the time of twisting, an interposition layer made of another polymer such as polyethylene may be arranged.
  • An embodiment in which such a material is impregnated with the present composition to produce a molded product includes an embodiment in which the curable resin or a fibrous material on which the cured product is supported is impregnated with the present composition.
  • the fibrous material examples include high-strength and low-elongation fibers such as carbon fiber, aramid fiber, and silicon carbide fiber.
  • a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a polyurethane resin is preferable.
  • Specific examples of such an embodiment include a composite cable formed by impregnating a cable in which carbon fibers supported by a thermosetting resin are twisted with the present composition, and further heating the cable to fire an F polymer.
  • Such a composite cable is useful as a cable for large structures, ground anchors, oil drilling, cranes, cableways, elevators, agriculture, forestry and fisheries, and slinging cables.
  • the surface layer of a molded product (hereinafter, also referred to as an original molded product) having at least a part of the surface layer containing the F polymer is used.
  • the maximum height of the peak H of the modified layer in this method 2 is preferably 0.2 times or more, more preferably 1 time or more, with respect to the maximum height of the peak F.
  • the peak H and the peak F are the same as described above.
  • the fluorine atom content ratio [atm%] in the region is preferably 55% or less, more preferably 40% or less.
  • the content ratio of fluorine atoms and the procedure are the same as described above.
  • the maximum height of the peak H of the surface of the original molded product is preferably less than 0.2 times, more preferably 0.1 times or less of the maximum height of the peak F. .. Further, the surface of the original molded product preferably has a fluorine atom content of more than 55%, more preferably 60% or more.
  • At least one modified layer which is a molded product containing an F polymer and has excellent surface physical properties (wetability, etc.) without impairing the F polymer physical properties (electrical properties, etc.) as a whole.
  • a modified molded product having a portion is obtained. Its mechanism of action is not always clear, but it is thought to be as follows. Since the plasma treatment in this method 2 is performed in the vicinity of atmospheric pressure, in other words, in an atmosphere with a high gas density, it is considered that the gas contained in the atmosphere is partially converted into plasma. Further, the reducing gas having a hydrogen atom contained in the atmosphere is considered not only to be a plasma itself but also to be an electrically neutral hydrogen radical.
  • the plasma treatment in this method 2 it is considered that plasma and hydrogen radicals are present. Since the plasma treatment proceeds in such a state, it is considered that hydrogen radicals act on the CF bonds of the F polymer activated by the plasma to form a modified layer.
  • the atomic radius of the hydrogen atom and the atomic radius of the fluorine atom are about the same, and it is considered that this action is more likely to be enhanced and the modified layer is efficiently formed.
  • a modified layer in which hydrogen atoms are efficiently introduced into the F polymer contained in the surface of the molded product is formed. Further, it is considered that the cleavage of the F polymer by plasma is suppressed by the action of hydrogen radicals and the reduction in molecular weight thereof is suppressed, so that a highly stable modified layer is formed.
  • a modified layer formed by introducing hydrogen atoms into the F polymer is formed on the surface of the molded product containing the F polymer on the surface layer by such an action mechanism, and the physical properties of the F polymer of the entire molded product are formed. It is considered that a modified molded product, which is a molded product of an F polymer, having both a surface physical property and a surface physical property can be obtained.
  • the thickness of the modified layer in the modified molded product is preferably less than 1000 nm, more preferably 500 nm or less, and particularly preferably 100 nm or less.
  • the thickness of the modified layer is preferably 1 nm or more.
  • the thickness of the modified layer is the length in the direction perpendicular to the plane when the modified layer has a planar spread, and the shortest length when there is no planar spread. Is.
  • the original molded product in this method 2 is a molded product containing an F polymer on the surface layer.
  • the surface layer of the molded product is a region in the range of at least approximately 1000 nm from the surface of the molded product in the thickness direction of the molded product, and the molded product to which this method 2 is applied is a molded product containing an F polymer in the surface layer.
  • the thickness of the molded product is the length in the direction perpendicular to the plane when the molded product has a planar spread, and the shortest length when there is no planar spread.
  • the original molded product may contain the F polymer as a whole, or may contain the F polymer only in the surface layer. Further, in the latter case, the F polymer may be contained in the entire surface layer, or the F polymer may be contained in a part of the surface layer surface.
  • the surface shape of the original molded product may be smooth or uneven.
  • the original molded product is preferably a molded product having a layer containing an F polymer on the surface layer, and preferably a sheet-shaped molded product having a layer portion containing the F polymer on the surface layer.
  • the thickness of the layer containing the F polymer in the surface layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the thickness of the layer containing the F polymer is preferably 1 mm or less. If the surface layer having such a thickness of the original molded product has a layer portion containing the F polymer, it is easy to obtain a modified molded product having the physical characteristics and the surface physical characteristics of the F polymer of the entire molded product by this method.
  • the original molded product has an F polymer film or a layer containing a base material layer and an F polymer (hereinafter, also referred to as “F layer (2)”), and has an F layer (2) on the surface. Is preferable. In the case of an F polymer film or a laminate having an F layer (2) on both sides, this method may be applied to both sides, and this method may be applied to only one side.
  • the F polymer film preferably contains the F polymer as a main component, and preferably contains the F polymer in an amount of more than 50% by mass and 100% by mass or less.
  • F polymer film Other components that can be contained in the F polymer film include heat-resistant resins such as epoxy resin, maleimide resin, urethane resin, polyimide resin, polyamideimide resin, polyphenylene ether resin, polyphenylene oxide resin, and liquid crystal polyester resin, and nitride filler. , Silica fillers, mica fillers, clay fillers, inorganic fillers such as talc fillers, carbon fillers such as carbon fibers, and polymers.
  • resins such as epoxy resin, maleimide resin, urethane resin, polyimide resin, polyamideimide resin, polyphenylene ether resin, polyphenylene oxide resin, and liquid crystal polyester resin, and nitride filler.
  • Silica fillers Silica fillers, mica fillers, clay fillers, inorganic fillers such as talc fillers, carbon fillers such as carbon fibers, and polymers.
  • the base material layer in the laminate is preferably a resin substrate layer or a metal substrate layer.
  • the metal substrate layer include metal foil, and examples of the material thereof include copper, nickel, aluminum, titanium, and alloys thereof.
  • the resin substrate include a resin film, and the materials thereof include polyimide, polyarylate, polysulfone, polyallyl sulfone, polyamide, polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid polyester, and liquid crystal. Polyester amide can be mentioned. Further, as an embodiment of the resin substrate, a prepreg which is a precursor of the fiber reinforced resin substrate can also be mentioned.
  • Preferable embodiments of the laminate include a metal-clad laminate having a metal foil and an F layer (2) formed on at least one surface thereof, and a resin film and an F layer (2) formed on at least one surface thereof. ), And examples thereof.
  • the metal foil in the metal-clad laminate is preferably a copper foil.
  • Such a metal-clad laminate is particularly useful as a printed circuit board material.
  • the resin film in the multilayer film is preferably a polyimide film. Such a multilayer film is useful as an electric wire coating material and a printed circuit board material.
  • the plasma treatment in this method 2 is performed in an atmosphere containing a reducing gas having a hydrogen atom.
  • a reducing gas having a hydrogen atom hydrogen gas, ammonia gas or hydrocarbon gas is preferable, hydrogen gas, ammonia gas, methane gas or ethylene gas is more preferable, and the viewpoint of the ability to act as a hydrogen reducing species in the above-mentioned action mechanism Therefore, hydrogen gas or ammonia gas is more preferable, and hydrogen gas is most preferable.
  • the reducing gas one type may be used alone, or two or more types may be used in combination.
  • the atmosphere in the plasma treatment may consist of only the reducing gas or may contain other gases, and may include the reducing gas and further other gases from the viewpoint of controlling the generation of plasma.
  • the other gas is preferably a water vapor, a nitrogen gas or a rare gas, more preferably a rare gas, further preferably a helium gas, an argon gas or a neon gas, and an argon gas from the above viewpoint. Is the most preferable.
  • the concentration of the reducing gas in the atmosphere in the plasma treatment is preferably more than 99% by volume, preferably 99.5% by volume. It is more preferably 99.9% by volume or more, and further preferably 99.9% by volume or more.
  • the upper limit of the concentration of the gas is 100% by volume. If the gas concentration in the atmosphere is within such a range, the above-mentioned mechanism of action is likely to be enhanced.
  • Such an atmosphere can be formed by using a high-purity gas or a method of shielding air from the atmosphere in the plasma treatment described later.
  • the gas composition of the atmosphere preferably contains reducing gas in an amount of 0.1% by volume or more, and more preferably more than 1% by volume.
  • the gas composition of the atmosphere preferably contains 100% by volume or less of the reducing gas, and more preferably less than 50% by volume.
  • Preferable specific examples of the gas composition of the atmosphere include a gas composition containing 75 to 99.5% by volume and 0.5 to 25% by volume of a rare gas and a hydrogen gas in this order, and a rare gas and an ammonia gas. In order, a gas composition containing 75 to 99% by volume and 1 to 25% by volume can be mentioned. Moreover, it is preferable that oxygen gas is not contained in these gas compositions.
  • the plasma treatment in this method 2 is performed in an atmosphere near atmospheric pressure.
  • the pressure near atmospheric pressure is 0.1 ⁇ 0.02 MPa, and the pressure is 0.08 to 0.12 MPa from the viewpoint of controlling the generation of plasma in the atmosphere and enhancing the action of hydrogen-reduced species. From the viewpoint of shielding the outside air and suppressing the mixing of components that inhibit the plasma treatment, it is more preferably atmospheric pressure (0.101325 MPa) or more and 0.12 MPa or less.
  • the plasma treatment in this method 2 is preferably performed in an atmosphere in which air, particularly oxygen gas, is shielded from the viewpoint of suppressing contamination of components that inhibit the plasma treatment, and is performed in an atmosphere in which air is completely shielded. Is more preferable.
  • the method of shielding air include a method of increasing the atmospheric pressure in plasma processing to atmospheric pressure or higher, and a method of installing an obstacle wall in the plasma processing device to suppress air mixing.
  • a method of arranging the original molded product and plasma discharge in a plasma chamber filled with a raw material gas such as a reducing gas so as to have atmospheric conditions or a method of facing the original molded product.
  • An example is a method in which the gas is placed between the electrodes and plasma is discharged while supplying the raw material gas so as to satisfy the atmospheric conditions.
  • the voltage during plasma discharge is preferably 5 to 20 kV.
  • the frequency of the power supply during plasma discharge is preferably 50 Hz to 100 MHz.
  • the discharge power density with respect to the electrode area during plasma discharge is preferably 1 to 400 W ⁇ min / cm 2.
  • the discharge time during plasma discharge is preferably 0.1 seconds to 300 minutes with respect to the target original molded product.
  • the temperature at the time of plasma discharge is preferably 0 to 300 ° C, more preferably 10 to 50 ° C.
  • hydrogen atoms are more likely to be introduced into the F polymer existing on the surface of the molded product containing the F polymer on the surface layer, and the surface physical properties such as wettability are not impaired without impairing the physical properties of the entire F polymer. It is easy to obtain a modified molded product with a high degree of improvement. In particular, when the temperature in the plasma discharge is within the above range, a more selective and dense modified layer can be easily formed.
  • the surface of the original molded product may be plasma-treated in advance in an atmosphere that does not contain a reducing gas before the original molded product is plasma-treated. If the surface of the original molded product is appropriately roughened by such treatment, the contact surface between the surface of the molded product and the plasma in the plasma treatment of this method becomes large, and a modified layer in which hydrogen atoms are introduced to a higher degree is formed.
  • Cheap Such an atmosphere preferably contains a noble gas.
  • the F layer (2) of the original molded product may be subjected to this method 2 to form a modified layer, and then laminated. Adhesion strength with other substrates can be increased.
  • a liquid composition containing F polymer powder is applied to a long base material and heated to form an F layer (2) to prepare an original molded product, and this method 2 is applied to the F layer (2).
  • a long composite base material can be easily obtained by laminating with another long base material by a roll-to-roll process.
  • the original molded product is a long roll-shaped laminate
  • the original molded product is unwound from the roll, and the raw material gas is supplied so as to satisfy the atmospheric conditions while passing the original molded product between the electrodes facing each other.
  • a modified molded product having a modified layer formed can be obtained.
  • the obtained modified molded product may be sent as it is to a laminating step with another base material, or may be wound up in a roll shape and then unwound again and sent to a laminating step with another base material. good.
  • the discharge device for discharging the plasma into the laminating device so that the original molded product can be plasma-treated before the laminating process.
  • the modified molded product of the present invention (hereinafter, also referred to as “this molded product”) has a modified layer formed by introducing a hydrogen atom into an F polymer on at least a part of the surface of the modified molded product. Is a layer in which the maximum height of the H peak is 0.2 times or more the maximum height of the F peak, and the content ratio of fluorine atoms in the region is 55% or less. It is a thing.
  • the present molded product is preferably produced by the present method 2.
  • the mode of the F polymer in the present molded product is the same as that in the present method 1, including the preferred mode.
  • the aspect of the modified layer in the present molded product and the aspect of the state or shape of the surface in the present molded product are the same as those in the present method 2, including the preferred embodiment.
  • a preferred embodiment of the molded product includes a film having a modified layer on at least one surface of the F polymer film, a metal foil, and an F layer (2) formed on at least one surface thereof. It has a metal-clad laminate having a modified layer on the surface of the F layer (2), a resin film, and an F layer (2) formed on at least one surface thereof, and a modified layer is provided on the surface of the F layer.
  • a multilayer film having a structure can be mentioned.
  • the modified layer may be provided on both surfaces. ..
  • the aspects of the F polymer film, the metal leaf, the resin film, and the F layer (2) in these embodiments are the same as those in the present method 1 including the preferred embodiments.
  • This molded product is a molded product having the physical characteristics of the F polymer of the entire molded product and the surface physical characteristics derived from high polarity, and is particularly useful as an electric wire coating material and a printed circuit board material.
  • the dielectric constant of the F polymer film having the modified layer or the F layer (2) is preferably 2.0 to 3.5, and more preferably 2.0 to 3.0.
  • the dielectric constant is measured using a split post dielectric resonator (SPDR) at a frequency of 10 GHz in an environment of 23 ° C. ⁇ 2 ° C. and a relative humidity of 50 ⁇ 5%.
  • SPDR split post dielectric resonator
  • the dielectric constant of the molded product is preferably 2.0 to 3.5, more preferably 2.0 to 3.0.
  • the water contact angle of the outermost surface (modified layer) of the molded product is preferably 100 ° or less, more preferably 90 ° or less.
  • the water contact angle of the outermost surface (modified layer) of the molded product is preferably 10 ° or more, more preferably 30 ° or more.
  • the water contact angle is a value measured by the intravenous drip method described in JIS R 3257: 1999.
  • the surface of the molded product having the modified layer can be further laminated with another base material and adhered.
  • the peel strength at the interface between the molded product and another base material to be laminated is preferably 8 N / cm or more, and more preferably 10 N / cm or more.
  • Examples of the method for laminating and adhering the present molded product to other base materials include a method using a hot press.
  • the temperature of the hot press is preferably not more than the melting point of the F polymer, more preferably 300 ° C. or less, still more preferably 240 ° C. or less.
  • the temperature of the hot press is preferably 120 ° C. or higher, more preferably 160 ° C. or higher. Since this molded product has a modified layer having excellent physical properties such as wettability on its surface, it can be laminated and adhered to other base materials at a lower temperature.
  • Examples of other substrates include prepregs, glass substrates, and ceramic substrates, in addition to the metal and resin substrates described above.
  • the structure of the laminate of this molded product and other base material is as follows: metal substrate / main molded product having modified layers on both sides / other base material layer / main molded product having modified layers on both sides / metal substrate , Metal substrate layer / other substrate layer / present molded product having modified layers on both sides / other substrate layer / metal substrate layer and the like. Each layer may further contain a glass cloth or filler.
  • Such laminates are useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc.
  • wire coating materials aircraft wires, etc.
  • Electrical insulation tape insulation tape for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (lithium II)
  • separation membranes precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.
  • electrode binders lithium II
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the present method, the present methods 1 and 2 may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the present molded product may be added with any other configuration or may be replaced with an arbitrary configuration exhibiting the same function.
  • Example 1 Production example of modified powder and liquid composition
  • F powder 1 Powder composed of polymer 1 (melting point: 300 ° C., fluorine content: 71% by mass) containing 97.9 mol% of TFE units, 2.0 mol% of PPVE units and 0.1 mol% of NAH units. (Average particle size: 2.6 ⁇ m).
  • the F powder 1 corresponds to the resin powder (A) described in paragraph number 0154 of the pamphlet of International Publication No. 2018/016644.
  • F powder 2 Powder consisting of polymer 2 (melting point: 300 ° C., fluorine content: 71% by mass) containing 98.7 mol% of TFE units and 1.3 mol% of PPVE units (average particle size: 4.3 ⁇ m) .
  • the polymer 1 has a main chain number 1 ⁇ 10 1000 to six per carbon carbonyl group-containing group, polymers 2 to 40 Yes main chain carbon atoms 1 ⁇ 10 6 cells per a carbonyl group-containing group.
  • Example 1-1 Production example of modified powder 1 and liquid composition 1 A stage in which a dielectric is sandwiched between a pair of counter electrodes and a mechanism capable of generating plasma by a dielectric barrier discharge is provided to hold the powder. F powder 1 was uniformly installed in the plasma chamber provided with the above. A mixed gas containing 95% by volume of Ar gas and 5% by volume of hydrogen gas is flowed through the chamber to shield the outside air, and the total concentration of Ar gas and hydrogen gas in the chamber during plasma treatment is increased to 99.9% by volume or more. The pressure in the chamber was maintained at 0.1 MPa, and the temperature in the chamber was maintained at 25 ° C. The processing frequency was 13 kHz and the applied voltage was 9 kV.
  • Plasma discharge was performed in the chamber, and F powder 1 was plasma-treated for 1 minute to obtain modified powder 1.
  • 67 parts by mass of distilled water was added to 33 parts by mass of the modified powder 1, and the mixture was stirred for 60 minutes to contain the modified powder 1 and water, and the modified powder 1 containing no surfactant was dispersed.
  • the liquid composition 1 was obtained.
  • Example 1-2 Evaluation example With respect to 33 parts by mass of F powder 1, 1 part by mass of a nonionic fluorine-based surfactant (Futergent 250 manufactured by Neos) and 66 parts by mass of distilled water are formed. The mixed solution was added and stirred for 60 minutes to obtain a liquid composition C1 in which the powder 1 was dispersed.
  • the liquid composition C1 corresponds to the dispersion liquid (C-1) described in paragraph No. 0156 of the International Publication No. 2018/016644 pamphlet.
  • both liquid compositions showed the same dispersibility.
  • Example 1-3 Production example of modified powder 2 and liquid composition 2
  • the modified powder 2 is obtained in the same manner as in Example 1-1 except that the F powder 1 is changed to the F powder 2, and the liquid composition is obtained. I got the thing 2.
  • Example 1-4 Production example of modified powder 3 and liquid composition 3
  • F powder 1 is changed to F powder 2 with Ar gas in a chamber during plasma treatment without particularly shielding the outside air in plasma discharge.
  • the modified powder 3 was obtained in the same manner as in Example 1-1 except that the total concentration of hydrogen gas was less than 99.9% and the oxygen gas was more than 1% by volume, and the liquid composition 3 was obtained. ..
  • Example 1-5 Evaluation Example A liquid composition C2 was prepared in the same manner as in Example 1-2 except that F powder 1 was changed to F powder 2.
  • the adhesiveness of the molded product was evaluated by the following procedure. Each liquid composition is applied to a copper foil by a die coating method, passed through a drying oven at 120 ° C. for 5 minutes to form a dry film on the surface of the copper foil, and further passed through a far-infrared ray furnace at 380 ° C. for 10 minutes. , The polymer was fired to prepare a laminate in which a polymer layer (thickness 10 ⁇ m) was formed on the surface of the copper foil.
  • a rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from this laminated body, and the copper foil was peeled from the polymer layer from one end in the length direction of the test piece to a position of 50 mm.
  • the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction as the center, and the measurement distance is from 10 mm to 30 mm.
  • the peel strength (N / cm) of the laminated body was evaluated by measuring the average load of.
  • the peel strength of the laminate formed from the liquid composition 2 is 8 N / cm
  • the peel strength of the laminate formed from the liquid composition 3 is 4 N / cm
  • the peel strength of the laminate formed from the liquid composition C2 is 4 N / cm.
  • the peel strength of was less than 3 N / cm.
  • Example 2 Production example of modified film The following raw materials were used.
  • Film 1 Film of F polymer 1 (thickness: 25 ⁇ m).
  • Film 2 A film (thickness: 25 ⁇ m) of Polymer 3 (melting point: 305 ° C., fluorine content: 71% by mass) containing 98.2 mol% of TFE units and 1.8 mol% of PPVE units.
  • the peak H of the film measured by ESCA the peak at 284 eV to 286 eV in the region from the surface of the film to the depth of 10 nm
  • the maximum height of the peak H is high. Is well less than 0.2 times the maximum height of peak F (peaks at 289 eV to 295 eV in the region from the surface of the film to a depth of 10 nm), and the fluorine atom content is 60%. there were.
  • QuanteraII (manufactured by ULVAC-PHI) was used for the surface measurement by ESCA.
  • a monochromatic AlK ⁇ ray is used as the X-ray source at 100 W, and a neutralizing gun using an ion gun and a barium oxide emitter is used to prevent charging of the sample surface, while the photoelectron detection area is 100 ⁇ m ⁇ , the photoelectron detection angle is 45 degrees, and the pass.
  • the energy was 55 eV.
  • the content ratio of fluorine atoms was calculated from various peak intensities (N1s, O1s, C1s and F1s orbitals) detected by measurement. The depth from the surface was determined based on the sputtering rate of the SiO 2 sputtering film using C60 ions as the sputtering ions.
  • Example 2-1 Production example of modified film 1
  • the film 1 is installed in a plasma chamber equipped with a mechanism capable of generating plasma by a dielectric barrier discharge by sandwiching a dielectric in each of a pair of counter electrodes. ..
  • a mixed gas containing 95% by volume of Ar gas and 5% by volume of hydrogen gas was flowed through the chamber to shield the outside air, and the pressure inside the chamber was maintained at 0.1 MPa and the temperature inside the chamber was maintained at 25 ° C.
  • the processing frequency was 13 kHz
  • the applied voltage was 9 kV
  • plasma discharge was performed in the chamber
  • the film 1 was plasma-treated for 2 minutes.
  • the maximum height of the peak H is 2.5 times the maximum height of the maximum height of the peak F, and the content ratio of fluorine atoms in the region is It was 30%.
  • the profile is the same as that of the film 1, and the modified film 1 has a polymer 1 on the surface. It was confirmed that the film had a modified layer formed by introducing hydrogen atoms.
  • Example 2-2 Production example of modified film 2 Example 1 except that the gas sealed in the chamber is changed to a mixed gas containing 94% by volume of Ar gas, 5% by volume of ammonia gas, and 1% by volume of water vapor.
  • the film 1 was subjected to plasma treatment in the same manner as in the above.
  • the maximum height of the peak H is 0.2 times the maximum height of the maximum height of the peak F, and the modified film 2 has a polymer on the surface. It was confirmed that the film had a modified layer formed by introducing a hydrogen atom into 1.
  • Example 2-3 Production example of modified film 3
  • the film 2 was plasma-treated in the same manner as in Example 1 except that the film 1 was made into a film 2.
  • the maximum height of the peak H is three times the maximum height of the maximum height of the peak F, and the content ratio of fluorine atoms in the region is 25. %, And it was confirmed that the modified film 3 is a film having a modified layer formed by introducing hydrogen atoms into the polymer 2 on the surface.
  • Example 2-4 Production example of modified film 4 (comparative example) The film 1 was plasma-treated in the same manner as in Example 1 except that the gas sealed in the chamber was only Ar gas. The surface condition of the obtained film (modified film 4) measured by ESCA was almost the same as that of film 1.
  • Example 2-5 Production example of modified film 5 (comparative example)
  • the film 1 was plasma-treated in the same manner as in Example 1 except that the conditions were vacuum.
  • the surface condition of the obtained film (modified film 5) measured by ESCA was almost the same as that of film 1.
  • Example 2-6 Evaluation example of modified film
  • the modified film 1 and the solid copper foil are placed facing each other and heat-pressed (temperature: 340 ° C., pressing force: 15 kN / m) to obtain the modified film.
  • An adhesive laminate of 1 and copper foil was obtained.
  • a rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from this adhesive laminate and allowed to stand at 25 ° C. for 3 months.
  • the copper foil layer was peeled from the modified film 1 layer from one end in the length direction of the test piece to a position of 50 mm.
  • the test piece When peeling, the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction as the center, and the measurement distance is 10 mm to 30 mm. The average load up to was measured and used as the peel strength (N / cm). For each film, an adhesive laminate was prepared in the same manner, and the peel strength thereof was evaluated. The results are summarized in Table 1.
  • the modified powder prepared by this method is difficult to settle, and even if no surfactant is added, the dispersibility in water is equivalent to that when the surfactant is added. You can see that it shows.
  • the molded product formed from the liquid composition containing the modified powder prepared by this method has higher adhesion to the base material than the molded product formed from the liquid composition containing the original powder. It can be seen that it shows high adhesiveness.
  • the modified powder by this method is highly surface-modified, and the composition containing the modified powder has liquid physical properties such as dispersibility without adding a surfactant. It can be seen that the liquid composition is excellent and a molded product having high substrate adhesiveness can be formed.
  • the liquid composition containing the modified powder according to this method is a liquid composition having excellent liquid physical characteristics such as dispersibility, and can be efficiently impregnated into a porous or fibrous material.
  • the modified films 1 to 3 which are the modified molded products prepared by this method and the copper foil are adhered, the films 1 or 2 which are the original molded products and the copper foil are adhered to each other. Since it is higher than the peel strength, it can be seen that the adhesion strength is improved. Further, the peel strength between the modified films 1 to 3 produced by this method and the copper foil is higher than the peel strength between the modified films 4 and 5 produced by this method and the copper foil. From the above, it can be seen that the modified molded product according to this method is highly surface-modified. Therefore, it is considered that the laminate of the modified molded product and other base materials according to this method is useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

