WO2021166222A1 - Positioning device and positioning method - Google Patents

Positioning device and positioning method Download PDF

Info

Publication number
WO2021166222A1
WO2021166222A1 PCT/JP2020/007069 JP2020007069W WO2021166222A1 WO 2021166222 A1 WO2021166222 A1 WO 2021166222A1 JP 2020007069 W JP2020007069 W JP 2020007069W WO 2021166222 A1 WO2021166222 A1 WO 2021166222A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
satellite
signal
radio wave
sky map
Prior art date
Application number
PCT/JP2020/007069
Other languages
French (fr)
Japanese (ja)
Inventor
美穂 久宮
天平 近藤
遼平 原田
大樹 松本
Original Assignee
日本電気株式会社
日本電気航空宇宙システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 日本電気航空宇宙システム株式会社 filed Critical 日本電気株式会社
Priority to JP2022501555A priority Critical patent/JP7372436B2/en
Priority to PCT/JP2020/007069 priority patent/WO2021166222A1/en
Publication of WO2021166222A1 publication Critical patent/WO2021166222A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/15Aircraft landing systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service

Definitions

  • the present invention relates to a positioning device and a positioning method, and more particularly to a positioning device and a positioning method in a positioning system using a positioning satellite.
  • GNSS position information system
  • GPS Global Navigation Satellite System
  • GLONASS Global Navigation Satellite System
  • the aircraft receives the positioning signal transmitted by the GNSS satellite and knows the position of the aircraft. By receiving positioning signals from multiple GNSS satellites, the aircraft can position itself with less error.
  • SBAS wide area reinforcement system
  • the ground control station receives the positioning signal from the GNSS satellite and transmits the augmentation information including the integrity information (integrity) of the GNSS and the error correction information of the positioning signal to the SBAS satellite.
  • the SBAS satellite is, for example, a geostationary satellite, and the SBAS satellite transmits augmentation information provided by the control station as a positioning signal to the aircraft.
  • the aircraft receives the positioning signals transmitted by the GNSS satellite and the SBAS satellite, and corrects the positioning by the GNSS satellite using the augmentation information contained in the positioning signals received from the SBAS satellite.
  • Patent Document 1 describes a technique for detecting an abnormality in a satellite signal due to an interfering wave.
  • Patent Document 2 describes an outline of the SBAS system.
  • An object of the present invention is to provide a technique for determining the normality of a positioning signal transmitted by a positioning satellite.
  • the positioning device of the present invention calculates a first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal, and also uses the orbit information of the positioning satellite included in the positioning signal.
  • a position calculation means for calculating a second position indicating the position of the positioning satellite based on the above,
  • a determination means for determining the normality of the received positioning signal based on the comparison result between the first position and the second position, and To be equipped.
  • the positioning method of the present invention calculates a first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
  • a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated. Based on the comparison result between the first position and the second position, the normality of the received positioning signal is determined. Including that.
  • the recording medium of the positioning program of the present invention is To the computer of the positioning device A procedure for calculating a first position indicating the position of a positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal. A procedure for calculating a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal. A procedure for determining the normality of the received positioning signal based on the comparison result between the first position and the second position. Record the positioning program to execute.
  • the present invention can determine the normality of the positioning signal transmitted by the positioning satellite.
  • FIG. 10 It is a figure which shows the configuration example of the positioning system 10 of 1st Embodiment. It is a block diagram which shows the structural example of the positioning apparatus 100 of 1st Embodiment. It is a flowchart which shows the operation example of the positioning apparatus 100. It is a block diagram which shows the structural example of the positioning apparatus 101 of 2nd Embodiment. It is a figure which shows the example of the 1st position. It is a figure which shows the 1st example of the search result of a 2nd position. It is a figure which shows the 2nd example of the search result of the 2nd position. It is a flowchart which shows the operation example of the positioning apparatus 101.
  • each embodiment can be applied to any of a positioning system in which a GNSS satellite is used as a positioning satellite and a positioning system in which an SBAS satellite is used in combination.
  • the GNSS satellite and the SBAS satellite are collectively referred to as a positioning satellite
  • the signals transmitted from the GNSS satellite and the SBAS satellite and including data used for positioning are collectively referred to as a positioning signal.
  • each block is composed of an electric circuit. Between those blocks, functional data is transmitted and received as electrical signals.
  • FIG. 1 is a diagram showing a configuration example of the positioning system 10 according to the first embodiment of the present invention.
  • the positioning system 10 is a satellite positioning system including a mobile body 200 and a positioning satellite 300.
  • the positioning satellite is a GNSS satellite, for example, a GPS satellite.
  • the positioning satellite 300 may include an SBAS satellite.
  • the mobile body 200 receives radio waves including a positioning signal from the positioning satellite 300 and positions itself.
  • the mobile body 200 includes a positioning device 100.
  • the positioning signal transmitted by the SBAS satellite includes augmentation information for improving the accuracy of positioning by the GNSS satellite.
  • the positioning device 100 will be described below.
  • FIG. 2 is a block diagram showing a configuration example of the positioning device 100 according to the first embodiment of the present invention.
  • the positioning device 100 includes a position calculation unit 110 and a determination unit 120.
  • the position calculation unit 110 calculates a first position indicating the position of the positioning satellite 300 based on the arrival direction of the radio wave at that time.
  • the first position is represented, for example, as a position on the sky map of the positioning satellite 300.
  • the sky map is a commonly used diagram showing the arrangement of positioning satellites when the sky is viewed from a radio wave receiving point, for example, with the horizontal axis in the east-west direction and the vertical axis in the north-south direction. The embodiment using the sky map will be described in the second embodiment.
  • the position calculation unit 110 further calculates a second position indicating the position of the positioning satellite 300 based on the orbit information included in the positioning signal.
  • the positioning signal is included in the radio wave transmitted by the positioning satellite 300.
  • the positioning signal includes the orbit information of the positioning satellite 300 that transmits the positioning signal and the orbit information of other positioning satellites.
  • the almanac included in the positioning signal includes orbit information of GPS satellites other than the GPS satellite that transmits the positioning signal.
  • the positioning signal transmitted by the SBAS satellite also includes the orbit information of the SBAS satellite other than the SBAS satellite that transmits the positioning signal.
  • the orbit information is strictly managed in the positioning system and provides highly reliable orbit information for each positioning satellite.
  • the procedure for calculating the coordinates indicating the position of each positioning satellite at an arbitrary time from the orbit information is known. Therefore, from the positioning signal, at least the position (second position) obtained from the orbit information of the positioning satellite that transmitted the positioning signal can be calculated. Further, when the positioning signal includes Armanac, the positions of other positioning satellites can be calculated.
  • the position calculation unit 110 calculates the second position indicating the position of the positioning satellite 300 based on the orbit information.
  • the second position can be expressed as, for example, the arrangement of the positioning satellite 300 on the sky map obtained from the orbit information.
  • the position calculation unit 110 having the above-mentioned function is an example of the position calculation means.
  • the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position.
  • the first position and the second position are input to the determination unit 120.
  • the determination unit 120 compares the first position and the second position for each positioning satellite 300. Then, when the first position and the second position substantially match, the determination unit 120 determines that the positioning signal from the positioning satellite is normal.
  • the case where the two positions substantially match means, for example, the case where the distance between the two positions is equal to or less than a predetermined value.
  • the predetermined value may be determined according to the accuracy required for positioning.
  • the determination unit 120 can determine that the positioning signal from the positioning satellite whose first position and second position do not match is due to spoofing.
  • the determination unit 120 having the above-mentioned function is an example of the determination means.
  • FIG. 3 is a flowchart showing an operation example of the positioning device 100.
  • the positioning device 100 calculates the first position indicating the position of the positioning satellite 300 based on the arrival direction of the radio wave from the positioning satellite 300 (step S01 in FIG. 3), and is based on the orbit information.
  • the second position indicating the position of the positioning satellite 300 is calculated (step S02).
  • the positioning device 100 determines the normality of the received positioning signal based on the comparison result between the first position and the second position (step S03).
  • Step S01 and step S02 may be executed in the reverse order.
  • Step S01 and step S02 may be executed in parallel. In this way, the positioning device 100 can determine the normality of the positioning signal transmitted by the positioning satellite 300 for each positioning satellite 300. By not using the positioning signal received from the positioning satellite 300 determined to be abnormal, the positioning device 100 enables more accurate positioning.
  • FIG. 4 is a block diagram showing a configuration example of the positioning device 101 according to the second embodiment of the present invention.
  • the positioning device 101 includes a position calculation unit 110 and a determination unit 120 similar to the positioning device 100 of the first embodiment, and further includes an antenna 130 and a demodulation unit 140.
  • the antenna 130 receives the positioning signal from the positioning satellite. Specifically, the antenna 130 receives a radio wave including a positioning signal from a positioning satellite and converts the received radio wave into a high-frequency signal.
  • the demodulation unit 140 demodulates the high frequency signal input from the antenna 130 and extracts the positioning signal.
  • the positioning satellite is the positioning satellite 300 included in the positioning system 10 shown in FIG.
  • the position calculation unit 110 calculates the first position indicating the position of the positioning satellite based on the arrival direction of the radio wave including the positioning signal.
  • the position calculation unit 110 further calculates a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal.
  • the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position. In this embodiment, a specific example of realizing the functions of the position calculation unit 110 and the determination unit 120 will be described.
  • the position calculation unit 110 obtains the arrival direction of the radio wave from the positioning satellite received by the antenna 130.
  • the procedure for determining the direction of arrival of radio waves is not limited.
  • the position of the positioning satellite on the sky map at the receiving point (antenna 130) of the positioning signal can be obtained from the direction in which the radio wave including the positioning signal arrives (that is, the direction of the positioning satellite that transmitted the positioning signal).
  • FIG. 5 is a diagram showing an example of a sky map of a positioning satellite obtained from the direction of arrival of radio waves in the present embodiment.
  • the sky map shown in FIG. 5 corresponds to the first position, which is the position of the positioning satellite based on the arrival direction of the radio wave including the positioning signal. That is, FIG. 5 shows an example of the direction of arrival of radio waves from the five positioning satellites X1-X5 (black circles) seen from the antenna 130.
  • the positioning satellites X1-X5 are identified by the positioning signal included in the received radio wave.
  • the position calculation unit 110 can uniquely calculate the position of the positioning satellite on the sky map at a predetermined position and time based on the orbit information. Therefore, the position calculation unit 110 searches by calculation whether or not a sky map based on the orbit information corresponding to the sky map can exist at the same time when the sky map showing the first position is given. (Ie, calculate).
  • the position calculation unit 110 searches the sky map corresponding to FIG. 5 based on the orbit information when the sky map based on the first position of the positioning satellite is shown in FIG. 6 and 7 are first and second examples of the sky map of the positioning satellite at the same time as FIG. 5 obtained from the orbit information, respectively.
  • FIG. 6 is a diagram showing a first example of the search result of the sky map (that is, the sky map based on the second position) showing the position of the positioning satellite obtained from the orbit information.
  • FIG. 6 shows that, as a result of the search, it was found that the arrangement of the same positioning satellites X1-X5 (marked with white circles) substantially matches that of FIG.
  • FIG. 7 is a diagram showing a second example of the search result of the sky map (second position) showing the position of the positioning satellite obtained from the orbit information.
  • the positioning satellites X1-X5 are identified using orbit information.
  • the determination unit 120 obtains the distance between the coordinates of the first position and the coordinates of the searched second position for each positioning satellite, and when the total or average value of the distances is smaller than a predetermined value.
  • the determination unit 120 may use the sum or average value of the distances as an index of the degree of coincidence between the first position and the second position, and may determine that the smaller the sum or average value is, the higher the degree of coincidence is. ..
  • the determination unit 120 draws a sky map (FIG. 5, first position) calculated by the position calculation unit 110 from the direction of arrival of radio waves and a sky map (FIG. 6, 7, second position) calculated from the orbit information. Received from the position calculation unit 110 and compared the two. The positions of the positioning satellites X1-X5 in FIG. 5 on the sky map substantially coincide with those in FIG. Therefore, when the sky map of FIG. 6 is searched, the determination unit 120 can determine that the positioning satellites X1-X5 are normal satellites and that the positioning signals received from these satellites are all normal.
  • the positioning satellite X2 in FIG. 5 does not appear in the sky map in FIG. 7.
  • the positioning satellite X2 can be presumed to be a satellite that does not originally exist in light of the orbit information. Therefore, in the determination unit 120, the positioning satellites X1 and X3-X5 are normal satellites, but the signal received as a radio wave from the positioning satellite X2 is abnormal (that is, it may be a spoofing signal). Can be judged.
  • the positioning satellite X2 in FIG. 7 does not substantially match the position of the positioning satellite X2 shown in FIG. 5 (for example).
  • the distance between the two is more than a predetermined distance
  • the positioning satellite X2 in FIG. 5 may be presumed to be a satellite that does not originally exist in light of the orbit information.
  • the position calculation unit 110 If the position calculation unit 110 cannot search for a position that can be determined to match the position of the positioning satellite with the sky map of FIG. 5 based on the orbit information, the position calculation unit 110 indicates the position indicated by another sky map having the next highest degree of matching.
  • the position of the satellite may be the second position.
  • the determination unit 120 maximizes the degree of agreement with the sky map showing the first position illustrated in FIG. 5 by operating the sky map showing the second position exemplified in FIGS. 6 and 7.
  • the error in the position or orientation of the positioning device 101 can be estimated according to the amount of operation when the maximum is reached. For example, when the determination unit 120 obtains the maximum value of the degree of coincidence with the sky map showing the first position by rotating the sky map showing the second position, the maximum value is obtained.
  • the amount of rotation and the direction of rotation may be estimated as an error in the orientation of the positioning device 101.
  • the determination unit 120 is the difference between the altitude of the initial positioning device 101 in FIG. 6 or FIG. 7 and the altitude of the positioning device 101 obtained from the sky map of FIG. 6 or 7 when the degree of coincidence is maximized. May be estimated as the altitude error of the positioning device 101.
  • the altitude of the positioning device 101 in the sky map showing the second position can be obtained when calculating the second position based on the orbit information.
  • the determination unit 120 sets the second position when the maximum value of the degree of coincidence is obtained.
  • the amount of movement of the shown sky map with respect to the sky map showing the initial second position may be estimated as an error in the horizontal position of the positioning device 101.
  • the determination unit 120 performs the operation.
  • the error of at least one of the direction and position of the positioning device can be estimated based on the quantity.
  • the determination unit 120 has an directional error, an altitude error, and a horizontal direction in the maximum state. The position error may be obtained for each type of operation. In the sky map of FIG. 6 or FIG.
  • the receiving position of the positioning signal that is, the position of the antenna 130
  • the first position and the first position There may be an abnormality in one of the two positions.
  • the positioning device 101 is mounted on an aircraft flying at high altitude but the reception position in the sky map of FIG. 6 or 7 is calculated to be on the ground, there is an abnormality in the positioning signal. there is a possibility.
  • the position calculation unit 110 uses the direction of arrival of radio waves from other positioning satellites and the orbit information extracted from the other positioning satellites to obtain the first position and The second position may be recalculated.
  • the position calculation unit 110 further uses the arrival direction of the radio wave from the other positioning satellite and the orbit information extracted from the other positioning satellite to make the first position.
  • the position and the second position may be recalculated.
  • the first position illustrated in FIG. 5 is calculated only from the direction of arrival of radio waves. Therefore, if a spoofing signal is transmitted from the same direction as a legitimate positioning satellite, spoofing may not be detected. Therefore, the position calculation unit 110 may obtain a pseudo distance to the positioning satellite based on the positioning signal received by the antenna 130.
