WO2021177192A1 - Path generation method, path generation device, and program - Google Patents

Path generation method, path generation device, and program Download PDF

Info

Publication number
WO2021177192A1
WO2021177192A1 PCT/JP2021/007541 JP2021007541W WO2021177192A1 WO 2021177192 A1 WO2021177192 A1 WO 2021177192A1 JP 2021007541 W JP2021007541 W JP 2021007541W WO 2021177192 A1 WO2021177192 A1 WO 2021177192A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
detection target
target area
generation method
paths
Prior art date
Application number
PCT/JP2021/007541
Other languages
French (fr)
Japanese (ja)
Inventor
アレクシス テシエ
陽子 深田
板倉 英三郎
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202180017542.8A priority Critical patent/CN115244595A/en
Priority to DE112021001429.3T priority patent/DE112021001429T5/en
Publication of WO2021177192A1 publication Critical patent/WO2021177192A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/005Following a specific plan, e.g. pattern
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/32UAVs specially adapted for particular uses or applications for imaging, photography or videography for cartography or topography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations

Definitions

  • This technology relates to a path generation method, a path generation device, and a program, for example, a technique for generating a path for sensing in a field.
  • Replanting means replanting (re-sowing, etc.) when the plant has already been planted.
  • Patent Document 1 discloses a technique for imaging a field and performing remote sensing of a vegetation state.
  • this disclosure proposes a technique for performing appropriate sampling.
  • a path generation method for generating a path for sensing for a detection target area in which rows, which are an array of detection target objects, are parallel at least two partial paths passing through the detection target area are used.
  • a path generation process is performed to generate an entire path so as to cross the row.
  • various data sensed for the detection target area are acquired as sensing data. For example, sensing data in a discrete area of the detection target area is acquired as a sample.
  • the partial path passing through the detection target area is a line segment whose at least a part is located in the detection target area.
  • a line segment from the start point to the end point on the outer edge of the detection target area and crossing at least a part of the detection target area can be considered. Further, it may be a line segment from one point on the outer edge of the detection target area to one point in the detection target area, or a line segment as a whole located in the detection target area.
  • the path generation method it is conceivable that at least a part of the partial paths in the entire path are paths that cross all the rows in the detection target area.
  • a partial path that crosses all the rows in the detection target area for example, a line segment from a start point to an end point on the outer edge of the detection target area and that crosses the detection target area can be considered.
  • the path generation process includes a first step of setting a boundary shape surrounding the detection target area and a second step of generating the partial path within the boundary shape.
  • the boundary shape is a frame-like shape that surrounds the detection target area.
  • the boundary shape is used as an auxiliary line for generating a partial path in the path generation process.
  • the boundary shape is rectangular. That is, a partial path is generated within the boundary shape having a rectangular shape.
  • the second step it is conceivable to generate the partial path so that the adjacent partial paths form a predetermined path angle.
  • a partial path is generated based on a predetermined path angle within the boundary shape.
  • the coverage rate is, for example, a ratio indicating how much area was acquired as a sample with respect to the entire area of the detection target area.
  • the minimum coverage rate is a value that serves as a guideline for the coverage rate in the detection target area.
  • connection path is a line segment connecting adjacent partial paths.
  • the partial path is formed by a line segment which is a straight line or a curved line. That is, the partial path may be formed in a straight line or a curved line.
  • connection path along the outer edge of the detection target area is included as one of the paths included in the entire path.
  • the connection path along the outer edge of the detection target area is, for example, a line segment connecting adjacent partial paths.
  • connection path along the outer edge of the detection target area is not included as one of the paths included in the overall path.
  • the connection path along the outer edge of the detection target area is, for example, a line segment connecting adjacent partial paths.
  • the path generation method it is conceivable to generate the entire path so that the adjacent partial paths are connected to each other at the end. For example, when all the adjacent partial paths in the whole path are connected at the end, the whole path does not include the connection path connecting the adjacent partial paths. In addition, only some of the adjacent partial paths in the entire path may be connected at the end.
  • the detection target area is a field and the wax is a line where crops are planted in the field.
  • the field broadly includes farmland where crops are cultivated, such as crop cultivated land, cultivated land, hydroponic cultivated land, and house cultivated land.
  • Crop refers to, for example, a crop grown in a field for the purpose of harvesting.
  • the entire path is the flight path of the flying object, and it is conceivable that the sensing is performed by the flying object.
  • the aircraft moves over the detection target area along the entire path and senses the detection target area.
  • the path generator according to the present technology is a path generator that generates a path for sensing for a detection target area in which rows, which are an array of detection target objects, are parallel to each other, and has at least two partial paths passing through the detection target area.
  • a path generation process is performed to generate an entire path so as to cross the two rows.
  • the path generation device executes the path generation process.
  • the program according to the present technology is a program that causes the path generator to execute the process of the path generation method. This facilitates the realization of a path generator that executes the path generation process.
  • FIG. 5 is a fifth explanatory diagram of path generation according to the embodiment.
  • FIG. 6 is a sixth explanatory diagram of path generation according to the embodiment. It is a flowchart of the path generation process of embodiment. It is explanatory drawing which shows the modification of the sampling of embodiment.
  • FIG. 1 shows an information processing device 1 as a path generating device constituting a sensing system, and an imaging device 220 mounted on a small flying object 200 such as a drone. Also shown is a tractor 270 for planting.
  • the aircraft body 200 can move over the field 300 by, for example, radio control by the operator, autopilot, or the like.
  • An imaging device 220 is set in the flying object 200 so as to image, for example, below.
  • the image pickup device 220 periodically performs, for example, still image imaging.
  • one captured image captures a part of the field 300.
  • a discrete region in the field 300 may be imaged as a sensing sample to obtain a plurality of image data.
  • the image data as a still image for each captured image is also referred to as a “sample”.
  • the image pickup device 220 mounted on the flying object 200 includes a visible light image sensor (an image sensor that captures visible light of R (red), G (green), and B (blue)), NIR (Near Infra Red: near infrared region). ) Cameras for image imaging, Multi Spectrum Cameras that capture images in multiple wavelength bands, Hyper Spectrum cameras, Fourier Transform Infrared Spectroscopy (FTIR), infrared sensors, etc. are assumed. Will be done. Of course, a plurality of types of cameras (sensors) may be mounted on the flying object 200.
  • FTIR Fourier Transform Infrared Spectroscopy
  • NDVI Normalized Difference Vegetation Index
  • NDVI is a vegetation index that indicates plant-likeness, and can be used as an index that indicates the distribution status and activity of vegetation.
  • Tag information is added to the image obtained by being captured by the image pickup device 220.
  • the tag information includes imaging date and time information, position information (latitude / longitude information) as GPS (Global Positioning System) data, flight altitude information of the flying object 200 at the time of imaging, and imaging device information (individual identification information and model of the camera). Information, etc.), information on each image data (information on image size, wavelength, imaging parameters, etc.), etc. are included.
  • the information processing device 1 of the present embodiment can perform a process of setting a flight path in the field 300 of the flying object 200. Specifically, the information processing device 1 generates a path in the field 300 based on the shape of the field 300, information input by the user, and the like, and sets it as a flight path of the flying object 200. The information processing device 1 remotely controls the flight of the flight body 200 by transmitting a flight plan including the set flight path to the flight body 200. The aircraft 200 moves over the field 300 based on the flight path included in the received flight plan.
  • the information processing device 1 may be capable of acquiring image data and tag information captured by the image pickup device 220 mounted on the flying object 200.
  • image data and tag information are transferred by wireless communication or network communication between the image pickup device 220 and the information processing device 1.
  • the network for example, the Internet, a home network, a LAN (Local Area Network), a satellite communication network, and various other networks are assumed.
  • the image data or tag information may be passed to the information processing device 1 in such a manner that the recording medium (for example, a memory card or the like) mounted on the image pickup device 220 is read by the information processing device 1.
  • the information processing device 1 can generate analysis information for the field 300 as a measurement target by using the acquired image data and tag information, and can perform a process of presenting the analysis result as an image to the user. It may be set to. Specifically, the crops copied to the image data are counted, and based on the count, for example, the number of crops, the number of crops per unit area, the germination rate, the predicted yield, the crop ratio, etc. are used for the management of the field 300. It is conceivable to generate information that can be generated and present it to the user. Furthermore, the information processing device 1 may also perform execution control of displaying the position of each sample (image data) on the map image including the field 300 and displaying information on the replant.
  • the information processing device 1 is realized as, for example, a PC (personal computer), an FPGA (field-programmable gate array), or a terminal device such as a smartphone or tablet. Although the information processing device 1 is separate from the image pickup device 220 in FIG. 1, for example, an arithmetic unit (microcomputer or the like) serving as the information processing device 1 may be provided in the unit including the image pickup device 220. .. Further, as the information processing device 1, an information processing device that sets the flight path of the flying object 200 and an information processing device that generates analysis information for the field 300 as a measurement target may be provided separately. ..
  • a portion to be "row” in the field 300 is automatically determined on the image data, and a path for sensing with respect to the field 300 is generated based on the determination.
  • the wax is a line on which a crop is planted, and for example, a ridge formed for seed planting in a field 300 is also a kind of wax.
  • the line formed when seeds are sown on flat ground is also low, not limited to the one in which the soil is raised like a ridge.
  • the planting line formed when sowing seeds with a tractor (sowing machine) is called a row.
  • FIG. 2 schematically shows the wax 301 formed in the field 300.
  • the field 300 is imaged by the imaging device 220 while the flying object 200 is moving, but each part is imaged at an appropriate timing, for example, as in the imaging ranges SP1 and SP2 in the figure.
  • the image data of the imaging range SP1 and the image data of the imaging range SP2 are obtained by the imaging device 220 as a one-frame still image captured image, and these are taken into, for example, the information processing device 1 as a sample.
  • the flying object 200 moves along the flight path F inclined with respect to the row.
  • the flying object 200 may fly in parallel with the row, but as described later, in the present embodiment, the flying object 200 flies in a flight path including a path inclined with respect to the row.
  • FIG. 2 shows a linear row 301
  • the row 301 is not always a straight line.
  • the linear wax 301 may bend at the edge of the field 300 or the like.
  • the row 301 may be partially curved, or the row 301 may be formed in a spiral shape or a concentric circle shape, for example.
  • the tractor 270 plants seeds and the like (seed, seedlings, strains, etc.) in the field 300.
  • the tractor 270 automatically travels and plants based on, for example, planting instruction data provided by the information processing device 1.
  • planting instruction data provided by the information processing device 1.
  • the above-mentioned wax 301 is formed in the field 300.
  • a computer device is mounted on the tractor 270, and the computer device controls traveling and planting operations based on instruction data.
  • a computer device imports a data file containing planting instruction data (rate map data including the number of planting instructions per unit area for each location), and the tractor 270 travels and plants based on the instruction data.
  • the actual results of the planting work by the tractor 270 may be provided to the information processing apparatus 1 as actual data.
  • FIG. 3 shows the hardware configuration of the information processing device 1.
  • the information processing device 1 includes a CPU (Central Processing Unit) 51, a ROM (Read Only Memory) 52, and a RAM (Random Access Memory) 53.
  • the CPU 51 executes various processes according to the program stored in the ROM 52 or the program loaded from the storage unit 59 into the RAM 53.
  • the RAM 53 also appropriately stores data and the like necessary for the CPU 51 to execute various processes.
  • the CPU 51, ROM 52, and RAM 53 are connected to each other via the bus 54.
  • An input / output interface 55 is also connected to the bus 54.
  • the input / output interface 55 can be connected to a display unit 56 composed of a liquid crystal panel or an organic EL (Electroluminescence) panel, an input unit 57 composed of a keyboard, a mouse, etc., a speaker 58, a storage unit 59, a communication unit 60, and the like.
  • a display unit 56 composed of a liquid crystal panel or an organic EL (Electroluminescence) panel
  • an input unit 57 composed of a keyboard, a mouse, etc.
  • a speaker 58 a storage unit 59
  • a communication unit 60 and the like.
  • the display unit 56 may be integrated with the information processing device 1 or may be a separate device.
  • the display unit 56 displays captured images, various calculation results, and the like on the display screen based on the instructions of the CPU 51. Further, the display unit 56 displays various operation menus, icons, messages, etc., that is, as a GUI (Graphical User Interface) based on the instruction of the CPU 51.
  • GUI Graphic User Interface
  • the input unit 57 means an input device used by a user who uses the information processing device 1.
  • various controls and operation devices such as a keyboard, mouse, keys, dial, touch panel, touch pad, and remote controller are assumed.
  • the user's operation is detected by the input unit 57, and the signal corresponding to the input operation is interpreted by the CPU 51.
  • the storage unit 59 is composed of a storage medium such as an HDD (Hard Disk Drive) or a solid-state memory.
  • the storage unit 59 stores, for example, detection data received from the macro measurement unit or the micro measurement unit, analysis results, and various other information.
  • the storage unit 59 is also used for storing program data for analysis processing and the like.
  • the communication unit 60 performs communication processing via a network including the Internet and communication with devices in various peripheral parts.
  • the communication unit 60 may be, for example, a communication device that communicates with the flying object 200, the image pickup device 220, or the tractor 270.
  • a drive 61 is also connected to the input / output interface 55 as needed, and a storage device 62 such as a memory card is attached to the input / output interface 55 to write or read data.
  • a storage device 62 such as a memory card
  • the computer program read from the storage device 62 is installed in the storage unit 59 as needed, and the data processed by the CPU 51 is stored.
  • the drive 61 may be a recording / playback drive for a removable storage medium such as a magnetic disk, an optical disk, or a magneto-optical disk. These magnetic disks, optical disks, magneto-optical disks, and the like are also aspects of the storage device 62.
  • the information processing device 1 of the embodiment is not limited to the information processing device (computer device) 1 having a hardware configuration as shown in FIG. 3 being configured as a single unit, and a plurality of computer devices are systematized. It may be configured.
  • the plurality of computer devices may be systematized by a LAN or the like, or may be arranged in a remote place by a VPN (Virtual Private Network) or the like using the Internet or the like.
  • the plurality of computer devices may include computer devices available by cloud computing services.
  • the information processing device 1 of FIG. 3 can be realized as a stationary type, a notebook type or the like personal computer, or a mobile terminal such as a tablet terminal or a smartphone.
  • electronic devices such as a measuring device, a television device, a monitoring device, an imaging device, and an equipment management device having a function as the information processing device 1 can also be equipped with the information processing device 1 of the present embodiment.
  • the information processing device 1 having such a hardware configuration has a calculation function by the CPU 51, a storage function by the ROM 52, the RAM 53, and the storage unit 59, a data acquisition function by the communication unit 60 and the drive 61, and an output function by the display unit 56 and the like.
  • various functional configurations are provided.
  • the information processing device 1 is provided with the path generation unit 2 shown in FIG. 3 as a function.
  • the processing function of the path generation unit 2 is realized by software started by the CPU 51.
  • the program constituting the software is downloaded from the network or read from the storage device 62 (for example, a removable storage medium) and installed in the information processing device 1 of FIG. Alternatively, the program may be stored in advance in the storage unit 59 or the like. Then, when the program is started in the CPU 51, the function of the path generation unit 2 is exhibited. Further, the calculation progress and the storage of the result of the function of the path generation unit 2 are realized by using, for example, the storage area of the RAM 53 or the storage area of the storage unit 59.
  • the path generation unit 2 generates a path for sensing in the field 300. For example, the path generation unit 2 acquires information necessary for generating a path, and performs various calculations based on the acquired information. Further, the path generation unit 2 sets the generated path as the flight path of the flying object 200 in the field 300, and outputs a flight plan including the flight path.
  • FIG. 4 shows an example of a work procedure for farm management.
  • step S1 the flight of the flying object 200 on the field 300 is performed, and images are taken by the image pickup device 220 during the flight, for example, at regular time intervals. As a result, a large number of image data as samples are obtained.
  • the information processing device 1 acquires image data.
  • the information processing device 1 captures image data captured during flight by wired or wireless communication from the image pickup device 220 or delivery of a storage device 62 such as a memory card.
  • the information processing device 1 stores image data in, for example, a storage unit 59.
  • step S3 the information processing device 1 performs an analysis process based on the image data. For example, stand counting using each image data is performed. A specific processing example will be described later as a preparatory processing.
  • the information processing device 1 presents the status of the field 300 and various information to the user (for example, the staff of the farm) on the UI screen in order to determine the replant, and responds to the user's operation. Specifically, it performs a process of presenting information for considering whether or not the user replants, which area to replant, and accepting the designation of the area where the replant is assumed.
  • step S6 When a replant is performed as a result of input / output on the UI screen, the process proceeds from step S5 to step S6, and the information processing apparatus 1 generates an instruction file including a ROI (Region of Interest) for the replant. I do.
  • This instruction file is provided to the tractor 270, and the ROI is information indicating the area to be replanted.
  • step S7 the information processing device 1 exports the instruction file.
  • the actual replanting is then performed.
  • the information processing device 1 of the present embodiment generates a path of the flight path of the flying object 200, particularly at the time of sample acquisition in step S1.
  • sampling in the field 300 will be described with reference to FIGS. 5 to 7.
  • acquisition of image data captured in a plurality of discrete regions in the field 300 as a sample is referred to as sampling.
  • FIG. 5 is an explanatory diagram for explaining an example of sampling for the field 300, and shows the field 300 as the detection target area 310 and the outer peripheral area 320 surrounding the outer periphery of the detection target area 310.
  • the detection target area 310 a plurality of rows, which are an array of detection target objects, are arranged in parallel.
  • the wax is not shown in FIG. 5, it is assumed that the plurality of waxes extend in the row direction Dr indicated by the double-headed arrows.
  • the direction in which the wax extends is referred to as the row direction Dr
  • the direction in which the waxes are parallel is referred to as the row arrangement direction Dj.
  • the outer peripheral area 320 is a buffer area that separates the detection target area 310 from the outside, and is not provided with a detection target or a wax.
  • the entire path P1 is set in the detection target area 310 shown in FIG.
  • the entire path P1 is a path for sampling, and a sample is acquired while the aircraft body 200 travels in the flight path of the entire path P1.
  • the flying object 200 starts flying from a point located outside the detection target area 310, flies over the detection target area 310, and then ends the flight at a point located outside the detection target area 310.
  • the acquisition of the sample may be performed not only during the flight of the aircraft body 200 through the entire path P1, but also at regular intervals from the start to the end of the flight.
  • the flying object 200 has one end of the entire path P1 as the start point P1s and the other end of the entire path P1 as the end point P1e, and is along a path such as a partial path included in the entire path P1 from the start point P1s to the end point P1e. To fly.
  • the partial path is a line segment that passes through the detection target area 310. That is, the partial path is a line segment whose at least a part is located in the detection target area 310, for example, a line segment from the start point to the end point on the outer edge of the detection target area 310, and at least a part of the detection target area 310. It is a path that crosses a part.
  • the partial path from the start point on the outer edge of the detection target area 310 to the end point and crossing at least a part of the detection target area 310 is, for example, on one side forming the square, assuming a rectangular detection target area. It is a line segment from the starting point to the ending point on the other side.
  • the same one side is on the same side from the start point on one side via the inside of the detection target area 310.
  • a line segment reaching the end point of the above, and a line segment from the starting point on one side to the end point equal to the starting point via the detection target area 310 are also included.
  • the line segment from one point on the outer edge of the detection target area 310 to one point in the detection target area 310 or the whole is detected. It may be a line segment located in the target area 310.
  • the entire path P1 shown in FIG. 5 includes a plurality of parallel paths Pp (Pp1 to Pp10) and a plurality of connection paths Pc.
  • the parallel path Pp is a line segment from the start point to the end point on the outer edge of the detection target area 310, and is a partial path parallel to the row direction Dr.
  • the connection path Pc is a line segment along the outer edge of the detection target area 310, and is a path that connects the ends of adjacent partial paths.
  • the entire path P1 as a whole has a grid-like shape that divides the detection target area 310 into strip-shaped sections surrounded by adjacent parallel paths Pp and Pp and connection paths Pc located between them. ..
  • the aircraft body 200 flies in the flight path of the entire path P1 while sequentially following consecutive partial paths such as a parallel path Pp1, a connection path Pc continuous with the parallel path Pp1, and a parallel path Pp2 continuous with the connection path Pc. ..
  • each region of the detection target area 310 imaged while the flying object 200 flies through the entire path P1 is represented as an image plane IF.
  • the image plane IF corresponds to the imaging range SP described with reference to FIG.
  • the image plane IF has a rectangular shape and has a vertical width lv extending in the extending direction of the path and a horizontal width hl extending in the direction orthogonal to the extending direction of the path (see FIG. 7).
  • the image plane IF is positioned so that the path passes through the center of the width of the image plane IF.
  • the imaging data of the image plane IF is acquired as a sample.
  • the plurality of sampled image plane IFs are located on each parallel path Pp.
  • Sampling in the field 300 is carried out, for example, in order to detect a defect in the planting of the crop planted in the field 300.
  • Planting defects include, for example, defects that occur at random locations in the field 300 due to meteorological phenomena, and local defects that occur in specific waxes, for example.
  • Local defects include defective agricultural equipment, such as defective planting of specific waxes due to clogging of nozzles in tractors used for planting crops.
  • the imaging data of the row located in the vicinity of the parallel path Pp is acquired as a sample.
  • the imaging data of the row not located near the parallel path Pp (for example, the row located between the image plane IF1 on the parallel path Pp1 and the image plane IF2 on the parallel path Pp2) cannot be acquired as a sample.
  • the imaging data of the row not located near the parallel path Pp cannot be acquired as a sample.
  • the sample is not acquired in the connection path Pc included in the entire path P1.
  • the imaging data is acquired in the connection path Pc
  • the data near the boundary of the detection target area 310 is not suitable for the analysis material in the detection target area 310, so the imaging data acquired in the connection path Pc is statistical. It is preferable not to use it as an analytical sample. Therefore, it can be said that the connection path Pc is an extra path for sampling, but the flying object 200 has no choice but to move on the connection path Pc when moving from the parallel path Pp to the next adjacent parallel path Pp. It can be said that sampling using the entire path P1 is not efficient in that an extra path is included due to the convenience of movement.
  • the field 300 shown in FIG. 6 is the same as the field 300 shown in FIG. 5, and in the detection target area 310 shown in FIG. 6, a plurality of waxes extend in the row direction Dr and are parallel to the row arrangement direction Dj.
  • the entire path P2 is set in the detection target area 310 shown in FIG.
  • the aircraft body 200 flies along a partial path included in the entire pass P2 from the start point to the end point, with one end of the entire pass P2 as the start point P2s and the other end of the entire pass P2 as the end point P2e.
  • the entire path P2 includes a plurality of inclined paths Pd (Pd1 to Pd8) as partial paths passing through the detection target area.
  • the inclined path Pd is a line segment from the start point to the end point on the outer edge of the detection target area 310, and is inclined with respect to the row direction Dr.
  • the ramp path Pd crosses at least two rows.
  • each inclined path Pd shown in FIG. 6 is a line segment that crosses the detection target area 310, and is provided so as to cross all the rows arranged in the row arrangement direction Dj. Further, the inclined path Pd is formed by a straight line segment.
  • adjacent inclined paths Pd and Pd are connected to each other at an end portion. Further, the adjacent inclined paths Pd and Pd are inclined in different directions and are made non-parallel.
  • the entire path P2 composed of such a plurality of inclined paths Pd has a zigzag shape as a whole.
  • the aircraft body 200 follows a continuous partial path in order, such as the inclined path Pd1, the next inclined path Pd2 connected to the inclined path Pd1, and the next inclined path Pd3 connected to the inclined path Pd2, and the entire path P2. Fly the flight path of.
  • the two adjacent inclined paths Pd and Pd are positioned so as to form a predetermined inclined path angle.
  • the details of the tilt path angle will be described later.
  • the imaging data of the image plane IF is acquired as a sample.
  • the plurality of image plane IFs are evenly spaced on each inclined path Pd.
  • the sloping pass Pd crosses at least two waxes, one sloping pass can provide a sample covering a plurality of waxes. As a result, for example, the possibility of detecting a local defect occurring in a specific row is increased, and the sampling accuracy can be improved. Further, since the inclined path Pd shown in FIG. 6 crosses all the rows arranged in the row arrangement direction Dj, the probability that all the rows are to be sampled is increased.
  • connection path Pc is not included in the entire path P2. Therefore, efficient sampling can be performed by using the entire path P2 that does not include an extra path.
  • the length of the entire path P2 in the sampling example of FIG. 6 is 4621 m, but the length of the overall path P1 in the sampling example of FIG. 5 targeting the same detection target area 310 is 6225 m. That is, the whole pass P2 is a pass having a length shorter than that of the whole pass P1, and sampling for the same range can be efficiently performed. Further, when the entire paths P1 and P2 are used as the flight paths of the flying object 200 as in the examples of FIGS. 5 and 6, the flight distance is shortened as the length of the paths becomes shorter. Therefore, by shortening the flight distance by using the entire pass P2, it is possible to suppress the consumption of the charging power of the fuel and the battery used for the flight.
  • the coverage rate in the present embodiment is a ratio indicating how much area is acquired as the image plane IF with respect to the area of the detection target area 310.
  • FIG. 7A shows a part of two parallel paths Pp1 and Pp2 adjacent to each other with the track interval TI in between.
  • the ratio of the image plane IF in the unit grid UG can be obtained as an intuitive index corresponding to the coverage rate.
  • this ratio is referred to as a coverage rate in the unit grid UG.
  • the unit grid UG is a rectangular area including only one image plane IF, and is a vertical width consisting of the vertical width lv of the image plane IF and the interval from the image plane IF to the next image plane IF in the extension direction of the path. It is defined by Lv, the width lh of the image plane IF, and the width Lh consisting of the interval from the image plane IF to the next image plane IF in the arrangement direction of the parallel paths Pp.
  • the vertical width Lv is a value obtained by multiplying the speed of the flying object 200 by the sampling interval time, and the next image surface IF is obtained from the acquisition of the image surface IF. It corresponds to the distance traveled in the time until acquisition. Further, the width Lh corresponds to the length of the track interval TI.
  • the coverage rate in the unit grid UG is calculated based on the coverage rate in the vertical width direction and the coverage rate in the horizontal width direction of the unit grid UG.
  • the coverage rate in the vertical width direction and the coverage rate in the horizontal width direction are calculated based on the overlap rate of the image plane IFs in each direction.
  • the overlap rate of the image plane IF is a ratio indicating how much the image plane IF overlaps with the adjacent image plane IF.
  • the vertical width lv of the image surface IF is 100%, for example, when the overlap rate in the vertical width direction is 10%, the vertical width lv of the image surface IF and the adjacent image surface IF overlap by 10%. show.
  • the duplication rate is set to a negative value for convenience.
  • the overlap rate of negative values indicates a state in which the image plane IFs are separated from each other.
  • the image plane IF is separated from the adjacent image plane IF in the vertical width direction by a distance of 300% of the vertical width lv. Show that you are doing. That is, it is shown that there is a distance of three vertical widths of the image surface IF from the image surface IF to the next image surface IF.
  • the coverage rate in the vertical width direction (Front Coverage Rate) and the coverage rate in the horizontal width direction (Side Coverage Rate) are calculated by the respective formulas shown in Equation 1 below.
  • the overlap rate in Equation 1 is an integer less than 100.
  • the coverage rate (Unit Coverage Rate) of the unit as a whole is the coverage rate in the vertical width direction (Front Coverage Rate) of the image surface IF and the coverage rate (Side Coverage) in the horizontal direction of the image surface IF. It is calculated by multiplying Rate).
  • (Unit Coverage Rate) (Front Coverage Rate) ⁇ (Side Coverage Rate)
  • (Unit Coverage Rate) (Front Coverage Rate) ⁇ (Side Coverage Rate)
  • the desired coverage rate is received from the user, and the length of the track interval TI is determined so that, for example, a unit unit that realizes the coverage rate is formed. It is conceivable to generate a parallel path Pp.
  • FIG. 7B shows adjacent inclined paths Pd1 and Pd2.
  • the inclined paths Pd1 and Pd2 are paths from the start point to the end point on the outer edge of the boundary shape Bs, which will be described later.
  • the inclined paths Pd1 and Pd2 are connected on one side forming the outer edge of the boundary shape Bs, and the distance between the inclined path Pd1 and the inclined path Pd2 is maximized on the side facing the one side.
  • the maximum distance between the inclined pass Pd1 and the inclined path Pd2 is represented by the maximum spacing Tmax, and the length from one side of the boundary shape Bs to the opposite side is represented by the distance D.
  • the minimum coverage rate Rmin is a ratio calculated by the formula shown in Equation 2 below using the maximum interval Tmax and the width lh of the image plane IF.
  • the Image Width in the formula represents the width lh.
  • the minimum coverage rate Rmin is used to set the tilted path angle ⁇ formed by the adjacent tilted paths Pd1 and Pd2.
  • the inclination path angle ⁇ is calculated by the formula shown in Equation 3 below using the maximum interval Tmax and the distance D from one end to the other end of the boundary shape.
  • the desired minimum coverage rate Rmin is received from the user, and the inclined path Pd is generated based on the inclined path angle ⁇ that realizes the minimum coverage rate Rmin. ..
  • the minimum coverage rate Rmin is the minimum coverage rate, but when there are a plurality of image surface IFs on the inclined path Pd, the coverage rate is increased by the number of image surface IFs.
  • This ratio can be obtained from the speed sp of the flying object 200 and the shutter interval si, and further, the maximum interval Tmax can be obtained and the inclination path angle ⁇ can be obtained. Letting such a coverage rate be the coverage rate Ra, it can be expressed by the following equation I.
  • n ⁇ IF / (Tmax ⁇ D) ⁇ Ra That is, assuming that the number of image surface IFs located on the inclined path Pd1 and the inclined path Pd2 is n and the area of the image surface IF is IF, the total area of all the image surface IFs on the inclined path Pd is defined as the maximum interval Tmax.
  • the coverage rate Ra can be obtained by dividing by the area of the rectangle consisting of the distance D (maximum interval Tmax ⁇ distance D). Since the image plane IFs may overlap at the folded apex portion and the calculated coverage rate may be larger than the actual coverage rate Ra, “ ⁇ ” is used in the formula I.
  • Path generation flow The flow of path generation in the present embodiment will be described with reference to FIGS. 8 to 13. In the following, the flow of generating the entire path P3 including the inclined path Pd will be described with respect to the detection target area 410 which is the field 400.
  • FIG. 8 shows a detection target area 410 to be sampled.
  • the shape of the detection target area 410 is specified. Specifically, at least the outer edge (boundary line) that defines the shape of the detection target area 410 is specified.
  • the wax direction Dr and the row arrangement direction Dj provided in the detection target area 410 may also be specified. In the detection target area 410 shown in FIG. 8, it is assumed that the wax extends in the row direction Dr in the drawing and is parallel to the row arrangement direction Dj.
  • FIG. 9 shows a state in which the detection target area 410 is surrounded by the boundary shape Bs.
  • the boundary shape Bs is set according to the shape of the specified detection target area 410.
  • the boundary shape Bs is the smallest shape that surrounds the detection target area 410, and has, for example, the smallest polygonal shape that surrounds the detection target area 410.
  • the boundary shape Bs shown in FIG. 9 has a rectangular shape including a short side Ss extending in the row direction Dr and a long side Sl extending in the row arrangement direction Dj.
  • the boundary shape Bs is a frame composed of auxiliary lines used for convenience when generating the inclined path Pd.
  • the shape of the boundary shape Bs is not limited to the polygonal shape, and may be another shape such as a shape including an arc-shaped line segment as long as it is a shape that is convenient for generating the inclined path Pd.
  • FIG. 10 shows a state in which the inclined path Pd is generated in the boundary shape Bs.
  • the inclined path Pd extends in the direction extending from one short side Ss of the boundary shape Bs to the other short side Ss.
  • the direction in which the inclined path Pd crosses the boundary shape Bs in this way is referred to as the path crossing direction Dt.
  • the path crossing direction Dt is the same direction as the row arrangement direction Dj.
  • inclined paths Pd4 and Pd5 having a predetermined inclined path angle ⁇ are generated based on the path crossing direction Dt. Subsequently, from the intersection of each of the inclined paths Pd4 and Pd5 with the other short side Ss, the inclined paths Pd3 and Pd6 forming a predetermined inclined path angle ⁇ with each of the inclined paths Pd4 and Pd5 are generated. For example, by adding the inclined paths Pd one after another within the frame of the boundary shape Bs in this way, a plurality of inclined paths Pd are generated from the long side Sl of the boundary shape Bs to the other long side Sl.
  • the procedure for generating the inclined path Pd described above is an example, and of course, the inclined path Pd may be generated in the boundary shape Bs by another procedure.
  • FIG. 11 shows a state in which the inclined path Pd is superimposed on the detection target area 410.
  • the inclined path Pd is generated in the boundary shape Bs, the generated inclined path Pd is superposed on the detection target area 410.
  • the intersection Ip of the outer edge (boundary line) of the detection target area 410 and the inclined path Pd can be obtained.
  • FIG. 12 shows a state in which the intersection Ip is extracted as the passing point Wp of the flying object 200.
  • the intersection Ip of the detection target area 410 and the inclined path Pd is obtained, the obtained intersection Ip is extracted as the passing point Wp to be passed by the flying object 200.
  • the passing point Wp is a point that defines the flight path of the flying object 200 that senses the detection target area 410.
  • the passing point Wp can be expressed as GPS (Global Positioning System) position information indicating a specific point of the field 400, for example.
  • GPS Global Positioning System
  • FIG. 13 shows a state in which the entire path P3 is generated.
  • the passing point Wp is extracted on the outer edge of the detection target area 410
  • the passing point Wp is connected to generate the entire path P3.
  • an inclined path Pd as a partial path from the start point to the end point on the outer edge of the detection target area 410 is obtained.
  • an inclined path Pd in which a part of the intermediate portion of the path is located outside the detection target area 410 may be generated, for example, an inclined path Pd1 or an inclined path Pd2.
  • inclined paths Pd there are some inclined paths Pd5 and Pd6 that are adjacent to each other but whose ends are not connected to each other, such as inclined paths Pd5 and Pd6.
  • a connection path Pc is generated as a line segment connecting the passing points Wp and Wp which are the ends of the adjacent inclined paths Pd and Pd, and the adjacent inclined paths Pd and Pd are connected by the connecting path Pc.
  • the entire path P3 generated as described above is output as the flight path of the flying object 200, and sampling is performed for the detection target area 410 while the flying object 200 flies through the entire path P3.
  • step S101 the CPU 51 receives from the user the designation of the detection target area 410 to be sampled.
  • step S102 the CPU 51 accepts a selection from the user regarding an input method for inputting the shape of the specified detection target area 410.
  • the shape of the detection target area 410 can be loaded from the data file or manually input by the user.
  • step S102 the CPU 51 loads the data file of the detection target area 410 specified by the user from the storage area and specifies the shape of the detection target area 410.
  • step S104 the CPU 51 receives an input drawn by the user or the like and specifies the shape of the detection target area 410.
  • the CPU 51 identifies the shape of the detection target area 410 in step S103 or step S104, and then proceeds to the process in step S105.
  • step S105 the CPU 51 calculates the minimum shape surrounding the detection target area 410, and sets the calculated shape as the boundary shape Bs.
  • step S106 the CPU 51 receives an input of parameter information used for path generation from the user.
  • the parameter information used for path generation includes, for example, the flight altitude of the flying object 200, the minimum coverage rate Rmin, and the path crossing direction Dt.
  • the path crossing direction Dt is set to be different from the low direction Dr in the detection target area 410. This causes the ramp path Pd generated in subsequent steps to cross at least two rows.
  • the information processing apparatus 1 may appropriately set each value of the parameter information. By automating the input of parameter information, it is possible to save the trouble of input operation by the user and improve the convenience.
  • step S107 the CPU 51 calculates the inclined path angle ⁇ based on the minimum coverage rate Rmin and the path crossing direction Dt acquired in step S106.
  • step S108 the CPU 51 generates an inclined path Pd within the boundary shape Bs.
  • the CPU 51 generates the inclined path Pd so that the adjacent inclined paths Pd and Pd form the inclined path angle ⁇ set in S107.
  • the CPU 51 generates an inclined path Pd starting from the midpoint M of the boundary shape Bs, and based on the inclined path angle ⁇ , further next from the generated inclined path Pd.
  • the inclined path Pd is continuously generated.
  • step S109 the CPU 51 applies the generated inclined path Pd to the detection target area 410, and extracts the intersection Ip where the outer edge (boundary line) of the detection target area 410 and the inclined path Pd intersect.
  • step S110 the CPU 51 sets the extracted intersection Ip as a passing point Wp that the flying object 200 should pass in order to fly along the inclined path Pd.
  • the process proceeds to step S111 without performing the process for obtaining the passing point Wp.
  • step S111 the CPU 51 performs a process of generating an entire path.
  • the CPU 51 generates the entire path P3 by, for example, a process of connecting the extracted passing points Wp. If the process for obtaining the passing point Wp is not performed in step S110, the intersection Ip is connected.
  • step S112 the CPU 51 presents the generated overall path P3 to the user together with the parameter information.
  • the entire path P3 is presented to the user as the flight path of the aircraft 200.
  • step S113 the CPU 51 accepts a user confirmation result as to whether or not the generated overall path P3 and parameter information are appropriate as a flight plan.
  • step S113 the CPU 51 returns to step S106 and accepts the input of parameter information from the user again.
  • step S113 When the user's confirmation result that the flight plan is appropriate is received in step S113, the CPU 51 proceeds to step S114.
  • step S114 the CPU 51 sets the entire path P3 as a flight path and saves it as a flight plan together with the parameter information.
  • step S115 the CPU 51 performs a process of outputting the saved flight plan.
  • it is a process of converting a flight plan into a format that can be read by the control unit of the flight body 200, or transmitting the flight plan to the flight body 200 by the communication unit 60.
  • a path to be used as a flight path of the flying object 200 is generated.
  • the above processing example is an example, and other processing examples can be considered.
  • the path generation method of the embodiment is a path generation method for generating a path for sensing for a detection target area (detection target areas 310 and 410) in which rows, which are an array of detection target objects, are parallel, in the detection target area.
  • a path generation process is performed to generate an entire path (overall paths P2, P3) so that the passing partial path (inclined path Pd) crosses at least two rows. As shown in FIGS. 6 and 13, the path generation process generates the entire paths P2 and P3 including the inclined paths Pd that cross at least two rows.
  • the inclined pass Pd crosses at least two rows, sensing data covering a plurality of rows can be acquired as a sample by one inclined pass Pd.
  • the probability that each row will be sampled increases, and the sampling accuracy can be improved.
  • the detection accuracy of local defects it becomes difficult to underestimate or overestimate local defects in statistical analysis. Therefore, for example, when the detection target area is a field and a crop planting defect occurs in a specific wax, it is possible to appropriately detect the planting defect of the specific wax and take appropriate measures such as replanting.
  • sampling can be efficiently performed with a path having a short length.
  • the entire path P2 is used as a movement path for a moving body such as a flying object 200 or a vehicle, the shorter the path length, the shorter the moving distance. Therefore, by shortening the travel distance by using the entire path P2 including the inclined path Pd, it is possible to suppress the consumption of fuel and electric power used as a power source for the movement.
  • At least a part of the partial paths (inclined paths Pd) in the entire paths (overall paths P2 and P3) are all in the detection target area (detection target areas 310 and 410).
  • I gave an example of a path that crosses the row of. By crossing all the rows in the detection target area with at least a part of the inclined path Pd, all the rows have the same probability of being the target of sensing, and the sampling accuracy can be further improved.
  • the path generation process performs the first step (step S105) of setting the boundary shape Bs surrounding the detection target area (detection target area 410) and the partial path (inclined path Pd) within the boundary shape Bs.
  • the second step (step S108) to generate, the third step (step S109) to extract the intersection Ip of the outer edge of the detection target area and the partial path generated in the second step, and the intersection (set as the passing point Wp).
  • An example has been given with a fourth step (step S111) of generating the entire path P3 by the process of connecting the intersections Ip) (see FIG. 14).
  • the inclined path Pd can be generated regardless of the shape of the detection target area 410.
  • the path generation process can be performed corresponding to the detection target area having various shapes. Further, by connecting the intersection Ip, which is a point on the outer edge of the detection target area 410, an inclined path Pd from the start point to the end point on the outer edge of the detection target area 410 can be obtained. Therefore, it is possible to generate an inclined path Pd according to the shape of the detection target area 410. Further, in the fourth step, when a whole path is generated without providing an inclined path (for example, inclined paths Pd1 and Pd2 in FIG. 13) in which a part of the intermediate portion of the path is located outside the detection target area 410. For example, as shown in FIG.
  • the entire path P3 in which all the inclined paths Pd are within the range of the detection target area 310.
  • the entire path P3 is used as a movement path (flight path) for the flying object 200 or the like, the moving object does not cover the area outside the detection target area 310 by keeping the moving path of the moving body within the detection target area 310. You won't have to move as needed. It is possible to apply this method to generate an entire path even in a field where wax is not formed (detection target area).
  • the boundary shape Bs is rectangular (see FIG. 9 and the like).
  • the inclined path Pd can be easily generated regardless of the shape of the detection target area 410.
  • a partial path is generated so that the adjacent partial paths (inclined paths Pd, Pd) form a predetermined path angle (inclined path angle ⁇ ).
  • a predetermined path angle inclined path angle ⁇
  • the inclined path Pd can be easily generated in the boundary shape Bs.
  • the desired minimum coverage rate Rmin is realized by calculating the inclined path angle ⁇ based on the minimum coverage rate Rmin and generating the inclined path Pd forming the inclined path angle ⁇ . Sampling can be done. It is also conceivable to set the tilt path angle ⁇ so as to satisfy a predetermined coverage rate Ra. In this case, by generating the inclined path Pd having the inclined path angle ⁇ , sampling that realizes a desired coverage rate can be performed.
  • connection path Pc an example is given in which the intersection points Ip in the adjacent partial paths (inclined paths Pd) are connected to generate the connection path Pc (see FIG. 13).
  • the adjacent inclined paths Pd and Pd are connected by the connection path Pc, and the entire path P3 without interruption can be generated.
  • the entire path P3 is used as the movement path of a moving body such as the flying object 200, it is not necessary to connect the inclined path Pd again to generate one path in which the moving body can move without interruption.
  • the partial path (inclined path Pd) is formed by a line segment having a straight line (see FIGS. 6 and 13).
  • the shortest line segment from one point to the other can be generated as the inclined path Pd.
  • the partial path (inclined path Pd) may be formed by a line segment which is a curved line.
  • FIG. 15A shows a state in which the entire path P4 including the inclined path Pd formed by the curved line segment is set in the detection target area 310.
  • connection path Pc along the outer edge of the detection target area 410 is included is given (see FIG. 13).
  • the connection path Pc along the outer edge for example, when the entire path P3 is used as the movement path of the moving body such as the flying object 200, the moving body unnecessarily moves in the area outside the detection target area 410. There is no.
  • connection path P2 an example in which the connection path Pc along the outer edge of the detection target area (detection target area 310) is not included is given (see FIG. 6 and the like). ). Since the connection path Pc along the outer edge of the detection target area 310 is not included, the distance of the entire path P2 can be shortened. Further, it is preferable that the sensing data acquired by the connection path Pc along the outer edge of the detection target area 310 is not used as a sample for statistical analysis. Therefore, by not providing the connection path Pc, it is possible to save the trouble of acquiring and storing the sensing data that is not used for the analysis, and to reduce the processing load of the information processing apparatus that executes sampling and analysis.
  • an example of generating an entire path P2 in which adjacent partial paths (inclined paths Pd, Pd) are connected at an end is given (see FIG. 6 and the like).
  • adjacent partial paths Pd, Pd adjacent partial paths
  • sensing can be performed on all the paths included in the entire path. can.
  • an example of generating an entire path (overall paths P2, P3) in which adjacent partial paths (inclined paths Pd, Pd) are non-parallel is given (see FIGS. 6 and 13).
  • the adjacent inclined paths Pd and Pd are inclined in different directions. Therefore, for example, it is possible to generate the entire paths P2 and P3 having a zigzag shape at least in part.
  • the entire path in which the adjacent inclined paths Pd and Pd are parallel may be generated. For example, FIG.
  • 15B shows a state in which the entire path P5 is generated so that a plurality of adjacent inclined paths Pd from the start point to the end point on the outer edge of the detection target area 310 are parallel to the detection target area 310.
  • the ends of the adjacent inclined paths Pd and Pd are connected by the connection path Pc along the outer edge of the detection target area 310.
  • the detection target area (detection target area 310, 410) is a field (field 300, 400), and the wax is a line in which the crop is planted in the field.
  • sensing is performed on the fields 300 and 400 in which the lines where the crops are planted are parallel, and sampling can be performed on the fields 300 and 400.
  • Sampling in the field can be carried out for various purposes such as estimation of the number of crops (stands) planted and germinated in the field, weed detection, detection of plant diseases and water stress, and the like.
  • the field may be not only cultivated land of outdoor farmland but also land for hydroponics or house cultivation, and the technique of the embodiment can be used for sampling of crops grown in various places. can.
  • the technique of the embodiment can also be used for sampling sensing data related to the growth of, for example, fruit trees, trees used as wood, and weeds. Therefore, it can also be applied to remote sensing for forests, vacant lots, and the like.
  • the sensing data it is assumed that the image image data is captured by the imaging device 220, but of course, the detection data of various sensors such as the detection data by the thermo sensor and the detection data by the ultrasonic sensor is assumed.
  • the technique of the embodiment can be applied not only to plants but also to sensing the quality of soil in fields and the like.
  • the detection target area of the embodiment is not limited to the field, but various places and areas can be considered.
  • the technology of the embodiment can be used for an area that can be assumed on the water including forests, areas and plots affected by a disaster, the ocean, and the like.
  • the entire path (overall paths P2, P3) is the flight path of the flying object 200, and an example in which sensing is performed by the flying object 200 has been described.
  • the aircraft body 200 includes a so-called drone, a small radio-controlled fixed-wing airplane, and a small radio-controlled helicopter.
  • the path generation device (information processing device 1) of the embodiment is a path generation device that generates a path for sensing for a detection target area (detection target areas 310, 410) in which rows, which are an array of detection target objects, are parallel to each other. , The path generation process for generating the entire path (overall path P2, P3) is performed so that the partial path (inclined path Pd) passing through the detection target area crosses at least two rows.
  • the program of the embodiment is executed by a path generator (information processing device 1) that generates a path for sensing for the detection target areas (detection target areas 310 and 410) in which rows, which are an array of detection target objects, are parallel to each other.
  • the program causes the path generator to execute a path generation process for generating an entire path so that a partial path passing through the detection target area crosses at least two of the rows. That is, it is a program that causes the information processing apparatus 1 to execute the process described with reference to FIG.
  • Such a program facilitates the realization of the information processing device 1 of the present embodiment.
  • a program can be stored in advance in a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like.
  • a removable recording medium such as a semiconductor memory, a memory card, an optical disk, a magneto-optical disk, or a magnetic disk.
  • a removable recording medium can be provided as so-called package software.
  • it can also be downloaded from a download site via a network such as a LAN or the Internet.
  • the present technology can also adopt the following configurations.
  • (1) As a path generation method for generating a path for sensing for a detection target area in which rows, which are an array of detection targets, are parallel, A path generation method for performing a path generation process for generating an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
  • (2) The path generation method according to (1) above, wherein at least a part of the partial paths in the entire path is a path that crosses all the waxes in the detection target area.
  • the path generation process is The first step of setting the boundary shape surrounding the detection target area and A second step of generating the partial path within the boundary shape, A third step of extracting the intersection of the outer edge of the detection target area and the partial path generated in the second step, and The path generation method according to (1) or (2) above, further comprising a fourth step of generating the entire path by a process of connecting the intersections.
  • the partial paths are generated so that the adjacent partial paths form a predetermined path angle.
  • the intersection of the partial path and the detection target area is detected.
  • the path generation method according to any one of (1) to (9) above which generates the entire path such that adjacent partial paths are connected to each other at an end.
  • the path generation method according to any one of (1) to (11) above which generates the entire path such that adjacent partial paths are non-parallel.
  • the detection target area is a field
  • the path generation method according to any one of (1) to (12) above wherein the wax is a line on which crops are planted in the field.
  • the whole path is the flight path of the flying object.
  • a path generation device that performs a path generation process that generates an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
  • It is a program to be executed by a path generator that generates a path for sensing for a detection target area in which rows that are a sequence of detection targets are parallel.
  • Path generator 310 Detection target area 410 Detection target area Bs Boundary shape Pd Inclined path Pc Connection path P2, P3, P4, P5 Overall path ⁇ Inclined path angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Environmental Sciences (AREA)
  • Image Processing (AREA)