[Problem] To provide: a method for producing a modified tetrafluoroethylene-based polymer and a powder by modifying a tetrafluoroethylene-based polymer and a powder of the polymer; and a method for producing a modified molded article by highly modifying the surface of a molded article of a tetrafluoroethylene-based polymer. [Solution] A method for producing a modified tetrafluoroethylene-based polymer and a powder, the method comprising subjecting a tetrafluoroethylene-based polymer and a powder of the polymer to a plasma treatment under an atmosphere having a pressure close to the atmospheric pressure to produce a surface-modified tetrafluoroethylene-based polymer; and a method for producing a molded article which has, as at least a portion of the surface thereof, a modified layer formed by introducing a hydrogen atom into a tetrafluoroethylene-based polymer, the method comprising subjecting a surface layer of a molded article having, as at least a portion of the surface layer thereof, a surface layer comprising the tetrafluoroethylene-based polymer to a plasma treatment under an atmosphere containing a reducing gas having a hydrogen atom and having a pressure close to the atmospheric pressure.

Description

表面改質されたテトラフルオロエチレン系ポリマーの製造方法、改質パウダーの製造方法、液状組成物、改質成形物の製造方法、および、改質成形物A method for producing a surface-modified tetrafluoroethylene polymer, a method for producing a modified powder, a liquid composition, a method for producing a modified molded product, and a modified molded product.
 本発明は、表面改質されたテトラフルオロエチレン系ポリマーの製造方法、改質パウダーの製造方法、液状組成物、改質成形物の製造方法、および、改質成形物に関する。 The present invention relates to a method for producing a surface-modified tetrafluoroethylene polymer, a method for producing a modified powder, a liquid composition, a method for producing a modified molded product, and a modified molded product.
 テトラフルオロエチレン系ポリマーは、離型性、電気絶縁性、撥水撥油性、耐薬品性、耐候性、耐熱性等の物性に優れており、そのパウダーが分散した液状組成物は、種々の成形物を容易に形成できる材料として有用である(特許文献1)。
 しかし、テトラフルオロエチレン系ポリマーは、極性が極めて低く、他の化合物、例えば液状分散媒等との相互作用に乏しいため、そのパウダーの分散性は未だ充分ではない。そのため、かかる液状組成物には、パウダーの分散性を向上させ、液状組成物の液物性を調整するために、界面活性剤、増粘剤等の調整剤が添加される場合が多い。
The tetrafluoroethylene polymer has excellent physical properties such as releasability, electrical insulation, water and oil repellency, chemical resistance, weather resistance, and heat resistance, and the liquid composition in which the powder is dispersed can be molded in various ways. It is useful as a material that can easily form an object (Patent Document 1).
However, the tetrafluoroethylene-based polymer has extremely low polarity and has poor interaction with other compounds such as a liquid dispersion medium, so that the dispersibility of the powder is still insufficient. Therefore, in order to improve the dispersibility of the powder and adjust the liquid physical characteristics of the liquid composition, an adjusting agent such as a surfactant or a thickener is often added to the liquid composition.
 また、テトラフルオロエチレン系ポリマーのフィルムは、電気絶縁性、撥水撥油性、耐薬品性、耐熱性等の物性に優れており、プリント基板材料等として有用である(特許文献2)。しかし、テトラフルオロエチレン系ポリマーのフィルムは接着性が未だ充分ではない。そのため、接着性等の表面物性を向上させる目的で、フィルムの表面を改質することが検討されている。特許文献3には、ポリテトラフルオロエチレンのフィルムを、希ガスを含む大気圧近傍の雰囲気下にてプラズマ処理して、フィルムの表面に過酸化物官能基を導入する方法が記載されている。 Further, the tetrafluoroethylene polymer film has excellent physical properties such as electrical insulation, water and oil repellency, chemical resistance, and heat resistance, and is useful as a printed circuit board material (Patent Document 2). However, the film of the tetrafluoroethylene polymer is not yet sufficiently adhesive. Therefore, it has been studied to modify the surface of the film for the purpose of improving the surface physical properties such as adhesiveness. Patent Document 3 describes a method of introducing a peroxide functional group onto the surface of a film by plasma-treating a polytetrafluoroethylene film in an atmosphere near atmospheric pressure containing a rare gas.
 また、テトラフルオロエチレン系ポリマーは、絶縁抵抗性や絶縁破壊性に優れた低極性ポリマーであり、その成形物の表面は容易に改質され難い。また、テトラフルオロエチレン系ポリマーをプラズマ処理に供した際の挙動は充分に知られておらず、その効果が安定し難く、その効果も持続し難い場合もある。 Further, the tetrafluoroethylene polymer is a low-polarity polymer having excellent insulation resistance and dielectric breakdown, and the surface of the molded product is difficult to be easily modified. Further, the behavior when the tetrafluoroethylene polymer is subjected to plasma treatment is not fully known, and the effect may be difficult to stabilize and the effect may not be sustained.
 そのため、テトラフルオロエチレン系ポリマーの成形物のプラズマ処理に際しては、更に他の手法が組み合せられるのが現状である。例えば、特許文献3では、ポリテトラフルオロエチレンのフィルムを、プラズマ処理して表面に過酸化物官能基を導入し、さらに水に浸漬させて表面に水酸基を導入し、さらにシランカップリング剤を作用させて、フィルムを表面改質させている。 Therefore, the current situation is that other methods are combined in the plasma treatment of tetrafluoroethylene polymer moldings. For example, in Patent Document 3, a polytetrafluoroethylene film is plasma-treated to introduce a peroxide functional group on the surface, further immersed in water to introduce a hydroxyl group on the surface, and a silane coupling agent is further acted on. The film is surface-modified.
国際公開2016/159102号パンフレットInternational Publication 2016/159102 Pamphlet 国際公開2019/142790号パンフレットInternational Publication No. 2019/142790 Pamphlet 特開2013-049819号公報Japanese Unexamined Patent Publication No. 2013-049819
 本発明者らは、テトラフルオロエチレン系ポリマーのパウダーの表面を高度に改質するプラズマ処理の方法を検討した。
 その結果、テトラフルオロエチレン系ポリマーのパウダーの表面を、所定のプラズマ処理条件で処理すると、その表面が改質され、その物性を損なうことなく、パウダーの濡れ性等の表面物性と、それから調製される液状組成物の分散性とが向上する点を見い出した。
The present inventors have investigated a plasma treatment method that highly modifies the surface of a tetrafluoroethylene polymer powder.
As a result, when the surface of the tetrafluoroethylene polymer powder is treated under predetermined plasma treatment conditions, the surface is modified, and the surface physical properties such as the wettability of the powder and the surface physical properties are prepared without impairing the physical properties. We have found that the dispersibility of the liquid composition is improved.
 またテトラフルオロエチレン系ポリマーの成形物のプラズマ処理に際しては、本発明者らは、特許文献3に記載のような組み合せを必要としない、テトラフルオロエチレン系ポリマーの成形物の表面を高度に改質できるプラズマ処理条件を検討した。その結果、かかる成形物を所定のプラズマ処理条件で処理をすると、安定した層が形成される点を見い出した。また、かかる層の形成により、成形物全体のテトラフルオロエチレン系ポリマーの物性を損なわずに、成形物の濡れ性が向上し、接着性等の表面物性が向上することを見い出した。 Further, in the plasma treatment of the tetrafluoroethylene-based polymer molded product, the present inventors highly modify the surface of the tetrafluoroethylene-based polymer molded product, which does not require the combination as described in Patent Document 3. The possible plasma processing conditions were examined. As a result, it was found that when such a molded product is treated under predetermined plasma treatment conditions, a stable layer is formed. Further, it has been found that the formation of such a layer improves the wettability of the molded product and improves the surface physical properties such as adhesiveness without impairing the physical properties of the tetrafluoroethylene polymer of the entire molded product.
 本発明は、テトラフルオロエチレン系ポリマーを高度に改質し、その物性を向上させる方法の提供を目的とする。
 本発明は、テトラフルオロエチレン系ポリマーのパウダーを高度に表面改質し、その表面物性を向上させる方法と、それから調製される、分散性等の液物性に優れた液状組成物の提供を目的とする。
 本発明は、テトラフルオロエチレン系ポリマーの成形物を高度に表面改質し、その表面物性を向上させる方法と、高度に表面改質されたテトラフルオロエチレン系ポリマーの成形物との提供を目的とする。
An object of the present invention is to provide a method for highly modifying a tetrafluoroethylene polymer to improve its physical properties.
An object of the present invention is to provide a method for highly surface-modifying a tetrafluoroethylene polymer powder to improve its surface physical characteristics, and a liquid composition prepared from the method and having excellent liquid physical characteristics such as dispersibility. do.
An object of the present invention is to provide a method for highly surface-modifying a molded product of a tetrafluoroethylene-based polymer to improve the surface physical characteristics thereof, and a molded product of a highly surface-modified tetrafluoroethylene-based polymer. do.
 本発明は、下記の態様を有する。
<1> テトラフルオロエチレン系ポリマーを、大気圧近傍の雰囲気下にてプラズマ処理して、表面改質されたテトラフルオロエチレン系ポリマーを得る、改質されたテトラフルオロエチレン系ポリマーの製造方法。
<2> テトラフルオロエチレン系ポリマーのパウダーを、大気圧近傍の雰囲気下にてプラズマ処理し、前記パウダーの表面を改質する、改質パウダーの製造方法。
<3>前記パウダーを、水素原子を有する還元性ガスを含む大気圧近傍の雰囲気下にてプラズマ処理し、前記テトラフルオロエチレン系ポリマーに水素原子が導入されて形成されたパウダーを得る、上記<2>の製造方法。
<4> 前記プラズマ処理を、空気を遮蔽した雰囲気下にて行う、上記<2>または<3>の製造方法。
<5> 前記プラズマ処理を行う前に、予め、前記パウダーを、希ガスを含む雰囲気下にてプラズマ処理する、上記<2>から<4>の製造方法。
<6> 前記雰囲気が、水素原子を有する還元性ガス、ビニル化合物およびビニリデン化合物の少なくとも1種のガスを含む、上記<2>から<5>の製造方法。
<7> 前記雰囲気が、さらに希ガスを含む、上記<2>から<6>の製造方法。
<8> 前記大気圧近傍の圧力が、0.08から0.12MPaである、上記<2>から<7>の製造方法。
<9> 前記パウダーの平均粒子径が、50μm以下である、上記<2>から<8>の製造方法。
<10> 前記テトラフルオロエチレン系ポリマーが、フッ素含有量が70から76質量%であるテトラフルオロエチレン系ポリマーである、上記<2>から<9>の製造方法。
<11> 前記テトラフルオロエチレン系ポリマーが、酸素原子を含む原子団を有する、上記<2>から<10>の製造方法。
<12> 上記<2>から<11>のいずれかの製造方法で得られた改質パウダーと、液状分散媒とを含み、前記改質パウダーが分散している液状組成物。
<13> 前記改質パウダーの平均粒子径が、50μm以下である、上記<12>の液状組成物。
<14> 前記テトラフルオロエチレン系ポリマーが、フッ素含有量が70から76質量%であるテトラフルオロエチレン系ポリマーである、<12>または<13>の液状組成物。
<15> 前記テトラフルオロエチレン系ポリマーが、酸素原子を含む原子団を有する、上記<12>から<14>の液状組成物。
<16> テトラフルオロエチレン系ポリマーを含む表層を少なくとも一部有する成形物の前記表層を、水素原子を有する還元性ガスを含む大気圧近傍の雰囲気下にてプラズマ処理する、前記テトラフルオロエチレン系ポリマーに水素原子が導入されて形成された改質層を表面の少なくとも一部に有する成形物の製造方法。
<17> 前記プラズマ処理を、空気を遮蔽した雰囲気下にて行う、上記<16>の製造方法。
<18> 前記プラズマ処理を行う前に、予め、前記表層を、還元性ガスを含まない雰囲気下にてプラズマ処理する、上記<16>または<17>の製造方法。
<19> 前記還元性ガスが、水素ガス、アンモニアガス又は炭化水素ガスである、上記<16>から<18>の製造方法。
<20> 前記プラズマ処理の雰囲気が、さらに窒素ガス又は希ガスを含む、上記<16>から<19>の製造方法。
<21> 前記大気圧近傍の圧力が、0.08から0.12MPaである、上記<16>から<20>の製造方法。
<22> 前記テトラフルオロエチレン系ポリマーを含む表層を少なくとも一部有する成形物が、テトラフルオロエチレン系ポリマーのフィルム、又は、基材層とテトラフルオロエチレン系ポリマーの層とを有する積層体である、上記<16>から<21>の製造方法。
<23> 前記テトラフルオロエチレン系ポリマーのフッ素含有量が、70から76質量%である、上記<16>から<22>の製造方法。
<24> 前記テトラフルオロエチレン系ポリマーが、酸素原子を含む原子団を有する、上記<16>から<23>の製造方法。
<25> テトラフルオロエチレン系ポリマーに水素原子が導入されて形成された改質層を表面の少なくとも一部に有し、前記改質層は、X線光電子分光法によって測定される表面から深さ1nmまでの領域における284eVから286eVにあるピークの最大高さが、前記領域における289eVから295eVにあるピークの最大高さに対して0.2倍以上であり、かつ、前記領域におけるフッ素原子の含有割合が55%以下である、テトラフルオロエチレン系ポリマーを含む成形物。
<26> 前記テトラフルオロエチレン系ポリマーのフッ素含有量が、70から76質量%である、上記<25>の成形物。
<27> 前記テトラフルオロエチレン系ポリマーが、酸素原子を含む原子団を有する、上記<25>または<26>の成形物。
<28> 前記改質層の厚みが1000nm未満である上記<25>から<27>の成形物。
<29>
 前記成形物が、テトラフルオロエチレン系ポリマーのフィルム、又は、基材層とテトラフルオロエチレン系ポリマーの層とを有する積層体である、上記<25>から<27>の成形物。
The present invention has the following aspects.
<1> A method for producing a modified tetrafluoroethylene polymer, wherein the tetrafluoroethylene polymer is plasma-treated in an atmosphere near atmospheric pressure to obtain a surface-modified tetrafluoroethylene polymer.
<2> A method for producing a modified powder, in which a tetrafluoroethylene polymer powder is plasma-treated in an atmosphere near atmospheric pressure to modify the surface of the powder.
<3> The powder is plasma-treated in an atmosphere near atmospheric pressure containing a reducing gas having a hydrogen atom to obtain a powder formed by introducing a hydrogen atom into the tetrafluoroethylene polymer. 2> Manufacturing method.
<4> The production method of <2> or <3>, wherein the plasma treatment is performed in an atmosphere in which air is shielded.
<5> The production method of <2> to <4>, wherein the powder is plasma-treated in advance in an atmosphere containing a rare gas before the plasma treatment is performed.
<6> The production method of <2> to <5> above, wherein the atmosphere contains at least one gas of a reducing gas having a hydrogen atom, a vinyl compound and a vinylidene compound.
<7> The production method of <2> to <6>, wherein the atmosphere further contains a rare gas.
<8> The production method of <2> to <7> above, wherein the pressure near the atmospheric pressure is 0.08 to 0.12 MPa.
<9> The production method of <2> to <8> above, wherein the average particle size of the powder is 50 μm or less.
<10> The production method of <2> to <9> above, wherein the tetrafluoroethylene polymer is a tetrafluoroethylene polymer having a fluorine content of 70 to 76% by mass.
<11> The method for producing <2> to <10> above, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
<12> A liquid composition containing the modified powder obtained by any of the production methods <2> to <11> and a liquid dispersion medium in which the modified powder is dispersed.
<13> The liquid composition of <12> above, wherein the modified powder has an average particle size of 50 μm or less.
<14> The liquid composition of <12> or <13>, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a fluorine content of 70 to 76% by mass.
<15> The liquid composition of <12> to <14> above, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
<16> The tetrafluoroethylene polymer in which the surface layer of a molded product having at least a part of the surface layer containing a tetrafluoroethylene polymer is plasma-treated in an atmosphere near atmospheric pressure containing a reducing gas having a hydrogen atom. A method for producing a molded product having a modified layer formed by introducing a hydrogen atom into at least a part of the surface.
<17> The manufacturing method of <16>, wherein the plasma treatment is performed in an atmosphere in which air is shielded.
<18> The production method according to <16> or <17>, wherein the surface layer is plasma-treated in advance in an atmosphere that does not contain a reducing gas before the plasma treatment is performed.
<19> The production method of <16> to <18> above, wherein the reducing gas is hydrogen gas, ammonia gas, or hydrocarbon gas.
<20> The production method of <16> to <19> above, wherein the atmosphere of the plasma treatment further contains nitrogen gas or a rare gas.
<21> The production method of <16> to <20> above, wherein the pressure near the atmospheric pressure is 0.08 to 0.12 MPa.
<22> The molded product having at least a part of the surface layer containing the tetrafluoroethylene polymer is a film of the tetrafluoroethylene polymer or a laminate having a base material layer and a layer of the tetrafluoroethylene polymer. The manufacturing method of <16> to <21> above.
<23> The method for producing <16> to <22>, wherein the tetrafluoroethylene polymer has a fluorine content of 70 to 76% by mass.
<24> The method for producing <16> to <23> above, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
<25> A modified layer formed by introducing hydrogen atoms into a tetrafluoroethylene polymer is provided on at least a part of the surface, and the modified layer has a depth from the surface measured by X-ray photoelectron spectroscopy. The maximum height of the peak at 284 eV to 286 eV in the region up to 1 nm is 0.2 times or more the maximum height of the peak at 289 eV to 295 eV in the region, and the content of fluorine atoms in the region is high. A molded product containing a tetrafluoroethylene-based polymer having a proportion of 55% or less.
<26> The molded product of <25>, wherein the tetrafluoroethylene polymer has a fluorine content of 70 to 76% by mass.
<27> The molded product of <25> or <26>, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
<28> The molded product of <25> to <27>, wherein the modified layer has a thickness of less than 1000 nm.
<29>
The molded product of <25> to <27> above, wherein the molded product is a film of a tetrafluoroethylene-based polymer or a laminate having a base material layer and a layer of a tetrafluoroethylene-based polymer.
 本発明によれば、高度に改質されたテトラフルオロエチレン系ポリマーが製造できる。
 本発明によれば、テトラフルオロエチレン系ポリマーの物性を損なわずに、濡れ性と分散性とに優れた、テトラフルオロエチレン系ポリマーの改質パウダーを製造でき、それから容易に液物性に優れた液状組成物を製造できる。かかる液状組成物からは、テトラフルオロエチレン系ポリマーの物性を備え、接着性にも優れた成形物(層状成形物、単独フィルム等)を容易に製造できる。
 本発明によれば、テトラフルオロエチレン系ポリマーに効率よく水素原子が導入されて形成された、安定した改質層を表面の少なくとも一部に有するテトラフルオロエチレン系ポリマーの成形物を製造できる。また、成形物全体のテトラフルオロエチレン系ポリマーの物性を備え、接着性等の表面物性が向上した、テトラフルオロエチレン系ポリマーの成形物が得られる。
According to the present invention, a highly modified tetrafluoroethylene polymer can be produced.
According to the present invention, a modified powder of a tetrafluoroethylene-based polymer having excellent wettability and dispersibility can be produced without impairing the physical properties of the tetrafluoroethylene-based polymer, and then a liquid having excellent liquid physical properties can be easily produced. The composition can be produced. From such a liquid composition, a molded product (layered molded product, single film, etc.) having the physical characteristics of a tetrafluoroethylene polymer and having excellent adhesiveness can be easily produced.
According to the present invention, it is possible to produce a molded product of a tetrafluoroethylene polymer having a stable modified layer on at least a part of the surface, which is formed by efficiently introducing hydrogen atoms into the tetrafluoroethylene polymer. Further, a tetrafluoroethylene-based polymer molded product having the physical properties of the tetrafluoroethylene-based polymer as a whole and having improved surface physical properties such as adhesiveness can be obtained.
 以下の用語は、以下の意味を有する。
 「テトラフルオロエチレン系ポリマー」とは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位(以下、「TFE単位」とも記す。)を含有するポリマーである。
 「ポリマーのガラス転移点(Tg)」とは、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。 
「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。 
「(メタ)アクリレート」とはアクリレートとメタクリレートの総称である。 
「D50」は、パウダーの平均粒子径であり、レーザー回折・散乱法によって求められるパウダーの体積基準累積50%径である。すなわち、レーザー回折・散乱法によってパウダーの粒度分布を測定し、パウダーの集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。 
「D90」は、パウダーの累積体積粒径であり、同様にして求められるパウダーの体積基準累積90%径である。 
「モノマーに基づく単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
The following terms have the following meanings.
The "tetrafluoroethylene-based polymer" is a polymer containing a unit (hereinafter, also referred to as "TFE unit") based on tetrafluoroethylene (hereinafter, also referred to as "TFE").
The "glass transition point (Tg) of a polymer" is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
The “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
"(Meta) acrylate" is a general term for acrylate and methacrylate.
“D50” is the average particle size of the powder, which is the volume-based cumulative 50% diameter of the powder obtained by the laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the powder population as 100%, and the particle size is the point at which the cumulative volume is 50% on the cumulative curve.
“D90” is the cumulative volume particle size of the powder, which is the volume-based cumulative 90% diameter of the powder obtained in the same manner.
The "monomer-based unit" means an atomic group based on the monomer formed by polymerization of the monomer. The unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by processing a polymer. Hereinafter, the unit based on the monomer a is also simply referred to as “monomer a unit”.
 本発明の製造方法(以下、「本法」とも記す。)は、 テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)を、大気圧近傍の雰囲気下にてプラズマ処理して、改質されたFポリマーを得る、改質されたFポリマーの製造方法である。 The production method of the present invention (hereinafter, also referred to as "this method") is modified by subjecting a tetrafluoroethylene polymer (hereinafter, also referred to as "F polymer") to plasma treatment in an atmosphere near atmospheric pressure. It is a method for producing a modified F polymer, which obtains a quality F polymer.
 本法の第一の態様(以下、本法1とも記す。)は、Fポリマーがパウダーであり(以下、原パウダーとも記す。)、前記原パウダーを大気圧近傍の雰囲気下にてプラズマ処理し、前記パウダーの表面を改質する、改質パウダーの製造方法である。 In the first aspect of this method (hereinafter, also referred to as this method 1), the F polymer is a powder (hereinafter, also referred to as raw powder), and the raw powder is plasma-treated in an atmosphere near atmospheric pressure. , A method for producing a modified powder, which modifies the surface of the powder.
 改質パウダーは、表面にFポリマーが変性して形成された改質層を有するのが好ましく、該改質層はFポリマーに水素原子が導入されて形成された改質層であるか、Fポリマーにビニル化合物またはビニリデン化合物の重合物が導入されて形成された改質層であるのがより好ましい。 The modified powder preferably has a modified layer formed by modifying the F polymer on the surface, and the modified layer is a modified layer formed by introducing a hydrogen atom into the F polymer, or F. It is more preferable that the modified layer is formed by introducing a polymer of a vinyl compound or a vinylidene compound into the polymer.
 Fポリマーに水素原子が導入されて形成された改質層は、X線光電子分光法(以下、「ESCA」とも記す。)によって測定される表面から深さ1nmまでの領域における284eVから286eVにあるピーク(以下、「ピークH」とも記す。)の最大高さが、前記領域における289eVから295eVにあるピーク(以下、「ピークF」とも記す。)の最大高さに対して、0.2倍以上であるのが好ましく、1倍以上であるのがより好ましい。 The modified layer formed by introducing hydrogen atoms into the F polymer is located at 284 eV to 286 eV in the region from the surface to a depth of 1 nm as measured by X-ray photoelectron spectroscopy (hereinafter, also referred to as “ESCA”). The maximum height of the peak (hereinafter, also referred to as “peak H”) is 0.2 times the maximum height of the peak (hereinafter, also referred to as “peak F”) in the region from 289 eV to 295 eV. It is preferably more than that, and more preferably 1 times or more.
