WO2021177168A1 - Polyetherimide-based fibers, method for producing same, and textile product and composite material both including same - Google Patents

Polyetherimide-based fibers, method for producing same, and textile product and composite material both including same Download PDF

Info

Publication number
WO2021177168A1
WO2021177168A1 PCT/JP2021/007363 JP2021007363W WO2021177168A1 WO 2021177168 A1 WO2021177168 A1 WO 2021177168A1 JP 2021007363 W JP2021007363 W JP 2021007363W WO 2021177168 A1 WO2021177168 A1 WO 2021177168A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyetherimide
fiber
melt
zone
fibers
Prior art date
Application number
PCT/JP2021/007363
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 友杉
小泉 聡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2021177168A1 publication Critical patent/WO2021177168A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Definitions

  • the present invention uses polyetherimide-based fibers useful as a matrix of composite materials, various fiber products using polyetherimide-based fibers (for example, cloth), and composite materials using melts of the polyetherimide-based fibers as a matrix. Regarding.
  • Polyetherimide is a polymer that has excellent heat resistance and is also excellent in moldability because it has thermoplasticity.
  • polyetherimide has high strength, high heat resistance, high elastic modulus and wide chemical resistance, and is widely used in various applications such as automobiles, telecommunications, aerospace, electrical / electronics, transportation, and healthcare. in use.
  • polyetherimide is difficult to be fibrotic.
  • Patent Document 1 Patent No. 5659148
  • amorphous polyetherimide-based fibers which are fibers composed of a polymer and have a dry heat shrinkage rate of 5% or less at 200 ° C. and a single fiber fineness of 3.0 dtex or less. ing.
  • fine fibers having a single fiber fineness of 3.0 dtex or less can be obtained.
  • An object of the present invention is to use a polyetherimide-based fiber capable of achieving a breaking elongation similar to a breaking elongation at room temperature even under high-temperature tension conditions, a method for producing the same, and a polyetherimide-based fiber. To provide the product.
  • Another object of the present invention is to provide a composite material comprising a melt of such a polyetherimide-based fiber as a matrix.
  • the present inventors have used a polymerization solvent having a high boiling point in (i) polyetherimide suitable for fibrosis, and for that purpose, a fibrosis step was carried out.
  • a polymerization solvent having a high boiling point remains in the polymer, and (ii) degassing performed in a normal fibrosis step is not sufficient to solve this problem.
  • the (iii) spinning step when a specific degassing treatment is performed to reduce the content of the polymerization solvent, surprisingly, in the obtained fiber, the amount of the high boiling point polymerization solvent remaining in the polymer is reduced.
  • a polyetherimide-based fiber made of a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher (preferably 150 ° C. or higher), wherein the content of the polymerization solvent in the fiber is 250 ppm or less (preferably 200 ppm). It may be less than or equal to, more preferably 150 ppm or less), and is a polyetherimide-based fiber.
  • the polyetherimide-based fiber according to the first aspect which has a breaking elongation retention rate of 80% or more (preferably 82% or more) in an atmosphere of 190 ° C.
  • a polyetherimide-based fiber with respect to an atmosphere of room temperature (20 ° C.), more preferably. Is 85% or more), a polyetherimide-based fiber.
  • the polymerization solvent is dichlorobenzene, dichlorotoluene, trichlorobenzene, diphenylsulfone, monoalkoxybenzene, dialkoxybenzene, diphenyl ether, dimethylformamide, dimethylacetamide, dimethyl sulfoxide.
  • a polyetherimide-based fiber which is at least one selected from the group consisting of N-methylpyrrolidinone.
  • the method for producing a polyetherimide-based fiber includes a step of melt-kneading a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and a step of spinning.
  • the polyetherimide-based resin passes through a solid zone, a mixed zone of a solid and a melt, and a melt zone. Vent openings are provided, at least in the solid zone and the melt zone.
  • Aspect 5 The method for producing a polyetherimide-based fiber according to aspect 4, wherein vent ports are arranged in a solid zone, a mixing zone, and a melt zone.
  • vent ports are arranged in a solid zone, a mixing zone, and a melt zone.
  • Aspect 8 A composite material comprising the melt of the polyetherimide-based fiber according to any one of aspects 1 to 3 as a matrix.
  • a polyetherimide-based fiber having better fiber properties than before even when exposed to a high temperature. Further, since such a polyetherimide-based fiber can maintain the elongation at break at a high temperature, it can be usefully used in designing various fiber products used at a high temperature. Furthermore, when the polyetherimide is melted and used as a matrix, for example, even if a non-planar portion is present, it is possible to suppress defects that occur in the composite material due to the breakage of the stretched fibers. This makes it possible to obtain a composite material that can be easily molded into a complicated shape such as an automobile seat, a tank, or an aircraft air duct.
  • the first embodiment of the present invention is a polyetherimide-based fiber.
  • the polyetherimide-based fiber is a polyetherimide-based fiber made of a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and the content of the polymerization solvent in the fiber is 250 ppm or less.
  • the polyetherimide-based fiber can be obtained by melt-spinning a polyetherimide-based resin.
  • the polyetherimide-based resin is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide as repeating units, and has a fiber forming ability by melting. Further, as long as the effect of the present invention is not impaired, the main chain of the polyetherimide-based resin contains a cyclic imide, a structural unit other than the ether unit, for example, an aliphatic, alicyclic or aromatic ester unit, or an oxycarbonyl unit. Etc. may be contained.
  • R1 is a divalent aromatic residue having 6 to 30 carbon atoms
  • R2 is a divalent aromatic residue having 6 to 30 carbon atoms, and 2 to 20. 2 selected from the group consisting of a polydiorganosiloxane group chain-terminated with an alkylene group having 2 to 20 carbon atoms and an alkylene group having 2 to 8 carbon atoms. It is a valent organic group.
  • the resin constituting the polyetherimide-based fiber preferably contains at least 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more of the polymer having the unit represented by the above general formula in the resin. It is more preferable, and it is particularly preferable to contain 95% by mass or more.
  • a solvent having a boiling point of 100 ° C. or higher, particularly 150 ° C. or higher is used as the polymerization solvent.
  • a polymerization solvent include dichlorobenzene (eg, o-dichlorobenzene), dichlorotoluene, trichlorobenzene (eg, 1,2,4-trichlorobenzene), diphenylsulfone, monoalkoxybenzene (eg, anisole, etc.).
  • dialkoxybenzene eg, veratrol, etc.
  • diphenyl ether dimethylformamide, dimethylacetamide (eg, N, N-dimethylacetamide), dimethyl sulfoxide, N-methylpyrrolidinone and the like
  • solvents may be used alone or in combination of two or more.
  • the upper limit of the boiling point of the polymerization solvent is not particularly limited, but may be, for example, about 250 ° C.
  • particularly preferable polymerization solvents include o-dichlorobenzene and anisole.
  • the polyetherimide-based resin may contain various additives generally used for obtaining fibers.
  • additives a heat stabilizer, an antioxidant, an antistatic agent, and a radical inhibitor , Matters, UV absorbers, flame retardants, inorganic substances, and other polymers may be contained. These additives may be used alone or in combination of two or more.
  • the amount of the additive may be generally about 0.005 to 10% by mass, specifically about 0.01 to 5% by mass, based on the total mass of the composition.
  • Such a polyetherimide-based resin contains 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine, which mainly have the structural unit represented by the above formula.
  • the condensate of is preferably used.
  • Such polyetherimides are commercially available from SABIC Innovative Plastics under the trademark "Ultem”.
  • the polyetherimide-based resin obtained by polymerization is then subjected to a fibrosis step.
  • the method for producing a polyetherimide-based fiber of the present invention includes a step of melt-kneading a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and a step of spinning.
  • the polyetherimide-based resin can be melt-kneaded to obtain a molten polymer having a predetermined melt viscosity for spinning, and in the spinning step, the molten polymer can be melt-kneaded from a spinning nozzle in a predetermined amount. It can be discharged to form threads (or molten raw yarn).
  • the present invention is characterized in that the high boiling point polymerization solvent contained in the melted polyetherimide-based resin is highly removed in the melt-kneading step.
  • the polyetherimide-based resin is usually sufficiently dried and then subjected to a melt-kneading step.
  • melt-kneading is performed in a mixing device that can strongly apply a shearing force to the material together with deaeration.
  • the mixing device include a screw extruder (for example, a single-screw screw extruder and a twin-screw screw extruder), preferably a twin-screw screw extruder and the like.
  • the polyetherimide-based resin is subjected to a spinning process through a solid zone, a mixing zone of a solid and a melt, and a melt zone.
  • a polyetherimide-based resin is supplied as a solid (for example, a chip) such as a granular material, and the rotation of the screw inside the cylinder advances to a solid zone, a mixing zone, and a melt zone.
  • the solid zone includes a solid bed which is a mass of resin granules and the like and a stage where a melt film obtained by melting the surface of the resin granules is formed, but a melt pool in which the melts are aggregated is formed.
  • the stage of formation is not included.
  • the mixing zone includes the stage where the melt pool is formed, but the unmelted resin remains as a solid bed. Therefore, the mixing zone does not include a step in which the solid bed formed of the solid resin is destroyed and the unmelted material floats in the melted material.
  • the melt zone includes both the stage where the solid bed is broken and the unmelt floats in the melt and the stage where the resin is completely melted.
  • a plurality of vent ports are provided in order to highly remove the high boiling point polymerization solvent contained in the polyetherimide-based resin.
  • the plurality of vent ports are provided in any two or more zones selected from the solid zone, the mixed zone, and the melt zone, and are provided in at least the solid zone and the melt zone, and are provided in the solid zone, the mixed zone, and the melt zone. It is preferably provided in all of the zones.
  • the vent port is provided in the solid zone, it is possible to effectively utilize the first degassing of the polymerization solvent generated by the rapid temperature rise.
  • a vent port By providing a vent port in the melt zone, it is possible to ensure that the polymerization solvent generated in the melt kneading step is finally degassed within a predetermined range.
  • a plurality of vent ports may be provided in one zone.
  • vent ports at least in the melt zone, vacuum degassing is performed while maintaining a pressure of 0 to 50 mmHg, preferably maintaining a pressure in the range of 0 to 40 mmHg, more preferably 0 to 30 mmHg. Deaeration may be performed.
  • the vent ports where the vacuum degassing is performed are arranged at least in the melt zone, and preferably all of the vent ports may be vacuum degassed.
  • the melt-kneading step may be carried out at, for example, 290 ° C. or higher, more preferably 300 ° C. or higher, from the viewpoint of obtaining a close polymer mixture having no unmelted material as the resin to be used in the spinning step. Further, in order to avoid excessive polymer decomposition, it may be carried out at 370 ° C. or lower, more preferably 350 ° C. or lower.
  • the L / D (L: screw length, D: screw diameter) may be 20 or more, preferably 25 or more, and more preferably 32 or more.
  • the upper limit is not particularly limited, but may be 50 or less from the viewpoint of handling the screw.
  • FIG. 1 is a schematic cross-sectional view for explaining an example of a mixing device used in a melt-kneading step of a polyetherimide-based fiber.
  • a mixing device 10 such as a screw extruder
  • a polyetherimide-based resin is supplied as a resin chip 1, and the supplied resin is directed toward the traveling direction X by the rotation of the screw 6 inside the cylinder.
  • Vent ports 5a, 5b, and 5c are arranged in the solid zone 2, the mixing zone 3, and the melt zone 4, respectively, and the polymerization solvent generated in the melt kneading step is discharged from these vent ports 5a, 5b, and 5c. ..
  • a kneading portion in the mixing device. Since a plurality of vent ports are provided, a kneading portion may be provided between the vent ports. In that case, for example, after vacuum degassing at the first vent port, the surface of the mixture and / or the melt at the kneading portion is renewed to further discharge the undegassed mood at the first vent port, and the second Vacuum degassing is possible from the vent port of.
  • the at least one kneading portion is preferably provided in the melt zone, and more preferably provided in the mixing zone and the melt zone.
  • the surface of the mixture of the solid / melt and / or the melt can be renewed by the kneading segment or the like, so that the melt can be evacuated more efficiently.
  • the screw rotation speed may be, for example, 100 to 500 rotations / minute for kneading, preferably 150 to 450 rotations / minute, and more preferably 200 to 400 rotations / minute.
  • the kneading portion 7 is arranged between the vent port 5b arranged in the mixing zone 3 and the vent port 5c arranged in the melt zone 4.
  • the kneading portion 7 renews the surface of the mixture and / or the melt, and the undisturbed mood can be discharged at the vent port 5c.
  • the spinning step the content of the polymerization solvent having a high boiling point is reduced, the polyetherimide-based resin having a predetermined melt viscosity is weighed by a gear pump, and a predetermined amount is discharged from the spinning nozzle to spin.
  • the melt viscosity of the melt-kneaded polyetherimide-based resin may be, for example, 1000 to 5000 poise, more preferably 1500 to 4000 poise at a shear rate of 1200 sec -1 at 390 ° C.
  • the size of the spinning hole (single hole) in the spinneret is, for example, about 0.01 to 0.07 mm 2 , preferably about 0.02 to 0.06 mm 2 , and more preferably 0.03 to 0.05 mm 2. It may be about.
  • the shape of the spinning hole can be appropriately selected according to the required fiber cross-sectional shape.
  • the discharge amount from the spinning nozzle can be appropriately set according to the number of holes and the hole diameter of the nozzle, but may be, for example, about 35 to 300 g / min, preferably about 40 to 280 g / min.
  • the take-up speed (spinning speed) at that time can be appropriately set according to the nozzle hole diameter and the discharge amount, but from the viewpoint of suppressing the occurrence of molecular orientation on the spinning line, it is from 500 m / min. It is preferable to pick up in the range of 4000 m / min, more preferably 1000 m / min to 3500 m / min, and even more preferably 1500 m / min to 3000 m / min.
  • the discharged spun yarn can be stretched, if necessary, to obtain the polyetherimide-based fiber of the present invention.
  • the polyetherimide-based fiber of the present invention is preferably an unstretched fiber that has not been substantially stretched.
  • the term "drawing” means a step of stretching the fibers by using a tensioning means such as a roller with respect to the cooled fibers after melt spinning, and the molten raw yarn is wound in the step of being discharged from the nozzle and then wound up. The stretching process is not included.
  • the polyetherimide-based fiber of the present invention can reduce the content of the polymerization solvent having a high boiling point that cannot be removed by a usual melt spinning method, the content of the polymerization solvent in the fiber can be reduced. , 250 ppm or less.
  • the content of the polymerization solvent in the fiber may be preferably 200 ppm or less, and more preferably 150 ppm or less.
  • the lower limit of the polymerization solvent is not particularly limited, but may be, for example, about 1 ppm.
  • the amount of the polymerization solvent is a value measured by the method described in Examples described later.
  • the content is measured only in the high boiling point polymerization solvent (for example, dichlorobenzene (particularly o-dichlorobenzene), anisole, etc.) which is most often used in terms of molar ratio. Then, it may be judged as the content of the polymerization solvent.
  • the high boiling point polymerization solvent for example, dichlorobenzene (particularly o-dichlorobenzene), anisole, etc.
  • the polyetherimide-based fiber of the present invention has a higher elongation at break at high temperatures than the fiber not subjected to the degassing treatment, probably because the content of the polymerization solvent having a high boiling point can be reduced. It is possible to suppress the decrease. The reason for this is not clear, but perhaps unless the content of the high boiling point polymerization solvent is reduced by a particular degassing step, the fibers will polymerize when exposed to a high temperature environment above the boiling point of the polymerization solvent. It is considered that the solvent becomes gaseous and volatilizes, and as a result, the fine structure of the fiber changes, and the breaking elongation of the fiber decreases as compared with that at room temperature.
  • the obtained fiber is a polymerization solvent even when the fiber is exposed to a high temperature environment equal to or higher than the boiling point of the polymerization solvent. It is possible to reduce the amount of gas that becomes gaseous from the fiber and volatilizes as much as possible, and as a result, it is possible to suppress the occurrence of changes in the microstructure of the fiber. It is thought that the decrease can be suppressed.
  • the polyetherimide-based fiber may have a breaking elongation retention rate of 80% or more, preferably 82% or more, in an atmosphere of 190 ° C. with respect to an atmosphere of room temperature (20 ° C.). More preferably, it may be 85% or more.
  • the upper limit is not particularly limited, but may be 110% or less, for example.
  • the fineness of the single fiber of the polyetherimide-based fiber of the present invention can be appropriately set depending on the intended purpose, for example, 0.1 to 15 dtex, preferably 0.1 to 10 dtex, more preferably 0.2. It may be up to 9 dtex, more preferably 0.3 to 8 dtex, and particularly preferably 0.3 to 5 dtex.
  • the total fineness of the multifilament of the polyetherimide-based fiber of the present invention may be, for example, 50 to 5000 dtex, preferably 100 to 3000 dtex, and more preferably 200 to 2000 dtex.
  • the polyetherimide-based fiber may be either a continuous fiber or a non-continuous fiber, and when it is a non-continuous fiber, for example, the average fiber length of the single fiber is 0.5 to 60 mm, preferably 5 to 50 mm. It may be a short fiber.
  • the cross-sectional shape of the fiber is not particularly limited, and may be circular, hollow, flat, polygonal, T-shaped, L-shaped, I-shaped, cross-shaped, multi-leaf-shaped, star-shaped, or other irregular cross-section. It doesn't matter.
  • Polyetherimide-based fibers show excellent heat resistance in all fiber forms such as staple fibers, shortcut fibers, filament yarns, spun yarns, cords, ropes, and fabrics, so they can be used in a wide variety of applications. Further, in the above fiber form, the polyetherimide-based fiber of the present invention may be combined with other fibers, if necessary.
  • Polyetherimide-based fibers are used in many applications such as industrial materials, electrical and electronic fields, agricultural materials, apparel, optical materials, aircraft, automobiles, and ships as various textile products used at high temperatures. It can be used extremely effectively, and is useful in many applications such as insulating paper, work clothes, fireproof clothes, seat cushioning materials, and hook-and-loop fasteners.
  • the polyetherimide-based fiber of the present invention can suppress a decrease in breaking elongation of the fiber at a high temperature (for example, 150 ° C. or higher and 200 ° C. or lower) as compared with a fiber not subjected to degassing treatment. Is. Therefore, various textile products can be designed on the premise that they have a breaking elongation similar to that at room temperature, which is advantageous.
  • the polyetherimide-based fiber may be used in combination with a binder (for example, a binder fiber), if necessary.
  • a binder for example, a binder fiber
  • examples of the binder include polyolefin fibers, polyamide fibers, polyester fibers, and liquid substances such as powders and emulsions of these resins, of which polyester fibers are preferable.
  • the reinforcing fibers used in the present invention are not particularly limited as long as the effects of the present invention are not impaired, and may be organic fibers or inorganic fibers, or may be used alone or in combination of two or more. May be good.
  • examples of the inorganic fiber include glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, ceramic fiber, genbuiwa fiber, and various metal fibers (for example, gold, silver, copper, iron, nickel, titanium, stainless steel, etc.).
  • examples of organic fibers include total aromatic polyester fibers, polyphenylene sulfide fibers, para-aramid fibers, polysulphonamide fibers, phenol resin fibers, total aromatic polyimide fibers, and fluorine fibers. can do.
  • the organic fiber may be a stretched fiber that has been stretched, if necessary.
  • carbon fibers are preferably used from the viewpoints of mechanical properties, flame retardancy, heat resistance, and availability.
  • glass fibers are preferably used from the viewpoints of mechanical properties, flame retardancy, heat resistance, and availability.
  • para-aramid fibers are preferably used from the viewpoints of mechanical properties, flame retardancy, heat resistance, and availability.
  • the fineness of the single fiber of the reinforcing fiber can be appropriately set according to the fineness of the polyetherimide-based fiber, and may be, for example, 0.01 to 10 dtex, preferably 0.1 to 8 dtex, and more preferably 0.1 to 8 dtex. It may be 1 to 6 dtex.
  • the ratio of the single fiber fineness of the polyetherimide-based fiber to the single fiber fineness of the reinforcing fiber is, for example, about 10/90 to 90/10, more preferably about 30/70 to 70/30. It may be.
  • the total fineness of the multifilament of the reinforcing fiber may be, for example, 50 to 5000 dtex, preferably 100 to 3000 dtex, and more preferably 200 to 2000 dtex.
  • the reinforcing fiber may be either a continuous fiber or a non-continuous fiber, and when the reinforcing fiber is a non-continuous fiber, the average fiber length of the single fiber is, for example, 1 to 40 mm, preferably 5 to 35 mm, and more preferably 10 to. It may be a short fiber having a thickness of 30 mm.
  • the cross-sectional shape of the fiber is not particularly limited, and may be circular, hollow, flat, polygonal, T-shaped, L-shaped, I-shaped, cross-shaped, multi-leaf-shaped, star-shaped, or other irregular cross-section. It doesn't matter.
  • the textile product composed of polyetherimide-based fibers may be composed of a woven or knitted fabric, a non-woven fabric, or the like.
  • the textile product may be formed of a polyetherimide-based fiber alone, or may be used in combination with other fibers, if necessary.
  • a woven fabric may include a polyetherimide-based fiber or a mixed fiber yarn thereof as a warp and / or a weft yarn, and a knitting may include a polyetherimide-based fiber or a mixed fiber yarn thereof as a knitting yarn. May be good.
  • the non-woven fabric may contain polyetherimide-based fibers and may be integrated by chemical or physical bonding.
  • the non-woven fabric to which the polyetherimide-based fibers are adhered by a binder for example, binder fibers
  • It may be a non-woven fabric to which a polyetherimide-based fiber and a reinforcing fiber are adhered by a binder (for example, a binder fiber).
  • the method for producing the non-woven fabric of the present invention is not particularly limited, and examples thereof include known or conventional non-woven fabric manufacturing methods such as spunlace non-woven fabric, needle punched non-woven fabric, steam jet non-woven fabric, dry papermaking method, and wet papermaking method.
  • the wet papermaking method is preferable from the viewpoint of production efficiency and uniform dispersion of the reinforcing fibers in the non-woven fabric.
  • an aqueous slurry containing at least the polyetherimide-based fiber, the reinforcing fiber and, if necessary, a binder (for example, a polyester-based binder fiber) is prepared, and then this slurry is subjected to a normal papermaking process. Just do it.
  • a drying process under heating is performed to dry the slurry.
  • the heating temperature at this time is, for example, equal to or higher than the softening point of the polyester-based binder fiber, and in this drying step, the polyester-based binder fiber in the slurry fuses the polyetherimide-based fiber and the reinforcing fiber, and paper or web.
  • a non-woven fabric having a shape can be formed.
  • a thermal bond process such as hot pressing and through air bond on the once obtained web.
  • a binder may be applied by spray-drying.
  • the basis weight of the textile product of the present invention can be appropriately set depending on the presence or absence of a reinforcing material, for example, preferably 5 to 5000 g / m 2 , more preferably 10 to 2000 g / m 2 , and even more preferably. May be 20 to 500 g / m 2 .
  • the textile product of the present invention may have an appropriate thickness depending on the application, from thick to thin.
  • the thickness may be, for example, 200 ⁇ m or less, preferably 30 to 150 ⁇ m, and more preferably 50 to 120 ⁇ m.
  • the composite material of the present invention is not particularly limited as long as it contains a melt of a polyetherimide-based fiber as a matrix, and may be a composite material containing various materials.
  • the composite material of the present invention may be provided as a matrix by melting the polyetherimide-based fibers in the textile product.
  • the polyetherimide-based fiber of the present invention can suppress a decrease in the breaking elongation of the fiber at a high temperature as compared with a fiber not subjected to the degassing treatment, and thus can be used as a matrix material for forming a composite material. Is also useful. In particular, in forming a composite having a non-planar shape, the polyetherimide-based fiber of the present invention is useful as a matrix material even if a non-planar portion such as a step or an angular portion is present.
  • the fibers when fibers are applied to a non-planar portion such as a step or a square portion to form a matrix, the fibers are stretched by a predetermined tension in the non-planar portion. As a result, if the stretched fibers break during the heating process, the portions of the composite may cause defects such as wrinkles and holes.
  • the composite material of the present invention is advantageous in that it can be easily molded into a complicated shape such as a seat or tank of various vehicles and an air duct (particularly an air duct for an aircraft).
  • the composite material preferably comprises a melt of a polyetherimide-based fiber as a matrix, and the reinforcing fiber is contained in the matrix, and more preferably, the reinforcing fiber is used. , Preferably dispersed in the matrix.
  • the composite material may be provided with melting of the polyetherimide-based fiber as a matrix by laminating one or a plurality of fabrics containing the polyetherimide-based fiber and then heating the composite material.
  • the composite material of the present invention may be formed, for example, by heat molding in which the polyetherimide-based fiber is heated above the flow start temperature.
  • the flow start temperature means the melting point of the crystalline resin and the glass transition temperature of the amorphous resin.
  • the heat molding method is not particularly limited, and for example, various molding methods by heat compression, particularly compression molding such as stampable molding, pressure molding, vacuum pressure molding, and GMT molding are preferably used.
  • the molding temperature at that time may be set according to the flow start temperature and the decomposition temperature of the polyetherimide-based fiber to be used.
  • the molding temperature is preferably in the range of the melting point of the polyetherimide-based fiber or higher and (melting point +100) ° C. or lower.
  • the molding temperature is preferably in the range of the glass transition temperature of the polyetherimide-based fiber or more and (glass transition temperature +200) ° C. or less. If necessary, it can be preheated with an IR heater or the like before heat molding.
  • ppm o-dichlorobenzene content
  • Fiber length (mm) 100 fibers were randomly extracted from the cut yarn, the fiber lengths of each were measured, and the average value was calculated and used as the fiber length.
  • Example 1 A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours. (2) The resin of (1) above is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and venting is performed. The mouth was kept at about 20 mmHg and degassed.
  • a kneading segment is provided at the screw segment position between these vent positions, and the spinning segment is discharged from the round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min, and 220 dtex / min.
  • a multifilament of 100 filaments was obtained.
  • Table 1 shows the results of measuring various physical properties of the obtained fibers.
  • Example 2 A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours. (2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. There are one vent port in each of the solid zone and the mixing zone, and two in the melt zone. The vent port was maintained at about 20 mmHg and degassed, and the mixture was discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
  • Example 3 A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours. (2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and the vent port is provided. Was degassed at about 20 mmHg and discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
  • Example 4 A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours. (2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and the vent port is provided. Was degassed at about 35 mmHg and discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
  • Example 5 A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Industrial Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours. (2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone and the melt zone, and the vent port is about 35 mmHg. The mixture was degassed at a speed of 2000 m / min and discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
  • a kneading segment is provided at the screw segment position on the downstream side (resin advancing side) of the vent port of the mixing zone, and the spinning segment is discharged from the round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min, and 250 dtex.
  • a multifilament of / 100 filaments was obtained.
  • Table 1 shows the results of measuring various physical properties of the obtained fibers.
  • Example 3 Example 4, and Comparative Example 4 are compared, it can be seen that the lower the pressure at the vent port, the more the residual solvent amount can be reduced. Further, comparing Example 2 and Example 3, it can be seen that the larger the number of vent ports, the more the amount of residual solvent can be reduced. Furthermore, when Example 1 and Example 3 are compared, it can be seen that the amount of residual solvent can be reduced by 70 ppm by providing a kneading portion and performing kneading between vents. Comparing Example 5 and Comparative Example 3, it can be seen that even if the number of vent ports is the same, if the positions are different, the amount of residual solvent also changes.
  • Comparative Example 1 Although vent ports are provided in the solid zone and the mixing zone, the vent ports are not arranged in the melt zone, and the vacuum degassing of the vent ports is insufficient. Therefore, it is difficult to reduce the amount of residual solvent.
  • Comparative Example 2 when Comparative Example 1 and Comparative Example 2 are compared, in Comparative Example 2, although the kneading portion is provided, the vent port is not arranged on the downstream side of the kneading portion, and the vacuum of the vent port is further increased. Since deaeration is also insufficient, it can be seen that there is almost no effect of reducing the amount of residual solvent.
  • Comparing Comparative Example 1 and Comparative Example 3 it can be seen that the amount of residual solvent cannot be reduced to 250 ppm or less simply by reducing the pressure at the vent port. Comparing Comparative Example 1 or 5 with Comparative Example 4, it can be seen that the amount of residual solvent cannot be reduced to 250 ppm or less simply by increasing the number of vent ports.
  • the polyetherimide-based fiber of the present invention can suppress a decrease in breaking elongation of the fiber at a high temperature (for example, 150 ° C. or higher and 200 ° C. or lower) as compared with a fiber that is not degassed. It is possible. Therefore, taking advantage of these characteristics of polyetherimide-based fibers, as textile products used under various high temperatures, industrial materials field, electrical / electronic field, civil engineering / construction field, agricultural material field, apparel field, optical material field, etc. It can be used extremely effectively in many applications such as aircraft, automobiles, ships, and medical materials. For example, it can be used in many applications such as insulating paper, work clothes, fireproof clothing, seat cushioning materials, and hook-and-loop fasteners. It is useful for.
  • a high temperature for example, 150 ° C. or higher and 200 ° C. or lower
  • the composite material obtained by melting polyetherimide-based fibers can be freely designed in shape according to the purpose as various molded products, and can be freely designed in the fields of industrial materials, electrical / electronic fields, civil engineering / construction. It can be used extremely effectively in many applications such as fields, aircraft / automobile / railway / ship fields, agricultural materials fields, optical materials fields, medical materials fields, etc. For example, seats, tanks, and air ducts for various vehicles. It is useful as a composite material for (especially air ducts for aircraft).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

Provided are: polyetherimide-based fibers useful as a matrix for composite materials; a textile product; and a composite material. The polyetherimide-based fibers are configured from a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100°C or higher and have a content of the polymerization solvent of 250 ppm or less. The textile product is configured of the polyetherimide-based fibers. The composite material included a melt of the polyetherimide-based fibers as a matrix.