Abstract

Provided is a path generation method for generating a path for sensing a detection target area in which rows of a sequence of detection targets are aligned in parallel, wherein a path generation process is performed to generate a full path such that a partial path passing through the detection target area crosses at least two rows.

Description

パス生成方法、パス生成装置、プログラムPath generation method, path generator, program
 本技術は、パス生成方法、パス生成装置、プログラムに関し、例えば圃場を対象としたセンシングのためにパスを生成する技術に関する。 This technology relates to a path generation method, a path generation device, and a program, for example, a technique for generating a path for sensing in a field.
  近年、農場の大規模化によって、作物の自動植え付けが行われるようになってきている。自動植え付けにおいて、作物が正しく植え付けされたか、あるいは、作物が期待通りに育成しているかを確認するのは非常に重要である。作物が期待通りに植え付け、育成されていない箇所がある場合は、農場のスタッフは再植え付け(リプラント)を行うか否かの判断も行わなければならない。再植え付け(リプラント)とは、既に植え付けたところで植え替え(再度の播種等)を行うことである。 In recent years, due to the increase in scale of farms, automatic crop planting has come to be carried out. In automatic planting, it is very important to make sure that the crop is planted correctly or that the crop is growing as expected. If some crops are not planted and grown as expected, farm staff must also decide whether to replant. Replanting (replanting) means replanting (re-sowing, etc.) when the plant has already been planted.
 一方で、ドローン等の飛行体に搭載したカメラなどによる空からの撮像技術の発達で、大規模農場において、人手で農地を見回る作業を省き、作業を簡略化、自動化する試みがなされている。上記した植え付けの不具合の検出もこのような空撮技術によって自動化が行われるようになってきている。
 特許文献1には、圃場を撮像し、植生状態のリモートセンシングを行う技術に関して開示されている。
On the other hand, with the development of aerial imaging technology using cameras mounted on flying objects such as drones, attempts are being made to simplify and automate the work of large-scale farms by omitting the work of manually looking around the farmland. The detection of the above-mentioned planting defects is also being automated by such aerial photography technology.
Patent Document 1 discloses a technique for imaging a field and performing remote sensing of a vegetation state.
特許第5162890号公報Japanese Patent No. 5162890
 センシングデータをサンプルとして取得することを目的に撮像を行う場合には、例えば圃場における植え付けの不具合などを精度よく検出できる適切なサンプリングを行うことが必要である。 When imaging for the purpose of acquiring sensing data as a sample, it is necessary to perform appropriate sampling that can accurately detect, for example, planting defects in the field.
 そこで、本開示では、適切なサンプリングを行うための技術を提案する。 Therefore, this disclosure proposes a technique for performing appropriate sampling.
 本技術に係るパス生成方法は、検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成方法として、前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理を行うものである。
 検出対象エリアに対するセンシングにおいては、検出対象エリアについてセンシングした各種のデータがセンシングデータとして取得される。例えば検出対象エリアの離散的な領域におけるセンシングデータはサンプルとして取得される。
 検出対象エリア内を通過する部分パスとは、少なくとも一部が検出対象エリア内に位置する線分である。例えば検出対象エリアの外縁上の起点から終点に至る線分であって検出対象エリアの少なくとも一部を横断するパスが考えられる。また、検出対象エリアの外縁上の一点から検出対象エリア内の一点に至る線分や、全体が検出対象エリア内に位置する線分であってもよい。
In the path generation method according to the present technology, as a path generation method for generating a path for sensing for a detection target area in which rows, which are an array of detection target objects, are parallel, at least two partial paths passing through the detection target area are used. A path generation process is performed to generate an entire path so as to cross the row.
In the sensing for the detection target area, various data sensed for the detection target area are acquired as sensing data. For example, sensing data in a discrete area of the detection target area is acquired as a sample.
The partial path passing through the detection target area is a line segment whose at least a part is located in the detection target area. For example, a line segment from the start point to the end point on the outer edge of the detection target area and crossing at least a part of the detection target area can be considered. Further, it may be a line segment from one point on the outer edge of the detection target area to one point in the detection target area, or a line segment as a whole located in the detection target area.
 上記した本技術に係るパス生成方法においては、前記全体パスにおける少なくとも一部の前記部分パスを前記検出対象エリアにおけるすべての前記ロウを横切るパスとすることが考えられる。
 検出対象エリアにおけるすべてのロウを横切る部分パスとしては、例えば検出対象エリアの外縁上の起点から終点に至る線分であって検出対象エリアを横断するパスが考えられる。
In the path generation method according to the present technology described above, it is conceivable that at least a part of the partial paths in the entire path are paths that cross all the rows in the detection target area.
As a partial path that crosses all the rows in the detection target area, for example, a line segment from a start point to an end point on the outer edge of the detection target area and that crosses the detection target area can be considered.
 上記した本技術に係るパス生成方法においては、前記パス生成処理は、前記検出対象エリアを囲む境界形状を設定する第1のステップと、前記境界形状内で前記部分パスを生成する第2のステップと、前記検出対象エリアの外縁と前記第2ステップで生成された前記部分パスの交点を抽出する第3のステップと、前記交点を接続する処理により前記全体パスを生成する第4のステップと、有することが考えられる。
 境界形状とは、検出対象エリアを囲む枠状の形状である。境界形状は、パス生成処理において部分パスを生成するための補助線として用いられる。
In the path generation method according to the present technology described above, the path generation process includes a first step of setting a boundary shape surrounding the detection target area and a second step of generating the partial path within the boundary shape. A third step of extracting the intersection of the outer edge of the detection target area and the partial path generated in the second step, and a fourth step of generating the entire path by a process of connecting the intersections. It is possible to have.
The boundary shape is a frame-like shape that surrounds the detection target area. The boundary shape is used as an auxiliary line for generating a partial path in the path generation process.
 上記した本技術に係るパス生成方法においては、前記境界形状は矩形状であることが考えられる。
 即ち矩形状を有する境界形状内で部分パスが生成される。
In the path generation method according to the present technology described above, it is conceivable that the boundary shape is rectangular.
That is, a partial path is generated within the boundary shape having a rectangular shape.
 上記した本技術に係るパス生成方法においては、前記第2のステップにおいて、隣接する前記部分パスが所定のパス角度を為すように前記部分パスを生成することが考えられる。
 境界形状内で所定のパス角度に基づいて部分パスが生成される。
In the path generation method according to the present technology described above, in the second step, it is conceivable to generate the partial path so that the adjacent partial paths form a predetermined path angle.
A partial path is generated based on a predetermined path angle within the boundary shape.
 上記した本技術に係るパス生成方法においては、所定の最小カバレッジレートを満たすように前記所定のパス角度を設定することが考えられる。
 カバレッジレートとは、例えば検出対象エリアの全領域に対してどれほどの領域がサンプルとして取得されたかを示す割合である。最小カバレッジレートは、検出対象エリアにおけるカバレッジレートの目安となる値である。
In the path generation method according to the present technology described above, it is conceivable to set the predetermined path angle so as to satisfy the predetermined minimum coverage rate.
The coverage rate is, for example, a ratio indicating how much area was acquired as a sample with respect to the entire area of the detection target area. The minimum coverage rate is a value that serves as a guideline for the coverage rate in the detection target area.
 上記した本技術に係るパス生成方法においては前記第4のステップにおいて、隣接する前記部分パスにおける前記交点を接続して接続パスを生成することが考えられる。
 このような接続パスは、隣接する部分パスを接続する線分である。
In the path generation method according to the present technology described above, in the fourth step, it is conceivable to connect the intersections in the adjacent partial paths to generate a connection path.
Such a connection path is a line segment connecting adjacent partial paths.
 上記した本技術に係るパス生成方法においては、前記部分パスは直線又は曲線である線分により形成されることが考えられる。
 即ち部分パスは直線状又は曲線状に形成されてもよい。
In the path generation method according to the present technology described above, it is conceivable that the partial path is formed by a line segment which is a straight line or a curved line.
That is, the partial path may be formed in a straight line or a curved line.
 上記した本技術に係るパス生成方法においては、前記全体パスに含まれるパスの一つとして、前記検出対象エリアの外縁に沿う接続パスが含まれることが考えられる。
 検出対象エリアの外縁に沿う接続パスは、例えば隣接する部分パス同士を接続する線分である。
In the path generation method according to the present technology described above, it is conceivable that a connection path along the outer edge of the detection target area is included as one of the paths included in the entire path.
The connection path along the outer edge of the detection target area is, for example, a line segment connecting adjacent partial paths.
 上記した本技術に係るパス生成方法においては、前記全体パスに含まれるパスの一つとして、前記検出対象エリアの外縁に沿う接続パスが含まれないことが考えられる。
 検出対象エリアの外縁に沿う接続パスは、例えば隣接する部分パス同士を接続する線分である。
In the path generation method according to the present technology described above, it is conceivable that the connection path along the outer edge of the detection target area is not included as one of the paths included in the overall path.
The connection path along the outer edge of the detection target area is, for example, a line segment connecting adjacent partial paths.
 上記した本技術に係るパス生成方法においては、隣接する前記部分パス同士が端部で接続されるような前記全体パスを生成することが考えられる。
 例えば全体パスにおける全ての隣接する部分パス同士が端部で接続されている場合には、全体パスは隣接する部分パスを接続する接続パスを含まない。また、全体パスにおいて隣接する部分パスのうち一部の隣接する部分パス同士のみが端部で接続されていてもよい。
In the path generation method according to the present technology described above, it is conceivable to generate the entire path so that the adjacent partial paths are connected to each other at the end.
For example, when all the adjacent partial paths in the whole path are connected at the end, the whole path does not include the connection path connecting the adjacent partial paths. In addition, only some of the adjacent partial paths in the entire path may be connected at the end.
 上記した本技術に係るパス生成方法においては、隣接する前記部分パスが非平行であるような前記全体パスを生成することが考えられる。
 例えば隣接する部分パスが互い違いの方向に伸びている全体パスや、全体としてジグザグ形状を呈する全体パスが生成される。
In the path generation method according to the present technology described above, it is conceivable to generate the entire path such that the adjacent partial paths are non-parallel.
For example, an entire path in which adjacent partial paths extend in alternating directions or an overall path having a zigzag shape as a whole is generated.
 上記した本技術に係るパス生成方法においては、前記検出対象エリアは圃場であり、前記ロウは前記圃場における作物の植え付けが行われたラインであることが考えられる。
 圃場とは、作物の栽培地、耕作地、水耕栽培地、ハウス栽培地等の農作物の栽培等を行う農地を広く含む。作物とは、例えば収穫を目的として圃場で育成されるものを指す。
In the path generation method according to the present technology described above, it is conceivable that the detection target area is a field and the wax is a line where crops are planted in the field.
The field broadly includes farmland where crops are cultivated, such as crop cultivated land, cultivated land, hydroponic cultivated land, and house cultivated land. Crop refers to, for example, a crop grown in a field for the purpose of harvesting.
 上記した本技術に係るパス生成方法においては、前記全体パスは飛行体の飛行経路であり、前記飛行体により前記センシングが行われることが考えられる。
 飛行体は全体パスに沿って検出対象エリアの上空を移動し、検出対象エリアに対するセンシングを行う。
In the path generation method according to the present technology described above, the entire path is the flight path of the flying object, and it is conceivable that the sensing is performed by the flying object.
The aircraft moves over the detection target area along the entire path and senses the detection target area.
 本技術に係るパス生成装置は、検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成装置として、前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理を行う。
 これによりパス生成装置によってパス生成処理が実行される。
 本技術に係るプログラムは、上記パス生成方法の処理をパス生成装置に実行させるプログラムである。これによりパス生成処理を実行するパス生成装置の実現が容易となる。
The path generator according to the present technology is a path generator that generates a path for sensing for a detection target area in which rows, which are an array of detection target objects, are parallel to each other, and has at least two partial paths passing through the detection target area. A path generation process is performed to generate an entire path so as to cross the two rows.
As a result, the path generation device executes the path generation process.
The program according to the present technology is a program that causes the path generator to execute the process of the path generation method. This facilitates the realization of a path generator that executes the path generation process.
本技術の実施の形態のセンシングシステムの説明図である。It is explanatory drawing of the sensing system of embodiment of this technique. 圃場におけるロウ及び撮像範囲の説明図である。It is explanatory drawing of the row and the imaging range in a field. 実施の形態の情報処理装置のハードウエア構成のブロック図である。It is a block diagram of the hardware composition of the information processing apparatus of embodiment. 実施の形態の圃場管理のための作業手順を示すフローチャートである。It is a flowchart which shows the work procedure for the field management of embodiment. 圃場におけるサンプリングの一例を示す説明図である。It is explanatory drawing which shows an example of sampling in a field. 実施の形態のサンプリングの一例を示す説明図である。It is explanatory drawing which shows an example of sampling of embodiment. サンプリングにおけるカバレッジレートの説明図である。It is explanatory drawing of the coverage rate in sampling. 実施の形態のパス生成の第1の説明図である。It is 1st explanatory diagram of the path generation of embodiment. 実施の形態のパス生成の第2の説明図である。It is a 2nd explanatory diagram of the path generation of an embodiment. 実施の形態のパス生成の第3の説明図である。It is a 3rd explanatory diagram of the path generation of an embodiment. 実施の形態のパス生成の第4の説明図である。It is a 4th explanatory diagram of the path generation of an embodiment. 実施の形態のパス生成の第5の説明図である。FIG. 5 is a fifth explanatory diagram of path generation according to the embodiment. 実施の形態のパス生成の第6の説明図である。FIG. 6 is a sixth explanatory diagram of path generation according to the embodiment. 実施の形態のパス生成処理のフローチャートである。It is a flowchart of the path generation process of embodiment. 実施の形態のサンプリングの変形例を示す説明図である。It is explanatory drawing which shows the modification of the sampling of embodiment.
 以下、実施の形態を次の順序で説明する。
<1.センシングシステムの構成>
<2.情報処理装置の構成>
<3.作業手順>
<4.サンプリング>
 <4―1.パス>
 <4―2.カバレッジレート>
<5.パス生成の流れ>
<6.実施の形態のパス生成処理>
<7.まとめ及び変形例>
Hereinafter, embodiments will be described in the following order.
<1. Sensing system configuration>
<2. Information processing device configuration>
<3. Work procedure>
<4. Sampling>
<4-1. Path>
<4-2. Coverage rate>
<5. Path generation flow>
<6. Path generation process of the embodiment>
<7. Summary and transformation examples>
<1.センシングシステムの構成>
 まず実施の形態のセンシングシステムについて説明する。
 図1はセンシングシステムを構成するパス生成装置としての情報処理装置1と、例えばドローンのような小型の飛行体200に搭載された撮像装置220を示している。また植え付けを行うトラクター270も示している。
<1. Sensing system configuration>
First, the sensing system of the embodiment will be described.
FIG. 1 shows an information processing device 1 as a path generating device constituting a sensing system, and an imaging device 220 mounted on a small flying object 200 such as a drone. Also shown is a tractor 270 for planting.
 飛行体200は、例えば操作者の無線操縦、或いは自動操縦等により、圃場300の上空を移動することができる。
 飛行体200には撮像装置220が例えば下方を撮像するようにセットされている。飛行体200が、所定の経路で圃場300の上空を移動する際に、撮像装置220は例えば定期的に静止画撮像を行う。
The aircraft body 200 can move over the field 300 by, for example, radio control by the operator, autopilot, or the like.
An imaging device 220 is set in the flying object 200 so as to image, for example, below. When the flying object 200 moves over the field 300 by a predetermined route, the image pickup device 220 periodically performs, for example, still image imaging.
 なお、飛行体200が比較的低空(例えば高度10mから20m程度など)で飛行することで、1枚の撮像画像は、圃場300の一部が写るものとなる。
 短時間間隔で静止画撮像を行うことで、撮像した各画像のスティッチ処理を行って、圃場全体を映し出した合成画像を得ることもできる。しかし本実施の形態のセンシングの場合は、必ずしもそのようなことは必要なく、例えば圃場300において離散的な領域が、センシングのサンプルとして撮像されて複数の画像データが得られればよい。
 以下では、撮像された一枚毎の静止画としての画像データを「サンプル」とも呼ぶ。
When the flying object 200 flies at a relatively low altitude (for example, at an altitude of about 10 m to 20 m), one captured image captures a part of the field 300.
By taking still images at short intervals, it is possible to perform stitch processing on each of the captured images to obtain a composite image showing the entire field. However, in the case of the sensing of the present embodiment, such a thing is not always necessary, and for example, a discrete region in the field 300 may be imaged as a sensing sample to obtain a plurality of image data.
Hereinafter, the image data as a still image for each captured image is also referred to as a “sample”.
 飛行体200に搭載される撮像装置220は、可視光イメージセンサ(R(赤)、G(緑)、B(青)の可視光を撮像するイメージセンサ)、NIR(Near Infra Red:近赤外域)画像撮像用のカメラ、複数の波長帯の画像撮像を行うマルチスペクトラムカメラ(Multi Spectrum Camera)、ハイパースペクトラムカメラ、フーリエ変換赤外分光光度計(FTIR:Fourier Transform Infrared Spectroscopy)、赤外線センサなどが想定される。もちろん複数種類のカメラ(センサ)が飛行体200に搭載されてもよい。
 マルチスペクトラムカメラとしては、例えばNIR画像とR(赤)画像の撮像を行うもので、得られる画像からNDVI(Normalized Difference Vegetation Index)が算出できるものが用いられることも想定される。NDVIとは植物らしさを表す植生指数であり、植生の分布状況や活性度を示す指標とすることができる。
 NDVIはR画像とNIR画像から求めることができる。即ちNDVIの値は、
 NDVI=(NIR-R)/(NIR+R)
として求められる。
The image pickup device 220 mounted on the flying object 200 includes a visible light image sensor (an image sensor that captures visible light of R (red), G (green), and B (blue)), NIR (Near Infra Red: near infrared region). ) Cameras for image imaging, Multi Spectrum Cameras that capture images in multiple wavelength bands, Hyper Spectrum cameras, Fourier Transform Infrared Spectroscopy (FTIR), infrared sensors, etc. are assumed. Will be done. Of course, a plurality of types of cameras (sensors) may be mounted on the flying object 200.
As the multi-spectrum camera, for example, one that captures an NIR image and an R (red) image, and one that can calculate an NDVI (Normalized Difference Vegetation Index) from the obtained image is also assumed to be used. NDVI is a vegetation index that indicates plant-likeness, and can be used as an index that indicates the distribution status and activity of vegetation.
NDVI can be obtained from the R image and the NIR image. That is, the value of NDVI is
NDVI = (NIR-R) / (NIR + R)
Is required as.
 撮像装置220で撮像されて得られる画像には、タグ情報が付加されている。タグ情報には撮像日時情報や、GPS(Global Positioning System)データとしての位置情報(緯度/経度情報)、撮像時の飛行体200の飛行高度の情報、撮像装置情報(カメラの個体識別情報や機種情報等)、各画像データの情報(画サイズ、波長、撮像パラメータ等の情報)などが含まれている。 Tag information is added to the image obtained by being captured by the image pickup device 220. The tag information includes imaging date and time information, position information (latitude / longitude information) as GPS (Global Positioning System) data, flight altitude information of the flying object 200 at the time of imaging, and imaging device information (individual identification information and model of the camera). Information, etc.), information on each image data (information on image size, wavelength, imaging parameters, etc.), etc. are included.
 本実施の形態の情報処理装置1は、このような飛行体200の圃場300における飛行経路を設定する処理を行うことができるものとされる。
 具体的には、情報処理装置1は圃場300の形状やユーザが入力した情報等に基づいて圃場300におけるパスを生成し、飛行体200の飛行経路として設定する。
 情報処理装置1は、設定した飛行経路を含む飛行プランを飛行体200に送信することで飛行体200の飛行を遠隔制御する。飛行体200は受信した飛行プランに含まれる飛行経路に基づいて圃場300の上空を移動する。
The information processing device 1 of the present embodiment can perform a process of setting a flight path in the field 300 of the flying object 200.
Specifically, the information processing device 1 generates a path in the field 300 based on the shape of the field 300, information input by the user, and the like, and sets it as a flight path of the flying object 200.
The information processing device 1 remotely controls the flight of the flight body 200 by transmitting a flight plan including the set flight path to the flight body 200. The aircraft 200 moves over the field 300 based on the flight path included in the received flight plan.
 なお情報処理装置1は、飛行体200に装着された撮像装置220により撮像された画像データやタグ情報を取得することが可能にされていてもよい。
 例えば撮像装置220と情報処理装置1の無線通信やネットワーク通信などにより画像データやタグ情報が受け渡される。ネットワークとしては例えばインターネット、ホームネットワーク、LAN(Local Area Network)等、衛星通信網、その他の各種のネットワークが想定される。
 或いは撮像装置220に装着されていた記録媒体(例えばメモリカードなど)が情報処理装置1側で読み取られるなどの態様で画像データやタグ情報が情報処理装置1に受け渡されてもよい。
The information processing device 1 may be capable of acquiring image data and tag information captured by the image pickup device 220 mounted on the flying object 200.
For example, image data and tag information are transferred by wireless communication or network communication between the image pickup device 220 and the information processing device 1. As the network, for example, the Internet, a home network, a LAN (Local Area Network), a satellite communication network, and various other networks are assumed.
Alternatively, the image data or tag information may be passed to the information processing device 1 in such a manner that the recording medium (for example, a memory card or the like) mounted on the image pickup device 220 is read by the information processing device 1.
 また情報処理装置1は取得した画像データやタグ情報を用いて、圃場300を計測対象とした分析情報を生成すること、また分析結果をユーザに対して、画像として提示する処理を行うことが可能にされていてもよい。
 具体的には、画像データに写された作物のカウント等を行い、それに基づいて、例えば作物数、単位面積あたりの作物数、発芽率、予測収穫量、作物割合など、圃場300の管理に用いることができる情報を生成し、ユーザに提示することが考えられる。
 さらにまた情報処理装置1は、圃場300を含むマップ画像上で、各サンプル(画像データ)の位置を提示する表示や、リプラントに関する情報の表示の実行制御も行うようにされていてもよい。
Further, the information processing device 1 can generate analysis information for the field 300 as a measurement target by using the acquired image data and tag information, and can perform a process of presenting the analysis result as an image to the user. It may be set to.
Specifically, the crops copied to the image data are counted, and based on the count, for example, the number of crops, the number of crops per unit area, the germination rate, the predicted yield, the crop ratio, etc. are used for the management of the field 300. It is conceivable to generate information that can be generated and present it to the user.
Furthermore, the information processing device 1 may also perform execution control of displaying the position of each sample (image data) on the map image including the field 300 and displaying information on the replant.
 情報処理装置1は、例えばPC(personal computer)やFPGA(field-programmable gate array)、或いはスマートフォンやタブレットなどの端末装置などとして実現される。
 なお、図1では情報処理装置1は撮像装置220とは別体のものとしているが、例えば撮像装置220を含むユニット内に情報処理装置1となる演算装置(マイクロコンピュータ等)を設けてもよい。
 また、情報処理装置1として、飛行体200の飛行経路を設定する情報処理装置と、圃場300を計測対象とした分析情報を生成する情報処理装置とが、それぞれ別体で設けられていてもよい。
The information processing device 1 is realized as, for example, a PC (personal computer), an FPGA (field-programmable gate array), or a terminal device such as a smartphone or tablet.