  • the pseudo distance is a distance between the positioning satellite and the positioning device 101, which is obtained from the difference between the transmission time of the positioning signal on the positioning satellite and the reception time of the positioning signal on the positioning device 101. If it cannot be determined that the distance between the positioning satellite and the antenna 130 obtained from the orbit information and the pseudo distance match, the determination unit 120 has a pseudo distance different from the pseudo distance obtained from the orbit information.
  • the positioning signal from the satellite may be determined to be a spoofing signal.
  • the position calculation unit 110 may obtain the relative position between the positioning satellites based on the received radio wave as the first position by acquiring the arrival direction of the radio wave and its pseudo distance for three or more positioning satellites. .. Then, the determination unit 120 may compare the first position with the second position obtained by searching as a relative position between the corresponding positioning satellites based on the orbit information.
  • FIG. 8 is a flowchart showing an operation example of the positioning device 101.
  • the antenna 130 receives the positioning signal from the positioning satellite (step S11 in FIG. 8).
  • the demodulation unit 140 demodulates the positioning signal (step S12).
  • the position calculation unit 110 calculates a first position indicating the position of the positioning satellite obtained based on the arrival direction of the radio wave (step S13). Then, the position calculation unit 110 calculates a second position corresponding to the first position, which indicates the position of the positioning satellite based on the orbit information (step S14).
  • the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position (step S15).
  • the positioning device 101 having such a configuration also determines the normality of the positioning signal by comparing the position of the positioning satellite obtained based on the propagation direction of the radio wave with the position of the positioning satellite obtained from the orbit information. can. Therefore, the positioning device 101 can also detect the spoofing of the positioning signal transmitted by the positioning satellite.
  • the position information of the positioning device 101 is not required to calculate the first position and the second position indicating the position of the positioning satellite. Further, the positioning device 101 does not need to use other positioning methods such as inertial navigation and Doppler navigation.
  • FIG. 9 is a block diagram showing a configuration example of the positioning device 102 according to the third embodiment of the present invention.
  • the positioning device 102 includes a position calculation unit 110, a determination unit 120, and a demodulation unit 140, similarly to the positioning device 101 of the second embodiment. Further, the positioning device 102 includes a plurality of antennas 130. Each of the antennas 130 may be an omnidirectional antenna. When the positioning device 102 is mounted on an aircraft, the antennas 130 are arranged at a total of four locations, for example, the front and rear ends of the airframe and the tips of both wings.
  • the position calculation unit 110, the determination unit 120, and the demodulation unit 140 may be housed in one equipment room of the aircraft.
  • the antenna 130 and the demodulation unit 140 may be connected by a high frequency line such as a coaxial cable.
  • the antenna 130 receives radio waves including a positioning signal from a positioning satellite.
  • High-frequency signals including positioning signals are input to the demodulation unit 140 from each of the antennas 130.
  • the demodulation unit 140 demodulates the positioning signal from each high frequency signal. Further, the demodulation unit 140 calculates the phase difference of the radio waves between the plurality of antennas 130 when the radio waves from the positioning satellites are received for each positioning satellite that is the source of the radio waves.
  • the delay time between each of the antennas 130 and the demodulation unit 140 can be calculated or measured in advance. Therefore, the demodulation unit 140 can obtain the phase difference between the antennas 130 at the time of receiving the radio wave by considering the delay time.
  • the demodulation unit 140 outputs the demodulated positioning signal to the first calculation unit 111 and the second calculation unit 112, and outputs the obtained phase difference to the first calculation unit 111.
  • the first calculation unit 111 includes a function of calculating the first position indicating the position of the positioning satellite based on the arrival direction of the radio wave among the functions of the position calculation unit 110 described in the first and second embodiments. .. If the relative positions between the plurality of antennas 130 are known, the arrival direction of the radio waves can be determined by a well-known procedure based on the phase difference of the radio waves received by each of the antennas 130. Therefore, the first calculation unit 111 can calculate the position of the positioning satellite of the source of the radio wave for each positioning satellite based on the arrival direction of the radio wave. The first position can be obtained by drawing the position of the positioning satellite calculated in this way on the sky map.
  • the demodulation unit 140 may output the reception time difference of the radio waves of each of the antennas 130 to the first calculation unit 111 instead of the phase difference of the radio waves received by each of the antennas 130.
  • the first calculation unit 111 calculates the first position based on the reception time difference.
  • the second calculation unit 112 includes a function of calculating a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite among the functions of the position calculation unit 110 described in the first and second embodiments. ..
  • the second calculation unit 112 calculates the sky map showing the position of the positioning satellite based on the orbit information as the second position according to the procedure described in the second embodiment.
  • the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position according to the procedure described in the first embodiment or the second embodiment. judge.
  • the positioning device 102 having such a configuration calculates the position (first position) of the positioning satellite obtained from the phase difference or reception time difference of the radio waves between the antennas 130 when receiving the radio waves from the positioning satellite, and also calculates the position (first position) of the positioning satellite.
  • the position (second position) of the positioning satellite obtained from the orbit information is calculated.
  • the positioning device 102 determines the normality of the positioning signal based on the comparison result between the first direction which is the arrival direction of the positioning signal and the second direction which is the direction of the positioning satellite obtained from the orbit information. .. Therefore, the positioning device 102 can also detect the spoofing of the signal transmitted by the positioning satellite.
  • FIG. 10 is a block diagram showing a configuration example of the positioning device 103 according to the fourth embodiment of the present invention.
  • the positioning device 103 includes a plurality of demodulation units 141 instead of the demodulation unit 140, as compared with the positioning device 102 of the third embodiment.
  • the demodulation unit 141 is a receiver that demodulates the positioning signal, and is arranged for each antenna 130.
  • the position calculation unit 110A of the positioning device 103 includes a first calculation unit 111A and a second calculation unit 112.
  • the antenna 130 receives a radio wave including a positioning signal and converts it into a high frequency signal.
  • the demodulation unit 141 demodulates the high-frequency signal input from the antenna 130, and outputs the positioning signal received by the antenna 130 and the reception phase of the radio wave at the antenna 130 or the reception time of the radio wave to the position calculation unit 110.
  • the demodulation unit 141 obtains at least one of the phase of the radio wave and the reception time of the radio wave in the connected antenna 130, and outputs the positioning signal to the first calculation unit 111A. Further, the demodulation unit 141 demodulates the positioning signal from the high frequency signal input from the antenna 130, and outputs the demodulated positioning signal to the second calculation unit 112. By controlling each of the demodulation units 141 with the same clock and compensating for the delay in wiring between each of the antennas 130 and the position calculation unit 110A, the first calculation unit 111A between the antennas 130 at the same time. The phase difference and the reception time difference can be obtained. The first calculation unit 111A can calculate the position (first position) of the positioning satellite based on these phase differences or reception time differences.
  • the other processing in the position calculation unit 110A and the processing in the determination unit 120 may be the same as those in the positioning device 102 according to any one of the first to third embodiments.
  • the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position calculated by the position calculation unit 110A. Therefore, the positioning device 103 can also detect the spoofing of the signal transmitted by the positioning satellite.
  • the demodulation unit 141 since the demodulation unit 141 is provided for each antenna 130, the demodulation unit can be arranged in the vicinity of the antenna 130 even if the positions of the antennas 130 are separated from each other. As a result, the loss of the high frequency signal between the antenna 130 and the demodulation unit 141 can be reduced, so that the quality deterioration of the signal received from the positioning satellite can be suppressed.
  • FIG. 11 is a block diagram showing a configuration example of the positioning device 104 according to the fifth embodiment.
  • the positioning device 104 includes a directional antenna 130A, a demodulation unit 140, a position calculation unit 110B, and a determination unit 120.
  • the position calculation unit 110B is different from the position calculation unit 110 of the third embodiment in that the position calculation unit 110B includes the first calculation unit 111B.
  • the directional antenna 130A is an antenna capable of externally controlling the direction in which the gain of the received radio wave is maximized (hereinafter, referred to as “reception direction”), and is, for example, an array antenna or a parabolic antenna.
  • the first calculation unit 111B has a function of controlling the reception direction of the directional antenna 130A in addition to the function of the first calculation unit 111.
  • the first calculation unit 111B sets the reception direction in which the intensity of the radio wave received from the positioning satellite by the directional antenna 130A is maximum as the arrival direction of the radio wave including the positioning signal.
  • the demodulation unit 140 may be arranged in the vicinity of the directional antenna 130A. By using the directional antenna 130A, the positioning device 104 can know the arrival direction of the radio wave without using the phase difference between the plurality of antennas.
  • the processing other than the directivity control function of the directional antenna 130A in the first calculation unit 111B is the same as that of the positioning device 102 according to any one of the first to fourth embodiments. Further, the processing of the second calculation unit 112 and the determination unit 120 is the same as that of the positioning device 102 according to any one of the first to fourth embodiments.
  • the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position calculated by the first calculation unit 111B and the second position calculated by the second calculation unit 112. do. Therefore, the positioning device 104 can also detect the spoofing of the signal transmitted by the positioning satellite.
  • FIG. 12 is a block diagram showing a configuration example of the positioning device 105 according to the sixth embodiment of the present invention.
  • the positioning device 105 further includes an output unit 150 in addition to the configuration of the positioning device 101 of the second embodiment.
  • the determination unit 120 outputs the determination result of normality between the first position and the second position.
  • the output unit 150 is an example of an output means that outputs the determination result output by the determination unit 120 at least one of the image and the sound.
  • the output unit 150 is a terminal including at least one of a display and a speaker.
  • the determination unit 120 determines that the positioning signal is normal
  • the output unit 150 displays on the display that the positioning signal is normal, or outputs a voice indicating that the positioning signal is normal from the speaker. ..
  • the output unit 150 displays on the display that the positioning signal is abnormal, or indicates from the speaker that the positioning signal is abnormal.
  • Output as audio The output from the output unit 150 is not limited to images and sounds.
  • the output unit 150 may send the determination result of the determination unit 120 to a default destination by e-mail.
  • the positioning device 105 having such a configuration can detect spoofing of a signal transmitted by a positioning satellite and can notify the determination result of the determination unit 120 in a more specific form. The same effect can be obtained when the output unit 150 is provided in any of the positioning devices according to the first, third, fourth, and fifth embodiments.
  • the first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal is calculated, and the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated.
  • the positioning satellite is one of a plurality of positioning satellites that can be received by the antenna.
  • the position calculation means calculates the first position and the second position for each of the plurality of positioning satellites.
  • the determination means determines the normality of the positioning signal for each of the plurality of positioning satellites based on the comparison result between the first position and the second position of each of the plurality of positioning satellites.
  • the positioning device according to Appendix 1.
  • the antenna is one of a plurality of antennas.
  • the position calculating means has the plurality of positioning satellites based on the arrival direction of the radio wave obtained based on at least one of the phase difference at the time of receiving the radio wave and the reception time difference of the radio wave between the plurality of antennas.
  • the positioning device according to Appendix 2, which calculates the first position for each.
  • the antenna is an antenna having a variable receiving direction.
  • the position calculation means is the first position for each of the plurality of positioning satellites based on the arrival direction of the radio wave including the positioning signal obtained based on the reception direction of the antenna that maximizes the reception intensity of the radio wave.
  • the positioning device according to Appendix 2, which calculates.
  • the determination means is based on the amount of the operation when the degree of agreement between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position.
  • the positioning device according to Appendix 5 which estimates an error in at least one of the direction and the position of the positioning device.
  • the determination means indicates the second position before the operation when the maximum value of the degree of coincidence is obtained by the operation of expanding or contracting the sky map showing the second position in a similar manner.
  • the difference between the altitude of the positioning device obtained from the sky map and the altitude of the positioning device obtained from the sky map indicating the second position when the maximum value is obtained is estimated as an error in the altitude of the positioning device.
  • the positioning apparatus according to Appendix 6 or 7.
  • the determination means outputs a determination result that the positioning signal is abnormal if the difference between the first position and the second position exceeds a predetermined range.
  • the positioning device according to item 1.
  • Appendix 14 The positioning device according to any one of Appendix 1 to 13, wherein the positioning signal is a signal transmitted from at least one of a GNSS satellite and an SBAS satellite.
  • Appendix 15 With multiple positioning satellites
  • the positioning device according to any one of Appendix 1 to 10, which performs positioning by receiving positioning signals from the plurality of positioning satellites.
  • Positioning system equipped with.
  • the positioning signal is received from a plurality of the positioning satellites by the antenna, and the positioning signal is received.
  • the first position and the second position are calculated for each of the plurality of positioning satellites.
  • the normality of the positioning signal is determined for each of the plurality of positioning satellites based on the comparison result between the first position of each of the plurality of positioning satellites and the second position. The positioning method described in Appendix 16.
  • Appendix 18 For each of the plurality of positioning satellites, the first The positioning method according to Appendix 17, which calculates a position.
  • Appendix 17 Calculates the first position for each of the plurality of positioning satellites based on the arrival direction of the radio wave including the positioning signal obtained based on the reception direction of the antenna that maximizes the reception intensity of the radio wave. The positioning method described in.
  • Appendix 20 The positioning method according to any one of Appendix 16 to 19, wherein the first position and the second position are expressed as positions on the sky map of the positioning satellite.
  • Appendix 21 The direction of the positioning device based on the amount of the operation when the degree of agreement between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position. And the positioning method according to Appendix 20, which estimates an error in at least one of the positions.
  • Appendix 24 When the maximum value of the degree of coincidence is obtained by the operation of translating the sky map showing the second position, the amount of translation of the sky map showing the second position for obtaining the maximum value is calculated.
  • Appendix 26 It is described in any one of Appendix 16 to 25, which outputs a determination result that the positioning signal is abnormal if the difference between the first position and the second position exceeds a predetermined range. Positioning method.
  • Appendix 27 The positioning method according to any one of Appendix 16 to 26, wherein the positioning signal is extracted from a high-frequency current generated from the radio wave.
  • Appendix 28 The positioning method according to any one of Appendix 16 to 27, wherein the comparison result is output at least one of an image and an audio.
  • Appendix 29 The positioning method according to any one of Appendix 16 to 28, wherein the positioning signal is a signal transmitted from at least one of a GNSS satellite and an SBAS satellite.
  • each of the above embodiments may be realized by executing a program by a central processing unit (CPU) included in each positioning device.
  • the program is recorded on a fixed, non-transitory recording medium.
  • a semiconductor memory or a fixed magnetic disk device is used as the recording medium, but the recording medium is not limited thereto.
  • the CPU is, for example, a computer provided in the position calculation unit of each embodiment.
  • Positioning system 100-105 Positioning device 110, 110A, 110B Position calculation unit 111, 111A, 111B 1st calculation unit 112 2nd calculation unit 120 Judgment unit 130 Antenna 130A Directional antenna 140, 141 Demodulation unit 150 Output unit 200 Mobile 300 positioning satellite

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

[Problem] To provide technology for assessing the normality of a positioning signal transmitted by a positioning satellite. [Solution] This positioning device comprises a position calculation unit for calculating a first position indicating the position of a positioning satellite that transmitted a radio wave including a positioning signal, the position being based on the direction from which the radio wave has arrived, and calculating a second position indicating the position of the positioning satellite based on orbit information for the positioning satellite that is included in the positioning signal, and a determination unit for determining the normality of the received positioning signal on the basis of the result of comparing the first position and the second position.

Description

測位装置及び測位方法Positioning device and positioning method
 本発明は測位装置及び測位方法に関し、特に、測位衛星を用いた測位システムにおける測位装置及び測位方法に関する。 The present invention relates to a positioning device and a positioning method, and more particularly to a positioning device and a positioning method in a positioning system using a positioning satellite.
 衛星を利用した位置情報システム(GNSS)は、航空機などの移動体の測位のために広く用いられている。GNSSには、例えば米国で開発されたGPS、ロシアで開発されたGLONASSがある。GNSSはGlobal Navigation Satellite System、GPSはGlobal Positioning System、GLONASSはGlobal Navigation Satellite Systemの略称である。航空機はGNSS衛星が送信する測位信号を受信して自機の位置を知る。複数のGNSS衛星から測位信号を受信することで、航空機はより少ない誤差で自機の測位が可能となる。 The position information system (GNSS) using satellites is widely used for positioning mobile objects such as aircraft. GNSS includes, for example, GPS developed in the United States and GLONASS developed in Russia. GNSS is an abbreviation for Global Navigation Satellite System, GPS is an abbreviation for Global Positioning System, and GLONASS is an abbreviation for Global Navigation Satellite System. The aircraft receives the positioning signal transmitted by the GNSS satellite and knows the position of the aircraft. By receiving positioning signals from multiple GNSS satellites, the aircraft can position itself with less error.
 一方、航空機が受信する測位信号の誤差に起因する測位誤差を低減するシステムの一つにSBAS(広域補強システム)がある。SBASはSatellite Based Augmentation Systemの略称である。地上の管制局はGNSS衛星から測位信号を受信し、GNSSの完全性情報(integrity)及び測位信号の誤差の補正情報を含む補強情報をSBAS衛星に送信する。SBAS衛星は例えば静止衛星であり、SBAS衛星は管制局から提供された補強情報を測位信号として航空機へ送信する。航空機はGNSS衛星及びSBAS衛星が送信する測位信号を受信し、SBAS衛星から受信した測位信号に含まれる補強情報を用いてGNSS衛星による測位を補正する。GNSS衛星とSBAS衛星との両方から測位信号を受信することによって、航空機は高精度な自機の測位が可能となる。 On the other hand, there is SBAS (wide area reinforcement system) as one of the systems that reduce the positioning error caused by the error of the positioning signal received by the aircraft. SBAS is an abbreviation for Satellite Based Augmentation System. The ground control station receives the positioning signal from the GNSS satellite and transmits the augmentation information including the integrity information (integrity) of the GNSS and the error correction information of the positioning signal to the SBAS satellite. The SBAS satellite is, for example, a geostationary satellite, and the SBAS satellite transmits augmentation information provided by the control station as a positioning signal to the aircraft. The aircraft receives the positioning signals transmitted by the GNSS satellite and the SBAS satellite, and corrects the positioning by the GNSS satellite using the augmentation information contained in the positioning signals received from the SBAS satellite. By receiving positioning signals from both the GNSS satellite and the SBAS satellite, the aircraft can perform highly accurate positioning of its own aircraft.
 本発明に関連して、特許文献1には妨害波による衛星信号の異常を検出する技術が記載されている。特許文献2には、SBASシステムの概要が記載されている。 In relation to the present invention, Patent Document 1 describes a technique for detecting an abnormality in a satellite signal due to an interfering wave. Patent Document 2 describes an outline of the SBAS system.
特開2001-280997号公報Japanese Unexamined Patent Publication No. 2001-280997 特開2011-237205号公報Japanese Unexamined Patent Publication No. 2011-237205
 GNSS衛星及びSBAS衛星が送信する測位信号の仕様は公開されている。また、これらの信号は暗号化されていない。このため、GNSS衛星又はSBAS衛星が送信する測位信号と同様の仕様の信号を移動体へ送信することで、測位信号のなりすまし(スプーフィング)が可能となる。このようななりすましは、その信号を受信した移動体において異常な測位結果を生成させる原因となる。このため、GNSS衛星又はSBAS衛星による測位を行う移動体では、受信した測位信号がなりすましの信号であるかどうかを判定できることが好ましい。
(発明の目的)
 本発明は、測位衛星が送信する測位信号の正常性を判定するための技術を提供することを目的とする。
The specifications of the positioning signals transmitted by the GNSS satellite and the SBAS satellite are open to the public. Also, these signals are not encrypted. Therefore, spoofing of the positioning signal becomes possible by transmitting a signal having the same specifications as the positioning signal transmitted by the GNSS satellite or the SBAS satellite to the mobile body. Such spoofing causes an abnormal positioning result to be generated in the moving body that receives the signal. Therefore, it is preferable that the mobile body that performs positioning by the GNSS satellite or the SBAS satellite can determine whether or not the received positioning signal is a spoofing signal.
(Purpose of Invention)
An object of the present invention is to provide a technique for determining the normality of a positioning signal transmitted by a positioning satellite.
 本発明の測位装置は、測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出するとともに、前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出する位置算出手段と、
 前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する判定手段と、
を備える。
The positioning device of the present invention calculates a first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal, and also uses the orbit information of the positioning satellite included in the positioning signal. A position calculation means for calculating a second position indicating the position of the positioning satellite based on the above,
A determination means for determining the normality of the received positioning signal based on the comparison result between the first position and the second position, and
To be equipped.
 本発明の測位方法は、測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出し、
 前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出し、
 前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する、
ことを含む。
The positioning method of the present invention calculates a first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
A second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated.
Based on the comparison result between the first position and the second position, the normality of the received positioning signal is determined.
Including that.
 本発明の測位プログラムの記録媒体は、
 測位装置のコンピュータに、
 測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出する手順、
 前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出する手順、
 前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する手順、
を実行させるための測位プログラムを記録する。
The recording medium of the positioning program of the present invention is
To the computer of the positioning device
A procedure for calculating a first position indicating the position of a positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
A procedure for calculating a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal.
A procedure for determining the normality of the received positioning signal based on the comparison result between the first position and the second position.
Record the positioning program to execute.
 本発明は、測位衛星が送信する測位信号の正常性を判定できる。 The present invention can determine the normality of the positioning signal transmitted by the positioning satellite.
第1の実施形態の測位システム10の構成例を示す図である。It is a figure which shows the configuration example of the positioning system 10 of 1st Embodiment. 第1の実施形態の測位装置100の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning apparatus 100 of 1st Embodiment. 測位装置100の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the positioning apparatus 100. 第2の実施形態の測位装置101の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning apparatus 101 of 2nd Embodiment. 第1の位置の例を示す図である。It is a figure which shows the example of the 1st position. 第2の位置の探索結果の第1の例を示す図である。It is a figure which shows the 1st example of the search result of a 2nd position. 第2の位置の探索結果の第2の例を示す図である。It is a figure which shows the 2nd example of the search result of the 2nd position. 測位装置101の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the positioning apparatus 101. 第3の実施形態の測位装置102の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning apparatus 102 of 3rd Embodiment. 第4の実施形態の測位装置103の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning apparatus 103 of 4th Embodiment. 第5の実施形態の測位装置104の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning apparatus 104 of 5th Embodiment. 第6の実施形態の測位装置105の構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning apparatus 105 of 6th Embodiment.
 以下に、図面を参照して本発明の実施形態を説明する。各実施形態では、既出の構成要素には同一の名称及び参照符号を付し、重複する機能の説明は省略される。各実施形態は、測位衛星としてGNSS衛星が用いられる測位システム、さらに、SBAS衛星が併用される測位システムのいずれにも適用可能である。以下では、GNSS衛星及びSBAS衛星を総称して測位衛星と呼び、GNSS衛星及びSBAS衛星から送信される、測位に用いられるデータを含む信号を総称して測位信号と呼ぶ。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the existing components are given the same name and reference numeral, and the description of the duplicated function is omitted. Each embodiment can be applied to any of a positioning system in which a GNSS satellite is used as a positioning satellite and a positioning system in which an SBAS satellite is used in combination. Hereinafter, the GNSS satellite and the SBAS satellite are collectively referred to as a positioning satellite, and the signals transmitted from the GNSS satellite and the SBAS satellite and including data used for positioning are collectively referred to as a positioning signal.
 各実施形態の測位装置のブロック図において、各ブロックは電気回路で構成される。それらのブロック間では、機能に関するデータは電気信号として送信及び受信される。 In the block diagram of the positioning device of each embodiment, each block is composed of an electric circuit. Between those blocks, functional data is transmitted and received as electrical signals.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の測位システム10の構成例を示す図である。測位システム10は、移動体200及び測位衛星300を含む衛星測位システムである。測位衛星はGNSS衛星であり、例えばGPS衛星である。測位衛星300はSBAS衛星を含んでもよい。移動体200は、測位衛星300から測位信号を含む電波を受信して、自身の位置を測位する。移動体200は測位装置100を備える。SBAS衛星が送信する測位信号は、GNSS衛星による測位の精度を改善するための補強情報を含む。測位装置100について以下に説明する。
(First Embodiment)
FIG. 1 is a diagram showing a configuration example of the positioning system 10 according to the first embodiment of the present invention. The positioning system 10 is a satellite positioning system including a mobile body 200 and a positioning satellite 300. The positioning satellite is a GNSS satellite, for example, a GPS satellite. The positioning satellite 300 may include an SBAS satellite. The mobile body 200 receives radio waves including a positioning signal from the positioning satellite 300 and positions itself. The mobile body 200 includes a positioning device 100. The positioning signal transmitted by the SBAS satellite includes augmentation information for improving the accuracy of positioning by the GNSS satellite. The positioning device 100 will be described below.
 図2は、本発明の第1の実施形態の測位装置100の構成例を示すブロック図である。測位装置100は、位置算出部110及び判定部120を備える。位置算出部110は、測位信号を含む電波が測位衛星300から受信された場合に、その時の電波の到来方向に基づく測位衛星300の位置を示す、第1の位置を算出する。第1の位置は、例えば、測位衛星300の天空図上の位置として表現される。天空図は、例えば横軸を東西方向、縦軸を南北方向として電波の受信点から上空を見た場合の測位衛星の配置を示す、一般的に用いられる図である。天空図を用いた実施形態は第2の実施形態で説明する。 FIG. 2 is a block diagram showing a configuration example of the positioning device 100 according to the first embodiment of the present invention. The positioning device 100 includes a position calculation unit 110 and a determination unit 120. When a radio wave including a positioning signal is received from the positioning satellite 300, the position calculation unit 110 calculates a first position indicating the position of the positioning satellite 300 based on the arrival direction of the radio wave at that time. The first position is represented, for example, as a position on the sky map of the positioning satellite 300. The sky map is a commonly used diagram showing the arrangement of positioning satellites when the sky is viewed from a radio wave receiving point, for example, with the horizontal axis in the east-west direction and the vertical axis in the north-south direction. The embodiment using the sky map will be described in the second embodiment.
 位置算出部110は、さらに、測位信号に含まれる軌道情報に基づく測位衛星300の位置を示す、第2の位置を算出する。測位信号は、測位衛星300が送信する電波に含まれる。測位信号は、当該測位信号を送信する測位衛星300の軌道情報及び他の測位衛星の軌道情報を含む。例えば、測位信号に含まれるアルマナック(almanac)は、測位信号を送信するGPS衛星以外のGPS衛星の軌道情報を含む。SBAS衛星が送信する測位信号も、測位信号を送信するSBAS衛星以外のSBAS衛星の軌道情報を含む。軌道情報は測位システム内で厳格に管理されており、各測位衛星に関する信頼性が高い軌道情報を提供する。軌道情報から任意の時刻における各測位衛星の位置を示す座標を算出する手順は既知である。従って、測位信号から、少なくとも当該測位信号を送信した測位衛星についての、軌道情報から求めた位置(第2の位置)が算出できる。また、測位信号にアルマナックが含まれる場合には、さらに他の測位衛星の位置も算出できる。 The position calculation unit 110 further calculates a second position indicating the position of the positioning satellite 300 based on the orbit information included in the positioning signal. The positioning signal is included in the radio wave transmitted by the positioning satellite 300. The positioning signal includes the orbit information of the positioning satellite 300 that transmits the positioning signal and the orbit information of other positioning satellites. For example, the almanac included in the positioning signal includes orbit information of GPS satellites other than the GPS satellite that transmits the positioning signal. The positioning signal transmitted by the SBAS satellite also includes the orbit information of the SBAS satellite other than the SBAS satellite that transmits the positioning signal. The orbit information is strictly managed in the positioning system and provides highly reliable orbit information for each positioning satellite. The procedure for calculating the coordinates indicating the position of each positioning satellite at an arbitrary time from the orbit information is known. Therefore, from the positioning signal, at least the position (second position) obtained from the orbit information of the positioning satellite that transmitted the positioning signal can be calculated. Further, when the positioning signal includes Armanac, the positions of other positioning satellites can be calculated.
 位置算出部110は、このようにして、軌道情報に基づいて測位衛星300の位置を示す第2の位置を算出する。第2の位置は、例えば、軌道情報から求められた、天空図上の測位衛星300の配置として表現できる。上述の機能を備える位置算出部110は、位置算出手段の一例である。 In this way, the position calculation unit 110 calculates the second position indicating the position of the positioning satellite 300 based on the orbit information. The second position can be expressed as, for example, the arrangement of the positioning satellite 300 on the sky map obtained from the orbit information. The position calculation unit 110 having the above-mentioned function is an example of the position calculation means.
 判定部120は、第1の位置と第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する。判定部120には、第1の位置及び第2の位置が入力される。判定部120は測位衛星300毎に第1の位置及び第2の位置を比較する。そして、第1の位置と第2の位置とが実質的に一致する場合には、当該測位衛星からの測位信号は正常であると判定部120は判断する。2つの位置が実質的に一致する場合とは、例えば、2つの位置の間の距離が所定の値以下である場合をいう。所定の値は、測位に要求される精度に応じて定められてもよい。 The determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position. The first position and the second position are input to the determination unit 120. The determination unit 120 compares the first position and the second position for each positioning satellite 300. Then, when the first position and the second position substantially match, the determination unit 120 determines that the positioning signal from the positioning satellite is normal. The case where the two positions substantially match means, for example, the case where the distance between the two positions is equal to or less than a predetermined value. The predetermined value may be determined according to the accuracy required for positioning.
 一方、同一の測位衛星300について第1の位置と第2の位置とが一致しない場合は、軌道情報から得られる位置とは異なる位置に存在する送信機から電波が送信された可能性がある。従って、判定部120は、第1の位置と第2の位置とが一致しない測位衛星からの測位信号はなりすまし(スプーフィング)によるものであると判断できる。上述の機能を備える判定部120は、判定手段の一例である。 On the other hand, if the first position and the second position of the same positioning satellite 300 do not match, it is possible that radio waves were transmitted from a transmitter located at a position different from the position obtained from the orbit information. Therefore, the determination unit 120 can determine that the positioning signal from the positioning satellite whose first position and second position do not match is due to spoofing. The determination unit 120 having the above-mentioned function is an example of the determination means.
 図3は、測位装置100の動作例を示すフローチャートである。以上で説明したように、測位装置100は、測位衛星300からの電波の到来方向に基づいて測位衛星300の位置を示す第1の位置を算出し(図3のステップS01)、軌道情報に基づいて測位衛星300の位置を示す第2の位置を算出する(ステップS02)。そして、測位装置100は、第1の位置と第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する(ステップS03)。ステップS01とステップS02とは逆の順序で実行されてもよい。ステップS01とステップS02とは並行して実行されてもよい。このようにして、測位装置100は、測位衛星300が送信する測位信号の正常性を測位衛星300毎に判定できる。測位装置100は、異常であると判定された測位衛星300から受信した測位信号を使用しないことで、より正確な測位が可能となる。 FIG. 3 is a flowchart showing an operation example of the positioning device 100. As described above, the positioning device 100 calculates the first position indicating the position of the positioning satellite 300 based on the arrival direction of the radio wave from the positioning satellite 300 (step S01 in FIG. 3), and is based on the orbit information. The second position indicating the position of the positioning satellite 300 is calculated (step S02). Then, the positioning device 100 determines the normality of the received positioning signal based on the comparison result between the first position and the second position (step S03). Step S01 and step S02 may be executed in the reverse order. Step S01 and step S02 may be executed in parallel. In this way, the positioning device 100 can determine the normality of the positioning signal transmitted by the positioning satellite 300 for each positioning satellite 300. By not using the positioning signal received from the positioning satellite 300 determined to be abnormal, the positioning device 100 enables more accurate positioning.
 (第2の実施形態)
 図4は、本発明の第2の実施形態の測位装置101の構成例を示すブロック図である。測位装置101は、第1の実施形態の測位装置100と同様の位置算出部110及び判定部120を備え、さらに、アンテナ130、復調部140を備える。アンテナ130は、測位衛星からの測位信号を受信する。具体的には、アンテナ130は、測位信号を含む電波を測位衛星から受信して、受信した電波を高周波信号に変換する。復調部140は、アンテナ130から入力された高周波信号を復調して測位信号を抽出する。測位衛星は、図1に示される測位システム10に含まれる測位衛星300である。
(Second Embodiment)
FIG. 4 is a block diagram showing a configuration example of the positioning device 101 according to the second embodiment of the present invention. The positioning device 101 includes a position calculation unit 110 and a determination unit 120 similar to the positioning device 100 of the first embodiment, and further includes an antenna 130 and a demodulation unit 140. The antenna 130 receives the positioning signal from the positioning satellite. Specifically, the antenna 130 receives a radio wave including a positioning signal from a positioning satellite and converts the received radio wave into a high-frequency signal. The demodulation unit 140 demodulates the high frequency signal input from the antenna 130 and extracts the positioning signal. The positioning satellite is the positioning satellite 300 included in the positioning system 10 shown in FIG.
 第1の実施形態と同様に、位置算出部110は、測位信号を含む電波の到来方向に基づいて、測位衛星の位置を示す第1の位置を算出する。位置算出部110は、さらに、測位信号に含まれる測位衛星の軌道情報に基づいて、測位衛星の位置を示す第2の位置を算出する。判定部120は、第1の位置と第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する。本実施形態では、位置算出部110及び判定部120の機能を実現する具体的な例を説明する。 Similar to the first embodiment, the position calculation unit 110 calculates the first position indicating the position of the positioning satellite based on the arrival direction of the radio wave including the positioning signal. The position calculation unit 110 further calculates a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal. The determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position. In this embodiment, a specific example of realizing the functions of the position calculation unit 110 and the determination unit 120 will be described.
 本実施形態における位置算出部110の動作について以下に説明する。位置算出部110は、アンテナ130で受信される測位衛星からの電波の到来方向を求める。本実施形態では、電波の到来方向を求める手順は限定されない。測位信号を含む電波が到来する方向(すなわち、測位信号を送信した測位衛星の方向)から、測位信号の受信点(アンテナ130)における測位衛星の天空図上の位置が求まる。 The operation of the position calculation unit 110 in this embodiment will be described below. The position calculation unit 110 obtains the arrival direction of the radio wave from the positioning satellite received by the antenna 130. In the present embodiment, the procedure for determining the direction of arrival of radio waves is not limited. The position of the positioning satellite on the sky map at the receiving point (antenna 130) of the positioning signal can be obtained from the direction in which the radio wave including the positioning signal arrives (that is, the direction of the positioning satellite that transmitted the positioning signal).
 図5は、本実施形態における、電波の到来方向から得られた測位衛星の天空図の例を示す図である。図5で示される天空図は、測位信号を含む電波の到来方向に基づく測位衛星の位置である第1の位置に相当する。すなわち、図5は、アンテナ130から見た5基の測位衛星X1-X5(黒丸印)からの電波の到来方向の例を示す。測位衛星X1-X5は、受信された電波に含まれる測位信号によって識別される。 FIG. 5 is a diagram showing an example of a sky map of a positioning satellite obtained from the direction of arrival of radio waves in the present embodiment. The sky map shown in FIG. 5 corresponds to the first position, which is the position of the positioning satellite based on the arrival direction of the radio wave including the positioning signal. That is, FIG. 5 shows an example of the direction of arrival of radio waves from the five positioning satellites X1-X5 (black circles) seen from the antenna 130. The positioning satellites X1-X5 are identified by the positioning signal included in the received radio wave.
 一方、位置算出部110は、所定の位置及び時刻における天空図上の測位衛星の位置を、軌道情報に基づいて一意に算出できる。従って、位置算出部110は、第1の位置が示された天空図が与えられた場合に、その天空図と対応する、軌道情報に基づく天空図が同時に存在しうるかどうかを、計算によって探索する(すなわち、算出する)ことができる。 On the other hand, the position calculation unit 110 can uniquely calculate the position of the positioning satellite on the sky map at a predetermined position and time based on the orbit information. Therefore, the position calculation unit 110 searches by calculation whether or not a sky map based on the orbit information corresponding to the sky map can exist at the same time when the sky map showing the first position is given. (Ie, calculate).
 本実施形態の例では、位置算出部110は、測位衛星の第1の位置に基づく天空図が図5で示される場合に、図5と対応する天空図を、軌道情報に基づいて探索する。図6及び図7は、それぞれ、軌道情報から得られた、図5と同一時刻の測位衛星の天空図の第1及び第2の例である。 In the example of the present embodiment, the position calculation unit 110 searches the sky map corresponding to FIG. 5 based on the orbit information when the sky map based on the first position of the positioning satellite is shown in FIG. 6 and 7 are first and second examples of the sky map of the positioning satellite at the same time as FIG. 5 obtained from the orbit information, respectively.
 図6は、軌道情報から得られた、測位衛星の位置を示す天空図(すなわち、第2の位置に基づく天空図)の探索結果の第1の例を示す図である。図6は、探索の結果、同一の測位衛星X1-X5(白抜き丸印)の配置が図5と実質的に一致する場合が見いだされたことを示す。 FIG. 6 is a diagram showing a first example of the search result of the sky map (that is, the sky map based on the second position) showing the position of the positioning satellite obtained from the orbit information. FIG. 6 shows that, as a result of the search, it was found that the arrangement of the same positioning satellites X1-X5 (marked with white circles) substantially matches that of FIG.
 図7は、軌道情報から得られた測位衛星の位置を示す天空図(第2の位置)の探索結果の第2の例を示す図である。図6及び図7では、測位衛星X1-X5は軌道情報を用いて識別される。図7では、探索の結果、同一の測位衛星X1、X3-X5(白抜きの丸印)の配置が図5と実質的に一致する場合が見いだされた。一方、図7では測位衛星X2は天空図に存在しない。ここで、判定部120は、測位衛星毎に第1の位置の座標と探索された第2の位置の座標との間の距離を求め、距離の総和又は平均値が所定の値より小さい場合には第1の位置と第2の位置とが実質的に一致すると判断してもよい。また、判定部120は、当該距離の総和又は平均値を第1の位置と第2の位置との一致度の指標とし、当該総和又は平均値が小さいほど一致度が高いと判断してもよい。 FIG. 7 is a diagram showing a second example of the search result of the sky map (second position) showing the position of the positioning satellite obtained from the orbit information. In FIGS. 6 and 7, the positioning satellites X1-X5 are identified using orbit information. In FIG. 7, as a result of the search, it was found that the arrangements of the same positioning satellites X1 and X3-X5 (marked with white circles) substantially match those in FIG. On the other hand, in FIG. 7, the positioning satellite X2 does not exist in the sky map. Here, the determination unit 120 obtains the distance between the coordinates of the first position and the coordinates of the searched second position for each positioning satellite, and when the total or average value of the distances is smaller than a predetermined value. May determine that the first position and the second position substantially match. Further, the determination unit 120 may use the sum or average value of the distances as an index of the degree of coincidence between the first position and the second position, and may determine that the smaller the sum or average value is, the higher the degree of coincidence is. ..
 判定部120は、位置算出部110が電波の到来方向から算出した天空図(図5、第1の位置)と軌道情報から算出した天空図(図6又は図7、第2の位置)とを位置算出部110から受信し、両者を比較する。図5の測位衛星X1-X5の天空図上の位置は図6と実質的に一致する。従って、図6の天空図が探索された場合には、判定部120は、測位衛星X1-X5は正常な衛星であり、これらの衛星から受信した測位信号はいずれも正常であると判断できる。 The determination unit 120 draws a sky map (FIG. 5, first position) calculated by the position calculation unit 110 from the direction of arrival of radio waves and a sky map (FIG. 6, 7, second position) calculated from the orbit information. Received from the position calculation unit 110 and compared the two. The positions of the positioning satellites X1-X5 in FIG. 5 on the sky map substantially coincide with those in FIG. Therefore, when the sky map of FIG. 6 is searched, the determination unit 120 can determine that the positioning satellites X1-X5 are normal satellites and that the positioning signals received from these satellites are all normal.
 一方、図5の測位衛星X2は図7の天空図には現われていない。このような場合には、測位衛星X2は軌道情報に照らして本来存在しない衛星と推定できる。従って、判定部120は、測位衛星X1、X3-X5は正常な衛星であるが、測位衛星X2からの電波として受信された信号は異常である(すなわち、なりすましの信号である可能性がある)と判断できる。 On the other hand, the positioning satellite X2 in FIG. 5 does not appear in the sky map in FIG. 7. In such a case, the positioning satellite X2 can be presumed to be a satellite that does not originally exist in light of the orbit information. Therefore, in the determination unit 120, the positioning satellites X1 and X3-X5 are normal satellites, but the signal received as a radio wave from the positioning satellite X2 is abnormal (that is, it may be a spoofing signal). Can be judged.
 なお、測位衛星X2が図7の天空図に現われている場合でも、図7に示された測位衛星X2の位置が図5に示された測位衛星X2の位置と実質的に一致しない場合(例えば、両者の間が所定の距離以上離れている場合)も考えられる。このような場合にも、図5における測位衛星X2は軌道情報に照らして本来存在しない衛星であると推定してもよい。 Even when the positioning satellite X2 appears in the sky map of FIG. 7, the position of the positioning satellite X2 shown in FIG. 7 does not substantially match the position of the positioning satellite X2 shown in FIG. 5 (for example). , When the distance between the two is more than a predetermined distance) is also conceivable. Even in such a case, the positioning satellite X2 in FIG. 5 may be presumed to be a satellite that does not originally exist in light of the orbit information.
 位置算出部110は、測位衛星の配置が図5の天空図と一致すると判断できる配置が軌道情報に基づいて探索できなかった場合には、一致度が次に高い他の天空図で示される測位衛星の位置を第2の位置としてもよい。 If the position calculation unit 110 cannot search for a position that can be determined to match the position of the positioning satellite with the sky map of FIG. 5 based on the orbit information, the position calculation unit 110 indicates the position indicated by another sky map having the next highest degree of matching. The position of the satellite may be the second position.
 また、判定部120は、図6及び図7に例示される第2の位置を示す天空図の操作によって、図5に例示される第1の位置を示す天空図との一致度が極大となる場合には、極大となるときの操作量に応じて測位装置101の位置又は向きの誤差を推定できる。例えば、判定部120は、第2の位置を示す天空図を回転させること(ローテーション)によって第1の位置を示す天空図との一致度の極大値が得られる場合には、当該極大値が得られる際の回転量及び回転方向を、測位装置101の方位の誤差と推定してもよい。 Further, the determination unit 120 maximizes the degree of agreement with the sky map showing the first position illustrated in FIG. 5 by operating the sky map showing the second position exemplified in FIGS. 6 and 7. In this case, the error in the position or orientation of the positioning device 101 can be estimated according to the amount of operation when the maximum is reached. For example, when the determination unit 120 obtains the maximum value of the degree of coincidence with the sky map showing the first position by rotating the sky map showing the second position, the maximum value is obtained. The amount of rotation and the direction of rotation may be estimated as an error in the orientation of the positioning device 101.
 また、測位装置101の高度が高いほど、同一の測位衛星は天空図において中心から離れた位置に示される。従って、第2の位置を示す天空図を相似的に拡大または縮小することで第1の位置を示す天空図との一致度の極大値が得られる場合に、拡大量または縮小量に対応する高度差を求めることができる。例えば、判定部120は、図6又は図7における当初の測位装置101の高度と、一致度が極大となる際の図6又は図7の天空図から求めた測位装置101の高度と、の差を測位装置101の高度の誤差と推定してもよい。なお、第2の位置を示す天空図における測位装置101の高度は、軌道情報に基づいて第2の位置を算出する際に求めることができる。 Also, the higher the altitude of the positioning device 101, the more the same positioning satellite is shown in the sky map at a position farther from the center. Therefore, when the sky map showing the second position is enlarged or reduced in a similar manner to obtain the maximum value of the degree of coincidence with the sky map showing the first position, the altitude corresponding to the enlargement amount or the reduction amount is obtained. The difference can be calculated. For example, the determination unit 120 is the difference between the altitude of the initial positioning device 101 in FIG. 6 or FIG. 7 and the altitude of the positioning device 101 obtained from the sky map of FIG. 6 or 7 when the degree of coincidence is maximized. May be estimated as the altitude error of the positioning device 101. The altitude of the positioning device 101 in the sky map showing the second position can be obtained when calculating the second position based on the orbit information.
 加えて、第2の位置を示す天空図を平行移動することで一致度の極大値が得られる場合には、判定部120は、当該一致度の極大値が得られる際の第2の位置を示す天空図の、当初の第2の位置を示す天空図に対する移動量を、測位装置101の水平方向の位置の誤差と推定してもよい。 In addition, when the maximum value of the degree of coincidence can be obtained by translating the sky map showing the second position, the determination unit 120 sets the second position when the maximum value of the degree of coincidence is obtained. The amount of movement of the shown sky map with respect to the sky map showing the initial second position may be estimated as an error in the horizontal position of the positioning device 101.
 このように、判定部120は、第1の位置を示す天空図と第2の位置を示す天空図との一致度が第2の位置を示す天空図の操作によって高まる場合には、当該操作の量に基づいて測位装置の方向及び位置の少なくとも一方の誤差を推定できる。また、判定部120は、上述した回転、拡大又は縮小、及び平行移動の操作を組み合わせることで一致度が極大となる場合には、極大となる状態において方位の誤差、高度の誤差、水平方向の位置の誤差を操作の種類ごとに求めてもよい。 なお、軌道情報から求めた図6又は図7の天空図において、測位信号の受信位置(すなわち、アンテナ130の位置)が実際のアンテナ130の位置と明らかに異なる場合は、第1の位置及び第2の位置のいずれかに異常がある可能性がある。例えば、測位装置101が高空を飛行中の航空機に搭載されているにもかかわらず図6又は図7の天空図における受信位置が地上であると算出された場合には、測位信号に異常がある可能性がある。このような、算出結果に明らかな異常がある場合には、位置算出部110は他の測位衛星からの電波の到来方向及び他の測位衛星から抽出された軌道情報を用いて第1の位置及び第2の位置を再算出してもよい。また、算出結果に異常がないと判断できる場合であっても、位置算出部110はさらに他の測位衛星からの電波の到来方向及び他の測位衛星から抽出された軌道情報を用いて第1の位置及び第2の位置を再算出してもよい。 As described above, when the degree of coincidence between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position, the determination unit 120 performs the operation. The error of at least one of the direction and position of the positioning device can be estimated based on the quantity. Further, when the degree of coincidence is maximized by combining the above-mentioned operations of rotation, enlargement or reduction, and parallel movement, the determination unit 120 has an directional error, an altitude error, and a horizontal direction in the maximum state. The position error may be obtained for each type of operation. In the sky map of FIG. 6 or FIG. 7 obtained from the orbit information, when the receiving position of the positioning signal (that is, the position of the antenna 130) is clearly different from the actual position of the antenna 130, the first position and the first position There may be an abnormality in one of the two positions. For example, if the positioning device 101 is mounted on an aircraft flying at high altitude but the reception position in the sky map of FIG. 6 or 7 is calculated to be on the ground, there is an abnormality in the positioning signal. there is a possibility. When there is an obvious abnormality in the calculation result, the position calculation unit 110 uses the direction of arrival of radio waves from other positioning satellites and the orbit information extracted from the other positioning satellites to obtain the first position and The second position may be recalculated. Further, even if it can be determined that there is no abnormality in the calculation result, the position calculation unit 110 further uses the arrival direction of the radio wave from the other positioning satellite and the orbit information extracted from the other positioning satellite to make the first position. The position and the second position may be recalculated.
 図5に例示される第1の位置は、電波の到来方向のみから算出されている。このため、正規の測位衛星と同一の方向からなりすまし信号が送信されている場合には、なりすましを検出できない可能性がある。そこで、位置算出部110はアンテナ130で受信された測位信号に基づいて、測位衛星までの疑似距離を求めてもよい。疑似距離は、測位衛星における測位信号の送信時刻と測位装置101における当該測位信号の受信時刻との差から求めた、測位衛星と測位装置101との間の距離である。判定部120は、軌道情報から得られた測位衛星とアンテナ130との間の距離と、当該疑似距離とが一致すると判断できない場合には、軌道情報から求めた疑似距離とは異なる疑似距離を持つ衛星からの測位信号はなりすまし信号であると判定してもよい。 The first position illustrated in FIG. 5 is calculated only from the direction of arrival of radio waves. Therefore, if a spoofing signal is transmitted from the same direction as a legitimate positioning satellite, spoofing may not be detected. Therefore, the position calculation unit 110 may obtain a pseudo distance to the positioning satellite based on the positioning signal received by the antenna 130. The pseudo distance is a distance between the positioning satellite and the positioning device 101, which is obtained from the difference between the transmission time of the positioning signal on the positioning satellite and the reception time of the positioning signal on the positioning device 101. If it cannot be determined that the distance between the positioning satellite and the antenna 130 obtained from the orbit information and the pseudo distance match, the determination unit 120 has a pseudo distance different from the pseudo distance obtained from the orbit information. The positioning signal from the satellite may be determined to be a spoofing signal.
 また、位置算出部110は、3基以上の測位衛星について電波の到来方向とその疑似距離を取得することで、受信した電波に基づく測位衛星間の相対位置を第1の位置として求めてもよい。そして、判定部120は、その第1の位置と、軌道情報に基づいて、対応する測位衛星間の相対位置として探索して得られた第2の位置と、を比較してもよい。 Further, the position calculation unit 110 may obtain the relative position between the positioning satellites based on the received radio wave as the first position by acquiring the arrival direction of the radio wave and its pseudo distance for three or more positioning satellites. .. Then, the determination unit 120 may compare the first position with the second position obtained by searching as a relative position between the corresponding positioning satellites based on the orbit information.
 図8は、測位装置101の動作例を示すフローチャートである。以上で説明したように、アンテナ130は、測位信号を測位衛星から受信する(図8のステップS11)。復調部140は、測位信号を復調する(ステップS12)。位置算出部110は、電波の到来方向に基づいて求められた測位衛星の位置を示す第1の位置を算出する(ステップS13)。そして、位置算出部110は、第1の位置に対応する、軌道情報に基づく測位衛星の位置を示す第2の位置を算出する(ステップS14)。判定部120は、第1の位置と第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する(ステップS15)。 FIG. 8 is a flowchart showing an operation example of the positioning device 101. As described above, the antenna 130 receives the positioning signal from the positioning satellite (step S11 in FIG. 8). The demodulation unit 140 demodulates the positioning signal (step S12). The position calculation unit 110 calculates a first position indicating the position of the positioning satellite obtained based on the arrival direction of the radio wave (step S13). Then, the position calculation unit 110 calculates a second position corresponding to the first position, which indicates the position of the positioning satellite based on the orbit information (step S14). The determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position (step S15).
 このような構成を備える測位装置101も、電波の伝搬方向に基づいて求められた測位衛星の位置と軌道情報から求められた測位衛星の位置とを比較することで、測位信号の正常性を判定できる。従って、測位装置101も、測位衛星が送信する測位信号のなりすましを検出できる。 The positioning device 101 having such a configuration also determines the normality of the positioning signal by comparing the position of the positioning satellite obtained based on the propagation direction of the radio wave with the position of the positioning satellite obtained from the orbit information. can. Therefore, the positioning device 101 can also detect the spoofing of the positioning signal transmitted by the positioning satellite.
 また、本実施形態の手順によれば、測位衛星の位置を示す第1の位置及び第2の位置を算出するために測位装置101の位置の情報を必要としない。また、測位装置101は、慣性航法やドップラー航法といった他の測位方式を用いる必要もない。 Further, according to the procedure of the present embodiment, the position information of the positioning device 101 is not required to calculate the first position and the second position indicating the position of the positioning satellite. Further, the positioning device 101 does not need to use other positioning methods such as inertial navigation and Doppler navigation.
 (第3の実施形態)
 図9は、本発明の第3の実施形態の測位装置102の構成例を示すブロック図である。測位装置102は、第2の実施形態の測位装置101と同様に、位置算出部110、判定部120及び復調部140を備える。また、測位装置102は、複数のアンテナ130を備える。アンテナ130のそれぞれは、無指向性アンテナであってもよい。測位装置102が航空機に搭載される場合には、アンテナ130は、例えば、機体の先端及び後端、並びに両翼の先端の計4か所に配置される。位置算出部110、判定部120及び復調部140は航空機の1つの機器室に収容されてもよい。アンテナ130と復調部140との間は同軸ケーブル等の高周波線路で接続されてもよい。
(Third Embodiment)
FIG. 9 is a block diagram showing a configuration example of the positioning device 102 according to the third embodiment of the present invention. The positioning device 102 includes a position calculation unit 110, a determination unit 120, and a demodulation unit 140, similarly to the positioning device 101 of the second embodiment. Further, the positioning device 102 includes a plurality of antennas 130. Each of the antennas 130 may be an omnidirectional antenna. When the positioning device 102 is mounted on an aircraft, the antennas 130 are arranged at a total of four locations, for example, the front and rear ends of the airframe and the tips of both wings. The position calculation unit 110, the determination unit 120, and the demodulation unit 140 may be housed in one equipment room of the aircraft. The antenna 130 and the demodulation unit 140 may be connected by a high frequency line such as a coaxial cable.
 アンテナ130は、測位信号を含む電波を測位衛星から受信する。復調部140には、アンテナ130のそれぞれから、測位信号を含む高周波信号が入力される。復調部140は、それぞれの高周波信号から測位信号を復調する。さらに、復調部140は、測位衛星からの電波を受信した時の複数のアンテナ130間の電波の位相差を、電波の送信元の測位衛星毎に算出する。アンテナ130のそれぞれと復調部140との間の遅延時間はあらかじめ算出あるいは測定できる。従って、復調部140は、遅延時間を考慮することによって、電波の受信時のアンテナ130間の位相差を求めることができる。復調部140は、復調された測位信号を第1算出部111及び第2算出部112へ出力し、求められた位相差を第1算出部111へ出力する。 The antenna 130 receives radio waves including a positioning signal from a positioning satellite. High-frequency signals including positioning signals are input to the demodulation unit 140 from each of the antennas 130. The demodulation unit 140 demodulates the positioning signal from each high frequency signal. Further, the demodulation unit 140 calculates the phase difference of the radio waves between the plurality of antennas 130 when the radio waves from the positioning satellites are received for each positioning satellite that is the source of the radio waves. The delay time between each of the antennas 130 and the demodulation unit 140 can be calculated or measured in advance. Therefore, the demodulation unit 140 can obtain the phase difference between the antennas 130 at the time of receiving the radio wave by considering the delay time. The demodulation unit 140 outputs the demodulated positioning signal to the first calculation unit 111 and the second calculation unit 112, and outputs the obtained phase difference to the first calculation unit 111.
 第1算出部111は、第1及び第2の実施形態で説明した位置算出部110の機能のうち、電波の到来方向に基づいて測位衛星の位置を示す第1の位置を算出する機能を備える。複数のアンテナ130間の相対的な位置が既知であれば、アンテナ130のそれぞれが受信した電波の位相差に基づいて電波の到来方向を周知の手順によって求めることができる。従って、第1算出部111は、電波の到来方向に基づいて、電波の送信元の測位衛星の位置を測位衛星毎に算出できる。このように算出された測位衛星の位置を天空図上に描画することで第1の位置が得られる。なお、復調部140は、アンテナ130のそれぞれで受信された電波の位相差に代えてアンテナ130のそれぞれにおける電波の受信時刻差を第1算出部111へ出力してもよい。この場合、第1算出部111は、当該受信時刻差に基づいて第1の位置を算出する。 The first calculation unit 111 includes a function of calculating the first position indicating the position of the positioning satellite based on the arrival direction of the radio wave among the functions of the position calculation unit 110 described in the first and second embodiments. .. If the relative positions between the plurality of antennas 130 are known, the arrival direction of the radio waves can be determined by a well-known procedure based on the phase difference of the radio waves received by each of the antennas 130. Therefore, the first calculation unit 111 can calculate the position of the positioning satellite of the source of the radio wave for each positioning satellite based on the arrival direction of the radio wave. The first position can be obtained by drawing the position of the positioning satellite calculated in this way on the sky map. The demodulation unit 140 may output the reception time difference of the radio waves of each of the antennas 130 to the first calculation unit 111 instead of the phase difference of the radio waves received by each of the antennas 130. In this case, the first calculation unit 111 calculates the first position based on the reception time difference.
 第2算出部112は、第1及び第2の実施形態で説明した位置算出部110の機能のうち、測位衛星の軌道情報に基づく測位衛星の位置を示す第2の位置を算出する機能を備える。例えば、第2算出部112は、第2の実施形態で説明した手順により、軌道情報に基づく測位衛星の位置を示す天空図を第2の位置として算出する。 The second calculation unit 112 includes a function of calculating a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite among the functions of the position calculation unit 110 described in the first and second embodiments. .. For example, the second calculation unit 112 calculates the sky map showing the position of the positioning satellite based on the orbit information as the second position according to the procedure described in the second embodiment.
 そして、判定部120は、第1の実施形態又は第2の実施形態で説明した手順により、第1の位置と第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する。 Then, the determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position according to the procedure described in the first embodiment or the second embodiment. judge.
 このような構成を備える測位装置102は、測位衛星からの電波の受信時のアンテナ130間の電波の位相差又は受信時刻差から得られる測位衛星の位置(第1の位置)を算出するとともに、軌道情報から求めた測位衛星の位置(第2の位置)を算出する。そして、測位装置102は、測位信号の到来方向である第1の方向と、軌道情報から求めた測位衛星の方向である第2の方向との比較結果に基づいて測位信号の正常性を判定する。従って、測位装置102も、測位衛星が送信する信号のなりすましを検出できる。 The positioning device 102 having such a configuration calculates the position (first position) of the positioning satellite obtained from the phase difference or reception time difference of the radio waves between the antennas 130 when receiving the radio waves from the positioning satellite, and also calculates the position (first position) of the positioning satellite. The position (second position) of the positioning satellite obtained from the orbit information is calculated. Then, the positioning device 102 determines the normality of the positioning signal based on the comparison result between the first direction which is the arrival direction of the positioning signal and the second direction which is the direction of the positioning satellite obtained from the orbit information. .. Therefore, the positioning device 102 can also detect the spoofing of the signal transmitted by the positioning satellite.
 (第4の実施形態)
 図10は、本発明の第4の実施形態の測位装置103の構成例を示すブロック図である。測位装置103は、第3の実施形態の測位装置102と比較して、復調部140に代えて複数の復調部141を備える。復調部141はいずれも測位信号を復調する受信機であり、アンテナ130毎に配置される。また、測位装置103の位置算出部110Aは、第1算出部111A及び第2算出部112を備える。
(Fourth Embodiment)
FIG. 10 is a block diagram showing a configuration example of the positioning device 103 according to the fourth embodiment of the present invention. The positioning device 103 includes a plurality of demodulation units 141 instead of the demodulation unit 140, as compared with the positioning device 102 of the third embodiment. The demodulation unit 141 is a receiver that demodulates the positioning signal, and is arranged for each antenna 130. Further, the position calculation unit 110A of the positioning device 103 includes a first calculation unit 111A and a second calculation unit 112.
 アンテナ130は、測位信号を含む電波を受信して高周波信号に変換する。復調部141は、アンテナ130から入力された高周波信号を復調し、アンテナ130が受信した測位信号、及び、アンテナ130における電波の受信位相又は電波の受信時刻を位置算出部110へ出力する。 The antenna 130 receives a radio wave including a positioning signal and converts it into a high frequency signal. The demodulation unit 141 demodulates the high-frequency signal input from the antenna 130, and outputs the positioning signal received by the antenna 130 and the reception phase of the radio wave at the antenna 130 or the reception time of the radio wave to the position calculation unit 110.
 より具体的には、復調部141は、接続されたアンテナ130における電波の位相及び電波の受信時刻の少なくとも一方を求めて、測位信号とともに第1算出部111Aへ出力する。さらに、復調部141は、アンテナ130から入力された高周波信号から測位信号を復調し、復調された測位信号を第2算出部112へ出力する。復調部141のそれぞれを同一の時計で制御し、アンテナ130のそれぞれと位置算出部110Aとの間の配線の遅延を補償することで、第1算出部111Aは、同一時刻における各アンテナ130間の位相差及び受信時刻差を得ることができる。第1算出部111Aは、これらの位相差又は受信時刻差に基づいて、測位衛星の位置(第1の位置)を算出できる。 More specifically, the demodulation unit 141 obtains at least one of the phase of the radio wave and the reception time of the radio wave in the connected antenna 130, and outputs the positioning signal to the first calculation unit 111A. Further, the demodulation unit 141 demodulates the positioning signal from the high frequency signal input from the antenna 130, and outputs the demodulated positioning signal to the second calculation unit 112. By controlling each of the demodulation units 141 with the same clock and compensating for the delay in wiring between each of the antennas 130 and the position calculation unit 110A, the first calculation unit 111A between the antennas 130 at the same time. The phase difference and the reception time difference can be obtained. The first calculation unit 111A can calculate the position (first position) of the positioning satellite based on these phase differences or reception time differences.
 位置算出部110Aにおける他の処理及び判定部120の処理は、第1乃至第3の実施形態のいずれかの測位装置102と同様としてもよい。判定部120は、位置算出部110Aで算出された第1の位置と第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する。従って、測位装置103も、測位衛星が送信する信号のなりすましを検出できる。 The other processing in the position calculation unit 110A and the processing in the determination unit 120 may be the same as those in the positioning device 102 according to any one of the first to third embodiments. The determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position and the second position calculated by the position calculation unit 110A. Therefore, the positioning device 103 can also detect the spoofing of the signal transmitted by the positioning satellite.
 さらに、測位装置103では、アンテナ130毎に復調部141が備えられているため、アンテナ130のそれぞれの位置が離れている場合でも、アンテナ130の近傍に復調部を配置できる。その結果、アンテナ130と復調部141との間の高周波信号の損失を低減できるため、測位衛星から受信した信号の品質低下を抑制できる。 Further, in the positioning device 103, since the demodulation unit 141 is provided for each antenna 130, the demodulation unit can be arranged in the vicinity of the antenna 130 even if the positions of the antennas 130 are separated from each other. As a result, the loss of the high frequency signal between the antenna 130 and the demodulation unit 141 can be reduced, so that the quality deterioration of the signal received from the positioning satellite can be suppressed.
 (第5の実施形態)
 図11は、第5の実施形態の測位装置104の構成例を示すブロック図である。測位装置104は、指向性アンテナ130A、復調部140、位置算出部110B及び判定部120を備える。位置算出部110Bは、第1算出部111Bを備える点で第3の実施形態の位置算出部110と相違する。指向性アンテナ130Aは、受信する電波の利得が最大となる方向(以下、「受信方向」という。)を外部から制御可能なアンテナであり、例えばアレイアンテナ又はパラボラアンテナである。第1算出部111Bは、第1算出部111の機能に加えて、指向性アンテナ130Aの受信方向の制御機能を備える。第1算出部111Bは、指向性アンテナ130Aが測位衛星から受信する電波の強度が最大となる受信方向を、測位信号を含む電波の到来方向とする。なお、指向性アンテナの130Aの近傍に復調部140を配置してもよい。測位装置104は、指向性アンテナ130Aを用いることで、複数のアンテナ間の位相差を用いることなく電波の到来方向を知ることができる。
(Fifth Embodiment)
FIG. 11 is a block diagram showing a configuration example of the positioning device 104 according to the fifth embodiment. The positioning device 104 includes a directional antenna 130A, a demodulation unit 140, a position calculation unit 110B, and a determination unit 120. The position calculation unit 110B is different from the position calculation unit 110 of the third embodiment in that the position calculation unit 110B includes the first calculation unit 111B. The directional antenna 130A is an antenna capable of externally controlling the direction in which the gain of the received radio wave is maximized (hereinafter, referred to as “reception direction”), and is, for example, an array antenna or a parabolic antenna. The first calculation unit 111B has a function of controlling the reception direction of the directional antenna 130A in addition to the function of the first calculation unit 111. The first calculation unit 111B sets the reception direction in which the intensity of the radio wave received from the positioning satellite by the directional antenna 130A is maximum as the arrival direction of the radio wave including the positioning signal. The demodulation unit 140 may be arranged in the vicinity of the directional antenna 130A. By using the directional antenna 130A, the positioning device 104 can know the arrival direction of the radio wave without using the phase difference between the plurality of antennas.
 第1算出部111Bにおける指向性アンテナ130Aの指向性の制御機能以外の処理は、第1乃至第4の実施形態のいずれかの測位装置102と同様である。また、第2算出部112及び判定部120の処理も、第1乃至第4の実施形態のいずれかの測位装置102と同様である。判定部120は、第1算出部111Bで算出された第1の位置と第2算出部112で算出された第2の位置との比較結果に基づいて、受信された測位信号の正常性を判定する。従って、測位装置104も、測位衛星が送信する信号のなりすましを検出できる。 The processing other than the directivity control function of the directional antenna 130A in the first calculation unit 111B is the same as that of the positioning device 102 according to any one of the first to fourth embodiments. Further, the processing of the second calculation unit 112 and the determination unit 120 is the same as that of the positioning device 102 according to any one of the first to fourth embodiments. The determination unit 120 determines the normality of the received positioning signal based on the comparison result between the first position calculated by the first calculation unit 111B and the second position calculated by the second calculation unit 112. do. Therefore, the positioning device 104 can also detect the spoofing of the signal transmitted by the positioning satellite.
 (第6の実施形態)
 図12は、本発明の第6の実施形態の測位装置105の構成例を示すブロック図である。測位装置105は、第2の実施形態の測位装置101の構成に加えて、出力部150をさらに備える。
(Sixth Embodiment)
FIG. 12 is a block diagram showing a configuration example of the positioning device 105 according to the sixth embodiment of the present invention. The positioning device 105 further includes an output unit 150 in addition to the configuration of the positioning device 101 of the second embodiment.
 判定部120は、第1の位置と第2の位置との正常性の判定結果を出力する。出力部150は、判定部120が出力する判定結果を、画像及び音声の少なくとも一方で出力する出力手段の一例である。例えば、出力部150はディスプレイ及びスピーカの少なくとも一方を備えた端末である。出力部150は、判定部120において測位信号が正常と判定された場合には、測位信号は正常である旨をディスプレイに表示し、あるいは、測位信号は正常である旨をスピーカから音声として出力する。一方、出力部150は、判定部120において測位信号が異常であると判定された場合には、測位信号が異常である旨をディスプレイに表示し、あるいは、測位信号が異常である旨をスピーカから音声として出力する。出力部150からの出力は、画像及び音声に限定されない。出力部150は、判定部120の判定結果を既定の宛先へ電子メールによって送信してもよい。 The determination unit 120 outputs the determination result of normality between the first position and the second position. The output unit 150 is an example of an output means that outputs the determination result output by the determination unit 120 at least one of the image and the sound. For example, the output unit 150 is a terminal including at least one of a display and a speaker. When the determination unit 120 determines that the positioning signal is normal, the output unit 150 displays on the display that the positioning signal is normal, or outputs a voice indicating that the positioning signal is normal from the speaker. .. On the other hand, when the determination unit 120 determines that the positioning signal is abnormal, the output unit 150 displays on the display that the positioning signal is abnormal, or indicates from the speaker that the positioning signal is abnormal. Output as audio. The output from the output unit 150 is not limited to images and sounds. The output unit 150 may send the determination result of the determination unit 120 to a default destination by e-mail.
 このような構成を備える測位装置105は、測位衛星が送信する信号のなりすましを検出できるとともに、判定部120の判定結果をより具体的な形で報知できる。なお、出力部150が第1、第3、第4及び第5の実施形態のいずれかの測位装置に備えられた場合も、同様の効果が得られる。 The positioning device 105 having such a configuration can detect spoofing of a signal transmitted by a positioning satellite and can notify the determination result of the determination unit 120 in a more specific form. The same effect can be obtained when the output unit 150 is provided in any of the positioning devices according to the first, third, fourth, and fifth embodiments.
 なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。 The embodiment of the present invention may be described as in the following appendix, but is not limited thereto.
 (付記1)
 測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出するとともに、前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出する位置算出手段と、
 前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する判定手段と、
を備える測位装置。
(Appendix 1)
The first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal is calculated, and the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated. A position calculation means for calculating the second position shown, and
A determination means for determining the normality of the received positioning signal based on the comparison result between the first position and the second position, and
Positioning device equipped with.
 (付記2)
 前記測位信号を受信するアンテナを備え、
 前記測位衛星は前記アンテナで受信可能な複数の測位衛星の1つであり、
 前記位置算出手段は、前記複数の測位衛星のそれぞれについて前記第1の位置及び前記第2の位置を算出し、
 前記判定手段は、前記複数の測位衛星のそれぞれの前記第1の位置と前記第2の位置との比較結果に基づいて前記測位信号の正常性を前記複数の測位衛星毎に判定する、
付記1に記載された測位装置。
(Appendix 2)
It is equipped with an antenna that receives the positioning signal.
The positioning satellite is one of a plurality of positioning satellites that can be received by the antenna.
The position calculation means calculates the first position and the second position for each of the plurality of positioning satellites.
The determination means determines the normality of the positioning signal for each of the plurality of positioning satellites based on the comparison result between the first position and the second position of each of the plurality of positioning satellites.
The positioning device according to Appendix 1.
 (付記3)
 前記アンテナは複数のアンテナの1つであり、
 前記位置算出手段は、前記複数のアンテナの間の前記電波の受信時の位相差及び前記電波の受信時刻差の少なくとも一方に基づいて求められた前記電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、付記2に記載された測位装置。
(Appendix 3)
The antenna is one of a plurality of antennas.
The position calculating means has the plurality of positioning satellites based on the arrival direction of the radio wave obtained based on at least one of the phase difference at the time of receiving the radio wave and the reception time difference of the radio wave between the plurality of antennas. The positioning device according to Appendix 2, which calculates the first position for each.
 (付記4)
 前記アンテナは受信方向が可変のアンテナであり、
 前記位置算出手段は、前記電波の受信強度が最大となる前記アンテナの受信方向に基づいて求められた前記測位信号を含む電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、付記2に記載された測位装置。
(Appendix 4)
The antenna is an antenna having a variable receiving direction.
The position calculation means is the first position for each of the plurality of positioning satellites based on the arrival direction of the radio wave including the positioning signal obtained based on the reception direction of the antenna that maximizes the reception intensity of the radio wave. The positioning device according to Appendix 2, which calculates.
 (付記5)
 前記第1の位置及び前記第2の位置は、前記測位衛星の天空図上の位置として表現される、付記1乃至4のいずれか1項に記載された測位装置。
(Appendix 5)
The positioning device according to any one of Supplementary Provisions 1 to 4, wherein the first position and the second position are represented as positions on the sky map of the positioning satellite.
 (付記6)
 前記判定手段は、前記第2の位置を示す天空図の操作によって前記第1の位置を示す天空図と前記第2の位置を示す天空図との一致度が高まる場合の前記操作の量に基づいて測位装置の方向及び位置の少なくとも一方の誤差を推定する、付記5に記載された測位装置。
(Appendix 6)
The determination means is based on the amount of the operation when the degree of agreement between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position. The positioning device according to Appendix 5, which estimates an error in at least one of the direction and the position of the positioning device.
 (付記7)
 前記判定手段は、前記第2の位置を示す天空図を回転させる操作によって前記一致度の極大値が得られる場合には、前記極大値が得られる際の前記第2の位置を示す天空図の回転量を、前記測位装置の方位の誤差と推定する、付記6に記載された測位装置。
(Appendix 7)
When the maximum value of the degree of coincidence is obtained by the operation of rotating the sky map showing the second position, the determination means of the sky map showing the second position when the maximum value is obtained. The positioning device according to Appendix 6, which estimates the amount of rotation as an error in the orientation of the positioning device.
 (付記8)
 前記判定手段は、前記第2の位置を示す天空図を相似的に拡大し又は縮小する操作によって前記一致度の極大値が得られる場合には、前記操作の前の前記第2の位置を示す天空図から求まる前記測位装置の高度と、前記極大値が得られる際の前記第2の位置を示す天空図から求まる前記測位装置の高度と、の差を前記測位装置の高度の誤差と推定する、付記6又は7に記載された測位装置。
(Appendix 8)
The determination means indicates the second position before the operation when the maximum value of the degree of coincidence is obtained by the operation of expanding or contracting the sky map showing the second position in a similar manner. The difference between the altitude of the positioning device obtained from the sky map and the altitude of the positioning device obtained from the sky map indicating the second position when the maximum value is obtained is estimated as an error in the altitude of the positioning device. , The positioning apparatus according to Appendix 6 or 7.
 (付記9)
 前記判定手段は、前記第2の位置を示す天空図を平行移動する操作によって前記一致度の極大値が得られる場合には、前記極大値が得られるための前記第2の位置を示す天空図の平行移動量を前記測位装置の水平方向の位置の誤差と推定する、付記6乃至8のいずれか1項に記載された測位装置。
(Appendix 9)
When the maximum value of the degree of coincidence is obtained by the operation of translating the sky map showing the second position, the determination means shows the sky map showing the second position for obtaining the maximum value. The positioning device according to any one of Appendix 6 to 8, wherein the amount of translation of the above is estimated as an error in the horizontal position of the positioning device.
 (付記10)
 前記位置算出手段は、さらに、前記測位信号から得られた疑似距離に基づいて前記第1の位置を算出する、付記1乃至9のいずれか1項に記載された測位装置。
(Appendix 10)
The positioning device according to any one of Supplementary Provisions 1 to 9, wherein the position calculating means further calculates the first position based on a pseudo distance obtained from the positioning signal.
 (付記11)
 前記判定手段は、前記第1の位置と前記第2の位置との相違が所定の範囲を超えていれば前記測位信号は異常であるとの判定結果を出力する、付記1乃至10のいずれか1項に記載された測位装置。
(Appendix 11)
The determination means outputs a determination result that the positioning signal is abnormal if the difference between the first position and the second position exceeds a predetermined range. The positioning device according to item 1.
 (付記12)
 前記電波から生成された高周波電流から前記測位信号を抽出する復調手段を備える、付記1乃至11のいずれか1項に記載された測位装置。
(Appendix 12)
The positioning apparatus according to any one of Supplementary note 1 to 11, further comprising a demodulation means for extracting the positioning signal from a high-frequency current generated from the radio wave.
 (付記13)
 前記比較結果を画像及び音声の少なくとも一方で出力する出力手段を備える、付記1乃至12のいずれか1項に記載された測位装置。
(Appendix 13)
The positioning apparatus according to any one of Supplementary note 1 to 12, further comprising an output means for outputting the comparison result on at least one of an image and an audio.
 (付記14)
 前記測位信号は、GNSS衛星及びSBAS衛星の少なくとも一方から送信された信号である、付記1乃至13のいずれか1項に記載された測位装置。
(Appendix 14)
The positioning device according to any one of Appendix 1 to 13, wherein the positioning signal is a signal transmitted from at least one of a GNSS satellite and an SBAS satellite.
 (付記15)
 複数の測位衛星と、
 前記複数の測位衛星からの測位信号の受信によって測位を行う付記1乃至10のいずれか1項に記載された測位装置と、
を備える測位システム。
(Appendix 15)
With multiple positioning satellites
The positioning device according to any one of Appendix 1 to 10, which performs positioning by receiving positioning signals from the plurality of positioning satellites.
Positioning system equipped with.
 (付記16)
 測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出し、
 前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出し、
 前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する、
測位方法。
(Appendix 16)
Calculate the first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
A second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated.
Based on the comparison result between the first position and the second position, the normality of the received positioning signal is determined.
Positioning method.
 (付記17)
 アンテナによって複数の前記測位衛星から前記測位信号を受信し、
 前記複数の測位衛星のそれぞれについて前記第1の位置及び前記第2の位置を算出し、
 前記複数の測位衛星のそれぞれの前記第1の位置と前記第2の位置との比較結果に基づいて前記測位信号の正常性を前記複数の測位衛星毎に判定する、
付記16に記載された測位方法。
(Appendix 17)
The positioning signal is received from a plurality of the positioning satellites by the antenna, and the positioning signal is received.
The first position and the second position are calculated for each of the plurality of positioning satellites.
The normality of the positioning signal is determined for each of the plurality of positioning satellites based on the comparison result between the first position of each of the plurality of positioning satellites and the second position.
The positioning method described in Appendix 16.
 (付記18)
 複数の前記アンテナの間の前記電波の受信時の位相差及び前記電波の受信時刻差の少なくとも一方に基づいて求められた前記電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、付記17に記載された測位方法。
(Appendix 18)
For each of the plurality of positioning satellites, the first The positioning method according to Appendix 17, which calculates a position.
 (付記19)
 前記電波の受信強度が最大となる前記アンテナの受信方向に基づいて求められた前記測位信号を含む電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、付記17に記載された測位方法。
(Appendix 19)
Appendix 17 Calculates the first position for each of the plurality of positioning satellites based on the arrival direction of the radio wave including the positioning signal obtained based on the reception direction of the antenna that maximizes the reception intensity of the radio wave. The positioning method described in.
 (付記20)
 前記第1の位置及び前記第2の位置は、前記測位衛星の天空図上の位置として表現される、付記16乃至19のいずれか1項に記載された測位方法。
(Appendix 20)
The positioning method according to any one of Appendix 16 to 19, wherein the first position and the second position are expressed as positions on the sky map of the positioning satellite.
 (付記21)
 前記第2の位置を示す天空図の操作によって前記第1の位置を示す天空図と前記第2の位置を示す天空図との一致度が高まる場合の前記操作の量に基づいて測位装置の方向及び位置の少なくとも一方の誤差を推定する、付記20に記載された測位方法。
(Appendix 21)
The direction of the positioning device based on the amount of the operation when the degree of agreement between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position. And the positioning method according to Appendix 20, which estimates an error in at least one of the positions.
 (付記22)
 前記第2の位置を示す天空図を回転させる操作によって前記一致度の極大値が得られる場合には、前記極大値が得られる際の前記第2の位置を示す天空図の回転量を、前記測位装置の方位の誤差と推定する、付記21に記載された測位方法。
(Appendix 22)
When the maximum value of the degree of coincidence is obtained by the operation of rotating the sky map showing the second position, the amount of rotation of the sky map showing the second position when the maximum value is obtained is calculated as described above. The positioning method according to Appendix 21, which is estimated to be an error in the orientation of the positioning device.
 (付記23)
 前記第2の位置を示す天空図を相似的に拡大し又は縮小する操作によって前記一致度の極大値が得られる場合には、前記操作の前の前記第2の位置を示す天空図から求まる前記測位装置の高度と、前記極大値が得られる際の前記第2の位置を示す天空図から求まる前記測位装置の高度と、の差を前記測位装置の高度の誤差と推定する、付記21又は22に記載された測位方法。
(Appendix 23)
When the maximum value of the degree of coincidence is obtained by the operation of enlarging or reducing the sky map showing the second position in a similar manner, the sky map showing the second position before the operation can be obtained. Appendix 21 or 22 that the difference between the altitude of the positioning device and the altitude of the positioning device obtained from the sky map showing the second position when the maximum value is obtained is estimated as the error of the altitude of the positioning device. The positioning method described in.
 (付記24)
 前記第2の位置を示す天空図を平行移動する操作によって前記一致度の極大値が得られる場合には、前記極大値が得られるための前記第2の位置を示す天空図の平行移動量を前記測位装置の水平方向の位置の誤差と推定する、付記21乃至23のいずれか1項に記載された測位方法。
(Appendix 24)
When the maximum value of the degree of coincidence is obtained by the operation of translating the sky map showing the second position, the amount of translation of the sky map showing the second position for obtaining the maximum value is calculated. The positioning method according to any one of Appendix 21 to 23, which is estimated to be an error in the position of the positioning device in the horizontal direction.
 (付記25)
 さらに、前記測位信号から得られた疑似距離に基づいて前記第1の位置を算出する、付記16乃至24のいずれか1項に記載された測位方法。
(Appendix 25)
Further, the positioning method according to any one of Appendix 16 to 24, wherein the first position is calculated based on the pseudo distance obtained from the positioning signal.
 (付記26)
 前記第1の位置と前記第2の位置との相違が所定の範囲を超えていれば前記測位信号は異常であるとの判定結果を出力する、付記16乃至25のいずれか1項に記載された測位方法。
(Appendix 26)
It is described in any one of Appendix 16 to 25, which outputs a determination result that the positioning signal is abnormal if the difference between the first position and the second position exceeds a predetermined range. Positioning method.
 (付記27)
 前記電波から生成された高周波電流から前記測位信号を抽出する、付記16乃至26のいずれか1項に記載された測位方法。
(Appendix 27)
The positioning method according to any one of Appendix 16 to 26, wherein the positioning signal is extracted from a high-frequency current generated from the radio wave.
 (付記28)
 前記比較結果を画像及び音声の少なくとも一方で出力する、付記16乃至27のいずれか1項に記載された測位方法。
(Appendix 28)
The positioning method according to any one of Appendix 16 to 27, wherein the comparison result is output at least one of an image and an audio.
 (付記29)
 前記測位信号は、GNSS衛星及びSBAS衛星の少なくとも一方から送信された信号である、付記16乃至28のいずれか1項に記載された測位方法。
(Appendix 29)
The positioning method according to any one of Appendix 16 to 28, wherein the positioning signal is a signal transmitted from at least one of a GNSS satellite and an SBAS satellite.
 (付記30)
 測位装置のコンピュータに、
 測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出する手順、
 前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出する手順、
 前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する手順、
を実行させるための測位プログラムを記録した記録媒体。
(Appendix 30)
To the computer of the positioning device
A procedure for calculating a first position indicating the position of a positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
A procedure for calculating a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal.
A procedure for determining the normality of the received positioning signal based on the comparison result between the first position and the second position.
A recording medium on which a positioning program for executing is recorded.
 以上、実施形態を参照して本発明を説明したが、本発明は上記の実施形態に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
 また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の構成、作用及び効果は、上述の実施形態の全部又は一部の組み合わせによって実現されてもよい。 Moreover, the configurations described in the respective embodiments are not necessarily exclusive to each other. The constitution, action and effect of the present invention may be realized by a combination of all or a part of the above-described embodiments.
 以上の各実施形態に記載された機能及び手順は、それぞれの測位装置が備える中央処理装置(central processing unit、CPU)がプログラムを実行することにより実現されてもよい。プログラムは、固定された一時的でない(tangible and non-transitory)記録媒体に記録される。記録媒体としては半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。CPUは例えば各実施形態の位置算出部に備えられるコンピュータである。 The functions and procedures described in each of the above embodiments may be realized by executing a program by a central processing unit (CPU) included in each positioning device. The program is recorded on a fixed, non-transitory recording medium. A semiconductor memory or a fixed magnetic disk device is used as the recording medium, but the recording medium is not limited thereto. The CPU is, for example, a computer provided in the position calculation unit of each embodiment.
 10 測位システム
 100-105 測位装置
 110、110A、110B 位置算出部
 111、111A、111B 第1算出部
 112 第2算出部
 120 判定部
 130 アンテナ
 130A 指向性アンテナ
 140、141 復調部
 150 出力部
 200 移動体
 300 測位衛星
10 Positioning system 100-105 Positioning device 110, 110A, 110B Position calculation unit 111, 111A, 111B 1st calculation unit 112 2nd calculation unit 120 Judgment unit 130 Antenna 130A Directional antenna 140, 141 Demodulation unit 150 Output unit 200 Mobile 300 positioning satellite

Claims (30)

  1.  測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出するとともに、前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出する位置算出手段と、
     前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する判定手段と、
    を備える測位装置。
    The first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal is calculated, and the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated. A position calculation means for calculating the second position shown, and
    A determination means for determining the normality of the received positioning signal based on the comparison result between the first position and the second position, and
    Positioning device equipped with.
  2.  前記測位信号を受信するアンテナを備え、
     前記測位衛星は前記アンテナで受信可能な複数の測位衛星の1つであり、
     前記位置算出手段は、前記複数の測位衛星のそれぞれについて前記第1の位置及び前記第2の位置を算出し、
     前記判定手段は、前記複数の測位衛星のそれぞれの前記第1の位置と前記第2の位置との比較結果に基づいて前記測位信号の正常性を前記複数の測位衛星毎に判定する、
    請求項1に記載された測位装置。
    It is equipped with an antenna that receives the positioning signal.
    The positioning satellite is one of a plurality of positioning satellites that can be received by the antenna.
    The position calculation means calculates the first position and the second position for each of the plurality of positioning satellites.
    The determination means determines the normality of the positioning signal for each of the plurality of positioning satellites based on the comparison result between the first position and the second position of each of the plurality of positioning satellites.
    The positioning device according to claim 1.
  3.  前記アンテナは複数のアンテナの1つであり、
     前記位置算出手段は、前記複数のアンテナの間の前記電波の受信時の位相差及び前記電波の受信時刻差の少なくとも一方に基づいて求められた前記電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、請求項2に記載された測位装置。
    The antenna is one of a plurality of antennas.
    The position calculating means has the plurality of positioning satellites based on the arrival direction of the radio wave obtained based on at least one of the phase difference at the time of receiving the radio wave and the reception time difference of the radio wave between the plurality of antennas. The positioning device according to claim 2, wherein the first position is calculated for each.
  4.  前記アンテナは受信方向が可変のアンテナであり、
     前記位置算出手段は、前記電波の受信強度が最大となる前記アンテナの受信方向に基づいて求められた前記測位信号を含む電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、請求項2に記載された測位装置。
    The antenna is an antenna having a variable receiving direction.
    The position calculation means is the first position for each of the plurality of positioning satellites based on the arrival direction of the radio wave including the positioning signal obtained based on the reception direction of the antenna that maximizes the reception intensity of the radio wave. 2. The positioning device according to claim 2.
  5.  前記第1の位置及び前記第2の位置は、前記測位衛星の天空図上の位置として表現される、請求項1乃至4のいずれか1項に記載された測位装置。 The positioning device according to any one of claims 1 to 4, wherein the first position and the second position are represented as positions on the sky map of the positioning satellite.
  6.  前記判定手段は、前記第2の位置を示す天空図の操作によって前記第1の位置を示す天空図と前記第2の位置を示す天空図との一致度が高まる場合の前記操作の量に基づいて測位装置の方向及び位置の少なくとも一方の誤差を推定する、請求項5に記載された測位装置。 The determination means is based on the amount of the operation when the degree of agreement between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position. The positioning device according to claim 5, wherein an error of at least one of the direction and the position of the positioning device is estimated.
  7.  前記判定手段は、前記第2の位置を示す天空図を回転させる操作によって前記一致度の極大値が得られる場合には、前記極大値が得られる際の前記第2の位置を示す天空図の回転量を、前記測位装置の方位の誤差と推定する、請求項6に記載された測位装置。 When the maximum value of the degree of coincidence is obtained by the operation of rotating the sky map showing the second position, the determination means of the sky map showing the second position when the maximum value is obtained. The positioning device according to claim 6, wherein the amount of rotation is estimated as an error in the orientation of the positioning device.
  8.  前記判定手段は、前記第2の位置を示す天空図を相似的に拡大し又は縮小する操作によって前記一致度の極大値が得られる場合には、前記操作の前の前記第2の位置を示す天空図から求まる前記測位装置の高度と、前記極大値が得られる際の前記第2の位置を示す天空図から求まる前記測位装置の高度と、の差を前記測位装置の高度の誤差と推定する、請求項6又は7に記載された測位装置。 The determination means indicates the second position before the operation when the maximum value of the degree of coincidence is obtained by the operation of expanding or contracting the sky map showing the second position in a similar manner. The difference between the altitude of the positioning device obtained from the sky map and the altitude of the positioning device obtained from the sky map indicating the second position when the maximum value is obtained is estimated as an error in the altitude of the positioning device. , The positioning apparatus according to claim 6 or 7.
  9.  前記判定手段は、前記第2の位置を示す天空図を平行移動する操作によって前記一致度の極大値が得られる場合には、前記極大値が得られるための前記第2の位置を示す天空図の平行移動量を前記測位装置の水平方向の位置の誤差と推定する、請求項6乃至8のいずれか1項に記載された測位装置。 When the maximum value of the degree of coincidence is obtained by the operation of translating the sky map showing the second position, the determination means shows the sky map showing the second position for obtaining the maximum value. The positioning device according to any one of claims 6 to 8, wherein the amount of translation of the above is estimated as an error in the position of the positioning device in the horizontal direction.
  10.  前記位置算出手段は、さらに、前記測位信号から得られた疑似距離に基づいて前記第1の位置を算出する、請求項1乃至9のいずれか1項に記載された測位装置。 The positioning device according to any one of claims 1 to 9, wherein the position calculating means further calculates the first position based on a pseudo distance obtained from the positioning signal.
  11.  前記判定手段は、前記第1の位置と前記第2の位置との相違が所定の範囲を超えていれば前記測位信号は異常であるとの判定結果を出力する、請求項1乃至10のいずれか1項に記載された測位装置。 Any of claims 1 to 10, wherein the determination means outputs a determination result that the positioning signal is abnormal if the difference between the first position and the second position exceeds a predetermined range. The positioning device according to item 1.
  12.  前記電波から生成された高周波電流から前記測位信号を抽出する復調手段を備える、請求項1乃至11のいずれか1項に記載された測位装置。 The positioning device according to any one of claims 1 to 11, further comprising a demodulation means for extracting the positioning signal from a high-frequency current generated from the radio wave.
  13.  前記比較結果を画像及び音声の少なくとも一方で出力する出力手段を備える、請求項1乃至12のいずれか1項に記載された測位装置。 The positioning apparatus according to any one of claims 1 to 12, further comprising an output means for outputting the comparison result on at least one of an image and an audio.
  14. 前記測位信号は、GNSS衛星及びSBAS衛星の少なくとも一方から送信された信号である、請求項1乃至13のいずれか1項に記載された測位装置。 The positioning device according to any one of claims 1 to 13, wherein the positioning signal is a signal transmitted from at least one of a GNSS satellite and an SBAS satellite.
  15.  複数の測位衛星と、
     前記複数の測位衛星からの測位信号の受信によって測位を行う請求項1乃至14のいずれか1項に記載された測位装置と、
    を備える測位システム。
    With multiple positioning satellites
    The positioning device according to any one of claims 1 to 14, which performs positioning by receiving positioning signals from the plurality of positioning satellites.
    Positioning system equipped with.
  16.  測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出し、
     前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出し、
     前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する、
    測位方法。
    Calculate the first position indicating the position of the positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
    A second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal is calculated.
    Based on the comparison result between the first position and the second position, the normality of the received positioning signal is determined.
    Positioning method.
  17.  アンテナによって複数の前記測位衛星から前記測位信号を受信し、
     前記複数の測位衛星のそれぞれについて前記第1の位置及び前記第2の位置を算出し、
     前記複数の測位衛星のそれぞれの前記第1の位置と前記第2の位置との比較結果に基づいて前記測位信号の正常性を前記複数の測位衛星毎に判定する、
    請求項16に記載された測位方法。
    The positioning signal is received from a plurality of the positioning satellites by the antenna, and the positioning signal is received.
    The first position and the second position are calculated for each of the plurality of positioning satellites.
    The normality of the positioning signal is determined for each of the plurality of positioning satellites based on the comparison result between the first position of each of the plurality of positioning satellites and the second position.
    The positioning method according to claim 16.
  18.  複数の前記アンテナの間の前記電波の受信時の位相差及び前記電波の受信時刻差の少なくとも一方に基づいて求められた前記電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、請求項17に記載された測位方法。 The first for each of the plurality of positioning satellites based on the arrival direction of the radio wave obtained based on at least one of the phase difference at the time of receiving the radio wave and the reception time difference of the radio wave between the plurality of antennas. The positioning method according to claim 17, wherein the position is calculated.
  19.  前記電波の受信強度が最大となる前記アンテナの受信方向に基づいて求められた前記測位信号を含む電波の到来方向に基づいて前記複数の測位衛星毎に前記第1の位置を算出する、請求項17に記載された測位方法。 The first position is calculated for each of the plurality of positioning satellites based on the arrival direction of the radio wave including the positioning signal obtained based on the reception direction of the antenna that maximizes the reception strength of the radio wave. 17. The positioning method according to 17.
  20.  前記第1の位置及び前記第2の位置は、前記測位衛星の天空図上の位置として表現される、請求項16乃至19のいずれか1項に記載された測位方法。 The positioning method according to any one of claims 16 to 19, wherein the first position and the second position are expressed as positions on the sky map of the positioning satellite.
  21.  前記第2の位置を示す天空図の操作によって前記第1の位置を示す天空図と前記第2の位置を示す天空図との一致度が高まる場合の前記操作の量に基づいて測位装置の方向及び位置の少なくとも一方の誤差を推定する、請求項20に記載された測位方法。 The direction of the positioning device based on the amount of the operation when the degree of agreement between the sky map showing the first position and the sky map showing the second position is increased by the operation of the sky map showing the second position. The positioning method according to claim 20, wherein the error of at least one of the position and the position is estimated.
  22.  前記第2の位置を示す天空図を回転させる操作によって前記一致度の極大値が得られる場合には、前記極大値が得られる際の前記第2の位置を示す天空図の回転量を、前記測位装置の方位の誤差と推定する、請求項21に記載された測位方法。 When the maximum value of the degree of coincidence is obtained by the operation of rotating the sky map showing the second position, the amount of rotation of the sky map showing the second position when the maximum value is obtained is calculated as described above. The positioning method according to claim 21, which is estimated to be an error in the orientation of the positioning device.
  23.  前記第2の位置を示す天空図を相似的に拡大し又は縮小する操作によって前記一致度の極大値が得られる場合には、前記操作の前の前記第2の位置を示す天空図から求まる前記測位装置の高度と、前記極大値が得られる際の前記第2の位置を示す天空図から求まる前記測位装置の高度と、の差を前記測位装置の高度の誤差と推定する、請求項21又は22に記載された測位方法。 When the maximum value of the degree of coincidence can be obtained by the operation of enlarging or reducing the sky map showing the second position in a similar manner, the sky map showing the second position before the operation can be obtained. 21. The positioning method according to 22.
  24.  前記第2の位置を示す天空図を平行移動する操作によって前記一致度の極大値が得られる場合には、前記極大値が得られるための前記第2の位置を示す天空図の平行移動量を前記測位装置の水平方向の位置の誤差と推定する、請求項21乃至23のいずれか1項に記載された測位方法。 When the maximum value of the degree of coincidence is obtained by the operation of translating the sky map showing the second position, the amount of translation of the sky map showing the second position for obtaining the maximum value is calculated. The positioning method according to any one of claims 21 to 23, which is estimated to be an error in the position of the positioning device in the horizontal direction.
  25.  さらに、前記測位信号から得られた疑似距離に基づいて前記第1の位置を算出する、請求項16乃至24のいずれか1項に記載された測位方法。 The positioning method according to any one of claims 16 to 24, further, which calculates the first position based on the pseudo distance obtained from the positioning signal.
  26.  前記第1の位置と前記第2の位置との相違が所定の範囲を超えていれば前記測位信号は異常であるとの判定結果を出力する、請求項16乃至25のいずれか1項に記載された測位方法。 The invention according to any one of claims 16 to 25, wherein if the difference between the first position and the second position exceeds a predetermined range, a determination result that the positioning signal is abnormal is output. Positioning method.
  27.  前記電波から生成された高周波電流から前記測位信号を抽出する、請求項16乃至26のいずれか1項に記載された測位方法。 The positioning method according to any one of claims 16 to 26, wherein the positioning signal is extracted from a high-frequency current generated from the radio wave.
  28.  前記比較結果を画像及び音声の少なくとも一方で出力する、請求項16乃至27のいずれか1項に記載された測位方法。 The positioning method according to any one of claims 16 to 27, which outputs the comparison result at least one of an image and an audio.
  29.  前記測位信号は、GNSS衛星及びSBAS衛星の少なくとも一方から送信された信号である、請求項16乃至28のいずれか1項に記載された測位方法。 The positioning method according to any one of claims 16 to 28, wherein the positioning signal is a signal transmitted from at least one of a GNSS satellite and an SBAS satellite.
  30.  測位装置のコンピュータに、
     測位信号を含む電波の到来方向に基づく前記電波を送信した測位衛星の位置を示す第1の位置を算出する手順、
     前記測位信号に含まれる前記測位衛星の軌道情報に基づく前記測位衛星の位置を示す第2の位置を算出する手順、
     前記第1の位置と前記第2の位置との比較結果に基づいて、受信された前記測位信号の正常性を判定する手順、
    を実行させるための測位プログラムを記録した記録媒体。
    To the computer of the positioning device
    A procedure for calculating a first position indicating the position of a positioning satellite that transmitted the radio wave based on the arrival direction of the radio wave including the positioning signal.
    A procedure for calculating a second position indicating the position of the positioning satellite based on the orbit information of the positioning satellite included in the positioning signal.
    A procedure for determining the normality of the received positioning signal based on the comparison result between the first position and the second position.
    A recording medium on which a positioning program for executing is recorded.
PCT/JP2020/007069 2020-02-21 2020-02-21 Positioning device and positioning method WO2021166222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022501555A JP7372436B2 (en) 2020-02-21 2020-02-21 Positioning device, positioning method and program
PCT/JP2020/007069 WO2021166222A1 (en) 2020-02-21 2020-02-21 Positioning device and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007069 WO2021166222A1 (en) 2020-02-21 2020-02-21 Positioning device and positioning method

Publications (1)

Publication Number Publication Date
WO2021166222A1 true WO2021166222A1 (en) 2021-08-26

Family

ID=77390745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007069 WO2021166222A1 (en) 2020-02-21 2020-02-21 Positioning device and positioning method

Country Status (2)

Country Link
JP (1) JP7372436B2 (en)
WO (1) WO2021166222A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512018A (en) * 1995-02-03 2000-09-12 ハネウエル・インコーポレーテッド Spoofing detection system for satellite positioning system
JP2005195448A (en) * 2004-01-07 2005-07-21 Alpine Electronics Inc Multipath detection method in gps receiving apparatus and navigation system using the same
JP2008139255A (en) * 2006-12-05 2008-06-19 Mitsubishi Heavy Ind Ltd Gps receiver and position detection method
US20090182504A1 (en) * 2005-06-03 2009-07-16 Twitchell Robert W Network aided terrestrial triangulation using stars (natts)
JP2018534537A (en) * 2015-09-04 2018-11-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and system for joint global navigation satellite system (GNSS) diagnostics
JP2019105465A (en) * 2017-12-11 2019-06-27 株式会社Subaru Deception signal detection system and deception signal detection method
WO2019239764A1 (en) * 2018-06-15 2019-12-19 古野電気株式会社 Gnss receiving device and gnss receiving method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512018A (en) * 1995-02-03 2000-09-12 ハネウエル・インコーポレーテッド Spoofing detection system for satellite positioning system
JP2005195448A (en) * 2004-01-07 2005-07-21 Alpine Electronics Inc Multipath detection method in gps receiving apparatus and navigation system using the same
US20090182504A1 (en) * 2005-06-03 2009-07-16 Twitchell Robert W Network aided terrestrial triangulation using stars (natts)
JP2008139255A (en) * 2006-12-05 2008-06-19 Mitsubishi Heavy Ind Ltd Gps receiver and position detection method
JP2018534537A (en) * 2015-09-04 2018-11-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and system for joint global navigation satellite system (GNSS) diagnostics
JP2019105465A (en) * 2017-12-11 2019-06-27 株式会社Subaru Deception signal detection system and deception signal detection method
WO2019239764A1 (en) * 2018-06-15 2019-12-19 古野電気株式会社 Gnss receiving device and gnss receiving method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG FEI, LI HONG, YANG YICHEN, LU MINGQUAN: "GNSS Spoofing Detection Based on Collaborative RAIM", PROCEEDINGS OF THE INSTITUTE OF NAVIGATION 2016 INTERNATIONAL TECHNICAL MEETING, 1 January 2016 (2016-01-01), pages 748 - 755, XP055849385, ISSN: 2330-3646, ISBN: 978-0-936406-15-2, DOI: 10.33012/2016.13458 *

Also Published As

Publication number Publication date
JP7372436B2 (en) 2023-10-31
JPWO2021166222A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
US11474258B2 (en) System for determining a physical metric such as position
US20190289426A1 (en) Determining the geographic location of a portable electronic device
EP2572545B1 (en) Determining the geographic locaton of a portable electronic device
JP2014186032A (en) Module, device and method for positioning
JP5179054B2 (en) Positioning method and positioning device
US7116270B2 (en) Method and system for multipath detection
US20140180580A1 (en) Module, device and method for positioning
WO2021166222A1 (en) Positioning device and positioning method
JP4266669B2 (en) Bistatic orientation detection system and detection method
JP2020517947A (en) Wireless receiver for positioning system
EP2492706A1 (en) An apparatus for determining whether a kinematic report emitted by a co-operative sensor is bearing-spoofed or not
CN115021800B (en) Method and device for searching Ka frequency band satellite terminal by using unmanned aerial vehicle and electronic equipment
JP2003139868A (en) Thunder-locating apparatus
JP2007271500A (en) Position/attitude estimation device
JPH10132922A (en) Radio wave receiver
JP2003177173A (en) Position measuring device for moving body
JPH10253735A (en) Positioning system
EP4365635A1 (en) Rover position computation using safe data
JP2001051041A (en) Selection system for kinematic gps satellite
US7916077B2 (en) Method for obtaining correct phase inversion points in signal of GPS
WO2021220335A1 (en) Radar position calculation device, radar position calculation method, and radar system
JP3260038B2 (en) GPS receiver
WO2022191743A1 (en) Orientation determination of a wireless device
JP2023039694A (en) Position measuring system and position measuring method
JP2004163195A (en) Positional information output device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919749

Country of ref document: EP

Kind code of ref document: A1