Description

ポリエーテルイミド系繊維およびその製造方法、ならびにこれを用いた繊維製品および複合材料Polyetherimide-based fibers and their manufacturing methods, as well as textile products and composite materials using them. 関連出願Related application
 本願は、日本国で2020年3月3日に出願した特願2020-35498の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2020-35498, which was filed in Japan on March 3, 2020, and is cited as a part of this application by reference in its entirety.
 本発明は、複合材料のマトリックスとして有用なポリエーテルイミド系繊維、ポリエーテルイミド系繊維を用いた各種繊維製品(例えば、布帛)、およびこのポリエーテルイミド系繊維の溶融物をマトリックスとして用いる複合材料に関する。 The present invention uses polyetherimide-based fibers useful as a matrix of composite materials, various fiber products using polyetherimide-based fibers (for example, cloth), and composite materials using melts of the polyetherimide-based fibers as a matrix. Regarding.
 ポリエーテルイミドは、優れた耐熱性を有する一方で、熱可塑性を有するために成形性にも優れるポリマーである。さらに、ポリエーテルイミドは、高強度、高耐熱性、高弾性率および広い耐薬品性を有し、自動車、遠隔通信、航空宇宙、電気/電子、輸送、ヘルスケアなどの多様な用途で広範に使用されている。 Polyetherimide is a polymer that has excellent heat resistance and is also excellent in moldability because it has thermoplasticity. In addition, polyetherimide has high strength, high heat resistance, high elastic modulus and wide chemical resistance, and is widely used in various applications such as automobiles, telecommunications, aerospace, electrical / electronics, transportation, and healthcare. in use.
 一般的にポリエーテルイミドは繊維化が困難であり、例えば、特許文献1(特許第5659148号明細書)には、分子量分布(Mw/Mn)が2.5未満である非晶性ポリエーテルイミド系ポリマーで構成された繊維であって、200℃における乾熱収縮率が5%以下、且つ単繊維繊度が3.0dtex以下であることを特徴とする非晶性ポリエーテルイミド系繊維が開示されている。この文献では、繊維化が困難であるポリエーテルイミドであっても、単繊維繊度が3.0dtex以下の細繊度繊維を得ることができる。 In general, polyetherimide is difficult to be fibrotic. For example, in Patent Document 1 (Patent No. 5659148), an amorphous polyetherimide having a molecular weight distribution (Mw / Mn) of less than 2.5. Disclosed are amorphous polyetherimide-based fibers which are fibers composed of a polymer and have a dry heat shrinkage rate of 5% or less at 200 ° C. and a single fiber fineness of 3.0 dtex or less. ing. In this document, even if it is a polyetherimide that is difficult to be fiberized, fine fibers having a single fiber fineness of 3.0 dtex or less can be obtained.
特許第5659148号公報Japanese Patent No. 5659148
 しかしながら、特許文献1に記載されたポリエーテルイミド系繊維では、高沸点の重合溶媒がポリマー中に残存する可能性があり、高温下での繊維特性(特に高温の緊張条件下での力学物性)に影響を及ぼすおそれがあった。 However, in the polyetherimide-based fiber described in Patent Document 1, a polymerization solvent having a high boiling point may remain in the polymer, and the fiber characteristics under high temperature (particularly the mechanical properties under high temperature tension conditions). There was a risk of affecting.
 本発明の目的は、高温の緊張条件下においても、室温での破断伸度に類する破断伸度を達成することができるポリエーテルイミド系繊維およびその製造方法、ならびにポリエーテルイミド系繊維を用いた製品を提供することにある。
 本発明の別の目的は、このようなポリエーテルイミド系繊維の溶融物をマトリックスとして備える、複合材料を提供することにある。
An object of the present invention is to use a polyetherimide-based fiber capable of achieving a breaking elongation similar to a breaking elongation at room temperature even under high-temperature tension conditions, a method for producing the same, and a polyetherimide-based fiber. To provide the product.
Another object of the present invention is to provide a composite material comprising a melt of such a polyetherimide-based fiber as a matrix.
 本発明者等は、上記課題を解決するべく鋭意検討を重ねた結果、(i)繊維化に適したポリエーテルイミドでは、高沸点の重合溶媒を用いており、そのために、繊維化工程を行った場合に高沸点の重合溶媒がポリマー中に残存してしまうこと、(ii)これを解決するには、通常の繊維化工程で行われる脱気では不十分であることを見出した。そして、(iii)紡糸工程において、特定の脱気処理を行い重合溶媒の含有量を低減させると、驚くべきことに、得られた繊維では、ポリマーに残存する高沸点の重合溶媒の量を低減できるためか、高温下における緊張条件でのポリエーテルイミドの繊維の破断伸度を室温と同程度に保持することができ、その結果従来製品よりも破断伸度保持率を向上できることについて見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have used a polymerization solvent having a high boiling point in (i) polyetherimide suitable for fibrosis, and for that purpose, a fibrosis step was carried out. In this case, it was found that a polymerization solvent having a high boiling point remains in the polymer, and (ii) degassing performed in a normal fibrosis step is not sufficient to solve this problem. Then, in the (iii) spinning step, when a specific degassing treatment is performed to reduce the content of the polymerization solvent, surprisingly, in the obtained fiber, the amount of the high boiling point polymerization solvent remaining in the polymer is reduced. Perhaps because of this, we found that the breaking elongation of polyetherimide fibers under tension conditions at high temperatures can be maintained at the same level as room temperature, and as a result, the breaking elongation retention rate can be improved compared to conventional products. The invention was completed.
 すなわち本発明は、以下の態様により構成されてもよい。
〔態様1〕
 沸点が100℃以上(好ましくは150℃以上)である重合溶媒を含むポリエーテルイミド系樹脂からなるポリエーテルイミド系繊維であって、繊維中の前記重合溶媒の含有量が250ppm以下(好ましくは200ppm以下であってもよく、より好ましくは150ppm以下)である、ポリエーテルイミド系繊維。
〔態様2〕
 態様1に記載のポリエーテルイミド系繊維であって、室温(20℃)雰囲気下に対する190℃雰囲気下の破断伸度保持率が80%以上(好ましくは82%以上であってもよく、より好ましくは85%以上)である、ポリエーテルイミド系繊維。
〔態様3〕
 態様1または2に記載のポリエーテルイミド系繊維であって、前記重合溶媒がジクロロベンゼン、ジクロロトルエン、トリクロロベンゼン、ジフェニルスルホン、モノアルコキシベンゼン、ジアルコキシベンゼン、ジフェニルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、およびN-メチルピロリジノンからなる群から選択される少なくとも1種であることを特徴とするポリエーテルイミド系繊維。
〔態様4〕
 態様1~3のいずれか一態様に記載のポリエーテルイミド系繊維の製造方法であって、
 沸点が100℃以上である重合溶媒を含むポリエーテルイミド系樹脂を溶融混錬する工程と、紡糸する工程とを含み、
 前記溶融混錬工程では、前記ポリエーテルイミド系樹脂は、固体ゾーン、固体と溶融体の混合ゾーン、および溶融物ゾーンを経由し、
 少なくとも前記固体ゾーンおよび前記溶融物ゾーンにおいて、ベント口が配設され、
 前記ベント口では、少なくとも溶融物ゾーンにおいて、0~50mmHg(好ましくは0~40mmHg、より好ましくは0~30mmHg)の圧力で真空脱気が行われる、製造方法。
〔態様5〕
 態様4に記載のポリエーテルイミド系繊維の製造方法であって、固体ゾーン、混合ゾーン、および溶融物ゾーンにおいて、ベント口が配設されている、製造方法。
〔態様6〕
 態様4または5に記載のポリエーテルイミド系繊維の製造方法であって、ベント口とベント口の間の位置にニーディング部が少なくとも1箇所配設されている、製造方法。
〔態様7〕
 態様1~3のいずれか一態様に記載のポリエーテルイミド系繊維で構成される、繊維製品。
〔態様8〕
 態様1~3のいずれか一態様に記載のポリエーテルイミド系繊維の溶融物をマトリックスとして備える、複合材料。
That is, the present invention may be configured by the following aspects.
[Aspect 1]
A polyetherimide-based fiber made of a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher (preferably 150 ° C. or higher), wherein the content of the polymerization solvent in the fiber is 250 ppm or less (preferably 200 ppm). It may be less than or equal to, more preferably 150 ppm or less), and is a polyetherimide-based fiber.
[Aspect 2]
The polyetherimide-based fiber according to the first aspect, which has a breaking elongation retention rate of 80% or more (preferably 82% or more) in an atmosphere of 190 ° C. with respect to an atmosphere of room temperature (20 ° C.), more preferably. Is 85% or more), a polyetherimide-based fiber.
[Aspect 3]
The polyetherimide-based fiber according to aspect 1 or 2, wherein the polymerization solvent is dichlorobenzene, dichlorotoluene, trichlorobenzene, diphenylsulfone, monoalkoxybenzene, dialkoxybenzene, diphenyl ether, dimethylformamide, dimethylacetamide, dimethyl sulfoxide. , And a polyetherimide-based fiber which is at least one selected from the group consisting of N-methylpyrrolidinone.
[Aspect 4]
The method for producing a polyetherimide-based fiber according to any one of aspects 1 to 3.
It includes a step of melt-kneading a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and a step of spinning.
In the melt-kneading step, the polyetherimide-based resin passes through a solid zone, a mixed zone of a solid and a melt, and a melt zone.
Vent openings are provided, at least in the solid zone and the melt zone.
A production method in which vacuum degassing is performed at a pressure of 0 to 50 mmHg (preferably 0 to 40 mmHg, more preferably 0 to 30 mmHg) at least in the melt zone at the vent port.
[Aspect 5]
The method for producing a polyetherimide-based fiber according to aspect 4, wherein vent ports are arranged in a solid zone, a mixing zone, and a melt zone.
[Aspect 6]
The method for producing a polyetherimide-based fiber according to aspect 4 or 5, wherein at least one kneading portion is arranged at a position between the vent openings.
[Aspect 7]
A textile product composed of the polyetherimide-based fiber according to any one of aspects 1 to 3.
[Aspect 8]
A composite material comprising the melt of the polyetherimide-based fiber according to any one of aspects 1 to 3 as a matrix.
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。 It should be noted that any combination of claims and / or at least two components disclosed in the specification and / or drawings is included in the present invention. In particular, any combination of two or more of the claims described in the claims is included in the present invention.
 本発明によれば、高温に晒された場合であっても従来より優れた繊維特性を有するポリエーテルイミド系繊維を得ることができる。また、このようなポリエーテルイミド系繊維は、高温下での破断伸度を保持することができるため、高温下で用いられる各種繊維製品を設計する上で、有用に用いることができる。
 さらに、ポリエーテルイミドを溶融させてマトリックスとして用いる場合、例えば、非平面部分が存在しても、伸張した繊維の破断に由来して複合材料に生じる欠陥を抑制することが可能である。これにより、例えば、自動車のシートやタンク、航空機のエアーダクトなどの複雑な形状への成形加工がしやすい複合材料を得ることができる。
According to the present invention, it is possible to obtain a polyetherimide-based fiber having better fiber properties than before even when exposed to a high temperature. Further, since such a polyetherimide-based fiber can maintain the elongation at break at a high temperature, it can be usefully used in designing various fiber products used at a high temperature.
Furthermore, when the polyetherimide is melted and used as a matrix, for example, even if a non-planar portion is present, it is possible to suppress defects that occur in the composite material due to the breakage of the stretched fibers. This makes it possible to obtain a composite material that can be easily molded into a complicated shape such as an automobile seat, a tank, or an aircraft air duct.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。
ポリエーテルイミド系繊維の溶融混錬工程において用いられる混合装置の一例を説明するための概略断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description purposes only and should not be used to define the scope of the invention. The scope of the present invention is determined by the appended claims.
It is schematic cross-sectional view for demonstrating an example of a mixing apparatus used in the melt kneading step of a polyetherimide-based fiber.
 以下、本発明について詳細に説明する。本発明の第一の実施態様は、ポリエーテルイミド系繊維である。 Hereinafter, the present invention will be described in detail. The first embodiment of the present invention is a polyetherimide-based fiber.
(ポリエーテルイミド系繊維)
 ポリエーテルイミド系繊維は、沸点が100℃以上である重合溶媒を含むポリエーテルイミド系樹脂からなるポリエーテルイミド系繊維であって、繊維中の前記重合溶媒の含有量が250ppm以下である。ポリエーテルイミド系繊維は、ポリエーテルイミド系樹脂を溶融紡糸することにより得ることができる。
(Polyetherimide fiber)
The polyetherimide-based fiber is a polyetherimide-based fiber made of a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and the content of the polymerization solvent in the fiber is 250 ppm or less. The polyetherimide-based fiber can be obtained by melt-spinning a polyetherimide-based resin.
(ポリエーテルイミド系樹脂)
 ポリエーテルイミド系樹脂は、脂肪族、脂環族または芳香族系のエーテル単位と環状イミドとを繰り返し単位として含有するポリマーであり、溶融による繊維成形能を有している。また、本発明の効果を阻害しない範囲であれば、ポリエーテルイミド系樹脂の主鎖に環状イミド、前記エーテル単位以外の構造単位、例えば脂肪族、脂環族または芳香族エステル単位、オキシカルボニル単位等が含有されていてもよい。
(Polyetherimide resin)
The polyetherimide-based resin is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide as repeating units, and has a fiber forming ability by melting. Further, as long as the effect of the present invention is not impaired, the main chain of the polyetherimide-based resin contains a cyclic imide, a structural unit other than the ether unit, for example, an aliphatic, alicyclic or aromatic ester unit, or an oxycarbonyl unit. Etc. may be contained.
 具体的なポリエーテルイミドとしては、下記一般式で示されるユニットを有するポリマーが好適に使用される。但し、式中R1は、6~30個の炭素原子を有する2価の芳香族残基であり;R2は、6~30個の炭素原子を有する2価の芳香族残基、2~20個の炭素原子を有するアルキレン基、2~20個の炭素原子を有するシクロアルキレン基、および2~8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。 As a specific polyetherimide, a polymer having a unit represented by the following general formula is preferably used. However, in the formula, R1 is a divalent aromatic residue having 6 to 30 carbon atoms; R2 is a divalent aromatic residue having 6 to 30 carbon atoms, and 2 to 20. 2 selected from the group consisting of a polydiorganosiloxane group chain-terminated with an alkylene group having 2 to 20 carbon atoms and an alkylene group having 2 to 8 carbon atoms. It is a valent organic group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記R1、R2としては、例えば、下記式群に示される芳香族残基やアルキレン基(例えば、m=2~10)を有するものが好ましく使用される。 As the above R1 and R2, for example, those having an aromatic residue or an alkylene group (for example, m = 2 to 10) represented by the following formula group are preferably used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ポリエーテルイミド系繊維を構成する樹脂は、上記一般式で示されるユニットを有するポリマーを樹脂中に少なくとも50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましく、95質量%以上含むことがとくに好ましい。 The resin constituting the polyetherimide-based fiber preferably contains at least 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more of the polymer having the unit represented by the above general formula in the resin. It is more preferable, and it is particularly preferable to contain 95% by mass or more.