Although the information processing device 1 is separate from the image pickup device 220 in FIG. 1, for example, an arithmetic unit (microcomputer or the like) serving as the information processing device 1 may be provided in the unit including the image pickup device 220. ..
Further, as the information processing device 1, an information processing device that sets the flight path of the flying object 200 and an information processing device that generates analysis information for the field 300 as a measurement target may be provided separately. ..
 本実施の形態のセンシングシステムの場合、例えば画像データ上で圃場300における「ロウ」とされる箇所を自動的に決定し、その決定に基づいて、圃場300に対するセンシングのためのパスを生成する。
 ロウとは、作物が植え付けられたラインのことであり、例えば圃場300において種植えのために形成される畝もロウの一種である。また特に畝のように土を盛り上げた状態としたものに限らず、平地に種を蒔いていったときに形成されるラインもロウである。例えばトラクター(播種機)で種まきをしたときに形成される、植え付けのラインがロウと呼ばれる。
In the case of the sensing system of the present embodiment, for example, a portion to be "row" in the field 300 is automatically determined on the image data, and a path for sensing with respect to the field 300 is generated based on the determination.
The wax is a line on which a crop is planted, and for example, a ridge formed for seed planting in a field 300 is also a kind of wax. In addition, the line formed when seeds are sown on flat ground is also low, not limited to the one in which the soil is raised like a ridge. For example, the planting line formed when sowing seeds with a tractor (sowing machine) is called a row.
 図2には、圃場300に形成されたロウ301を模式的に示している。例えば種まきから日にちが立つことで、種が発芽して、図のように作物の葉が並んでいるラインがロウ301となる。
 本実施の形態の場合、飛行体200が移動しながら撮像装置220によって圃場300が撮像されていくが、適宜タイミングで例えば図中の撮像範囲SP1、SP2のように、各所が撮像されることになる。例えば1フレームの静止画撮像画像として撮像範囲SP1の画像データや、撮像範囲SP2の画像データが撮像装置220によって得られていき、これらがそれぞれサンプルとして例えば情報処理装置1に取り込まれる。
 なおこの図では、飛行体200がロウに対して傾斜した飛行経路Fに沿って移動する例を示している。飛行体200は一般的にはロウに平行に飛行すればよいが、後述するように、本実施の形態では飛行体200はロウに対して傾斜したパスを含む飛行経路を飛行する。
FIG. 2 schematically shows the wax 301 formed in the field 300. For example, as the days rise from sowing, the seeds germinate, and the line where the leaves of the crop are lined up becomes Row 301 as shown in the figure.
In the case of the present embodiment, the field 300 is imaged by the imaging device 220 while the flying object 200 is moving, but each part is imaged at an appropriate timing, for example, as in the imaging ranges SP1 and SP2 in the figure. Become. For example, the image data of the imaging range SP1 and the image data of the imaging range SP2 are obtained by the imaging device 220 as a one-frame still image captured image, and these are taken into, for example, the information processing device 1 as a sample.
In this figure, an example is shown in which the flying object 200 moves along the flight path F inclined with respect to the row. Generally, the flying object 200 may fly in parallel with the row, but as described later, in the present embodiment, the flying object 200 flies in a flight path including a path inclined with respect to the row.
 なお、図2では直線状のロウ301を示しているが、ロウ301は、必ずしも常に直線とは限らない。直線状のロウ301が圃場300の端などで曲がる場合がある。また圃場300の形状や種まきの際の経路、障害物などにより、ロウ301は一部がカーブする場合もあるし、例えばスパイラル状、同心円状にロウ301が形成される場合もある。 Although FIG. 2 shows a linear row 301, the row 301 is not always a straight line. The linear wax 301 may bend at the edge of the field 300 or the like. Further, depending on the shape of the field 300, the path at the time of sowing, obstacles, etc., the row 301 may be partially curved, or the row 301 may be formed in a spiral shape or a concentric circle shape, for example.
 トラクター270は、圃場300に種子等(種子や苗や株など)の植え付けを行う。トラクター270は例えば情報処理装置1から提供される植え付けの指示データに基づいて自動走行し植え付けを行う。これにより圃場300に上述のロウ301が形成される。
 トラクター270にはコンピュータ装置が搭載されており、そのコンピュータ装置は指示データに基づいて走行や植え付け動作の制御を行う。例えばコンピュータ装置は、植え付けの指示データ(箇所毎の単位面積あたりの植え付け指示数を含むレートマップデータ)を含むデータファイルがインポートされることで、その指示データに基づいてトラクター270の走行及び植え付け動作を制御する。
 またトラクター270による植え付け作業の実績(箇所毎の単位面積あたりの植え付け実績数)は、実績データとして情報処理装置1に提供されてもよい。
The tractor 270 plants seeds and the like (seed, seedlings, strains, etc.) in the field 300. The tractor 270 automatically travels and plants based on, for example, planting instruction data provided by the information processing device 1. As a result, the above-mentioned wax 301 is formed in the field 300.
A computer device is mounted on the tractor 270, and the computer device controls traveling and planting operations based on instruction data. For example, a computer device imports a data file containing planting instruction data (rate map data including the number of planting instructions per unit area for each location), and the tractor 270 travels and plants based on the instruction data. To control.
Further, the actual results of the planting work by the tractor 270 (the actual number of plantings per unit area for each location) may be provided to the information processing apparatus 1 as actual data.
<2.情報処理装置の構成>
 以上のセンシングシステムにおいて、圃場300おけるパスを生成する処理を行う情報処理装置1について説明する。
<2. Information processing device configuration>
In the above sensing system, an information processing device 1 that performs a process of generating a path in a field 300 will be described.
 図3は情報処理装置1のハードウエア構成を示している。情報処理装置1は、CPU(Central Processing Unit)51、ROM(Read Only Memory)52、RAM(Random Access Memory)53を有して構成される。
 CPU51は、ROM52に記憶されているプログラム、または記憶部59からRAM53にロードされたプログラムに従って各種の処理を実行する。RAM53にはまた、CPU51が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU51、ROM52、およびRAM53は、バス54を介して相互に接続されている。このバス54にはまた、入出力インタフェース55も接続されている。
FIG. 3 shows the hardware configuration of the information processing device 1. The information processing device 1 includes a CPU (Central Processing Unit) 51, a ROM (Read Only Memory) 52, and a RAM (Random Access Memory) 53.
The CPU 51 executes various processes according to the program stored in the ROM 52 or the program loaded from the storage unit 59 into the RAM 53. The RAM 53 also appropriately stores data and the like necessary for the CPU 51 to execute various processes.
The CPU 51, ROM 52, and RAM 53 are connected to each other via the bus 54. An input / output interface 55 is also connected to the bus 54.
 入出力インタフェース55には、液晶パネル或いは有機EL(Electroluminescence)パネルなどよりなる表示部56、キーボード、マウスなどよりなる入力部57、スピーカ58、記憶部59、通信部60などが接続可能である。 The input / output interface 55 can be connected to a display unit 56 composed of a liquid crystal panel or an organic EL (Electroluminescence) panel, an input unit 57 composed of a keyboard, a mouse, etc., a speaker 58, a storage unit 59, a communication unit 60, and the like.
 表示部56は情報処理装置1と一体でも良いし別体の機器でもよい。
 表示部56では、CPU51の指示に基づいて表示画面上に撮像画像や各種の計算結果等の表示が行われる。また表示部56はCPU51の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を行う。
The display unit 56 may be integrated with the information processing device 1 or may be a separate device.
The display unit 56 displays captured images, various calculation results, and the like on the display screen based on the instructions of the CPU 51. Further, the display unit 56 displays various operation menus, icons, messages, etc., that is, as a GUI (Graphical User Interface) based on the instruction of the CPU 51.
 入力部57は、情報処理装置1を使用するユーザが用いる入力デバイスを意味する。
 例えば入力部57としては、キーボード、マウス、キー、ダイヤル、タッチパネル、タッチパッド、リモートコントローラ等の各種の操作子や操作デバイスが想定される。
 入力部57によりユーザの操作が検知され、入力された操作に応じた信号はCPU51によって解釈される。
The input unit 57 means an input device used by a user who uses the information processing device 1.
For example, as the input unit 57, various controls and operation devices such as a keyboard, mouse, keys, dial, touch panel, touch pad, and remote controller are assumed.
The user's operation is detected by the input unit 57, and the signal corresponding to the input operation is interpreted by the CPU 51.
 記憶部59は例えばHDD(Hard Disk Drive)や固体メモリなどの記憶媒体より構成される。記憶部59には、例えばマクロ計測部やミクロ計測部から受信した検出データや分析結果その他各種の情報が記憶される。また分析処理等のためのプログラムデータの格納にも記憶部59は用いられる。 The storage unit 59 is composed of a storage medium such as an HDD (Hard Disk Drive) or a solid-state memory. The storage unit 59 stores, for example, detection data received from the macro measurement unit or the micro measurement unit, analysis results, and various other information. The storage unit 59 is also used for storing program data for analysis processing and the like.
 通信部60は、インターネットを含むネットワークを介しての通信処理や、周辺各部の機器との間の通信を行う。
 この通信部60は例えば飛行体200や撮像装置220やトラクター270との通信を行う通信デバイスとされる場合もある。
The communication unit 60 performs communication processing via a network including the Internet and communication with devices in various peripheral parts.
The communication unit 60 may be, for example, a communication device that communicates with the flying object 200, the image pickup device 220, or the tractor 270.
 入出力インタフェース55にはまた、必要に応じてドライブ61が接続され、メモリカード等のストレージデバイス62が装着され、データの書込や読出が行われる。
 例えばストレージデバイス62から読み出されたコンピュータプログラムが、必要に応じて記憶部59にインストールされたり、CPU51で処理したデータが記憶されたりする。もちろんドライブ61は、磁気ディスク、光ディスク、光磁気ディスク等のリムーバブル記憶媒体に対する記録再生ドライブとされてもよい。これら磁気ディスク、光ディスク、光磁気ディスク等もストレージデバイス62の一態様である。
A drive 61 is also connected to the input / output interface 55 as needed, and a storage device 62 such as a memory card is attached to the input / output interface 55 to write or read data.
For example, the computer program read from the storage device 62 is installed in the storage unit 59 as needed, and the data processed by the CPU 51 is stored. Of course, the drive 61 may be a recording / playback drive for a removable storage medium such as a magnetic disk, an optical disk, or a magneto-optical disk. These magnetic disks, optical disks, magneto-optical disks, and the like are also aspects of the storage device 62.
 なお、実施の形態の情報処理装置1は、図3のようなハードウエア構成の情報処理装置(コンピュータ装置)1が単一で構成されることに限らず、複数のコンピュータ装置がシステム化されて構成されてもよい。複数のコンピュータ装置は、LAN等によりシステム化されていてもよいし、インターネット等を利用したVPN(Virtual Private Network)等により遠隔地に配置されたものでもよい。複数のコンピュータ装置には、クラウドコンピューティングサービスによって利用可能なコンピュータ装置が含まれてもよい。
 またこの図3の情報処理装置1は、据え置き型、ノート型等のパーソナルコンピュータ、タブレット端末やスマートフォン等の携帯端末として実現できる。さらには情報処理装置1としての機能を有する測定装置、テレビジョン装置、モニタ装置、撮像装置、設備管理装置等の電子機器でも、本実施の形態の情報処理装置1を搭載することができる。
The information processing device 1 of the embodiment is not limited to the information processing device (computer device) 1 having a hardware configuration as shown in FIG. 3 being configured as a single unit, and a plurality of computer devices are systematized. It may be configured. The plurality of computer devices may be systematized by a LAN or the like, or may be arranged in a remote place by a VPN (Virtual Private Network) or the like using the Internet or the like. The plurality of computer devices may include computer devices available by cloud computing services.
Further, the information processing device 1 of FIG. 3 can be realized as a stationary type, a notebook type or the like personal computer, or a mobile terminal such as a tablet terminal or a smartphone. Further, electronic devices such as a measuring device, a television device, a monitoring device, an imaging device, and an equipment management device having a function as the information processing device 1 can also be equipped with the information processing device 1 of the present embodiment.
 例えばこのようなハードウエア構成の情報処理装置1では、CPU51による演算機能や、ROM52、RAM53、記憶部59による記憶機能、通信部60やドライブ61によるデータ取得機能、表示部56などによる出力機能を有し、インストールされたソフトウェアが機能することで、各種機能構成を備えるようにされる。 For example, the information processing device 1 having such a hardware configuration has a calculation function by the CPU 51, a storage function by the ROM 52, the RAM 53, and the storage unit 59, a data acquisition function by the communication unit 60 and the drive 61, and an output function by the display unit 56 and the like. By having and installed software functioning, various functional configurations are provided.
 情報処理装置1には、機能として、図3に示すパス生成部2が設けられる。
 パス生成部2の処理機能は、CPU51で起動されるソフトウェアにより実現される。
 そのソフトウェアを構成するプログラムは、ネットワークからダウンロードされたり、ストレージデバイス62(例えばリムーバブル記憶媒体)から読み出されたりして図3の情報処理装置1にインストールされる。或いはそのプログラムが記憶部59等に予め記憶されていてもよい。そしてCPU51において当該プログラムが起動されることで、パス生成部2の機能が発現する。
 またパス生成部2の機能の演算経過や結果の記憶は、例えばRAM53の記憶領域や記憶部59の記憶領域を用いて実現される。
The information processing device 1 is provided with the path generation unit 2 shown in FIG. 3 as a function.
The processing function of the path generation unit 2 is realized by software started by the CPU 51.
The program constituting the software is downloaded from the network or read from the storage device 62 (for example, a removable storage medium) and installed in the information processing device 1 of FIG. Alternatively, the program may be stored in advance in the storage unit 59 or the like. Then, when the program is started in the CPU 51, the function of the path generation unit 2 is exhibited.
Further, the calculation progress and the storage of the result of the function of the path generation unit 2 are realized by using, for example, the storage area of the RAM 53 or the storage area of the storage unit 59.
 パス生成部2は圃場300におけるセンシングのためのパスを生成する。例えばパス生成部2はパスを生成するために必要な情報を取得し、取得した情報を基に各種算出等を行う。
 またパス生成部2は、生成したパスを圃場300における飛行体200の飛行経路として設定し、飛行経路を含む飛行プランを出力する。
The path generation unit 2 generates a path for sensing in the field 300. For example, the path generation unit 2 acquires information necessary for generating a path, and performs various calculations based on the acquired information.
Further, the path generation unit 2 sets the generated path as the flight path of the flying object 200 in the field 300, and outputs a flight plan including the flight path.
<3.作業手順>
 図4は農場の管理のための作業手順の例を示している。
 ステップS1として、圃場300上での飛行体200のフライトを行い、飛行中に撮像装置220による画像撮像が例えば一定時間間隔で行われる。これにより多数のサンプルとしての画像データを得る。
<3. Work procedure>
FIG. 4 shows an example of a work procedure for farm management.
As step S1, the flight of the flying object 200 on the field 300 is performed, and images are taken by the image pickup device 220 during the flight, for example, at regular time intervals. As a result, a large number of image data as samples are obtained.
 ステップS2として情報処理装置1が画像データを取得する。例えば撮像装置220からの有線又は無線の通信、或いはメモリカードなどのストレージデバイス62の受け渡しにより、フライト時に撮像した画像データを情報処理装置1が取り込む。情報処理装置1は画像データを例えば記憶部59に格納する。 As step S2, the information processing device 1 acquires image data. For example, the information processing device 1 captures image data captured during flight by wired or wireless communication from the image pickup device 220 or delivery of a storage device 62 such as a memory card. The information processing device 1 stores image data in, for example, a storage unit 59.
 ステップS3として情報処理装置1は画像データに基づく分析処理を行う。例えば各画像データを用いたスタンドカウントなどが行われる。具体的な処理例は準備処理として後述する。 As step S3, the information processing device 1 performs an analysis process based on the image data. For example, stand counting using each image data is performed. A specific processing example will be described later as a preparatory processing.
 ステップS4として、情報処理装置1はUI画面でユーザ(例えば農場のスタッフ)に対してリプラント判断のために、圃場300の状況や各種情報を提示するとともにユーザの操作に対応する。具体的にはユーザがリプラントを行うか否か、或いはどのエリアをリプラントするか、などを考えるための情報提示を行ったり、リプラントを想定するエリアの指定を受け付けたりする処理を行う。 As step S4, the information processing device 1 presents the status of the field 300 and various information to the user (for example, the staff of the farm) on the UI screen in order to determine the replant, and responds to the user's operation. Specifically, it performs a process of presenting information for considering whether or not the user replants, which area to replant, and accepting the designation of the area where the replant is assumed.
 UI画面での入出力の結果としてリプラントが行われる場合は、ステップS5からステップS6に進み、情報処理装置1はリプラントのためのROI(Region of Interest :関心領域)を含む指示ファイルを生成する処理を行う。この指示ファイルはトラクター270に提供するもので、ROIはリプラントするエリアを示す情報である。
 そしてステップS7で情報処理装置1は指示ファイルをエクスポートする。
 指示ファイルをトラクター270が受け取ることで、その後、実際のリプラントが行われる。
When a replant is performed as a result of input / output on the UI screen, the process proceeds from step S5 to step S6, and the information processing apparatus 1 generates an instruction file including a ROI (Region of Interest) for the replant. I do. This instruction file is provided to the tractor 270, and the ROI is information indicating the area to be replanted.
Then, in step S7, the information processing device 1 exports the instruction file.
Upon receipt of the instruction file by the tractor 270, the actual replanting is then performed.
 以上の手順のうちで、本実施の形態の情報処理装置1は、特にステップS1におけるサンプル取得時の、飛行体200の飛行経路のパスを生成する。
In the above procedure, the information processing device 1 of the present embodiment generates a path of the flight path of the flying object 200, particularly at the time of sample acquisition in step S1.
<4.サンプリング>
 以下、図5から図7を参照して圃場300におけるサンプリングについて説明する。本実施の形態では、圃場300における離散的な複数の領域で撮像された画像データをサンプルとして取得することをサンプリングと称する。
<4. Sampling>
Hereinafter, sampling in the field 300 will be described with reference to FIGS. 5 to 7. In the present embodiment, acquisition of image data captured in a plurality of discrete regions in the field 300 as a sample is referred to as sampling.
<4―1.パス>
 図5は圃場300を対象とするサンプリングの一例を説明するための説明図であり、検出対象エリア310としての圃場300と、検出対象エリア310の外周を囲む外周エリア320とを示している。
 検出対象エリア310には、検出対象物の並びである複数のロウが並列している。図5においてロウの図示は省略されているが、複数のロウは両矢印で示すロウ方向Drの方向に延びているものとする。なお、以下では、ロウが延びる方向をロウ方向Drと呼び、ロウが並列する方向をロウの並び方向Djと呼ぶ。
 外周エリア320は検出対象エリア310を外部から隔てる緩衝領域であり、検出対象物やロウは設けられていない。
<4-1. Path>
FIG. 5 is an explanatory diagram for explaining an example of sampling for the field 300, and shows the field 300 as the detection target area 310 and the outer peripheral area 320 surrounding the outer periphery of the detection target area 310.
In the detection target area 310, a plurality of rows, which are an array of detection target objects, are arranged in parallel. Although the wax is not shown in FIG. 5, it is assumed that the plurality of waxes extend in the row direction Dr indicated by the double-headed arrows. In the following, the direction in which the wax extends is referred to as the row direction Dr, and the direction in which the waxes are parallel is referred to as the row arrangement direction Dj.
The outer peripheral area 320 is a buffer area that separates the detection target area 310 from the outside, and is not provided with a detection target or a wax.
 図5に示す検出対象エリア310には全体パスP1が設定されている。全体パスP1はサンプリングのためのパスであり、飛行体200が全体パスP1の飛行経路を移動する間にサンプルが取得される。
 なお、飛行体200は検出対象エリア310の外に位置する地点から飛行を開始し、検出対象エリア310の上空を飛行した後に、検出対象エリア310の外に位置する地点で飛行を終了する。サンプルの取得は、飛行体200が全体パスP1を飛行する間だけでなく、飛行の開始から終了まで一定の間隔で行われていてもよい。
The entire path P1 is set in the detection target area 310 shown in FIG. The entire path P1 is a path for sampling, and a sample is acquired while the aircraft body 200 travels in the flight path of the entire path P1.
The flying object 200 starts flying from a point located outside the detection target area 310, flies over the detection target area 310, and then ends the flight at a point located outside the detection target area 310. The acquisition of the sample may be performed not only during the flight of the aircraft body 200 through the entire path P1, but also at regular intervals from the start to the end of the flight.
 検出対象エリア310において、飛行体200は、全体パスP1の一端を始点P1s、全体パスP1の他端を終点P1eとして、始点P1sから終点P1eにかけて全体パスP1に含まれる部分パス等のパスに沿って飛行する。 In the detection target area 310, the flying object 200 has one end of the entire path P1 as the start point P1s and the other end of the entire path P1 as the end point P1e, and is along a path such as a partial path included in the entire path P1 from the start point P1s to the end point P1e. To fly.
 部分パスとは、検出対象エリア310内を通過する線分である。 
 即ち、部分パスとは、少なくとも一部が検出対象エリア310内に位置する線分であり、例えば検出対象エリア310の外縁上の起点から終点に至る線分であって、検出対象エリア310の少なくとも一部を横断するパスである。検出対象エリア310の外縁上の起点から終点に至り検出対象エリア310の少なくとも一部を横断する部分パスとは、例えば方形状の検出対象エリアを想定した場合に、方形状を構成する一辺上の起点から他辺上の終点に至る線分である。
 なお、検出対象エリア310の外縁上の起点から終点に至る部分パスとしては、例えば方形状の検出対象エリアを想定した場合に、一辺上の起点から検出対象エリア310内を経由して同じ一辺上の終点に至る線分や、一辺上の起点から検出対象エリア310内を経由して当該起点に等しい点である終点に至る線分も含まれる。
 また、部分パスは、少なくとも一部が検出対象エリア310内に位置する線分であれば、検出対象エリア310の外縁上の一点から検出対象エリア310内の一点に至る線分や、全体が検出対象エリア310内に位置する線分であってもよい。
The partial path is a line segment that passes through the detection target area 310.
That is, the partial path is a line segment whose at least a part is located in the detection target area 310, for example, a line segment from the start point to the end point on the outer edge of the detection target area 310, and at least a part of the detection target area 310. It is a path that crosses a part. The partial path from the start point on the outer edge of the detection target area 310 to the end point and crossing at least a part of the detection target area 310 is, for example, on one side forming the square, assuming a rectangular detection target area. It is a line segment from the starting point to the ending point on the other side.
As a partial path from the start point to the end point on the outer edge of the detection target area 310, for example, assuming a rectangular detection target area, the same one side is on the same side from the start point on one side via the inside of the detection target area 310. A line segment reaching the end point of the above, and a line segment from the starting point on one side to the end point equal to the starting point via the detection target area 310 are also included.
Further, if at least a part of the partial path is a line segment located in the detection target area 310, the line segment from one point on the outer edge of the detection target area 310 to one point in the detection target area 310 or the whole is detected. It may be a line segment located in the target area 310.
 図5に示す全体パスP1は、複数の平行パスPp(Pp1からPp10)と複数の接続パスPcとを含んでいる。
 平行パスPpは検出対象エリア310の外縁上の起点から終点に至る線分であり、ロウ方向Drに対して平行な部分パスである。
 接続パスPcは検出対象エリア310の外縁に沿う線分であり、隣接する部分パスの端部同士を接続するパスである。
The entire path P1 shown in FIG. 5 includes a plurality of parallel paths Pp (Pp1 to Pp10) and a plurality of connection paths Pc.
The parallel path Pp is a line segment from the start point to the end point on the outer edge of the detection target area 310, and is a partial path parallel to the row direction Dr.
The connection path Pc is a line segment along the outer edge of the detection target area 310, and is a path that connects the ends of adjacent partial paths.
 全体パスP1は全体として、検出対象エリア310を、隣接する平行パスPp、Ppとその間に位置する接続パスPcによって囲まれた短冊状の区画に区切るような、グリッド状の形状を有している。
 飛行体200は、平行パスPp1、平行パスPp1に連続する接続パスPc、接続パスPcに連続する平行パスPp2というように連続する部分パスを順番に辿りながら、全体パスP1の飛行経路を飛行する。
The entire path P1 as a whole has a grid-like shape that divides the detection target area 310 into strip-shaped sections surrounded by adjacent parallel paths Pp and Pp and connection paths Pc located between them. ..
The aircraft body 200 flies in the flight path of the entire path P1 while sequentially following consecutive partial paths such as a parallel path Pp1, a connection path Pc continuous with the parallel path Pp1, and a parallel path Pp2 continuous with the connection path Pc. ..
 図5において、飛行体200が全体パスP1を飛行する間に撮像された検出対象エリア310の各領域は、イメージ面IFとして表されている。イメージ面IFは図2で説明した撮像範囲SPに相当する。
 イメージ面IFは矩形状とされ、パスの伸長方向に伸びる縦幅lvと、パスの伸長方向に直交する方向に伸びる横幅lhとを有している(図7参照)。イメージ面IFは、パスがイメージ面IFの横幅の中央を通るように位置されている。
In FIG. 5, each region of the detection target area 310 imaged while the flying object 200 flies through the entire path P1 is represented as an image plane IF. The image plane IF corresponds to the imaging range SP described with reference to FIG.
The image plane IF has a rectangular shape and has a vertical width lv extending in the extending direction of the path and a horizontal width hl extending in the direction orthogonal to the extending direction of the path (see FIG. 7). The image plane IF is positioned so that the path passes through the center of the width of the image plane IF.
 図5のサンプリング例においては、飛行体200が全体パスP1の各平行パスPpに沿って検出対象エリア310を横断する間に、イメージ面IFの撮像データがサンプルとして取得されている。サンプリングされた複数のイメージ面IFは、各平行パスPp上に位置されている。 In the sampling example of FIG. 5, while the flying object 200 traverses the detection target area 310 along each parallel path Pp of the entire path P1, the imaging data of the image plane IF is acquired as a sample. The plurality of sampled image plane IFs are located on each parallel path Pp.
 圃場300におけるサンプリングは、例えば圃場300に植え付けられた作物の植え付けの不具合等を検出するために実施される。植え付けの不具合には、例えば気象現象等に起因して圃場300のランダムな箇所で生じる不具合や、例えば特定のロウに生じる局地的な不具合がある。局地的な不具合としては、農業機器の不良、例えば作物の植え付けに用いられたトラクターにおけるノズルの詰まり等に起因する特定のロウの植え付け不良などがある。
 図5のサンプリング例においては、ロウに対して平行な平行パスPpに沿ってサンプルが取得されるため、平行パスPpの近傍に位置するロウの撮像データがサンプルとして取得されることになる。他方、平行パスPpの近傍に位置しないロウ(例えば、平行パスPp1上のイメージ面IF1と平行パスPp2上のイメージ面IF2の間に位置するロウ)の撮像データをサンプルとして取得することができず、平行パスPpの近傍に位置しないロウに生じた局地的な不具合を検知できない可能性がある。
Sampling in the field 300 is carried out, for example, in order to detect a defect in the planting of the crop planted in the field 300. Planting defects include, for example, defects that occur at random locations in the field 300 due to meteorological phenomena, and local defects that occur in specific waxes, for example. Local defects include defective agricultural equipment, such as defective planting of specific waxes due to clogging of nozzles in tractors used for planting crops.
In the sampling example of FIG. 5, since the sample is acquired along the parallel path Pp parallel to the row, the imaging data of the row located in the vicinity of the parallel path Pp is acquired as a sample. On the other hand, the imaging data of the row not located near the parallel path Pp (for example, the row located between the image plane IF1 on the parallel path Pp1 and the image plane IF2 on the parallel path Pp2) cannot be acquired as a sample. , There is a possibility that a local defect occurring in a row not located near the parallel path Pp cannot be detected.
 また、図5のサンプリング例では、全体パスP1に含まれる接続パスPcにおいてサンプルの取得が行われていない。なお、接続パスPcにおいて撮像データの取得が行われる場合でも、検出対象エリア310の境界近傍のデータは検出対象エリア310における分析材料には適さないため、接続パスPcで取得された撮像データは統計分析上のサンプルとして用いないことが好ましい。
 従って接続パスPcはサンプリングにとって余分なパスであるといえるが、飛行体200は、平行パスPpから隣接する次の平行パスPpへ移動するにあたって接続パスPc上を移動せざるを得ない。このように移動の都合で余分なパスが含まれている点で、全体パスP1を用いたサンプリングは効率的でないともいえる。
Further, in the sampling example of FIG. 5, the sample is not acquired in the connection path Pc included in the entire path P1. Even when the imaging data is acquired in the connection path Pc, the data near the boundary of the detection target area 310 is not suitable for the analysis material in the detection target area 310, so the imaging data acquired in the connection path Pc is statistical. It is preferable not to use it as an analytical sample.
Therefore, it can be said that the connection path Pc is an extra path for sampling, but the flying object 200 has no choice but to move on the connection path Pc when moving from the parallel path Pp to the next adjacent parallel path Pp. It can be said that sampling using the entire path P1 is not efficient in that an extra path is included due to the convenience of movement.
 続けて、図6を参照して本実施の形態のサンプリングの一例を説明する。図6に示す圃場300は図5の圃場300と同様であり、図6に示す検出対象エリア310においても、複数のロウがロウ方向Drに伸び、ロウの並び方向Djに並列している。 Subsequently, an example of sampling according to the present embodiment will be described with reference to FIG. The field 300 shown in FIG. 6 is the same as the field 300 shown in FIG. 5, and in the detection target area 310 shown in FIG. 6, a plurality of waxes extend in the row direction Dr and are parallel to the row arrangement direction Dj.
 図6に示す検出対象エリア310には、全体パスP2が設定されている。飛行体200は、全体パスP2の一端を始点P2s、全体パスP2の他端を終点P2eとして、始点から終点にかけて全体パスP2に含まれる部分パスに沿って飛行する。 The entire path P2 is set in the detection target area 310 shown in FIG. The aircraft body 200 flies along a partial path included in the entire pass P2 from the start point to the end point, with one end of the entire pass P2 as the start point P2s and the other end of the entire pass P2 as the end point P2e.
 全体パスP2は、複数の傾斜パスPd(Pd1からPd8)を、検出対象エリア内を通過する部分パスとして含んでいる。
 傾斜パスPdは検出対象エリア310の外縁上の起点から終点に至る線分であり、ロウ方向Drに対して傾斜されている。傾斜パスPdは、少なくとも2つのロウを横切る。
 さらに図6に示す各傾斜パスPdは検出対象エリア310を横断する線分であり、ロウの並び方向Djに並んだすべてのロウを横切るように設けられている。また、傾斜パスPdは直線である線分により形成されている。
The entire path P2 includes a plurality of inclined paths Pd (Pd1 to Pd8) as partial paths passing through the detection target area.
The inclined path Pd is a line segment from the start point to the end point on the outer edge of the detection target area 310, and is inclined with respect to the row direction Dr. The ramp path Pd crosses at least two rows.
Further, each inclined path Pd shown in FIG. 6 is a line segment that crosses the detection target area 310, and is provided so as to cross all the rows arranged in the row arrangement direction Dj. Further, the inclined path Pd is formed by a straight line segment.
 図6に示す傾斜パスPdは、隣接する傾斜パスPd、Pd同士が端部で接続されている。さらに隣接する傾斜パスPd、Pdは互いに異なる方向に傾斜され、非平行にされている。
 このような複数の傾斜パスPdから構成された全体パスP2は、全体としてジグザグ状の形状を有している。
 飛行体200は、傾斜パスPd1、傾斜パスPd1に接続された次の傾斜パスPd2、傾斜パスPd2に接続された次の傾斜パスPd3というように連続する部分パスを順番に辿りながら、全体パスP2の飛行経路を飛行する。
In the inclined path Pd shown in FIG. 6, adjacent inclined paths Pd and Pd are connected to each other at an end portion. Further, the adjacent inclined paths Pd and Pd are inclined in different directions and are made non-parallel.
The entire path P2 composed of such a plurality of inclined paths Pd has a zigzag shape as a whole.
The aircraft body 200 follows a continuous partial path in order, such as the inclined path Pd1, the next inclined path Pd2 connected to the inclined path Pd1, and the next inclined path Pd3 connected to the inclined path Pd2, and the entire path P2. Fly the flight path of.
 なお、隣接する2つの傾斜パスPd、Pdは所定の傾斜パス角度を為すように位置されている。傾斜パス角度の詳細については後述する。 Note that the two adjacent inclined paths Pd and Pd are positioned so as to form a predetermined inclined path angle. The details of the tilt path angle will be described later.
 図6のサンプリング例においては、飛行体200が全体パスP2の各傾斜パスPdに沿って検出対象エリア310を横断する間に、イメージ面IFの撮像データがサンプルとして取得される。複数のイメージ面IFは、各傾斜パスPd上に等間隔に離隔している。 In the sampling example of FIG. 6, while the flying object 200 traverses the detection target area 310 along each inclined path Pd of the entire path P2, the imaging data of the image plane IF is acquired as a sample. The plurality of image plane IFs are evenly spaced on each inclined path Pd.
 傾斜パスPdは少なくとも2つのロウを横切るため、1本の傾斜パスによって複数のロウをカバーするサンプルを取得することができる。これにより、例えば特定のロウに生じた局地的な不具合を検知する可能性が高まり、サンプリングの精度を向上させることができる。
 また、図6に示す傾斜パスPdはロウの並び方向Djに並んだすべてのロウを横切るため、すべてのロウについてサンプリングの対象となる確率が高められている。
Since the sloping pass Pd crosses at least two waxes, one sloping pass can provide a sample covering a plurality of waxes. As a result, for example, the possibility of detecting a local defect occurring in a specific row is increased, and the sampling accuracy can be improved.
Further, since the inclined path Pd shown in FIG. 6 crosses all the rows arranged in the row arrangement direction Dj, the probability that all the rows are to be sampled is increased.
 さらに図6のサンプリング例においては、全体パスP2に接続パスPcが含まれていない。従って、余分なパスを含まない全体パスP2を用いることで、効率的なサンプリングを実施することができる。 Further, in the sampling example of FIG. 6, the connection path Pc is not included in the entire path P2. Therefore, efficient sampling can be performed by using the entire path P2 that does not include an extra path.
 なお図6に示すサンプリング例は、下記の条件での実施を想定した。
 ・外周部を含む圃場面積:40ヘクタール
 ・飛行高度:15m
 ・イメージ面の画角:水平方向50度、垂直方向30度 
 ・イメージ面の幅長:横幅14m、縦幅8m
 ・イメージ面の重複率:横幅方向variable(不定)、縦方向-20%
 ・サンプル間の距離:横幅方向56m、縦幅方向1.6m、
 ・全体パスの長さ:4621m
 ・傾斜パス角度:14度
 ・カバレッジレート:14%
The sampling example shown in FIG. 6 is assumed to be carried out under the following conditions.
・ Field area including outer circumference: 40 hectares ・ Flight altitude: 15m
-Angle of view of the image surface: 50 degrees in the horizontal direction and 30 degrees in the vertical direction
-Width of image surface: width 14m, height 8m
-Image surface overlap rate: width direction variable (indefinite), vertical direction -20%
-Distance between samples: 56 m in width direction, 1.6 m in length direction,
・ Overall path length: 4621m
・ Inclined path angle: 14 degrees ・ Coverage rate: 14%
 図6のサンプリング例の全体パスP2の長さは4621mであるが、同じ検出対象エリア310を対象とする図5のサンプリング例における全体パスP1の長さは6225mである。即ち全体パスP2は、全体パスP1より短い長さのパスで、同じ範囲を対象とするサンプリングを効率的に実施することができる。
 また、図5及び図6の例のように全体パスP1、P2を飛行体200の飛行経路として用いる場合には、パスの長さが短くなるほど飛行距離が短縮される。従って、全体パスP2を用いて飛行距離を短縮することで、飛行に用いる燃料やバッテリーの充電電力の消費を抑えることができる。
The length of the entire path P2 in the sampling example of FIG. 6 is 4621 m, but the length of the overall path P1 in the sampling example of FIG. 5 targeting the same detection target area 310 is 6225 m. That is, the whole pass P2 is a pass having a length shorter than that of the whole pass P1, and sampling for the same range can be efficiently performed.
Further, when the entire paths P1 and P2 are used as the flight paths of the flying object 200 as in the examples of FIGS. 5 and 6, the flight distance is shortened as the length of the paths becomes shorter. Therefore, by shortening the flight distance by using the entire pass P2, it is possible to suppress the consumption of the charging power of the fuel and the battery used for the flight.
<4―2.カバレッジレート>
 上記したような検出対象エリア310のサンプリングに用いられるパスは、サンプリングの目的に応じた所望のカバレッジレートに基づいて設定される。そこで、以下では図7を参照して、サンプリングにおけるカバレッジレートについて説明する。
<4-2. Coverage rate>
The path used for sampling the detection target area 310 as described above is set based on a desired coverage rate according to the purpose of sampling. Therefore, the coverage rate in sampling will be described below with reference to FIG. 7.
 本実施の形態におけるカバレッジレートとは、検出対象エリア310の面積に対してどれほどの面積がイメージ面IFとして取得されたかを示す割合である。 The coverage rate in the present embodiment is a ratio indicating how much area is acquired as the image plane IF with respect to the area of the detection target area 310.
 図7Aを参照して、平行パスPpを用いたサンプリングにおけるカバレッジレートについて説明する。
 図7Aは、トラックインターバルTIを挟んで隣接する2本の平行パスPp1、Pp2の一部を示している。
The coverage rate in sampling using the parallel path Pp will be described with reference to FIG. 7A.
FIG. 7A shows a part of two parallel paths Pp1 and Pp2 adjacent to each other with the track interval TI in between.
 図5や図7Aが示す平行パスPpを用いたサンプリングにおいては、カバレッジレートに相当する直感的な指標として、単位グリッドUGにおけるイメージ面IFの割合を求めることができる。以下、この割合を単位グリッドUGにおけるカバレッジレートと呼ぶ。
 単位グリッドUGとは、ただ1つのイメージ面IFを含む矩形状の領域であり、イメージ面IFの縦幅lv並びにパスの伸長方向においてイメージ面IFから次のイメージ面IFまでの間隔からなる縦幅Lvと、イメージ面IFの横幅lh並びに平行パスPpの並び方向においてイメージ面IFから次のイメージ面IFまでの間隔からなる横幅Lhにより定義される。
 飛行体200がサンプリングを行う実施の形態において、縦幅Lvは飛行体200の時速とサンプリングを行う間隔時間とを乗算して得られる値であり、イメージ面IFの取得から次のイメージ面IFを取得するまでの時間に移動した距離に相当する。また、横幅LhはトラックインターバルTIの長さに相当する。
In sampling using the parallel path Pp shown in FIGS. 5 and 7A, the ratio of the image plane IF in the unit grid UG can be obtained as an intuitive index corresponding to the coverage rate. Hereinafter, this ratio is referred to as a coverage rate in the unit grid UG.
The unit grid UG is a rectangular area including only one image plane IF, and is a vertical width consisting of the vertical width lv of the image plane IF and the interval from the image plane IF to the next image plane IF in the extension direction of the path. It is defined by Lv, the width lh of the image plane IF, and the width Lh consisting of the interval from the image plane IF to the next image plane IF in the arrangement direction of the parallel paths Pp.
In the embodiment in which the flying object 200 performs sampling, the vertical width Lv is a value obtained by multiplying the speed of the flying object 200 by the sampling interval time, and the next image surface IF is obtained from the acquisition of the image surface IF. It corresponds to the distance traveled in the time until acquisition. Further, the width Lh corresponds to the length of the track interval TI.
 単位グリッドUGにおけるカバレッジレートは、単位グリッドUGの縦幅方向のカバレッジレートと横幅方向のカバレッジレートに基づいて算出される。 The coverage rate in the unit grid UG is calculated based on the coverage rate in the vertical width direction and the coverage rate in the horizontal width direction of the unit grid UG.
 縦幅方向のカバレッジレートと横幅方向のカバレッジレートは、それぞれの方向におけるイメージ面IFの重複率(overlap)に基づいて算出される。
 イメージ面IFの重複率とは、イメージ面IFが隣接するイメージ面IFとどれほど重なり合うかを示す割合である。イメージ面IFの縦幅lvを100%としたときに、例えば縦幅方向の重複率が10%である場合には、イメージ面IFと隣接するイメージ面IFの縦幅lvが10%重なり合うことを示す。
 離散的にサンプルを取得することを目的とするサンプリングにおいては、重複率は便宜上マイナスの値に設定される。マイナスの値の重複率はイメージ面IF同士が離隔している状態を示す。例えばイメージ面IFの縦幅方向の重複率が-300%である場合には、イメージ面IFが、縦幅方向において隣接するイメージ面IFと、縦幅lvの300%の長さの距離だけ離隔していることを示す。即ちイメージ面IFから次のイメージ面IFまでイメージ面IFの縦幅3個分の距離があることを示す。
The coverage rate in the vertical width direction and the coverage rate in the horizontal width direction are calculated based on the overlap rate of the image plane IFs in each direction.
The overlap rate of the image plane IF is a ratio indicating how much the image plane IF overlaps with the adjacent image plane IF. When the vertical width lv of the image surface IF is 100%, for example, when the overlap rate in the vertical width direction is 10%, the vertical width lv of the image surface IF and the adjacent image surface IF overlap by 10%. show.
In sampling for the purpose of taking samples discretely, the duplication rate is set to a negative value for convenience. The overlap rate of negative values indicates a state in which the image plane IFs are separated from each other. For example, when the overlap rate of the image plane IF in the vertical width direction is -300%, the image plane IF is separated from the adjacent image plane IF in the vertical width direction by a distance of 300% of the vertical width lv. Show that you are doing. That is, it is shown that there is a distance of three vertical widths of the image surface IF from the image surface IF to the next image surface IF.
 縦幅方向のカバレッジレート(Front Coverage Rate)と横幅方向のカバレッジレート(Side Coverage Rate)は、下記の数1に示すそれぞれの式により算出される。なお、数1における重複率(overlap)は、100未満の整数である。
Figure JPOXMLDOC01-appb-M000001
The coverage rate in the vertical width direction (Front Coverage Rate) and the coverage rate in the horizontal width direction (Side Coverage Rate) are calculated by the respective formulas shown in Equation 1 below. The overlap rate in Equation 1 is an integer less than 100.
Figure JPOXMLDOC01-appb-M000001
 例えばイメージ面IFの縦幅方向の重複率が-300%である場合には、並び方向におけるカバレッジレートとして25%が算出される。 For example, when the overlap rate of the image plane IF in the vertical width direction is -300%, 25% is calculated as the coverage rate in the alignment direction.
 単位ユニット全体としてのカバレッジレート(Unit Coverage Rate)は、下記の式に示すように、イメージ面IFの縦幅方向のカバレッジレート(Front Coverage Rate)とイメージ面IFの横幅方向のカバレッジレート(Side Coverage Rate)を乗算することで算出される。
 (Unit Coverage Rate) = (Front Coverage Rate)×(Side Coverage Rate)
 例えば縦幅方向のカバレッジレートと横幅方向のカバレッジレートがそれぞれ25%である場合には、単位ユニット全体としてのカバレッジレートとして6.25%が算出される。
As shown in the following formula, the coverage rate (Unit Coverage Rate) of the unit as a whole is the coverage rate in the vertical width direction (Front Coverage Rate) of the image surface IF and the coverage rate (Side Coverage) in the horizontal direction of the image surface IF. It is calculated by multiplying Rate).
(Unit Coverage Rate) = (Front Coverage Rate) × (Side Coverage Rate)
For example, when the coverage rate in the vertical width direction and the coverage rate in the horizontal width direction are 25% each, 6.25% is calculated as the coverage rate of the entire unit unit.
 平行パスPpを含む全体パスP1を用いてサンプリングを行う場合には、ユーザから所望のカバレッジレートを受け付け、例えば当該カバレッジレートを実現する単位ユニットが形成されるようにトラックインターバルTIの長さを定めて、平行パスPpを生成するようにすることが考えられる。 When sampling is performed using the entire path P1 including the parallel path Pp, the desired coverage rate is received from the user, and the length of the track interval TI is determined so that, for example, a unit unit that realizes the coverage rate is formed. It is conceivable to generate a parallel path Pp.
 続いて図7Bを参照して、傾斜パスPdを用いたサンプリングにおけるカバレッジレートについて説明する。
 図7Bは隣接する傾斜パスPd1、Pd2を示している。傾斜パスPd1、Pd2は、後述する境界形状Bsの外縁上の起点から終点に至るパスである。傾斜パスPd1、Pd2は境界形状Bsの外縁を構成する一辺上で接続され、傾斜パスPd1と傾斜パスPd2の間隔は当該一辺に対向する辺上で最大になる。図7Bにおいては、傾斜パスPd1と傾斜パスPd2の最大間隔を最大間隔Tmax、境界形状Bsの一辺から対向する辺までの長さを距離Dと表す。
Subsequently, with reference to FIG. 7B, the coverage rate in sampling using the inclined path Pd will be described.
FIG. 7B shows adjacent inclined paths Pd1 and Pd2. The inclined paths Pd1 and Pd2 are paths from the start point to the end point on the outer edge of the boundary shape Bs, which will be described later. The inclined paths Pd1 and Pd2 are connected on one side forming the outer edge of the boundary shape Bs, and the distance between the inclined path Pd1 and the inclined path Pd2 is maximized on the side facing the one side. In FIG. 7B, the maximum distance between the inclined pass Pd1 and the inclined path Pd2 is represented by the maximum spacing Tmax, and the length from one side of the boundary shape Bs to the opposite side is represented by the distance D.
 図6や図7Bに示す傾斜パスPdを用いたサンプリングにおいては、隣接する傾斜パスPd1、Pd2の間隔が一定でないため、隣接するイメージ面IF同士の横幅方向における重複率も一定ではない。このため、傾斜パスPdを用いたサンプリングにあたっては、単位グリッドUGにおけるカバレッジレートの代わりに、隣接する傾斜パスPd1、Pd2における最小のカバレッジレートである最小カバレッジレートRminの値を利用することが考えられる。 In sampling using the inclined paths Pd shown in FIGS. 6 and 7B, since the intervals between the adjacent inclined paths Pd1 and Pd2 are not constant, the overlap rate of the adjacent image plane IFs in the width direction is also not constant. Therefore, when sampling using the inclined path Pd, it is conceivable to use the value of the minimum coverage rate Rmin, which is the minimum coverage rate in the adjacent inclined paths Pd1 and Pd2, instead of the coverage rate in the unit grid UG. ..
 最小カバレッジレートRminは、最大間隔Tmaxとイメージ面IFの横幅lhを用いて以下の数2に示す式により算出される割合である。なお式中のImage Widthは横幅lhを表す。
Figure JPOXMLDOC01-appb-M000002
The minimum coverage rate Rmin is a ratio calculated by the formula shown in Equation 2 below using the maximum interval Tmax and the width lh of the image plane IF. The Image Width in the formula represents the width lh.
Figure JPOXMLDOC01-appb-M000002
 最小カバレッジレートRminは、隣接する傾斜パスPd1、Pd2が成す傾斜パス角度αを設定するために利用される。
 傾斜パス角度αは、最大間隔Tmaxと境界形状の一端から他端までの距離Dを用いて以下の数3に示す式により算出される。
Figure JPOXMLDOC01-appb-M000003
The minimum coverage rate Rmin is used to set the tilted path angle α formed by the adjacent tilted paths Pd1 and Pd2.
The inclination path angle α is calculated by the formula shown in Equation 3 below using the maximum interval Tmax and the distance D from one end to the other end of the boundary shape.
Figure JPOXMLDOC01-appb-M000003
 傾斜パスPdを含む全体パスP2を用いてサンプリングを行う場合には、ユーザから所望の最小カバレッジレートRminを受け付け、当該最小カバレッジレートRminを実現する傾斜パス角度αに基づいて傾斜パスPdを生成する。 When sampling is performed using the entire path P2 including the inclined path Pd, the desired minimum coverage rate Rmin is received from the user, and the inclined path Pd is generated based on the inclined path angle α that realizes the minimum coverage rate Rmin. ..
 なお、最小カバレッジレートRminは最小のカバレッジレートであるが、傾斜パスPd上に複数のイメージ面IFがある場合には、カバレッジレートはイメージ面IFの個数分割合が大きくなる。この割合は飛行体200のスピードspとシャッター間隔siから求めることができ、さらに最大間隔Tmaxを求め、傾斜パス角度αを求めることもできる。
 このようなカバレッジレートをカバレッジレートRaとすると、次の式Iで表すことができる。
 式I:n×IF/(Tmax×D)≧Ra
 即ち、傾斜パスPd1と傾斜パスPd2上に位置するイメージ面IFの個数をnとし、イメージ面IFの面積をIFとすると、傾斜パスPd上の全てのイメージ面IFの合計面積を最大間隔Tmaxと距離Dから成る矩形の面積(最大間隔Tmax×距離D)で割ることで、カバレッジレートRaを求めることができる。なお、イメージ面IFは折り返し頂点部分で重なることがあり、算出されたカバレッジレートは実際のカバレッジレートRaより大きくなることがあるため、式Iでは「≧」を用いている。
 また、飛行体200のスピードsp(毎秒)、撮像装置220のシャッター間隔si(秒)とすると、以下の式IIにより、2本の傾斜パスPd(即ち、2×傾斜パスPd1)上に存在するイメージ面IFの個数nを表すことができる。
 式II:n=2×√{(Tmax/2)2+D2)}÷sp÷si
 即ち、1本の傾斜パスPd1の長さをスピードspとシャッター間隔siで割ることで得られた値に、2を掛けている。
 このnを上記の式Iに代入することで、カバレッジレートRaを満たす最大間隔Tmaxの条件式ができる。カバレッジレートRaを満たすパス角度αを算出することで、傾斜パスPdの傾斜を決めることができる。
The minimum coverage rate Rmin is the minimum coverage rate, but when there are a plurality of image surface IFs on the inclined path Pd, the coverage rate is increased by the number of image surface IFs. This ratio can be obtained from the speed sp of the flying object 200 and the shutter interval si, and further, the maximum interval Tmax can be obtained and the inclination path angle α can be obtained.
Letting such a coverage rate be the coverage rate Ra, it can be expressed by the following equation I.
Formula I: n × IF / (Tmax × D) ≧ Ra
That is, assuming that the number of image surface IFs located on the inclined path Pd1 and the inclined path Pd2 is n and the area of the image surface IF is IF, the total area of all the image surface IFs on the inclined path Pd is defined as the maximum interval Tmax. The coverage rate Ra can be obtained by dividing by the area of the rectangle consisting of the distance D (maximum interval Tmax × distance D). Since the image plane IFs may overlap at the folded apex portion and the calculated coverage rate may be larger than the actual coverage rate Ra, “≧” is used in the formula I.
Further, assuming that the speed sp (per second) of the flying object 200 and the shutter interval si (second) of the imaging device 220, the aircraft exists on two inclined paths Pd (that is, 2 × inclined path Pd1) according to the following equation II. The number n of image plane IFs can be represented.
Equation II: n = 2 × √ {(Tmax / 2) 2 + D2)} ÷ sp ÷ si
That is, the value obtained by dividing the length of one inclined path Pd1 by the speed sp and the shutter interval si is multiplied by 2.
By substituting this n into the above equation I, a conditional equation of the maximum interval Tmax that satisfies the coverage rate Ra can be obtained. By calculating the path angle α that satisfies the coverage rate Ra, the inclination of the inclination path Pd can be determined.
<5.パス生成の流れ>
 図8から図13を参照して本実施の形態におけるパス生成の流れを説明する。以下では、圃場400である検出対象エリア410に対し、傾斜パスPdを含む全体パスP3を生成する流れを説明する。
<5. Path generation flow>
The flow of path generation in the present embodiment will be described with reference to FIGS. 8 to 13. In the following, the flow of generating the entire path P3 including the inclined path Pd will be described with respect to the detection target area 410 which is the field 400.
 図8はサンプリングの対象となる検出対象エリア410を示す。
 パス生成にあたって先ず、検出対象エリア410の形状を特定する。具体的には、少なくとも検出対象エリア410の形状を定める外縁(境界線)を特定する。
 なお検出対象エリア410を特定する際に、検出対象エリア410に設けられたロウのロウ方向Dr及びロウの並び方向Djを併せて特定してもよい。図8に示す検出対象エリア410においては、ロウは図示におけるロウ方向Drに伸び、ロウの並び方向Djに並列しているものとする。
FIG. 8 shows a detection target area 410 to be sampled.
In generating the path, first, the shape of the detection target area 410 is specified. Specifically, at least the outer edge (boundary line) that defines the shape of the detection target area 410 is specified.
When specifying the detection target area 410, the wax direction Dr and the row arrangement direction Dj provided in the detection target area 410 may also be specified. In the detection target area 410 shown in FIG. 8, it is assumed that the wax extends in the row direction Dr in the drawing and is parallel to the row arrangement direction Dj.
 図9は検出対象エリア410が境界形状Bsに囲まれている状態を示す。
 検出対象エリア410が特定されると、特定された検出対象エリア410の形状に応じて境界形状Bsを設定する。境界形状Bsは検出対象エリア410を囲む最小の形状であり、例えば検出対象エリア410を囲む最小の多角形状を有する。図9に示す境界形状Bsは、ロウ方向Drに伸びる短辺Ssと、ロウの並び方向Djに伸びる長辺Slから成る矩形状を有している。 
 境界形状Bsは傾斜パスPdを生成する際に便宜上用いられる補助線から成る枠である。境界形状Bsの形状は多角形状には限られず、傾斜パスPdの生成の便宜にかなう形状であれば、例えば弧状の線分を含む形状など他の形状であってもよい。
FIG. 9 shows a state in which the detection target area 410 is surrounded by the boundary shape Bs.
When the detection target area 410 is specified, the boundary shape Bs is set according to the shape of the specified detection target area 410. The boundary shape Bs is the smallest shape that surrounds the detection target area 410, and has, for example, the smallest polygonal shape that surrounds the detection target area 410. The boundary shape Bs shown in FIG. 9 has a rectangular shape including a short side Ss extending in the row direction Dr and a long side Sl extending in the row arrangement direction Dj.
The boundary shape Bs is a frame composed of auxiliary lines used for convenience when generating the inclined path Pd. The shape of the boundary shape Bs is not limited to the polygonal shape, and may be another shape such as a shape including an arc-shaped line segment as long as it is a shape that is convenient for generating the inclined path Pd.
 図10は境界形状Bs内に傾斜パスPdが生成された状態を示す。傾斜パスPdは、境界形状Bsの一方の短辺Ssから他方の短辺Ssに亘る方向に伸長している。以下では、このように傾斜パスPdが境界形状Bsを横断する方向をパス横断方向Dtと呼ぶ。図10において、パス横断方向Dtはロウの並び方向Djと同様の方向である。
 検出対象エリア410を囲む境界形状Bsが設定されると、境界形状Bs内に傾斜パスPdを生成する処理を行う。傾斜パスPdは、パス横断方向Dtと上述した最小カバレッジレートRminに基づいて算出された所定の傾斜パス角度αに基づいて生成される。
 具体的には、例えば境界形状Bsの一方の短辺Ssにおける中点Mから、パス横断方向Dtに基づいて、所定の傾斜パス角度αを為す傾斜パスPd4、Pd5を生成する。続けて、傾斜パスPd4、Pd5それぞれの他方の短辺Ssとの交点から、傾斜パスPd4、Pd5の各々と所定の傾斜パス角度αを為す傾斜パスPd3、Pd6を生成する。例えばこのように境界形状Bsの枠内で次々と傾斜パスPdを追加していくことで、境界形状Bsの長辺Slから他の長辺Slに至るまで複数の傾斜パスPdが生成される。
 なお、上記した傾斜パスPdの生成手順は一例であり、もちろん他の手順で境界形状Bs内に傾斜パスPdを生成してもよい。
FIG. 10 shows a state in which the inclined path Pd is generated in the boundary shape Bs. The inclined path Pd extends in the direction extending from one short side Ss of the boundary shape Bs to the other short side Ss. In the following, the direction in which the inclined path Pd crosses the boundary shape Bs in this way is referred to as the path crossing direction Dt. In FIG. 10, the path crossing direction Dt is the same direction as the row arrangement direction Dj.
When the boundary shape Bs surrounding the detection target area 410 is set, a process of generating an inclined path Pd in the boundary shape Bs is performed. The inclined path Pd is generated based on a predetermined inclined path angle α calculated based on the path crossing direction Dt and the above-mentioned minimum coverage rate Rmin.
Specifically, for example, from the midpoint M on one short side Ss of the boundary shape Bs, inclined paths Pd4 and Pd5 having a predetermined inclined path angle α are generated based on the path crossing direction Dt. Subsequently, from the intersection of each of the inclined paths Pd4 and Pd5 with the other short side Ss, the inclined paths Pd3 and Pd6 forming a predetermined inclined path angle α with each of the inclined paths Pd4 and Pd5 are generated. For example, by adding the inclined paths Pd one after another within the frame of the boundary shape Bs in this way, a plurality of inclined paths Pd are generated from the long side Sl of the boundary shape Bs to the other long side Sl.
The procedure for generating the inclined path Pd described above is an example, and of course, the inclined path Pd may be generated in the boundary shape Bs by another procedure.
 図11は傾斜パスPdを検出対象エリア410に重ね合わせた状態を示している。
 境界形状Bs内に傾斜パスPdが生成されると、生成された傾斜パスPdは検出対象エリア410に重ね合わせられる。傾斜パスPdを検出対象エリア410に当てはめることで、検出対象エリア410の外縁(境界線)と傾斜パスPdの交点Ipが求められる。
FIG. 11 shows a state in which the inclined path Pd is superimposed on the detection target area 410.
When the inclined path Pd is generated in the boundary shape Bs, the generated inclined path Pd is superposed on the detection target area 410. By applying the inclined path Pd to the detection target area 410, the intersection Ip of the outer edge (boundary line) of the detection target area 410 and the inclined path Pd can be obtained.
 図12は交点Ipが飛行体200の通過点Wpとして抽出された状態を示している。
 検出対象エリア410と傾斜パスPdの交点Ipが求められると、求められた交点Ipを飛行体200の通過すべき通過点Wpとして抽出する。
 通過点Wpとは、検出対象エリア410のセンシングを行う飛行体200の飛行経路を規定する点である。通過点Wpは、例えば圃場400の特定の地点を示すGPS(Global Positioning System)位置情報として表すことができる。
FIG. 12 shows a state in which the intersection Ip is extracted as the passing point Wp of the flying object 200.
When the intersection Ip of the detection target area 410 and the inclined path Pd is obtained, the obtained intersection Ip is extracted as the passing point Wp to be passed by the flying object 200.
The passing point Wp is a point that defines the flight path of the flying object 200 that senses the detection target area 410. The passing point Wp can be expressed as GPS (Global Positioning System) position information indicating a specific point of the field 400, for example.
 図13は全体パスP3が生成された状態を示している。
 検出対象エリア410の外縁上で通過点Wpが抽出されると、通過点Wpを接続して全体パスP3を生成する。
 具体的には、例えば、パス横断方向Dtにおいて通過点Wp、Wpを結ぶ線分を生成することで、検出対象エリア410の外縁上の起点から終点に至る部分パスとしての傾斜パスPdを得る。なお検出対象エリア410の形状によっては、例えば傾斜パスPd1や傾斜パスPd2のように、パスの中間部分の一部が検出対象エリア410の外部に位置する傾斜パスPdを生成してもよい。
 このようにして得られた傾斜パスPdの中には、例えば傾斜パスPd5、Pd6のように、隣接していながらも端部同士が接続されていないものがある。この場合、隣接する傾斜パスPd、Pdの端部である通過点Wp、Wpを結ぶ線分として接続パスPcを生成して、接続パスPcにより隣接する傾斜パスPd、Pdを接続する。
 通過点Wpを接続することで複数の傾斜パスPdならびに接続パスPcが得られ、これらのパスによって間断の無い全体パスP3が生成される。
FIG. 13 shows a state in which the entire path P3 is generated.
When the passing point Wp is extracted on the outer edge of the detection target area 410, the passing point Wp is connected to generate the entire path P3.
Specifically, for example, by generating a line segment connecting the passing points Wp and Wp in the path crossing direction Dt, an inclined path Pd as a partial path from the start point to the end point on the outer edge of the detection target area 410 is obtained. Depending on the shape of the detection target area 410, an inclined path Pd in which a part of the intermediate portion of the path is located outside the detection target area 410 may be generated, for example, an inclined path Pd1 or an inclined path Pd2.
Among the inclined paths Pd thus obtained, there are some inclined paths Pd5 and Pd6 that are adjacent to each other but whose ends are not connected to each other, such as inclined paths Pd5 and Pd6. In this case, a connection path Pc is generated as a line segment connecting the passing points Wp and Wp which are the ends of the adjacent inclined paths Pd and Pd, and the adjacent inclined paths Pd and Pd are connected by the connecting path Pc.
By connecting the passing points Wp, a plurality of inclined paths Pd and connection paths Pc are obtained, and these paths generate an uninterrupted overall path P3.
 以上のように生成された全体パスP3は飛行体200の飛行経路として出力され、飛行体200が全体パスP3を飛行する間に検出対象エリア410に対するサンプリングが行われる。
The entire path P3 generated as described above is output as the flight path of the flying object 200, and sampling is performed for the detection target area 410 while the flying object 200 flies through the entire path P3.
<6.実施の形態のパス生成処理>
 続いて情報処理装置1が行うパス生成処理について図14を参照して説明する。
 図14に示す処理はCPU51が図3に示したパス生成部2の機能を備えることで実現される。
<6. Path generation process of the embodiment>
Subsequently, the path generation process performed by the information processing apparatus 1 will be described with reference to FIG.
The process shown in FIG. 14 is realized by the CPU 51 having the function of the path generation unit 2 shown in FIG.
 ステップS101でCPU51はユーザからサンプリングの対象となる検出対象エリア410の指定を受け付ける。 In step S101, the CPU 51 receives from the user the designation of the detection target area 410 to be sampled.
 ステップS102でCPU51は指定された検出対象エリア410の形状を入力する入力方法について、ユーザから選択を受け付ける。検出対象エリア410の形状は、データファイルからロードするか、あるいはユーザが手動で入力することができる。 In step S102, the CPU 51 accepts a selection from the user regarding an input method for inputting the shape of the specified detection target area 410. The shape of the detection target area 410 can be loaded from the data file or manually input by the user.
 ユーザが検出対象エリア410の形状をデータファイルからロードすることを選択した場合には、CPU51はステップS102からステップS103に処理を進める。ステップS103でCPU51はユーザが指定した検出対象エリア410のデータファイルを記憶領域からロードして、検出対象エリア410の形状を特定する。 When the user chooses to load the shape of the detection target area 410 from the data file, the CPU 51 proceeds from step S102 to step S103. In step S103, the CPU 51 loads the data file of the detection target area 410 specified by the user from the storage area and specifies the shape of the detection target area 410.
 ユーザが検出対象エリア410の形状を手動で入力することを選択した場合には、CPU51はステップS102からステップS104に処理を進める。ステップS104でCPU51はユーザの描画等による入力を受け付けて、検出対象エリア410の形状を特定する。 When the user chooses to manually input the shape of the detection target area 410, the CPU 51 proceeds from step S102 to step S104. In step S104, the CPU 51 receives an input drawn by the user or the like and specifies the shape of the detection target area 410.
 CPU51はステップS103又はステップS104で検出対象エリア410の形状を特定した後に、処理をステップS105に進める。ステップS105でCPU51は検出対象エリア410を囲む最小の形状を算出して、算出した形状を境界形状Bsに設定する。 The CPU 51 identifies the shape of the detection target area 410 in step S103 or step S104, and then proceeds to the process in step S105. In step S105, the CPU 51 calculates the minimum shape surrounding the detection target area 410, and sets the calculated shape as the boundary shape Bs.
 ステップS106でCPU51は、パス生成に用いられるパラメータ情報の入力をユーザから受け付ける。パス生成に用いられるパラメータ情報には、例えば、飛行体200の飛行高度、最小カバレッジレートRmin、パス横断方向Dtが含まれる。
 なおパス横断方向Dtは、検出対象エリア410におけるロウ方向Drとは異なる方向になるように設定される。これにより、続くステップで生成される傾斜パスPdが少なくとも2つのロウを横切る。
 またパラメータ情報をユーザに入力させる代わりに、情報処理装置1がパラメータ情報の各値を適宜設定してもよい。パラメータ情報の入力を自動化することで、ユーザによる入力操作の手間を省き、利便性を向上させることができる。
In step S106, the CPU 51 receives an input of parameter information used for path generation from the user. The parameter information used for path generation includes, for example, the flight altitude of the flying object 200, the minimum coverage rate Rmin, and the path crossing direction Dt.
The path crossing direction Dt is set to be different from the low direction Dr in the detection target area 410. This causes the ramp path Pd generated in subsequent steps to cross at least two rows.
Further, instead of having the user input the parameter information, the information processing apparatus 1 may appropriately set each value of the parameter information. By automating the input of parameter information, it is possible to save the trouble of input operation by the user and improve the convenience.
 ステップS107でCPU51は、ステップS106で取得した最小カバレッジレートRmin及びパス横断方向Dtに基づいて、傾斜パス角度αを算出する。 In step S107, the CPU 51 calculates the inclined path angle α based on the minimum coverage rate Rmin and the path crossing direction Dt acquired in step S106.
 ステップS108でCPU51は境界形状Bs内で傾斜パスPdを生成する。CPU51は、隣接する傾斜パスPd、Pdが、S107で設定された傾斜パス角度αを為すように傾斜パスPdを生成する。
 例えばCPU51は、図10を参照して説明したように、境界形状Bsの中点Mを始点とする傾斜パスPdを生成し、傾斜パス角度αに基づいて、生成した傾斜パスPdから更に次の傾斜パスPdを続けて生成していく。
In step S108, the CPU 51 generates an inclined path Pd within the boundary shape Bs. The CPU 51 generates the inclined path Pd so that the adjacent inclined paths Pd and Pd form the inclined path angle α set in S107.
For example, as described with reference to FIG. 10, the CPU 51 generates an inclined path Pd starting from the midpoint M of the boundary shape Bs, and based on the inclined path angle α, further next from the generated inclined path Pd. The inclined path Pd is continuously generated.
 ステップS109でCPU51は、生成した傾斜パスPdを検出対象エリア410に当てはめ、検出対象エリア410の外縁(境界線)と傾斜パスPdが交わる交点Ipを抽出する。 In step S109, the CPU 51 applies the generated inclined path Pd to the detection target area 410, and extracts the intersection Ip where the outer edge (boundary line) of the detection target area 410 and the inclined path Pd intersect.
 ステップS110でCPU51は、抽出した交点Ipを、飛行体200が傾斜パスPdに沿う飛行を行うために通過すべき通過点Wpとして設定する。
 なお、全体パスP3を飛行体200等の移動体の経路として用いない場合には、通過点Wpを求める処理を行わずにステップS111へ処理を進める。
In step S110, the CPU 51 sets the extracted intersection Ip as a passing point Wp that the flying object 200 should pass in order to fly along the inclined path Pd.
When the entire path P3 is not used as a route for a moving body such as the flying object 200, the process proceeds to step S111 without performing the process for obtaining the passing point Wp.
 ステップS111でCPU51は全体パスを生成する処理を行う。CPU51は、例えば抽出された通過点Wpを接続する処理により全体パスP3を生成する。なお、ステップS110で通過点Wpを求める処理が行われなかった場合には、交点Ipを接続する。 In step S111, the CPU 51 performs a process of generating an entire path. The CPU 51 generates the entire path P3 by, for example, a process of connecting the extracted passing points Wp. If the process for obtaining the passing point Wp is not performed in step S110, the intersection Ip is connected.
 ステップS112でCPU51は、生成された全体パスP3をパラメータ情報と共にユーザに提示する。全体パスP3は飛行体200の飛行経路としてユーザに提示される。 In step S112, the CPU 51 presents the generated overall path P3 to the user together with the parameter information. The entire path P3 is presented to the user as the flight path of the aircraft 200.
 ステップS113でCPU51は、生成された全体パスP3とパラメータ情報が飛行プランとして適切であるか否か、ユーザの確認結果を受け付ける。 In step S113, the CPU 51 accepts a user confirmation result as to whether or not the generated overall path P3 and parameter information are appropriate as a flight plan.
 飛行プランとして適切でないとのユーザの確認結果をステップS113で受け付けた場合には、CPU51はステップS106に戻り、再度ユーザからパラメータ情報の入力を受け付ける。 When the user's confirmation result that the flight plan is not appropriate is accepted in step S113, the CPU 51 returns to step S106 and accepts the input of parameter information from the user again.
 飛行プランとして適切であるとのユーザの確認結果をステップS113で受け付けた場合には、CPU51はステップS114へ処理を進める。ステップS114でCPU51は全体パスP3を飛行経路として設定し、パラメータ情報と併せて飛行プランとして保存する。 When the user's confirmation result that the flight plan is appropriate is received in step S113, the CPU 51 proceeds to step S114. In step S114, the CPU 51 sets the entire path P3 as a flight path and saves it as a flight plan together with the parameter information.
 ステップS115でCPU51は、保存した飛行プランを出力する処理を行う。例えば飛行プランを飛行体200の制御部が読み取り可能な形式に変換したり、通信部60により飛行体200に送信させたりする処理である。 In step S115, the CPU 51 performs a process of outputting the saved flight plan. For example, it is a process of converting a flight plan into a format that can be read by the control unit of the flight body 200, or transmitting the flight plan to the flight body 200 by the communication unit 60.
 以上の処理が行われることで、飛行体200の飛行経路として用いるパス生成が行われることになる。
 なお以上の処理例は一例であり、他の処理例も考えられる。
By performing the above processing, a path to be used as a flight path of the flying object 200 is generated.
The above processing example is an example, and other processing examples can be considered.
<7.まとめ及び変形例>
 以上の実施の形態によれば次のような効果が得られる。
 実施の形態のパス生成方法は、検出対象物の並びであるロウが並列する検出対象エリア(検出対象エリア310、410)に対するセンシングのためのパスを生成するパス生成方法として、検出対象エリア内を通過する部分パス(傾斜パスPd)が少なくとも2つのロウを横切るように全体パス(全体パスP2、P3)を生成するパス生成処理を行う。
 パス生成処理によって、図6や図13に示すように、少なくとも2つのロウを横切る傾斜パスPdを含む全体パスP2、P3が生成される。傾斜パスPdは少なくとも2つのロウを横切るため、1本の傾斜パスPdによって複数のロウをカバーするセンシングデータをサンプルとして取得することができる。これにより、各ロウについてサンプリングの対象となる確率が高まり、サンプリングの精度を向上させることができる。
 例えば図6を参照して説明したように、各ロウがセンシングの対象となる確率が高まることで、特定のロウに生じた局地的な不具合を検知する精度を向上させることができる。なお局地的な不具合の検知精度が向上することによって、統計分析上、局地的な不具合を過小評価或いは過大評価し難くなる。そこで、例えば検出対象エリアが圃場であり、特定のロウにおいて作物の植え付け不良が生じていた場合に、特定のロウの植え付け不良を適切に検知してリプラント等の相応しい対応を取ることができる。即ち、植え付け不良の見過ごしによる収穫量の減少等の不利益を避けることができる。あるいは植え付け不良の範囲に関する誤った推定に基づいて無用なリプラントを行うことが回避され、コスト増大を避けることができる。
 また、図5と図6を比較して説明したように、傾斜パスPdを含む全体パスP2を用いることで、短い長さのパスで効率的にサンプリングを実施することができる。例えば全体パスP2を飛行体200や車両等の移動体の移動経路として用いる場合には、パスの長さが短くなるほど移動距離が短縮される。従って、傾斜パスPdを含む全体パスP2を用いて移動距離を短縮することで、移動の動力源として用いられる燃料や電力の消費を抑えることができる。また、同じ量の燃料或いは電力を以って、より広い範囲の検出対象エリアを対象としたサンプリングを実施することが可能になる。
 なお、播種機で植え付けを行う以外に、「ばら蒔き」と呼ばれるランダムに圃場に種をまく植え付けの方法もあり、その場合は上記「ロウ」が形成されない。ロウが形成されない圃場についても、発芽率等を求めるためにセンシングのためのパスを同様に生成することも可能であるため、ロウがない場合も本手法は適応可能である。例えば、傾斜パスを部分パスとして含む全体パスを用いることで、圃場に対してランダムな検出が行われて圃場の各地点についてサンプリングの対象となる確率を高めることができる。また、傾斜パスを部分パスとして含む全体パスを用いることで、ロウが形成されていない圃場に対しても短い長さのパスで効率的にサンプリングを実施することができる。
<7. Summary and transformation examples>
According to the above embodiment, the following effects can be obtained.
The path generation method of the embodiment is a path generation method for generating a path for sensing for a detection target area (detection target areas 310 and 410) in which rows, which are an array of detection target objects, are parallel, in the detection target area. A path generation process is performed to generate an entire path (overall paths P2, P3) so that the passing partial path (inclined path Pd) crosses at least two rows.
As shown in FIGS. 6 and 13, the path generation process generates the entire paths P2 and P3 including the inclined paths Pd that cross at least two rows. Since the inclined pass Pd crosses at least two rows, sensing data covering a plurality of rows can be acquired as a sample by one inclined pass Pd. As a result, the probability that each row will be sampled increases, and the sampling accuracy can be improved.
For example, as described with reference to FIG. 6, by increasing the probability that each row will be the target of sensing, it is possible to improve the accuracy of detecting a local defect that has occurred in a specific row. By improving the detection accuracy of local defects, it becomes difficult to underestimate or overestimate local defects in statistical analysis. Therefore, for example, when the detection target area is a field and a crop planting defect occurs in a specific wax, it is possible to appropriately detect the planting defect of the specific wax and take appropriate measures such as replanting. That is, it is possible to avoid disadvantages such as a decrease in yield due to oversight of poor planting. Alternatively, unnecessary replanting based on false estimates of the extent of poor planting can be avoided and cost increases can be avoided.
Further, as described by comparing FIG. 5 and FIG. 6, by using the entire path P2 including the inclined path Pd, sampling can be efficiently performed with a path having a short length. For example, when the entire path P2 is used as a movement path for a moving body such as a flying object 200 or a vehicle, the shorter the path length, the shorter the moving distance. Therefore, by shortening the travel distance by using the entire path P2 including the inclined path Pd, it is possible to suppress the consumption of fuel and electric power used as a power source for the movement. Further, it becomes possible to perform sampling for a wider range of detection target areas with the same amount of fuel or electric power.
In addition to planting with a sowing machine, there is also a method of planting seeds at random in the field called "sowing", in which case the above "wax" is not formed. Since it is possible to similarly generate a path for sensing in order to obtain the germination rate and the like even in a field where wax is not formed, this method can be applied even when there is no wax. For example, by using the whole path including the inclined path as a partial path, it is possible to increase the probability that the field is randomly detected and each point in the field is sampled. Further, by using the whole path including the inclined path as a partial path, sampling can be efficiently performed with a short path even in a field where wax is not formed.
 実施の形態では、図6や図13に示すように、全体パス(全体パスP2、P3)における少なくとも一部の部分パス(傾斜パスPd)を検出対象エリア(検出対象エリア310、410)におけるすべてのロウを横切るパスとする例を挙げた。
 少なくとも一部の傾斜パスPdが検出対象エリアにおけるすべてのロウを横切ることで、すべてのロウが等しくセンシングの対象となる確率を有することになり、サンプリングの精度をさらに向上させることができる。
In the embodiment, as shown in FIGS. 6 and 13, at least a part of the partial paths (inclined paths Pd) in the entire paths (overall paths P2 and P3) are all in the detection target area (detection target areas 310 and 410). I gave an example of a path that crosses the row of.
By crossing all the rows in the detection target area with at least a part of the inclined path Pd, all the rows have the same probability of being the target of sensing, and the sampling accuracy can be further improved.
 実施の形態では、パス生成処理は、検出対象エリア(検出対象エリア410)を囲む境界形状Bsを設定する第1のステップ(ステップS105)と、境界形状Bs内で部分パス(傾斜パスPd)を生成する第2のステップ(ステップS108)と、検出対象エリアの外縁と第2ステップで生成された部分パスの交点Ipを抽出する第3のステップ(ステップS109)と、交点(通過点Wpとして設定された交点Ip)を接続する処理により全体パスP3を生成する第4のステップ(ステップS111)と、を有する例を挙げた(図14参照)。
 境界形状Bsを用いることで、検出対象エリア410の形状の如何に関わらず傾斜パスPdを生成することができる。従って、多様な形状の検出対象エリアに対応してパス生成処理を行うことができる。
 また、検出対象エリア410の外縁上の点であるの交点Ipを接続することで、検出対象エリア410の外縁上の起点から終点に至る傾斜パスPdを得ることができる。従って、検出対象エリア410の形状に応じた傾斜パスPdを生成することができる。
 また、第4のステップで、パスの中間部分の一部が検出対象エリア410の外部に位置する傾斜パス(例えば図13における傾斜パスPd1、Pd2)を設けずに全体パスを生成する場合には、例えば図6に示すような、すべての傾斜パスPdが検出対象エリア310の範囲内に収まる全体パスP3を生成することができる。例えば全体パスP3を飛行体200等の移動経路(飛行経路)として用いる場合には、移動体の移動経路を検出対象エリア310内に収めることで、移動体が検出対象エリア310外の領域を不必要に移動することがなくなる。
 なお、ロウが形成されない圃場(検出対象エリア)についても、本方法を適用して全体パスを生成することが可能である。
In the embodiment, the path generation process performs the first step (step S105) of setting the boundary shape Bs surrounding the detection target area (detection target area 410) and the partial path (inclined path Pd) within the boundary shape Bs. The second step (step S108) to generate, the third step (step S109) to extract the intersection Ip of the outer edge of the detection target area and the partial path generated in the second step, and the intersection (set as the passing point Wp). An example has been given with a fourth step (step S111) of generating the entire path P3 by the process of connecting the intersections Ip) (see FIG. 14).
By using the boundary shape Bs, the inclined path Pd can be generated regardless of the shape of the detection target area 410. Therefore, the path generation process can be performed corresponding to the detection target area having various shapes.
Further, by connecting the intersection Ip, which is a point on the outer edge of the detection target area 410, an inclined path Pd from the start point to the end point on the outer edge of the detection target area 410 can be obtained. Therefore, it is possible to generate an inclined path Pd according to the shape of the detection target area 410.
Further, in the fourth step, when a whole path is generated without providing an inclined path (for example, inclined paths Pd1 and Pd2 in FIG. 13) in which a part of the intermediate portion of the path is located outside the detection target area 410. For example, as shown in FIG. 6, it is possible to generate the entire path P3 in which all the inclined paths Pd are within the range of the detection target area 310. For example, when the entire path P3 is used as a movement path (flight path) for the flying object 200 or the like, the moving object does not cover the area outside the detection target area 310 by keeping the moving path of the moving body within the detection target area 310. You won't have to move as needed.
It is possible to apply this method to generate an entire path even in a field where wax is not formed (detection target area).
 実施の形態では、境界形状Bsは矩形状である例を挙げた(図9等参照)。
 矩形状の境界形状Bsを用いて傾斜パスPdを生成することで、検出対象エリア410の形状の如何に関わらず容易に傾斜パスPdを生成することができる。
In the embodiment, an example in which the boundary shape Bs is rectangular is given (see FIG. 9 and the like).
By generating the inclined path Pd using the rectangular boundary shape Bs, the inclined path Pd can be easily generated regardless of the shape of the detection target area 410.
 実施の形態では、パス生成処理の第2のステップ(ステップS108)において、隣接する部分パス(傾斜パスPd、Pd)が所定のパス角度(傾斜パス角度α)を為すように部分パスを生成する例を述べた(図7参照)。
 所定の傾斜パス角度αを用いることで、境界形状Bs内に傾斜パスPdを容易に生成することができる。
In the embodiment, in the second step (step S108) of the path generation process, a partial path is generated so that the adjacent partial paths (inclined paths Pd, Pd) form a predetermined path angle (inclined path angle α). An example is given (see FIG. 7).
By using the predetermined inclined path angle α, the inclined path Pd can be easily generated in the boundary shape Bs.
 実施の形態では、所定の最小カバレッジレートを満たすように所定のパス角度を設定する例を述べた(図7参照)。
 図7を参照して述べたように、最小カバレッジレートRminに基づいて傾斜パス角度αを算出し、傾斜パス角度αを為す傾斜パスPdを生成することで、所望の最小カバレッジレートRminを実現するサンプリングを行うことができる。
 なお、所定のカバレッジレートRaを満たすように傾斜パス角度αを設定することも考えられる。この場合には、傾斜パス角度αを為す傾斜パスPdを生成することで、所望のカバレッジレートを実現するサンプリングを行うことができる。
In the embodiment, an example of setting a predetermined path angle so as to satisfy a predetermined minimum coverage rate has been described (see FIG. 7).
As described with reference to FIG. 7, the desired minimum coverage rate Rmin is realized by calculating the inclined path angle α based on the minimum coverage rate Rmin and generating the inclined path Pd forming the inclined path angle α. Sampling can be done.
It is also conceivable to set the tilt path angle α so as to satisfy a predetermined coverage rate Ra. In this case, by generating the inclined path Pd having the inclined path angle α, sampling that realizes a desired coverage rate can be performed.
 実施の形態では、前記第4のステップにおいて、隣接する部分パス(傾斜パスPd)における交点Ipを接続して接続パスPcを生成する例を挙げた(図13参照)。
 これにより、隣接する傾斜パスPd、Pdが接続パスPcにより接続され、間断の無い全体パスP3を生成することができる。例えば全体パスP3を飛行体200等の移動体の移動経路として用いる場合に、改めて傾斜パスPdを接続して移動体が途切れなく移動可能な一本のパスを生成する必要がない。
In the fourth embodiment, an example is given in which the intersection points Ip in the adjacent partial paths (inclined paths Pd) are connected to generate the connection path Pc (see FIG. 13).
As a result, the adjacent inclined paths Pd and Pd are connected by the connection path Pc, and the entire path P3 without interruption can be generated. For example, when the entire path P3 is used as the movement path of a moving body such as the flying object 200, it is not necessary to connect the inclined path Pd again to generate one path in which the moving body can move without interruption.
 実施の形態では、部分パス(傾斜パスPd)が直線である線分により形成される例を挙げた(図6及び図13参照)。これにより、一点から他の一点に至る最短の線分を傾斜パスPdとして生成することができる。例えば傾斜パスPdを飛行体200等の移動体の移動経路として用いる場合に、移動体の移動距離を短縮することができる。
 また部分パス(傾斜パスPd)は曲線である線分により形成されてもよい。例えば図15Aは、曲線である線分により形成された傾斜パスPdを含む全体パスP4が検出対象エリア310に設定された状態を示している。曲線状の傾斜パスPdを用いると、検出対象エリア310の各地点についてサンプリングの対象となる確率がより高まる。従って、サンプリングの精度をさらに向上させることができる。
In the embodiment, an example in which the partial path (inclined path Pd) is formed by a line segment having a straight line is given (see FIGS. 6 and 13). As a result, the shortest line segment from one point to the other can be generated as the inclined path Pd. For example, when the inclined path Pd is used as a moving path of a moving body such as a flying object 200, the moving distance of the moving body can be shortened.
Further, the partial path (inclined path Pd) may be formed by a line segment which is a curved line. For example, FIG. 15A shows a state in which the entire path P4 including the inclined path Pd formed by the curved line segment is set in the detection target area 310. When the curved inclined path Pd is used, the probability of being sampled at each point of the detection target area 310 is further increased. Therefore, the sampling accuracy can be further improved.
 実施の形態では、全体パス(全体パスP3)に含まれるパスの一つとして、検出対象エリア410の外縁に沿う接続パスPcが含まれる例を挙げた(図13参照)。
 外縁に沿う接続パスPcが設けられることで、例えば全体パスP3が飛行体200等の移動体の移動経路として用いられる場合に、移動体が検出対象エリア410外の領域を不必要に移動することがない。
In the embodiment, as one of the paths included in the entire path (overall path P3), an example in which the connection path Pc along the outer edge of the detection target area 410 is included is given (see FIG. 13).
By providing the connection path Pc along the outer edge, for example, when the entire path P3 is used as the movement path of the moving body such as the flying object 200, the moving body unnecessarily moves in the area outside the detection target area 410. There is no.
 実施の形態では、全体パス(全体パスP2)に含まれるパスの一つとして、検出対象エリア(検出対象エリア310)の外縁に沿う接続パスPcが含まれない例を挙げた(図6等参照)。
 検出対象エリア310の外縁に沿う接続パスPcが含まれないことで、全体パスP2の距離を短くすることができる。
 また検出対象エリア310の外縁に沿う接続パスPcで取得されたセンシングデータは、統計分析上のサンプルとして用いないことが好ましい。そこで接続パスPcを設けないことで、分析に用いられないセンシングデータを取得したり保存したりする手間を省き、サンプリングや分析を実行する情報処理装置の処理負担を低減することができる。
In the embodiment, as one of the paths included in the entire path (overall path P2), an example in which the connection path Pc along the outer edge of the detection target area (detection target area 310) is not included is given (see FIG. 6 and the like). ).
Since the connection path Pc along the outer edge of the detection target area 310 is not included, the distance of the entire path P2 can be shortened.
Further, it is preferable that the sensing data acquired by the connection path Pc along the outer edge of the detection target area 310 is not used as a sample for statistical analysis. Therefore, by not providing the connection path Pc, it is possible to save the trouble of acquiring and storing the sensing data that is not used for the analysis, and to reduce the processing load of the information processing apparatus that executes sampling and analysis.
 実施の形態では、隣接する部分パス(傾斜パスPd、Pd)同士が端部で接続されるような全体パスP2を生成する例を挙げた(図6等参照)。
 例えば図6や図15Aに示すように、検出対象エリア310を横切る隣接する傾斜パスPd、Pd同士が端部で接続されることで、全体パスに含まれるすべてのパス上でセンシングを行うことができる。
In the embodiment, an example of generating an entire path P2 in which adjacent partial paths (inclined paths Pd, Pd) are connected at an end is given (see FIG. 6 and the like).
For example, as shown in FIGS. 6 and 15A, by connecting adjacent inclined paths Pd and Pd that cross the detection target area 310 at the ends, sensing can be performed on all the paths included in the entire path. can.
 実施の形態では、隣接する部分パス(傾斜パスPd、Pd)が非平行であるような全体パス(全体パスP2、P3)を生成する例を挙げた(図6、図13参照)。
 これにより、例えば隣接する傾斜パスPd、Pdは互いに異なる方向に傾斜する。従って、例えば少なくとも一部がジグザグ形状を有する全体パスP2、P3を生成することができる。
 なお、隣接する傾斜パスPd、Pdが平行である全体パスを生成してもよい。例えば図15Bは、検出対象エリア310に、検出対象エリア310の外縁上の起点から終点に至る隣接する複数の傾斜パスPdが平行であるように全体パスP5を生成された状態を示している。図15Bの例において、隣接する傾斜パスPd、Pd同士の端部は検出対象エリア310の外縁に沿う接続パスPcにより接続されている。
In the embodiment, an example of generating an entire path (overall paths P2, P3) in which adjacent partial paths (inclined paths Pd, Pd) are non-parallel is given (see FIGS. 6 and 13).
As a result, for example, the adjacent inclined paths Pd and Pd are inclined in different directions. Therefore, for example, it is possible to generate the entire paths P2 and P3 having a zigzag shape at least in part.
It should be noted that the entire path in which the adjacent inclined paths Pd and Pd are parallel may be generated. For example, FIG. 15B shows a state in which the entire path P5 is generated so that a plurality of adjacent inclined paths Pd from the start point to the end point on the outer edge of the detection target area 310 are parallel to the detection target area 310. In the example of FIG. 15B, the ends of the adjacent inclined paths Pd and Pd are connected by the connection path Pc along the outer edge of the detection target area 310.
 実施の形態では、検出対象エリア(検出対象エリア310、410)は圃場(圃場300、400)であり、ロウは圃場における作物の植え付けが行われたラインである例を挙げた。
 これにより、作物の植え付けが行われたラインが並列する圃場300、400を対象としたセンシングが行われ、圃場300、400を対象としたサンプリングを行うことができる。
 圃場におけるサンプリングは、例えば圃場において植え付けされ発芽した作物(スタンド)数の推定、雑草検出、植物の病害や水ストレスの検出など多様な目的のために実施することができる。
 なお圃場としては、野外農地の耕作地のみでなく、水耕栽培やハウス栽培などの用地であってもよく、各種の場所で生育される作物に関するサンプリングに、実施の形態の技術を用いることができる。
 また実施の形態の技術は作物以外にも、例えば果実の木々、木材として利用する木々、雑草などの生育に関するセンシングデータのサンプリングなどにも用いることができる。従って森林、空き地などに対するリモートセンシングに適用することもできる。
 センシングデータの例としては撮像装置220による撮像画像データであるとしたが、もちろんこれに限らず、サーモセンサによる検出データ、超音波センサによる検出データ等、各種のセンサの検出データが想定される。
 さらに実施の形態の技術は、植物に限らず圃場等の土壌の質のセンシングなどにも応用することができる。
 なお実施の形態の検出対象エリアとしては、圃場に限られない各種の場所やエリアが考えられる。例えば山林、災害の影響を受けた地域や区画、海洋等を含む水上に想定可能なエリアを対象として実施の形態の技術を用いることができる。
In the embodiment, the detection target area (detection target area 310, 410) is a field (field 300, 400), and the wax is a line in which the crop is planted in the field.
As a result, sensing is performed on the fields 300 and 400 in which the lines where the crops are planted are parallel, and sampling can be performed on the fields 300 and 400.
Sampling in the field can be carried out for various purposes such as estimation of the number of crops (stands) planted and germinated in the field, weed detection, detection of plant diseases and water stress, and the like.
The field may be not only cultivated land of outdoor farmland but also land for hydroponics or house cultivation, and the technique of the embodiment can be used for sampling of crops grown in various places. can.
In addition to crops, the technique of the embodiment can also be used for sampling sensing data related to the growth of, for example, fruit trees, trees used as wood, and weeds. Therefore, it can also be applied to remote sensing for forests, vacant lots, and the like.
As an example of the sensing data, it is assumed that the image image data is captured by the imaging device 220, but of course, the detection data of various sensors such as the detection data by the thermo sensor and the detection data by the ultrasonic sensor is assumed.
Further, the technique of the embodiment can be applied not only to plants but also to sensing the quality of soil in fields and the like.
The detection target area of the embodiment is not limited to the field, but various places and areas can be considered. For example, the technology of the embodiment can be used for an area that can be assumed on the water including forests, areas and plots affected by a disaster, the ocean, and the like.
 実施の形態では、全体パス(全体パスP2、P3)は飛行体200の飛行経路であり、飛行体200によりセンシングが行われる例を述べた。
 飛行体200としてはいわゆるドローン、小型無線操縦固定翼飛行機、小型無線操縦ヘリコプタなどがある。
In the embodiment, the entire path (overall paths P2, P3) is the flight path of the flying object 200, and an example in which sensing is performed by the flying object 200 has been described.
The aircraft body 200 includes a so-called drone, a small radio-controlled fixed-wing airplane, and a small radio-controlled helicopter.
 実施の形態のパス生成装置(情報処理装置1)は、検出対象物の並びであるロウが並列する検出対象エリア(検出対象エリア310、410)に対するセンシングのためのパスを生成するパス生成装置として、検出対象エリア内を通過する部分パス(傾斜パスPd)が少なくとも2つのロウを横切るように全体パス(全体パスP2、P3)を生成するパス生成処理を行う。 The path generation device (information processing device 1) of the embodiment is a path generation device that generates a path for sensing for a detection target area (detection target areas 310, 410) in which rows, which are an array of detection target objects, are parallel to each other. , The path generation process for generating the entire path (overall path P2, P3) is performed so that the partial path (inclined path Pd) passing through the detection target area crosses at least two rows.
 実施の形態のプログラムは、検出対象物の並びであるロウが並列する検出対象エリア(検出対象エリア310、410)に対するセンシングのためのパスを生成するパス生成装置(情報処理装置1)に実行させるプログラムであって、検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理をパス生成装置に実行させる。
 即ち、図14等で説明した処理を情報処理装置1に実行させるプログラムである。
The program of the embodiment is executed by a path generator (information processing device 1) that generates a path for sensing for the detection target areas (detection target areas 310 and 410) in which rows, which are an array of detection target objects, are parallel to each other. The program causes the path generator to execute a path generation process for generating an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
That is, it is a program that causes the information processing apparatus 1 to execute the process described with reference to FIG.
 このようなプログラムにより本実施の形態の情報処理装置1の実現が容易となる。
 そしてこのようなプログラムはコンピュータ装置等の機器に内蔵されている記録媒体や、CPUを有するマイクロコンピュータ内のROM等に予め記憶しておくことができる。あるいはまた、半導体メモリ、メモリカード、光ディスク、光磁気ディスク、磁気ディスクなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記憶)しておくことができる。またこのようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN、インターネットなどのネットワークを介してダウンロードすることもできる。
Such a program facilitates the realization of the information processing device 1 of the present embodiment.
Such a program can be stored in advance in a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like. Alternatively, it can be temporarily or permanently stored (stored) in a removable recording medium such as a semiconductor memory, a memory card, an optical disk, a magneto-optical disk, or a magnetic disk. Further, such a removable recording medium can be provided as so-called package software.
In addition to installing such a program from a removable recording medium on a personal computer or the like, it can also be downloaded from a download site via a network such as a LAN or the Internet.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained.
 なお本技術は以下のような構成も採ることができる。
 (1)
 検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成方法として、
 前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理を行う
 パス生成方法。
 (2)
 前記全体パスにおける少なくとも一部の前記部分パスを前記検出対象エリアにおけるすべての前記ロウを横切るパスとする
 上記(1)に記載のパス生成方法。
 (3)
 前記パス生成処理は、
 前記検出対象エリアを囲む境界形状を設定する第1のステップと、
 前記境界形状内で前記部分パスを生成する第2のステップと、
 前記検出対象エリアの外縁と前記第2ステップで生成された前記部分パスの交点を抽出する第3のステップと、
 前記交点を接続する処理により前記全体パスを生成する第4のステップと、を有する
 上記(1)又は(2)に記載のパス生成方法。
 (4)
 前記境界形状は矩形状である
 上記(3)に記載のパス生成方法。
 (5)
 前記第2のステップにおいて、隣接する前記部分パスが所定のパス角度を為すように前記部分パスを生成する
 上記(3)又は(4)に記載のパス生成方法。
 (6)
 所定の最小カバレッジレートを満たすように前記所定のパス角度を設定する
 上記(5)に記載のパス生成方法。
 (7)
 前記第3のステップにおいて、前記部分パスと前記検出対象エリアの交点を検出し、
 隣接する前記部分パスにおける前記交点を接続して接続パスを生成する
 上記(3)から(6)のいずれかに記載のパス生成方法。
 (8)
 前記部分パスは直線又は曲線である線分により形成される
 上記(1)から(7)のいずれかに記載のパス生成方法。
 (9)
 前記全体パスに含まれるパスの一つとして、前記検出対象エリアの外縁に沿う接続パスが含まれる
 上記(1)から(8)のいずれかに記載のパス生成方法。
 (10)
 前記全体パスに含まれるパスの一つとして、前記検出対象エリアの外縁に沿う接続パスが含まれない
 上記(1)から(8)のいずれかに記載のパス生成方法。
 (11)
 隣接する前記部分パス同士が端部で接続されるような前記全体パスを生成する
 上記(1)から(9)のいずれかに記載のパス生成方法。
 (12)
 隣接する前記部分パスが非平行であるような前記全体パスを生成する
 上記(1)から(11)のいずれかに記載のパス生成方法。
 (13)
 前記検出対象エリアは圃場であり、
 前記ロウは前記圃場における作物の植え付けが行われたラインである
 上記(1)から(12)のいずれかに記載のパス生成方法。
 (14)
 前記全体パスは飛行体の飛行経路であり、
 前記飛行体により前記センシングが行われる
 上記(1)から(13)のいずれかに記載のパス生成方法。
 (15)
 検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成装置として、
 前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理を行う
 パス生成装置。
 (16)
 検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成装置に実行させるプログラムであって、
 前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理
 を前記パス生成装置に実行させるプログラム。
The present technology can also adopt the following configurations.
(1)
As a path generation method for generating a path for sensing for a detection target area in which rows, which are an array of detection targets, are parallel,
A path generation method for performing a path generation process for generating an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
(2)
The path generation method according to (1) above, wherein at least a part of the partial paths in the entire path is a path that crosses all the waxes in the detection target area.
(3)
The path generation process is
The first step of setting the boundary shape surrounding the detection target area and
A second step of generating the partial path within the boundary shape,
A third step of extracting the intersection of the outer edge of the detection target area and the partial path generated in the second step, and
The path generation method according to (1) or (2) above, further comprising a fourth step of generating the entire path by a process of connecting the intersections.
(4)
The path generation method according to (3) above, wherein the boundary shape is rectangular.
(5)
The path generation method according to (3) or (4) above, wherein in the second step, the partial paths are generated so that the adjacent partial paths form a predetermined path angle.
(6)
The path generation method according to (5) above, wherein the predetermined path angle is set so as to satisfy a predetermined minimum coverage rate.
(7)
In the third step, the intersection of the partial path and the detection target area is detected.
The path generation method according to any one of (3) to (6) above, wherein the intersections in the adjacent partial paths are connected to generate a connection path.
(8)
The path generation method according to any one of (1) to (7) above, wherein the partial path is formed by a line segment that is a straight line or a curved line.
(9)
The path generation method according to any one of (1) to (8) above, wherein a connection path along the outer edge of the detection target area is included as one of the paths included in the entire path.
(10)
The path generation method according to any one of (1) to (8) above, wherein the connection path along the outer edge of the detection target area is not included as one of the paths included in the entire path.
(11)
The path generation method according to any one of (1) to (9) above, which generates the entire path such that adjacent partial paths are connected to each other at an end.
(12)
The path generation method according to any one of (1) to (11) above, which generates the entire path such that adjacent partial paths are non-parallel.
(13)
The detection target area is a field,
The path generation method according to any one of (1) to (12) above, wherein the wax is a line on which crops are planted in the field.
(14)
The whole path is the flight path of the flying object.
The path generation method according to any one of (1) to (13) above, wherein the sensing is performed by the flying object.
(15)
As a path generator that generates a path for sensing to the detection target area where rows, which are an array of detection targets, are parallel.
A path generation device that performs a path generation process that generates an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
(16)
It is a program to be executed by a path generator that generates a path for sensing for a detection target area in which rows that are a sequence of detection targets are parallel.
A program that causes the path generator to execute a path generation process that generates an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
1 情報処理装置
2 パス生成部
310 検出対象エリア
410 検出対象エリア
Bs 境界形状
Pd 傾斜パス
Pc 接続パス
P2,P3,P4,P5 全体パス
α 傾斜パス角度
1 Information processing device 2 Path generator 310 Detection target area 410 Detection target area Bs Boundary shape Pd Inclined path Pc Connection path P2, P3, P4, P5 Overall path α Inclined path angle

Claims (16)

  1.  検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成方法として、
     前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理を行う
     パス生成方法。
    As a path generation method for generating a path for sensing for a detection target area in which rows, which are an array of detection targets, are parallel,
    A path generation method for performing a path generation process for generating an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
  2.  前記全体パスにおける少なくとも一部の前記部分パスを前記検出対象エリアにおけるすべての前記ロウを横切るパスとする
     請求項1に記載のパス生成方法。
    The path generation method according to claim 1, wherein at least a part of the partial paths in the entire path is a path that crosses all the rows in the detection target area.
  3.  前記パス生成処理は、
     前記検出対象エリアを囲む境界形状を設定する第1のステップと、
     前記境界形状内で前記部分パスを生成する第2のステップと、
     前記検出対象エリアの外縁と前記第2ステップで生成された前記部分パスの交点を抽出する第3のステップと、
     前記交点を接続する処理により前記全体パスを生成する第4のステップと、を有する
     請求項1に記載のパス生成方法。
    The path generation process is
    The first step of setting the boundary shape surrounding the detection target area and
    A second step of generating the partial path within the boundary shape,
    A third step of extracting the intersection of the outer edge of the detection target area and the partial path generated in the second step, and
    The path generation method according to claim 1, further comprising a fourth step of generating the entire path by a process of connecting the intersections.
  4.  前記境界形状は矩形状である
     請求項3に記載のパス生成方法。
    The path generation method according to claim 3, wherein the boundary shape is rectangular.
  5.  前記第2のステップにおいて、隣接する前記部分パスが所定のパス角度を為すように前記部分パスを生成する
     請求項3に記載のパス生成方法。
    The path generation method according to claim 3, wherein in the second step, the partial paths are generated so that the adjacent partial paths form a predetermined path angle.
  6.  所定の最小カバレッジレートを満たすように前記所定のパス角度を設定する
     請求項5に記載のパス生成方法。
    The path generation method according to claim 5, wherein the predetermined path angle is set so as to satisfy a predetermined minimum coverage rate.
  7.  前記第4のステップにおいて、隣接する前記部分パスにおける前記交点を接続して接続パスを生成する
     請求項3に記載のパス生成方法。
    The path generation method according to claim 3, wherein in the fourth step, the intersections in the adjacent partial paths are connected to generate a connection path.
  8.  前記部分パスは直線又は曲線である線分により形成される
     請求項1に記載のパス生成方法。
    The path generation method according to claim 1, wherein the partial path is formed by a line segment that is a straight line or a curved line.
  9.  前記全体パスに含まれるパスの一つとして、前記検出対象エリアの外縁に沿う接続パスが含まれる
     請求項1に記載のパス生成方法。
    The path generation method according to claim 1, wherein a connection path along the outer edge of the detection target area is included as one of the paths included in the entire path.
  10.  前記全体パスに含まれるパスの一つとして、前記検出対象エリアの外縁に沿う接続パスが含まれない
     請求項1に記載のパス生成方法。
    The path generation method according to claim 1, wherein the connection path along the outer edge of the detection target area is not included as one of the paths included in the entire path.
  11.  隣接する前記部分パス同士が端部で接続されるような前記全体パスを生成する
     請求項1に記載のパス生成方法。
    The path generation method according to claim 1, wherein the entire path is generated so that adjacent partial paths are connected to each other at the ends.
  12.  隣接する前記部分パスが非平行であるような前記全体パスを生成する
     請求項1に記載のパス生成方法。
    The path generation method according to claim 1, wherein the entire path is generated such that the adjacent partial paths are non-parallel.
  13.  前記検出対象エリアは圃場であり、
     前記ロウは前記圃場における作物の植え付けが行われたラインである
     請求項1に記載のパス生成方法。
    The detection target area is a field,
    The path generation method according to claim 1, wherein the wax is a line on which crops are planted in the field.
  14.  前記全体パスは飛行体の飛行経路であり、
     前記飛行体により前記センシングが行われる
     請求項1に記載のパス生成方法。
    The whole path is the flight path of the flying object.
    The path generation method according to claim 1, wherein the sensing is performed by the flying object.
  15.  検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成装置として、
     前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理を行う
     パス生成装置。
    As a path generator that generates a path for sensing to the detection target area where rows, which are an array of detection targets, are parallel.
    A path generation device that performs a path generation process that generates an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
  16.  検出対象物の並びであるロウが並列する検出対象エリアに対するセンシングのためのパスを生成するパス生成装置に実行させるプログラムであって、
     前記検出対象エリア内を通過する部分パスが少なくとも2つの前記ロウを横切るように全体パスを生成するパス生成処理
     を前記パス生成装置に実行させるプログラム。
    It is a program to be executed by a path generator that generates a path for sensing for a detection target area in which rows that are a sequence of detection targets are parallel.
    A program that causes the path generator to execute a path generation process that generates an entire path so that a partial path passing through the detection target area crosses at least two of the rows.
PCT/JP2021/007541 2020-03-05 2021-02-26 Path generation method, path generation device, and program WO2021177192A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180017542.8A CN115244595A (en) 2020-03-05 2021-02-26 Path generation method, path generation device, and program
DE112021001429.3T DE112021001429T5 (en) 2020-03-05 2021-02-26 PATH GENERATION METHOD, PATH GENERATION INSTALLATION AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038001 2020-03-05
JP2020-038001 2020-03-05

Publications (1)

Publication Number Publication Date
WO2021177192A1 true WO2021177192A1 (en) 2021-09-10

Family

ID=77613390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007541 WO2021177192A1 (en) 2020-03-05 2021-02-26 Path generation method, path generation device, and program

Country Status (3)

Country Link
CN (1) CN115244595A (en)
DE (1) DE112021001429T5 (en)
WO (1) WO2021177192A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120986A (en) * 2017-12-28 2019-07-22 エヌ・ティ・ティ・データ・カスタマサービス株式会社 Flight course control system for unmanned aircraft and flight course control method for unmanned aircraft
JP2019158635A (en) * 2018-03-14 2019-09-19 株式会社ゼンリンデータコム Flight route creation device, and flight route creation method
WO2019225762A1 (en) * 2018-05-25 2019-11-28 株式会社ナイルワークス Drone system, drone, controller, method for controlling drone system, and control program of drone system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162890B2 (en) 2006-12-01 2013-03-13 株式会社サタケ Correction method in remote sensing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120986A (en) * 2017-12-28 2019-07-22 エヌ・ティ・ティ・データ・カスタマサービス株式会社 Flight course control system for unmanned aircraft and flight course control method for unmanned aircraft
JP2019158635A (en) * 2018-03-14 2019-09-19 株式会社ゼンリンデータコム Flight route creation device, and flight route creation method
WO2019225762A1 (en) * 2018-05-25 2019-11-28 株式会社ナイルワークス Drone system, drone, controller, method for controlling drone system, and control program of drone system

Also Published As

Publication number Publication date
CN115244595A (en) 2022-10-25
DE112021001429T5 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
JP7423631B2 (en) Mapping field anomalies using digital images and machine learning models
US7103451B2 (en) Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
CA3029179C (en) Ponding water detection on satellite imagery
US9696162B2 (en) Mission and path planning using images of crop wind damage
US7184859B2 (en) Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
EP3707990B1 (en) Information processing device, information processing method, and vegetation management system
EP3452953B1 (en) Using digital images of a first type and a feature set dictionary to generate digital images of a second type
CN113614769A (en) Real-time agricultural recommendations using weather sensing on equipment
JP2016049102A (en) Farm field management system, farm field management method, and program
CA3162476A1 (en) Using optical remote sensors and machine learning models to predict agronomic field property data
WO2021100430A1 (en) Information processing device, information processing method, and program
Panpatte Artificial intelligence in agriculture: An emerging era of research
US10426106B2 (en) Methods and systems for assessing a field of plants for irrigation
JP6765109B2 (en) Agricultural system
US20220272907A1 (en) Automated plant monitoring systems and methods
CN113795846A (en) Method, device and computer storage medium for determining crop planting information
JP2022082636A (en) Information processing device
WO2021177192A1 (en) Path generation method, path generation device, and program
WO2020190952A1 (en) System and method for automatic control of exposure time in an imaging instrument
WO2021149355A1 (en) Information processing device, information processing method, and program
WO2021100429A1 (en) Information processing device, information processing method, and program
Snow The truth about drones in precision agriculture
US20220222819A1 (en) Crop view and irrigation monitoring
Quino et al. The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant Inventory. Drones 2022, 6, 2
Fertu et al. The revolution of traditional agriculture toward intelligent agriculture with the help of agricultural drones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763899

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21763899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP