WO2021179120A1 - Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class - Google Patents

Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class Download PDF

Info

Publication number
WO2021179120A1
WO2021179120A1 PCT/CN2020/078418 CN2020078418W WO2021179120A1 WO 2021179120 A1 WO2021179120 A1 WO 2021179120A1 CN 2020078418 W CN2020078418 W CN 2020078418W WO 2021179120 A1 WO2021179120 A1 WO 2021179120A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
uicc
class
voltage class
level translator
Prior art date
Application number
PCT/CN2020/078418
Other languages
French (fr)
Inventor
Meng Liu
Jian Li
Ming Cao
Yun Peng
Jingnan QU
Hao Zhang
Yi Liu
Rajendra Prasad NELUROUTH
Venkata Durga Vinod CHIKKALA
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/078418 priority Critical patent/WO2021179120A1/en
Publication of WO2021179120A1 publication Critical patent/WO2021179120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present disclosure generally relates to methods and systems for accessing network services on a wireless device. More specifically, the present disclosure relates to supporting an increased universal integrated circuit card (UICC) voltage class.
  • UICC universal integrated circuit card
  • Some designs of mobile communications/wireless devices include a single universal integrated circuit card (UICC) , multiple universal integrated circuit cards, or multiple subscriber identity module (SIM) cards. These cards store user identity information for multiple subscriptions that enable users to access multiple separate mobile telephony networks.
  • UICCs e.g., embedded UICCs (eUICCs)
  • SIM subscriber identity module
  • a UICC may be removable or implemented within a memory of a mobile communications device.
  • the information stored in a UICC may enable mobile communications devices to communicate with a variety of different types of mobile telephony networks.
  • mobile telephony networks include third generation (3G) , fourth generation (4G) , long term evolution (LTE) , fifth generation (5G) , time division multiple access (TDMA) , code division multiple access (CDMA) , CDMA 2000, wideband CDMA (WCDMA) , global system for mobile communications (GSM) , single-carrier radio transmission technology (1xRTT) , and universal mobile telecommunications systems (UMTS) .
  • Each subscription enabled by a UICC or SIM may use a particular radio access technology (RAT) to communicate with its respective network. Verification testing, however, may fail when an increased UICC voltage class is unsupported.
  • RAT radio access technology
  • a method for initialization of a universal integrated circuit card (UICC) of a mobile equipment includes setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment.
  • the method also includes applying an increased voltage class to reset the UICC to initialize according to the increased voltage class.
  • the method further includes translating first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class.
  • the method also includes supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
  • the apparatus includes a baseband controller having a communication interface and a voltage level translator.
  • the voltage level translator includes a first port coupled to the communication interface of the baseband controller.
  • the voltage level translator also includes a second port coupled to the UICC of the mobile equipment.
  • the voltage level translator further includes a first voltage input coupled to a power management integrated circuit (PMIC) of a chipset of the mobile equipment.
  • PMIC power management integrated circuit
  • the voltage level translator also includes a second voltage input coupled to a power supply of the mobile equipment.
  • the voltage level translator is configured to translate first port signals received from the communication interface of the baseband controller at a current voltage class to second port signals having a logic level matched to an increased voltage class.
  • the voltage level translator is also configured to supply the second port signals at the increased voltage class from the second port of the voltage level translator to the UICC in a translation mode.
  • the apparatus includes means for setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment.
  • the apparatus also includes means for applying an increased voltage class to reset the UICC to initialize according to the increased voltage class.
  • the apparatus further includes means for translating, by the voltage level translator, first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class.
  • the apparatus also includes means for supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
  • FIGURE 1 shows a wireless device communicating with a wireless communications system.
  • FIGURE 2 shows a block diagram of the wireless device in FIGURE 1, according to an aspect of the present disclosure.
  • FIGURE 3 shows a block diagram of the wireless device in FIGURE 1, configured to support an increased voltage class of a universal integrated circuit card (UICC) , according to aspects of the present disclosure.
  • UICC universal integrated circuit card
  • FIGURE 4 is a process flow diagram of a method for initialization of a universal integrated circuit card (UICC) of a mobile equipment to support a higher UICC voltage, according to aspects of the present disclosure.
  • UICC universal integrated circuit card
  • FIGURE 5 is a process flow diagram of another method for initialization of a universal integrated circuit card (UICC) of a mobile equipment to support an increased UICC voltage class, according to aspects of the present disclosure.
  • UICC universal integrated circuit card
  • FIGURE 6 is a component block diagram of a wireless device suitable for implementing the method for activating an increased voltage class universal integrated circuit card (UICC) of a device, according to aspects of the present disclosure.
  • UICC universal integrated circuit card
  • FIGURE 7 is a block diagram showing an exemplary wireless communications system in which a configuration of the disclosure may be advantageously employed.
  • SIM subscriber identification module
  • USIM universal subscriber identity module
  • UICC user identity module
  • RUIM removable user identity module
  • SIMs may store network specific information used to authenticate and identify subscribers on the network, the most important of which are the integrated circuit card identifier (ICCID) , international mobile subscriber identity (IMSI) , authentication key (Ki) , and local area identity (LAI) .
  • the SIM may also store other carrier specific data, such as short message service center (SMSC) numbers, service provider names (SPNs) , service dialing numbers (SDNs) , and value added service (VAS) applications.
  • SMSC short message service center
  • SPNs service provider names
  • SDNs service dialing numbers
  • VAS value added service
  • a USIM and a RUIM may be modules in UMTS and CDMA networks, respectively, which provide equivalent functions to a SIM in a GSM network.
  • SIM, ” “USIM, ” and “RUIM” may be used interchangeably to refer to a general module that is not restricted to a particular standard or technology.
  • SIM may also be used as a shorthand reference to a communications network associated with a particular SIM, because the information stored in a SIM enables the wireless device to establish a communications link with a particular network.
  • the SIM and the communications network, as well as the services and subscriptions supported by that network, correlate to one another.
  • universal integrated circuit card smart card, ” “SIM card, ” “universal integrated circuit card, ” and “UICC” are used interchangeably to refer to a memory chip or integrated circuit used to provide a SIM, a USIM, and/or an RUIM to a wireless device in order to store the described provisioning and/or other data.
  • Various UICCs may have storage capabilities ranging from two to three kilobytes to up to one gigabyte of information.
  • a universal integrated circuit card operates with a terminal according to a standards-based procedure and electrical specification.
  • the electrical configuration of the UICC may be configured during UICC initialization.
  • a UICC performs a UICC activation procedure in response to power up of the UICC.
  • Execution of the UICC activation procedure may involve an answer-to-reset (ATR) , including a voltage class selection at which to operate the UICC.
  • ATR answer-to-reset
  • Three classes of supply voltage e.g., class A (5V) , class B (3V) , class C (1.8V)
  • ME mobile equipment
  • class A UICCs are generally secure access module (SAM) cards used in point of sale (POS) MEs.
  • SAM secure access module
  • POS point of sale
  • FIGURE 1 shows a wireless device 110 that includes the disclosed universal integrated circuit card (UICC) for initialization at a higher UICC voltage.
  • the wireless device 110 communicates with a wireless communications system 120.
  • the wireless device 110 includes a multi-band (e.g., dual-band) concurrent millimeter wave (mmW) transceiver.
  • the wireless communications system 120 may be a 5G system, a long term evolution (LTE) system, a code division multiple access (CDMA) system, a global system for mobile communications (GSM) system, a wireless local area network (WLAN) system, millimeter wave (mmW) technology, or some other wireless system.
  • LTE long term evolution
  • CDMA code division multiple access
  • GSM global system for mobile communications
  • WLAN wireless local area network
  • mmW millimeter wave
  • a CDMA system may implement wideband CDMA (WCDMA) , time division synchronous CDMA (TD-SCDMA) , CDMA2000, or some other version of CDMA.
  • WCDMA wideband CDMA
  • TD-SCDMA time division synchronous CDMA
  • CDMA2000 Code Division synchronous CDMA2000
  • mmW millimeter wave
  • FIGURE 1 shows the wireless communications system 120, including two base stations 130 and 132, and one system controller 140.
  • a wireless system may include any number of base stations and any number of network entities.
  • a wireless device 110 may be referred to as a mobile equipment, a user equipment (UE) , a mobile station, a terminal, an access terminal, a subscriber unit, a station, etc.
  • the wireless device 110 may also be a cellular phone, a smartphone, a tablet, a wireless modem, a personal digital assistant (PDA) , a handheld device, a laptop computer, a Smartbook, a netbook, a cordless phone, a wireless local loop (WLL) station, a device, etc.
  • the wireless device 110 may be capable of communicating with the wireless communications system 120.
  • the wireless device 110 may also be capable of receiving signals from broadcast stations (e.g., a broadcast station 134) , signals from satellites (e.g., a satellite 150) in one or more global navigation satellite systems (GNSS) , etc.
  • the wireless device 110 may support one or more radio technologies for wireless communications such as 5G, new radio (NR) , 4G, LTE, CDMA2000, WCDMA, TD-SCDMA, GSM, 802.11, etc.
  • the wireless device 110 may support carrier aggregation, which is operation on multiple carriers. Carrier aggregation may also be referred to as multi-carrier operation. According to an aspect of the present disclosure, the wireless device 110 may be able to operate in low-band from 698 to 960 megahertz (MHz) , mid-band from 1475 to 2170 MHz, high-band from 2300 to 2690 MHz, ultra-high band from 3400 to 3800 MHz, and/or long-term evolution (LTE) in LTE unlicensed bands (LTE-U/LAA) from 5150 MHz to 5950 MHz.
  • LTE long-term evolution
  • Low-band, mid-band, high-band, ultra-high band, and LTE-U refer to five groups of bands (or band groups) , with each band group including a number of frequency bands (or simply, “bands” ) .
  • each band may cover up to 200 MHz and may include one or more carriers.
  • each carrier may cover up to 40 MHz in LTE.
  • LTE Release 11 supports 35 bands, which are referred to as LTE/UMTS bands and are listed in 3GPP TS 36.101.
  • the wireless device 110 may be configured with up to five carriers in one or two bands in LTE Release 11.
  • FIGURE 2 shows a block diagram of the wireless device 110 in FIGURE 1, according to an aspect of the present disclosure.
  • the wireless device 110 may include a universal integrated circuit card (UICC) interface 202, which may receive an embedded UICC (eUICC) 204 that stores profiles associated with one or more subscriptions from network providers.
  • UICC universal integrated circuit card
  • eUICC embedded UICC
  • a UICC used in various examples may include user account information, an international mobile subscriber identity (IMSI) , a set of SIM application toolkit (SAT) commands, and storage space for phone book contacts.
  • the UICC may further store home identifiers (e.g., a system identification number (SID) /network identification number (NID) pair, a home preferred list of mobile networks (HPLMN) code, etc. ) to indicate the network operator providers for each subscription of the UICC.
  • SID system identification number
  • NID network identification number
  • HPLMN home preferred list of mobile networks
  • ICCID integrated circuit card identity
  • SIM serial number may be printed on the UICC for identification.
  • the UICC may be implemented within a portion of memory of the wireless device 110 (e.g., in a memory 214) , and thus need not be a separate or removable circuit, chip, or card.
  • the wireless device 110 may include at least one controller, such as a general processor 206, which may be coupled to a coder/decoder (CODEC) 208.
  • the CODEC 208 may in turn be coupled to a speaker 210 and a microphone 212.
  • the general processor 206 may also be coupled to the memory 214.
  • the memory 214 may be a non-transitory computer-readable storage medium that stores processor-executable instructions.
  • the memory 214 may store an operating system (OS) , as well as user application software and executable instructions.
  • OS operating system
  • the memory 214 may also store locally cached profiles for subscriptions supported by the eUICC 204.
  • the general processor 206 and the memory 214 may each be coupled to at least one baseband processor or baseband modem processor 216.
  • the eUICC 204 in the wireless device 110 may utilize one or more baseband-RF resources.
  • a baseband-RF resource may include the baseband modem processor 216, which may perform baseband/modem functions for communications with and controlling of a radio access technology (RAT) .
  • the baseband-RF resource may include one or more amplifiers and radios, referred to generally as radio frequency (RF) resources (e.g., RF resource 218) .
  • the baseband-RF resources may share the baseband modem processor 216 (e.g., a single device that performs baseband/modem functions for all RATs on the wireless device 110) .
  • each baseband-RF resource may include physically or logically separate baseband processors (e.g., BB1, BB2) .
  • the RF resource 218 may be a transceiver that performs transmit/receive functions for the eUICC 204 on the wireless device 110.
  • the RF resource 218 may include separate transmit and receive circuitry, or may include a transceiver that combines transmitter and receiver functions. In some examples, the RF resource 218 may include multiple receive circuits.
  • the RF resource 218 may be coupled to a wireless antenna (e.g., a wireless antenna 220) .
  • the RF resource 218 may also be coupled to the baseband modem processor 216.
  • the general processor 206, the memory 214, the baseband modem processor (s) 216, and the RF resource 218 may be included in the wireless device 110 as a system-on-chip 250.
  • the eUICC 204 and its corresponding UICC interface 202 may be external to the system-on-chip 250.
  • various input and output devices may be coupled to components on the system-on-chip 250, such as interfaces or controllers.
  • Example user input components suitable for use in the wireless device 110 may include, but are not limited to, a keypad 224, a touchscreen display 226, and the microphone 212.
  • the keypad 224, the touchscreen display 226, the microphone 212, or a combination thereof may perform the function of receiving a request to initiate an outgoing call or for receiving a personal identification number.
  • Interfaces may be provided between the various devices and modules to implement functions in the wireless device 110 to enable communications in the wireless device.
  • the eUICC 204, the baseband processor BB1, BB2, the RF resource 218, and the wireless antenna 220 may constitute two or more radio access technologies (RATs) .
  • the wireless device 110 may be a communications device that includes a UICC, baseband processor, and RF resource configured to support two different RATs, such as 5G or LTE and GSM. More RATs may be supported on the wireless device 110 by adding more RF resources, and antennae for connecting to additional mobile networks.
  • the wireless device 110 may include, among other things, additional UICC or SIM cards, UICC or SIM interfaces, multiple RF resources associated with the additional UICC or SIM cards, and additional antennae for supporting subscription communications with additional mobile networks.
  • the wireless device 110 may include a secure access module (SAM) card used in point of sale (POS) terminals, which is limited to operating at a class A voltage (e.g., 5V) .
  • SAM secure access module
  • the eUICC 204 may support multiple mobile network operator profiles, or subscription profiles. For example, a user may download multiple profiles onto the eUICC 204. Each profile may store static SIM information that is used to support a subscription with one or more mobile telephony networks. Thus, the eUICC 204 may play the role of multiple SIMs, because each SIM supports one profile.
  • the wireless device 110 may be configured to locally cache one or more subscription profiles associated with or stored in the UICC.
  • the profiles may be cached in the memory 214, part of which may be designated memory for the modem.
  • FIGURE 3 is a block diagram further illustrating the system-on-chip of the wireless device in FIGURE 2, configured to support a class A universal integrated circuit card (UICC) voltage, according to aspects of the present disclosure.
  • a chipset 300 of the wireless device 110 includes a baseband controller 320 configured to receive a class B voltage (e.g., 3V) or a class C voltage (e.g., 1.8V) from a power management integrated circuit (PMIC) 310.
  • PMIC power management integrated circuit
  • a voltage level translator 340 is coupled between the baseband controller 320 and a UICC 360.
  • the voltage level translator 340 and the UICC 360 are external from the chipset 300 to enable support for class A voltage UICC cards, such as a class A voltage (e.g., 5V) SAM card.
  • the voltage level translator 340 includes two ports.
  • a first port (e.g., port A 342) of the voltage level translator 340 is supplied by a first voltage (e.g., VCCA input 346) from the PMIC 310.
  • a second port (e.g., port B 344) of the voltage level translator 340 is supplied by a second voltage (e.g., VCCB input 348) from a power supply 302.
  • Port A 342 of the voltage level translator 340 is coupled to a SIM interface 322 (e.g., a communication interface) of the baseband controller 320.
  • port A 342 of the voltage level translator 340 operates at a class C voltage (e.g., 1.8V) or a class B voltage (e.g., 3V) , depending on the power supplied to the VCCA input 346 (e.g., a first voltage input) .
  • port B 344 of the voltage level translator 340 is coupled to the UICC 360, and operates at a class C voltage (e.g., 1.8V) , a class B (e.g., 3V) , or a class A voltage (e.g., 5V) , depending on the power supplied to VCCB input 348 (e.g., a second voltage input) by the power supply 302.
  • the baseband controller 320 communicates port A signals 330 (e.g., reset (RST) signals, clock (CLK) signals, and input/output (I/O) signals) with a logic level corresponding to the class C voltage (e.g., 1.8V) or the class B voltage (e.g., 3V) , depending on the power supplied to the VCCA input 346 from the PMIC 310.
  • port A signals 330 e.g., reset (RST) signals, clock (CLK) signals, and input/output (I/O) signals
  • RST reset
  • CLK clock
  • I/O input/output
  • the voltage level translator 340 operates according to a bypass mode or a translation mode.
  • both the VCCA input 346 and the VCCB input 348 of the voltage level translator 340 are supplied with the class C voltage (e.g., 1.8V) or the class B voltage (e.g., 3V) .
  • the bypass mode port A 342 and port B 344 of the voltage level translator 340 operate at the same voltage level, which enables supplying of the port A signals 330 directly to the UICC 360 and port B signals 350 without translation.
  • aspects of the present disclosure enable support for initializing a class A voltage (e.g., 5V) for the UICC.
  • the VCCA input 346 of the voltage level translator 340 is supplied with the class B (e.g., 3V)
  • the VCCB input 348 of the voltage level translator 340 is supplied with the class A voltage (e.g., 5V) to select the class A voltage (5V) for reset of the UICC 360.
  • the voltage level translator 340 translates the port A signals 330 from the class B voltage (e.g., 3V) to the class A voltage (e.g., 5V) supplied to the VCCB input 348 and a VCC input 362 of the UICC 360.
  • the port A signals 330 are translated by the voltage level translator 340 with a logic level matched to the class A voltage (e.g., 5V) supplied to the VCCB input 348 to form the port B signals 350. That is, the translation mode translates the port A signals 330 from the class B voltage level (e.g., 3V) to the class A voltage level (e.g., 5V) , as further described in FIGURE 4.
  • the class B voltage level e.g., 3V
  • the class A voltage level e.g., 5V
  • FIGURE 4 is a process flow diagram of a method 400 for activating an increased class universal integrated circuit card (UICC) of a mobile equipment, according to aspects of the present disclosure.
  • UICC universal integrated circuit card
  • a translation process during UICC initialization enables activation of UICCs that support an increased voltage class, such as a class A voltage (e.g., 5V) .
  • a class A voltage e.g., 5V
  • a mobile equipment including a subsystem such as a UICC
  • a processor e.g., a baseband processor
  • a voltage level translator is set to a bypass mode.
  • the voltage level translator 340 is set to a bypass mode. In the bypass mode, port A 342 and port B 344 of the voltage level translator 340 operate at the same voltage level, which enables supplying of the port A signals 330 and port B signals 350 directly to the UICC 360 without translation.
  • a UICC initialization process sets a voltage class for the UICC in response to a voltage class indicator provided by the UICC as part of an answer-to-reset (ATR) response from the UICC.
  • ATR answer-to-reset
  • a VCCA input and a VCCB input of the voltage level translator are set to a lowest voltage class (e.g., class C voltage (1.8V) ) to select the lowest voltage class for the UICC.
  • a lowest voltage class e.g., class C voltage (1.8V)
  • both the VCCA input 346 and the VCCB input 348 of the voltage level translator 340 are supplied with the class C voltage (e.g., 1.8V) or the class B voltage (e.g., 3V) , as shown in FIGURE 3.
  • the selected voltage class is applied to reset the UICC and wait for an answer-to-reset from the UICC at block 410.
  • control flow branches to decision block 412. Otherwise, control flow branches to block 420.
  • VCI voltage class indicator
  • the voltage class selected at block 406 renders the UICC unable to maintain the selected class, resulting in deactivation at block 420.
  • deactivating of the UICC 360 for a predetermined period of time is performed when the UICC 360 fails to operate at the current voltage class.
  • the current voltage is the highest voltage class (e.g., class A voltage (5V) ) .
  • the current voltage class is the highest voltage class (e.g., class A voltage (5V) )
  • UICC initialization fails and the mobile equipment aborts the power up procedure of the UICC.
  • the next higher voltage class relative to the current voltage class is the highest voltage class (e.g., class A voltage (5V) ) .
  • control flow branches to block 426. Otherwise, control flow branches to block 430.
  • the voltage level translator is maintained in the bypass mode.
  • a VCCA input and a VCCB input of the voltage level translator are set to a next voltage class (e.g., class B voltage (3V) ) to select the class B voltage class for the UICC, which is applied at block 408.
  • class B voltage 3V
  • the answer-to-reset will not indicate the selected class B voltage (3V) , because the UICC is limited to operation at the class A voltage at block 414, resulting in deactivation at block 420.
  • control flow proceeds to decision block 424 because the current voltage class for the UICC is the class B voltage (3V) .
  • control flow branches to block 416, and the UICC initialization process proceeds. Otherwise, an alternative USIM initialization procedure continues at block 420.
  • control flow now branches to block 430, because the next higher voltage class is the class A voltage (5V) to perform an alternative initialization procedure.
  • the voltage level translator is set to translation mode.
  • the VCCA input 346 of the voltage level translator 340 is supplied with the class B voltage (e.g., 3V) .
  • the VCCB input 348 of the voltage level translator 340 is supplied with the class A voltage (e.g., 5V) to select the class A voltage for reset of the UICC 360, as shown in FIGURE 3.
  • the VCCA input of the voltage level translator is set to the current voltage class (e.g., class B voltage (3V) )
  • the VCCB input is set to the next voltage class (e.g., class A voltage (5V) )
  • the class A voltage (5V) is selected for the UICC by setting the VCCA input to the class B voltage (3V) and the VCCB input to the class A voltage (5V) .
  • the class A voltage (5V) selected for the UICC is applied at block 408.
  • the answer-to-reset will match the selected class A voltage (5V) at block 414. Because the UICC is limited to operation at the class A voltage (5V) selected as the current voltage class, the UICC maintains the current voltage class applied to the VCCB input and continues to normal operation at block 416. Subsequently, registration can occur.
  • Initialization of an increased voltage class UICC is supported by providing a voltage level translator and an increased voltage class (e.g., the class A voltage (5V) ) .
  • the port A signals 330 are translated by the voltage level translator 340 to a logic level that is matched to the class A voltage (e.g., 5V) supplied to the VCCB input 348 to form the port B signals 350. That is, the translation mode translates the port A signals 330 from the class B voltage level (e.g., 3V) to the class A voltage level (e.g., 5V) , as further described with reference to FIGURE 5.
  • FIGURE 5 depicts a simplified flowchart of a method 500 for activating a universal integrated circuit card (UICC) of a mobile equipment to support an increase in UICC voltage class, according to aspects of the present disclosure.
  • a voltage level translator coupled between the UICC and a baseband controller is set to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment.
  • PMIC power management integrated circuit
  • the UICC 360 may be limited to the increased voltage class (e.g., class A voltage (5V) ) , such that the UICC is unable to maintain the selected voltage class (e.g., the class B voltage (3V) ) .
  • an increased voltage class is applied to the UICC to reset the UICC to initialize according to the increased voltage class.
  • the VCCA input 346 of the voltage level translator 340 is supplied with the class B voltage (e.g., 3V) .
  • the VCCB input 348 of the voltage level translator 340 is supplied with the class A voltage (e.g., 5V) to select the class A voltage (5V) for reset of the UICC 360.
  • the voltage level translator translates first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class.
  • the second port signals are supplied at the increased voltage class from a second port of the voltage level translator to the UICC.
  • an apparatus for initialization of a universal integrated circuit card (UICC) of a mobile equipment to a network may include means for setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment; means for applying an increased voltage class to reset the UICC to initialize according to the increased voltage class; means for translating, by the voltage level translator, first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class; and/or means for supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
  • PMIC power management integrated circuit
  • the setting means, the applying means, the translating means, and/or the supplying means may be the baseband modem processor 216, the general processor 206, the memory 214, and/or the voltage level translator 340.
  • the aforementioned means may be any module or apparatus configured to perform the functions recited by the aforementioned means.
  • FIGURE 6 is a component block diagram of a wireless device 600 suitable for implementing the method for activating an increased voltage class universal integrated circuit card (UICC) .
  • Aspects of the present disclosure may be implemented in any of a variety of wireless devices, an example of which (e.g., wireless device 600) is illustrated in FIGURE 6.
  • the wireless device 600 may be similar to the wireless device 110 and may implement the method 400 and the method 500.
  • the wireless device 600 may include a processor 602 coupled to a touchscreen controller 604 and an internal memory 606.
  • the processor 602 may be one or more multi-core integrated circuits designated for general or specific processing tasks.
  • the internal memory 606 may be volatile or non-volatile memory, and may also be secure and/or encrypted memory, or unsecure and/or unencrypted memory, or any combination thereof.
  • the touchscreen controller 604 and the processor 602 may also be coupled to a touchscreen panel 612, such as a resistive-sensing touchscreen, capacitive-sensing touchscreen, infrared sensing touchscreen, etc. Additionally, the display of the wireless device 600 need not have touchscreen capability.
  • the wireless device 600 may have one or more cellular network transceivers 608 coupled to the processor 602 and to one or more antennas 610, and configured for sending and receiving cellular communications.
  • the cellular network transceivers 608 and the one or more antennas 610 may be used with the above-mentioned circuitry to implement the various example methods described.
  • the wireless device 600 may include one or more UICC or SIM cards 616, coupled to the cellular network transceivers 608 and/or the processor 602, and may be configured as described above.
  • the wireless device 600 may also include speakers 614 for providing audio outputs.
  • the wireless device 600 may also include a housing 620, constructed of plastic, metal, or a combination of materials, for containing all or some of the components discussed herein.
  • the wireless device 600 may include a power source 622 coupled to the processor 602, such as a disposable or rechargeable battery.
  • the rechargeable battery may also be coupled to the peripheral device connection port to receive a charging current from a source external to the wireless device 600.
  • the wireless device 600 may also include a physical button 624 for receiving user inputs.
  • the wireless device 600 may also include a power button 626 for turning the wireless device 600 on and off.
  • FIGURE 7 is a block diagram showing an exemplary wireless communications system 700 in which a configuration of the disclosure may be advantageously employed.
  • FIGURE 7 shows three remote units 720, 730, and 750, and two base stations 740.
  • Remote units 720, 730, and 750 include IC devices 725A, 725B, and 725C, such as a universal integrated circuit card. It will be recognized that other devices may also include the disclosed wireless device, such as the base stations, switching devices, and network equipment.
  • FIGURE 7 shows forward link signals 780 from the base station 740 to the remote units 720, 730, and 750, and reverse link signals 790 from the remote units 720, 730, and 750 to base stations 740.
  • remote unit 720 is shown as a mobile telephone
  • remote unit 730 is shown as a portable computer
  • remote unit 750 is shown as a fixed location remote unit in a wireless local loop system.
  • a remote unit may be a mobile phone, a hand-held personal communications systems (PCS) unit, a portable data unit such as a personal digital assistant (PDA) , a GPS enabled device, a navigation device, a set top box, a music player, a video player, an entertainment unit, a fixed location data unit such as meter reading equipment, or other communications device that stores or retrieves data or computer instructions, or combinations thereof.
  • FIGURE 7 illustrates remote units according to aspects of the present disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the present disclosure may be suitably employed in many devices, which include the disclosed wireless device including the universal integrated circuit card.
  • the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • a machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a memory and executed by a processor unit.
  • Memory may be implemented within the processor unit or external to the processor unit.
  • the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
  • the functions may be stored as one or more instructions or code on a computer-readable medium.
  • Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program.
  • Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer.
  • Such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • instructions and/or data may be provided as signals on transmission media included in a communications apparatus.
  • a communications apparatus may include a standard cell circuit having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)

Abstract

A method for initialization of a universal integrated circuit card (UICC) of a mobile equipment is described. The method includes setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment. The method also includes applying an increased voltage class to reset the UICC to initialize according to the increased voltage class. The method further includes translating first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class. The method also includes supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.

Description

APPARATUS AND METHOD TO SUPPORT AN INCREASED UNIVERSAL INTEGRATED CIRCUIT CARD (UICC) VOLTAGE CLASS TECHNICAL FIELD
The present disclosure generally relates to methods and systems for accessing network services on a wireless device. More specifically, the present disclosure relates to supporting an increased universal integrated circuit card (UICC) voltage class.
BACKGROUND
Some designs of mobile communications/wireless devices (e.g., smart phones, tablet computers, and laptop computers) include a single universal integrated circuit card (UICC) , multiple universal integrated circuit cards, or multiple subscriber identity module (SIM) cards. These cards store user identity information for multiple subscriptions that enable users to access multiple separate mobile telephony networks. Some of the UICCs (e.g., embedded UICCs (eUICCs) ) are capable of supporting remote provisioning of network subscription information. A UICC may be removable or implemented within a memory of a mobile communications device.
The information stored in a UICC may enable mobile communications devices to communicate with a variety of different types of mobile telephony networks. Examples of mobile telephony networks include third generation (3G) , fourth generation (4G) , long term evolution (LTE) , fifth generation (5G) , time division multiple access (TDMA) , code division multiple access (CDMA) , CDMA 2000, wideband CDMA (WCDMA) , global system for mobile communications (GSM) , single-carrier radio transmission technology (1xRTT) , and universal mobile telecommunications systems (UMTS) . Each subscription enabled by a UICC or SIM may use a particular radio access technology (RAT) to communicate with its respective network. Verification testing, however, may fail when an increased UICC voltage class is unsupported.
SUMMARY
A method for initialization of a universal integrated circuit card (UICC) of a mobile equipment is described. The method includes setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment. The method also includes applying an increased voltage class to reset the UICC to initialize according to the increased voltage class. The method further includes translating first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class. The method also includes supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
An apparatus for initialization of a universal integrated circuit card (UICC) of a mobile equipment is described. The apparatus includes a baseband controller having a communication interface and a voltage level translator. The voltage level translator includes a first port coupled to the communication interface of the baseband controller. The voltage level translator also includes a second port coupled to the UICC of the mobile equipment. The voltage level translator further includes a first voltage input coupled to a power management integrated circuit (PMIC) of a chipset of the mobile equipment. The voltage level translator also includes a second voltage input coupled to a power supply of the mobile equipment. The voltage level translator is configured to translate first port signals received from the communication interface of the baseband controller at a current voltage class to second port signals having a logic level matched to an increased voltage class. The voltage level translator is also configured to supply the second port signals at the increased voltage class from the second port of the voltage level translator to the UICC in a translation mode.
An apparatus for initialization of a universal integrated circuit card (UICC) of a mobile equipment is described. The apparatus includes means for setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment. The apparatus also includes means for applying an  increased voltage class to reset the UICC to initialize according to the increased voltage class. The apparatus further includes means for translating, by the voltage level translator, first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class. The apparatus also includes means for supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the present disclosure will be described below. It should be appreciated by those skilled in the art that this present disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the present disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the present disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
FIGURE 1 shows a wireless device communicating with a wireless communications system.
FIGURE 2 shows a block diagram of the wireless device in FIGURE 1, according to an aspect of the present disclosure.
FIGURE 3 shows a block diagram of the wireless device in FIGURE 1, configured to support an increased voltage class of a universal integrated circuit card (UICC) , according to aspects of the present disclosure.
FIGURE 4 is a process flow diagram of a method for initialization of a universal integrated circuit card (UICC) of a mobile equipment to support a higher UICC voltage, according to aspects of the present disclosure.
FIGURE 5 is a process flow diagram of another method for initialization of a universal integrated circuit card (UICC) of a mobile equipment to support an increased UICC voltage class, according to aspects of the present disclosure.
FIGURE 6 is a component block diagram of a wireless device suitable for implementing the method for activating an increased voltage class universal integrated circuit card (UICC) of a device, according to aspects of the present disclosure.
FIGURE 7 is a block diagram showing an exemplary wireless communications system in which a configuration of the disclosure may be advantageously employed.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts. As described herein, the use of the term “and/or” is intended to represent an “inclusive OR, ” and the use of the term “or” is intended to represent an “exclusive OR. ”
The terms “subscriber identification module, ” “SIM, ” “universal subscriber identity module, ” “USIM, ” “user identity module, ” “UIM, ” “removable user identity module, ” and “RUIM” are used herein to mean a memory that may be an integrated  circuit or embedded into a removable card, which stores an international mobile subscriber identity (IMSI) , related key, and/or other information used to identify and/or authenticate a wireless device on a network. In some networks (e.g., GSM networks) , SIMs may store network specific information used to authenticate and identify subscribers on the network, the most important of which are the integrated circuit card identifier (ICCID) , international mobile subscriber identity (IMSI) , authentication key (Ki) , and local area identity (LAI) . The SIM may also store other carrier specific data, such as short message service center (SMSC) numbers, service provider names (SPNs) , service dialing numbers (SDNs) , and value added service (VAS) applications. In various aspects, a USIM and a RUIM may be modules in UMTS and CDMA networks, respectively, which provide equivalent functions to a SIM in a GSM network. However, the terms “SIM, ” “USIM, ” and “RUIM” may be used interchangeably to refer to a general module that is not restricted to a particular standard or technology.
The term “SIM” may also be used as a shorthand reference to a communications network associated with a particular SIM, because the information stored in a SIM enables the wireless device to establish a communications link with a particular network. Thus, the SIM and the communications network, as well as the services and subscriptions supported by that network, correlate to one another.
The terms “universal integrated circuit card, ” “smart card, ” “SIM card, ” “universal integrated circuit card, ” and “UICC” are used interchangeably to refer to a memory chip or integrated circuit used to provide a SIM, a USIM, and/or an RUIM to a wireless device in order to store the described provisioning and/or other data. Various UICCs may have storage capabilities ranging from two to three kilobytes to up to one gigabyte of information.
A universal integrated circuit card (UICC) operates with a terminal according to a standards-based procedure and electrical specification. The electrical configuration of the UICC may be configured during UICC initialization. As specified, a UICC performs a UICC activation procedure in response to power up of the UICC. Execution of the UICC activation procedure may involve an answer-to-reset (ATR) , including a voltage class selection at which to operate the UICC. Three classes of supply voltage (e.g., class A (5V) , class B (3V) , class C (1.8V) ) are generally specified  for a mobile equipment (ME) to supply the UICC (e.g., per ISO (International Organization for Standardization) 7816-3) .
Although three classes of supply voltage are specified, most popular chipsets are designed to support either a class B voltage or a class C voltage (e.g., 3V or 1.8V) . During customer product verification testing, however, an ME may detect a UICC that only supports a class A voltage (e.g., 5V) . These class A UICCs fail the verification testing when the chipset design of the ME is limited to supporting only a class B voltage or a class C voltage (e.g., 3V or 1.8V) . The class A UICCs are generally secure access module (SAM) cards used in point of sale (POS) MEs. An ME chipset to support class A SAM cards is desired. Aspects of the present disclosure are directed to a hardware modification and method to extend ME chipset capability to support class A UICCs (e.g., SAM cards) .
FIGURE 1 shows a wireless device 110 that includes the disclosed universal integrated circuit card (UICC) for initialization at a higher UICC voltage. The wireless device 110 communicates with a wireless communications system 120. The wireless device 110 includes a multi-band (e.g., dual-band) concurrent millimeter wave (mmW) transceiver. The wireless communications system 120 may be a 5G system, a long term evolution (LTE) system, a code division multiple access (CDMA) system, a global system for mobile communications (GSM) system, a wireless local area network (WLAN) system, millimeter wave (mmW) technology, or some other wireless system. A CDMA system may implement wideband CDMA (WCDMA) , time division synchronous CDMA (TD-SCDMA) , CDMA2000, or some other version of CDMA. In a millimeter wave (mmW) system, multiple antennas are used for beamforming (e.g., in the range of 30 GHz, 60 GHz, etc. ) . For simplicity, FIGURE 1 shows the wireless communications system 120, including two  base stations  130 and 132, and one system controller 140. In general, a wireless system may include any number of base stations and any number of network entities.
wireless device 110 may be referred to as a mobile equipment, a user equipment (UE) , a mobile station, a terminal, an access terminal, a subscriber unit, a station, etc. The wireless device 110 may also be a cellular phone, a smartphone, a tablet, a wireless modem, a personal digital assistant (PDA) , a handheld device, a laptop computer, a Smartbook, a netbook, a cordless phone, a wireless local loop (WLL)  station, a
Figure PCTCN2020078418-appb-000001
device, etc. The wireless device 110 may be capable of communicating with the wireless communications system 120. The wireless device 110 may also be capable of receiving signals from broadcast stations (e.g., a broadcast station 134) , signals from satellites (e.g., a satellite 150) in one or more global navigation satellite systems (GNSS) , etc. The wireless device 110 may support one or more radio technologies for wireless communications such as 5G, new radio (NR) , 4G, LTE, CDMA2000, WCDMA, TD-SCDMA, GSM, 802.11, etc.
The wireless device 110 may support carrier aggregation, which is operation on multiple carriers. Carrier aggregation may also be referred to as multi-carrier operation. According to an aspect of the present disclosure, the wireless device 110 may be able to operate in low-band from 698 to 960 megahertz (MHz) , mid-band from 1475 to 2170 MHz, high-band from 2300 to 2690 MHz, ultra-high band from 3400 to 3800 MHz, and/or long-term evolution (LTE) in LTE unlicensed bands (LTE-U/LAA) from 5150 MHz to 5950 MHz. Low-band, mid-band, high-band, ultra-high band, and LTE-U refer to five groups of bands (or band groups) , with each band group including a number of frequency bands (or simply, “bands” ) . For example, in some systems each band may cover up to 200 MHz and may include one or more carriers. For example, each carrier may cover up to 40 MHz in LTE. Of course, the range for each of the bands is merely exemplary and not limiting, and other frequency ranges may be used. LTE Release 11 supports 35 bands, which are referred to as LTE/UMTS bands and are listed in 3GPP TS 36.101. The wireless device 110 may be configured with up to five carriers in one or two bands in LTE Release 11.
FIGURE 2 shows a block diagram of the wireless device 110 in FIGURE 1, according to an aspect of the present disclosure. The wireless device 110 may include a universal integrated circuit card (UICC) interface 202, which may receive an embedded UICC (eUICC) 204 that stores profiles associated with one or more subscriptions from network providers.
A UICC used in various examples may include user account information, an international mobile subscriber identity (IMSI) , a set of SIM application toolkit (SAT) commands, and storage space for phone book contacts. The UICC may further store home identifiers (e.g., a system identification number (SID) /network identification number (NID) pair, a home preferred list of mobile networks (HPLMN) code, etc. ) to  indicate the network operator providers for each subscription of the UICC. An integrated circuit card identity (ICCID) SIM serial number may be printed on the UICC for identification. In some aspects, the UICC may be implemented within a portion of memory of the wireless device 110 (e.g., in a memory 214) , and thus need not be a separate or removable circuit, chip, or card.
The wireless device 110 may include at least one controller, such as a general processor 206, which may be coupled to a coder/decoder (CODEC) 208. The CODEC 208 may in turn be coupled to a speaker 210 and a microphone 212. The general processor 206 may also be coupled to the memory 214. The memory 214 may be a non-transitory computer-readable storage medium that stores processor-executable instructions. The memory 214 may store an operating system (OS) , as well as user application software and executable instructions. The memory 214 may also store locally cached profiles for subscriptions supported by the eUICC 204.
The general processor 206 and the memory 214 may each be coupled to at least one baseband processor or baseband modem processor 216. The eUICC 204 in the wireless device 110 may utilize one or more baseband-RF resources. A baseband-RF resource may include the baseband modem processor 216, which may perform baseband/modem functions for communications with and controlling of a radio access technology (RAT) . The baseband-RF resource may include one or more amplifiers and radios, referred to generally as radio frequency (RF) resources (e.g., RF resource 218) . In some examples, the baseband-RF resources may share the baseband modem processor 216 (e.g., a single device that performs baseband/modem functions for all RATs on the wireless device 110) . In other examples, each baseband-RF resource may include physically or logically separate baseband processors (e.g., BB1, BB2) .
The RF resource 218 may be a transceiver that performs transmit/receive functions for the eUICC 204 on the wireless device 110. The RF resource 218 may include separate transmit and receive circuitry, or may include a transceiver that combines transmitter and receiver functions. In some examples, the RF resource 218 may include multiple receive circuits. The RF resource 218 may be coupled to a wireless antenna (e.g., a wireless antenna 220) . The RF resource 218 may also be coupled to the baseband modem processor 216.
In some examples, the general processor 206, the memory 214, the baseband modem processor (s) 216, and the RF resource 218 may be included in the wireless device 110 as a system-on-chip 250. In some examples, the eUICC 204 and its corresponding UICC interface 202 may be external to the system-on-chip 250. Further, various input and output devices may be coupled to components on the system-on-chip 250, such as interfaces or controllers. Example user input components suitable for use in the wireless device 110 may include, but are not limited to, a keypad 224, a touchscreen display 226, and the microphone 212.
In some examples, the keypad 224, the touchscreen display 226, the microphone 212, or a combination thereof, may perform the function of receiving a request to initiate an outgoing call or for receiving a personal identification number. Interfaces may be provided between the various devices and modules to implement functions in the wireless device 110 to enable communications in the wireless device.
Functioning together, the eUICC 204, the baseband processor BB1, BB2, the RF resource 218, and the wireless antenna 220 may constitute two or more radio access technologies (RATs) . For example, the wireless device 110 may be a communications device that includes a UICC, baseband processor, and RF resource configured to support two different RATs, such as 5G or LTE and GSM. More RATs may be supported on the wireless device 110 by adding more RF resources, and antennae for connecting to additional mobile networks.
In some examples (not shown) , the wireless device 110 may include, among other things, additional UICC or SIM cards, UICC or SIM interfaces, multiple RF resources associated with the additional UICC or SIM cards, and additional antennae for supporting subscription communications with additional mobile networks. For example, the wireless device 110 may include a secure access module (SAM) card used in point of sale (POS) terminals, which is limited to operating at a class A voltage (e.g., 5V) .
The eUICC 204 may support multiple mobile network operator profiles, or subscription profiles. For example, a user may download multiple profiles onto the eUICC 204. Each profile may store static SIM information that is used to support a  subscription with one or more mobile telephony networks. Thus, the eUICC 204 may play the role of multiple SIMs, because each SIM supports one profile.
In various examples, the wireless device 110 may be configured to locally cache one or more subscription profiles associated with or stored in the UICC. The profiles may be cached in the memory 214, part of which may be designated memory for the modem.
FIGURE 3 is a block diagram further illustrating the system-on-chip of the wireless device in FIGURE 2, configured to support a class A universal integrated circuit card (UICC) voltage, according to aspects of the present disclosure. In this configuration, a chipset 300 of the wireless device 110 includes a baseband controller 320 configured to receive a class B voltage (e.g., 3V) or a class C voltage (e.g., 1.8V) from a power management integrated circuit (PMIC) 310. According to aspects of the present disclosure, a voltage level translator 340 is coupled between the baseband controller 320 and a UICC 360. In this configuration, the voltage level translator 340 and the UICC 360 are external from the chipset 300 to enable support for class A voltage UICC cards, such as a class A voltage (e.g., 5V) SAM card.
In one configuration, the voltage level translator 340 includes two ports. A first port (e.g., port A 342) of the voltage level translator 340 is supplied by a first voltage (e.g., VCCA input 346) from the PMIC 310. In addition, a second port (e.g., port B 344) of the voltage level translator 340 is supplied by a second voltage (e.g., VCCB input 348) from a power supply 302. Port A 342 of the voltage level translator 340 is coupled to a SIM interface 322 (e.g., a communication interface) of the baseband controller 320. In operation, port A 342 of the voltage level translator 340 operates at a class C voltage (e.g., 1.8V) or a class B voltage (e.g., 3V) , depending on the power supplied to the VCCA input 346 (e.g., a first voltage input) . By contrast, port B 344 of the voltage level translator 340 is coupled to the UICC 360, and operates at a class C voltage (e.g., 1.8V) , a class B (e.g., 3V) , or a class A voltage (e.g., 5V) , depending on the power supplied to VCCB input 348 (e.g., a second voltage input) by the power supply 302.
In this configuration, the baseband controller 320 communicates port A signals 330 (e.g., reset (RST) signals, clock (CLK) signals, and input/output (I/O)  signals) with a logic level corresponding to the class C voltage (e.g., 1.8V) or the class B voltage (e.g., 3V) , depending on the power supplied to the VCCA input 346 from the PMIC 310. During power-up (or hot swap) of the UICC 360, the voltage level translator 340 operates according to a bypass mode or a translation mode. For example, in the bypass mode, during a power up attempt, both the VCCA input 346 and the VCCB input 348 of the voltage level translator 340 are supplied with the class C voltage (e.g., 1.8V) or the class B voltage (e.g., 3V) . In the bypass mode, port A 342 and port B 344 of the voltage level translator 340 operate at the same voltage level, which enables supplying of the port A signals 330 directly to the UICC 360 and port B signals 350 without translation.
In the translation mode, aspects of the present disclosure enable support for initializing a class A voltage (e.g., 5V) for the UICC. In this translation mode, the VCCA input 346 of the voltage level translator 340 is supplied with the class B (e.g., 3V) , and the VCCB input 348 of the voltage level translator 340 is supplied with the class A voltage (e.g., 5V) to select the class A voltage (5V) for reset of the UICC 360. In this aspect of the present disclosure, the voltage level translator 340 translates the port A signals 330 from the class B voltage (e.g., 3V) to the class A voltage (e.g., 5V) supplied to the VCCB input 348 and a VCC input 362 of the UICC 360. In this configuration, the port A signals 330 are translated by the voltage level translator 340 with a logic level matched to the class A voltage (e.g., 5V) supplied to the VCCB input 348 to form the port B signals 350. That is, the translation mode translates the port A signals 330 from the class B voltage level (e.g., 3V) to the class A voltage level (e.g., 5V) , as further described in FIGURE 4.
FIGURE 4 is a process flow diagram of a method 400 for activating an increased class universal integrated circuit card (UICC) of a mobile equipment, according to aspects of the present disclosure. According to aspects of the present disclosure, a translation process during UICC initialization enables activation of UICCs that support an increased voltage class, such as a class A voltage (e.g., 5V) .
At block 402, a mobile equipment including a subsystem, such as a UICC, is powered, either due to device power up or card hot swap. For example, a processor (e.g., a baseband processor) of the mobile equipment communicates through a UICC interface after powering up the UICC of the mobile equipment. At block 404, a voltage  level translator is set to a bypass mode. For example, as shown FIGURE 3, the voltage level translator 340 is set to a bypass mode. In the bypass mode, port A 342 and port B 344 of the voltage level translator 340 operate at the same voltage level, which enables supplying of the port A signals 330 and port B signals 350 directly to the UICC 360 without translation.
At blocks 404 to 414, a UICC initialization process sets a voltage class for the UICC in response to a voltage class indicator provided by the UICC as part of an answer-to-reset (ATR) response from the UICC. In particular, at block 406, a VCCA input and a VCCB input of the voltage level translator are set to a lowest voltage class (e.g., class C voltage (1.8V) ) to select the lowest voltage class for the UICC. For example, in the bypass mode, during a power up attempt, both the VCCA input 346 and the VCCB input 348 of the voltage level translator 340 are supplied with the class C voltage (e.g., 1.8V) or the class B voltage (e.g., 3V) , as shown in FIGURE 3. At block 408, the selected voltage class is applied to reset the UICC and wait for an answer-to-reset from the UICC at block 410. When the answer-to-reset is received from the UICC, control flow branches to decision block 412. Otherwise, control flow branches to block 420.
At decision block 412, it is determined whether a voltage class indicator (VCI) is received in the answer-to-reset received from the UICC in response to the selected voltage class. If the VCI is available, at block 414, it is determined whether the voltage class set to the VCCB is supported according to the answer-to-reset received from the UICC. When the voltage class set to the VCCB is supported, at block 416, the UICC and the mobile equipment proceed with UICC initialization. When the VCI is not available at decision block 412, control flow branches to continue normal operation (e.g., block 416) . For example, for a standard UICC that supports the voltage class selected at block 406, the selected voltage class would appear in the answer-to-reset received from the UICC. For a UICC that is limited to an increased voltage class (e.g., class A voltage (5V) ) , the voltage class selected at block 406 renders the UICC unable to maintain the selected class, resulting in deactivation at block 420. For example, deactivating of the UICC 360 for a predetermined period of time is performed when the UICC 360 fails to operate at the current voltage class.
At decision block 422, it is determined whether the current voltage is the highest voltage class (e.g., class A voltage (5V) ) . When the current voltage class is the highest voltage class (e.g., class A voltage (5V) ) , UICC initialization fails and the mobile equipment aborts the power up procedure of the UICC. Otherwise, at decision block 424, it is determined whether the next higher voltage class relative to the current voltage class is the highest voltage class (e.g., class A voltage (5V) ) . When the next higher voltage class is not the highest voltage class (e.g., class A voltage (5V) ) , control flow branches to block 426. Otherwise, control flow branches to block 430.
In this example, when the current voltage class is the voltage class selected at block 406, at block 426, the voltage level translator is maintained in the bypass mode. At block 428, a VCCA input and a VCCB input of the voltage level translator are set to a next voltage class (e.g., class B voltage (3V) ) to select the class B voltage class for the UICC, which is applied at block 408. For an increased voltage class UICC, the answer-to-reset will not indicate the selected class B voltage (3V) , because the UICC is limited to operation at the class A voltage at block 414, resulting in deactivation at block 420.
At decision block 422, control flow proceeds to decision block 424 because the current voltage class for the UICC is the class B voltage (3V) . When the UICC can operate at the current voltage class for the selected USIM application, control flow branches to block 416, and the UICC initialization process proceeds. Otherwise, an alternative USIM initialization procedure continues at block 420. At decision block 424, control flow now branches to block 430, because the next higher voltage class is the class A voltage (5V) to perform an alternative initialization procedure.
At block 430, the voltage level translator is set to translation mode. In this translation mode, the VCCA input 346 of the voltage level translator 340 is supplied with the class B voltage (e.g., 3V) . In addition, the VCCB input 348 of the voltage level translator 340 is supplied with the class A voltage (e.g., 5V) to select the class A voltage for reset of the UICC 360, as shown in FIGURE 3.
Referring again to FIGURE 4, at block 432, the VCCA input of the voltage level translator is set to the current voltage class (e.g., class B voltage (3V) ) , and the VCCB input is set to the next voltage class (e.g., class A voltage (5V) ) . In this example, the class A voltage (5V) is selected for the UICC by setting the VCCA input to the class  B voltage (3V) and the VCCB input to the class A voltage (5V) . In addition, the class A voltage (5V) selected for the UICC is applied at block 408. For an increased voltage UICC, the answer-to-reset will match the selected class A voltage (5V) at block 414. Because the UICC is limited to operation at the class A voltage (5V) selected as the current voltage class, the UICC maintains the current voltage class applied to the VCCB input and continues to normal operation at block 416. Subsequently, registration can occur.
Initialization of an increased voltage class UICC is supported by providing a voltage level translator and an increased voltage class (e.g., the class A voltage (5V) ) . As shown in FIGURE 3, the port A signals 330 are translated by the voltage level translator 340 to a logic level that is matched to the class A voltage (e.g., 5V) supplied to the VCCB input 348 to form the port B signals 350. That is, the translation mode translates the port A signals 330 from the class B voltage level (e.g., 3V) to the class A voltage level (e.g., 5V) , as further described with reference to FIGURE 5.
FIGURE 5 depicts a simplified flowchart of a method 500 for activating a universal integrated circuit card (UICC) of a mobile equipment to support an increase in UICC voltage class, according to aspects of the present disclosure. At block 502, a voltage level translator coupled between the UICC and a baseband controller is set to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment. For example, as shown in FIGURE 3, the UICC 360 may be limited to the increased voltage class (e.g., class A voltage (5V) ) , such that the UICC is unable to maintain the selected voltage class (e.g., the class B voltage (3V) ) .
At block 504, an increased voltage class is applied to the UICC to reset the UICC to initialize according to the increased voltage class. For example, as shown in FIGURE 3, during the translation mode, the VCCA input 346 of the voltage level translator 340 is supplied with the class B voltage (e.g., 3V) . In addition, the VCCB input 348 of the voltage level translator 340 is supplied with the class A voltage (e.g., 5V) to select the class A voltage (5V) for reset of the UICC 360. At block 506, the voltage level translator translates first port signals received from the baseband controller  at the current voltage class to second port signals having a logic level matched to the increased voltage class. At block 508, the second port signals are supplied at the increased voltage class from a second port of the voltage level translator to the UICC.
According to a further aspect of the present disclosure, an apparatus for initialization of a universal integrated circuit card (UICC) of a mobile equipment to a network is described. The apparatus may include means for setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment; means for applying an increased voltage class to reset the UICC to initialize according to the increased voltage class; means for translating, by the voltage level translator, first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class; and/or means for supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC. The setting means, the applying means, the translating means, and/or the supplying means may be the baseband modem processor 216, the general processor 206, the memory 214, and/or the voltage level translator 340. In another aspect of the present disclosure, the aforementioned means may be any module or apparatus configured to perform the functions recited by the aforementioned means.
FIGURE 6 is a component block diagram of a wireless device 600 suitable for implementing the method for activating an increased voltage class universal integrated circuit card (UICC) . Aspects of the present disclosure may be implemented in any of a variety of wireless devices, an example of which (e.g., wireless device 600) is illustrated in FIGURE 6. The wireless device 600 may be similar to the wireless device 110 and may implement the method 400 and the method 500.
The wireless device 600 may include a processor 602 coupled to a touchscreen controller 604 and an internal memory 606. The processor 602 may be one or more multi-core integrated circuits designated for general or specific processing tasks. The internal memory 606 may be volatile or non-volatile memory, and may also be secure and/or encrypted memory, or unsecure and/or unencrypted memory, or any combination thereof. The touchscreen controller 604 and the processor 602 may also be  coupled to a touchscreen panel 612, such as a resistive-sensing touchscreen, capacitive-sensing touchscreen, infrared sensing touchscreen, etc. Additionally, the display of the wireless device 600 need not have touchscreen capability.
The wireless device 600 may have one or more cellular network transceivers 608 coupled to the processor 602 and to one or more antennas 610, and configured for sending and receiving cellular communications. The cellular network transceivers 608 and the one or more antennas 610 may be used with the above-mentioned circuitry to implement the various example methods described. The wireless device 600 may include one or more UICC or SIM cards 616, coupled to the cellular network transceivers 608 and/or the processor 602, and may be configured as described above.
The wireless device 600 may also include speakers 614 for providing audio outputs. The wireless device 600 may also include a housing 620, constructed of plastic, metal, or a combination of materials, for containing all or some of the components discussed herein. The wireless device 600 may include a power source 622 coupled to the processor 602, such as a disposable or rechargeable battery. The rechargeable battery may also be coupled to the peripheral device connection port to receive a charging current from a source external to the wireless device 600. The wireless device 600 may also include a physical button 624 for receiving user inputs. The wireless device 600 may also include a power button 626 for turning the wireless device 600 on and off.
FIGURE 7 is a block diagram showing an exemplary wireless communications system 700 in which a configuration of the disclosure may be advantageously employed. For purposes of illustration, FIGURE 7 shows three  remote units  720, 730, and 750, and two base stations 740. It will be recognized that wireless communications systems may have many more remote units and base stations.  Remote units  720, 730, and 750 include  IC devices  725A, 725B, and 725C, such as a universal integrated circuit card. It will be recognized that other devices may also include the disclosed wireless device, such as the base stations, switching devices, and network equipment. FIGURE 7 shows forward link signals 780 from the base station 740 to the  remote units  720, 730, and 750, and reverse link signals 790 from the  remote units  720, 730, and 750 to base stations 740.
In FIGURE 7, remote unit 720 is shown as a mobile telephone, remote unit 730 is shown as a portable computer, and remote unit 750 is shown as a fixed location remote unit in a wireless local loop system. For example, a remote unit may be a mobile phone, a hand-held personal communications systems (PCS) unit, a portable data unit such as a personal digital assistant (PDA) , a GPS enabled device, a navigation device, a set top box, a music player, a video player, an entertainment unit, a fixed location data unit such as meter reading equipment, or other communications device that stores or retrieves data or computer instructions, or combinations thereof. Although FIGURE 7 illustrates remote units according to aspects of the present disclosure, the disclosure is not limited to these exemplary illustrated units. Aspects of the present disclosure may be suitably employed in many devices, which include the disclosed wireless device including the universal integrated circuit card.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. A machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory and executed by a processor unit. Memory may be implemented within the processor unit or external to the processor unit. As used herein, the term “memory” refers to types of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to a particular type of memory or number of memories, or type of media upon which memory is stored.
If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be an available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and 
Figure PCTCN2020078418-appb-000002
disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
In addition to storage on computer-readable medium, instructions and/or data may be provided as signals on transmission media included in a communications apparatus. For example, a communications apparatus may include a standard cell circuit having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the technology of the disclosure as defined by the appended claims. For example, relational terms, such as “above” and “below” are used with respect to a substrate or electronic device. Of course, if the substrate or electronic device is inverted, above becomes below, and vice versa. Additionally, if oriented sideways, above and below may refer to sides of a substrate or electronic device. Moreover, the scope of the present application is not intended to be limited to the particular configurations of the process, machine, manufacture, and composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or  later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding configurations described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (20)

  1. A method for initialization of a universal integrated circuit card (UICC) of a mobile equipment, comprising:
    setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment;
    applying an increased voltage class to reset the UICC to initialize according to the increased voltage class;
    translating, by the voltage level translator, first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class; and
    supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
  2. The method of claim 1, further comprising:
    supplying the current voltage class from the PMIC to a first voltage input of the voltage level translator corresponding to a first port of the voltage level translator coupled to the baseband controller; and
    supplying the increased voltage class from a power supply of the mobile equipment to a second voltage input of the voltage level translator corresponding to the second port of the voltage level translator coupled to the UICC.
  3. The method of claim 1, in which the increased voltage class is listed in an answer-to-reset (ATR) response received from the UICC during an initialization procedure.
  4. The method of claim 1, further comprising halting an initialization procedure when the UICC fails to operate at the increased voltage class.
  5. The method of claim 1, further comprising:
    deactivating the UICC for a predetermined period of time when the UICC fails to operate at the current voltage class;
    selecting a next voltage class from the current voltage class when the next voltage class is less than the increased voltage class; and
    setting the voltage level translator to a bypass mode when the next voltage class is supported by the UICC.
  6. The method of claim 5, further comprising:
    supplying the next voltage class from the PMIC to a first voltage input of the voltage level translator corresponding to a first port of the voltage level translator coupled to the baseband controller; and
    supplying the next voltage class from a power supply of the mobile equipment to a second voltage input of the voltage level translator corresponding to the second port of the voltage level translator coupled to the UICC.
  7. The method of claim 5, in which setting the voltage level translator to the bypass mode comprises:
    determining whether the next voltage class is supported by a chipset of the mobile equipment; and
    setting the voltage level translator to the bypass mode when the next voltage class is supported by the chipset of the mobile equipment.
  8. An apparatus for initialization of a universal integrated circuit card (UICC) of a mobile equipment, comprising:
    a baseband controller having a communication interface;
    a voltage level translator, comprising:
    a first port coupled to the communication interface of the baseband controller,
    a second port coupled to the UICC of the mobile equipment,
    a first voltage input coupled to a power management integrated circuit (PMIC) of a chipset of the mobile equipment, and
    a second voltage input coupled to a power supply of the mobile equipment, in which the voltage level translator is configured to translate first port signals received from the communication interface of the baseband controller at a current voltage class to  second port signals having a logic level matched to an increased voltage class, and to supply the second port signals at the increased voltage class from the second port of the voltage level translator to the UICC in a translation mode.
  9. The apparatus of claim 8, further comprising:
    a controller configured to set the voltage level translator to the translation mode when the current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by the PMIC.
  10. The apparatus of claim 9, in which the controller is further configured to apply the increased voltage class to reset the UICC to initialize according to the increased voltage class.
  11. The apparatus of claim 9, in which the controller is further configured:
    to supplying the current voltage class from the PMIC to the first voltage input of the voltage level translator; and
    to supply the increased voltage class from the power supply of the mobile equipment to the second voltage input of the voltage level translator.
  12. The apparatus of claim 9, in which the controller is further configured to halting an initialization procedure when the UICC fails to operate at the increased voltage class.
  13. The apparatus of claim 9, in which the controller is further configured:
    to deactivate the UICC for a predetermined period of time when the UICC fails to operate at the current voltage class;
    to select a next voltage class from the current voltage class when the next voltage class is less than the increased voltage class; and
    to set the voltage level translator to a bypass mode when the next voltage class is supported by supported by the chipset of the mobile equipment.
  14. The apparatus of claim 13, in which the controller is further configured:
    to supply the next voltage class from the PMIC to the first voltage input of the voltage level translator corresponding to the first port of the voltage level translator coupled to the baseband controller; and
    to supply the next voltage class from the power supply of the mobile equipment to the second voltage input of the voltage level translator corresponding to the second port of the voltage level translator coupled to the UICC.
  15. An apparatus for initialization of a universal integrated circuit card (UICC) of a mobile equipment, comprising:
    means for setting a voltage level translator coupled between the UICC and a baseband controller to a translation mode when a current voltage class is not supported by the UICC and the current voltage class is a maximum voltage class supplied by a power management integrated circuit (PMIC) of the mobile equipment;
    means for applying an increased voltage class to reset the UICC to initialize according to the increased voltage class;
    means for translating, by the voltage level translator, first port signals received from the baseband controller at the current voltage class to second port signals having a logic level matched to the increased voltage class; and
    means for supplying the second port signals at the increased voltage class from a second port of the voltage level translator to the UICC.
  16. The apparatus of claim 15, further comprising:
    means for supplying the current voltage class from the PMIC to a first voltage input of the voltage level translator corresponding to a first port of the voltage level translator coupled to the baseband controller; and
    means for supplying the increased voltage class from a power supply of the mobile equipment to a second voltage input of the voltage level translator corresponding to the second port of the voltage level translator coupled to the UICC.
  17. The apparatus of claim 15, in which the increased voltage class is listed in an answer-to-reset (ATR) response received from the UICC during an initialization procedure.
  18. The apparatus of claim 15, further comprising means for halting an initialization procedure when the UICC fails to operate at the increased voltage class.
  19. The apparatus of claim 15, further comprising:
    means for deactivating the UICC for a predetermined period of time when the UICC fails to operate at the current voltage class;
    means for selecting a next voltage class from the current voltage class when the next voltage class is less than the increased voltage class; and
    means for setting the voltage level translator to a bypass mode when the next voltage class is supported by the UICC.
  20. The apparatus of claim 19, further comprising:
    means for supplying the next voltage class from the PMIC to a first voltage input of the voltage level translator corresponding to a first port of the voltage level translator coupled to the baseband controller; and
    means for supplying the next voltage class from a power supply of the mobile equipment to a second voltage input of the voltage level translator corresponding to the second port of the voltage level translator coupled to the UICC.
PCT/CN2020/078418 2020-03-09 2020-03-09 Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class WO2021179120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078418 WO2021179120A1 (en) 2020-03-09 2020-03-09 Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078418 WO2021179120A1 (en) 2020-03-09 2020-03-09 Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class

Publications (1)

Publication Number Publication Date
WO2021179120A1 true WO2021179120A1 (en) 2021-09-16

Family

ID=77672231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078418 WO2021179120A1 (en) 2020-03-09 2020-03-09 Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class

Country Status (1)

Country Link
WO (1) WO2021179120A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156258A1 (en) * 2007-12-13 2009-06-18 Spreadtrum Communications (Shanghai) Co., Ltd. Mobile terminal and method of indentifying SIM card thereof
CN202049517U (en) * 2010-05-19 2011-11-23 王海泉 High frequency wireless intelligent card suitable for wide voltage scope
EP3217500A1 (en) * 2016-03-08 2017-09-13 Honeywell International Inc. Interface device providing intrinsic safety for a communications device
WO2019184982A1 (en) * 2018-03-29 2019-10-03 上海中兴软件有限责任公司 Method and circuit for transmitting signal
US20190354493A1 (en) * 2018-05-17 2019-11-21 Samsung Electronics Co., Ltd. Universal flash storage, electronic device capable of connecting to a plurality type of memory devices and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156258A1 (en) * 2007-12-13 2009-06-18 Spreadtrum Communications (Shanghai) Co., Ltd. Mobile terminal and method of indentifying SIM card thereof
CN202049517U (en) * 2010-05-19 2011-11-23 王海泉 High frequency wireless intelligent card suitable for wide voltage scope
EP3217500A1 (en) * 2016-03-08 2017-09-13 Honeywell International Inc. Interface device providing intrinsic safety for a communications device
WO2019184982A1 (en) * 2018-03-29 2019-10-03 上海中兴软件有限责任公司 Method and circuit for transmitting signal
US20190354493A1 (en) * 2018-05-17 2019-11-21 Samsung Electronics Co., Ltd. Universal flash storage, electronic device capable of connecting to a plurality type of memory devices and method thereof

Similar Documents

Publication Publication Date Title
US7835712B1 (en) Apparatus and methods for providing multi-band operation in a mobile computing device
US9332417B2 (en) Apparatuses and methods for coordinating operations of multiple wireless communications modules with multiple subscriber numbers
US9967808B2 (en) System selection for multi-SIM devices
US20150099516A1 (en) System and Methods for Using Wireless Network Correlations to Acquire Service on a Multi-SIM Device
US20160353516A1 (en) Idle Mode Operations in Multi-Subscriber Identity Module (SIM) Mobile Communication Devices
US9402274B1 (en) Idle mode operations in multi-subscriber identity module (SIM) mobile communication devices during data communications
US20140073366A1 (en) Conflict Avoidance in a Device Configured to Operate According to Multiple Cellular Communication Protocols
US20180063774A1 (en) Utilizing Network Coverage Information to Perform Public Land Mobile Network Searches
US9386626B1 (en) Idle mode operations in multi-subscriber identity module (SIM) mobile communication devices during a voice call
US8903372B1 (en) Performing neighbor cell activities in a multi-stack device
US20160295541A1 (en) Cell acquisition systems and processes for multi-sim devices
US20180376442A1 (en) Wireless Communications Network Registration Method and Terminal
WO2021179120A1 (en) Apparatus and method to support an increased universal integrated circuit card (uicc) voltage class
WO2021056381A1 (en) Universal integrated circuit card (uicc) initialization for network service access
WO2020132786A1 (en) Universal integrated circuit card (uicc) initialization for network service access
WO2021151218A1 (en) Universal integrated circuit card (uicc) activation
US20170019780A1 (en) Method for controlling capability of radio access technology and user equipment using the same
WO2021163947A1 (en) Universal integrated circuit card (uicc) authentication
WO2021142819A1 (en) Universal integrated circuit card (uicc) phone book access
WO2021226768A1 (en) Universal integrated circuit card (uicc) profile management
WO2021203235A1 (en) Universal integrated circuit card (uicc) service
WO2017166278A1 (en) Checking public land mobile network (plmn) availability in mobile devices
US20220022028A1 (en) Profile and subscription management for wireless devices
WO2021035668A1 (en) Universal integrated circuit card (uicc) logical channel utilization
WO2021092718A1 (en) Universal integrated circuit card (uicc) hardware failure recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924461

Country of ref document: EP

Kind code of ref document: A1