 ESCAによる表面の測定には、QuanteraII(アルバック・ファイ社製)が使用される。X線源に単色化AlKα線を100Wで用い、イオン銃と酸化バリウムエミッタを使用した中和銃を用い、サンプル表面の帯電を防ぎつつ、光電子検出面積は100μmφ、光電子検出角は45度、パスエネルギーは55eVとする。また、フッ素原子の含有割合は、測定により検出された各種ピーク強度(N1s、O1s、C1sおよびF1s軌道)から算出できる。また、表面からの深さは、スパッタイオンにC60イオンを用いた、SiOスパッタ膜のスパッタレートを基に決定できる。 QuanteraII (manufactured by ULVAC-PHI) is used for surface measurement by ESCA. A monochromatic AlKα ray is used as the X-ray source at 100 W, and a neutralizing gun using an ion gun and a barium oxide emitter is used to prevent charging of the sample surface, while the photoelectron detection area is 100 μmφ, the photoelectron detection angle is 45 degrees, and the pass. The energy is 55 eV. In addition, the content ratio of fluorine atoms can be calculated from various peak intensities (N1s, O1s, C1s and F1s orbitals) detected by measurement. Further, the depth from the surface can be determined based on the sputtering rate of the SiO 2 sputtering film using C60 ions as the sputtering ions.
 ピークHおよびピークFは、この順に、炭素原子の1s軌道に基づく光電子ピーク(C1s)、フッ素原子の1s軌道に基づく光電子ピーク(F1s)であり、換言すれば、ピークHは炭素原子と水素原子の単結合(C-H結合)に由来するピーク、ピークFは炭素原子とフッ素原子の単結合(C-F結合)に由来するピークと見做せる。
 なお、前記領域においては、ピークHおよびピークF以外にも、酸素原子の1s軌道に基づく光電子ピーク(O1s)や窒素原子の1s軌道に基づく光電子ピーク(N1s)(以下、「他のピーク」とも記す。)があり得る。
Peak H and peak F are, in this order, a photoelectron peak (C1s) based on the 1s orbital of a carbon atom and a photoelectron peak (F1s) based on the 1s orbital of a fluorine atom. In other words, the peak H is a carbon atom and a hydrogen atom. The peak and peak F derived from the single bond (CH bond) of the above can be regarded as the peak derived from the single bond (CF bond) of a carbon atom and a fluorine atom.
In the above region, in addition to peak H and peak F, a photoelectron peak (O1s) based on the 1s orbital of an oxygen atom and a photoelectron peak (N1s) based on the 1s orbital of a nitrogen atom (hereinafter, also referred to as "other peaks"). (Note) is possible.
 前記領域におけるフッ素原子の含有割合[atm%]は、55%以下であるのが好ましく、40%以下であるのがより好ましい。
 フッ素原子の含有割合は、以下の手順によって、算出される値である。
 ESCAにおける、C1sの光電子ピーク、O1sの光電子ピーク、N1sの光電子ピークおよびF1sの光電子ピークを含む範囲において、バックグランドを差し引き、それぞれの元素(炭素原子、酸素原子、窒素原子およびフッ素原子の4元素)のピーク強度を算出する。
 ピーク強度をその元素に固有な相対感度係数で割ったピーク強度の補正値を、上記4元素のそれぞれで求め、補正値の総和に占めるフッ素原子のピーク強度(補正値)の割合を「フッ素原子の含有割合」とした。
The content ratio [atm%] of fluorine atoms in the region is preferably 55% or less, and more preferably 40% or less.
The content ratio of fluorine atoms is a value calculated by the following procedure.
In the range including the photoelectron peak of C1s, the photoelectron peak of O1s, the photoelectron peak of N1s and the photoelectron peak of F1s in ESCA, the background is subtracted and each element (carbon atom, oxygen atom, nitrogen atom and fluorine atom) is subtracted. ) Peak intensity is calculated.
The correction value of the peak intensity obtained by dividing the peak intensity by the relative sensitivity coefficient peculiar to the element is obtained for each of the above four elements, and the ratio of the peak intensity (correction value) of the fluorine atom to the total of the correction values is "fluorine atom". Content ratio of ".
 なお、原パウダーの表面は、そのピークHの最大高さが、そのピークFの最大高さに対して0.2倍未満であるのが好ましく、0.1倍以下であることがより好ましい。
 また、原パウダーの表面は、フッ素原子の含有割合が55%超であるのが好ましく、60%以上であるのがより好ましい。
 本法1によれば、全体としてFポリマーの物性(電気物性等)を損なわずに、表面物性(濡れ性等)と分散安定性を向上した、改質パウダーが得られる。その作用機構は必ずしも明確ではないが、以下の様に考えられる。
The maximum height of the peak H of the surface of the raw powder is preferably less than 0.2 times, more preferably 0.1 times or less of the maximum height of the peak F.
Further, the surface of the raw powder preferably has a fluorine atom content of more than 55%, more preferably 60% or more.
According to this method 1, a modified powder having improved surface physical properties (wetting property, etc.) and dispersion stability can be obtained without impairing the physical properties (electrical physical properties, etc.) of the F polymer as a whole. Its mechanism of action is not always clear, but it is thought to be as follows.
 本法1におけるプラズマ処理は、大気圧近傍、換言すれば、ガス密度の高い雰囲気下にて行われるため、雰囲気に含まれるガスは部分的にプラズマ化すると考えられる。また、雰囲気に含まれるガスは、それ自体がプラズマとなるだけでなく、電気的に中性なラジカル等を形成し、ポリマーの変性成分ともなると考えられる。
 つまり、本法1におけるプラズマ処理においては、かかる状態にてプラズマ処理が進行するため、Fポリマーが効率よく変性されやすいと考えられる。
Since the plasma treatment in Method 1 is performed in the vicinity of atmospheric pressure, in other words, in an atmosphere with high gas density, it is considered that the gas contained in the atmosphere is partially converted into plasma. Further, it is considered that the gas contained in the atmosphere not only becomes plasma by itself, but also forms electrically neutral radicals and the like, and also serves as a denaturing component of the polymer.
That is, in the plasma treatment in the present method 1, since the plasma treatment proceeds in such a state, it is considered that the F polymer is easily denatured efficiently.
 例えば、ガスに水素原子を有する還元性ガスが含まれれば、それ自体がプラズマとなるだけでなく、それが電気的に中性な水素ラジカルともなると考えられる。その結果、プラズマにより活性化されたFポリマーのC-F結合に水素ラジカルが作用して、ポリマーが改質されると考えられる。特に、水素原子の原子半径とフッ素原子の原子半径とは同程度であり、この作用が一層高まりやすい状態にあると考えられる。 For example, if the gas contains a reducing gas having a hydrogen atom, it is considered that not only the gas itself becomes a plasma but also an electrically neutral hydrogen radical. As a result, it is considered that hydrogen radicals act on the CF bonds of the F polymer activated by plasma to modify the polymer. In particular, the atomic radius of the hydrogen atom and the atomic radius of the fluorine atom are about the same, and it is considered that this action is more likely to be enhanced.
 その結果、本法1によれば、原パウダーの表面に含まれるFポリマーに、非フッ素原子、または分子が効率よく導入されると考えられる。また、プラズマによる原パウダーの表面のFポリマーの切断が抑制され、その低分子量化が抑制されるため、改質されたFポリマーの表面状態が安定しやすい。
 かかる作用機構により、本法1によれば、Fポリマーの物性と優れた表面物性と具備したパウダーが得られ、それから容易に、分散性に優れた液状組成物を調製できたと考えられる。
As a result, according to the present method 1, it is considered that non-fluorine atoms or molecules are efficiently introduced into the F polymer contained on the surface of the raw powder. Further, since the cutting of the F polymer on the surface of the raw powder by plasma is suppressed and the molecular weight reduction thereof is suppressed, the surface state of the modified F polymer is likely to be stable.
According to this method 1, it is considered that a powder having the physical characteristics and excellent surface physical characteristics of the F polymer was obtained by such an action mechanism, and then a liquid composition having excellent dispersibility could be easily prepared.
 Fポリマーのフッ素含有量は、70から76質量%であるのが好ましい。かかるフッ素含有量が高いFポリマーは、Fポリマーの物性(電気物性等)に優れる反面、極性が特に低いため、原パウダーの表面物性(濡れ性等)が乏しい。本法によれば、かかる原パウダーにおいても、全体のFポリマーの物性を損なわずに、その表面物性が向上した改質パウダーが得られる。 The fluorine content of the F polymer is preferably 70 to 76% by mass. The F polymer having a high fluorine content is excellent in physical properties (electrical properties, etc.) of the F polymer, but has a particularly low polarity, so that the surface physical properties (wetting property, etc.) of the raw powder are poor. According to this method, even in such a raw powder, a modified powder having improved surface physical properties can be obtained without impairing the physical properties of the entire F polymer.
 Fポリマーの溶融温度は、180℃以上が好ましく、200から325℃が好ましく、280から320℃がより好ましい。 Fポリマーのガラス転移点は、30から150℃が好ましく、75から125℃がより好ましい。Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFE単位とペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)を含むポリマー(PFA)またはTFEとヘキサフルオロプロピレンに基づく単位を含むコポリマー(FEP)が好ましく、PFAまたはFEPが特に好ましい。これらのポリマーには、さらに他のコモノマーに基づく単位が含まれていてもよい。 The melting temperature of the F polymer is preferably 180 ° C. or higher, preferably 200 to 325 ° C., and more preferably 280 to 320 ° C. The glass transition point of the F polymer is preferably 30 to 150 ° C, more preferably 75 to 125 ° C. F-polymers include polytetrafluoroethylene (PTFE), polymers (PFA) containing TFE units and units based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE units), or copolymers containing units based on TFE and hexafluoropropylene (PFA). FEP) is preferred, and PFA or FEP is particularly preferred. These polymers may further contain units based on other comonomeres.
 PAVEとしては、CF=CFOCF、CF=CFOCFCFまたはCF=CFOCFCFCF(PPVE)が好ましく、PPVEがより好ましい。
 Fポリマーは、酸素原子を含む原子団を有するのが好ましい。本法によれば、かかる原子団に基づくFポリマーの物性を損なわずに、その表面物性がさらに向上した改質成形物が得られやすい。
As the PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 or CF 2 = CFOCF 2 CF 2 CF 3 (PPVE) is preferable, and PPVE is more preferable.
The F polymer preferably has an atomic group containing an oxygen atom. According to this method, it is easy to obtain a modified molded product having further improved surface physical properties without impairing the physical properties of the F polymer based on the atomic group.
 前記原子団は、Fポリマー中のモノマー単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として前記原子団を有するFポリマーが挙げられる。
 酸素原子を含む原子団は、水酸基含有基またはカルボニル基含有基が好ましく、カルボニル基含有基が特に好ましい。
The atomic group may be contained in the monomer unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter aspect include an F polymer having the atomic group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
The atomic group containing an oxygen atom is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and a carbonyl group-containing group is particularly preferable.
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOHまたは-C(CFOHがより好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)またはカーボネート基(-OC(O)O-)が好ましく、酸無水物残基が特に好ましい。
The hydroxyl group-containing group is preferably an alcoholic hydroxyl group-containing group, more preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
The carbonyl group-containing group is a group containing a carbonyl group (> C (O)), a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), and an acid anhydride residue. A group (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferred, and an acid anhydride residue. Is particularly preferable.
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10から5000個が好ましく、100から3000個がより好ましく、800から1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、国際公開2020/145133号に記載の方法によって定量できる。 When the F polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800, per 1 × 10 6 carbon atoms in the main chain. From 1500 pieces is more preferable. The number of carbonyl group-containing groups in the F polymer can be quantified by the method described in International Publication No. 2020/145133.
 Fポリマーの好適な態様としては、TFE単位およびPAVE単位を含み、酸素原子を含む原子団を有するポリマー(1)、または、TFE単位およびPAVE単位を含み、全モノマー単位に対してPAVE単位を2.0から5.0モル%含み、酸素原子を含む原子団を有さないポリマー(2)が挙げられる。これらのポリマーは、成形物中において微小球晶を形成するため、本法1による改質層の形成が一層進行しやすい。 Preferable embodiments of the F polymer include a polymer (1) containing TFE units and PAVE units and having atomic groups containing oxygen atoms, or TFE units and PAVE units, and 2 PAVE units for all monomer units. Examples thereof include the polymer (2) containing 0.0 to 5.0 mol% and having no atomic group containing oxygen atoms. Since these polymers form microspherulites in the molded product, the formation of the modified layer according to the first method is more likely to proceed.
 ポリマー(1)は、TFE単位と、PAVE単位と、水酸基含有基またはカルボニル基含有基を有するモノマー単位とを含むポリマーが好ましい。ポリマー(1)は、全単位に対して、TFE単位を90から99モル%、PAVE単位を0.5から9.97モル%、および前記モノマーに基づく単位を0.01から3モル%、それぞれ含むのが好ましい。
 また、前記モノマーは、無水イタコン酸、無水シトラコン酸または5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)が好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
The polymer (1) is preferably a polymer containing a TFE unit, a PAVE unit, and a monomer unit having a hydroxyl group-containing group or a carbonyl group-containing group. The polymer (1) has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units, and 0.01 to 3 mol% of units based on the monomer, respectively, based on all the units. It is preferable to include it.
Further, the monomer is preferably itaconic anhydride, citraconic anhydride or 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”).
Specific examples of the polymer (1) include the polymers described in WO 2018/16644.
 ポリマー(2)は、TFE単位およびPAVE単位のみからなり、全モノマー単位に対して、TFE単位を95.0から98.0モル%、PAVE単位を2.0から5.0モル%含有するのが好ましい。
 ポリマー(2)におけるPAVE単位の含有量は、全モノマー単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、ポリマー(2)が酸素原子を含む原子団を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたりに対して、ポリマーが有する酸素原子を含む原子団の数が、500個未満であることを意味する。酸素原子を含む原子団の数は、100個以下が好ましく、50個未満がより好ましい。酸素原子を含む原子団の数の下限は、通常、0個である。
The polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all monomer units. Is preferable.
The content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
The fact that the polymer (2) does not have an atomic group containing an oxygen atom means that the atomic group containing an oxygen atom contained in the polymer has a ratio of 1 × 10 6 carbon atoms constituting the polymer main chain. It means that the number is less than 500. The number of atomic groups containing oxygen atoms is preferably 100 or less, more preferably less than 50. The lower limit of the number of atomic groups containing oxygen atoms is usually zero.
 ポリマー(2)は、ポリマー鎖の末端基として酸素原子を含む原子団を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、酸素原子を含む原子団を有するFポリマーをフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。 The polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate an atomic group containing an oxygen atom as a terminal group of the polymer chain, and is an F polymer having an atomic group containing an oxygen atom. May be produced by fluorination treatment. Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
 原パウダーは、Fポリマーからなるのが好ましい。原パウダーにおけるFポリマーの含有量は、80質量%以上であることが好ましく、100質量%であることがより好ましい。
 原パウダーに含まれ得る他の成分としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド等の耐熱性樹脂が挙げられる。 原パウダーのD50は、50μm以下であるのが好ましく、20μm以下であるのがより好ましく、8μm以下であるのがさらに好ましい。原パウダーのD50は、0.1μm以上が好ましく、0.3μm以上がより好ましく、1μm以上がさらに好ましい。また、原パウダーのD90は、100μm未満であるのが好ましく、90μm以下であるのがより好ましい。原パウダーのD50およびD90が、かかる範囲にあれば、その表面積が大きくなり、原パウダーの改質が一層進行しやすい。
The raw powder is preferably composed of an F polymer. The content of the F polymer in the raw powder is preferably 80% by mass or more, and more preferably 100% by mass.
Other components that can be contained in the raw powder include heat-resistant resins such as aromatic polyester, polyamide-imide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide. The D50 of the raw powder is preferably 50 μm or less, more preferably 20 μm or less, and further preferably 8 μm or less. The D50 of the raw powder is preferably 0.1 μm or more, more preferably 0.3 μm or more, and even more preferably 1 μm or more. The D90 of the raw powder is preferably less than 100 μm, more preferably 90 μm or less. If the raw powders D50 and D90 are in such a range, the surface area thereof becomes large, and the modification of the raw powder is more likely to proceed.
 本法1におけるプラズマ処理は、大気圧近傍の雰囲気下にて行う。大気圧近傍とは0.1±0.02MPaの圧力であり、雰囲気におけるプラズマの発生をコントロールし、水素還元種の作用を亢進させる観点から、圧力は0.08から0.12MPaであるのが好ましく、外気を遮蔽しプラズマ処理を阻害する成分の混入を抑制する観点から、大気圧(0.101325MPa)以上0.12MPa以下であるのがより好ましい。 The plasma treatment in this method 1 is performed in an atmosphere near atmospheric pressure. The pressure near atmospheric pressure is 0.1 ± 0.02 MPa, and the pressure is 0.08 to 0.12 MPa from the viewpoint of controlling the generation of plasma in the atmosphere and enhancing the action of hydrogen-reduced species. From the viewpoint of shielding the outside air and suppressing the mixing of components that inhibit the plasma treatment, it is more preferably atmospheric pressure (0.101325 MPa) or more and 0.12 MPa or less.
 本法1におけるプラズマ処理は、水素原子を有する還元性ガス、ビニル化合物およびビニリデン化合物のいずれか1種を含むガスを含む雰囲気下にて行なうのが好ましい。水素原子を有する還元性ガスとしては、水素ガス、アンモニアガスまたは炭化水素ガスが好ましく、水素ガス、アンモニアガス、メタンガスまたはエチレンガスがより好ましく、上述した作用機構における水素還元種としての作用能の観点から、水素ガスまたはアンモニアガスがさらに好ましく、水素ガスが最も好ましい。還元性ガスは、2種以上を併用してもよい。 The plasma treatment in Method 1 is preferably carried out in an atmosphere containing a reducing gas having a hydrogen atom, a gas containing any one of a vinyl compound and a vinylidene compound. As the reducing gas having a hydrogen atom, hydrogen gas, ammonia gas or hydrocarbon gas is preferable, hydrogen gas, ammonia gas, methane gas or ethylene gas is more preferable, and the viewpoint of the ability to act as a hydrogen reducing species in the above-mentioned action mechanism Therefore, hydrogen gas or ammonia gas is more preferable, and hydrogen gas is most preferable. Two or more types of reducing gas may be used in combination.
ビニル化合物とは、式CH=CHRで表される化合物(式中のRは、1価有機基を示す。)であり、その具体例としてはアクリル酸、アクリレート、アクリルアミド、α-オレフィン(プロピレン、1-ブテン等)、ビニルエーテル、ビニルエステル、アリルエーテル、塩化ビニル、スチレンが挙げられる。ビニル化合物は、アクリル酸またはアクリレートであるのが好ましい。ビニル化合物は、2種以上を併用してもよい。 ビニリデン化合物とは、式CH=CHRで表される化合物(式中のRおよびRは、それぞれ独立に1価有機基を示す。)であり、その具体例としてはメタクリル酸、メタクリレート、メタクリルアミド、塩化ビニリデンが挙げられる。ビニル化合物は、メタクリル酸またはメタクリレートであるのが好ましい。ビニリデン化合物は、2種以上を併用してもよい。 The vinyl compound is a compound represented by the formula CH 2 = CHR 1 (R 1 in the formula represents a monovalent organic group), and specific examples thereof include acrylic acid, acrylate, acrylamide, and α-olefin. Examples thereof include (propylene, 1-butene, etc.), vinyl ether, vinyl ester, allyl ether, vinyl chloride, and styrene. The vinyl compound is preferably acrylic acid or acrylate. Two or more kinds of vinyl compounds may be used in combination. The vinylidene compound is a compound represented by the formula CH 2 = CHR 2 R 3 (R 2 and R 3 in the formula each independently represent a monovalent organic group), and a specific example thereof is methacrylamide. , Methacrylate, methacrylamide, vinylidene chloride. The vinyl compound is preferably methacrylic acid or methacrylate. Two or more kinds of vinylidene compounds may be used in combination.
 プラズマ処理における雰囲気は、上記いずれか1種のガスのみからなっていてもよく、さらに他のガスを含んでいてもよく、プラズマの発生をコントロールする観点から、還元性ガスと、さらに他のガスとを含むのが好ましい。他のガスは、水蒸気、窒素ガスまたは希ガスであるのが好ましく、前記観点から、希ガスであるのがより好ましく、ヘリウムガス、アルゴンガスまたはネオンガスであるのがさらに好ましく、アルゴンガスであるのが最も好ましい。 The atmosphere in the plasma treatment may consist of only one of the above gases, or may further contain other gases, and from the viewpoint of controlling the generation of plasma, a reducing gas and further other gases. And are preferably included. The other gas is preferably a water vapor, a nitrogen gas or a rare gas, more preferably a rare gas, further preferably a helium gas, an argon gas or a neon gas, and an argon gas from the above viewpoint. Is the most preferable.
 プラズマ処理における雰囲気における水素原子を有する還元性ガス、またはビニル化合物およびビニリデン化合物のいずれか1種を含むガスの濃度は、99体積%超であるのが好ましく、99.5体積%以上であるのがより好ましく、99.9体積%以上であるのがさらに好ましい。前記ガスの濃度の上限は、100体積%である。雰囲気が、前記ガスと希ガスを含む場合には、前記ガスと希ガスの合計濃度がかかる範囲であればよい。
 雰囲気におけるガス濃度がかかる範囲にあれば、上述した作用機構が亢進しやすい。かかる雰囲気は、高純度ガスの使用や、後述するプラズマ処理における雰囲気から空気を遮蔽する方法によって形成できる。
The concentration of the reducing gas having a hydrogen atom in the atmosphere in the plasma treatment or the gas containing any one of the vinyl compound and the vinylidene compound is preferably more than 99% by volume, preferably 99.5% by volume or more. Is more preferable, and 99.9% by volume or more is further preferable. The upper limit of the concentration of the gas is 100% by volume. When the atmosphere contains the gas and the noble gas, the total concentration of the gas and the noble gas may be within the range.
If the gas concentration in the atmosphere is within such a range, the above-mentioned mechanism of action is likely to be enhanced. Such an atmosphere can be formed by using a high-purity gas or a method of shielding air from the atmosphere in the plasma treatment described later.
 前記雰囲気のガス組成は、還元性ガスを、0.1体積%以上含むのが好ましく、1体積%超含むのがより好ましい。前記雰囲気のガス組成は、還元性ガスを、100体積%以下含むのが好ましく、50体積%未満含むのがより好ましい。前記雰囲気のガス組成の好適な具体例としては、希ガスと水素ガスを、この順に、75から99.5体積%、0.5から25体積%含むガス組成、希ガスとアンモニアガスを、この順に、75から99体積%、1から25体積%含むガス組成が挙げられる。また、これらのガス組成において、酸素ガスは含まれないのが好ましい。 The gas composition of the atmosphere preferably contains reducing gas in an amount of 0.1% by volume or more, and more preferably more than 1% by volume. The gas composition of the atmosphere preferably contains 100% by volume or less of the reducing gas, and more preferably less than 50% by volume. Preferable specific examples of the gas composition of the atmosphere include a gas composition containing 75 to 99.5% by volume and 0.5 to 25% by volume of a rare gas and a hydrogen gas in this order, and a rare gas and an ammonia gas. In order, a gas composition containing 75 to 99% by volume and 1 to 25% by volume can be mentioned. Moreover, it is preferable that oxygen gas is not contained in these gas compositions.
 本法1におけるプラズマ処理は、水素原子を有する還元性ガスを含むガス雰囲気下にて行うか、若しくは、上記ビニル化合物またビニリデン化合物を含むガス雰囲気下にて行うのが好ましい。前者の場合、改質パウダーの表面に水素原子が導入されて形成された改質パウダーが得られ、後者の場合、改質パウダーの表面にポリビニル化合物鎖またはポリビニリデン化合物鎖が導入された、改質パウダーが得られる。
 ビニル化合物またはビニリデン化合物としては、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレートが挙げられ、アクリル酸が好ましい。この場合、原パウダーの表面に、密に(メタ)アクリル鎖および(メタ)アクリレート鎖を導入しやすい。
The plasma treatment in Method 1 is preferably carried out in a gas atmosphere containing a reducing gas having a hydrogen atom, or in a gas atmosphere containing the vinyl compound or vinylidene compound. In the former case, a modified powder formed by introducing hydrogen atoms on the surface of the modified powder was obtained, and in the latter case, a polyvinyl compound chain or a polyvinylidene compound chain was introduced on the surface of the modified powder. Quality powder is obtained.
Examples of the vinyl compound or vinylidene compound include acrylic acid, methacrylic acid, methyl acrylate, and methyl methacrylate, and acrylic acid is preferable. In this case, it is easy to introduce the (meth) acrylic chain and the (meth) acrylate chain densely on the surface of the raw powder.
 この場合のガス雰囲気におけるビニル化合物またはビニリデン化合物の含有濃度(体積基準)は、1200から1400ppmであるのが好ましい。
 また、この場合のガス雰囲気は、プラズマの発生をコントロールする観点から、さらに他のガスを含むのが好ましい。他のガスの好適な態様は、上述した、水素原子を有する還元性ガスを含む雰囲気における、他のガスのそれと同様である。
 なお、ビニル化合物またはビニリデン化合物が液状および固体状である場合には、加熱してガス状として使用するか、バブリングしてガスを生成させてもよい。
In this case, the content concentration (volume basis) of the vinyl compound or vinylidene compound in the gas atmosphere is preferably 1200 to 1400 ppm.
Further, the gas atmosphere in this case preferably contains another gas from the viewpoint of controlling the generation of plasma. A preferred embodiment of the other gas is similar to that of the other gas in the above-mentioned atmosphere containing a reducing gas having a hydrogen atom.
When the vinyl compound or vinylidene compound is in a liquid or solid state, it may be heated and used as a gas, or bubbling may be performed to generate a gas.
 本法1におけるプラズマ処理は、プラズマ処理を阻害する成分の混入を抑制する観点から、空気(特に酸素ガス)を遮蔽した雰囲気下にて行うのが好ましく、空気を完全に遮蔽した雰囲気下にて行うのがより好ましい。
 空気を遮蔽する方法としては、プラズマ処理における雰囲気圧力を大気圧以上にする方法、プラズマ処理装置に障害壁を設置して空気の混入を抑制する方法が挙げられる。
The plasma treatment in this method 1 is preferably performed in an atmosphere in which air (particularly oxygen gas) is shielded from the viewpoint of suppressing the mixing of components that inhibit the plasma treatment, and in an atmosphere in which the air is completely shielded. It is more preferable to do so.
Examples of the method of shielding air include a method of increasing the atmospheric pressure in plasma processing to atmospheric pressure or higher, and a method of installing an obstacle wall in the plasma processing device to suppress air mixing.
 本法1におけるプラズマ処理の方法としては、原パウダーを配置し、雰囲気条件となるように還元性ガス等の原料ガスを封入したプラズマチャンバー内でプラズマ放電させる方法や、原パウダーを対向させた電極の間に配置し、雰囲気条件となるように原料ガスを供給させつつプラズマ放電させる方法が挙げられる。
 プラズマ放電の際の電圧は、5から20kVであるのが好ましい。プラズマ放電の際の電源の周波数は、50Hzから100MHzであるのが好ましい。プラズマ放電の際の電極面積に対する放電電力密度は、1から400W・min/cmであるのが好ましい。上記放電の条件でプラズマ放電を行うと、改質成形物が接着性に優れやすい。プラズマ放電の際の放電時間は、対象とする原パウダーに対して、0.1秒から300分であるのが好ましい。
As the method of plasma treatment in this method 1, a method of arranging the raw powder and causing plasma discharge in a plasma chamber filled with a raw material gas such as a reducing gas so as to have atmospheric conditions, or an electrode facing the raw powder. A method of plasma discharge while supplying the raw material gas so as to satisfy the atmospheric conditions can be mentioned.
The voltage during plasma discharge is preferably 5 to 20 kV. The frequency of the power supply during plasma discharge is preferably 50 Hz to 100 MHz. The discharge power density with respect to the electrode area during plasma discharge is preferably 1 to 400 W · min / cm 2. When plasma discharge is performed under the above discharge conditions, the modified molded product tends to have excellent adhesiveness. The discharge time during plasma discharge is preferably 0.1 seconds to 300 minutes with respect to the target raw powder.
 プラズマ放電の際の温度は、0から300℃が好ましく、10から50℃がより好ましい。
 かかる条件によりプラズマ放電を行えば、表面にFポリマーを含む原パウダーの表面に存在するFポリマーに水素原子、またはポリビニル化合物鎖またはポリビニリデン化合物鎖のいずれかが一層導入されやすく、全体のFポリマーの物性を損なわずに、濡れ性等の表面物性を高度に向上させた、改質パウダーが得られやすい。
 特に、プラズマ放電における温度が上記範囲にあれば、より選択的かつ緻密な改質層を形成しやすい。
The temperature at the time of plasma discharge is preferably 0 to 300 ° C, more preferably 10 to 50 ° C.
When plasma discharge is performed under such conditions, a hydrogen atom or either a polyvinyl compound chain or a polyvinylidene compound chain is more easily introduced into the F polymer existing on the surface of the raw powder containing the F polymer on the surface, and the entire F polymer is easily introduced. It is easy to obtain a modified powder with highly improved surface physical properties such as wettability without impairing the physical properties of hydrogen.
In particular, when the temperature in the plasma discharge is within the above range, a more selective and dense modified layer can be easily formed.
 本法1においては、原パウダーをプラズマ処理する前に、予め、原パウダーの表面を、希ガスを含む雰囲気下にてプラズマ処理するのが好ましい。かかる前処理により、より高度に改質された改質パウダーが得られる。かかる雰囲気は、還元性ガスを含まないのが好ましい。 In this method 1, it is preferable to plasma-treat the surface of the raw powder in an atmosphere containing a rare gas in advance before plasma-treating the raw powder. Such pretreatment gives a more highly modified modified powder. Such an atmosphere preferably does not contain reducing gas.
 本法1により得られる改質パウダーは、濡れ性等の表面物性が向上しており、液状分散媒に対する分散性が高い。
 改質パウダーの沈降率は、60%以下が好ましく、50%以下がより好ましく、40%以下がさらに好ましい。なお、沈降率とは、対象とする液状分散媒に改質パウダーが分散し、改質パウダーを5質量%含む分散液の1.3μLを、1.5μLマイクロチューブ(型番:1-7521-01、アズワン社製)に測り入れ、遠心分離機にて13000rpmで5分間遠心分離させた際に、下記式にて算出される値である。なお、沈降成分が生じていない場合は、沈降率は0%とする。
 沈降率[%]=(沈降成分の高さ/分散液全体の高さ)×100
The modified powder obtained by this method 1 has improved surface physical properties such as wettability, and has high dispersibility in a liquid dispersion medium.
The sedimentation rate of the modified powder is preferably 60% or less, more preferably 50% or less, still more preferably 40% or less. The sedimentation rate is a 1.5 μL microtube (model number: 1-7521-01) in which 1.3 μL of a dispersion liquid containing 5% by mass of the modified powder is dispersed in the target liquid dispersion medium. , As One Co., Ltd.), and when centrifuged at 13000 rpm for 5 minutes with a centrifuge, it is a value calculated by the following formula. If no sedimentation component is generated, the sedimentation rate is 0%.
Sedimentation rate [%] = (height of sedimentation component / height of the entire dispersion) × 100
 液状分散媒は、水であってもよく、非水系分散媒であってもよい。非水系分散媒としては、アミド、ケトンおよびエステルからなる群から選ばれる1種以上の液体化合物が好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノンまたはシクロペンタノンがより好ましい。 The liquid dispersion medium may be water or a non-aqueous dispersion medium. As the non-aqueous dispersion medium, one or more liquid compounds selected from the group consisting of amides, ketones and esters are preferable, and N-methyl-2-pyrrolidone, γ-butyrolactone, cyclohexanone or cyclopentanone are more preferable.
 本法1により得られる改質パウダーと液状組成物とを含み、改質パウダーが分散している液状組成物(以下、「本組成物」とも記す。)を調製するのが好ましい。 It is preferable to prepare a liquid composition (hereinafter, also referred to as "the present composition") containing the modified powder obtained by the present method 1 and the liquid composition and in which the modified powder is dispersed.
 本組成物における、改質パウダーの含有量は、1から60質量%が好ましく、10から50質量%がより好ましい。また、液状分散媒の含有量は、40から99質量%が好ましく、50から90質量%がより好ましい。本組成物は、さらに無機フィラーまたはFポリマーと異なる他の樹脂(ポリマー)を含んでもよい。改質パウダーが、濡れ性と分散性に優れるため、かかる場合にも本組成物は分散安定性に優れやすい。特に、他の樹脂として、PTFEを含んでいても、高度な分散性を有する液状組成物を調製しやすい。かかる液状組成物は、改質パウダーとPTFEのパウダーを含む水分散液とを混合して調製するのが好ましい。 The content of the modified powder in the present composition is preferably 1 to 60% by mass, more preferably 10 to 50% by mass. The content of the liquid dispersion medium is preferably 40 to 99% by mass, more preferably 50 to 90% by mass. The composition may further contain an inorganic filler or another resin (polymer) different from the F polymer. Since the modified powder has excellent wettability and dispersibility, the composition tends to have excellent dispersion stability even in such a case. In particular, even if PTFE is contained as another resin, it is easy to prepare a liquid composition having a high degree of dispersibility. Such a liquid composition is preferably prepared by mixing a modified powder and an aqueous dispersion containing a PTFE powder.
 本組成物の粘度は、50から1000mPa・sがより好ましく、75から500mPa・sがより好ましい。この場合、本組成物は塗工性に優れる。本組成物のチキソ比は、1.0から2.2が好ましい。この場合、本組成物は塗工性と均質性に優れる。なお、チキソ比は、回転数が30rpmの条件で測定される本組成物の粘度を、回転数が60rpmの条件で測定される本組成物の粘度で除して算出される。 The viscosity of this composition is more preferably 50 to 1000 mPa · s, more preferably 75 to 500 mPa · s. In this case, the present composition is excellent in coatability. The thixotropy of the present composition is preferably 1.0 to 2.2. In this case, the composition is excellent in coatability and homogeneity. The thixotropy is calculated by dividing the viscosity of the present composition measured under the condition of a rotation speed of 30 rpm by the viscosity of the present composition measured under the condition of a rotation speed of 60 rpm.
 本組成物は、分散安定性に優れており、Fポリマーの物性を損なわずに、耐クラック性に優れた、基材に対して強固な接着性を示す成形品を形成できる。本組成物を、基材の表面に塗布し、加熱して、Fポリマーを含むポリマー層(以下、「F層(1)」とも記す。)を形成すれば、基材層とF層とを有する積層体を製造できる。 This composition has excellent dispersion stability, and can form a molded product having excellent crack resistance and strong adhesiveness to a substrate without impairing the physical characteristics of the F polymer. When this composition is applied to the surface of a base material and heated to form a polymer layer containing an F polymer (hereinafter, also referred to as “F layer (1)”), the base material layer and the F layer can be formed. It is possible to manufacture a laminate having.
 積層体の製造においては、基材の表面の少なくとも片面にF層(1)が形成されればよく、基材の片面のみにF層(1)が形成されてもよく、基材の両面にF層(1)が形成されてもよい。基材の表面は、シランカップリング剤等により表面処理されていてもよい。本組成物の塗布に際しては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法の塗布方法を使用できる。 In the production of the laminate, the F layer (1) may be formed on at least one side of the surface of the base material, and the F layer (1) may be formed on only one side of the base material, and the F layer (1) may be formed on both sides of the base material. The F layer (1) may be formed. The surface of the base material may be surface-treated with a silane coupling agent or the like. When applying this composition, the spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method , The application method of the slot die coating method can be used.
 F層(1)は、加熱により分散媒を除去した後に、加熱によりポリマーを焼成して形成するのが好ましく、基材を分散媒が揮発する温度(100から300℃)に加熱し、さらに基材をポリマーが焼成する温度領域(300から400℃)に加熱して形成するのが特に好ましい。つまり、F層(1)は、PTFEおよびPFAの焼成物を含むのが好ましい。F層(1)の厚さは、0.1μm以上が好ましく、1μm以上がより好ましい。厚さの上限は、100μmである。この範囲において、耐クラック性に優れたF層を容易に形成できる。F層(1)と基材層との剥離強度は、3N/cm以上が好ましく、10N/cm以上がより好ましく、15N/cm以上がさらに好ましい。上記剥離強度は、100N/cm以下が好ましい。本組成物を用いれば、F層におけるPTFEの物性を損なわずに、かかる積層体を容易に形成できる。 The F layer (1) is preferably formed by firing a polymer by heating after removing the dispersion medium by heating, and the base material is heated to a temperature (100 to 300 ° C.) at which the dispersion medium volatilizes, and further bases are formed. It is particularly preferable to heat the material in a temperature range (300 to 400 ° C.) at which the polymer is fired. That is, the F layer (1) preferably contains a fired product of PTFE and PFA. The thickness of the F layer (1) is preferably 0.1 μm or more, and more preferably 1 μm or more. The upper limit of the thickness is 100 μm. In this range, the F layer having excellent crack resistance can be easily formed. The peel strength between the F layer (1) and the base material layer is preferably 3 N / cm or more, more preferably 10 N / cm or more, and even more preferably 15 N / cm or more. The peel strength is preferably 100 N / cm or less. By using this composition, such a laminate can be easily formed without impairing the physical characteristics of PTFE in the F layer.
 基材の材質としては、銅、アルミニウム、鉄、ガラス、樹脂、シリコン、セラミックスが挙げられる。基材の形状としては、平面状、曲面状、凹凸状が挙げられ、さらに、箔状、板状、膜状、繊維状のいずれであってもよい。積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層(1)を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層(1)を有する多層フィルムが挙げられる。これらの積層体は、電気特性等の諸物性に優れており、プリント基板材料等として好適である。具体的には、かかる積層体は、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。 Examples of the material of the base material include copper, aluminum, iron, glass, resin, silicon, and ceramics. Examples of the shape of the base material include a flat shape, a curved surface shape, and an uneven shape, and further, any of a foil shape, a plate shape, a film shape, and a fibrous shape may be used. Specific examples of the laminate include a metal foil, a metal-clad laminate having an F layer (1) on at least one surface of the metal foil, a polyimide film, and an F layer (1) on both surfaces of the polyimide film. A multilayer film having the above can be mentioned. These laminates are excellent in various physical properties such as electrical characteristics, and are suitable as a printed circuit board material or the like. Specifically, such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
 本組成物を、織布に含浸させ、加熱により乾燥させれば、Fポリマーが織布に含浸された含浸織布が得られる。含浸織布は、織布がF層(1)で被覆された被覆織布とも言える。織布は、ガラス繊維織布、カーボン繊維織布、アラミド繊維織布または金属繊維織布が好ましく、ガラス繊維織布またはカーボン繊維織布がより好ましい。織布は、F層(1)との密着接着性を高める観点から、シランカップリング剤で処理されていてもよい。本織布における、Fポリマーの総含有量は、30から80質量%が好ましい。本組成物を織布に含浸させる方法は、本組成物に織布を浸漬する方法、本組成物を織布に塗布する方法が挙げられる。 By impregnating the woven fabric with this composition and drying it by heating, an impregnated woven fabric in which the F polymer is impregnated in the woven fabric can be obtained. The impregnated woven fabric can also be said to be a coated woven fabric in which the woven fabric is coated with the F layer (1). The woven fabric is preferably a glass fiber woven fabric, a carbon fiber woven fabric, an aramid fiber woven fabric or a metal fiber woven fabric, and more preferably a glass fiber woven fabric or a carbon fiber woven fabric. The woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesiveness with the F layer (1). The total content of the F polymer in the main woven fabric is preferably 30 to 80% by mass. Examples of the method of impregnating the woven fabric with the present composition include a method of immersing the woven fabric in the present composition and a method of applying the present composition to the woven fabric.
 織布の乾燥に際しては、ポリマーを焼成させてもよい。ポリマーを焼成させる方法は、織布を300から400℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。なお、織布の乾燥とポリマーの焼成とは、一段階で実施してもよい。含浸織布は、F層(1)と織布との密着性(接着性)が高い、表面の平滑性が高い、歪が少ない等の特性に優れている。かかる本織布と金属箔とを熱圧着させれば、剥離強度が高く、反りにくい金属張積層体が得られ、プリント基板材料として好適に使用できる。 When the woven fabric is dried, the polymer may be fired. Examples of the method of firing the polymer include a method of passing the woven fabric through a ventilation drying oven in an atmosphere of 300 to 400 ° C. The drying of the woven fabric and the firing of the polymer may be carried out in one step. The impregnated woven fabric is excellent in characteristics such as high adhesion (adhesiveness) between the F layer (1) and the woven fabric, high surface smoothness, and little distortion. By thermocompression bonding the main woven fabric and the metal foil, a metal-clad laminate having high peel strength and resistance to warping can be obtained, which can be suitably used as a printed circuit board material.
 また、本組成物を含浸させた織布を、基材の表面に配置し、加熱させ乾燥させることにより、Fポリマーと織布とを含む含浸織布層を形成して、基材と含浸織布層とが、この順に積層された積層体を製造してもよい。その態様も、特に限定されず、槽、配管、容器等の部材の内壁面の一部または全部に本分散液を含浸させた織布を塗布し、上記部材を回転させながら加熱すれば、部材の内壁面の一部または全部に含浸織布層を形成できる。この製造方法は、槽、配管、容器等の部材の内壁面のライニング方法としても有用である。 Further, the woven fabric impregnated with the present composition is placed on the surface of the base material, heated and dried to form an impregnated woven fabric layer containing the F polymer and the woven fabric, and the base material and the impregnated woven fabric are formed. A laminated body in which the cloth layers are laminated in this order may be produced. The mode is also not particularly limited, and if a woven fabric impregnated with the present dispersion is applied to a part or all of the inner wall surface of a member such as a tank, a pipe, or a container and the member is heated while rotating, the member can be formed. An impregnated woven fabric layer can be formed on a part or all of the inner wall surface of the cloth. This manufacturing method is also useful as a lining method for the inner wall surface of members such as tanks, pipes, and containers.
 本組成物は、上述した作用機構のとおり、分散安定性に優れており、多孔質または繊維状の材料中に、効率的に含浸できる。かかる多孔質または繊維状の材料としては、上述した織布以外の材料、具体的には、板状、柱状または繊維状の材料も挙げられる。これらの材料は、硬化性樹脂、シランカップリング剤等で予め前処理されていてもよく、無機フィラー等がさらに充填されていてもよい。また、これらの材料は、撚り合わせて、糸、ケーブル、ワイヤーを形成していてもよい。撚り合わせに際しては、ポリエチレン等の他のポリマーからなる介在層を配置してもよい。かかる材料に本組成物を含浸させて成形物を製造する態様としては、硬化性樹脂またはその硬化物が担持された繊維状の材料に本組成物を含浸させる態様が挙げられる。 As described above, the composition has excellent dispersion stability and can be efficiently impregnated into a porous or fibrous material. Examples of such porous or fibrous materials include materials other than the above-mentioned woven fabrics, specifically, plate-like, columnar or fibrous materials. These materials may be pretreated with a curable resin, a silane coupling agent, or the like, or may be further filled with an inorganic filler or the like. In addition, these materials may be twisted to form threads, cables, and wires. At the time of twisting, an interposition layer made of another polymer such as polyethylene may be arranged. An embodiment in which such a material is impregnated with the present composition to produce a molded product includes an embodiment in which the curable resin or a fibrous material on which the cured product is supported is impregnated with the present composition.
 繊維状の材料としては、炭素繊維、アラミド繊維、炭化珪素繊維等の高強度かつ低伸度の繊維が挙げられる。硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂等の熱硬化性樹脂が好ましい。かかる態様の具体例としては、熱硬化性樹脂が担持された炭素繊維を撚り合わせたケーブルに本組成物を含浸させ、さらに加熱してFポリマーを焼成させて形成される複合ケーブルが挙げられる。かかる複合ケーブルは、大型構造物用、グラウンドアンカー用、石油掘削用、クレーン用、索道用、エレベーター用、農林水産用、玉掛索用のケーブルとして有用である。 Examples of the fibrous material include high-strength and low-elongation fibers such as carbon fiber, aramid fiber, and silicon carbide fiber. As the curable resin, a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, or a polyurethane resin is preferable. Specific examples of such an embodiment include a composite cable formed by impregnating a cable in which carbon fibers supported by a thermosetting resin are twisted with the present composition, and further heating the cable to fire an F polymer. Such a composite cable is useful as a cable for large structures, ground anchors, oil drilling, cranes, cableways, elevators, agriculture, forestry and fisheries, and slinging cables.
 本発明の製造方法の第2の態様(以下、「本法2」とも記す。)は、Fポリマーを含む表層を少なくとも一部有する成形物(以下、原成形物とも記す。)の表層を、水素原子を有する還元性ガスを含む大気圧近傍の雰囲気下にてプラズマ処理する、Fポリマーに水素原子が導入されて形成された改質層を表面の少なくとも一部に有する改質成形物の製造方法である。 In the second aspect of the production method of the present invention (hereinafter, also referred to as "the present method 2"), the surface layer of a molded product (hereinafter, also referred to as an original molded product) having at least a part of the surface layer containing the F polymer is used. Production of a modified molded product having a modified layer formed by introducing hydrogen atoms into an F polymer on at least a part of the surface, which is subjected to plasma treatment in an atmosphere near atmospheric pressure containing a reducing gas having hydrogen atoms. The method.
 本法2における改質層のピークHの最大高さがピークFの最大高さに対して、0.2倍以上であるのが好ましく、1倍以上であるのがより好ましい。
 なおピークH及びピークFは前記と同じである。
The maximum height of the peak H of the modified layer in this method 2 is preferably 0.2 times or more, more preferably 1 time or more, with respect to the maximum height of the peak F.
The peak H and the peak F are the same as described above.
 また前記領域におけるフッ素原子の含有割合[atm%]は、55%以下であるのが好ましく、40%以下であるのがより好ましい。
 フッ素原子の含有割合および手順は前記と同じである。
The fluorine atom content ratio [atm%] in the region is preferably 55% or less, more preferably 40% or less.
The content ratio of fluorine atoms and the procedure are the same as described above.
 なお、原成形物の表面は、そのピークHの最大高さが、そのピークFの最大高さに対して0.2倍未満であるのが好ましく、0.1倍以下であることがより好ましい。
 また、原成形物の表面は、フッ素原子の含有割合が55%超であるのが好ましく、60%以上であるのがより好ましい。
The maximum height of the peak H of the surface of the original molded product is preferably less than 0.2 times, more preferably 0.1 times or less of the maximum height of the peak F. ..
Further, the surface of the original molded product preferably has a fluorine atom content of more than 55%, more preferably 60% or more.
 本法2によれば、Fポリマーを含む成形物であって、全体としてFポリマー物性(電気物性等)を損なわずに、表面物性(濡れ性等)に優れた改質層を表面の少なくとも一部に有する改質成形物が得られる。その作用機構は必ずしも明確ではないが、以下の様に考えられる。
 本法2におけるプラズマ処理は、大気圧近傍、換言すれば、ガス密度の高い雰囲気下にて行われるため、雰囲気に含まれるガスは部分的にプラズマ化すると考えられる。また、雰囲気に含まれる水素原子を有する還元性ガスは、それ自体がプラズマとなるだけでなく、電気的に中性な水素ラジカルともなると考えられる。
According to this method 2, at least one modified layer which is a molded product containing an F polymer and has excellent surface physical properties (wetability, etc.) without impairing the F polymer physical properties (electrical properties, etc.) as a whole. A modified molded product having a portion is obtained. Its mechanism of action is not always clear, but it is thought to be as follows.
Since the plasma treatment in this method 2 is performed in the vicinity of atmospheric pressure, in other words, in an atmosphere with a high gas density, it is considered that the gas contained in the atmosphere is partially converted into plasma. Further, the reducing gas having a hydrogen atom contained in the atmosphere is considered not only to be a plasma itself but also to be an electrically neutral hydrogen radical.
 つまり、本法2におけるプラズマ処理においては、プラズマと水素ラジカルが存在する状態にあると考えられる。かかる状態にてプラズマ処理が進行するため、プラズマにより活性化されたFポリマーのC-F結合に水素ラジカルが作用して、改質層が形成されたと考えられる。特に、水素原子の原子半径とフッ素原子の原子半径とは同程度であり、この作用が一層高まりやすい状態にあり、効率的に改質層が形成されたと考えられる。 That is, in the plasma treatment in this method 2, it is considered that plasma and hydrogen radicals are present. Since the plasma treatment proceeds in such a state, it is considered that hydrogen radicals act on the CF bonds of the F polymer activated by the plasma to form a modified layer. In particular, the atomic radius of the hydrogen atom and the atomic radius of the fluorine atom are about the same, and it is considered that this action is more likely to be enhanced and the modified layer is efficiently formed.
 その結果、本法2によれば、成形物の表面に含まれるFポリマーに水素原子が効率よく導入された改質層が形成されると考えられる。また、プラズマによるFポリマーの切断が水素ラジカルの作用により抑制され、その低分子量化が抑制されるため、安定性の高い改質層が形成されると考えられる。
 かかる作用機構により、本法2によれば、表層にFポリマーを含む成形物の表面にFポリマーに水素原子が導入されて形成された改質層を形成し、成形物全体のFポリマーの物性と表面物性とを具備した、Fポリマーの成形物である改質成形物が得られると考えられる。
As a result, according to the present method 2, it is considered that a modified layer in which hydrogen atoms are efficiently introduced into the F polymer contained in the surface of the molded product is formed. Further, it is considered that the cleavage of the F polymer by plasma is suppressed by the action of hydrogen radicals and the reduction in molecular weight thereof is suppressed, so that a highly stable modified layer is formed.
According to this method 2, a modified layer formed by introducing hydrogen atoms into the F polymer is formed on the surface of the molded product containing the F polymer on the surface layer by such an action mechanism, and the physical properties of the F polymer of the entire molded product are formed. It is considered that a modified molded product, which is a molded product of an F polymer, having both a surface physical property and a surface physical property can be obtained.
 改質成形物における改質層の厚さは、1000nm未満であるのが好ましく、500nm以下であるのがより好ましく、100nm以下であるのが特に好ましい。改質層の厚さは、1nm以上であるのが好ましい。なお、改質層の厚さとは改質層が平面的な広がりがある場合は、その平面に対して垂直方向の長さであり、平面的な広がりがない場合は、最も短い長さのことである。 The thickness of the modified layer in the modified molded product is preferably less than 1000 nm, more preferably 500 nm or less, and particularly preferably 100 nm or less. The thickness of the modified layer is preferably 1 nm or more. The thickness of the modified layer is the length in the direction perpendicular to the plane when the modified layer has a planar spread, and the shortest length when there is no planar spread. Is.
 本法2におけるFポリマーの定義および範囲は、上述したとおりである。 The definition and scope of the F polymer in this method 2 are as described above.
 本法2における原成形物は、表層にFポリマーを含む成形物である。なお成形物の表層とは成形物の表面から成形物の厚み方向に、少なくとも、概ね1000nmの範囲にある領域であり、本法2が適用される成形物は、その表層にFポリマーを含む成形物である。成形物の厚みとは前記と同様、成形物が平面的な広がりがある場合は、その平面に対して垂直方向の長さであり、平面的な広がりがない場合は、最も短い長さのことである。
 原成形物は、全体にFポリマーが含まれていてもよく、表層のみにFポリマーが含まれていてもよい。また、後者の場合、表層の全体にFポリマーが含まれていてもよく、表層面の一部にFポリマーが含まれていてもよい。
 原成形物の表面形状は、平滑状であってもよく、凹凸状であってもよい。
The original molded product in this method 2 is a molded product containing an F polymer on the surface layer. The surface layer of the molded product is a region in the range of at least approximately 1000 nm from the surface of the molded product in the thickness direction of the molded product, and the molded product to which this method 2 is applied is a molded product containing an F polymer in the surface layer. It is a thing. Similar to the above, the thickness of the molded product is the length in the direction perpendicular to the plane when the molded product has a planar spread, and the shortest length when there is no planar spread. Is.
The original molded product may contain the F polymer as a whole, or may contain the F polymer only in the surface layer. Further, in the latter case, the F polymer may be contained in the entire surface layer, or the F polymer may be contained in a part of the surface layer surface.
The surface shape of the original molded product may be smooth or uneven.
 原成形物は、表層にFポリマーを含む層を有する成形物であるのが好ましく、表層にFポリマーを含む層部分を有するシート状の成形物であるのが好ましい。
 表層にFポリマーを含む層の厚さは、1μm以上が好ましく、5μm以上がより好ましく、10μm以上が特に好ましい。Fポリマーを含む層の厚さは、1mm以下が好ましい。原成形物がかかる厚さの表層にFポリマーを含む層部分を有すれば、本法により、成形物全体のFポリマーの物性と表面物性とを具備した、改質成形物が得られやすい。
The original molded product is preferably a molded product having a layer containing an F polymer on the surface layer, and preferably a sheet-shaped molded product having a layer portion containing the F polymer on the surface layer.
The thickness of the layer containing the F polymer in the surface layer is preferably 1 μm or more, more preferably 5 μm or more, and particularly preferably 10 μm or more. The thickness of the layer containing the F polymer is preferably 1 mm or less. If the surface layer having such a thickness of the original molded product has a layer portion containing the F polymer, it is easy to obtain a modified molded product having the physical characteristics and the surface physical characteristics of the F polymer of the entire molded product by this method.
 原成形物は、Fポリマーのフィルム、又は、基材層とFポリマーを含む層(以下、「F層(2)」とも記す。)を有し、表面にF層(2)を有する積層体であるのが好ましい。Fポリマーのフィルム、又は、両面にF層(2)を有する積層体においては、その両面に本法を適用してよく、片面のみに本法を適用してよい。
 Fポリマーのフィルムは、Fポリマーを主成分とするのが好ましく、Fポリマーを50質量%超100質量%以下含むのが好ましい。
The original molded product has an F polymer film or a layer containing a base material layer and an F polymer (hereinafter, also referred to as “F layer (2)”), and has an F layer (2) on the surface. Is preferable. In the case of an F polymer film or a laminate having an F layer (2) on both sides, this method may be applied to both sides, and this method may be applied to only one side.
The F polymer film preferably contains the F polymer as a main component, and preferably contains the F polymer in an amount of more than 50% by mass and 100% by mass or less.
 Fポリマーのフィルムに含まれ得る他の成分としては、エポキシ樹脂、マレイミド樹脂、ウレタン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキシド樹脂、液晶ポリエステル樹脂等の耐熱性樹脂、窒化物フィラー、シリカフィラー、雲母フィラー、クレーフィラー、タルクフィラー等の無機フィラー、炭素繊維等のカーボンフィラー、エラストマーが挙げられる。 Other components that can be contained in the F polymer film include heat-resistant resins such as epoxy resin, maleimide resin, urethane resin, polyimide resin, polyamideimide resin, polyphenylene ether resin, polyphenylene oxide resin, and liquid crystal polyester resin, and nitride filler. , Silica fillers, mica fillers, clay fillers, inorganic fillers such as talc fillers, carbon fillers such as carbon fibers, and polymers.
 積層体における基材層は、樹脂基板層又は金属基板層が好ましい。
 金属基板層の態様としては金属箔が挙げられ、その材質としては銅、ニッケル、アルミニウム、チタン、それらの合金が挙げられる。
 樹脂基板の態様としては樹脂フィルムが挙げられ、その材質としてはポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミドが挙げられる。また、樹脂基板の態様としては、繊維強化樹脂基板の前駆体であるプリプレグも挙げられる。
The base material layer in the laminate is preferably a resin substrate layer or a metal substrate layer.
Examples of the metal substrate layer include metal foil, and examples of the material thereof include copper, nickel, aluminum, titanium, and alloys thereof.
Examples of the resin substrate include a resin film, and the materials thereof include polyimide, polyarylate, polysulfone, polyallyl sulfone, polyamide, polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid polyester, and liquid crystal. Polyester amide can be mentioned. Further, as an embodiment of the resin substrate, a prepreg which is a precursor of the fiber reinforced resin substrate can also be mentioned.
 積層体の好適な態様としては、金属箔とその少なくとも一方の表面に形成されたF層(2)とを有する金属張積層体、樹脂フィルムとその少なくとも一方の表面に形成されたF層(2)とを有する多層フィルムが挙げられる。
 金属張積層体における金属箔は、銅箔であるのが好ましい。かかる金属張積層体は、プリント基板材料として特に有用である。多層フィルムにおける樹脂フィルムは、ポリイミドフィルムであるのが好ましい。かかる多層フィルムは、電線被覆材料、プリント基板材料として有用である。
Preferable embodiments of the laminate include a metal-clad laminate having a metal foil and an F layer (2) formed on at least one surface thereof, and a resin film and an F layer (2) formed on at least one surface thereof. ), And examples thereof.
The metal foil in the metal-clad laminate is preferably a copper foil. Such a metal-clad laminate is particularly useful as a printed circuit board material. The resin film in the multilayer film is preferably a polyimide film. Such a multilayer film is useful as an electric wire coating material and a printed circuit board material.
 本法2におけるプラズマ処理は、水素原子を有する還元性ガスを含む雰囲気下にて行う。
 水素原子を有する還元性ガスとしては、水素ガス、アンモニアガス又は炭化水素ガスが好ましく、水素ガス、アンモニアガス、メタンガス又はエチレンガスがより好ましく、上述した作用機構における水素還元種としての作用能の観点から、水素ガス又はアンモニアガスがさらに好ましく、水素ガスが最も好ましい。還元性ガスは、1種を単独で用いてもよく、2種以上を併用してもよい。
The plasma treatment in this method 2 is performed in an atmosphere containing a reducing gas having a hydrogen atom.
As the reducing gas having a hydrogen atom, hydrogen gas, ammonia gas or hydrocarbon gas is preferable, hydrogen gas, ammonia gas, methane gas or ethylene gas is more preferable, and the viewpoint of the ability to act as a hydrogen reducing species in the above-mentioned action mechanism Therefore, hydrogen gas or ammonia gas is more preferable, and hydrogen gas is most preferable. As the reducing gas, one type may be used alone, or two or more types may be used in combination.
 プラズマ処理における雰囲気は、還元性ガスのみからなっていてもよく、さらに他のガスを含んでいてもよく、プラズマの発生をコントロールする観点から、還元性ガスと、さらに他のガスとを含むのが好ましい。他のガスは、水蒸気、窒素ガス又は希ガスであるのが好ましく、前記観点から、希ガスであるのがより好ましく、ヘリウムガス、アルゴンガス又はネオンガスであるのがさらに好ましく、アルゴンガスであるのが最も好ましい。 The atmosphere in the plasma treatment may consist of only the reducing gas or may contain other gases, and may include the reducing gas and further other gases from the viewpoint of controlling the generation of plasma. Is preferable. The other gas is preferably a water vapor, a nitrogen gas or a rare gas, more preferably a rare gas, further preferably a helium gas, an argon gas or a neon gas, and an argon gas from the above viewpoint. Is the most preferable.
 プラズマ処理における雰囲気における還元性ガスの濃度(雰囲気が、前記ガスと希ガスを含む場合には、前記ガスと希ガスの合計濃度)は、99体積%超であるのが好ましく、99.5体積%以上であるのがより好ましく、99.9体積%以上であるのがさらに好ましい。前記ガスの濃度の上限は、100体積%である。雰囲気におけるガス濃度がかかる範囲にあれば、上述した作用機構が亢進しやすい。かかる雰囲気は、高純度ガスの使用や、後述するプラズマ処理における雰囲気から空気を遮蔽する方法によって形成できる。 The concentration of the reducing gas in the atmosphere in the plasma treatment (when the atmosphere contains the gas and the rare gas, the total concentration of the gas and the rare gas) is preferably more than 99% by volume, preferably 99.5% by volume. It is more preferably 99.9% by volume or more, and further preferably 99.9% by volume or more. The upper limit of the concentration of the gas is 100% by volume. If the gas concentration in the atmosphere is within such a range, the above-mentioned mechanism of action is likely to be enhanced. Such an atmosphere can be formed by using a high-purity gas or a method of shielding air from the atmosphere in the plasma treatment described later.
 前記雰囲気のガス組成は、還元性ガスを、0.1体積%以上含むのが好ましく、1体積%超含むのがより好ましい。前記雰囲気のガス組成は、還元性ガスを、100体積%以下含むのが好ましく、50体積%未満含むのがより好ましい。 前記雰囲気のガス組成の好適な具体例としては、希ガスと水素ガスを、この順に、75から99.5体積%、0.5から25体積%含むガス組成、希ガスとアンモニアガスを、この順に、75から99体積%、1から25体積%含むガス組成が挙げられる。また、これらのガス組成において、酸素ガスは含まれないのが好ましい。 The gas composition of the atmosphere preferably contains reducing gas in an amount of 0.1% by volume or more, and more preferably more than 1% by volume. The gas composition of the atmosphere preferably contains 100% by volume or less of the reducing gas, and more preferably less than 50% by volume. Preferable specific examples of the gas composition of the atmosphere include a gas composition containing 75 to 99.5% by volume and 0.5 to 25% by volume of a rare gas and a hydrogen gas in this order, and a rare gas and an ammonia gas. In order, a gas composition containing 75 to 99% by volume and 1 to 25% by volume can be mentioned. Moreover, it is preferable that oxygen gas is not contained in these gas compositions.
 本法2におけるプラズマ処理は、大気圧近傍の雰囲気下にて行う。 大気圧近傍とは0.1±0.02MPaの圧力であり、雰囲気におけるプラズマの発生をコントロールし、水素還元種の作用を亢進させる観点から、圧力は0.08から0.12MPaであるのが好ましく、外気を遮蔽しプラズマ処理を阻害する成分の混入を抑制する観点から、大気圧(0.101325MPa)以上0.12MPa以下であるのがより好ましい。 The plasma treatment in this method 2 is performed in an atmosphere near atmospheric pressure. The pressure near atmospheric pressure is 0.1 ± 0.02 MPa, and the pressure is 0.08 to 0.12 MPa from the viewpoint of controlling the generation of plasma in the atmosphere and enhancing the action of hydrogen-reduced species. From the viewpoint of shielding the outside air and suppressing the mixing of components that inhibit the plasma treatment, it is more preferably atmospheric pressure (0.101325 MPa) or more and 0.12 MPa or less.
 本法2におけるプラズマ処理は、プラズマ処理を阻害する成分の混入を抑制する観点から、空気、特に酸素ガスを遮蔽した雰囲気下にて行うのが好ましく、空気を完全に遮蔽した雰囲気下にて行うのがより好ましい。
 空気を遮蔽する方法としては、プラズマ処理における雰囲気圧力を大気圧以上にする方法、プラズマ処理装置に障害壁を設置して空気の混入を抑制する方法が挙げられる。
The plasma treatment in this method 2 is preferably performed in an atmosphere in which air, particularly oxygen gas, is shielded from the viewpoint of suppressing contamination of components that inhibit the plasma treatment, and is performed in an atmosphere in which air is completely shielded. Is more preferable.
Examples of the method of shielding air include a method of increasing the atmospheric pressure in plasma processing to atmospheric pressure or higher, and a method of installing an obstacle wall in the plasma processing device to suppress air mixing.
 本法2におけるプラズマ処理の方法としては、原成形物を配置し、雰囲気条件となるように還元性ガス等の原料ガスを封入したプラズマチャンバー内でプラズマ放電させる方法や、原成形物を対向させた電極の間に配置し、雰囲気条件となるように原料ガスを供給させつつプラズマ放電させる方法が挙げられる。
 プラズマ放電の際の電圧は、5から20kVであるのが好ましい。プラズマ放電の際の電源の周波数は、50Hzから100MHzであるのが好ましい。プラズマ放電の際の電極面積に対する放電電力密度は、1から400W・min/cmであるのが好ましい。上記放電の条件でプラズマ放電を行うと、改質成形物が接着性に優れやすい。
 プラズマ放電の際の放電時間は、対象とする原成形物に対して、0.1秒から300分であるのが好ましい。
As the method of plasma treatment in this method 2, a method of arranging the original molded product and plasma discharge in a plasma chamber filled with a raw material gas such as a reducing gas so as to have atmospheric conditions, or a method of facing the original molded product. An example is a method in which the gas is placed between the electrodes and plasma is discharged while supplying the raw material gas so as to satisfy the atmospheric conditions.
The voltage during plasma discharge is preferably 5 to 20 kV. The frequency of the power supply during plasma discharge is preferably 50 Hz to 100 MHz. The discharge power density with respect to the electrode area during plasma discharge is preferably 1 to 400 W · min / cm 2. When plasma discharge is performed under the above discharge conditions, the modified molded product tends to have excellent adhesiveness.
The discharge time during plasma discharge is preferably 0.1 seconds to 300 minutes with respect to the target original molded product.
 プラズマ放電の際の温度は、0から300℃が好ましく、10から50℃がより好ましい。
 かかる条件によりプラズマ放電を行えば、表層にFポリマーを含む成形物の表面に存在するFポリマーに水素原子が一層導入されやすく、全体のFポリマーの物性を損なわずに、濡れ性等の表面物性を高度に向上させた、改質成形物が得られやすい。
 特に、プラズマ放電における温度が上記範囲にあれば、より選択的かつ緻密な改質層を形成しやすい。
The temperature at the time of plasma discharge is preferably 0 to 300 ° C, more preferably 10 to 50 ° C.
When plasma discharge is performed under such conditions, hydrogen atoms are more likely to be introduced into the F polymer existing on the surface of the molded product containing the F polymer on the surface layer, and the surface physical properties such as wettability are not impaired without impairing the physical properties of the entire F polymer. It is easy to obtain a modified molded product with a high degree of improvement.
In particular, when the temperature in the plasma discharge is within the above range, a more selective and dense modified layer can be easily formed.
 本法2においては、原成形物をプラズマ処理前に、予め、原成形物の表面を、還元性ガスを含まない雰囲気下にてプラズマ処理してもよい。かかる処理により原成形物の表面を適度に粗化すれば、本法のプラズマ処理における成形物の表面とプラズマの接触面が大きくなり、より高度に水素原子が導入された改質層が形成されやすい。かかる雰囲気は、希ガスを含むのが好ましい。 In this method 2, the surface of the original molded product may be plasma-treated in advance in an atmosphere that does not contain a reducing gas before the original molded product is plasma-treated. If the surface of the original molded product is appropriately roughened by such treatment, the contact surface between the surface of the molded product and the plasma in the plasma treatment of this method becomes large, and a modified layer in which hydrogen atoms are introduced to a higher degree is formed. Cheap. Such an atmosphere preferably contains a noble gas.
 原成形物が上述した積層体であり、更にそれと他の基材を積層する場合、原成形物のF層(2)に本法2を施し、改質層を形成させた後に積層すれば、他の基材との密着強度を上げることができる。例えば、長尺の基材に、Fポリマーのパウダーを含む液状組成物を塗布し加熱してF層(2)を形成して原成形物を調製し、そのF層(2)に本法2を施して、更に他の長尺基材とロールツーロールプロセスにて積層させれば、容易に長尺の複合基材が得られる。 When the original molded product is the above-mentioned laminate and further laminates it with another base material, the F layer (2) of the original molded product may be subjected to this method 2 to form a modified layer, and then laminated. Adhesion strength with other substrates can be increased. For example, a liquid composition containing F polymer powder is applied to a long base material and heated to form an F layer (2) to prepare an original molded product, and this method 2 is applied to the F layer (2). A long composite base material can be easily obtained by laminating with another long base material by a roll-to-roll process.
 また、原成形物がロール状の長尺積層体の場合、ロールより原成形物を巻き出し、対向させた電極の間に原成形物を通過させながら、雰囲気条件となるように原料ガスを供給させつつプラズマ放電させることで、改質層が形成された改質成形物を得ることができる。得られた改質成形物はそのまま他の基材との積層工程に送ってもよいし、一旦、ロール状に巻き取ったのち、再び巻き出して他の基材との積層工程に送ってもよい。工程の簡略化の観点から、上記プラズマを放電させる放電装置を積層装置に組み込み、積層工程の前に原成形物をプラズマ処理できるようにしておくことが好ましい。 When the original molded product is a long roll-shaped laminate, the original molded product is unwound from the roll, and the raw material gas is supplied so as to satisfy the atmospheric conditions while passing the original molded product between the electrodes facing each other. By plasma discharge while allowing the modified layer to be formed, a modified molded product having a modified layer formed can be obtained. The obtained modified molded product may be sent as it is to a laminating step with another base material, or may be wound up in a roll shape and then unwound again and sent to a laminating step with another base material. good. From the viewpoint of simplifying the process, it is preferable to incorporate the discharge device for discharging the plasma into the laminating device so that the original molded product can be plasma-treated before the laminating process.
 本発明の改質成形物(以下、「本成形物」とも記す。)は、Fポリマーに水素原子が導入されて形成された改質層を表面の少なくとも一部に有し、前記改質層は、Hピークの最大高さがFピークの最大高さに対して0.2倍以上である層であり、かつ、前記領域におけるフッ素原子の含有割合が55%以下である層である、成形物である。本成形物は、本法2により製造するのが好ましい。 The modified molded product of the present invention (hereinafter, also referred to as “this molded product”) has a modified layer formed by introducing a hydrogen atom into an F polymer on at least a part of the surface of the modified molded product. Is a layer in which the maximum height of the H peak is 0.2 times or more the maximum height of the F peak, and the content ratio of fluorine atoms in the region is 55% or less. It is a thing. The present molded product is preferably produced by the present method 2.
 本成形物における、Fポリマーの態様は、好適な態様も含めて、本法1におけるそれと同様である。本成形物における、改質層の態様および本成形物における表面の、状態又は形状の態様は、好適な態様も含めて、本法2におけるそれと同様である。本成形物の好適な態様としては、Fポリマーのフィルムの少なくとも一方の表面に改質層を有するフィルム、金属箔とその少なくとも一方の表面に形成されたF層(2)とを有し、前記F層(2)の表面に改質層を有する金属張積層体、樹脂フィルムとその少なくとも一方の表面に形成されたF層(2)とを有し、前記F層の表面に改質層を有する多層フィルムが挙げられる。金属張積層体の両面にF層が形成されている場合、又は多層フィルムの両面にF層(2)が形成されている場合には、両面の表面に改質層を有していてもよい。
 これらの態様における、Fポリマーのフィルム、金属箔、樹脂フィルムおよびF層(2)の態様は、好適な態様も含めて本法における態様と同様である。
The mode of the F polymer in the present molded product is the same as that in the present method 1, including the preferred mode. The aspect of the modified layer in the present molded product and the aspect of the state or shape of the surface in the present molded product are the same as those in the present method 2, including the preferred embodiment. A preferred embodiment of the molded product includes a film having a modified layer on at least one surface of the F polymer film, a metal foil, and an F layer (2) formed on at least one surface thereof. It has a metal-clad laminate having a modified layer on the surface of the F layer (2), a resin film, and an F layer (2) formed on at least one surface thereof, and a modified layer is provided on the surface of the F layer. A multilayer film having a structure can be mentioned. When the F layer is formed on both sides of the metal-clad laminate, or when the F layer (2) is formed on both sides of the multilayer film, the modified layer may be provided on both surfaces. ..
The aspects of the F polymer film, the metal leaf, the resin film, and the F layer (2) in these embodiments are the same as those in the present method 1 including the preferred embodiments.
 本成形物は、成形物全体のFポリマーの物性と、高極性に由来する表面物性とを具備した成形物であり、電線被覆材料、プリント基板材料として、特に有用である。
 例えば、改質層を有する、FポリマーのフィルムまたはF層(2)の誘電率は、2.0から3.5であるのが好ましく、2.0から3.0であるのがより好ましい。なお、誘電率は、23℃±2℃、相対湿度50±5%の環境下、周波数10GHzにて、スプリットポスト誘電体共振器(SPDR)を用いて測定される。本成形物が多層フィルムである場合、本成形物の誘電率は、2.0から3.5であるのが好ましく、2.0から3.0であるのがより好ましい。本成形物の最外面(改質層)の水接触角は、100°以下が好ましく、90°以下がより好ましい。また、本成形物の最外面(改質層)の水接触角は、10°以上が好ましく、30°以上がより好ましい。なお、水接触角は、JIS R 3257:1999に記載の静滴法で測定した値である。
This molded product is a molded product having the physical characteristics of the F polymer of the entire molded product and the surface physical characteristics derived from high polarity, and is particularly useful as an electric wire coating material and a printed circuit board material.
For example, the dielectric constant of the F polymer film having the modified layer or the F layer (2) is preferably 2.0 to 3.5, and more preferably 2.0 to 3.0. The dielectric constant is measured using a split post dielectric resonator (SPDR) at a frequency of 10 GHz in an environment of 23 ° C. ± 2 ° C. and a relative humidity of 50 ± 5%. When the molded product is a multilayer film, the dielectric constant of the molded product is preferably 2.0 to 3.5, more preferably 2.0 to 3.0. The water contact angle of the outermost surface (modified layer) of the molded product is preferably 100 ° or less, more preferably 90 ° or less. The water contact angle of the outermost surface (modified layer) of the molded product is preferably 10 ° or more, more preferably 30 ° or more. The water contact angle is a value measured by the intravenous drip method described in JIS R 3257: 1999.
 本成形物の改質層を有する表面は、さらに他の基材を積層させて接着させることができる。この際、本成形物と、積層対象物である他の基材との界面の剥離強度は、8N/cm以上であるのが好ましく、10N/cm以上がより好ましい。 The surface of the molded product having the modified layer can be further laminated with another base material and adhered. At this time, the peel strength at the interface between the molded product and another base material to be laminated is preferably 8 N / cm or more, and more preferably 10 N / cm or more.
 本成形物と他の基材の積層および接着方法としては、熱プレスによる方法が挙げられる。熱プレスの温度は、Fポリマーの融点以下が好ましく、300℃以下がより好ましく、240℃以下がさらに好ましい。熱プレスの温度は、120℃以上が好ましく、160℃以上がさらに好ましい。本成形物は、表面に濡れ性等の物性に優れた改質層を有するため、より低温で他の基材と積層および接着可能である。
 他の基材としては、上述した金属基板および樹脂基板に加えて、プリプレグ、ガラス基板、セラミックス基板が挙げられる。
Examples of the method for laminating and adhering the present molded product to other base materials include a method using a hot press. The temperature of the hot press is preferably not more than the melting point of the F polymer, more preferably 300 ° C. or less, still more preferably 240 ° C. or less. The temperature of the hot press is preferably 120 ° C. or higher, more preferably 160 ° C. or higher. Since this molded product has a modified layer having excellent physical properties such as wettability on its surface, it can be laminated and adhered to other base materials at a lower temperature.
Examples of other substrates include prepregs, glass substrates, and ceramic substrates, in addition to the metal and resin substrates described above.
 本成形物と他の基材との積層体の構成としては、金属基板/両面に改質層を有する本成形物/他の基材層/両面に改質層を有する本成形物/金属基板、金属基板層/他の基材層/両面に改質層を有する本成形物/他の基材層/金属基板層等が挙げられる。それぞれの層には、さらに、ガラスクロスやフィラーが含まれていてもよい。
 かかる積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、電線被覆材(航空機用電線等)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。
The structure of the laminate of this molded product and other base material is as follows: metal substrate / main molded product having modified layers on both sides / other base material layer / main molded product having modified layers on both sides / metal substrate , Metal substrate layer / other substrate layer / present molded product having modified layers on both sides / other substrate layer / metal substrate layer and the like. Each layer may further contain a glass cloth or filler.
Such laminates are useful as antenna parts, printed substrates, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Specifically, wire coating materials (aircraft wires, etc.), Electrical insulation tape, insulation tape for oil drilling, materials for printed substrates, separation membranes (precision filtration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (lithium II) For next batteries, fuel cells, etc.), copy rolls, furniture, automobile dashboards, covers for home appliances, sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, belt conveyors, food transport belts, etc.) Etc.), tools (shovels, shavings, cuttings, saws, etc.), boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, container covering materials.
 以上、本法、本法1および2、および本成形物について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本法、本法1および2は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。また本成形物は上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the present method, the present methods 1 and 2, and the present molded product have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, the present method, the present methods 1 and 2, may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action. Further, in the configuration of the above-described embodiment, the present molded product may be added with any other configuration or may be replaced with an arbitrary configuration exhibiting the same function.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 [例1]改質パウダーおよび液状組成物の製造例
 以下の原材料を使用した。
 Fパウダー1:TFE単位を97.9モル%、PPVE単位を2.0モル%およびNAH単位を0.1モル%含むポリマー1(融点:300℃、フッ素含有量:71質量%)からなるパウダー(平均粒子径:2.6μm)。なお、Fパウダー1は、国際公開2018/016644号パンフレットの段落番号0154に記載される樹脂パウダー(A)に相当する。
 Fパウダー2:TFE単位を98.7モル%およびPPVE単位を1.3モル%含むポリマー2(融点:300℃、フッ素含有量:71質量%)からなるパウダー(平均粒子径:4.3μm)。
 なお、ポリマー1はカルボニル基含有基を主鎖炭素数1×10個あたり1000個有し、ポリマー2はカルボニル基含有基を主鎖炭素数1×10個あたり40個有する。
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
[Example 1] Production example of modified powder and liquid composition The following raw materials were used.
F powder 1: Powder composed of polymer 1 (melting point: 300 ° C., fluorine content: 71% by mass) containing 97.9 mol% of TFE units, 2.0 mol% of PPVE units and 0.1 mol% of NAH units. (Average particle size: 2.6 μm). The F powder 1 corresponds to the resin powder (A) described in paragraph number 0154 of the pamphlet of International Publication No. 2018/016644.
F powder 2: Powder consisting of polymer 2 (melting point: 300 ° C., fluorine content: 71% by mass) containing 98.7 mol% of TFE units and 1.3 mol% of PPVE units (average particle size: 4.3 μm) ..
Incidentally, the polymer 1 has a main chain number 1 × 10 1000 to six per carbon carbonyl group-containing group, polymers 2 to 40 Yes main chain carbon atoms 1 × 10 6 cells per a carbonyl group-containing group.
 [例1-1]改質パウダー1および液状組成物1の製造例
 1対の対向電極のそれぞれに誘電体を挟み込み、誘電体バリア放電によるプラズマ生成が可能な機構を備え、パウダーを保持するステージを備えたプラズマチャンバー内に、Fパウダー1を一様に設置した。チャンバーにArガスの95体積%と水素ガスの5体積%を含む混合ガスを流し、外気を遮蔽し、プラズマ処理中のチャンバー内のArガスと水素ガスの合計濃度を99.9体積%以上に、チャンバー内の圧力を0.1MPaに、チャンバー内の温度を25℃に、保持した。処理周波数を13kHz、印可電圧を9kVとして、チャンバー内にてプラズマ放電させて、Fパウダー1を1分間、プラズマ処理して、改質パウダー1を得た。
 改質パウダー1の33質量部に対し、蒸留水の67質量部を添加し、60分間、撹拌して改質パウダー1と水とを含み、界面活性剤を含まない、改質パウダー1が分散している液状組成物1を得た。
[Example 1-1] Production example of modified powder 1 and liquid composition 1 A stage in which a dielectric is sandwiched between a pair of counter electrodes and a mechanism capable of generating plasma by a dielectric barrier discharge is provided to hold the powder. F powder 1 was uniformly installed in the plasma chamber provided with the above. A mixed gas containing 95% by volume of Ar gas and 5% by volume of hydrogen gas is flowed through the chamber to shield the outside air, and the total concentration of Ar gas and hydrogen gas in the chamber during plasma treatment is increased to 99.9% by volume or more. The pressure in the chamber was maintained at 0.1 MPa, and the temperature in the chamber was maintained at 25 ° C. The processing frequency was 13 kHz and the applied voltage was 9 kV. Plasma discharge was performed in the chamber, and F powder 1 was plasma-treated for 1 minute to obtain modified powder 1.
67 parts by mass of distilled water was added to 33 parts by mass of the modified powder 1, and the mixture was stirred for 60 minutes to contain the modified powder 1 and water, and the modified powder 1 containing no surfactant was dispersed. The liquid composition 1 was obtained.
 [例1-2]評価例
 Fパウダー1の33質量部に対して、ノニオン性のフッ素系界面活性剤(ネオス社製、フタージェント250)を1質量部と蒸留水の66質量部とからなる混合液を添加し、60分間、撹拌して、パウダー1が分散している液状組成物C1を得た。なお、この液状組成物C1は、国際公開2018/016644号パンフレットの段落番号0156に記載される分散液(C-1)に相当する。 液状組成物1と液状組成物C1に関して、国際公開2018/016644号パンフレットの実施例に記載される「分散性」を評価した結果、両者の液状組成物は同等の分散性を示した。
[Example 1-2] Evaluation example With respect to 33 parts by mass of F powder 1, 1 part by mass of a nonionic fluorine-based surfactant (Futergent 250 manufactured by Neos) and 66 parts by mass of distilled water are formed. The mixed solution was added and stirred for 60 minutes to obtain a liquid composition C1 in which the powder 1 was dispersed. The liquid composition C1 corresponds to the dispersion liquid (C-1) described in paragraph No. 0156 of the International Publication No. 2018/016644 pamphlet. As a result of evaluating the "dispersibility" described in Examples of the International Publication No. 2018/016644 pamphlet with respect to the liquid composition 1 and the liquid composition C1, both liquid compositions showed the same dispersibility.
 [例1-3]改質パウダー2および液状組成物2の製造例
 Fパウダー1をFパウダー2に変更する以外は、例1-1と同様にして、改質パウダー2を得て、液状組成物2を得た。
 [例1-4]改質パウダー3および液状組成物3の製造例
 Fパウダー1をFパウダー2に変更し、プラズマ放電において外気を特に遮蔽せずに、プラズマ処理中のチャンバー内のArガスと水素ガスの合計濃度を99.9%未満、酸素ガスを1体積%超としてプラズマ放電する以外は、例1-1と同様にして、改質パウダー3を得て、液状組成物3を得た。
[Example 1-3] Production example of modified powder 2 and liquid composition 2 The modified powder 2 is obtained in the same manner as in Example 1-1 except that the F powder 1 is changed to the F powder 2, and the liquid composition is obtained. I got the thing 2.
[Example 1-4] Production example of modified powder 3 and liquid composition 3 F powder 1 is changed to F powder 2 with Ar gas in a chamber during plasma treatment without particularly shielding the outside air in plasma discharge. The modified powder 3 was obtained in the same manner as in Example 1-1 except that the total concentration of hydrogen gas was less than 99.9% and the oxygen gas was more than 1% by volume, and the liquid composition 3 was obtained. ..
 [例1-5]評価例
 Fパウダー1をFパウダー2に変更する以外は、例1-2と同様にして、液状組成物C2を調製した。
 液状組成物2、3及びC2のそれぞれに関して、以下の手順により、その成形物の接着性を評価した。
 各液状組成物を銅箔にダイコート法により塗工し、120℃にて5分間乾燥炉に通し、銅箔表面に乾燥被膜を形成させ、さらに、380℃にて10分間遠赤外線炉に通して、ポリマーを焼成して、銅箔の表面にポリマー層(厚さ10μm)が形成された積層体を調製した。この積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出し、試験片の長さ方向の一端から50mmの位置までポリマー層から銅箔を剥離させた。
 剥離に際して、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、測定距離10mmから30mmまでの平均荷重を測定して、積層体の剥離強度(N/cm)を評価した。
 液状組成物2から形成された積層体の剥離強度は8N/cmであり、液状組成物3から形成された積層体の剥離強度は4N/cmであり、液状組成物C2から形成された積層体の剥離強度は3N/cm未満であった。
[Example 1-5] Evaluation Example A liquid composition C2 was prepared in the same manner as in Example 1-2 except that F powder 1 was changed to F powder 2.
For each of the liquid compositions 2, 3 and C2, the adhesiveness of the molded product was evaluated by the following procedure.
Each liquid composition is applied to a copper foil by a die coating method, passed through a drying oven at 120 ° C. for 5 minutes to form a dry film on the surface of the copper foil, and further passed through a far-infrared ray furnace at 380 ° C. for 10 minutes. , The polymer was fired to prepare a laminate in which a polymer layer (thickness 10 μm) was formed on the surface of the copper foil. A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from this laminated body, and the copper foil was peeled from the polymer layer from one end in the length direction of the test piece to a position of 50 mm.
When peeling, the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction as the center, and the measurement distance is from 10 mm to 30 mm. The peel strength (N / cm) of the laminated body was evaluated by measuring the average load of.
The peel strength of the laminate formed from the liquid composition 2 is 8 N / cm, the peel strength of the laminate formed from the liquid composition 3 is 4 N / cm, and the peel strength of the laminate formed from the liquid composition C2 is 4 N / cm. The peel strength of was less than 3 N / cm.
 [例2]改質フィルムの製造例
 以下の原材料を使用した。
 フィルム1:Fポリマー1のフィルム(厚さ:25μm)。
 フィルム2:TFE単位を98.2モル%およびPPVE単位を1.8モル%含むポリマー3(融点:305℃、フッ素含有量:71質量%)のフィルム(厚さ:25μm)。
 なお、フィルム1およびフィルム2のそれぞれにおいて、ESCAによって測定されるフィルムのピークH(フィルムの表面から深さ10nmまでの領域における284eVから286eVにあるピーク)は微弱であり、ピークHの最大高さはピークF(フィルムの表面から深さ10nmまでの領域における289eVから295eVにあるピーク)の最大高さに対して0.2倍未満より充分に小さく、また、フッ素原子の含有割合は60%であった。
[Example 2] Production example of modified film The following raw materials were used.
Film 1: Film of F polymer 1 (thickness: 25 μm).
Film 2: A film (thickness: 25 μm) of Polymer 3 (melting point: 305 ° C., fluorine content: 71% by mass) containing 98.2 mol% of TFE units and 1.8 mol% of PPVE units.
In each of the film 1 and the film 2, the peak H of the film measured by ESCA (the peak at 284 eV to 286 eV in the region from the surface of the film to the depth of 10 nm) is weak, and the maximum height of the peak H is high. Is well less than 0.2 times the maximum height of peak F (peaks at 289 eV to 295 eV in the region from the surface of the film to a depth of 10 nm), and the fluorine atom content is 60%. there were.
 なお、ESCAによる表面の測定には、QuanteraII(アルバック・ファイ社製)を使用した。X線源に単色化AlKα線を100Wで用い、イオン銃と酸化バリウムエミッタを使用した中和銃を用い、サンプル表面の帯電を防ぎつつ、光電子検出面積は100μmφ、光電子検出角は45度、パスエネルギーは55eVとした。また、フッ素原子の含有割合は、測定により検出された各種ピーク強度(N1s、O1s、C1sおよびF1s軌道)から算出した。また、表面からの深さは、スパッタイオンにC60イオンを用いた、SiOスパッタ膜のスパッタレートを基に決定した。 QuanteraII (manufactured by ULVAC-PHI) was used for the surface measurement by ESCA. A monochromatic AlKα ray is used as the X-ray source at 100 W, and a neutralizing gun using an ion gun and a barium oxide emitter is used to prevent charging of the sample surface, while the photoelectron detection area is 100 μmφ, the photoelectron detection angle is 45 degrees, and the pass. The energy was 55 eV. In addition, the content ratio of fluorine atoms was calculated from various peak intensities (N1s, O1s, C1s and F1s orbitals) detected by measurement. The depth from the surface was determined based on the sputtering rate of the SiO 2 sputtering film using C60 ions as the sputtering ions.
 [例2-1]改質フィルム1の製造例
 1対の対向電極のそれぞれに誘電体を挟み込み、誘電体バリア放電によるプラズマ生成が可能な機構を備えたプラズマチャンバー内に、フィルム1を設置した。チャンバーにArガスの95体積%と水素ガスの5体積%を含む混合ガスを流し、外気を遮蔽し、チャンバー内の圧力を0.1MPaに、チャンバー内の温度を25℃に、保持した。処理周波数を13kHz、印可電圧を9kVとして、チャンバー内にてプラズマ放電させて、フィルム1を2分間、プラズマ処理した。
[Example 2-1] Production example of modified film 1 The film 1 is installed in a plasma chamber equipped with a mechanism capable of generating plasma by a dielectric barrier discharge by sandwiching a dielectric in each of a pair of counter electrodes. .. A mixed gas containing 95% by volume of Ar gas and 5% by volume of hydrogen gas was flowed through the chamber to shield the outside air, and the pressure inside the chamber was maintained at 0.1 MPa and the temperature inside the chamber was maintained at 25 ° C. The processing frequency was 13 kHz, the applied voltage was 9 kV, plasma discharge was performed in the chamber, and the film 1 was plasma-treated for 2 minutes.
 得られたフィルム(改質フィルム1)の表面において、ピークHの最大高さはピークFの最大高さの最大高さに対して2.5倍であり、前記領域におけるフッ素原子の含有割合は30%であった。また、改質フィルム1の表面を厚さ方向に対して100nmエッチングして、再度、その表面をESCAによって測定すると、そのプロファイルはフィルム1と同等であり、改質フィルム1は表面にポリマー1に水素原子が導入されて形成された改質層を有するフィルムであることを確認した。 On the surface of the obtained film (modified film 1), the maximum height of the peak H is 2.5 times the maximum height of the maximum height of the peak F, and the content ratio of fluorine atoms in the region is It was 30%. Further, when the surface of the modified film 1 is etched by 100 nm in the thickness direction and the surface is measured again by ESCA, the profile is the same as that of the film 1, and the modified film 1 has a polymer 1 on the surface. It was confirmed that the film had a modified layer formed by introducing hydrogen atoms.
 [例2-2]改質フィルム2の製造例
 チャンバーに封入するガスをArガスの94体積%とアンモニアガスの5体積%と水蒸気の1体積%とを含む混合ガスに変更する以外は例1と同様にして、フィルム1をプラズマ処理した。
 得られたフィルム(改質フィルム2)の表面において、ピークHの最大高さは、ピークFの最大高さの最大高さに対して0.2倍であり、改質フィルム2は表面にポリマー1に水素原子が導入されて形成された改質層を有するフィルムであることを確認した。
[Example 2-2] Production example of modified film 2 Example 1 except that the gas sealed in the chamber is changed to a mixed gas containing 94% by volume of Ar gas, 5% by volume of ammonia gas, and 1% by volume of water vapor. The film 1 was subjected to plasma treatment in the same manner as in the above.
On the surface of the obtained film (modified film 2), the maximum height of the peak H is 0.2 times the maximum height of the maximum height of the peak F, and the modified film 2 has a polymer on the surface. It was confirmed that the film had a modified layer formed by introducing a hydrogen atom into 1.
 [例2-3]改質フィルム3の製造例
 フィルム1をフィルム2にする以外は例1と同様にして、フィルム2をプラズマ処理した。
 得られたフィルム(改質フィルム3)の表面において、ピークHの最大高さは、ピークFの最大高さの最大高さに対して3倍であり、前記領域におけるフッ素原子の含有割合は25%であり、改質フィルム3は、表面にポリマー2に水素原子が導入されて形成された改質層を有するフィルムであることを確認した。
[Example 2-3] Production example of modified film 3 The film 2 was plasma-treated in the same manner as in Example 1 except that the film 1 was made into a film 2.
On the surface of the obtained film (modified film 3), the maximum height of the peak H is three times the maximum height of the maximum height of the peak F, and the content ratio of fluorine atoms in the region is 25. %, And it was confirmed that the modified film 3 is a film having a modified layer formed by introducing hydrogen atoms into the polymer 2 on the surface.
 [例2-4]改質フィルム4の製造例(比較例)
 チャンバーに封入するガスをArガスのみにする以外は例1と同様にして、フィルム1をプラズマ処理した。
 ESCAによって測定した、得られたフィルム(改質フィルム4)の表面状態は、フィルム1と、ほぼ同等であった。
[Example 2-4] Production example of modified film 4 (comparative example)
The film 1 was plasma-treated in the same manner as in Example 1 except that the gas sealed in the chamber was only Ar gas.
The surface condition of the obtained film (modified film 4) measured by ESCA was almost the same as that of film 1.
 [例2-5]改質フィルム5の製造例(比較例)
 真空条件とする以外は、例1と同様にして、フィルム1をプラズマ処理した。
 ESCAによって測定した、得られたフィルム(改質フィルム5)の表面状態は、フィルム1と、ほぼ同等であった。
[Example 2-5] Production example of modified film 5 (comparative example)
The film 1 was plasma-treated in the same manner as in Example 1 except that the conditions were vacuum.
The surface condition of the obtained film (modified film 5) measured by ESCA was almost the same as that of film 1.
 [例2-6]改質フィルムの評価例
 改質フィルム1と無垢の銅箔とを対向して配置し、熱プレス(温度:340℃、加圧力:15kN/m)して、改質フィルム1と銅箔の接着積層体を得た。この接着積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出し、3カ月間、25℃にて静置した。次に、試験片の長さ方向の一端から50mmの位置まで改質フィルム1層から銅箔層を剥離した。剥離に際しては、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、測定距離10mmから30mmまでの平均荷重を測定して、剥離強度(N/cm)とした。
 それぞれのフィルムに関しても、同様に接着積層体を作成し、その剥離強度を評価した。結果をまとめて、表1に示す。
[Example 2-6] Evaluation example of modified film The modified film 1 and the solid copper foil are placed facing each other and heat-pressed (temperature: 340 ° C., pressing force: 15 kN / m) to obtain the modified film. An adhesive laminate of 1 and copper foil was obtained. A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from this adhesive laminate and allowed to stand at 25 ° C. for 3 months. Next, the copper foil layer was peeled from the modified film 1 layer from one end in the length direction of the test piece to a position of 50 mm. When peeling, the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction as the center, and the measurement distance is 10 mm to 30 mm. The average load up to was measured and used as the peel strength (N / cm).
For each film, an adhesive laminate was prepared in the same manner, and the peel strength thereof was evaluated. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなように、本法で作成した改質パウダーは沈降し難く、界面活性剤を添加しなくても、水への分散性は界面活性剤を添加した場合と同等の分散性を示していることがわかる。また、本法で作成した改質パウダーを含む液状組成物から形成された成形物は、その原パウダーを含む液状組成物から形成された成形物に比較して、基材との密着性が高く、高い接着性を示していることが分かる。
 以上のことから本法による改質パウダーは高度に表面改質されていることが分かり、該改質パウダーを含む本組成物は界面活性剤を添加しなくても、分散性等の液物性に優れた液状組成物となり、基材接着性の高い成形物を形成できることが分かる。
 本法による改質パウダーを含む液状組成物は分散性等の液物性に優れた液状組成物であり、多孔質または繊維状の材料中に、効率的に含浸できる。
As is clear from the above results, the modified powder prepared by this method is difficult to settle, and even if no surfactant is added, the dispersibility in water is equivalent to that when the surfactant is added. You can see that it shows. Further, the molded product formed from the liquid composition containing the modified powder prepared by this method has higher adhesion to the base material than the molded product formed from the liquid composition containing the original powder. It can be seen that it shows high adhesiveness.
From the above, it can be seen that the modified powder by this method is highly surface-modified, and the composition containing the modified powder has liquid physical properties such as dispersibility without adding a surfactant. It can be seen that the liquid composition is excellent and a molded product having high substrate adhesiveness can be formed.
The liquid composition containing the modified powder according to this method is a liquid composition having excellent liquid physical characteristics such as dispersibility, and can be efficiently impregnated into a porous or fibrous material.
 さらに、上記結果から明らかなように、本法で作成した改質成形物である改質フィルム1から3と銅箔とを接着した場合、原成形物であるフィルム1または2と銅箔との剥離強度よりも高いことから密着強度が改善されていることがわかる。また本法に依らずに作成した改質フィルム4および5と銅箔との剥離強度と比べても、本法による改質フィルム1から3と銅箔との剥離強度の方が高い。以上のことから本法による改質成形物は高度に表面改質されていることが分かる。
 したがって本法による改質成形物と他の基材との積層体は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であると考えられる。
 
 
Further, as is clear from the above results, when the modified films 1 to 3 which are the modified molded products prepared by this method and the copper foil are adhered, the films 1 or 2 which are the original molded products and the copper foil are adhered to each other. Since it is higher than the peel strength, it can be seen that the adhesion strength is improved. Further, the peel strength between the modified films 1 to 3 produced by this method and the copper foil is higher than the peel strength between the modified films 4 and 5 produced by this method and the copper foil. From the above, it can be seen that the modified molded product according to this method is highly surface-modified.
Therefore, it is considered that the laminate of the modified molded product and other base materials according to this method is useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry supplies, paints, cosmetics, etc. Be done.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーを、大気圧近傍の雰囲気下にてプラズマ処理して、改質されたテトラフルオロエチレン系ポリマーを得る、改質されたテトラフルオロエチレン系ポリマーの製造方法。 A method for producing a modified tetrafluoroethylene polymer, which comprises plasma-treating a tetrafluoroethylene polymer in an atmosphere near atmospheric pressure to obtain a modified tetrafluoroethylene polymer.
  2.  テトラフルオロエチレン系ポリマーのパウダーを、大気圧近傍の雰囲気下にてプラズマ処理し、前記パウダーの表面を改質する、改質パウダーの製造方法。 A method for producing a modified powder, in which a tetrafluoroethylene polymer powder is plasma-treated in an atmosphere near atmospheric pressure to modify the surface of the powder.
  3.  前記パウダーを、水素原子を有する還元性ガスを含む大気圧近傍の雰囲気下にてプラズマ処理し、前記テトラフルオロエチレン系ポリマーに水素原子が導入されて形成されたパウダーを得る、請求項2に記載の製造方法。 The second aspect of the present invention, wherein the powder is plasma-treated in an atmosphere near atmospheric pressure containing a reducing gas having a hydrogen atom to obtain a powder formed by introducing a hydrogen atom into the tetrafluoroethylene polymer. Manufacturing method.
  4.  前記プラズマ処理を、空気を遮蔽した雰囲気下にて行う、請求項2または3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 2 or 3, wherein the plasma treatment is performed in an atmosphere in which air is shielded.
  5.  前記プラズマ処理を行う前に、予め、前記パウダーを、希ガスを含む雰囲気下にてプラズマ処理する、請求項2から4のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 4, wherein the powder is plasma-treated in advance in an atmosphere containing a rare gas before the plasma treatment is performed.
  6.  前記雰囲気が、水素原子を有する還元性ガス、ビニル化合物およびビニリデン化合物の少なくとも1種のガスを含む、請求項2から5のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 5, wherein the atmosphere contains at least one gas of a reducing gas having a hydrogen atom, a vinyl compound and a vinylidene compound.
  7.  前記テトラフルオロエチレン系ポリマーが、フッ素含有量が70から76質量%であるテトラフルオロエチレン系ポリマーである、請求項2から6のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 6, wherein the tetrafluoroethylene polymer is a tetrafluoroethylene polymer having a fluorine content of 70 to 76% by mass.
  8.  前記テトラフルオロエチレン系ポリマーが、酸素原子を含む原子団を有する、請求項2から7のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 7, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
  9.  請求項2から8のいずれかの1項に記載の製造方法で得られた改質パウダーと、液状分散媒とを含み、前記改質パウダーが分散している液状組成物。 A liquid composition containing the modified powder obtained by the production method according to any one of claims 2 to 8 and a liquid dispersion medium, in which the modified powder is dispersed.
  10.  テトラフルオロエチレン系ポリマーを含む表層を少なくとも一部有する成形物の前記表層を、水素原子を有する還元性ガスを含む大気圧近傍の雰囲気下にてプラズマ処理する、前記テトラフルオロエチレン系ポリマーに水素原子が導入されて形成された改質層を表面の少なくとも一部に有する改質成形物の製造方法。 The surface layer of a molded product having at least a part of the surface layer containing a tetrafluoroethylene-based polymer is plasma-treated in an atmosphere near atmospheric pressure containing a reducing gas having a hydrogen atom. The tetrafluoroethylene-based polymer has a hydrogen atom. A method for producing a modified molded product having a modified layer formed by introducing a hydrogen atom on at least a part of the surface.
  11.  前記プラズマ処理を、空気を遮蔽した雰囲気下にて行う、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the plasma treatment is performed in an atmosphere in which air is shielded.
  12.  前記プラズマ処理を行う前に、予め、前記表層を、還元性ガスを含まない雰囲気下にてプラズマ処理する、請求項10または11に記載の製造方法。 The production method according to claim 10 or 11, wherein the surface layer is plasma-treated in advance in an atmosphere that does not contain a reducing gas before the plasma treatment is performed.
  13.  前記還元性ガスが、水素ガス、アンモニアガス又は炭化水素ガスである、請求項12に記載の製造方法。 The production method according to claim 12, wherein the reducing gas is hydrogen gas, ammonia gas, or hydrocarbon gas.
  14.  前記テトラフルオロエチレン系ポリマーが、酸素原子を含む原子団を有する、請求項10から13のいずれか1項に記載の製造方法。 The production method according to any one of claims 10 to 13, wherein the tetrafluoroethylene polymer has an atomic group containing an oxygen atom.
  15.  テトラフルオロエチレン系ポリマーに水素原子が導入されて形成された改質層を表面の少なくとも一部に有し、前記改質層は、X線光電子分光法によって測定される表面から深さ1nmまでの領域における284eVから286eVにあるピークの最大高さが、前記領域における289eVから295eVにあるピークの最大高さに対して0.2倍以上であり、かつ、前記領域におけるフッ素原子の含有割合が55%以下である、テトラフルオロエチレン系ポリマーを含む改質成形物。
     
    It has a modified layer formed by introducing hydrogen atoms into a tetrafluoroethylene polymer on at least a part of the surface, and the modified layer has a depth of 1 nm from the surface measured by X-ray photoelectron spectroscopy. The maximum height of the peak at 284 eV to 286 eV in the region is 0.2 times or more the maximum height of the peak at 289 eV to 295 eV in the region, and the content ratio of fluorine atoms in the region is 55. % Or less, a modified molded product containing a tetrafluoroethylene-based polymer.
PCT/JP2021/010519 2020-03-19 2021-03-16 Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article WO2021187456A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227033873A KR20220155311A (en) 2020-03-19 2021-03-16 Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article
CN202180017361.5A CN115175953A (en) 2020-03-19 2021-03-16 Process for producing surface-modified tetrafluoroethylene polymer, process for producing modified powder, liquid composition, process for producing modified molded article, and modified molded article
JP2022508364A JPWO2021187456A1 (en) 2020-03-19 2021-03-16

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020050038 2020-03-19
JP2020-050037 2020-03-19
JP2020050037 2020-03-19
JP2020-050038 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187456A1 true WO2021187456A1 (en) 2021-09-23

Family

ID=77770982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010519 WO2021187456A1 (en) 2020-03-19 2021-03-16 Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article

Country Status (5)

Country Link
JP (1) JPWO2021187456A1 (en)
KR (1) KR20220155311A (en)
CN (1) CN115175953A (en)
TW (1) TW202140649A (en)
WO (1) WO2021187456A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302387A (en) * 1998-04-17 1999-11-02 Nitto Denko Corp Surface modification
JP2002020514A (en) * 2000-07-10 2002-01-23 Sekisui Chem Co Ltd Method for modifying surface of fluororesin
JP2004323593A (en) * 2003-04-22 2004-11-18 Toyota Industries Corp Fluororesin powder and modification method therefor
JP2016504480A (en) * 2013-01-28 2016-02-12 コリア ベーシック サイエンス インスティテュート Method for hydrophilic modification of PTFE surface
US20160319092A1 (en) * 2015-04-30 2016-11-03 Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) Plasma assisted hydrophilicity enhancement of polymer materials
WO2020004339A1 (en) * 2018-06-27 2020-01-02 Agc株式会社 Powder dispersion liquid, laminate, film, and impregnated woven fabric

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849308B2 (en) 2011-08-31 2016-01-27 住友ゴム工業株式会社 Method for producing surface-modified fluororesin film and surface-modified fluororesin film
JP6582448B2 (en) 2015-03-05 2019-10-02 サミー株式会社 Bullet ball machine
KR102600528B1 (en) 2018-06-18 2023-11-09 삼성디스플레이 주식회사 Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302387A (en) * 1998-04-17 1999-11-02 Nitto Denko Corp Surface modification
JP2002020514A (en) * 2000-07-10 2002-01-23 Sekisui Chem Co Ltd Method for modifying surface of fluororesin
JP2004323593A (en) * 2003-04-22 2004-11-18 Toyota Industries Corp Fluororesin powder and modification method therefor
JP2016504480A (en) * 2013-01-28 2016-02-12 コリア ベーシック サイエンス インスティテュート Method for hydrophilic modification of PTFE surface
US20160319092A1 (en) * 2015-04-30 2016-11-03 Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) Plasma assisted hydrophilicity enhancement of polymer materials
WO2020004339A1 (en) * 2018-06-27 2020-01-02 Agc株式会社 Powder dispersion liquid, laminate, film, and impregnated woven fabric

Also Published As

Publication number Publication date
CN115175953A (en) 2022-10-11
JPWO2021187456A1 (en) 2021-09-23
TW202140649A (en) 2021-11-01
KR20220155311A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP7115589B2 (en) LIQUID COMPOSITIONS AND METHOD FOR MANUFACTURING FILM AND LAMINATES USING SAME LIQUID COMPOSITIONS
TWI825683B (en) Laminated bodies and circuit substrates
RU2279449C2 (en) Method of treatment of fluoro-polymer particles and their products
CN113348208B (en) Dispersion liquid
KR20200103630A (en) Dispersion, method of manufacturing metal laminates and printed boards
US20200317948A1 (en) Dispersion, and methods for producing metal laminate and printed board
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
WO2019230569A1 (en) Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board
TWI826544B (en) Dispersions
JPWO2020137828A1 (en) Powder dispersion, method for manufacturing laminate, method for manufacturing polymer film, and method for manufacturing coated woven fabric
WO2020004338A1 (en) Resin-attached metal foil
CN115667377A (en) Method for producing dispersion liquid
JP7248022B2 (en) LAMINATED PRODUCTION METHOD AND LAMINATED PRODUCT
WO2021187456A1 (en) Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
JP2020070401A (en) Dispersion liquid
JP2020083990A (en) Manufacturing method of composite, and composite
CN113631669A (en) Liquid composition
WO2022009918A1 (en) Sizing agent, sized fibers, prepreg, and dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508364

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033873

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771223

Country of ref document: EP

Kind code of ref document: A1