 本発明において、ポリエーテルイミド系繊維を形成するポリエーテルイミド系樹脂は、重合溶媒として沸点が100℃以上、特に150℃以上である溶媒が使用される。このような重合溶媒としては、例えば、ジクロロベンゼン(例えば、o-ジクロロベンゼン)、ジクロロトルエン、トリクロロベンゼン(例えば、1,2,4-トリクロロベンゼン)、ジフェニルスルホン、モノアルコキシベンゼン(例えば、アニソール、フェネトールなど)、ジアルコキシベンゼン(例えば、ベラトロールなど)、ジフェニルエーテル、ジメチルホルムアミド、ジメチルアセトアミド(例えば、N,N-ジメチルアセトアミド)、ジメチルスルホキシド、N-メチルピロリジノンなどを例示することができる。これらの溶媒は、単独でまたは二種以上組み合わせて使用してもよい。なお重合溶媒の沸点の上限は特に限定されないが、例えば250℃程度であってもよい。
 これらのうち、特に好ましい重合溶媒としては、o-ジクロロベンゼンおよびアニソールがあげられる。
In the present invention, as the polyetherimide-based resin forming the polyetherimide-based fiber, a solvent having a boiling point of 100 ° C. or higher, particularly 150 ° C. or higher is used as the polymerization solvent. Examples of such a polymerization solvent include dichlorobenzene (eg, o-dichlorobenzene), dichlorotoluene, trichlorobenzene (eg, 1,2,4-trichlorobenzene), diphenylsulfone, monoalkoxybenzene (eg, anisole, etc.). Phenotor and the like), dialkoxybenzene (eg, veratrol, etc.), diphenyl ether, dimethylformamide, dimethylacetamide (eg, N, N-dimethylacetamide), dimethyl sulfoxide, N-methylpyrrolidinone and the like can be exemplified. These solvents may be used alone or in combination of two or more. The upper limit of the boiling point of the polymerization solvent is not particularly limited, but may be, for example, about 250 ° C.
Among these, particularly preferable polymerization solvents include o-dichlorobenzene and anisole.
 ポリエーテルイミド系樹脂には、繊維を得るうえで一般的に用いられる種々の添加剤を含んでいてもよく、例えば、添加物として、熱安定剤、酸化防止剤、帯電防止剤、ラジカル抑制剤、艶消し剤、紫外線吸収剤、難燃剤、無機物、他ポリマーを含んでいてもよい。これらの添加剤は、単独でまたは二種以上組み合わせて使用してもよい。添加剤の量は、一般に、前記組成物の合計質量に対して0.005~10質量%程度、具体的には0.01~5質量%程度であってもよい。 The polyetherimide-based resin may contain various additives generally used for obtaining fibers. For example, as additives, a heat stabilizer, an antioxidant, an antistatic agent, and a radical inhibitor , Matters, UV absorbers, flame retardants, inorganic substances, and other polymers may be contained. These additives may be used alone or in combination of two or more. The amount of the additive may be generally about 0.005 to 10% by mass, specifically about 0.01 to 5% by mass, based on the total mass of the composition.
 このようなポリエーテルイミド系樹脂は、上記式で示される構造単位を主として有する、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物とm-フェニレンジアミンとの縮合物が好ましく使用される。このようなポリエーテルイミドは、サビックイノベーティブプラスチックス社から、「ウルテム」の商標で市販されている。 Such a polyetherimide-based resin contains 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine, which mainly have the structural unit represented by the above formula. The condensate of is preferably used. Such polyetherimides are commercially available from SABIC Innovative Plastics under the trademark "Ultem".
 重合により得られたポリエーテルイミド系樹脂は、次いで、繊維化工程に供される。
 本発明のポリエーテルイミド系繊維の製造方法は、沸点が100℃以上である重合溶媒を含むポリエーテルイミド系樹脂を溶融混練する工程と、紡糸する工程とを含んでいる。溶融混錬工程では、前記ポリエーテルイミド系樹脂を溶融混錬し、紡糸するための所定の溶融粘度の溶融ポリマーを得ることができ、紡糸工程では、前記溶融ポリマーを紡糸ノズルから所定の量で吐出して、糸条(または溶融原糸)を形成することができる。
The polyetherimide-based resin obtained by polymerization is then subjected to a fibrosis step.
The method for producing a polyetherimide-based fiber of the present invention includes a step of melt-kneading a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and a step of spinning. In the melt-kneading step, the polyetherimide-based resin can be melt-kneaded to obtain a molten polymer having a predetermined melt viscosity for spinning, and in the spinning step, the molten polymer can be melt-kneaded from a spinning nozzle in a predetermined amount. It can be discharged to form threads (or molten raw yarn).
 ポリエーテルイミド系繊維を製造する際、本発明では、溶融混練工程で、溶融状態のポリエーテルイミド系樹脂に内在する高沸点の重合溶媒を高度に除去することを特徴としている。まず、ポリエーテルイミド系樹脂は、通常十分乾燥させた後に溶融混錬工程に供される。 When producing a polyetherimide-based fiber, the present invention is characterized in that the high boiling point polymerization solvent contained in the melted polyetherimide-based resin is highly removed in the melt-kneading step. First, the polyetherimide-based resin is usually sufficiently dried and then subjected to a melt-kneading step.
 溶融混練工程では、脱気とともに、材料に対してせん断力を強く与えることができる混合装置内で溶融混錬が行われる。混合装置としては、スクリュー押出機(例えば、単軸スクリュー押出機、二軸スクリュー押出機)、好ましくは二軸スクリュー押出機などが挙げられる。混合装置中において、ポリエーテルイミド系樹脂は、固体ゾーン、固体と溶融体の混合ゾーン、溶融物ゾーンを経て、紡糸工程へ供される。
 例えば、スクリュー押出機では、ポリエーテルイミド系樹脂が粒状物などの固体(例えばチップ)として供給され、シリンダ内部におけるスクリューの回転により、固体ゾーン、混合ゾーン、溶融物ゾーンへ進んでいく。
In the melt-kneading step, melt-kneading is performed in a mixing device that can strongly apply a shearing force to the material together with deaeration. Examples of the mixing device include a screw extruder (for example, a single-screw screw extruder and a twin-screw screw extruder), preferably a twin-screw screw extruder and the like. In the mixing apparatus, the polyetherimide-based resin is subjected to a spinning process through a solid zone, a mixing zone of a solid and a melt, and a melt zone.
For example, in a screw extruder, a polyetherimide-based resin is supplied as a solid (for example, a chip) such as a granular material, and the rotation of the screw inside the cylinder advances to a solid zone, a mixing zone, and a melt zone.
 ここで、固体ゾーンは、樹脂粒状物などの塊であるソリッドベッドと、樹脂粒状物の表面の溶融により得られるメルトフィルムが形成される段階を含むが、溶融物が集合しているメルトプールが形成される段階は含まれない。
 混合ゾーンは、前記メルトプールが形成される段階を含むが、未溶融の樹脂はソリッドベッドとして残っている。そのため、混合ゾーンは、固体樹脂で形成されるソリッドベッドが破壊され、溶融物中に未溶融物が浮遊する段階は含まれない。
 溶融物ゾーンは、ソリッドベッドが破壊され、溶融物中に未溶融物が浮遊する段階および樹脂が完全に溶融した段階の双方を含む。
Here, the solid zone includes a solid bed which is a mass of resin granules and the like and a stage where a melt film obtained by melting the surface of the resin granules is formed, but a melt pool in which the melts are aggregated is formed. The stage of formation is not included.
The mixing zone includes the stage where the melt pool is formed, but the unmelted resin remains as a solid bed. Therefore, the mixing zone does not include a step in which the solid bed formed of the solid resin is destroyed and the unmelted material floats in the melted material.
The melt zone includes both the stage where the solid bed is broken and the unmelt floats in the melt and the stage where the resin is completely melted.
 混合装置中では、ポリエーテルイミド系樹脂に内在する高沸点の重合溶媒を高度に除去するために、複数のベント口が設けられる。複数のベント口は、固体ゾーン、混合ゾーン、溶融物ゾーンの中から選ばれるいずれか2つ以上のゾーンに設けられ、少なくとも固体ゾーンおよび溶融物ゾーンに設けられ、固体ゾーン、混合ゾーン、溶融物ゾーンの全てに設けられるのが好ましい。固体ゾーンにベント口を設けると、急激な温度上昇に伴い発生する重合溶媒が最初に脱気するのを有効に利用することができる。溶融物ゾーンにベント口を設けると、溶融混錬工程において発生した重合溶媒を最終的に所定の範囲に脱気することを確保することができる。また、一つのゾーンに複数のベント口が設けられてもよい。 In the mixing device, a plurality of vent ports are provided in order to highly remove the high boiling point polymerization solvent contained in the polyetherimide-based resin. The plurality of vent ports are provided in any two or more zones selected from the solid zone, the mixed zone, and the melt zone, and are provided in at least the solid zone and the melt zone, and are provided in the solid zone, the mixed zone, and the melt zone. It is preferably provided in all of the zones. When the vent port is provided in the solid zone, it is possible to effectively utilize the first degassing of the polymerization solvent generated by the rapid temperature rise. By providing a vent port in the melt zone, it is possible to ensure that the polymerization solvent generated in the melt kneading step is finally degassed within a predetermined range. Further, a plurality of vent ports may be provided in one zone.
 これらのベント口のうち、少なくとも溶融物ゾーンでは、0~50mmHgの圧力に維持して真空脱気が行われ、好ましくは0~40mmHg、より好ましくは0~30mmHgの範囲の圧力に維持して真空脱気が行われてもよい。真空脱気が行われるベント口は、少なくとも溶融物ゾーンに配設され、好ましくはベント口の全てで真空脱気が行われてもよい。 Of these vent ports, at least in the melt zone, vacuum degassing is performed while maintaining a pressure of 0 to 50 mmHg, preferably maintaining a pressure in the range of 0 to 40 mmHg, more preferably 0 to 30 mmHg. Deaeration may be performed. The vent ports where the vacuum degassing is performed are arranged at least in the melt zone, and preferably all of the vent ports may be vacuum degassed.
 溶融混錬工程は、紡糸工程に供する樹脂として、未溶融物がない緊密なポリマー混合物を得る観点から、例えば、290℃以上、より好ましくは300℃以上で行ってもよい。また、過剰なポリマー分解を避けるために、370℃以下、より好ましくは350℃以下で行なってもよい。 The melt-kneading step may be carried out at, for example, 290 ° C. or higher, more preferably 300 ° C. or higher, from the viewpoint of obtaining a close polymer mixture having no unmelted material as the resin to be used in the spinning step. Further, in order to avoid excessive polymer decomposition, it may be carried out at 370 ° C. or lower, more preferably 350 ° C. or lower.
 スクリュー押出機では、例えば、L/D(L:スクリュー長さ、D:スクリュー直径)を、20以上としてもよく、好ましくは25以上、より好ましくは32以上としてもよい。また、上限は特に限定されないが、スクリューの取り扱いの観点から50以下であってもよい。 In the screw extruder, for example, the L / D (L: screw length, D: screw diameter) may be 20 or more, preferably 25 or more, and more preferably 32 or more. The upper limit is not particularly limited, but may be 50 or less from the viewpoint of handling the screw.
 例えば、図1は、ポリエーテルイミド系繊維の溶融混錬工程において用いられる混合装置の一例を説明するための概略断面図である。図1に示すように、スクリュー押出機などの混合装置10では、ポリエーテルイミド系樹脂が樹脂チップ1として供給され、供給された樹脂はシリンダ内部におけるスクリュー6の回転により、進行方向Xに向かって、固体ゾーン2、混合ゾーン3、溶融物ゾーン4へ進んでいく。
 固体ゾーン2、混合ゾーン3、溶融物ゾーン4において、ベント口5a、5b、5cがそれぞれ配設され、溶融混錬工程において発生した重合溶媒がこれらのベント口5a、5b、5cから排出される。
For example, FIG. 1 is a schematic cross-sectional view for explaining an example of a mixing device used in a melt-kneading step of a polyetherimide-based fiber. As shown in FIG. 1, in a mixing device 10 such as a screw extruder, a polyetherimide-based resin is supplied as a resin chip 1, and the supplied resin is directed toward the traveling direction X by the rotation of the screw 6 inside the cylinder. , Solid zone 2, mixing zone 3, and melt zone 4.
Vent ports 5a, 5b, and 5c are arranged in the solid zone 2, the mixing zone 3, and the melt zone 4, respectively, and the polymerization solvent generated in the melt kneading step is discharged from these vent ports 5a, 5b, and 5c. ..
 また、せん断力を強く与える観点からは、混合装置中にニーディング部を少なくとも1箇所設けるのが好ましい。複数のベント口が設けられているため、ベント口とベント口の間にニーディング部を設けてもよい。その場合、例えば、第1のベント口において真空脱気した後、ニーディング部における混合物および/または溶融物の表面更新により、第1のベント口での未脱気分をさらに排出させて、第2のベント口より真空脱気することができる。 Further, from the viewpoint of giving a strong shearing force, it is preferable to provide at least one kneading portion in the mixing device. Since a plurality of vent ports are provided, a kneading portion may be provided between the vent ports. In that case, for example, after vacuum degassing at the first vent port, the surface of the mixture and / or the melt at the kneading portion is renewed to further discharge the undegassed mood at the first vent port, and the second Vacuum degassing is possible from the vent port of.
 前記少なくとも1箇所のニーディング部は、溶融物ゾーンに設けるのが好ましく、混合ゾーンと溶融物ゾーンに設けるのがより好ましい。ニーディング部では、ニーディングセグメントなどにより、固体・溶融体の混合物および/または溶融物の表面更新をすることができるため、溶融物をより効率よく真空脱気することができる。 The at least one kneading portion is preferably provided in the melt zone, and more preferably provided in the mixing zone and the melt zone. In the kneading section, the surface of the mixture of the solid / melt and / or the melt can be renewed by the kneading segment or the like, so that the melt can be evacuated more efficiently.
 スクリュー回転数は、例えば、100~500回転/分として混練してもよく、好ましくは150~450回転/分、より好ましくは200~400回転/分としてもよい。 The screw rotation speed may be, for example, 100 to 500 rotations / minute for kneading, preferably 150 to 450 rotations / minute, and more preferably 200 to 400 rotations / minute.
 例えば、図1に示すように、混合装置10では、混合ゾーン3に配設されたベント口5bと溶融物ゾーン4に配設されたベント口5cとの間にニーディング部7を配設しており、ニーディング部7により混合物および/または溶融物の表面更新が行われ、ベント口5cにおいて、未脱気分を排出することができる。 For example, as shown in FIG. 1, in the mixing device 10, the kneading portion 7 is arranged between the vent port 5b arranged in the mixing zone 3 and the vent port 5c arranged in the melt zone 4. The kneading portion 7 renews the surface of the mixture and / or the melt, and the undisturbed mood can be discharged at the vent port 5c.
 次いで、紡糸工程では、高沸点の重合溶媒の含有量が低減され、所定の溶融粘度になったポリエーテルイミド系樹脂をギヤポンプで計量し、紡糸ノズルから所定の量を吐出させて紡糸する。 Next, in the spinning step, the content of the polymerization solvent having a high boiling point is reduced, the polyetherimide-based resin having a predetermined melt viscosity is weighed by a gear pump, and a predetermined amount is discharged from the spinning nozzle to spin.
 溶融混練したポリエーテルイミド系樹脂の溶融粘度は、例えば、390℃、せん断速度1200sec-1での溶融粘度が1000~5000poiseであってもよく、より好ましくは1500~4000poiseであってもよい。 The melt viscosity of the melt-kneaded polyetherimide-based resin may be, for example, 1000 to 5000 poise, more preferably 1500 to 4000 poise at a shear rate of 1200 sec -1 at 390 ° C.
