WO2021149836A1 - Semiconductor apparatus, and inspection device for same - Google Patents

Semiconductor apparatus, and inspection device for same Download PDF

Info

Publication number
WO2021149836A1
WO2021149836A1 PCT/JP2021/002927 JP2021002927W WO2021149836A1 WO 2021149836 A1 WO2021149836 A1 WO 2021149836A1 JP 2021002927 W JP2021002927 W JP 2021002927W WO 2021149836 A1 WO2021149836 A1 WO 2021149836A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
wiring
opening hole
sheet
open end
Prior art date
Application number
PCT/JP2021/002927
Other languages
French (fr)
Japanese (ja)
Inventor
軍生 木本
Original Assignee
軍生 木本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 軍生 木本 filed Critical 軍生 木本
Publication of WO2021149836A1 publication Critical patent/WO2021149836A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present invention relates to a semiconductor device having a plurality of semiconductor chips and wiring patterns, and an inspection device thereof.
  • the upper and lower parts can be made conductive by TSV technology, and an interposer based on silicon with fine wiring is connected to the fine terminals on the IC chip side.
  • a wiring means a method of connecting to the device PCB side with a build-up wiring board or the like made of an organic base material is often adopted (Patent Document 1).
  • FIG. 8A shows a typical structure thereof.
  • a silicon interposer 101 in which a fine wiring 103 is produced by a wafer process is used as a primary wiring board, and the fine wiring 103 is wired to the back surface of the silicon interposer.
  • the TSV 104 is installed as a means and is connected to the organic substrate 102 which is a secondary wiring means.
  • the organic substrate 102 is further expanded and distributed by an expansion wiring 105, a through hole 106, or the like, and is connected to an external device by a solder ball 107 or the like.
  • high-density wiring technology using silicon substrates is applied only to high-density signal connections between multiple ICs called silicon bridges, those silicon substrates are embedded in organic material substrates, and power supply / device interface signals are organic.
  • Patent Document 2 A method of wiring in a substrate and the like (Patent Document 2) have been put into practical use. As shown in FIG. 8B, a partially manufactured silicon substrate 101 to which only the fine wiring portion 103 is applied is built in the organic substrate 102.
  • the mainstream is the selection and combination of build-up organic substrate technology and the like as a means for widening the wiring pitch and connecting to the PCB terminal of the device.
  • the author has so far formed a conductive pattern on an insulating film by electrocasting technology or the like, and arranged one end as a probe for connecting to an IC terminal and the other end as a terminal for connecting to a PCB side.
  • Patent Document 1 the features and problems of the conventional methods represented by Patent Document 1 or Patent Document 2 are as shown below. It is based on pattern wiring on the same plane as the IC terminal arrangement plane and their multi-layer board configuration. Therefore, as the number of ICs to be mounted increases or the number of input / output (I / O) terminals increases and the density increases, the number of wires between the terminals must be increased or the number of layers must be increased. This leads to an increase in manufacturing cost. Further, in order to increase the number of wirings between terminals, it is necessary to miniaturize the wirings (for example, a wiring width of 2 ⁇ m class), and for that purpose, a manufacturing process by a wafer process must be used, and a table on a silicon substrate is used.
  • TSV technology is indispensable as a connection means on the back surface, which leads to an increase in manufacturing cost and a decrease in yield.
  • TSV technology is indispensable as a connection means on the back surface, which leads to an increase in manufacturing cost and a decrease in yield.
  • a wiring board based on wafer process or TSV technology with a board based on organic substrate technology, it leads to deterioration of characteristics, increase in manufacturing cost, and longer delivery time of development and manufacturing due to the mixture of different manufacturing processes. There is.
  • the inspection system and the manufacturing system are independent for inspection before and after IC stacking, there is a problem of an increase in disposal cost due to the occurrence of defects after IC stacking.
  • the present invention solves the above-mentioned problems by a completely new method, and as a method thereof, by wiring on a substrate arranged in a direction perpendicular to the IC terminal arrangement plane, via via connection in a multilayer wiring board or the like. Wiring without discontinuity is possible from the IC chip to the terminal on the device side.
  • the wiring board is manufactured by a manufacturing method that does not use the wafer process and TSV technology, it is possible to collectively manufacture all wiring with a single manufacturing technology, reducing manufacturing costs and stabilizing characteristics. Can be realized.
  • a wiring method without discontinuities from high-density wiring to device-side wiring has already been implemented with a probe card using the same manufacturing technology, and the probe and IC package for inspection during IC stacking are manufactured with the same parts. Therefore, it is possible to detect and dispose of the defective IC in advance before fixing the package, reduce the disposal cost, and manufacture a low-cost product.
  • a high-density IC package that realizes cost reduction in both manufacturing and inspection is provided.
  • one wiring board arranged on an XZ plane is electrically connected between the plurality of the semiconductor devices.
  • One or a plurality of the semiconductor devices on one or a plurality of wiring boards arranged on an XY plane a wiring circuit for electrically connecting an arbitrary semiconductor device and an external device terminal, and one or a plurality of the semiconductor devices. Since it has a wiring circuit that electrically connects the terminals, in an IC package that mounts and connects multiple ICs with multi-pin narrow pitch terminals, high-density wiring between ICs and high-density wiring near the ICs.
  • the present invention includes a first wiring pattern sheet composed of a plurality of conductive patterns fixed on at least one or a plurality of first insulating films, and a second wiring pattern sheet installed parallel to the XY coordinate plane.
  • the semiconductor comprises one or a plurality of positioning sheets provided with positioning holes in the insulating film of No. 1 and a connection sheet having a connection terminal portion in a third insulating film installed on the upper portion of the positioning sheet parallel to the XY coordinate plane.
  • a device mounting terminal array forming means, a semiconductor device mounting fixing means, a wiring circuit forming means for electrically connecting the semiconductor device terminals, and an arbitrary semiconductor device and an external device terminal are electrically connected. Since it has a wiring circuit forming means, in an IC package in which a plurality of ICs having multi-pin narrow pitch terminals are mounted and connected by wiring, high-density wiring between ICs and expansion from high-density wiring near ICs to near PCBs. Since the wiring can be formed by the same wiring pattern sheet, a low-cost package can be realized.
  • the present invention is made on a first wiring pattern sheet composed of a plurality of conductive patterns fixed on one or a plurality of first insulating films and on one or a plurality of fourth insulating films. Since it is composed of a plurality of fixed conductive patterns and has a second wiring pattern sheet installed under the first wiring pattern sheet in parallel with the XY coordinate plane, the semiconductor device terminals are spaced between the plurality of semiconductor device terminals. It can be electrically connected on the XY plane. Further, in the present invention, a part of one or more of the first wiring pattern sheets is installed in the vertical direction (XZ plane), and one end of the first wiring pattern sheet installed in the vertical direction is an open end.
  • a part of the plurality of conductive patterns is arranged in parallel in the X direction, and a part or all of the conductive pattern open end center in any one of the first wiring pattern sheets installed in the vertical direction.
  • the X-direction distance of the position is the same as the X-direction distance of any one row of terminal arrangement center positions in the X direction in the semiconductor device, and the conductivity in the plurality of first wiring pattern sheets installed in the vertical direction.
  • the distance in the Y direction of the center position of the open end of the pattern is the same as the distance in the Y direction of the center position of a part or all of the terminal arrangement in the Y direction in the semiconductor device, and the center position of the open end of the conductive pattern is in the XY coordinate plane.
  • a first opening hole into which the conductive pattern open end can be inserted at the same position as the XY coordinates of a part or all of the conductive pattern open end center.
  • a second opening hole of any shape opened at a position in the Y direction on the XY coordinate plane near the first opening hole with an opening area larger than that of the first opening hole.
  • a first positioning sheet is installed in which the first opening hole and the second opening hole are continuous opening holes by a tapered opening hole, and further, a second opening hole of the first positioning sheet is installed. And, at a position opposite to the center coordinates of the first opening hole (in the ⁇ Y direction), a third opening hole having an arbitrary shape opened at least with an opening area larger than that of the first opening hole is provided.
  • a second positioning sheet in which the first opening hole and the third opening hole are continuous opening holes by a tapered opening hole is installed so as to overlap with the first positioning sheet, and the conductive pattern is opened. Since the means for penetrating the ends through the first opening holes of both the first and second positioning sheets, the open ends of the conductive pattern can be easily arranged with high accuracy.
  • the third insulating film of the connection sheet at least one of the upper surfaces of the conductive pattern open end is located at the same position as the XY coordinates of a part or all of the conductive pattern open end center. Since an opening hole having a part or the entire area is provided and a means for matching the upper surface of the conductive pattern open end with the lower surface of the opening hole is provided, bumps or the like are independently formed on the conductive pattern open end. It is possible to form terminals, and it is possible to fix them firmly with high accuracy.
  • the present invention provides a part or all terminals of an arbitrary X-direction terminal arrangement in the first semiconductor device and a part or all terminals of an arbitrary X-direction terminal arrangement in the second semiconductor device.
  • the vicinity of the IC is provided because the means for connecting the plurality of conductive patterns in one wiring pattern sheet installed in the vertical direction is provided.
  • a low-cost IC package because the pattern wiring width and wiring interval can be sufficiently secured even in the high-density wiring of the above, and the high-density wiring between ICs can be directly wired without passing through vias in the multilayer wiring layer. Can be realized.
  • a part or all of the terminals of an arbitrary X-direction terminal arrangement in any of the semiconductor devices and a part or all of the terminals of an arbitrary row in the external device terminals are installed in the vertical direction.
  • a part or all of the terminals of an arbitrary X-direction terminal arrangement in any of the semiconductor devices and a part or all of the terminals of an arbitrary row in the external device terminals are installed in the vertical direction.
  • the first insulating film of the plurality of wiring pattern sheets installed in the vertical direction has a means for forming with one continuous insulating film, a plurality of ICs having a multi-pin narrow pitch terminal.
  • high-density wiring between ICs and extended wiring from high-density wiring near the IC to the vicinity of the PCB can be integrated in all wiring patterns without the need for expensive manufacturing processes and skill. Since it can be manufactured, a low-cost IC package can be realized.
  • the present invention since a part of the open end of the conductive pattern in the first wiring pattern sheet has a spring property, it can be used as an inspection probe of an mounted IC and fixes a defective IC. It is possible to reduce the product cost by discarding the IC before. Further, the present invention includes a part or all of the conductive patterns installed on the XY plane in the second wiring pattern sheet, and a part or all of the conductive patterns in the plurality of first wiring pattern sheets. Since it has a means for electrically connecting the above terminals, complicated terminal-to-terminal connections or common connections are possible.
  • wiring is performed on a substrate arranged in the direction perpendicular to the IC terminal arrangement plane, so that the IC chip is discontinuous from the device side terminal without via via connection in the multilayer wiring board.
  • Wiring without points is possible.
  • the wiring board is manufactured by a manufacturing method that does not use the wafer process and TSV technology, it is possible to collectively manufacture all wiring with a single manufacturing technology, reducing manufacturing costs and stabilizing characteristics. Can be realized.
  • a wiring method without discontinuities from high-density wiring to device-side wiring has already been implemented with a probe card using the same manufacturing technology, and the probe and package for inspection during IC stacking are manufactured with the same parts. Therefore, it is possible to detect and dispose of the defective IC in advance before fixing the package, reduce the disposal cost, and manufacture a low-cost product. By these methods, a high-density IC package that realizes cost reduction in both manufacturing and inspection is provided.
  • FIG. 1 is a diagram showing a comparison between a basic mounting method of a semiconductor device according to the present invention and a conventional semiconductor device.
  • FIG. 2 is a diagram showing a basic structure of a semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing a configuration of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a plan view illustrating the operation of the terminal positioning method according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view showing a semiconductor device fixing method according to the first embodiment of the present invention.
  • FIG. 6 is a partial view showing the configuration of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing a basic structure of a semiconductor device according to a third embodiment of the present invention.
  • FIG. 8 is a diagram showing the structure of a conventional semiconductor device.
  • FIG. 1 is a diagram showing a comparison between a basic mounting method of a semiconductor device according to the present invention and a conventional semiconductor device.
  • FIG. 1A is a configuration of the semiconductor device 1 according to the present invention
  • FIG. 1B is a conventional semiconductor device. It is a summary of 100 typical configurations.
  • the conventional semiconductor device described with reference to FIGS. 8A and 8B has an interposer 101 and an organic substrate 102 installed in parallel in the XY plane direction, and the silicon interposer 101 has a plurality of semiconductor devices.
  • a wiring circuit that electrically connects the semiconductor device 50 and the terminal 61 of the external device 60 by the fine wiring 103 for signal connection between them and the expansion wiring 105 in the organic substrate 102.
  • a first wiring pattern sheet 10 arranged on an XZ plane with respect to an array terminal group common to any one X direction in a plurality of semiconductor devices. It also has a wiring circuit 111 that electrically connects a plurality of the semiconductor devices to each other, and a wiring circuit 112 that electrically connects an arbitrary semiconductor device and an external device terminal 61.
  • FIG. 2 is a diagram showing a basic structure of a semiconductor device according to the first embodiment of the present invention, showing a front view and a side view showing a semiconductor device configuration, and a plan view of a typical semiconductor device. ..
  • the semiconductor device 1 is for mounting and wiring one or a plurality of semiconductor devices 50 having terminals 51 at arbitrary coordinates on the XY coordinate plane, and a plurality of semiconductor devices 1 fixed on the first insulating film 11.
  • a wiring pattern sheet 10 composed of a conductive pattern 12, a positioning sheet 20 installed parallel to the XY coordinate plane, and a connection sheet 30 installed above the positioning sheet also parallel to the XY coordinate plane. ..
  • a wiring pattern sheet 10 composed of a conductive pattern 12, a positioning sheet 20 installed parallel to the XY coordinate plane, and a connection sheet 30 installed above the positioning sheet also parallel to the XY coordinate plane. ..
  • a plurality of wiring pattern sheets 10-1 to 10-12 installed in the vertical direction (XZ plane) are arranged in parallel in the Y direction, and a part of the conductive pattern 12 has a vertical portion 121. It is configured and arranged in parallel in the X direction on the first insulating film 11 to form a terminal arrangement in which one end is an open end 122.
  • the X-direction center distance of the conductive pattern open end 122 in any one vertically installed wiring pattern sheet 10-1, for example, Ppx, is the X-direction center in any X-direction terminal arrangement 511 in the semiconductor device.
  • the Y-direction center distance of the conductive pattern open end 122 in all the wiring pattern sheets 10-1 to 10-12 arranged so as to be the same as the distance Ptx and installed in the vertical direction, for example, Ppy, is the semiconductor device 50.
  • the relative coordinates of all the conductive pattern open end center positions in the XY coordinate plane are the terminal arrangement center positions of the semiconductor device.
  • the wiring pattern sheet 10 a part of the X-direction terminal arrangement in the first semiconductor device 501, for example 512, and a part of the X-direction terminal arrangement in the second semiconductor device 502, for example 513, are combined into one.
  • the wiring pattern sheet 10 was connected by the conductive pattern group 123.
  • a part of the X-direction terminal arrangement in the first semiconductor device 501, for example, 514, and the external connection terminal group 141 connected to the external device 60 are further added to the second semiconductor.
  • a part of the X-direction terminal arrangement in the device 502, for example, 515, and the external connection terminal group 142 connected to the external device 60 are connected by a plurality of conductive pattern groups 124 and 125 in one wiring pattern sheet 10, respectively. ..
  • the conductive pattern 12 can be manufactured with high accuracy by etching, electroforming, laser processing, or the like.
  • the fine terminal connection portion and the fine wiring portion 13 in the vicinity of the semiconductor device and the external device terminal connection portion 14 such as a PCB can be manufactured with the same wiring pattern sheet, that is, the same component. Become.
  • Electroplating technology is widely used for microfabricated parts such as MEMS (MicroElectro, Mechanical, System), and both the wiring width and the wiring interval can be 10 ⁇ m or less. Further, according to the method of the present invention, in the fine terminal connection portion near the semiconductor device, all the wiring is installed in the vertical direction (XZ plane), so that the pin-to-pin wiring as in the XY coordinate plane wiring is unnecessary. Therefore, unlike a wiring board in a wafer process, fine wiring having a wiring width and a wiring interval of 2 ⁇ m is not required.
  • the semiconductor device is, for example, a CPU and a DRAM device, according to the present invention
  • the terminal pitch for signal transmission between the CPU and the DRAM is 40 to 50 ⁇ m, it is fine without passing through an interlayer via hole or the like. It is possible to wire a short distance with the wiring connection, and it is possible to provide a wiring pattern sheet with little signal delay. Further, in the wiring of the interface signal wiring or the power supply with the external device, the wiring interval or the wiring width is continuously expanded in the same wiring pattern sheet, so that it is possible to realize an inexpensive interposer function. Become. All the wiring pattern sheets 10-1 to 10-12 installed in the vertical direction may be manufactured as independent parts, but as shown in the side view of FIG. 1, one continuous first.
  • FIG. 3 is an exploded perspective view showing the configuration of the semiconductor device according to the first embodiment of the present invention.
  • Reference numeral 201 denotes a first positioning sheet, which is formed on the second insulating film 21 in the same arrangement as the center coordinates of the conductive pattern open end 122 in the XY coordinates, and has substantially the same shape as the outer shape of the conductive pattern open end 122.
  • the first opening hole 221 has a size that allows the conductive pattern open end 122 and the vertical portion 121 to penetrate, and the first opening hole 221 is located in the vicinity of the first opening hole 221 in the Y direction on the XY coordinate plane. It has a second opening hole 222 of an arbitrary shape opened with an opening area larger than that of the opening hole 221 of the above, and the first opening hole 221 and the second opening hole 222 are continuously connected by a tapered opening hole 223.
  • the opening hole 22 is formed.
  • Reference numeral 202 denotes a second positioning sheet, which is arranged on the second insulating film 21 in the same arrangement as the center coordinates in the XY coordinates of the open end 122 of the conductive pattern, similarly to the first positioning sheet 201.
  • the first positioning sheet 201 has a first opening hole 231 having substantially the same shape as the outer shape of the conductive pattern open end 122 and having a size capable of penetrating the conductive pattern open end 122 and the vertical portion 121.
  • a second having an arbitrary shape opened with an opening area larger than that of the first opening hole 231. It has 3 opening holes 232, and the first opening hole 231 and the third opening hole 232 are formed into a continuous opening hole 23 by a tapered opening hole 233.
  • the second positioning sheet 202 is installed so as to overlap the first positioning sheet 201, and the conductive pattern open end 122 and the vertical portion 121 are placed on both of the first and second positioning sheets 201 and 202. It is made to penetrate through the first opening holes 221 and 231.
  • FIG. 4 is a plan view illustrating the operation of the first and second positioning sheets 201 and 202.
  • FIG. 4A shows a plan view of the stage where the opening holes 22 and 23 of the first and second positioning sheets 201 and 202 are substantially aligned and the conductive pattern open end 122 and the vertical portion 121 are inserted. Is.
  • the first positioning sheet 201 is moved in the + Y direction, and the second positioning sheet 202 is moved in the ⁇ Y direction.
  • FIG. 5 is a perspective view showing a method of fixing a semiconductor device in a semiconductor device according to the first embodiment of the present invention.
  • connection sheet 30 is placed on the third insulating film 31 at the same position as the center coordinate of the conductive pattern open end 122 in the XY coordinates, which is substantially the same as the outer shape of the conductive pattern open end 122.
  • the connection terminal portion 32 is formed by installing recesses each electrically insulated on the upper surface of all the conductive pattern open ends 122, and bumps are formed by filling with a conductive adhesive or the like.
  • FIG. 6 is a partial view showing a configuration according to a second embodiment of the present invention.
  • reference numeral 126 denotes a spring deformed portion installed in the vertical portion 121 at the open end 122 of the conductive pattern 12, and the vertical portion 121 is passed through the opening holes 22 and 23 in the positioning sheet 20 to be opened. A state in which the center positions of the ends 122 are aligned is shown.
  • the open end 122 can function as a probe. Therefore, in the state of this figure, it is possible to bring the open end 122 into contact with the semiconductor device terminal 51 to carry out an electrical inspection of the semiconductor device 50, and to determine the quality of the semiconductor device 50 in advance.
  • FIG. 7 is a diagram showing a basic structure of a semiconductor device according to a third embodiment of the present invention.
  • the main difference from FIG. 1 in FIG. 7 is that a second wiring pattern sheet 40 is added, and the second wiring pattern sheet 40 is a plurality of conductive films fixed on a fourth insulating film 41. It is composed of the sex pattern 42 and is installed in the lower part of the first wiring pattern sheet 10 in parallel with the XY coordinate plane. A part of the electrode pads 42 installed on the XY plane in the second wiring pattern sheet 40 and a part of the conductive patterns 12 in the plurality of first wiring pattern sheets 10 are electrically connected by soldering or the like. Is connected to.
  • the connection method may be bump connection. Since the electrode pad 42 in the second wiring pattern sheet 40 is installed on the XY coordinate plane, it is connected in the Y direction, that is, between the wiring pattern sheets (for example, between 10-1 and 10-2). Can also be connected. Therefore, the wiring between the plurality of semiconductor device terminals 501 and 502 is not limited to the wiring by the conductive pattern 12 of the first wiring pattern sheet 10, but also the conductive pattern of the second wiring pattern sheet 40. Since wiring by 43 is also possible, it is possible to make complicated wiring between terminals and common wiring such as a power supply.
  • the wiring on the substrate arranged in the direction perpendicular to the IC terminal arrangement plane allows the terminal on the device side from the IC chip without via the via connection in the multilayer wiring board.
  • Wiring without discontinuities is possible.
  • the wiring board is manufactured by a manufacturing method that does not use the wafer process and TSV technology, it is possible to collectively manufacture all wiring with a single manufacturing technology, reducing manufacturing costs and stabilizing characteristics. Can be realized.
  • a wiring method without discontinuities from high-density wiring to device-side wiring has already been implemented with a probe card using the same manufacturing technology, and the probe and package for inspection during IC stacking are manufactured with the same parts. Therefore, it is possible to find and dispose of the defective IC in advance before fixing the package. By these methods, a high-density IC package that realizes cost reduction in both manufacturing and inspection is provided.
  • It can be used for semiconductor devices and inspection devices that have multiple semiconductor chips and wiring patterns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Measuring Leads Or Probes (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

Provided is a high-density IC package with which wiring without discontinuity is possible from narrow-pitch IC chip terminals to a device PCB, and which lowers the cost of manufacturing and inspection. The present invention has a means comprising at least one wiring pattern sheet formed from a plurality of conductive patterns fixed to a first insulation film, in which: the wiring pattern sheet is positioned vertically; the parts of the plurality of conductive patterns that are at the terminals thereof serving as the opening terminal in the wiring pattern sheet are positioned in a row in the X direction; the center-to-center distance, in the X direction, of the conductive pattern opening terminals is the same as the center-to-center distance, in the X direction, of terminals arranged in the X direction in a given row in the semiconductor device; and the center-to-center distance, in the Y direction, of the conductive pattern opening terminals in a plurality of the vertically positioned wiring pattern sheets is the same as the center-to-center distance, in the Y direction, of terminals arranged in the Y direction in the semiconductor device.

Description

半導体装置及びその検査装置Semiconductor equipment and its inspection equipment
 本発明は、複数の半導体チップ及び配線パターンを有する半導体装置及びその検査装置に関する。 The present invention relates to a semiconductor device having a plurality of semiconductor chips and wiring patterns, and an inspection device thereof.
 IoT、AI、5G社会の到来と共に、これらに適用すべき半導体の多機能化、高機能化、小型化、低価格化が要求されている。このような要求を満たすべく、様々な半導体デバイスの実装形態が紹介されている。3次元(3D)積層と呼ばれているThrough−Silicon Via(TSV:シリコン貫通ビア)による垂直配線は、主としてDRAM等の同種のIC間接続に使用されている。一方、異種IC間の接続技術としては、多くは2.5次元(2.5D)積層と呼ばれる方法が一般的で、複数の異種ICを同一パッケージ面に実装してシステム化し、一つのデバイスチップとしたものをSystem IN a Package(SiP:システムインパッケージ)と称している。
 SiPのさらなる高密度化・小型化を実現するパッケージング技術としては、上下間をTSV技術により導通可能にし、微細配線を備えたシリコン等を基材としたインターポーザをICチップ側の微細端子接続・配線手段とし、さらに有機基材によるビルドアップ配線板等で装置PCB側に接続する方法が多く採用されている(特許文献1)。図8Aにその代表的な構造を示す。多ピン狭ピッチ端子を備えたICチップ50を搭載、配線接続する手段として、ウェハプロセスで微細配線103を作製したシリコンインターポーザ101を第1次配線基板とし、微細配線103をシリコンインターポーザ裏面へ配線する手段としてTSV104を設置し、第2次配線手段である有機基板102へ接続している。有機基板102において、さらに拡張配線105やスルーホール106等により拡張、分配され、半田ボール107等で外部装置に接続するものである。
 さらに、シリコンブリッジと呼ばれている複数IC相互間の高密度信号接続のみにシリコン基板による高密度配線技術を適用し、それらのシリコン基板を有機材基板に埋め込み、電源・装置インタフェース信号等を有機基板内の配線が担う方法等(特許文献2)が実用化されている。図8Bにその代表的な構造を示すように、微細配線部103のみ適用する部分的に作製したシリコン基板101を有機基板102に内蔵したものである。
 このように、SiPの高密度化・小型化を実現する手段としては、ICチップ側の微細端子接続及び微細な再配線を実現する手段としての薄膜プロセス、シリコン基板上下の伝達手段としてのTSV技術、配線ピッチを広げ装置PCB端子へ接続する手段としてのビルドアップ有機基板技術等の選択、組合せによるものが主流となっている。
 一方、筆者はこれまで、絶縁フィルム上に導電性パターンを電鋳技術等で形成し、片端をIC端子に接続するプローブ、他端をPCB側に接続する端子として配置したものを1つの配線シート部品として作製し、エリアアレイ型多ピン狭ピッチ端子を有するICのプロービング技術と共に、IC側の高密度端子から装置側PCB端子までを直接配線したプローブユニット、及びプローブカードを考案してきた(特許文献3)。当該技術は検査技術だけでなく、パッケージング技術にも有効であると考えた。
With the advent of IoT, AI, and 5G societies, semiconductors that should be applied to these are required to have multiple functions, higher functions, smaller sizes, and lower prices. In order to meet such demands, various semiconductor device mounting forms have been introduced. Vertical wiring by Through-Silicon Via (TSV), which is called three-dimensional (3D) lamination, is mainly used for connection between ICs of the same type such as DRAM. On the other hand, as a connection technology between different types of ICs, a method called 2.5-dimensional (2.5D) stacking is common, and a plurality of different types of ICs are mounted on the same package surface and systematized to form a single device chip. This is called System IN a Package (SiP: system in package).
As a packaging technology that realizes further high density and miniaturization of SiP, the upper and lower parts can be made conductive by TSV technology, and an interposer based on silicon with fine wiring is connected to the fine terminals on the IC chip side. As a wiring means, a method of connecting to the device PCB side with a build-up wiring board or the like made of an organic base material is often adopted (Patent Document 1). FIG. 8A shows a typical structure thereof. As a means for mounting an IC chip 50 equipped with a multi-pin narrow pitch terminal and connecting wiring, a silicon interposer 101 in which a fine wiring 103 is produced by a wafer process is used as a primary wiring board, and the fine wiring 103 is wired to the back surface of the silicon interposer. The TSV 104 is installed as a means and is connected to the organic substrate 102 which is a secondary wiring means. The organic substrate 102 is further expanded and distributed by an expansion wiring 105, a through hole 106, or the like, and is connected to an external device by a solder ball 107 or the like.
Furthermore, high-density wiring technology using silicon substrates is applied only to high-density signal connections between multiple ICs called silicon bridges, those silicon substrates are embedded in organic material substrates, and power supply / device interface signals are organic. A method of wiring in a substrate and the like (Patent Document 2) have been put into practical use. As shown in FIG. 8B, a partially manufactured silicon substrate 101 to which only the fine wiring portion 103 is applied is built in the organic substrate 102.
As described above, as means for realizing high density and miniaturization of SiP, a thin film process as a means for realizing fine terminal connection and fine rewiring on the IC chip side, and TSV technology as a means for transmitting upper and lower silicon substrates. , The mainstream is the selection and combination of build-up organic substrate technology and the like as a means for widening the wiring pitch and connecting to the PCB terminal of the device.
On the other hand, the author has so far formed a conductive pattern on an insulating film by electrocasting technology or the like, and arranged one end as a probe for connecting to an IC terminal and the other end as a terminal for connecting to a PCB side. We have devised a probe unit and a probe card that are manufactured as parts and have a direct wiring from the high-density terminal on the IC side to the PCB terminal on the device side, along with the probing technology of an IC having an area array type multi-pin narrow pitch terminal (Patent Document). 3). We thought that this technology would be effective not only for inspection technology but also for packaging technology.
特開2009−110983号公報Japanese Unexamined Patent Publication No. 2009-110983 特開2014−179613号公報Japanese Unexamined Patent Publication No. 2014-179613 特開2019−194554号公報JP-A-2019-194554
 しかしながら、特許文献1又は特許文献2に代表される従来の方法の特徴と問題点は、以下に示すようなものとなる。
 IC端子配列平面と同一平面上におけるパターン配線及びそれらの多層基板構成を基本としている。このため、搭載すべきIC数が増加し又は入出力(I/O)端子数が増加し高密度になるほど、端子間の配線数を増加させるか、又はより多層化せざるを得ないため、製造コストの増大につながるものである。
 又、上記端子間配線数を増やすためには配線の微細化(例えば配線幅2μmクラス)が必要であり、そのためにはウェハプロセスによる製造工程を使用せざるを得ず、又、シリコン基板における表裏面の接続手段としてTSV技術が必須となり、製造コストの増大と歩留まりの低下につながる。
 又、ウェハプロセスやTSV技術による配線基板と、有機基板技術による基板とを組み合わせることにより、特性の劣化や製造コストの増加、及び異種製造工程の混在による開発及び製造の長納期化にもつながっている。
 さらに、IC積層前後の検査等、検査システムと製造システムが独立したものであるため、IC積層後の不良発生に伴う廃棄コストの増加が問題となっている。
 本発明は、全く新たな方式で上記問題点を解決したものであり、その方法として、IC端子配列平面に対し垂直方向に配置した基板上での配線により、多層配線基板におけるビア接続等を介すことなく、ICチップから装置側端子まで不連続点のない配線が可能となる。
 又、上記配線基板においてウェハプロセス及びTSV技術を使用しない製造方法により実施しているため、単一製造技術で全ての配線を一括製造することが可能であり、製造コストの低減及び特性の安定性が実現できる。
 さらに、高密度配線から装置側配線までの不連続点のない配線方式を、同一製造技術にて既にプローブカードで実施しており、IC積層時の検査におけるプローブとICパッケージとを同一部品で作製することができるため、不良ICをパッケージ固定前に事前に発見し廃棄することが可能であり、廃棄コストを低減し、低コストの製品を製造することができる。
 これらの方法により、製造、検査共に低コスト化を実現する高密度ICパッケージを提供するものである。
However, the features and problems of the conventional methods represented by Patent Document 1 or Patent Document 2 are as shown below.
It is based on pattern wiring on the same plane as the IC terminal arrangement plane and their multi-layer board configuration. Therefore, as the number of ICs to be mounted increases or the number of input / output (I / O) terminals increases and the density increases, the number of wires between the terminals must be increased or the number of layers must be increased. This leads to an increase in manufacturing cost.
Further, in order to increase the number of wirings between terminals, it is necessary to miniaturize the wirings (for example, a wiring width of 2 μm class), and for that purpose, a manufacturing process by a wafer process must be used, and a table on a silicon substrate is used. TSV technology is indispensable as a connection means on the back surface, which leads to an increase in manufacturing cost and a decrease in yield.
In addition, by combining a wiring board based on wafer process or TSV technology with a board based on organic substrate technology, it leads to deterioration of characteristics, increase in manufacturing cost, and longer delivery time of development and manufacturing due to the mixture of different manufacturing processes. There is.
Further, since the inspection system and the manufacturing system are independent for inspection before and after IC stacking, there is a problem of an increase in disposal cost due to the occurrence of defects after IC stacking.
The present invention solves the above-mentioned problems by a completely new method, and as a method thereof, by wiring on a substrate arranged in a direction perpendicular to the IC terminal arrangement plane, via via connection in a multilayer wiring board or the like. Wiring without discontinuity is possible from the IC chip to the terminal on the device side.
In addition, since the wiring board is manufactured by a manufacturing method that does not use the wafer process and TSV technology, it is possible to collectively manufacture all wiring with a single manufacturing technology, reducing manufacturing costs and stabilizing characteristics. Can be realized.
Furthermore, a wiring method without discontinuities from high-density wiring to device-side wiring has already been implemented with a probe card using the same manufacturing technology, and the probe and IC package for inspection during IC stacking are manufactured with the same parts. Therefore, it is possible to detect and dispose of the defective IC in advance before fixing the package, reduce the disposal cost, and manufacture a low-cost product.
By these methods, a high-density IC package that realizes cost reduction in both manufacturing and inspection is provided.
 本発明は、任意の1つ又は複数の半導体デバイスにおける任意の1つの共通のX方向配列端子群に対し、XZ平面上に配置した1つの配線基板に、複数の前記半導体デバイス相互間を電気的に接続する配線回路と、任意の前記半導体デバイスと外部装置端子とを電気的に接続する配線回路と、XY平面上に配置した1つ又は複数の配線基板に、1つ又は複数の前記半導体デバイス端子間を電気的に接続する配線回路とを有するため、多ピン狭ピッチ端子を有する複数のICを搭載し配線接続するICパッケージにおいて、IC相互間の高密度配線と、IC近傍の高密度配線からPCB近傍までの拡張配線を同一の配線パターンシートで形成できるため、低コストのパッケージが実現できる。
 又、本発明は、少なくとも、1つ又は複数の第1の絶縁フィルム上に固着された複数の導電性パターンで構成された第1の配線パターンシートと、XY座標平面に平行に設置した第2の絶縁フィルムに位置決め穴を設けた1つ又は複数の位置決めシートと、XY座標平面に平行で前記位置決めシートの上部に設置した第3の絶縁フィルムに接続端子部を有する接続シートから成り、前記半導体デバイス搭載用端子配列形成手段と、前記半導体デバイス搭載固定手段と、前記半導体デバイス端子間を電気的に接続する配線回路形成手段と、任意の前記半導体デバイスと外部装置端子とを電気的に接続する配線回路形成手段とを有するため、多ピン狭ピッチ端子を有する複数のICを搭載し配線接続するICパッケージにおいて、IC相互間の高密度配線と、IC近傍の高密度配線からPCB近傍までの拡張配線を同一の配線パターンシートで形成できるため、低コストのパッケージが実現できる。
 又、本発明は、1つ又は複数の第1の絶縁フィルム上に固着された複数の導電性パターンで構成された第1の配線パターンシートと、1つ又は複数の第4の絶縁フィルム上に固着された複数の導電性パターンで構成され、XY座標平面に平行で前記第1の配線パターンシートの下部に設置した第2の配線パターンシートとを有するため、複数の前記半導体デバイス端子間を、XY平面上にて電気的に接続することができる。
 又、本発明は、1つ又は複数の前記第1の配線パターンシートの一部が垂直方向(XZ平面)に設置され、垂直方向に設置された前記第1の配線パターンシートにおける片端を開放端とする複数の前記導電性パターンの一部がX方向に並列に配置され、垂直方向に設置された任意の1つの前記第1の配線パターンシートにおける一部又は全部の前記導電性パターン開放端中心位置のX方向距離が、前記半導体デバイスにおけるX方向の任意の一列の端子配列中心位置のX方向距離と同一であり、垂直方向に設置された複数の前記第1の配線パターンシートにおける前記導電性パターン開放端中心位置のY方向距離が、前記半導体デバイスにおけるY方向の一部又は全部の端子配列中心位置におけるY方向距離と同一であり、前記導電性パターン開放端配列中心位置のXY座標平面における相対座標が、前記半導体デバイスの端子配列中心位置のXY座標平面における相対座標と同一である手段を有するため、多ピン狭ピッチ端子を有する複数のICの搭載を、高精度かつ低コストで実現できる。
 又、本発明は、前記第2の絶縁フィルムにおいて、一部又は全部の前記導電性パターン開放端中心のXY座標と同一の位置に、前記導電性パターン開放端が挿入可能な第1の開口穴を有し、前記第1の開口穴近傍のXY座標平面上のY方向の位置に、少なくとも前記第1の開口穴より大きな開口面積で開口した任意の形状の第2の開口穴を有し、前記第1の開口穴と前記第2の開口穴とをテーパ状の開口穴により連続した開口穴とした第1の位置決めシートを設置し、さらに、前記第1の位置決めシートの第2の開口穴と前記第1の開口穴中心座標に対し反対側(−Y方向)の位置に、少なくとも前記第1の開口穴より大きな開口面積で開口した任意の形状の第3の開口穴を有し、前記第1の開口穴と前記第3の開口穴とをテーパ状の開口穴により連続した開口穴とした第2の位置決めシートを、前記第1の位置決めシートと重ねて設置し、前記導電性パターン開放端を、前記第1及び第2の位置決めシートの両方の前記第1の開口穴に貫通させる手段を有するため、前記導電性パターン開放端を高精度に容易に配列することができる。
 又、本発明は、前記接続シートにおける前記第3の絶縁フィルムにおいて、一部又は全部の前記導電性パターン開放端中心のXY座標と同一の位置に、少なくとも前記導電性パターン開放端の上面の一部又は全部の面積を有する開口穴を設置し、前記導電性パターン開放端の上面と前記開口穴下面とを一致させる手段を有するため、前記導電性パターン開放端上に各々独立してバンプ等の端子を形成することが可能となり、高精度かつ堅固に固定することができる。
 又、本発明は、第1の前記半導体デバイスにおける任意のX方向端子配列の一部又は全部の端子と、第2の前記半導体デバイスにおける任意のX方向端子配列の一部又は全部の端子とを、垂直方向に設置された1つの前記配線パターンシートにおける複数の前記導電性パターンで接続する手段を有するため、多ピン狭ピッチ端子を有する複数のICを搭載し配線接続するICパッケージにおいて、IC近傍の高密度配線においてもパターン配線幅、配線間隔を十分確保でき、IC間相互の高密度配線を多層配線層におけるビア等を介すことなく直接配線することが可能なため、低コストのICパッケージを実現できる。
 又、本発明は、任意の前記半導体デバイスにおける任意のX方向端子配列の一部又は全部の端子と、外部装置端子における任意の一列の端子の一部又は全部とを、垂直方向に設置された1つの前記第1の配線パターンシートにおける複数の前記導電性パターンで接続する手段を有するため、多ピン狭ピッチ端子を有する複数のICを搭載し配線接続するICパッケージにおいて、IC近傍の高密度配線からPCB近傍までの拡張配線を多層配線層におけるビア等を介すことなく直接配線することが可能なため、低コストのICパッケージが実現できる。
 又、本発明は、垂直方向に設置された複数の前記配線パターンシートの第1の絶縁フィルムが、連続した1つの絶縁フィルムで形成する手段を有するため、多ピン狭ピッチ端子を有する複数のICを搭載し配線接続するICパッケージにおいて、IC間相互の高密度配線と、IC近傍の高密度配線からPCB近傍までの拡張配線を、高額な製造工程及び熟練技術を要せず全配線パターンにおいて一括製造が可能なため、低コストのICパッケージが実現できる。
 さらに、本発明は、前記第1の配線パターンシートにおける前記導電性パターン開放端の一部が、ばね性を有するため、搭載するICの検査用プローブとして使用することができ、不良ICを固定する前に当該ICを廃棄することにより製品コストを低減することが可能となる。
 さらに、本発明は、前記第2の配線パターンシートにおけるXY平面上に設置された導電性パターンの一部又は全部と、複数の前記第1の配線パターンシートにおける一部又は全部の導電性パターンとを電気的に接続する手段を有するため、複雑な端子間接続又は接続の共通化が可能である。
In the present invention, for any one common X-direction array terminal group in any one or a plurality of semiconductor devices, one wiring board arranged on an XZ plane is electrically connected between the plurality of the semiconductor devices. One or a plurality of the semiconductor devices on one or a plurality of wiring boards arranged on an XY plane, a wiring circuit for electrically connecting an arbitrary semiconductor device and an external device terminal, and one or a plurality of the semiconductor devices. Since it has a wiring circuit that electrically connects the terminals, in an IC package that mounts and connects multiple ICs with multi-pin narrow pitch terminals, high-density wiring between ICs and high-density wiring near the ICs. Since the extended wiring from the to the vicinity of the PCB can be formed by the same wiring pattern sheet, a low-cost package can be realized.
Further, the present invention includes a first wiring pattern sheet composed of a plurality of conductive patterns fixed on at least one or a plurality of first insulating films, and a second wiring pattern sheet installed parallel to the XY coordinate plane. The semiconductor comprises one or a plurality of positioning sheets provided with positioning holes in the insulating film of No. 1 and a connection sheet having a connection terminal portion in a third insulating film installed on the upper portion of the positioning sheet parallel to the XY coordinate plane. A device mounting terminal array forming means, a semiconductor device mounting fixing means, a wiring circuit forming means for electrically connecting the semiconductor device terminals, and an arbitrary semiconductor device and an external device terminal are electrically connected. Since it has a wiring circuit forming means, in an IC package in which a plurality of ICs having multi-pin narrow pitch terminals are mounted and connected by wiring, high-density wiring between ICs and expansion from high-density wiring near ICs to near PCBs. Since the wiring can be formed by the same wiring pattern sheet, a low-cost package can be realized.
Further, the present invention is made on a first wiring pattern sheet composed of a plurality of conductive patterns fixed on one or a plurality of first insulating films and on one or a plurality of fourth insulating films. Since it is composed of a plurality of fixed conductive patterns and has a second wiring pattern sheet installed under the first wiring pattern sheet in parallel with the XY coordinate plane, the semiconductor device terminals are spaced between the plurality of semiconductor device terminals. It can be electrically connected on the XY plane.
Further, in the present invention, a part of one or more of the first wiring pattern sheets is installed in the vertical direction (XZ plane), and one end of the first wiring pattern sheet installed in the vertical direction is an open end. A part of the plurality of conductive patterns is arranged in parallel in the X direction, and a part or all of the conductive pattern open end center in any one of the first wiring pattern sheets installed in the vertical direction. The X-direction distance of the position is the same as the X-direction distance of any one row of terminal arrangement center positions in the X direction in the semiconductor device, and the conductivity in the plurality of first wiring pattern sheets installed in the vertical direction. The distance in the Y direction of the center position of the open end of the pattern is the same as the distance in the Y direction of the center position of a part or all of the terminal arrangement in the Y direction in the semiconductor device, and the center position of the open end of the conductive pattern is in the XY coordinate plane. Since the relative coordinates have the same means as the relative coordinates in the XY coordinate plane of the terminal arrangement center position of the semiconductor device, it is possible to mount a plurality of ICs having multi-pin narrow pitch terminals with high accuracy and low cost. ..
Further, according to the present invention, in the second insulating film, a first opening hole into which the conductive pattern open end can be inserted at the same position as the XY coordinates of a part or all of the conductive pattern open end center. A second opening hole of any shape opened at a position in the Y direction on the XY coordinate plane near the first opening hole with an opening area larger than that of the first opening hole. A first positioning sheet is installed in which the first opening hole and the second opening hole are continuous opening holes by a tapered opening hole, and further, a second opening hole of the first positioning sheet is installed. And, at a position opposite to the center coordinates of the first opening hole (in the −Y direction), a third opening hole having an arbitrary shape opened at least with an opening area larger than that of the first opening hole is provided. A second positioning sheet in which the first opening hole and the third opening hole are continuous opening holes by a tapered opening hole is installed so as to overlap with the first positioning sheet, and the conductive pattern is opened. Since the means for penetrating the ends through the first opening holes of both the first and second positioning sheets, the open ends of the conductive pattern can be easily arranged with high accuracy.
Further, according to the present invention, in the third insulating film of the connection sheet, at least one of the upper surfaces of the conductive pattern open end is located at the same position as the XY coordinates of a part or all of the conductive pattern open end center. Since an opening hole having a part or the entire area is provided and a means for matching the upper surface of the conductive pattern open end with the lower surface of the opening hole is provided, bumps or the like are independently formed on the conductive pattern open end. It is possible to form terminals, and it is possible to fix them firmly with high accuracy.
Further, the present invention provides a part or all terminals of an arbitrary X-direction terminal arrangement in the first semiconductor device and a part or all terminals of an arbitrary X-direction terminal arrangement in the second semiconductor device. In an IC package in which a plurality of ICs having a multi-pin narrow pitch terminal are mounted and connected by wiring, the vicinity of the IC is provided because the means for connecting the plurality of conductive patterns in one wiring pattern sheet installed in the vertical direction is provided. A low-cost IC package because the pattern wiring width and wiring interval can be sufficiently secured even in the high-density wiring of the above, and the high-density wiring between ICs can be directly wired without passing through vias in the multilayer wiring layer. Can be realized.
Further, in the present invention, a part or all of the terminals of an arbitrary X-direction terminal arrangement in any of the semiconductor devices and a part or all of the terminals of an arbitrary row in the external device terminals are installed in the vertical direction. In an IC package in which a plurality of ICs having multi-pin narrow pitch terminals are mounted and connected by wiring, since the means for connecting with the plurality of conductive patterns in one said first wiring pattern sheet is provided, high-density wiring in the vicinity of the IC is provided. Since the extended wiring from to the vicinity of the PCB can be directly wired without passing through vias or the like in the multilayer wiring layer, a low-cost IC package can be realized.
Further, in the present invention, since the first insulating film of the plurality of wiring pattern sheets installed in the vertical direction has a means for forming with one continuous insulating film, a plurality of ICs having a multi-pin narrow pitch terminal. In an IC package that is equipped with and connects wiring, high-density wiring between ICs and extended wiring from high-density wiring near the IC to the vicinity of the PCB can be integrated in all wiring patterns without the need for expensive manufacturing processes and skill. Since it can be manufactured, a low-cost IC package can be realized.
Further, in the present invention, since a part of the open end of the conductive pattern in the first wiring pattern sheet has a spring property, it can be used as an inspection probe of an mounted IC and fixes a defective IC. It is possible to reduce the product cost by discarding the IC before.
Further, the present invention includes a part or all of the conductive patterns installed on the XY plane in the second wiring pattern sheet, and a part or all of the conductive patterns in the plurality of first wiring pattern sheets. Since it has a means for electrically connecting the above terminals, complicated terminal-to-terminal connections or common connections are possible.
 本発明の半導体装置によれば、IC端子配列平面に対し、垂直方向に配置した基板上での配線により、多層配線基板におけるビア接続等を介すことなく、ICチップから装置側端子まで不連続点のない配線が可能となる。
 又、上記配線基板においてウェハプロセス及びTSV技術を使用しない製造方法により実施しているため、単一製造技術で全ての配線を一括製造することが可能であり、製造コストの低減及び特性の安定性が実現できる。
 さらに、高密度配線から装置側配線までの不連続点のない配線方式を、同一製造技術にて既にプローブカードで実施しており、IC積層時の検査におけるプローブとパッケージとを同一部品で作製することができるため、不良ICをパッケージ固定前に事前に発見し廃棄することが可能であり、廃棄コストを低減し、低コストの製品を製造することができる。
 これらの方法により、製造、検査共に低コスト化を実現する高密度ICパッケージを提供する。
According to the semiconductor device of the present invention, wiring is performed on a substrate arranged in the direction perpendicular to the IC terminal arrangement plane, so that the IC chip is discontinuous from the device side terminal without via via connection in the multilayer wiring board. Wiring without points is possible.
In addition, since the wiring board is manufactured by a manufacturing method that does not use the wafer process and TSV technology, it is possible to collectively manufacture all wiring with a single manufacturing technology, reducing manufacturing costs and stabilizing characteristics. Can be realized.
Furthermore, a wiring method without discontinuities from high-density wiring to device-side wiring has already been implemented with a probe card using the same manufacturing technology, and the probe and package for inspection during IC stacking are manufactured with the same parts. Therefore, it is possible to detect and dispose of the defective IC in advance before fixing the package, reduce the disposal cost, and manufacture a low-cost product.
By these methods, a high-density IC package that realizes cost reduction in both manufacturing and inspection is provided.
 図1は本発明による半導体装置の基本的な実装方式と従来の半導体装置との比較を示す図である。
 図2は本発明の第1の実施例による半導体装置の基本構造を示す図である
 図3は本発明の第1の実施例による半導体装置の構成を示す分解斜視図である。
 図4は本発明の第1の実施例による端子位置決め方法の動作を説明する平面図である。
 図5は本発明の第1の実施例による半導体デバイス固定方法を示す斜視図である。
 図6は本発明の第2の実施例による半導体装置の構成を示す部分図である。
 図7は本発明の第3の実施例による半導体装置の基本構造を示す図である。
 図8は従来の半導体装置の構造を示す図である。
FIG. 1 is a diagram showing a comparison between a basic mounting method of a semiconductor device according to the present invention and a conventional semiconductor device.
FIG. 2 is a diagram showing a basic structure of a semiconductor device according to the first embodiment of the present invention. FIG. 3 is an exploded perspective view showing a configuration of the semiconductor device according to the first embodiment of the present invention.
FIG. 4 is a plan view illustrating the operation of the terminal positioning method according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing a semiconductor device fixing method according to the first embodiment of the present invention.
FIG. 6 is a partial view showing the configuration of the semiconductor device according to the second embodiment of the present invention.
FIG. 7 is a diagram showing a basic structure of a semiconductor device according to a third embodiment of the present invention.
FIG. 8 is a diagram showing the structure of a conventional semiconductor device.
 次に、本発明の実施の形態について図面を参照して詳細に説明する。
 図1は、本発明による半導体装置の基本的な実装方式と従来の半導体装置との比較を示す図であり、図1Aが、本発明による半導体装置1の構成、図1Bが、従来の半導体装置100の代表的な構成を要約したものである。
 図8A、図8Bで説明した従来の半導体装置では、図1Bに要約するように、XY平面方向に並列に設置したインターポーザ101と有機基板102を有し、前記シリコンインターポーザ101では、複数の半導体デバイス間の信号接続のための微細配線103、及び前記有機基板102における拡張配線105により、前記半導体デバイス50と外部装置60の端子61とを電気的に接続する配線回路を有している。
 一方、本発明による半導体装置1では、図1Aに示すように、複数の半導体デバイスにおける任意の1つのX方向に共通の配列端子群に対し、XZ平面上に配置した第1の配線パターンシート10に、複数の前記半導体デバイス相互間を電気的に接続する配線回路111と、任意の前記半導体デバイスと外部装置端子61とを電気的に接続する配線回路112を有するものである。さらに、XY平面上に配置した1つ又は複数の第2の配線パターンシート40に、1つ又は複数の前記半導体デバイス端子間を電気的に接続する配線回路113を有するものである。詳細については、図2以降にて説明する。
 図2は、本発明の第1の実施例による半導体装置の基本構造を示す図であり、半導体装置構成を示す正面図と側面図、及び代表的な半導体デバイスの平面図を示したものである。
 図2において半導体装置1は、XY座標平面の任意の座標に端子51を有する1つ又は複数の半導体デバイス50を搭載し配線するものであり、第1の絶縁フィルム11上に固着された複数の導電性パターン12で構成された配線パターンシート10と、XY座標平面に平行に設置した位置決めシート20と、同じくXY座標平面に平行で前記位置決めシートの上部に設置した接続シート30で構成されている。
 前記配線パターンシート10において、垂直方向(XZ平面)に設置した複数の配線パターンシート10−1~10−12がY方向に並列に配置され、前記導電性パターン12の一部が垂直部121を構成し、前記第1の絶縁フィルム11上でX方向に並列に配置され、片端を開放端122とする端子配列を形成している。
 垂直方向に設置された任意の1つの前記配線パターンシート10−1における前記導電性パターン開放端122のX方向中心距離、例えばPpxは、前記半導体デバイスにおける任意のX方向端子配列511におけるX方向中心距離Ptxと同一となるべく配置され、垂直方向に設置された全ての前記配線パターンシート10−1~10−12における前記導電性パターン開放端122のY方向中心距離、例えばPpyは、前記半導体デバイス50のY方向端子配列521におけるY方向中心距離Ptyと同一となるべく設置されることにより、全ての前記導電性パターン開放端中心位置のXY座標平面における相対座標が、前記半導体デバイスの端子配列中心位置のXY座標平面における相対座標と同一となる。前記配線パターンシート10において、第1の前記半導体デバイス501におけるX方向端子配列の一部、例えば512と、第2の前記半導体デバイス502におけるX方向端子配列の一部、例えば513とを、1つの前記配線パターンシート10における導電性パターン群123で接続した。
 一方、前記配線パターンシート10において、第1の前記半導体デバイス501におけるX方向端子配列の一部、例えば514と、外部装置60に接続する外部接続端子群141とを、さらに、第2の前記半導体デバイス502におけるX方向端子配列の一部、例えば515と、外部装置60に接続する外部接続端子群142とを、1つの前記配線パターンシート10における複数の導電性パターン群124、125でそれぞれ接続した。
 前記導電性パターン12は、エッチング、電鋳又はレーザ加工等により高精度に作製することが可能である。本発明による配線パターンシートによれば、半導体デバイス近傍の微細端子接続部及び微細配線部13と、PCB等の外部装置端子接続部14とを、同一の配線パターンシートすなわち同一部品で作製が可能となる。電鋳技術は、MEMS(MicroElectro・Mechanical・System)等の微細加工部品に広く利用されており、配線幅、配線間隔共に、10μm以下が可能である。
 又、本発明の方法によれば、半導体デバイス近傍の微細端子接続部においては、全ての配線が垂直方向(XZ平面)に設置されているため、XY座標平面配線におけるようなピン間配線は不要であり、ウェハプロセスにおける配線基板のような配線幅、配線間が2μmレベルの微細配線を必要としない。前記半導体デバイスが、例えばCPUとDRAMデバイス等の場合、本発明によれば、CPUとDRAM相互の信号伝達用の端子ピッチが、40~50μmであっても、層間ビアホール等を介すこと無く微細配線接続のまま短い距離で配線することが可能で、信号遅延の少ない配線パターンシートを提供することができる。さらに、外部装置とのインタフェース信号配線又は電源等の配線においては、同一配線パターンシート内で配線間隔又は配線幅の拡張が連続して実施されるため、安価なインターポーザ機能を実現することが可能となる。
 垂直方向に設置された全ての前記配線パターンシート10−1~10−12は、各々独立した部品として作製してもよいが、図1の側面図に示したように、連続した1つの第1の絶縁フィルム11上で全ての導電性パターンを形成し、前記Y方向中心距離Ppyを満足すべく折り曲げることにより、前記半導体装置を安価な製造コストで作製することが可能となる。
 図3は、本発明の第1の実施例による半導体装置の構成を示す分解斜視図である。201は第1の位置決めシートで、第2の絶縁フィルム21に、前記導電性パターン開放端122のXY座標における中心座標と同一の配列に、前記導電性パターン開放端122の外形とほぼ同一形状で、前記導電性パターン開放端122及び垂直部121が貫通可能な大きさの第1の開口穴221を有し、前記第1の開口穴221近傍のXY座標平面上のY方向に、前記第1の開口穴221より大きな開口面積で開口した任意の形状の第2の開口穴222を有し、前記第1の開口穴221と前記第2の開口穴222とをテーパ状の開口穴223により連続した開口穴22としたものである。
 又、202は第2の位置決めシートで、第2の絶縁フィルム21に、前記第1の位置決めシート201と同様に、前記導電性パターン開放端122のXY座標における中心座標と同一の配列に、前記導電性パターン開放端122の外形とほぼ同一形状で、前記導電性パターン開放端122及び垂直部121が貫通可能な大きさの前記第1の開口穴231を有し、前記第1の位置決めシート201の第2の開口穴222と前記第1の開口穴231の中心座標に対し反対側(−Y方向)の位置に、前記第1の開口穴231より大きな開口面積で開口した任意の形状の第3の開口穴232を有し、前記第1の開口穴231と前記第3の開口穴232とをテーパ状の開口穴233により連続した開口穴23としたものである。前記第2の位置決めシート202を、前記第1の位置決めシート201と重ねて設置し、前記導電性パターン開放端122及び垂直部121を、前記第1及び第2の位置決めシート201、202の両方の前記第1の開口穴221及び231に貫通させたものである。
 図4は、前記第1及び第2の位置決めシート201、202の動作を説明する平面図である。図4Aは、前記第1及び第2の位置決めシート201、202の前記開口穴22及び23を概略一致させ、前記導電性パターン開放端122及び垂直部121を挿入した段階の平面図を示したものである。前記第2及び第3の開口穴222、232は、前記導電性パターン開放端122の面積よりも比較的大きな面積で開口しているため、前記導電性パターン開放端122及び垂直部121が挿入し易い。
 次に、図4Bに示しように、前記第1の位置決めシート201を+Y方向に、前記第2の位置決めシート202を−Y方向に移動させる。このとき、前記開口穴22、及び23に設けられた前記テーパ状開口穴223、233により、前記導電性パターン開放端122のXY座標における位置が所望の位置より微細にずれている場合でも、前記導電性パターン垂直部121が前記テーパ状開口穴223又は233の壁面に誘導され、所望の位置に共通に設置された前記第1の開口穴221及び231に収納される。この動作により、前記導電性パターン開放端122のXY座標における位置が、高精度に決定される。
 図5は、本発明の第1の実施例による半導体装置における半導体デバイス固定方法を示す斜視図である。図5において、前記接続シート30は、第3の絶縁フィルム31に、前記導電性パターン開放端122のXY座標における中心座標と同一の位置に、前記導電性パターン開放端122の外形と概略同等の開口穴33を有し、前記第1及び第2の位置決めシート201、202を前記導電性パターン開放端122及び垂直部121を貫通させた後、前記導電性パターン開放端122の上面と前記接続シート30の前記第3の絶縁フィルム31下面とを概略一致した位置に設置したものである。これにより、全ての前記導電性パターン開放端122の上面に、各々が電気的に絶縁された窪みが設置されることにより接続端子部32が形成され、導電性接着剤等の充填等により、バンプの固着等が可能となる。
 図6は、本発明の第2の実施例による構成を示す部分図である。図6において、126は、前記導電性パターン12の開放端122における垂直部121に設置したばね変形部であり、前記位置決めシート20における開口穴22、23に前記垂直部121を貫通させ、前記開放端122の中心位置を整列させた状態を示す。前記垂直部121に前記ばね変形部126を設けたことにより、前記開放端122はプローブとして機能することが可能となる。従って、本図の状態で前記開放端122を前記半導体デバイス端子51に接触させ、前記半導体デバイス50の電気的検査を実施することが可能であり、前記半導体デバイス50の良否判定を事前に行うことにより、半導体デバイスを含む半導体装置の歩留まりを向上させることができる。
 図7は、本発明の第3の実施例による半導体装置の基本構造を示す図である。図7における図1との主たる相違点は、第2の配線パターンシート40を追加した点であり、前記第2の配線パターンシート40は、第4の絶縁フィルム41上に固着された複数の導電性パターン42で構成され、XY座標平面に平行で前記第1の配線パターンシート10の下部に設置したものである。
 前記第2の配線パターンシート40におけるXY平面上に設置された電極パッド42の一部と、複数の前記第1の配線パターンシート10における導電性パターン12の一部が、半田付け等により電気的に接続している。尚、接続方法は、バンプ接続であってもよい。
 前記第2の配線パターンシート40における前記電極パッド42はXY座標平面上に設置されているため、Y方向の接続、すなわち前記配線パターンシート間(例えば10−1と10−2との間)にも接続が可能となる。従って、複数の前記半導体デバイス端子501、502との間の配線を、前記第1の配線パターンシート10の前記導電性パターン12による配線だけでなく、前記第2の配線パターンシート40の導電性パターン43による配線も可能なため、複雑な端子相互間の配線や、電源等の共通配線化を可能にするものである。
 以上説明したように、本発明によれば、IC端子配列平面に対し、垂直方向に配置した基板上での配線により、多層配線基板におけるビア接続等を介すことなく、ICチップから装置側端子まで不連続点のない配線が可能となる。
 又、上記配線基板においてウェハプロセス及びTSV技術を使用しない製造方法により実施しているため、単一製造技術で全ての配線を一括製造することが可能であり、製造コストの低減及び特性の安定性が実現できる。
 さらに、高密度配線から装置側配線までの不連続点のない配線方式を、同一製造技術にて既にプローブカードで実施しており、IC積層時の検査におけるプローブとパッケージとを同一部品で作製することができるため、不良ICをパッケージ固定前に事前に発見し廃棄することが可能である。
 これらの方法により、製造、検査共に低コスト化を実現する高密度ICパッケージを提供する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a comparison between a basic mounting method of a semiconductor device according to the present invention and a conventional semiconductor device. FIG. 1A is a configuration of the semiconductor device 1 according to the present invention, and FIG. 1B is a conventional semiconductor device. It is a summary of 100 typical configurations.
As summarized in FIG. 1B, the conventional semiconductor device described with reference to FIGS. 8A and 8B has an interposer 101 and an organic substrate 102 installed in parallel in the XY plane direction, and the silicon interposer 101 has a plurality of semiconductor devices. It has a wiring circuit that electrically connects the semiconductor device 50 and the terminal 61 of the external device 60 by the fine wiring 103 for signal connection between them and the expansion wiring 105 in the organic substrate 102.
On the other hand, in the semiconductor device 1 according to the present invention, as shown in FIG. 1A, a first wiring pattern sheet 10 arranged on an XZ plane with respect to an array terminal group common to any one X direction in a plurality of semiconductor devices. It also has a wiring circuit 111 that electrically connects a plurality of the semiconductor devices to each other, and a wiring circuit 112 that electrically connects an arbitrary semiconductor device and an external device terminal 61. Further, one or a plurality of second wiring pattern sheets 40 arranged on an XY plane are provided with a wiring circuit 113 for electrically connecting one or a plurality of the semiconductor device terminals. Details will be described with reference to FIGS. 2 and 2.
FIG. 2 is a diagram showing a basic structure of a semiconductor device according to the first embodiment of the present invention, showing a front view and a side view showing a semiconductor device configuration, and a plan view of a typical semiconductor device. ..
In FIG. 2, the semiconductor device 1 is for mounting and wiring one or a plurality of semiconductor devices 50 having terminals 51 at arbitrary coordinates on the XY coordinate plane, and a plurality of semiconductor devices 1 fixed on the first insulating film 11. It is composed of a wiring pattern sheet 10 composed of a conductive pattern 12, a positioning sheet 20 installed parallel to the XY coordinate plane, and a connection sheet 30 installed above the positioning sheet also parallel to the XY coordinate plane. ..
In the wiring pattern sheet 10, a plurality of wiring pattern sheets 10-1 to 10-12 installed in the vertical direction (XZ plane) are arranged in parallel in the Y direction, and a part of the conductive pattern 12 has a vertical portion 121. It is configured and arranged in parallel in the X direction on the first insulating film 11 to form a terminal arrangement in which one end is an open end 122.
The X-direction center distance of the conductive pattern open end 122 in any one vertically installed wiring pattern sheet 10-1, for example, Ppx, is the X-direction center in any X-direction terminal arrangement 511 in the semiconductor device. The Y-direction center distance of the conductive pattern open end 122 in all the wiring pattern sheets 10-1 to 10-12 arranged so as to be the same as the distance Ptx and installed in the vertical direction, for example, Ppy, is the semiconductor device 50. By being installed so as to be the same as the Y-direction center distance Pty in the Y-direction terminal arrangement 521, the relative coordinates of all the conductive pattern open end center positions in the XY coordinate plane are the terminal arrangement center positions of the semiconductor device. It becomes the same as the relative coordinates in the XY coordinate plane. In the wiring pattern sheet 10, a part of the X-direction terminal arrangement in the first semiconductor device 501, for example 512, and a part of the X-direction terminal arrangement in the second semiconductor device 502, for example 513, are combined into one. The wiring pattern sheet 10 was connected by the conductive pattern group 123.
On the other hand, in the wiring pattern sheet 10, a part of the X-direction terminal arrangement in the first semiconductor device 501, for example, 514, and the external connection terminal group 141 connected to the external device 60 are further added to the second semiconductor. A part of the X-direction terminal arrangement in the device 502, for example, 515, and the external connection terminal group 142 connected to the external device 60 are connected by a plurality of conductive pattern groups 124 and 125 in one wiring pattern sheet 10, respectively. ..
The conductive pattern 12 can be manufactured with high accuracy by etching, electroforming, laser processing, or the like. According to the wiring pattern sheet according to the present invention, the fine terminal connection portion and the fine wiring portion 13 in the vicinity of the semiconductor device and the external device terminal connection portion 14 such as a PCB can be manufactured with the same wiring pattern sheet, that is, the same component. Become. Electroplating technology is widely used for microfabricated parts such as MEMS (MicroElectro, Mechanical, System), and both the wiring width and the wiring interval can be 10 μm or less.
Further, according to the method of the present invention, in the fine terminal connection portion near the semiconductor device, all the wiring is installed in the vertical direction (XZ plane), so that the pin-to-pin wiring as in the XY coordinate plane wiring is unnecessary. Therefore, unlike a wiring board in a wafer process, fine wiring having a wiring width and a wiring interval of 2 μm is not required. When the semiconductor device is, for example, a CPU and a DRAM device, according to the present invention, even if the terminal pitch for signal transmission between the CPU and the DRAM is 40 to 50 μm, it is fine without passing through an interlayer via hole or the like. It is possible to wire a short distance with the wiring connection, and it is possible to provide a wiring pattern sheet with little signal delay. Further, in the wiring of the interface signal wiring or the power supply with the external device, the wiring interval or the wiring width is continuously expanded in the same wiring pattern sheet, so that it is possible to realize an inexpensive interposer function. Become.
All the wiring pattern sheets 10-1 to 10-12 installed in the vertical direction may be manufactured as independent parts, but as shown in the side view of FIG. 1, one continuous first. By forming all the conductive patterns on the insulating film 11 and bending the semiconductor device to satisfy the Y-direction center distance Ppy, the semiconductor device can be manufactured at a low manufacturing cost.
FIG. 3 is an exploded perspective view showing the configuration of the semiconductor device according to the first embodiment of the present invention. Reference numeral 201 denotes a first positioning sheet, which is formed on the second insulating film 21 in the same arrangement as the center coordinates of the conductive pattern open end 122 in the XY coordinates, and has substantially the same shape as the outer shape of the conductive pattern open end 122. The first opening hole 221 has a size that allows the conductive pattern open end 122 and the vertical portion 121 to penetrate, and the first opening hole 221 is located in the vicinity of the first opening hole 221 in the Y direction on the XY coordinate plane. It has a second opening hole 222 of an arbitrary shape opened with an opening area larger than that of the opening hole 221 of the above, and the first opening hole 221 and the second opening hole 222 are continuously connected by a tapered opening hole 223. The opening hole 22 is formed.
Reference numeral 202 denotes a second positioning sheet, which is arranged on the second insulating film 21 in the same arrangement as the center coordinates in the XY coordinates of the open end 122 of the conductive pattern, similarly to the first positioning sheet 201. The first positioning sheet 201 has a first opening hole 231 having substantially the same shape as the outer shape of the conductive pattern open end 122 and having a size capable of penetrating the conductive pattern open end 122 and the vertical portion 121. At a position opposite to the center coordinates of the second opening hole 222 and the first opening hole 231 (in the −Y direction), a second having an arbitrary shape opened with an opening area larger than that of the first opening hole 231. It has 3 opening holes 232, and the first opening hole 231 and the third opening hole 232 are formed into a continuous opening hole 23 by a tapered opening hole 233. The second positioning sheet 202 is installed so as to overlap the first positioning sheet 201, and the conductive pattern open end 122 and the vertical portion 121 are placed on both of the first and second positioning sheets 201 and 202. It is made to penetrate through the first opening holes 221 and 231.
FIG. 4 is a plan view illustrating the operation of the first and second positioning sheets 201 and 202. FIG. 4A shows a plan view of the stage where the opening holes 22 and 23 of the first and second positioning sheets 201 and 202 are substantially aligned and the conductive pattern open end 122 and the vertical portion 121 are inserted. Is. Since the second and third opening holes 222 and 232 are opened in an area relatively larger than the area of the conductive pattern open end 122, the conductive pattern open end 122 and the vertical portion 121 are inserted. easy.
Next, as shown in FIG. 4B, the first positioning sheet 201 is moved in the + Y direction, and the second positioning sheet 202 is moved in the −Y direction. At this time, even if the position of the conductive pattern open end 122 in the XY coordinates is slightly deviated from the desired position by the tapered opening holes 223 and 233 provided in the opening holes 22 and 23, the said The conductive pattern vertical portion 121 is guided to the wall surface of the tapered opening hole 223 or 233 and is housed in the first opening holes 221 and 231 commonly installed at desired positions. By this operation, the position of the conductive pattern open end 122 in the XY coordinates is determined with high accuracy.
FIG. 5 is a perspective view showing a method of fixing a semiconductor device in a semiconductor device according to the first embodiment of the present invention. In FIG. 5, the connection sheet 30 is placed on the third insulating film 31 at the same position as the center coordinate of the conductive pattern open end 122 in the XY coordinates, which is substantially the same as the outer shape of the conductive pattern open end 122. After having the opening holes 33 and passing the first and second positioning sheets 201 and 202 through the conductive pattern open end 122 and the vertical portion 121, the upper surface of the conductive pattern open end 122 and the connection sheet 30 is installed at a position substantially coincident with the lower surface of the third insulating film 31. As a result, the connection terminal portion 32 is formed by installing recesses each electrically insulated on the upper surface of all the conductive pattern open ends 122, and bumps are formed by filling with a conductive adhesive or the like. Can be fixed.
FIG. 6 is a partial view showing a configuration according to a second embodiment of the present invention. In FIG. 6, reference numeral 126 denotes a spring deformed portion installed in the vertical portion 121 at the open end 122 of the conductive pattern 12, and the vertical portion 121 is passed through the opening holes 22 and 23 in the positioning sheet 20 to be opened. A state in which the center positions of the ends 122 are aligned is shown. By providing the spring deforming portion 126 in the vertical portion 121, the open end 122 can function as a probe. Therefore, in the state of this figure, it is possible to bring the open end 122 into contact with the semiconductor device terminal 51 to carry out an electrical inspection of the semiconductor device 50, and to determine the quality of the semiconductor device 50 in advance. Therefore, the yield of the semiconductor device including the semiconductor device can be improved.
FIG. 7 is a diagram showing a basic structure of a semiconductor device according to a third embodiment of the present invention. The main difference from FIG. 1 in FIG. 7 is that a second wiring pattern sheet 40 is added, and the second wiring pattern sheet 40 is a plurality of conductive films fixed on a fourth insulating film 41. It is composed of the sex pattern 42 and is installed in the lower part of the first wiring pattern sheet 10 in parallel with the XY coordinate plane.
A part of the electrode pads 42 installed on the XY plane in the second wiring pattern sheet 40 and a part of the conductive patterns 12 in the plurality of first wiring pattern sheets 10 are electrically connected by soldering or the like. Is connected to. The connection method may be bump connection.
Since the electrode pad 42 in the second wiring pattern sheet 40 is installed on the XY coordinate plane, it is connected in the Y direction, that is, between the wiring pattern sheets (for example, between 10-1 and 10-2). Can also be connected. Therefore, the wiring between the plurality of semiconductor device terminals 501 and 502 is not limited to the wiring by the conductive pattern 12 of the first wiring pattern sheet 10, but also the conductive pattern of the second wiring pattern sheet 40. Since wiring by 43 is also possible, it is possible to make complicated wiring between terminals and common wiring such as a power supply.
As described above, according to the present invention, the wiring on the substrate arranged in the direction perpendicular to the IC terminal arrangement plane allows the terminal on the device side from the IC chip without via the via connection in the multilayer wiring board. Wiring without discontinuities is possible.
In addition, since the wiring board is manufactured by a manufacturing method that does not use the wafer process and TSV technology, it is possible to collectively manufacture all wiring with a single manufacturing technology, reducing manufacturing costs and stabilizing characteristics. Can be realized.
Furthermore, a wiring method without discontinuities from high-density wiring to device-side wiring has already been implemented with a probe card using the same manufacturing technology, and the probe and package for inspection during IC stacking are manufactured with the same parts. Therefore, it is possible to find and dispose of the defective IC in advance before fixing the package.
By these methods, a high-density IC package that realizes cost reduction in both manufacturing and inspection is provided.
 複数の半導体チップ及び配線パターンを有する半導体装置及び検査装置に利用することができる。 It can be used for semiconductor devices and inspection devices that have multiple semiconductor chips and wiring patterns.
1  半導体装置
10  第1の配線パターンシート
11  第1の絶縁フィルム
12  導電性パターン
121 垂直部
122 開放端
123,124,125 導電性パターン群
126 ばね変形部
13  微細端子接続部
14  外部装置端子接続部
141,142 外部接続端子群
100 半導体装置
101 シリコンインターポーザ
102 有機基板
103 微細配線
104 TSV
105 拡張配線
106 スルーホール
107 半田ボール
111,112,113 配線回路
20 位置決めシート
201 第1の位置決めシート
202 第2の位置決めシート
21  第2の絶縁フィルム
22  開口穴
221 第1の開口穴
222 第2の開口穴
223,233 テーパ状開口穴
23  開口穴
231 第1の開口穴
232 第3の開口穴
30  接続シート
31  第3の絶縁フィルム
32  接続端子部
33  開口穴
40  第2の配線パターンシート
41  第4の絶縁フィルム
42  電極パッド
43  導電性パターン
50  半導体デバイス
501 第1の半導体デバイス
502 第2の半導体デバイス
51  半導体デバイス端子
511~515 X方向端子配列
521 Y方向端子配列
53  バンプ
60  外部装置
Ptx X方向中心距離
Pty Y方向中心距離
Ppx X方向中心距離
Ppy Y方向中心距離
1 Semiconductor device 10 First wiring pattern sheet 11 First insulating film 12 Conductive pattern 121 Vertical portion 122 Open end 123, 124, 125 Conductive pattern group 126 Spring deformation portion 13 Fine terminal connection portion 14 External device terminal connection portion 141,142 External connection terminal group 100 Semiconductor device 101 Silicon interposer 102 Organic substrate 103 Fine wiring 104 TSV
105 Expansion wiring 106 Through hole 107 Solder ball 111, 112, 113 Wiring circuit 20 Positioning sheet 201 First positioning sheet 202 Second positioning sheet 21 Second insulating film 22 Opening hole 221 First opening hole 222 Second opening hole 222 Opening holes 223, 233 Tapered opening holes 23 Opening holes 231 First opening holes 232 Third opening holes 30 Connection sheet 31 Third insulating film 32 Connection terminal 33 Opening holes 40 Second wiring pattern sheet 41 Fourth Insulating film 42 Electrode pad 43 Conductive pattern 50 Semiconductor device 501 First semiconductor device 502 Second semiconductor device 51 Semiconductor device terminals 511 to 515 X-direction terminal arrangement 521 Y-direction terminal arrangement 53 Bump 60 External device Ptx X-direction center Distance Pty Y-direction center distance Ppx X-direction center distance Ppy Y-direction center distance

Claims (12)

  1.  XY座標平面の任意の座標に端子を有する1つ又は複数の半導体デバイスを搭載した半導体装置であって、任意の1つ又は複数の半導体デバイスにおける任意の1つの共通のX方向配列端子群に対し、XZ平面上に配置した1つの配線基板に、複数の前記半導体デバイス相互間を電気的に接続する配線回路と、任意の前記半導体デバイスと外部装置端子とを電気的に接続する配線回路と、XY平面上に配置した1つ又は複数の配線基板に1つ又は複数の前記半導体デバイス端子間を電気的に接続する配線回路とを有することを特徴とする半導体装置。 A semiconductor device equipped with one or more semiconductor devices having terminals at arbitrary coordinates in the XY coordinate plane, for any one common X-direction array terminal group in any one or more semiconductor devices. , A wiring circuit that electrically connects a plurality of the semiconductor devices to each other on one wiring board arranged on an XZ plane, and a wiring circuit that electrically connects an arbitrary semiconductor device and an external device terminal. A semiconductor device comprising one or a plurality of wiring boards arranged on an XY plane with a wiring circuit for electrically connecting one or a plurality of the semiconductor device terminals.
  2.  請求項1記載の半導体装置であって、少なくとも、1つ又は複数の第1の絶縁フィルム上に固着された複数の導電性パターンで構成された第1の配線パターンシートと、XY座標平面に平行に設置した第2の絶縁フィルムに位置決め穴を設けた1つ又は複数の位置決めシートと、XY座標平面に平行で前記位置決めシートの上部に設置した第3の絶縁フィルムに接続端子部を有する接続シートから成り、前記半導体デバイス搭載用端子配列形成手段と、前記半導体デバイス搭載固定手段と、前記半導体デバイス端子間を電気的に接続する配線回路形成手段と、任意の前記半導体デバイスと外部装置端子とを電気的に接続する配線回路形成手段とを有することを特徴とする半導体装置。 The semiconductor device according to claim 1, which is parallel to a first wiring pattern sheet composed of a plurality of conductive patterns fixed on at least one or a plurality of first insulating films and parallel to an XY coordinate plane. A connection sheet having one or more positioning sheets provided with positioning holes in the second insulating film installed in the above, and a connection terminal portion in the third insulating film installed above the positioning sheet parallel to the XY coordinate plane. The semiconductor device mounting terminal array forming means, the semiconductor device mounting fixing means, the wiring circuit forming means for electrically connecting the semiconductor device terminals, and any of the semiconductor device and the external device terminal are provided. A semiconductor device characterized by having a wiring circuit forming means for electrically connecting.
  3.  請求項1記載の半導体装置であって、1つ又は複数の第1の絶縁フィルム上に固着された複数の導電性パターンで構成された第1の配線パターンシートと、XY座標平面に平行に設置した第2の絶縁フィルムに位置決め穴を設けた1つ又は複数の位置決めシートと、XY座標平面に平行で前記位置決めシートの上部に設置した第3の絶縁フィルムに接続端子部を有する接続シートと、1つ又は複数の第4の絶縁フィルム上に固着された複数の導電性パターンで構成され、XY座標平面に平行で前記第1の配線パターンシートの下部に設置した第2の配線パターンシートから成り、前記半導体デバイス搭載用端子配列形成手段と、前記半導体デバイス搭載固定手段と、複数の前記半導体デバイス端子間を電気的に接続する配線回路形成手段と、任意の前記半導体デバイスと外部装置端子とを電気的に接続する配線回路形成手段とを有することを特徴とする半導体装置。 The semiconductor device according to claim 1, which is installed parallel to the XY coordinate plane with a first wiring pattern sheet composed of a plurality of conductive patterns fixed on one or a plurality of first insulating films. One or a plurality of positioning sheets provided with positioning holes in the second insulating film, and a connection sheet having a connection terminal portion in the third insulating film installed above the positioning sheet in parallel with the XY coordinate plane. It is composed of a plurality of conductive patterns fixed on one or a plurality of fourth insulating films, and is composed of a second wiring pattern sheet installed under the first wiring pattern sheet in parallel with the XY coordinate plane. , The semiconductor device mounting terminal array forming means, the semiconductor device mounting fixing means, a wiring circuit forming means for electrically connecting a plurality of the semiconductor device terminals, and any of the semiconductor devices and external device terminals. A semiconductor device characterized by having a wiring circuit forming means for electrically connecting.
  4.  請求項2又は3記載の前記半導体デバイス搭載用端子配列形成手段であって、1つ又は複数の前記第1の配線パターンシートの一部が垂直方向(XZ平面)に設置され、垂直方向に設置された前記第1の配線パターンシートにおける片端を開放端とする複数の前記導電性パターンの一部がX方向に並列に配置され、垂直方向に設置された任意の1つの前記第1の配線パターンシートにおける一部又は全部の前記導電性パターン開放端中心位置のX方向距離が、前記半導体デバイスにおけるX方向の任意の一列の端子配列中心位置のX方向距離と同一であり、垂直方向に設置された複数の前記第1の配線パターンシートにおける前記導電性パターン開放端中心位置のY方向距離が、前記半導体デバイスにおけるY方向の一部又は全部の端子配列中心位置におけるY方向距離と同一であり、前記導電性パターン開放端配列中心位置のXY座標平面における相対座標が、前記半導体デバイスの端子配列中心位置のXY座標平面における相対座標と同一であることを特徴とする請求項1乃至3の何れか記載の半導体装置。 The terminal array forming means for mounting a semiconductor device according to claim 2 or 3, wherein a part of one or a plurality of the first wiring pattern sheets is installed in the vertical direction (XZ plane) and installed in the vertical direction. A part of the plurality of conductive patterns having one end as an open end in the first wiring pattern sheet is arranged in parallel in the X direction, and any one of the first wiring patterns installed in the vertical direction. The X-direction distance of a part or all of the conductive pattern open end center position in the sheet is the same as the X-direction distance of any one row of terminal arrangement center positions in the X direction in the semiconductor device, and is installed in the vertical direction. The Y-direction distance at the center position of the open end of the conductive pattern in the plurality of first wiring pattern sheets is the same as the Y-direction distance at the center position of a part or all of the terminal arrangement in the Y direction in the semiconductor device. Any of claims 1 to 3, wherein the relative coordinates of the center position of the open end arrangement of the conductive pattern in the XY coordinate plane are the same as the relative coordinates of the center position of the terminal arrangement of the semiconductor device in the XY coordinate plane. The semiconductor device described.
  5.  請求項2又は3記載の前記半導体デバイス搭載用端子配列形成手段であって、前記第2の絶縁フィルムにおいて、一部又は全部の前記導電性パターン開放端中心のXY座標と同一の位置に、前記導電性パターン開放端が挿入可能な第1の開口穴を有し、前記第1の開口穴近傍のXY座標平面上のY方向の位置に、少なくとも前記第1の開口穴より大きな開口面積で開口した任意の形状の第2の開口穴を有し、前記第1の開口穴と前記第2の開口穴とをテーパ状の開口穴により連続した開口穴とした第1の位置決めシートを設置し、前記導電性パターン開放端を少なくとも前記第1の開口穴に貫通させたことを特徴とする請求項1乃至4の何れか記載の半導体装置。 The terminal array forming means for mounting a semiconductor device according to claim 2 or 3, wherein a part or all of the conductive pattern open end center is located at the same position as the XY coordinates in the second insulating film. It has a first opening hole into which the open end of the conductive pattern can be inserted, and opens at a position in the Y direction on the XY coordinate plane near the first opening hole with an opening area larger than that of the first opening hole. A first positioning sheet having a second opening hole of an arbitrary shape and having the first opening hole and the second opening hole continuous with a tapered opening hole is installed. The semiconductor device according to any one of claims 1 to 4, wherein the open end of the conductive pattern is passed through at least the first opening hole.
  6.  前記第2の絶縁フィルムに、前記第1の位置決めシートとXY座標平面において同一の位置に、前記導電性パターン開放端が挿入可能な第1の開口穴を有し、前記第1の開口穴近傍のXY座標平面における前記第1の位置決めシートの第2の開口穴と前記第1の開口穴中心座標に対し反対側(−Y方向)の位置に、少なくとも前記第1の開口穴より大きな開口面積で開口した任意の形状の第3の開口穴を有し、前記第1の開口穴と前記第3の開口穴とをテーパ状の開口穴により連続した開口穴とした第2の位置決めシートを、前記第1の位置決めシートと重ねて設置し、前記導電性パターン開放端を、前記第1及び第2の位置決めシートの両方の前記第1の開口穴に貫通させたことを特徴とする請求項5記載の半導体装置。 The second insulating film has a first opening hole into which the open end of the conductive pattern can be inserted at the same position on the XY coordinate plane as the first positioning sheet, and is in the vicinity of the first opening hole. On the opposite side (-Y direction) of the second opening hole of the first positioning sheet and the center coordinates of the first opening hole in the XY coordinate plane of the above, at least an opening area larger than that of the first opening hole. A second positioning sheet having a third opening hole of an arbitrary shape opened in 1 and having the first opening hole and the third opening hole continuous with a tapered opening hole. 5. The fifth aspect of the present invention is that the open end of the conductive pattern is installed so as to be overlapped with the first positioning sheet, and the open end of the conductive pattern is passed through the first opening hole of both the first and second positioning sheets. The described semiconductor device.
  7.  請求項2又は3記載の前記半導体デバイス搭載固定手段であって、前記接続シートにおける前記第3の絶縁フィルムにおいて、一部又は全部の前記導電性パターン開放端中心のXY座標と同一の位置に、少なくとも前記導電性パターン開放端の上面の一部又は全部の面積を有する開口穴を設置し、前記導電性パターン開放端の上面と前記開口穴下面とを一致させたことを特徴とする請求項1乃至6の何れか記載の半導体装置。 The semiconductor device mounting fixing means according to claim 2 or 3, at the same position as the XY coordinates of a part or all of the conductive pattern open end center in the third insulating film in the connection sheet. Claim 1 is characterized in that an opening hole having at least a part or the entire area of the upper surface of the open end of the conductive pattern is provided so that the upper surface of the open end of the conductive pattern and the lower surface of the opening hole are made to coincide with each other. 6. The semiconductor device according to any one of 6.
  8.  請求項2又は3記載の複数の前記半導体デバイス相互間を電気的に接続する配線回路形成手段であって、第1の前記半導体デバイスにおける任意のX方向端子配列の一部又は全部の端子と、第2の前記半導体デバイスにおける任意のX方向端子配列の一部又は全部の端子とを、垂直方向に設置された1つの前記配線パターンシートにおける複数の前記導電性パターンで接続したこと、を特徴とする請求項1乃至7の何れか記載の半導体装置。 A wiring circuit forming means for electrically connecting a plurality of the semiconductor devices according to claim 2 or 3, wherein a part or all terminals of an arbitrary X-direction terminal arrangement in the first semiconductor device are used. A feature of the second semiconductor device is that a part or all of the terminals of an arbitrary X-direction terminal arrangement are connected by a plurality of the conductive patterns in one wiring pattern sheet installed in the vertical direction. The semiconductor device according to any one of claims 1 to 7.
  9.  請求項2又は3記載の任意の前記半導体デバイスと外部装置端子とを電気的に接続する配線回路形成手段であって、任意の前記半導体デバイスにおける任意のX方向端子配列の一部又は全部の端子と、外部装置端子における任意の一列の端子の一部又は全部とを、垂直方向に設置された1つの前記第1の配線パターンシートにおける複数の前記導電性パターンで接続したことを特徴とする請求項1乃至8の何れか記載の半導体装置。 A wiring circuit forming means for electrically connecting any of the semiconductor devices according to claim 2 or 3 to external device terminals, which is a part or all of terminals of an arbitrary X-direction terminal arrangement in any of the semiconductor devices. And a part or all of the terminals in an arbitrary row of the terminals of the external device are connected by a plurality of the conductive patterns in the one first wiring pattern sheet installed in the vertical direction. Item 6. The semiconductor device according to any one of Items 1 to 8.
  10.  垂直方向に設置された複数の前記配線パターンシートの第1の絶縁フィルムが、連続した1つの絶縁フィルムで形成されていることを特徴とする請求項1乃至9の何れか記載の半導体装置。 The semiconductor device according to any one of claims 1 to 9, wherein the first insulating film of the plurality of wiring pattern sheets installed in the vertical direction is formed of one continuous insulating film.
  11.  前記第1の配線パターンシートにおける前記導電性パターン開放端の一部が、ばね性を有することを特徴とする請求項1乃至10の何れか記載の半導体装置。 The semiconductor device according to any one of claims 1 to 10, wherein a part of the open end of the conductive pattern in the first wiring pattern sheet has a spring property.
  12.  請求項3記載の複数の前記半導体デバイス端子間を電気的に接続する配線回路形成手段であって、前記第2の配線パターンシートにおけるXY平面上に設置された導電性パターンの一部又は全部と、複数の前記第1の配線パターンシートにおける一部又は全部の導電性パターンとを、電気的に接続したことを特徴とする請求項1又は請求項3乃至11の何れか記載の半導体装置。 A wiring circuit forming means for electrically connecting a plurality of the semiconductor device terminals according to claim 3, wherein a part or all of a conductive pattern installed on an XY plane in the second wiring pattern sheet is used. The semiconductor device according to any one of claims 1 or 3 to 11, wherein a part or all of the conductive patterns in the plurality of first wiring pattern sheets are electrically connected.
PCT/JP2021/002927 2020-01-21 2021-01-20 Semiconductor apparatus, and inspection device for same WO2021149836A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020019225A JP2021118341A (en) 2020-01-21 2020-01-21 Semiconductor device and inspection device thereof
JP2020-019225 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021149836A1 true WO2021149836A1 (en) 2021-07-29

Family

ID=76993024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002927 WO2021149836A1 (en) 2020-01-21 2021-01-20 Semiconductor apparatus, and inspection device for same

Country Status (2)

Country Link
JP (1) JP2021118341A (en)
WO (1) WO2021149836A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303360A (en) * 2005-04-25 2006-11-02 Fujikura Ltd Through-wire board, composite board, and electronic apparatus
JP2008122357A (en) * 2006-11-14 2008-05-29 Isao Kimoto Coordinate converting device for electric signal connector
JP2008263150A (en) * 2007-04-16 2008-10-30 Matsushita Electric Ind Co Ltd Semiconductor device, and inspection method
JP2013251437A (en) * 2012-06-01 2013-12-12 Fujitsu Semiconductor Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303360A (en) * 2005-04-25 2006-11-02 Fujikura Ltd Through-wire board, composite board, and electronic apparatus
JP2008122357A (en) * 2006-11-14 2008-05-29 Isao Kimoto Coordinate converting device for electric signal connector
JP2008263150A (en) * 2007-04-16 2008-10-30 Matsushita Electric Ind Co Ltd Semiconductor device, and inspection method
JP2013251437A (en) * 2012-06-01 2013-12-12 Fujitsu Semiconductor Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2021118341A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
US10361170B2 (en) Semiconductor package
US6343940B1 (en) Contact structure and assembly mechanism thereof
US7288433B2 (en) Method of making assemblies having stacked semiconductor chips
US8368230B2 (en) Electronic part and method of manufacturing the same
EP0073149B1 (en) Semiconductor chip mounting module
US4926241A (en) Flip substrate for chip mount
US6861858B2 (en) Vertical probe card and method for using the same
JP5500870B2 (en) Substrate with connection terminal and socket for electronic parts
JPH05218287A (en) Formation method of functional subsystem into computer system
CN109155308B (en) Stacked transmission line
JPH0650990A (en) Probe card
US7243423B2 (en) Chip package with degassing holes
US20070169342A1 (en) Connection pad layouts
KR101586495B1 (en) Interposer and integrated circuit chip embedded printed circuit board
CN110531125B (en) Space transformer, probe card and manufacturing method thereof
CN114783981A (en) Adapter plate and packaging test system
WO2021149836A1 (en) Semiconductor apparatus, and inspection device for same
JP2001196499A (en) Semiconductor package having conductor of impedance selected during assembly
US20120187972A1 (en) Wafer level testing structure
US6433565B1 (en) Test fixture for flip chip ball grid array circuits
WO2021153802A2 (en) Semiconductor apparatus
US7180171B1 (en) Single IC packaging solution for multi chip modules
CN113675177A (en) Semiconductor substrate structure and forming method thereof
JP2024041688A (en) semiconductor equipment
CN113567838A (en) Circuit test structure based on adapter plate and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21745022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21745022

Country of ref document: EP

Kind code of ref document: A1