 また紡糸口金における紡糸孔(単孔)の大きさは、例えば、0.01~0.07mm程度、好ましくは0.02~0.06mm程度、より好ましくは0.03~0.05mm程度であってもよい。なお、紡糸孔の形状は、必要な繊維断面形状に応じて適宜選択することができる。 The size of the spinning hole (single hole) in the spinneret is, for example, about 0.01 to 0.07 mm 2 , preferably about 0.02 to 0.06 mm 2 , and more preferably 0.03 to 0.05 mm 2. It may be about. The shape of the spinning hole can be appropriately selected according to the required fiber cross-sectional shape.
 紡糸ノズルからの吐出量は、ノズルの孔数や孔径に応じて、適宜設定可能であるが、例えば、35~300g/分程度、好ましくは40~280g/分程度であってもよい。 The discharge amount from the spinning nozzle can be appropriately set according to the number of holes and the hole diameter of the nozzle, but may be, for example, about 35 to 300 g / min, preferably about 40 to 280 g / min.
 その際の引取り速度(紡糸速度)は、ノズルの孔径や吐出量に応じて、適宜設定することが可能であるが、紡糸線上で分子配向が生じることを抑制する観点から、500m/分~4000m/分の範囲で引き取ることが好ましく、より好ましくは1000m/分~3500m/分、さらに好ましくは1500m/分~3000m/分であってもよい。
 吐出された紡糸原糸は、必要に応じて、延伸されて、本発明のポリエーテルイミド系繊維を得ることができる。
The take-up speed (spinning speed) at that time can be appropriately set according to the nozzle hole diameter and the discharge amount, but from the viewpoint of suppressing the occurrence of molecular orientation on the spinning line, it is from 500 m / min. It is preferable to pick up in the range of 4000 m / min, more preferably 1000 m / min to 3500 m / min, and even more preferably 1500 m / min to 3000 m / min.
The discharged spun yarn can be stretched, if necessary, to obtain the polyetherimide-based fiber of the present invention.
 ただし、本発明のポリエーテルイミド系繊維は、実質的に延伸を施されていない未延伸繊維であるのが好ましい。なお、「延伸」とは、溶融紡糸後、冷却された繊維に対して、ローラなどの引張手段を用いて繊維を引き伸ばす工程を意味し、ノズルからの吐出後、巻き取る工程において溶融原糸が引き伸ばされる工程は含まれない。 However, the polyetherimide-based fiber of the present invention is preferably an unstretched fiber that has not been substantially stretched. The term "drawing" means a step of stretching the fibers by using a tensioning means such as a roller with respect to the cooled fibers after melt spinning, and the molten raw yarn is wound in the step of being discharged from the nozzle and then wound up. The stretching process is not included.
 このようにして得られた本発明のポリエーテルイミド系繊維は、通常の溶融紡糸方法では除去できない高沸点の重合溶媒の含有量を低減させることができるため、繊維中の重合溶媒の含有量は、250ppm以下である。繊維中の重合溶媒の含有量は、好ましくは200ppm以下であってもよく、より好ましくは150ppm以下であってもよい。重合溶媒の下限値は、特に限定されないが、例えば、1ppm程度であってもよい。重合溶媒の量は、後述する実施例に記載された方法により測定される値である。 Since the polyetherimide-based fiber of the present invention thus obtained can reduce the content of the polymerization solvent having a high boiling point that cannot be removed by a usual melt spinning method, the content of the polymerization solvent in the fiber can be reduced. , 250 ppm or less. The content of the polymerization solvent in the fiber may be preferably 200 ppm or less, and more preferably 150 ppm or less. The lower limit of the polymerization solvent is not particularly limited, but may be, for example, about 1 ppm. The amount of the polymerization solvent is a value measured by the method described in Examples described later.
 なお、複数の重合溶媒が用いられている場合、例えば、モル比において最も多く用いられる高沸点重合溶媒(例えば、ジクロロベンゼン(特にo-ジクロロベンゼン)、アニソールなど)に限定して含有量を測定し、それにより、重合溶媒の含有量として判断してもよい。 When a plurality of polymerization solvents are used, for example, the content is measured only in the high boiling point polymerization solvent (for example, dichlorobenzene (particularly o-dichlorobenzene), anisole, etc.) which is most often used in terms of molar ratio. Then, it may be judged as the content of the polymerization solvent.
 上述のように、本発明のポリエーテルイミド系繊維は、高沸点の重合溶媒の含有量を低減することができるためか、脱気処理を行わない繊維と比べて、高温下において破断伸度が低下するのを抑制することが可能である。この理由については定かではないが、おそらく、特定の脱気工程により高沸点の重合溶媒の含有量を低減しない場合、重合溶媒の沸点以上の高温環境下に繊維が暴露されると、繊維から重合溶媒がガス状となり揮発してしまい、その結果繊維の微細構造が変化するためか、室温下に比べて繊維の破断伸度が低減してしまうのではないかと考えられる。 As described above, the polyetherimide-based fiber of the present invention has a higher elongation at break at high temperatures than the fiber not subjected to the degassing treatment, probably because the content of the polymerization solvent having a high boiling point can be reduced. It is possible to suppress the decrease. The reason for this is not clear, but perhaps unless the content of the high boiling point polymerization solvent is reduced by a particular degassing step, the fibers will polymerize when exposed to a high temperature environment above the boiling point of the polymerization solvent. It is considered that the solvent becomes gaseous and volatilizes, and as a result, the fine structure of the fiber changes, and the breaking elongation of the fiber decreases as compared with that at room temperature.
 一方、繊維の製造方法において、高度の脱気処理を溶融混錬工程で行うと、得られた繊維では、たとえ、重合溶媒の沸点以上の高温環境下に繊維が暴露された場合でも、重合溶媒が繊維からガス状となり揮発する量を極力低減することができ、その結果繊維の微細構造の変化の発生を抑制することができるためか、室温下と比較して繊維の高温下での物性が低下するのを抑制できるのではないかと考えられる。 On the other hand, in the fiber production method, when a high-level degassing treatment is performed in a melt-kneading step, the obtained fiber is a polymerization solvent even when the fiber is exposed to a high temperature environment equal to or higher than the boiling point of the polymerization solvent. It is possible to reduce the amount of gas that becomes gaseous from the fiber and volatilizes as much as possible, and as a result, it is possible to suppress the occurrence of changes in the microstructure of the fiber. It is thought that the decrease can be suppressed.
 例えば、ポリエーテルイミド系繊維は、例えば、室温(20℃)雰囲気下に対する190℃雰囲気下の破断伸度保持率が80%以上であってもよく、好ましくは82%以上であってもよく、より好ましくは85%以上であってもよい。上限は特に限定されないが、例えば110%以下であってもよい。 For example, the polyetherimide-based fiber may have a breaking elongation retention rate of 80% or more, preferably 82% or more, in an atmosphere of 190 ° C. with respect to an atmosphere of room temperature (20 ° C.). More preferably, it may be 85% or more. The upper limit is not particularly limited, but may be 110% or less, for example.
 さらに、本発明のポリエーテルイミド系繊維の単繊維の繊度は、目的に応じて適宜設定することができ、例えば、0.1~15dtex、好ましくは0.1~10dtex、より好ましくは0.2~9dtex、さらに好ましくは0.3~8dtex、特に好ましくは0.3~5dtexであってもよい。 Further, the fineness of the single fiber of the polyetherimide-based fiber of the present invention can be appropriately set depending on the intended purpose, for example, 0.1 to 15 dtex, preferably 0.1 to 10 dtex, more preferably 0.2. It may be up to 9 dtex, more preferably 0.3 to 8 dtex, and particularly preferably 0.3 to 5 dtex.
 また、本発明のポリエーテルイミド系繊維のマルチフィラメントの総繊度は、例えば、50~5000dtex、好ましくは100~3000dtex、より好ましくは200~2000dtexであってもよい。 Further, the total fineness of the multifilament of the polyetherimide-based fiber of the present invention may be, for example, 50 to 5000 dtex, preferably 100 to 3000 dtex, and more preferably 200 to 2000 dtex.
 ポリエーテルイミド系繊維は、連続繊維および非連続繊維のいずれであってもよく、非連続繊維である場合、例えば、単繊維の平均繊維長が0.5~60mm、好ましくは5~50mmである短繊維であってもよい。繊維の断面形状に関しても特に制限はなく、円形であってもよいし、中空、扁平、多角形、T字形、L字形、I字形、十字形、多葉形、星形等の異形断面であってもかまわない。 The polyetherimide-based fiber may be either a continuous fiber or a non-continuous fiber, and when it is a non-continuous fiber, for example, the average fiber length of the single fiber is 0.5 to 60 mm, preferably 5 to 50 mm. It may be a short fiber. The cross-sectional shape of the fiber is not particularly limited, and may be circular, hollow, flat, polygonal, T-shaped, L-shaped, I-shaped, cross-shaped, multi-leaf-shaped, star-shaped, or other irregular cross-section. It doesn't matter.
 ポリエーテルイミド系繊維は、ステープルファイバー、ショートカットファイバー、フィラメントヤーン、紡績糸、紐状物、ロープ、布帛などのあらゆる繊維形態において優れた耐熱性を示すので、多岐の用途に用いることができる。また、上記繊維形態において、本発明のポリエーテルイミド系繊維は、必要に応じて、他の繊維と組み合わせてもよい。 Polyetherimide-based fibers show excellent heat resistance in all fiber forms such as staple fibers, shortcut fibers, filament yarns, spun yarns, cords, ropes, and fabrics, so they can be used in a wide variety of applications. Further, in the above fiber form, the polyetherimide-based fiber of the present invention may be combined with other fibers, if necessary.
(ポリエーテルイミド系繊維含有製品)
 ポリエーテルイミド系繊維は、高温下で用いられる各種繊維製品として、産業資材分野、電気電子分野、農業資材分野、アパレル分野、光学材料分野、航空機・自動車・船舶分野などをはじめとして多くの用途に極めて有効に使用することができ、例えば、絶縁紙、作業服、防火服、シートクッション材、面ファスナーをはじめとして多くの用途に有用である。
(Products containing polyetherimide-based fibers)
Polyetherimide-based fibers are used in many applications such as industrial materials, electrical and electronic fields, agricultural materials, apparel, optical materials, aircraft, automobiles, and ships as various textile products used at high temperatures. It can be used extremely effectively, and is useful in many applications such as insulating paper, work clothes, fireproof clothes, seat cushioning materials, and hook-and-loop fasteners.
 本発明のポリエーテルイミド系繊維では、脱気処理を行わない繊維と比べて、高温下(例えば、150℃以上、200℃以下)において繊維の破断伸度が低下するのを抑制することが可能である。そのため、室温下と類似する破断伸度を有することを前提として各種繊維製品を設計することができ、有利である。 The polyetherimide-based fiber of the present invention can suppress a decrease in breaking elongation of the fiber at a high temperature (for example, 150 ° C. or higher and 200 ° C. or lower) as compared with a fiber not subjected to degassing treatment. Is. Therefore, various textile products can be designed on the premise that they have a breaking elongation similar to that at room temperature, which is advantageous.
(バインダー)
 ポリエーテルイミド系繊維は、必要に応じてバインダー(例えば、バインダー繊維)と組み合わせて用いてもよい。
(binder)
The polyetherimide-based fiber may be used in combination with a binder (for example, a binder fiber), if necessary.
 例えば、バインダーとしては、ポリオレフィン系繊維、ポリアミド系繊維、ポリエステル系繊維、ならびにこれらの樹脂の粉粒体およびエマルジョンなどの液状物などがあげられ、これらのうちポリエステル系繊維が好ましい。 For example, examples of the binder include polyolefin fibers, polyamide fibers, polyester fibers, and liquid substances such as powders and emulsions of these resins, of which polyester fibers are preferable.
(強化繊維)
 本発明で用いる強化繊維については、本発明の効果を損なわない限り特に制限されず、有機繊維であっても無機繊維であってもよく、また、単独で、あるいは二種以上を組み合わせて用いてもよい。例えば、無機繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、セラミックファイバー、玄武岩繊維、各種金属繊維(例えば、金、銀、銅、鉄、ニッケル、チタン、ステンレス等)を例示することができ、また、有機繊維としては、全芳香族ポリエステル系繊維、ポリフェニレンサルファイド系繊維、パラ系アラミド繊維、ポリスルフォンアミド系繊維、フェノール樹脂繊維、全芳香族ポリイミド繊維、フッ素系繊維等を例示することができる。なお、有機繊維は、必要に応じて延伸処理された延伸繊維であってもよい。
(Reinforcing fiber)
The reinforcing fibers used in the present invention are not particularly limited as long as the effects of the present invention are not impaired, and may be organic fibers or inorganic fibers, or may be used alone or in combination of two or more. May be good. For example, examples of the inorganic fiber include glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, ceramic fiber, genbuiwa fiber, and various metal fibers (for example, gold, silver, copper, iron, nickel, titanium, stainless steel, etc.). Examples of organic fibers include total aromatic polyester fibers, polyphenylene sulfide fibers, para-aramid fibers, polysulphonamide fibers, phenol resin fibers, total aromatic polyimide fibers, and fluorine fibers. can do. The organic fiber may be a stretched fiber that has been stretched, if necessary.
 これらの強化繊維のうち、力学物性や難燃性、耐熱性、入手のし易さの点から、炭素繊維、ガラス繊維、全芳香族ポリエステル系繊維、パラ系アラミド繊維が好適に用いられる。 Of these reinforcing fibers, carbon fibers, glass fibers, all-aromatic polyester fibers, and para-aramid fibers are preferably used from the viewpoints of mechanical properties, flame retardancy, heat resistance, and availability.
 強化繊維の単繊維の繊度は、ポリエーテルイミド系繊維の繊度に応じて適宜設定することができ、例えば、0.01~10dtexであってもよく、好ましくは0.1~8dtex、より好ましくは1~6dtexであってもよい。 The fineness of the single fiber of the reinforcing fiber can be appropriately set according to the fineness of the polyetherimide-based fiber, and may be, for example, 0.01 to 10 dtex, preferably 0.1 to 8 dtex, and more preferably 0.1 to 8 dtex. It may be 1 to 6 dtex.
 ポリエーテルイミド系繊維の単繊維繊度と強化繊維の単繊維繊度との比(PEI繊維/強化繊維)は、例えば、10/90~90/10程度、より好ましくは30/70~70/30程度であってもよい。 The ratio of the single fiber fineness of the polyetherimide-based fiber to the single fiber fineness of the reinforcing fiber (PEI fiber / reinforcing fiber) is, for example, about 10/90 to 90/10, more preferably about 30/70 to 70/30. It may be.
 また、強化繊維のマルチフィラメントの総繊度は、例えば、50~5000dtex、好ましくは100~3000dtex、より好ましくは200~2000dtexであってもよい。 Further, the total fineness of the multifilament of the reinforcing fiber may be, for example, 50 to 5000 dtex, preferably 100 to 3000 dtex, and more preferably 200 to 2000 dtex.
 強化繊維は、連続繊維および非連続繊維のいずれであってもよく、非連続繊維である場合、単繊維の平均繊維長が、例えば、1~40mm、好ましくは5~35mm、より好ましくは10~30mmである短繊維であってもよい。
 繊維の断面形状に関しても特に制限はなく、円形であってもよいし、中空、扁平、多角形、T字形、L字形、I字形、十字形、多葉形、星形等の異形断面であってもかまわない。
The reinforcing fiber may be either a continuous fiber or a non-continuous fiber, and when the reinforcing fiber is a non-continuous fiber, the average fiber length of the single fiber is, for example, 1 to 40 mm, preferably 5 to 35 mm, and more preferably 10 to. It may be a short fiber having a thickness of 30 mm.
The cross-sectional shape of the fiber is not particularly limited, and may be circular, hollow, flat, polygonal, T-shaped, L-shaped, I-shaped, cross-shaped, multi-leaf-shaped, star-shaped, or other irregular cross-section. It doesn't matter.
(繊維製品)
 ポリエーテルイミド系繊維で構成される繊維製品は、織編物、不織布などで構成されていてもよい。繊維製品は、ポリエーテルイミド系繊維単独で形成されていてもよいが、必要に応じて、他の繊維と組み合わせて用いられてもよい。
(Fiber products)
The textile product composed of polyetherimide-based fibers may be composed of a woven or knitted fabric, a non-woven fabric, or the like. The textile product may be formed of a polyetherimide-based fiber alone, or may be used in combination with other fibers, if necessary.
 例えば、織物は、ポリエーテルイミド系繊維またはその混繊糸を、経糸および/または緯糸として備えていてもよいし、編み物は、ポリエーテルイミド系繊維またはその混繊糸を編糸として備えていてもよい。不織布は、ポリエーテルイミド系繊維を含み、化学的または物理的な結合により一体化していればよく、例えば、バインダー(例えば、バインダー繊維)により、ポリエーテルイミド系繊維が接着している不織布であってもよいし、バインダー(例えば、バインダー繊維)により、ポリエーテルイミド系繊維および強化繊維が接着している不織布であってもよい。 For example, a woven fabric may include a polyetherimide-based fiber or a mixed fiber yarn thereof as a warp and / or a weft yarn, and a knitting may include a polyetherimide-based fiber or a mixed fiber yarn thereof as a knitting yarn. May be good. The non-woven fabric may contain polyetherimide-based fibers and may be integrated by chemical or physical bonding. For example, the non-woven fabric to which the polyetherimide-based fibers are adhered by a binder (for example, binder fibers). It may be a non-woven fabric to which a polyetherimide-based fiber and a reinforcing fiber are adhered by a binder (for example, a binder fiber).
 本発明の不織布の製造方法は特に限定はなく、スパンレース不織布、ニードルパンチ不織布、スチームジェット不織布、乾式抄紙法、湿式抄紙法などの公知または慣用の不織布の製造方法が挙げられる。なかでも、生産効率や強化繊維の不織布中での均一分散の面から、湿式抄紙法が好ましい。
 例えば、湿式抄紙法では、前記ポリエーテルイミド系繊維、強化繊維および必要に応じてバインダー(例えば、ポリエステル系バインダー繊維)を少なくとも含む水性スラリーを作製し、ついでこのスラリーを通常の抄紙工程に供すればよい。
The method for producing the non-woven fabric of the present invention is not particularly limited, and examples thereof include known or conventional non-woven fabric manufacturing methods such as spunlace non-woven fabric, needle punched non-woven fabric, steam jet non-woven fabric, dry papermaking method, and wet papermaking method. Of these, the wet papermaking method is preferable from the viewpoint of production efficiency and uniform dispersion of the reinforcing fibers in the non-woven fabric.
For example, in the wet papermaking method, an aqueous slurry containing at least the polyetherimide-based fiber, the reinforcing fiber and, if necessary, a binder (for example, a polyester-based binder fiber) is prepared, and then this slurry is subjected to a normal papermaking process. Just do it.
 抄紙工程では、スラリーを乾燥させるための加熱下での乾燥工程が行われる。この際の加熱温度は、例えば、ポリエステル系バインダー繊維の軟化点以上であり、この乾燥工程において、スラリー中のポリエステル系バインダー繊維がポリエーテルイミド系繊維と強化繊維とを融着し、紙またはウェブ形状を有する不織布を形成することができる。
 また、不織布を製造する際、ポリエステル系バインダー繊維による接着性を向上させるため、一旦得られたウェブに対して、さらに熱プレス、スルーエアボンドなどのサーマルボンド工程を行うのが好ましい。また、不織布の均一性や圧着性を高めるために、スプレードライによりバインダーを塗布してもよい。
In the papermaking process, a drying process under heating is performed to dry the slurry. The heating temperature at this time is, for example, equal to or higher than the softening point of the polyester-based binder fiber, and in this drying step, the polyester-based binder fiber in the slurry fuses the polyetherimide-based fiber and the reinforcing fiber, and paper or web. A non-woven fabric having a shape can be formed.
Further, when producing a non-woven fabric, in order to improve the adhesiveness of the polyester-based binder fiber, it is preferable to further perform a thermal bond process such as hot pressing and through air bond on the once obtained web. Further, in order to improve the uniformity and pressure-bonding property of the non-woven fabric, a binder may be applied by spray-drying.
 本発明の繊維製品の目付は、強化材料の有無などに応じて適宜設定することができ、例えば、5~5000g/mであることが好ましく、より好ましくは10~2000g/m、さらに好ましくは20~500g/mであってもよい。 The basis weight of the textile product of the present invention can be appropriately set depending on the presence or absence of a reinforcing material, for example, preferably 5 to 5000 g / m 2 , more preferably 10 to 2000 g / m 2 , and even more preferably. May be 20 to 500 g / m 2 .
 本発明の繊維製品は、厚手から薄手まで、用途に応じて適当な厚みを有していてもよい。例えば、薄手の繊維製品の場合、その厚みは、例えば、200μm以下であってもよく、好ましくは30~150μm、より好ましくは50~120μmであってもよい。 The textile product of the present invention may have an appropriate thickness depending on the application, from thick to thin. For example, in the case of a thin textile product, the thickness may be, for example, 200 μm or less, preferably 30 to 150 μm, and more preferably 50 to 120 μm.
(複合材料)
 本発明の複合材料は、ポリエーテルイミド系繊維の溶融物をマトリックスとして備えている限り特に限定されず、様々な素材を含む複合材料であってもよい。例えば、本発明の複合材料は、前記繊維製品中のポリエーテルイミド系繊維を溶融させてマトリックスとして備えていてもよい。
(Composite material)
The composite material of the present invention is not particularly limited as long as it contains a melt of a polyetherimide-based fiber as a matrix, and may be a composite material containing various materials. For example, the composite material of the present invention may be provided as a matrix by melting the polyetherimide-based fibers in the textile product.
 本発明のポリエーテルイミド系繊維は、脱気処理を行わない繊維と比べて、高温下での繊維の破断伸度が低下するのを抑制することができるため、複合材料を形成するマトリックス材料としても有用である。特に、非平面形状を有する複合体を形成するに当たって、段差や角ばった部分などの非平面部分が存在していても、本発明のポリエーテルイミド系繊維はマトリックス材料として有用である。 The polyetherimide-based fiber of the present invention can suppress a decrease in the breaking elongation of the fiber at a high temperature as compared with a fiber not subjected to the degassing treatment, and thus can be used as a matrix material for forming a composite material. Is also useful. In particular, in forming a composite having a non-planar shape, the polyetherimide-based fiber of the present invention is useful as a matrix material even if a non-planar portion such as a step or an angular portion is present.
 例えば、段差や角ばった部分などの非平面部分に対して繊維を適用してマトリックスとする場合、繊維は非平面部分では、所定の張力によって伸張する。その結果、伸張した繊維が加熱工程の中で破断すると、複合体ではその部分が皺や穴などの欠陥の原因となるおそれがある。 For example, when fibers are applied to a non-planar portion such as a step or a square portion to form a matrix, the fibers are stretched by a predetermined tension in the non-planar portion. As a result, if the stretched fibers break during the heating process, the portions of the composite may cause defects such as wrinkles and holes.
 これに対して、本発明のポリエーテルイミド系繊維では、高温下での破断伸度保持率が良好であるため、非平面部分が存在していても、加熱下で破断伸度が変化することを抑制することができる。そのため、本発明の複合材料は、各種乗り物のシートやタンク、エアーダクト(特に航空機用のエアーダクト)などの複雑な形状への成形加工がしやすい点で有利である。 On the other hand, in the polyetherimide-based fiber of the present invention, the elongation at break retention rate at high temperature is good, so that the elongation at break changes under heating even if a non-planar portion is present. Can be suppressed. Therefore, the composite material of the present invention is advantageous in that it can be easily molded into a complicated shape such as a seat or tank of various vehicles and an air duct (particularly an air duct for an aircraft).
 複合材料中に強化繊維が含まれる場合、複合材料は、ポリエーテルイミド系繊維の溶融物をマトリックスとして備え、前記マトリックス中に強化繊維が含まれているのが好ましく、より好ましくは、強化繊維が、前記マトリックス中に分散しているのが好ましい。 When the reinforcing fiber is contained in the composite material, the composite material preferably comprises a melt of a polyetherimide-based fiber as a matrix, and the reinforcing fiber is contained in the matrix, and more preferably, the reinforcing fiber is used. , Preferably dispersed in the matrix.
 たとえば、複合材料は、ポリエーテルイミド系繊維を含む布帛を1枚または複数枚積層させた後、加熱することにより、ポリエーテルイミド系繊維の溶融をマトリックスとして備えていてもよい。 For example, the composite material may be provided with melting of the polyetherimide-based fiber as a matrix by laminating one or a plurality of fabrics containing the polyetherimide-based fiber and then heating the composite material.
 本発明の複合材料は、例えば、ポリエーテルイミド系繊維の流動開始温度以上で加熱する加熱成形により形成されてもよい。なお、ここで流動開始温度とは、結晶性樹脂の場合はその融点であり、非結晶性樹脂の場合はそのガラス転移温度を意味している。 The composite material of the present invention may be formed, for example, by heat molding in which the polyetherimide-based fiber is heated above the flow start temperature. Here, the flow start temperature means the melting point of the crystalline resin and the glass transition temperature of the amorphous resin.
 加熱成形方法については特に制限はなく、例えば、加熱圧縮による各種成形方法、特に、スタンパブル成形や加圧成形、真空圧着成形、GMT成形のような圧縮成形が好適に用いられる。その時の成形温度は用いるポリエーテルイミド系繊維の流動開始温度や分解温度に併せて設定すればよい。 The heat molding method is not particularly limited, and for example, various molding methods by heat compression, particularly compression molding such as stampable molding, pressure molding, vacuum pressure molding, and GMT molding are preferably used. The molding temperature at that time may be set according to the flow start temperature and the decomposition temperature of the polyetherimide-based fiber to be used.
 例えば、ポリエーテルイミド系繊維が結晶性の場合、成形温度はポリエーテルイミド系繊維の融点以上、(融点+100)℃以下の範囲であることが好ましい。また、ポリエーテルイミド系繊維が非結晶性の場合、成形温度はポリエーテルイミド系繊維のガラス転移温度以上、(ガラス転移温度+200)℃以下の範囲であることが好ましい。なお、必要に応じて、加熱成形する前にIRヒーターなどで予備加熱することもできる。 For example, when the polyetherimide-based fiber is crystalline, the molding temperature is preferably in the range of the melting point of the polyetherimide-based fiber or higher and (melting point +100) ° C. or lower. When the polyetherimide-based fiber is amorphous, the molding temperature is preferably in the range of the glass transition temperature of the polyetherimide-based fiber or more and (glass transition temperature +200) ° C. or less. If necessary, it can be preheated with an IR heater or the like before heat molding.
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the present Examples.
[重合溶媒の含有量(ppm)]
 重合溶媒の含有量は、熱分解GC/MSを使用して測定した。アジレント・テクノロジー社製GC/MS装置「7890GC/5977MSD」、およびフロンティア・ラボ社製熱分解装置「シングルショット・パイロライザーPY-3030S」を使用し、測定を行った。
[Content of polymerization solvent (ppm)]
The content of the polymerization solvent was measured using thermal decomposition GC / MS. Measurements were performed using a GC / MS apparatus "7890GC / 5977MSD" manufactured by Agilent Technologies and a thermal decomposition apparatus "Single Shot Pyrolyzer PY-3030S" manufactured by Frontier Lab.
(装置・測定条件)
・熱分解装置条件
 熱分解炉:300℃ 、インターフェイス:280℃
・GC/MS装置
 カラム:UA-5MS(30m-0.25mm-0.25μm)
 オーブン:50℃(1分保持)→20℃/分→290℃(17分保持)
 注入口:280℃、スプリット注入(20:1)
 イオン化:EI+
 検出法:SIM法(m/z=146)
・サンプル
 繊維:0.500mg
 まず、繊維試料を熱分解試料カップに採取(0.500mg)し、熱分解GC/MSの熱分解炉に試料をセットした。3分経過後、試料カップを熱分解炉に落下させ、GC/MS測定を開始し、m/z=146のイオンを計測した。測定終了後、ピーク面積値からo-ジクロロベンゼンの含有量(ppm)を算出した。なお、検量線用試料として、25ppm、50ppm、100ppmのo-ジクロロベンゼン溶液をアセトン溶液で調製し測定した。
(Device / measurement conditions)
・ Pyrolysis equipment conditions Pyrolysis furnace: 300 ° C, interface: 280 ° C
-GC / MS device Column: UA-5MS (30m-0.25mm-0.25μm)
Oven: 50 ° C (hold for 1 minute) → 20 ° C / min → 290 ° C (hold for 17 minutes)
Injection port: 280 ° C, split injection (20: 1)
Ionization: EI +
Detection method: SIM method (m / z = 146)
-Sample fiber: 0.500 mg
First, a fiber sample was collected in a pyrolysis sample cup (0.500 mg), and the sample was set in a pyrolysis GC / MS pyrolysis furnace. After 3 minutes, the sample cup was dropped into a pyrolysis furnace, GC / MS measurement was started, and ions at m / z = 146 were measured. After the measurement was completed, the o-dichlorobenzene content (ppm) was calculated from the peak area value. As a sample for the calibration curve, 25 ppm, 50 ppm, and 100 ppm o-dichlorobenzene solutions were prepared with an acetone solution and measured.
[単繊維繊度(dtex)]
 マルチフィラメントから無作為に100本抜き出し、夫々の単繊維の繊度を測定し、その平均値を求め、単繊維繊度とした。
[Single fiber fineness (dtex)]
100 fibers were randomly extracted from the multifilament, the fineness of each single fiber was measured, and the average value was calculated and used as the single fiber fineness.
[繊維長(mm)]
 カット糸から無作為に100本抜き出し、夫々の繊維長を測定し、その平均値を求め、繊維長とした。
[Fiber length (mm)]
100 fibers were randomly extracted from the cut yarn, the fiber lengths of each were measured, and the average value was calculated and used as the fiber length.
[繊維製品の目付(g/m)]
 JIS L 1913試験法に準じて測定し、n=3の平均値を採用した。
[Metsuke of textile products (g / m 2 )]
The measurement was performed according to the JIS L 1913 test method, and the average value of n = 3 was adopted.
[実施例1]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)上記(1)の樹脂を二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーン、溶融物ゾーンにそれぞれ1個ずつ設け、ベント口を約20mmHgに保ち脱気した。また、混合ゾーン、溶融物ゾーンにおいて、これらのベント位置の間にあたるスクリューセグメント位置にニーディングセグメントを設け、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、220dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Example 1]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The resin of (1) above is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and venting is performed. The mouth was kept at about 20 mmHg and degassed. Further, in the mixing zone and the melt zone, a kneading segment is provided at the screw segment position between these vent positions, and the spinning segment is discharged from the round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min, and 220 dtex / min. A multifilament of 100 filaments was obtained. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[実施例2]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)(1)の樹脂を二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーンにそれぞれ1個ずつ、溶融物ゾーンには2個設け、ベント口を約20mmHgに保ち脱気し、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Example 2]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. There are one vent port in each of the solid zone and the mixing zone, and two in the melt zone. The vent port was maintained at about 20 mmHg and degassed, and the mixture was discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[実施例3]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)(1)の樹脂を二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーン、溶融物ゾーンにそれぞれ1個ずつ設け、ベント口を約20mmHgに保ち脱気し、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Example 3]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and the vent port is provided. Was degassed at about 20 mmHg and discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[実施例4]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)(1)の樹脂を二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーン、溶融物ゾーンにそれぞれ1個ずつ設け、ベント口を約35mmHgに保ち脱気し、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Example 4]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and the vent port is provided. Was degassed at about 35 mmHg and discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[実施例5]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)(1)の樹脂を二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、溶融物ゾーンにそれぞれ1個ずつ設け、ベント口を約35mmHgに保ち脱気し、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Example 5]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The resin of (1) is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone and the melt zone, and the vent port is about 35 mmHg. The mixture was degassed at a speed of 2000 m / min and discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[比較例1]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)上記(1)のポリマーを二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーンにそれぞれ1個ずつ設け、ベント口を約80mmHgに保ち脱気したものを、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Comparative Example 1]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The polymer of (1) above is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C., one vent port is provided in each of the solid zone and the mixing zone, and the vent port is about 80 mmHg. The degassed product was discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a 250 dtex / 100 filament multifilament. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[比較例2]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)上記(1)のポリマーを二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーンにそれぞれ1個ずつ設け、ベント口を約80mmHgに保ち脱気した。また、混合ゾーンのベント口よりも下流側(樹脂進行側)において、スクリューセグメント位置にニーディングセグメントを設け、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Comparative Example 2]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The polymer of (1) above is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone and the mixing zone, and the vent port is about 80 mmHg. I kept it and degassed. Further, a kneading segment is provided at the screw segment position on the downstream side (resin advancing side) of the vent port of the mixing zone, and the spinning segment is discharged from the round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min, and 250 dtex. A multifilament of / 100 filaments was obtained. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[比較例3]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)上記(1)のポリマーを二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーンにそれぞれ1個ずつ設け、ベント口を約35mmHgに保ち脱気したものを、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Comparative Example 3]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The polymer of (1) above is put into a twin-screw extruder, kneaded with a screw while melting at 390 ° C., one vent port is provided in each of the solid zone and the mixing zone, and the vent port is about 35 mmHg. The degassed product was discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a 250 dtex / 100 filament multifilament. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[比較例4]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)上記(1)のポリマーを二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、固体ゾーン、混合ゾーン、溶融物ゾーンにそれぞれ1個ずつ設け、ベント口を約80mmHgに保ち脱気したものを、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Comparative Example 4]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The polymer of (1) above is put into a twin-screw extruder and kneaded with a screw while melting at 390 ° C. One vent port is provided in each of the solid zone, the mixing zone, and the melt zone, and venting is performed. A degassed product having a mouth kept at about 80 mmHg was discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a 250 dtex / 100 filament multifilament. Table 1 shows the results of measuring various physical properties of the obtained fibers.
[比較例5]
 (1)ポリエーテルイミド系樹脂(サビックイノベーティブプラスチックス社製「ウルテム9011」)を準備し、150℃で12時間乾燥した。
 (2)上記(1)のポリマーを二軸押出機に投入し、390℃で溶融しながらスクリューで混練し、ベント口は、混合ゾーン、溶融物ゾーンに設け、ベント口を約80mmHgに保ち脱気したものを、紡糸速度2000m/分、吐出量50g/分の条件で丸孔ノズルより吐出し、250dtex/100フィラメントのマルチフィラメントを得た。得られた繊維について各種物性を測定した結果を表1に示す。
[Comparative Example 5]
(1) A polyetherimide-based resin (“Ultem 9011” manufactured by Savik Innovative Plastics Co., Ltd.) was prepared and dried at 150 ° C. for 12 hours.
(2) The polymer of (1) above is put into a twin-screw extruder, kneaded with a screw while melting at 390 ° C., vent ports are provided in a mixing zone and a melt zone, and the vent port is kept at about 80 mmHg for removal. What was noticed was discharged from a round hole nozzle under the conditions of a spinning speed of 2000 m / min and a discharge rate of 50 g / min to obtain a multifilament of 250 dtex / 100 filaments. Table 1 shows the results of measuring various physical properties of the obtained fibers.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、繊維中に存在する重合溶媒の含有量(残存溶媒量)が減少すると破断伸度保持率が全体的に上昇している。実施例1~5は、いずれもベント口を固体ゾーンおよび溶融物ゾーンに備えているため、繊維中に存在する重合溶媒の含有量(残存溶媒量)を減少させて、破断伸度保持率を80%以上とすることができている。 As shown in Table 1, when the content (residual solvent amount) of the polymerization solvent present in the fiber decreases, the elongation at break retention rate increases as a whole. In Examples 1 to 5, since the vent ports are provided in the solid zone and the melt zone, the content of the polymerization solvent (residual solvent amount) present in the fiber is reduced, and the elongation at break retention rate is increased. It can be 80% or more.
 より詳細には、実施例3と実施例4と比較例4とを比較すると、ベント口の圧力が低いほど、残存溶媒量を低減することができることが分かる。また、実施例2および実施例3を比較すると、ベント口の数が多いほど、残存溶媒量を低減することができることが分かる。さらに、実施例1と実施例3を比較すると、ニーディング部を設けて、ベント間混錬を行うことにより、残存溶媒量を70ppm低減することができることが分かる。実施例5と比較例3を比較すると、ベント口の数が同じでもその位置が異なると、残存溶媒量も変化することが分かる。 More specifically, when Example 3, Example 4, and Comparative Example 4 are compared, it can be seen that the lower the pressure at the vent port, the more the residual solvent amount can be reduced. Further, comparing Example 2 and Example 3, it can be seen that the larger the number of vent ports, the more the amount of residual solvent can be reduced. Furthermore, when Example 1 and Example 3 are compared, it can be seen that the amount of residual solvent can be reduced by 70 ppm by providing a kneading portion and performing kneading between vents. Comparing Example 5 and Comparative Example 3, it can be seen that even if the number of vent ports is the same, if the positions are different, the amount of residual solvent also changes.
 一方、比較例1~5では、ベント口を適切に配置することができないか、ベント口の圧力が十分低くないため、繊維中に存在する重合溶媒の含有量(残存溶媒量)を減少させることができず、その結果、破断伸度保持率が実施例よりも低い値である。 On the other hand, in Comparative Examples 1 to 5, the content of the polymerization solvent (residual solvent amount) present in the fiber is reduced because the vent port cannot be arranged appropriately or the pressure of the vent port is not sufficiently low. As a result, the elongation at break retention rate is lower than that of the examples.
 より詳細には、比較例1では、固体ゾーンおよび混合ゾーンにベント口は設けられているものの、溶融物ゾーンにベント口が配設されておらず、さらにベント口の真空脱気も不十分であるため、残存溶媒量を低減することが困難である。 More specifically, in Comparative Example 1, although vent ports are provided in the solid zone and the mixing zone, the vent ports are not arranged in the melt zone, and the vacuum degassing of the vent ports is insufficient. Therefore, it is difficult to reduce the amount of residual solvent.
 また、比較例1と比較例2を比較すると、比較例2はニーディング部が配設されているものの、ニーディング部の下流側にベント口が配設されておらず、さらにベント口の真空脱気も不十分であるため、残存溶媒量を低減させる効果がほとんどないことが分かる。 Further, when Comparative Example 1 and Comparative Example 2 are compared, in Comparative Example 2, although the kneading portion is provided, the vent port is not arranged on the downstream side of the kneading portion, and the vacuum of the vent port is further increased. Since deaeration is also insufficient, it can be seen that there is almost no effect of reducing the amount of residual solvent.
 比較例1と比較例3を比較すると、ベント口の圧力を単に低減させるだけでは、残存溶媒量を250ppm以下に低減することはできないことが分かる。比較例1または5と比較例4を比較すると、ベント口の数を単に増加させるだけでは、残存溶媒量を250ppm以下に低減することはできないことが分かる。 Comparing Comparative Example 1 and Comparative Example 3, it can be seen that the amount of residual solvent cannot be reduced to 250 ppm or less simply by reducing the pressure at the vent port. Comparing Comparative Example 1 or 5 with Comparative Example 4, it can be seen that the amount of residual solvent cannot be reduced to 250 ppm or less simply by increasing the number of vent ports.
 本発明のポリエーテルイミド系繊維は、脱気処理が行われない繊維と比べて、高温下(例えば、150℃以上、200℃以下)において繊維の破断伸度が低下するのを抑制することが可能である。そのため、このようなポリエーテルイミド系繊維の特性を生かし、各種高温下で用いられる繊維製品として、産業資材分野、電気・電子分野、土木・建築分野、農業資材分野、アパレル分野、光学材料分野、航空機・自動車・船舶分野、医療材料分野などをはじめとして多くの用途に極めて有効に使用することができ、例えば、絶縁紙、作業服、防火服、シートクッション材、面ファスナーをはじめとして多くの用途に有用である。 The polyetherimide-based fiber of the present invention can suppress a decrease in breaking elongation of the fiber at a high temperature (for example, 150 ° C. or higher and 200 ° C. or lower) as compared with a fiber that is not degassed. It is possible. Therefore, taking advantage of these characteristics of polyetherimide-based fibers, as textile products used under various high temperatures, industrial materials field, electrical / electronic field, civil engineering / construction field, agricultural material field, apparel field, optical material field, etc. It can be used extremely effectively in many applications such as aircraft, automobiles, ships, and medical materials. For example, it can be used in many applications such as insulating paper, work clothes, fireproof clothing, seat cushioning materials, and hook-and-loop fasteners. It is useful for.
 更には、ポリエーテルイミド系繊維を溶融させることにより得られる複合材料は、各種成形物として、目的に応じてその形状も自由に設計可能であり、産業資材分野、電気・電子分野、土木・建築分野、航空機・自動車・鉄道・船舶分野、農業資材分野、光学材料分野、医療材料分野などをはじめとして多くの用途に極めて有効に使用することができ、例えば、各種乗り物のシートやタンク、エアーダクト(特に航空機用のエアーダクト)用の複合材料として有用である。 Furthermore, the composite material obtained by melting polyetherimide-based fibers can be freely designed in shape according to the purpose as various molded products, and can be freely designed in the fields of industrial materials, electrical / electronic fields, civil engineering / construction. It can be used extremely effectively in many applications such as fields, aircraft / automobile / railway / ship fields, agricultural materials fields, optical materials fields, medical materials fields, etc. For example, seats, tanks, and air ducts for various vehicles. It is useful as a composite material for (especially air ducts for aircraft).
 以上のとおり、本発明の好適な実施形態を説明したが、当業者であれば、本件明細書を見て、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。 As described above, preferred embodiments of the present invention have been described, but those skilled in the art can make various additions, changes or deletions as long as they do not deviate from the gist of the present invention by looking at the present specification. , Such are also included within the scope of the present invention.
 1・・・樹脂チップ
 2・・・固体ゾーン
 3・・・混合ゾーン
 4・・・溶融物ゾーン
 5a,5b,5c・・・ベント口
 6・・・スクリュー
 7・・・ニーディング部
 10・・・混合装置
1 ... Resin tip 2 ... Solid zone 3 ... Mixing zone 4 ... Melt zone 5a, 5b, 5c ... Vent port 6 ... Screw 7 ... Kneading part 10 ...・ Mixing device

Claims (8)

  1.  沸点が100℃以上である重合溶媒を含むポリエーテルイミド系樹脂からなるポリエーテルイミド系繊維であって、繊維中の前記重合溶媒の含有量が250ppm以下である、ポリエーテルイミド系繊維。 A polyetherimide-based fiber made of a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, wherein the content of the polymerization solvent in the fiber is 250 ppm or less.
  2.  請求項1に記載のポリエーテルイミド系繊維であって、室温(20℃)雰囲気下に対する190℃雰囲気下の破断伸度保持率が80%以上である、ポリエーテルイミド系繊維。 The polyetherimide-based fiber according to claim 1, wherein the breaking elongation retention rate in a 190 ° C. atmosphere with respect to a room temperature (20 ° C.) atmosphere is 80% or more.
  3.  請求項1または2に記載のポリエーテルイミド系繊維であって、前記重合溶媒がジクロロベンゼン、ジクロロトルエン、トリクロロベンゼン、ジフェニルスルホン、モノアルコキシベンゼン、ジアルコキシベンゼン、ジフェニルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、およびN-メチルピロリジノンからなる群から選択される少なくとも1種であることを特徴とするポリエーテルイミド系繊維。 The polyetherimide-based fiber according to claim 1 or 2, wherein the polymerization solvent is dichlorobenzene, dichlorotoluene, trichlorobenzene, diphenylsulfone, monoalkoxybenzene, dialkoxybenzene, diphenyl ether, dimethylformamide, dimethylacetamide, dimethyl. A polyetherimide-based fiber, which is at least one selected from the group consisting of sulfoxide and N-methylpyrrolidinone.
  4.  請求項1~3のいずれか一項に記載のポリエーテルイミド系繊維の製造方法であって、
     沸点が100℃以上である重合溶媒を含むポリエーテルイミド系樹脂を溶融混錬する工程と、紡糸する工程とを含み、
     前記溶融混錬工程では、前記ポリエーテルイミド系樹脂は、固体ゾーン、固体と溶融体の混合ゾーン、および溶融物ゾーンを経由し、
     少なくとも前記固体ゾーンおよび前記溶融物ゾーンにおいて、ベント口が配設され、
     前記ベント口では、少なくとも溶融物ゾーンにおいて、0~50mmHgの圧力で真空脱気が行われる、製造方法。
    The method for producing a polyetherimide-based fiber according to any one of claims 1 to 3.
    It includes a step of melt-kneading a polyetherimide-based resin containing a polymerization solvent having a boiling point of 100 ° C. or higher, and a step of spinning.
    In the melt-kneading step, the polyetherimide-based resin passes through a solid zone, a mixed zone of a solid and a melt, and a melt zone.
    Vent openings are provided, at least in the solid zone and the melt zone.
    A manufacturing method in which vacuum degassing is performed at a pressure of 0 to 50 mmHg at the vent port, at least in the melt zone.
  5.  請求項4に記載のポリエーテルイミド系繊維の製造方法であって、固体ゾーン、混合ゾーン、および溶融物ゾーンにおいて、ベント口が配設されている、製造方法。 The method for producing a polyetherimide-based fiber according to claim 4, wherein vent ports are arranged in a solid zone, a mixing zone, and a melt zone.
  6.  請求項4または5に記載のポリエーテルイミド系繊維の製造方法であって、ベント口とベント口の間の位置にニーディング部が少なくとも1箇所配設されている、製造方法。 The method for producing a polyetherimide-based fiber according to claim 4 or 5, wherein at least one kneading portion is arranged at a position between the vent openings.
  7.  請求項1~3のいずれか一項に記載のポリエーテルイミド系繊維で構成される、繊維製品。 A textile product composed of the polyetherimide-based fiber according to any one of claims 1 to 3.
  8.  請求項1~3のいずれか一項に記載のポリエーテルイミド系繊維の溶融物をマトリックスとして備える、複合材料。 A composite material comprising the melt of the polyetherimide-based fiber according to any one of claims 1 to 3 as a matrix.
PCT/JP2021/007363 2020-03-03 2021-02-26 Polyetherimide-based fibers, method for producing same, and textile product and composite material both including same WO2021177168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-035498 2020-03-03
JP2020035498 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021177168A1 true WO2021177168A1 (en) 2021-09-10

Family

ID=77614277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007363 WO2021177168A1 (en) 2020-03-03 2021-02-26 Polyetherimide-based fibers, method for producing same, and textile product and composite material both including same

Country Status (1)

Country Link
WO (1) WO2021177168A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303115A (en) * 1987-05-21 1988-12-09 アクゾ・エヌ・ヴエー Fiber composed of polyetherimide and its production
JP2005068434A (en) * 2003-08-26 2005-03-17 General Electric Co <Ge> Method for separating polymer from solvent
JP2007508421A (en) * 2003-10-10 2007-04-05 ゼネラル・エレクトリック・カンパニイ Method for producing polyimide and polyimide produced by the method
US20130003227A1 (en) * 2011-06-30 2013-01-03 Daniel Francis Lowery Polyetherimide resins with very low levels of residual contamination
WO2013066791A1 (en) * 2011-10-31 2013-05-10 Sabic Innovative Plastics Ip B.V. Steam purification of polyimide resins
WO2019107343A1 (en) * 2017-11-28 2019-06-06 株式会社クラレ Refractory member
JP2019137965A (en) * 2015-01-29 2019-08-22 王子ホールディングス株式会社 Fiber-reinforced plastic compact sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303115A (en) * 1987-05-21 1988-12-09 アクゾ・エヌ・ヴエー Fiber composed of polyetherimide and its production
JP2005068434A (en) * 2003-08-26 2005-03-17 General Electric Co <Ge> Method for separating polymer from solvent
JP2007508421A (en) * 2003-10-10 2007-04-05 ゼネラル・エレクトリック・カンパニイ Method for producing polyimide and polyimide produced by the method
US20130003227A1 (en) * 2011-06-30 2013-01-03 Daniel Francis Lowery Polyetherimide resins with very low levels of residual contamination
WO2013066791A1 (en) * 2011-10-31 2013-05-10 Sabic Innovative Plastics Ip B.V. Steam purification of polyimide resins
JP2019137965A (en) * 2015-01-29 2019-08-22 王子ホールディングス株式会社 Fiber-reinforced plastic compact sheet
WO2019107343A1 (en) * 2017-11-28 2019-06-06 株式会社クラレ Refractory member

Similar Documents

Publication Publication Date Title
JP5659148B2 (en) Amorphous polyetherimide fiber and heat resistant fabric
KR101291965B1 (en) Flame-Resistant Fiber, Carbon Fiber, and Processes for the Production of Both
JP5571943B2 (en) Heat resistant flame retardant paper
TWI659926B (en) Porous carbon material, carbon material reinforced composite material, porous carbon material precursor, method of manufacturing porous carbon material precursor and method of manufacturing porous carbon material
KR102159239B1 (en) A method for manufacturing a hetero-element-doped carbon nanofibers, a hetero-element-doped carbon nanofibers manufactured by the same, and carbon nanofiber-polymer composite thereby
JP7437624B2 (en) Flame-resistant polyphenylene ether molded product and method for producing flame-resistant polyphenylene ether molded product
WO2021111706A1 (en) Polyphenylene ether melt-spun fibers and method for manufacturing same, paper, and textile
US20210108042A1 (en) Fiber-reinforced resin prepreg, molded article, and fiber-reinforced thermoplastic resin prepreg
JP6541099B2 (en) Method of producing poly (p-phenylene benzobisoxazole) fiber and method of producing mat containing the same
WO2021177168A1 (en) Polyetherimide-based fibers, method for producing same, and textile product and composite material both including same
JP2023171380A (en) Polyphenylene ether melt extrusion molded body and method for producing polyphenylene ether melt extrusion molded body
JP2008266869A (en) Polyphenylene sulfide short fiber and method for manufacturing the same
US20200332444A1 (en) Carbon fiber formed from chlorinated polyvinyl chloride, and method for preparing same
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
JP4900234B2 (en) Polyether ether ketone monofilament and method for producing the same, and filter comprising polyether ether ketone monofilament
JP5985980B2 (en) Heat-resistant core-sheath composite fiber
JP2010031418A (en) Method for producing precursor fiber for carbon fiber
KR102433185B1 (en) High-temperature hybrid bag filter structure using Polyimide and manufacturing method the same
JP4342998B2 (en) Mixed spun fiber and method for producing the same
TWI758792B (en) Fiber masterbatch and melting spinning fiber
JP2023051860A (en) Polyether sulfone fiber, fiber package, nonwoven fabric, and manufacturing method of polyether sulfone fiber
CN113462155B (en) Fiber master batch and melt-spun fiber
KR20230174418A (en) Polyimide precusor fibers, carbon fibers and graphite fibers with fine denier and manufacturing methods thereof
TW201333287A (en) Fibers for cement reinforcement, method for producing same and cement hardened body
KR20220094616A (en) Polyimide-based carbon fibers and graphite fibers and manufacturing methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21765316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP