WO2021149762A1 - Oil state diagnostic method and oil state diagnostic device - Google Patents

Oil state diagnostic method and oil state diagnostic device Download PDF

Info

Publication number
WO2021149762A1
WO2021149762A1 PCT/JP2021/002021 JP2021002021W WO2021149762A1 WO 2021149762 A1 WO2021149762 A1 WO 2021149762A1 JP 2021002021 W JP2021002021 W JP 2021002021W WO 2021149762 A1 WO2021149762 A1 WO 2021149762A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
raman spectrum
peak
intensity
value
Prior art date
Application number
PCT/JP2021/002021
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 串田
橋本谷 磨志
雄介 北川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021149762A1 publication Critical patent/WO2021149762A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties

Definitions

  • This disclosure relates to an oil condition diagnosis method and an oil condition diagnosis device for diagnosing the condition of oil used in mechanical devices and the like.
  • the mainstream method for analyzing oils such as lubricating oil and engine oil in machinery is to sample the oil from the machinery and request an analysis from a specialized inspection agency.
  • it is troublesome because it is necessary to stop the operation of the mechanical device in order to sample the oil from the mechanical device.
  • Patent Document 1 discloses a deterioration degree evaluation method and a deterioration degree evaluation device for turbine oil using infrared absorption spectroscopy.
  • the rate of change from the new oil in the absorbance of the comparative absorption peak near the wave number of 720 cm -1 of the turbine oil is obtained, and the absorbance of the oxide absorption peak is corrected based on this rate of change.
  • the total acid value corresponding to the absorbance of the corrected oxide absorption peak is obtained, and the degree of deterioration of the turbine oil is evaluated from this total acid value.
  • Patent Document 1 in order to obtain the rate of change from the new oil in the absorbance of the comparative absorption peak near the wave number of 720 cm -1 of the turbine oil, the turbine oil is used in the new oil state before being used. It is necessary to measure the absorbance of the absorption peak, which is troublesome. Further, it is disclosed that the prior art described in Patent Document 1 is not very effective even when applied to an engine oil such as diesel oil. That is, in the prior art described in Patent Document 1, depending on the type of oil, the degree of deterioration of the oil (hereinafter, also referred to as the state of the oil) may not be accurately evaluated.
  • the present disclosure provides an oil state diagnosis method and an oil state diagnosis device that can easily and accurately diagnose the oil state.
  • a Raman spectrum of oil is acquired, and the intensity of a peak derived from saturated alcan in the Raman spectrum is standardized with respect to the intensity of a predetermined peak in the acquired Raman spectrum.
  • At least one of the normalized values is calculated, and the value and the state of the oil normalized by the intensity of the peak derived from the saturated Alcan in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil.
  • the state of the oil is diagnosed from the calculated at least one standardized value based on the correlation with.
  • the oil state diagnostic apparatus is derived from an acquisition unit that acquires a Raman spectrum of oil and a saturated alkane in the Raman spectrum with respect to the intensity of a predetermined peak in the acquired Raman spectrum.
  • a calculation unit that calculates at least one value normalized by the peak intensity, and the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil. It includes a storage unit that stores the correlation between the standardized value and the oil state, and a diagnostic unit that diagnoses the oil state from at least one standardized value calculated based on the correlation. ..
  • an oil condition diagnosis method and an oil condition diagnosis device capable of diagnosing an oil condition easily and accurately are provided.
  • FIG. 1 is a diagram showing an example of a flow of Raman spectroscopic analysis.
  • FIG. 2 is a diagram showing Raman spectra of oils having different usage times measured in step S001.
  • FIG. 3 is a diagram showing a spectrum of Raman scattered light obtained by removing fluorescence noise from the Raman spectrum of FIG. 2 in step S002.
  • FIG. 4 is a diagram for explaining measurement problems that may occur depending on the state of oil.
  • FIG. 5 is a block diagram showing an example of the functional configuration of the oil state diagnostic apparatus according to the embodiment.
  • FIG. 6 is a flowchart showing an example of the oil state diagnosis method according to the embodiment.
  • FIG. 7 is a schematic view showing an example of the configuration of the laser Raman spectroscopic measuring device.
  • FIG. 1 is a diagram showing an example of a flow of Raman spectroscopic analysis.
  • FIG. 2 is a diagram showing Raman spectra of oils having different usage times measured in step S001.
  • FIG. 3 is a
  • FIG. 8 is a schematic cross-sectional view taken along the line AA of the sample plate of FIG.
  • FIG. 9 is a diagram showing the data of the first embodiment.
  • FIG. 10 is a diagram showing an example of an oil state diagnosis system including the oil state diagnosis device according to the present disclosure.
  • the oil used in the mechanical device has a lubricating action that lubricates the movement of each part in the mechanical device, for example, a sealing action that seals the gap between the piston and the piston silling to prevent gas leakage and keeps airtightness, combustion, etc. It has a cooling action that absorbs and releases the generated heat, a cleaning and dispersing action that takes in dirt generated by combustion, and an anticorrosion action that protects the mechanical device from corrosion such as rust. Due to the reduction of these actions, a malfunction of the mechanical device occurs. Therefore, it is necessary to grasp the state of oil in the mechanical device and replace it with new oil at an appropriate time.
  • Analysis of oil used in machinery is usually performed for the following purposes.
  • the purpose of the analysis is, for example, to determine an appropriate oil change time, to grasp the state of a mechanical device, to detect a sign of a mechanical device failure, and to detect a mechanical device failure. To identify the state of the device and the cause of the failure.
  • the analysis of oil determines the analysis method and the analysis target in the oil according to these purposes. For example, analysis of oil oxidation and degradation is performed by infrared absorption spectroscopy or gas chromatography.
  • the state of oil in a machine device differs depending on the environment in which the machine device is used, even if the machine device is of the same type. Therefore, for example, the state of oil is not always the same even if the operating time is the same. ..
  • the mechanical device is a construction machine
  • the magnitude of the load applied to the mechanical device and the internal combustion engine such as the engine included in the mechanical device differs depending on the environment in which the mechanical device is used. Therefore, the rate of change in the state of oil such as lubricating oil is not uniform.
  • construction machinery is currently changing oil at very short intervals.
  • the oil can be analyzed at any time without sampling the oil from the mechanical device, so that the user of the mechanical device can grasp the state of the oil in a timely manner. can do. As a result, the user can appropriately perform maintenance necessary for the mechanical device such as oil change according to the state of the oil.
  • Raman spectroscopy refers to excitation light obtained by irradiating a substance under test with excitation light of a single wavelength, generally laser light, and mixing it with the reflected light and scattered light (Rayleigh scattered light). Is a technique for obtaining information on the chemical properties of the substance to be measured from the spectra of light of different wavelengths (Raman scattered light).
  • the Raman scattered light has an intensity of only about 10 to 6 with respect to the intensity of the reflected light having the same wavelength as the excitation light or the Rayleigh scattered light which is the scattered light, and is extremely weak.
  • Raman spectroscopy the difference in the number of waves between Raman scattered light and excitation light (so-called Raman shift) corresponds to the energy difference between the vibrational levels of the chemical bonds of the molecules that make up the substance to be measured, which is typical.
  • Infrared absorption spectroscopy which is a vibrational spectroscopy method, and roughly the same information on chemical bonds can be obtained. It should be noted here that in Raman scattered light, not the excitation light itself, but the wavelength deviation from the excitation light (difference in the reciprocal of energy in photon theory) indicates the correspondence with the chemical bond.
  • the wavelength of the excitation light is arbitrary, and as the excitation light, light having an arbitrary wavelength from ultraviolet light, visible light, near-infrared light, or the like can be used. This makes it possible to use general-purpose optical elements in the visible light region without using special detectors and optical elements as in infrared absorption spectroscopy.
  • both infrared absorption spectroscopy and Raman spectroscopy are molecular vibration spectroscopy, and the characteristic signal on the spectrum is the energy corresponding to the binding energy of each molecule contained in the oil. Appears at the position of.
  • the physical element process that absorbs infrared light of energy showing a characteristic signal in infrared absorption spectroscopy and the physical element process that produces Raman scattered light of energy showing a characteristic signal in Raman spectroscopy are different.
  • even signals belonging to the same molecular vibration have different signal intensities. This is called the selection rule, and sometimes even if the same substance is measured by infrared absorption spectroscopy and Raman spectroscopy, completely different spectra can be obtained.
  • Raman spectroscopy irradiates an object to be measured (here, oils) with excitation light of a specific wavelength, generally a visible light laser, in principle. Since the laser has a very high energy density, it may induce autofluorescence of the object to be measured. That is, depending on the components contained in the object to be measured, autofluorescence with a signal much higher than that of Raman scattered light may occur, and this autofluorescence interferes with the analysis of weak Raman scattered light. For example, in order to detect weak Raman scattered light, it is generally required to lengthen the exposure time for obtaining a spectrum. However, if autofluorescence occurs with a signal much higher than the Raman scattered light signal, the autofluorescence can saturate the output of the photodetector for spectral measurement.
  • a specific wavelength generally a visible light laser
  • FIG. 1 is a diagram showing an example of a flow of Raman spectroscopic analysis.
  • the object to be measured (oil in this case) is irradiated with excitation light with a laser, and the Raman spectrum is measured (step S001).
  • autofluorescence so-called fluorescence noise
  • the measured Raman spectrum contains fluorescence noise.
  • the fluorescence noise is removed by fitting with an appropriate function, and the baseline correction is performed (step S002).
  • the Raman spectrum obtained in step S002 is fitted using a peak shape function such as a Gaussian function, and individual peaks are separated (step S003). As a result, the shape, position, height and area of the peak can be obtained.
  • FIG. 2 is a diagram showing Raman spectra of oils having different usage times measured in step S001.
  • FIG. 3 is a diagram showing a spectrum of Raman scattered light obtained by removing fluorescence noise from the Raman spectrum of FIG. 2 in step S002.
  • the fluorescence intensity of the autofluorescence of the oil increases as the oil usage time increases, but the usage time is a predetermined time (here, 514 hours). If it exceeds, the fluorescence intensity of the autofluorescence of the oil decreases as the usage time increases.
  • the signal intensity of the spectrum of the Raman scattered light increases as the usage time of the oil increases, but the predetermined usage time It decreases when it exceeds (for example, 514 hours).
  • step S002 the spectrum of the Raman scattered light obtained in step S002 is peak-fitted in step S003 to obtain the peak height. Even if you ask for such things, it may not be possible to accurately evaluate the state of the oil.
  • coloring substances such as soot may be generated in the oil as the usage time becomes longer. Since colored substances such as soot easily absorb light, a part of the excitation light irradiated to the oil (hereinafter, also referred to as irradiation light) is blocked by the colored substance, and the light intensity of the excitation light irradiated to the oil. Is thought to decrease.
  • irradiation light a part of the excitation light irradiated to the oil
  • FIG. 4 is a diagram for explaining measurement problems that may occur depending on the state of oil.
  • FIG. 4A schematically shows the measurement of oil in which almost no coloring is observed
  • FIG. 4B schematically shows the measurement of oil colored containing a coloring substance such as soot. Shown.
  • FIG. 4 (c) schematically shows an example of a spectrum of Raman scattered light that is considered to be obtained by the measurements of FIG. 4 (a) and FIG. 4 (b).
  • FIG. 4 (c) A schematic diagram of a spectrum obtained by baseline-correcting the Raman spectrum obtained under these conditions is shown in FIG. 4 (c).
  • the spectrum a in (c) of FIG. 4 is a schematic diagram when the Raman spectrum considered to be obtained by the measurement of (a) of FIG. 4 is baseline-corrected.
  • the spectrum b is a schematic diagram when the Raman spectrum considered to be obtained in FIG. 4B is corrected by baseline.
  • the spectrum b of the Raman scattered light of the colored oil has a lower signal intensity of the entire spectrum than the spectrum a of the Raman scattered light of the uncolored oil.
  • the light absorption by the coloring substance such as soot affects the intensity difference of the entire signal of the Raman spectrum.
  • the present disclosure provides an oil state diagnosis method and an oil state diagnosis device that can easily and accurately diagnose the oil state.
  • a Raman spectrum of oil is acquired, and the intensity of a peak derived from saturated alcan in the Raman spectrum is standardized with respect to the intensity of a predetermined peak in the acquired Raman spectrum.
  • At least one of the normalized values is calculated, and the value and the state of the oil normalized by the intensity of the peak derived from the saturated Alcan in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil.
  • the state of the oil is diagnosed from the calculated at least one standardized value based on the correlation with.
  • the obtained Raman of the oil is found in the correlation between the normalized value of the predetermined peak intensity in the Raman spectrum of the oil and the state of the oil calculated in advance.
  • the state of the oil can be easily diagnosed.
  • the autofluorescence of the oil with respect to the Raman spectrum of the oil, the soot in the oil, and the oil can be easily removed. This is due to the following reasons.
  • saturated alkane which is the main component of oil
  • saturated alkane which is the main component of oil
  • the absolute intensity of the peak derived from the saturated alkane of the oil hardly changes.
  • the total amount of saturated alkanes, which are the main components of the oil is hardly affected, so that the absolute intensity of the peak derived from the saturated alkanes does not change.
  • the influence of the attenuation affects the intensity of the entire signal of the Raman spectrum of the oil. Therefore, by normalizing the intensity of the predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, in other words, by calculating the relative ratio of the predetermined component to the main component of the oil, the oil The state of can be evaluated accurately.
  • the predetermined peak intensity is corrected to an appropriate value corresponding to the change in the state of the oil. NS. That is, the influence of the above-mentioned disturbance on the Raman spectrum of oil can be easily removed.
  • the oil state is accurately evaluated based on the above-mentioned correlation calculated in advance. can do.
  • the oil condition diagnosis method according to one aspect of the present disclosure, the oil condition can be diagnosed easily and accurately.
  • a peak derived from the saturated alkane of the Raman spectra, wave number range of 1400 cm -1 ⁇ 1600 cm -1, or, wavenumber of 2840cm -1 ⁇ 3000cm -1 It may be located in the range.
  • the peak showing a relatively strong signal intensity can be used as the standard for normalization.
  • Reliable data that is, normalized values
  • the peak derived from the saturated alkane in the Raman spectrum may be located at a wave number of 1450 cm -1.
  • the normalized value is calculated based on the peak showing the strong signal strength derived from the saturated alkane, so that the oil state can be diagnosed with high accuracy.
  • the predetermined peak wavenumber 1300 cm -1 may be located in at least one of 1600 cm -1 and 1750 cm -1.
  • the predetermined peak may be located at a wave number of 1300 cm -1.
  • the diagnosis accuracy is improved because the oil state is diagnosed based on the intensity of the peak in which the change in signal intensity due to the change in oil state is very large as compared with infrared absorption spectroscopy.
  • At least one of the total acid value and the oxidation value of the oil may be evaluated based on the standardized values in the diagnosis.
  • the oil state diagnosis method further corrects the acquired baseline of the Raman spectrum, and in the calculation, the normalized value is calculated with respect to the corrected Raman spectrum. You may.
  • the oil state diagnostic apparatus is derived from an acquisition unit that acquires a Raman spectrum of oil and a saturated alkane in the Raman spectrum with respect to the intensity of a predetermined peak in the acquired Raman spectrum.
  • a calculation unit that calculates at least one value normalized by the peak intensity, and the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil. It includes a storage unit that stores the correlation between the standardized value and the oil state, and a diagnostic unit that diagnoses the oil state from at least one standardized value calculated based on the correlation. ..
  • the obtained Raman of the oil is found in the correlation between the normalized value of the predetermined peak intensity in the Raman spectrum of the oil calculated in advance and the state of the oil.
  • the state of the oil can be easily diagnosed.
  • the apparatus in order to standardize the intensity of a predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, the autofluorescence of the oil with respect to the Raman spectrum of the oil, the soot in the oil, and the oil
  • the influence of disturbance such as coloring can be easily removed. This is due to the following reasons.
  • the total amount of saturated alkane which is the main component of oil, hardly changes even if some components of the oil change due to oxidation. That is, even if the state of the oil changes, the absolute intensity of the peak derived from the saturated alkane of the oil hardly changes.
  • the oil The state of can be evaluated accurately.
  • the predetermined peak intensity is corrected to an appropriate value corresponding to the change in the state of the oil. NS. That is, the influence of the above-mentioned disturbance on the Raman spectrum of oil can be easily removed.
  • the oil state is accurately evaluated based on the above-mentioned correlation calculated in advance. can do.
  • the oil condition diagnostic apparatus According to the above, according to the oil condition diagnostic apparatus according to one aspect of the present disclosure, the oil condition can be easily and accurately diagnosed.
  • each figure is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • FIG. 5 is a block diagram showing an example of the functional configuration of the oil condition diagnostic apparatus 100 according to the embodiment.
  • the movement of light is shown by a broken line, and the signal transmission direction is shown by a solid line.
  • the oil state diagnostic apparatus 100 includes, for example, a light source 10, a spectroscope 20, and a processing unit 70.
  • the light source 10 irradiates the oil with excitation light.
  • the excitation light may be ultraviolet light, visible light, or infrared light. Above all, the excitation light is preferably visible light.
  • an inexpensive visible light laser can be used as the light source 10.
  • an inexpensive optical system for visible light can be used. Therefore, since the oil state diagnosis device 100 can be manufactured at low cost, the versatility of the oil state diagnosis device 100 is improved.
  • the light source 10 when the oil condition diagnostic apparatus 100 performs in-line analysis of oil in a mechanical device, the light source 10 emits excitation light to the oil through an optical window (not shown) provided on the flow path of the oil in the mechanical device. You may irradiate. At this time, the light source 10 may irradiate the oil with excitation light via an optical fiber (not shown).
  • the spectroscope 20 derives a spectrum of Raman scattered light (hereinafter, also referred to as Raman spectrum) by dispersing Raman scattered light scattered from a measurement object (here, oil) by irradiation with excitation light.
  • the spectroscope 20 has a measuring unit (not shown) that measures the spectrum of Raman scattered light scattered from the oil by irradiation with excitation light, and an output unit (not shown) that outputs the measured Raman spectrum to the processing unit 70.
  • the spectroscope 20 may further include a filter (not shown) and a spectroscope unit (not shown). The light reflected and scattered by the oil due to the irradiation of the excitation light is incident on the spectroscope 20.
  • the filter is, for example, a band stop filter that allows Raman scattered light to pass through and removes Rayleigh scattered light.
  • the scattered light that has passed through the filter is separated into light for each wavelength band by the spectroscopic unit.
  • the intensity of light in each wavelength band dispersed by the spectroscopic unit is measured by the measuring unit.
  • the measuring unit includes, for example, an image sensor (not shown), and the image sensor receives light in each wavelength band dispersed by the spectroscopic unit and converts it into an electric signal. The image sensor outputs the converted electric signal as a digital value to the output unit.
  • the output unit outputs a digital value indicating the intensity of light in each wavelength band to the processing unit 70 as a spectrum of Raman scattered light of oil.
  • the configuration of the spectroscope 20 described above is an example, and the spectroscope 20 only needs to be able to measure the Raman spectrum by dispersing the Raman scattered light from the oil, and the configuration and the measuring method thereof are particularly limited. Not done.
  • the processing unit 70 acquires the Raman spectrum of the oil output from the spectroscope 20 and executes a process of diagnosing the state of the oil.
  • the processing unit 70 includes an acquisition unit 30, a calculation unit 40, a storage unit 50, and a diagnosis unit 60.
  • the processing unit 70 is connected to the spectroscope 20.
  • the processing unit 70 may be connected to the spectroscope 20 by wireless communication such as Bluetooth (registered trademark) or wired communication such as Ethernet (registered trademark).
  • the processing unit 70 may be mounted on a computer, for example, or may be mounted on one device together with the light source 10 and the spectroscope 20 as shown in FIG.
  • the acquisition unit 30 acquires the Raman spectrum of the oil output from the spectroscope 20.
  • the calculation unit 40 calculates at least one value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the intensity of the predetermined peak in the Raman spectrum acquired by the acquisition unit 30.
  • the storage unit 50 stores the correlation between the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum and the state of the oil with respect to the intensity of the predetermined peak in the Raman spectrum of the oil calculated in advance. do.
  • the correlation may be calculated in advance for each type of oil and stored in the storage unit 50.
  • the correlation may be a table in which inputs and outputs are associated, such as a Lookup table.
  • the input is a standardized value
  • the output is the state of the oil (for example, the total acid value or the oxidation value indicating the degree of oxidation of the oil).
  • the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the intensity of the predetermined peak in the Raman spectrum of the oil is also simply referred to as a normalized value.
  • the diagnosis unit 60 reads the correlation from the storage unit 50, and diagnoses the oil state from at least one standardized value calculated by the calculation unit 40 based on the correlation.
  • FIG. 5 shows an example in which the oil state diagnostic apparatus 100 includes a light source 10 and a spectroscope 20, but the present invention is not limited to this.
  • the oil condition diagnostic apparatus does not have to include the light source 10 and the spectroscope 20.
  • the oil state diagnostic device may be the processing unit 70.
  • FIG. 6 is a flowchart showing an example of the oil state diagnosis method according to the embodiment.
  • the oil state diagnosis method includes, for example, irradiation step S100 of irradiating the oil to be measured with excitation light, and a spectrum of scattered light scattered from the oil by irradiation of the excitation light (that is, Raman of oil).
  • Measurement step S101 for measuring (spectrum) acquisition step S102 for acquiring the Raman spectrum of oil, and calculation for calculating a value obtained by standardizing the intensity of a predetermined peak in the acquired Raman spectrum with the intensity of a peak derived from saturated alkylan.
  • the light source 10 irradiates the oil with excitation light.
  • the excitation light may be any of ultraviolet light, visible light, and infrared light.
  • the excitation light is, for example, a laser beam.
  • the spectroscope 20 measures the Raman spectrum of the oil.
  • the spectroscope 20 includes a filter (not shown), a spectroscopic unit (not shown), a measuring unit (not shown), and an output unit (not shown). More specifically, in the measurement step S101, the filter passes the Raman scattered light among the light incident on the spectroscope 20 and removes the Rayleigh scattered light. The spectroscopic unit disperses the Raman scattered light that has passed through the filter into light for each wavelength band. The measuring unit measures the intensity of light in each wavelength band dispersed by the spectroscopic unit.
  • the measuring unit includes an image sensor (not shown), and the image sensor receives light in each wavelength band dispersed by the spectroscopic unit and converts it into an electric signal. Then, the image sensor outputs the converted electric signal as a digital value to the output unit.
  • the output unit outputs a digital value indicating the intensity of light in each wavelength band to the processing unit 70 as a spectrum of Raman scattered light of oil (that is, Raman spectrum of oil).
  • the acquisition unit 30 of the processing unit 70 acquires the Raman spectrum of the oil output from the spectroscope 20.
  • the processing unit 70 may be connected to the spectroscope 20 by wireless communication such as Bluetooth (registered trademark) or wired communication such as Ethernet (registered trademark).
  • the acquisition unit 30 acquires the Raman spectrum of the oil output by the spectroscope 20 and outputs the acquired Raman spectrum of the oil to the calculation unit 40.
  • the calculation unit 40 calculates at least one value obtained by normalizing the intensity of a predetermined peak in the acquired Raman spectrum with the intensity of the peak derived from the saturated alkane.
  • the intensity of each peak in the Raman spectrum may be the signal intensity at the top of each peak.
  • the calculation unit 40 may further perform baseline correction of the acquired Raman spectrum and calculate the above standardized value with respect to the corrected Raman spectrum.
  • the calculation unit 40 may correct the baseline of the acquired Raman spectrum of the oil based on the correlation between the fluorescence noise intensity and the Raman signal average intensity calculated in advance. As a result, a standardized value can be calculated for the corrected Raman spectrum, so that the oil state can be diagnosed more accurately.
  • the peak showing a relatively strong signal intensity can be used as the standard for normalization.
  • Reliable data that is, normalized values
  • the peak derived from the saturated alkane may be located at a wave number of 1450 cm -1.
  • the normalized value is calculated based on the peak showing the strong signal strength derived from the saturated alkane, so that the oil state can be diagnosed with high accuracy.
  • a predetermined peak in the Raman spectrum of the obtained oil is located at least one 1600 cm -1 and 1750 cm -1.
  • the state of the oil can be accurately diagnosed based on the peak having a relatively strong signal strength among the peaks generated due to the change of the state of the oil (for example, the change of the component due to the oxidation of the oil).
  • the predetermined peak may be located at a wave number of 1300 cm -1.
  • the state of the oil is diagnosed based on the intensity of the peak in which the change in the signal intensity due to the change in the state of the oil is very large as compared with the infrared absorption spectroscopy, so that the diagnostic accuracy is improved.
  • the peak intensity in the Raman spectrum may be, for example, the signal intensity at the peak top or the integrated intensity of the peak.
  • the signal intensity of the peak top in the Raman spectrum of the acquired oil may be used as it is, or the signal intensity of the peak top in the corrected Raman spectrum obtained by removing the fluorescence baseline from the Raman spectrum may be used.
  • the integrated intensity of the peak it may be the integrated intensity of the peak in the Raman spectrum of the acquired oil, or it may be the integrated intensity of the peak in the corrected Raman spectrum.
  • the Raman spectrum is expressed as the sum of a plurality of peak functions, for example, a Gaussian function
  • the intensity of the peak in the Raman spectrum may be the height or area of each peak of the plurality of Gaussian functions.
  • the diagnostic unit 60 normalizes the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the intensity of the predetermined peak stored in the storage unit 50 in the Raman spectrum of the oil. Read the correlation between the value and the oil state. The correlation is calculated in advance and stored in the storage unit 50. The correlation may be calculated for each type of oil. The diagnosis unit 60 reads out the correlation corresponding to the type of oil from the storage unit 50 according to the type of oil measured. Based on the correlation read from the storage unit 50, the oil state is diagnosed from at least one standardized value calculated by the calculation unit 40.
  • the diagnostic unit 60 may evaluate at least one of the total acid value and the oxidation value of the oil based on the standardized value. As a result, the diagnostic unit 60 can easily and accurately diagnose the state of change in oil due to oxidation.
  • the oil state diagnosis method according to the present embodiment, at least a value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum is set with respect to the intensity of the predetermined peak in the Raman spectrum of the measured oil.
  • One is calculated, and the correlation between the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum and the state of the oil with respect to the intensity of the predetermined peak in the Raman spectrum of the oil calculated in advance.
  • the oil condition is diagnosed from at least one calculated value.
  • the oil state diagnosis method can easily remove the influence of disturbance such as autofluorescence of the oil, soot in the oil, and coloring of the oil, so that the oil can be easily and accurately used. Can be diagnosed.
  • the oil state diagnosis method may not include the irradiation step S100 and the measurement step S101.
  • the object to be measured is a lubricating oil for a mechanical device (hereinafter, simply referred to as oil), and the measuring device is a laser Raman spectroscopic measuring device.
  • FIG. 7 is a schematic view showing an example of the configuration of the laser Raman spectroscopic measuring device.
  • the light source 10 emits a laser beam (that is, excitation light) L 1 having a wavelength of 785 nm.
  • the emitted excitation light L 1 passes through the beam splitter 12 and is focused through the objective lens of the microscope 16 to irradiate the sample (oil) in the sample plate 1.
  • the Raman scattered light L 2 generated from the oil 6 (see FIG. 8) by the irradiation of the excitation light L 1 is focused by the objective lens (not shown) of the microscope 16.
  • the focused Raman scattered light L 2 passes through the beam splitter 12 and then passes through the filter 14 that cuts the Rayleigh scattered light.
  • the Raman scattered light L 3 that has passed through the filter 14 is incident on the spectroscopic unit 22 of the spectroscope 20 and is dispersed into light in each wavelength band.
  • the measuring unit 24 measures the intensity of light in each wavelength band dispersed by the spectroscopic unit 22.
  • the laser Raman spectroscopic measuring device measures the Raman spectrum of the oil 6.
  • FIG. 8 is a schematic cross-sectional view taken along the line AA of the sample plate 1 of FIG.
  • the sample plate 1 includes a quartz substrate 2, a spacer 4 arranged on the quartz substrate 2, a sample holding portion 5 surrounded by the spacer 4, and quartz arranged on the spacer 4.
  • a cover glass 3 and the like are provided.
  • the sample holding portion 5 is filled with oil 6.
  • Example 1 In Experimental Example 1, the area of the peak located at the wave number of 1450 cm-1 in the Raman spectrum of each of the 10 types of oils used in the mechanical device for different times was derived.
  • the peak located at wave number 1450 cm -1 is a peak derived from saturated alkane, which is the main component of oil.
  • Comparative Example 1 In Comparative Example 1, the area of the peak located at the wave number of 1300 cm -1 in the Raman spectrum of each of the above 10 kinds of oils was derived.
  • Comparative Example 2 In Comparative Example 2, the same procedure as in Comparative Example 1 was performed except that the area of the peak located at the wave number of 1600 cm -1 was derived.
  • Comparative Example 3 In Comparative Example 3, the same procedure as in Comparative Example 1 was performed except that the area of the peak located at the wave number of 1750 cm -1 was derived.
  • Example 1 In Example 1, using the results of Experimental Example 1 and Comparative Example 1, the ten oil use time are different in the machine, located at a wavenumber of 1300 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation between the ratio of the area of the peaks (hereinafter, also referred to as the peak ratio) and the total acid value was investigated. The results are shown in FIG. 9 and Table 1.
  • FIG. 9 is a diagram showing the data of the first embodiment.
  • a linear It showed a relationship.
  • R 2 values for these linear approximation (so called, the correlation coefficient) was 0.70. Therefore, thus, the ratio of the area of the peak located at wavenumber 1300 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the total acid value was found to be higher correlation than Comparative Example 1.
  • Example 2 In Example 2, using the results of Experimental Example 1 and Comparative Example 2, for the above 10 kinds of the oil, and the ratio of the peak area of which is positioned at a wave number of 1600 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with the total acid value was investigated. The results are shown in Table 1.
  • Example 3 In Example 3, using the results of Experimental Example 1 and Comparative Example 3, for the above 10 kinds of the oil, and the ratio of the peak area of which is positioned at a wave number of 1750 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with the total acid value was investigated. The results are shown in Table 1.
  • the correlation coefficient of Example 1 is higher than that of Comparative Example 1 in the relationship between the intensity of a predetermined peak caused by the change in oil and the evaluation of the state of the oil (here, the total acid value). It was high, the correlation coefficient of Example 2 was higher than that of Comparative Example 2, and the correlation coefficient of Example 3 was higher than that of Comparative Example 3. Therefore, from the results of Comparative Examples 1 to 3 and Examples 1 to 3, the intensity of a predetermined peak generated by the oxidation of the oil in the Raman spectrum of the oil is standardized by the intensity of the peak derived from saturated alkane, which is the main component of the oil.
  • Comparative Example 4 In Comparative Example 4, the same procedure as in Comparative Example 1 was carried out except that the oxidation value was used as an index for evaluating the state of the oil. Oxidation values were measured by FT-IR (Fourier Transform Infrared Spectroscopy) for each of the nine oils used in the machinery. Then, for each of the above nine types of oils, the correlation between the area of the peak located at the wave number of 1300 cm -1 in the Raman spectrum and the oxidation value was investigated. The results are shown in Table 1.
  • Comparative Example 5 In Comparative Example 5, the area of the peak located at the wave number 1600 cm -1 was derived, and the correlation between the area of the peak located at the wave number 1600 cm -1 in the Raman spectrum and the oxidation value was investigated for each of the above nine types of oils. Except for the above points, the same procedure as in Comparative Example 4 was performed. The results are shown in Table 1.
  • Comparative Example 6 In Comparative Example 6, the area of the peak located at the wave number 1750 cm -1 was derived, and the correlation between the area of the peak located at the wave number 1750 cm -1 in the Raman spectrum and the oxidation value was investigated for each of the above nine types of oils. Except for the above points, the same procedure as in Comparative Example 4 was performed.
  • Example 4 In Example 4, using the results of Experimental Example 1 and Comparative Example 4, the nine types of oils used time are different in the machine, located at a wavenumber of 1300 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation between the ratio of the area of the peaks (hereinafter, also referred to as the peak ratio) and the oxidation value was investigated. The results are shown in Table 1.
  • Example 5 In Example 5, using the results of Experimental Example 1 and Comparative Example 5, for the above nine kinds of oil, the ratio of the peak area of which is positioned at a wave number of 1600 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with the oxidation value was investigated. The results are shown in Table 1.
  • Example 6 In Example 6, using the results of Experimental Example 1 and Comparative Example 6, the nine types of oil above, and the ratio of the area of the peak located at wavenumber 1750 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with acid value was investigated. The results are shown in Table 1.
  • the correlation coefficient of Example 4 is higher than that of Comparative Example 4 in the relationship between the intensity of a predetermined peak caused by the change in oil and the evaluation of the state of the oil (here, the oxidation value).
  • the correlation coefficient of Example 5 was higher than that of Comparative Example 5, and the correlation coefficient of Example 6 was higher than that of Comparative Example 6. Therefore, from the results of Comparative Examples 4 to 6 and Examples 4 to 6, the intensity of the predetermined peak generated by the oxidation of the oil in the Raman spectrum of the oil is standardized by the intensity of the peak derived from the saturated alkane which is the main component of the oil.
  • a part or all of the components included in the oil condition diagnostic apparatus in the above embodiment may be composed of one system LSI (Large Scale Integration: large-scale integrated circuit).
  • the oil state diagnostic apparatus may be composed of a system LSI having a light source, a spectroscopic unit, and a processing unit.
  • the system LSI may not include a light source, and may not include a light source and a spectroscopic unit.
  • a system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system composed of. A computer program is stored in the ROM. The system LSI achieves its function by operating the microprocessor according to the computer program.
  • system LSI Although it is referred to as a system LSI here, it may be referred to as an IC, an LSI, a super LSI, or an ultra LSI due to the difference in the degree of integration. Further, the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • one aspect of the present disclosure may be not only such an oil state diagnosis device but also an oil state diagnosis method in which a characteristic component included in the device is a step. Further, one aspect of the present disclosure may be a computer program that causes a computer to execute each characteristic step included in the oil state diagnosis method. Further, one aspect of the present disclosure may be a non-temporary recording medium that can be read by a computer on which such a computer program is recorded.
  • FIG. 10 is a diagram showing an example of an oil state diagnosis system 500 including the oil state diagnosis device 100a according to the present disclosure.
  • the oil state diagnosis system 500 is, for example, a system that monitors the state of consumables included in the mechanical device 200 and notifies the user of the mechanical device 200 of the state of deterioration of the consumables and the like.
  • the mechanical device 200 includes, for example, various large or small mechanical devices installed inside and outside in factories, offices, public facilities and houses, construction equipment operating outdoors, trucks, buses, passenger cars, motorcycles, ships, aircrafts and trains. Includes various vehicles such as industrial vehicles and construction vehicles, or equipment such as engines, transmissions, and actuators provided therein.
  • the consumables included in the mechanical device 200 are repeatedly used in the mechanical device 200, for example, and are replaced regularly.
  • the consumables are, for example, oils and function as a lubricating medium for the mechanical device 200. Since such consumables are arranged inside the mechanical device 200, it is not easy for the user of the mechanical device 200 to check the state of the consumables. Therefore, by incorporating the oil condition diagnosis device 100a into the mechanical device 200, the state of consumables can be measured in-line.
  • the light source 10a and the spectroscope 20a are incorporated in the mechanical device 200, and the processing unit 70a is mounted on the computer.
  • the processing unit 70a is not limited to a computer, and may be mounted on a terminal such as a smartphone, a mobile phone, a tablet terminal, a wearable terminal, or a computer mounted on the mechanical device 200.
  • the spectroscope 20a and the processing unit 70a can communicate with each other.
  • the user may input operation information via an input unit (not shown) such as a touch panel, a keyboard, a mouse, or a microphone, and transmit the operation information to the light source 10a, the spectroscope 20a, or the server 300.
  • the user may select necessary information and have it presented to a presentation unit such as a monitor or a speaker.
  • a presentation unit such as a monitor or a speaker.
  • the user can obtain information such as the state of consumables, the timing of replacement of consumables, and troubles that may occur in the mechanical device 200.
  • the input unit and the display unit may be connected to the processing unit 70a, and may be provided in a device other than the device on which the processing unit 70a is mounted. Further, the input unit and the presentation unit are not limited to one, and a plurality of input units and the presentation unit may be connectable to the processing unit 70a.
  • the device on which the processing unit 70a is mounted is connected to the server 300 via the network 400, transmits the measurement result of consumables to the server 300, and is stored in the database arranged on the server 300 by the information processing program.
  • the diagnosed diagnosis result may be acquired.
  • the processing unit 70a may have the presentation unit present the acquired diagnosis result to notify the user.
  • the intensity of a peak derived from saturated alkane which is the main component of an oil
  • the intensity of a peak derived from saturated alkane is used to standardize the intensity of a predetermined peak in the Raman spectrum of the oil.
  • the effects of disturbances such as soot and oil coloring can be easily and well removed. For example, even if a part of the components of the oil are changed by oxidation, the total amount of saturated alkanes, which are the main components of the oil, is hardly affected, so that the absolute intensity of the peak derived from the saturated alkanes does not change.
  • the oil condition diagnostic apparatus according to one aspect of the present disclosure, the oil condition can be diagnosed easily and accurately.
  • the influence of disturbance such as autofluorescence of oil, soot in oil, and coloring of oil can be easily and well removed from the Raman spectrum of oil. Therefore, the state of the oil can be diagnosed easily and accurately. Further, since a visible light laser can be used, it is possible to provide an analyzer having a simple configuration and a miniaturization without using a special optical system. Therefore, it can be used not only as an analyzer but also as an in-line analyzer by incorporating it into a mechanical device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

In the present invention, an oil state is diagnosed by: acquiring a Raman spectrum of an oil (S102); calculating at least one value obtained by normalizing a prescribed peak intensity in the acquired Raman spectrum by a peak intensity derived from a saturated alkane in the Raman spectrum (S103); and diagnosing the oil state from the at least one normalized value that was calculated, on the basis of a correlation between the oil state and the value obtained by normalizing the prescribed peak intensity in the Raman spectrum of the oil calculated in advance by the peak intensity derived from the saturated alkane in the Raman spectrum (S104).

Description

オイル状態診断方法及びオイル状態診断装置Oil condition diagnosis method and oil condition diagnosis device
 本開示は、機械装置などに使用されるオイルの状態を診断するオイル状態診断方法及びオイル状態診断装置に関する。 This disclosure relates to an oil condition diagnosis method and an oil condition diagnosis device for diagnosing the condition of oil used in mechanical devices and the like.
 従来、機械装置内の潤滑油及びエンジンオイルなどのオイルの分析は、機械装置からオイルをサンプリングして、専門の検査機関に分析を依頼する方法が主流となっている。しかしながら、機械装置からオイルをサンプリングするために機械装置の稼働を止める必要があるため、手間がかかる。また、専門の検査機関にオイルサンプルを送付してから結果が返ってくるまでに時間がかかる。そのため、比較的簡便に、機械装置内のオイルの分析を行い、当該オイルの状態を診断する方法及び装置が求められている。 Conventionally, the mainstream method for analyzing oils such as lubricating oil and engine oil in machinery is to sample the oil from the machinery and request an analysis from a specialized inspection agency. However, it is troublesome because it is necessary to stop the operation of the mechanical device in order to sample the oil from the mechanical device. In addition, it takes time for the results to be returned after the oil sample is sent to a specialized inspection agency. Therefore, there is a demand for a method and an apparatus for diagnosing the state of the oil by analyzing the oil in the mechanical device relatively easily.
 例えば、特許文献1は、赤外吸収分光法を用いたタービン油の劣化度評価方法及び劣化度評価装置を開示している。特許文献1に記載の技術では、タービン油の波数720cm-1付近での比較吸収ピークの吸光度における新油からの変化率を求め、この変化率に基づいて酸化物吸収ピークの吸光度を補正し、この補正された酸化物吸収ピークの吸光度に対応する全酸価を求め、この全酸価からタービン油の劣化度を評価する。 For example, Patent Document 1 discloses a deterioration degree evaluation method and a deterioration degree evaluation device for turbine oil using infrared absorption spectroscopy. In the technique described in Patent Document 1, the rate of change from the new oil in the absorbance of the comparative absorption peak near the wave number of 720 cm -1 of the turbine oil is obtained, and the absorbance of the oxide absorption peak is corrected based on this rate of change. The total acid value corresponding to the absorbance of the corrected oxide absorption peak is obtained, and the degree of deterioration of the turbine oil is evaluated from this total acid value.
特開2003-028793号公報Japanese Unexamined Patent Publication No. 2003-0287993
 特許文献1に記載の従来技術は、タービン油の波数720cm-1付近での比較吸収ピークの吸光度における新油からの変化率を求めるために、タービン油を使用する前に、新油状態での吸収ピークの吸光度を測定する必要があり、手間がかかる。また、特許文献1に記載の従来技術は、ディーゼルオイルなどのエンジンオイルに適用されても、あまり効果がないことが開示されている。つまり、特許文献1に記載の従来技術では、オイルの種類によっては、オイルの劣化度(以下、オイルの状態ともいう)を正確に評価できない場合がある。 According to the prior art described in Patent Document 1, in order to obtain the rate of change from the new oil in the absorbance of the comparative absorption peak near the wave number of 720 cm -1 of the turbine oil, the turbine oil is used in the new oil state before being used. It is necessary to measure the absorbance of the absorption peak, which is troublesome. Further, it is disclosed that the prior art described in Patent Document 1 is not very effective even when applied to an engine oil such as diesel oil. That is, in the prior art described in Patent Document 1, depending on the type of oil, the degree of deterioration of the oil (hereinafter, also referred to as the state of the oil) may not be accurately evaluated.
 そこで、本開示は、簡便に、かつ、精度良くオイルの状態を診断することができるオイル状態診断方法及びオイル状態診断装置を提供する。 Therefore, the present disclosure provides an oil state diagnosis method and an oil state diagnosis device that can easily and accurately diagnose the oil state.
 本開示の一態様に係るオイル状態診断方法は、オイルのラマンスペクトルを取得し、取得した前記ラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出し、予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係に基づいて、算出した前記少なくとも1つの規格化した値から前記オイルの状態を診断する。 In the oil state diagnosis method according to one aspect of the present disclosure, a Raman spectrum of oil is acquired, and the intensity of a peak derived from saturated alcan in the Raman spectrum is standardized with respect to the intensity of a predetermined peak in the acquired Raman spectrum. At least one of the normalized values is calculated, and the value and the state of the oil normalized by the intensity of the peak derived from the saturated Alcan in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil. The state of the oil is diagnosed from the calculated at least one standardized value based on the correlation with.
 また、本開示の一態様に係るオイル状態診断装置は、オイルのラマンスペクトルを取得する取得部と、取得した前記ラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出する算出部と、予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係を記憶する記憶部と、前記相関関係に基づいて、算出した前記少なくとも1つの規格化した値から前記オイルの状態を診断する診断部と、を備える。 Further, the oil state diagnostic apparatus according to one aspect of the present disclosure is derived from an acquisition unit that acquires a Raman spectrum of oil and a saturated alkane in the Raman spectrum with respect to the intensity of a predetermined peak in the acquired Raman spectrum. A calculation unit that calculates at least one value normalized by the peak intensity, and the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil. It includes a storage unit that stores the correlation between the standardized value and the oil state, and a diagnostic unit that diagnoses the oil state from at least one standardized value calculated based on the correlation. ..
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific aspects may be realized by a system, a device, a method, an integrated circuit, a computer program, or a non-temporary recording medium such as a computer-readable CD-ROM, and the system. , Devices, methods, integrated circuits, computer programs, and any combination of recording media.
 本開示によれば、簡便に、かつ、精度良くオイルの状態を診断することができるオイル状態診断方法及びオイル状態診断装置が提供される。 According to the present disclosure, an oil condition diagnosis method and an oil condition diagnosis device capable of diagnosing an oil condition easily and accurately are provided.
図1は、ラマン分光分析のフローの一例を示す図である。FIG. 1 is a diagram showing an example of a flow of Raman spectroscopic analysis. 図2は、ステップS001で測定した、使用時間の異なるオイルのラマンスペクトルを示す図である。FIG. 2 is a diagram showing Raman spectra of oils having different usage times measured in step S001. 図3は、ステップS002にて、図2のラマンスペクトルから蛍光ノイズを除去したラマン散乱光のスペクトルを示す図である。FIG. 3 is a diagram showing a spectrum of Raman scattered light obtained by removing fluorescence noise from the Raman spectrum of FIG. 2 in step S002. 図4は、オイルの状態により生じ得る測定上の問題点を説明するための図である。FIG. 4 is a diagram for explaining measurement problems that may occur depending on the state of oil. 図5は、実施の形態に係るオイル状態診断装置の機能構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the functional configuration of the oil state diagnostic apparatus according to the embodiment. 図6は、実施の形態に係るオイル状態診断方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the oil state diagnosis method according to the embodiment. 図7は、レーザラマン分光測定装置の構成の一例を示す概略図である。FIG. 7 is a schematic view showing an example of the configuration of the laser Raman spectroscopic measuring device. 図8は、図7のサンプルプレートのA-A線における概略断面図である。FIG. 8 is a schematic cross-sectional view taken along the line AA of the sample plate of FIG. 図9は、実施例1のデータを示す図である。FIG. 9 is a diagram showing the data of the first embodiment. 図10は、本開示に係るオイル状態診断装置を備えるオイル状態診断システムの一例を示す図である。FIG. 10 is a diagram showing an example of an oil state diagnosis system including the oil state diagnosis device according to the present disclosure.
 (本開示に至った知見)
 機械装置に使用されるオイルは、機械装置内の各部の動きを潤滑にする潤滑作用、例えば、ピストンとピストンシリングとの隙間を密閉してガス抜けを防ぎ気密性を保つ密封作用、燃焼などで発生する熱を吸収して放出する冷却作用、燃焼によって発生した汚れを取り込む清浄分散作用、及び、錆などの腐食から機械装置を守る防腐食作用を有する。これらの作用の低下により、機械装置の不具合が発生する。そのため、機械装置内のオイルの状態を把握して、適切な時期に新しいオイルに交換する必要がある。
(Findings leading to this disclosure)
The oil used in the mechanical device has a lubricating action that lubricates the movement of each part in the mechanical device, for example, a sealing action that seals the gap between the piston and the piston silling to prevent gas leakage and keeps airtightness, combustion, etc. It has a cooling action that absorbs and releases the generated heat, a cleaning and dispersing action that takes in dirt generated by combustion, and an anticorrosion action that protects the mechanical device from corrosion such as rust. Due to the reduction of these actions, a malfunction of the mechanical device occurs. Therefore, it is necessary to grasp the state of oil in the mechanical device and replace it with new oil at an appropriate time.
 機械装置に使用されるオイルの分析は、通常、以下の目的で行われている。当該分析の目的は、例えば、適切なオイル交換時期を判断すること、機械装置の状態を把握すること、機械装置の故障の前兆などを検知すること、並びに、機械装置が故障した場合に、機械装置の状態及び故障の原因などを特定すること、である。オイルの分析は、これらの目的に応じて、分析手法及びオイル中の分析対象物を決定する。例えば、オイルの酸化及び劣化の分析は、赤外吸収分光法又はガスクロマトグラフィーにより行われる。 Analysis of oil used in machinery is usually performed for the following purposes. The purpose of the analysis is, for example, to determine an appropriate oil change time, to grasp the state of a mechanical device, to detect a sign of a mechanical device failure, and to detect a mechanical device failure. To identify the state of the device and the cause of the failure. The analysis of oil determines the analysis method and the analysis target in the oil according to these purposes. For example, analysis of oil oxidation and degradation is performed by infrared absorption spectroscopy or gas chromatography.
 しかしながら、これらの分析装置は、一般に大型かつ非常に高価であり、汎用性に乏しい。また、これらの分析装置を小型化すると、分析精度が低下する。そのため、機械装置に使用されるオイルの分析は、一般に、専門の分析機関で行われる。分析機関で分析されたオイルのデータは、高精度で、かつ、信頼性の高いものではあるものの、機械装置の使用者がその結果を知ることができるまでに、通常、3週間程度の時間を要し、また高価な装置を使用するために分析費用もまた高価である。そのため、オイルの分析を高頻度に行うことは難しく、例えば故障の前兆予知を行うには不十分であった。 However, these analyzers are generally large and very expensive, and lack versatility. Further, if these analyzers are miniaturized, the analysis accuracy is lowered. Therefore, the analysis of oils used in machinery is generally performed by a specialized analytical institution. Although the oil data analyzed by the analytical institution is highly accurate and reliable, it usually takes about three weeks for the user of the mechanical device to know the result. Analytical costs are also high due to the use of expensive equipment. Therefore, it is difficult to analyze the oil frequently, and it is insufficient to predict the precursor of a failure, for example.
 機械装置内のオイルの状態は、同じ種類の機械装置であっても、当該機械装置が使用される環境によって異なるため、例えば、稼働時間が同じであってもオイルの状態が同じとは限らない。とりわけ、機械装置が建設機械の場合には、機械装置が使用される環境によって機械装置及び機械装置が備えるエンジンなどの内燃機関にかかる負荷の大きさが異なる。そのため、潤滑油をはじめとするオイルの状態の変化の速度も一様ではない。これに対応するため、建設機械では、現状、非常に短い間隔でオイルの交換が行われている。 The state of oil in a machine device differs depending on the environment in which the machine device is used, even if the machine device is of the same type. Therefore, for example, the state of oil is not always the same even if the operating time is the same. .. In particular, when the mechanical device is a construction machine, the magnitude of the load applied to the mechanical device and the internal combustion engine such as the engine included in the mechanical device differs depending on the environment in which the mechanical device is used. Therefore, the rate of change in the state of oil such as lubricating oil is not uniform. In response to this, construction machinery is currently changing oil at very short intervals.
 検査機関に依頼して分析するという考え方に対して、分析装置を機械装置内に設置し、任意のタイミングでオイルの分析を行うインライン分析という考え方がある。 In contrast to the idea of requesting an inspection organization to analyze, there is an idea of in-line analysis in which an analyzer is installed inside the mechanical device and oil is analyzed at any time.
 機械装置内のオイルの分析にインライン分析を適用できれば、機械装置からオイルをサンプリングせずに任意のタイミングでオイルの分析を行うことができるため、機械装置の使用者は、オイルの状態を適時把握することができる。これにより、使用者は、オイルの状態に応じて、オイル交換など機械装置に必要なメンテナンスを適切に行うことができる。 If in-line analysis can be applied to the analysis of oil in the mechanical device, the oil can be analyzed at any time without sampling the oil from the mechanical device, so that the user of the mechanical device can grasp the state of the oil in a timely manner. can do. As a result, the user can appropriately perform maintenance necessary for the mechanical device such as oil change according to the state of the oil.
 以下、本開示に適用される分析法について説明する。 The analysis method applied to this disclosure will be described below.
 近年、物質の化学分析の手法として、ラマン分光法が注目されている。ラマン分光法とは、被測定物質に対して単一波長の励起光を、一般的にはレーザ光を照射し、その反射光及び散乱光(レイリー散乱光)に混じって得られる、励起光とは異なる波長の光(ラマン散乱光)のスペクトルから、被測定物質の化学的性質の情報を得る技術である。しかしながら、ラマン散乱光は、励起光と同じ波長の反射光、又は、散乱光であるレイリー散乱光の強度に対して10-6程度の強度しかなく、極めて微弱である。そのため高感度の検出器及び光学系が必要であり、また励起光源となるレーザに関しても波長安定性及び単色性などの高い性能が要求される。こうした理由から、ラマン分光法は、その高い有用性にも関わらず、赤外吸収分光法に比べて産業への応用はあまり進んでいない。 In recent years, Raman spectroscopy has attracted attention as a method for chemical analysis of substances. Raman spectroscopy refers to excitation light obtained by irradiating a substance under test with excitation light of a single wavelength, generally laser light, and mixing it with the reflected light and scattered light (Rayleigh scattered light). Is a technique for obtaining information on the chemical properties of the substance to be measured from the spectra of light of different wavelengths (Raman scattered light). However, the Raman scattered light has an intensity of only about 10 to 6 with respect to the intensity of the reflected light having the same wavelength as the excitation light or the Rayleigh scattered light which is the scattered light, and is extremely weak. Therefore, a highly sensitive detector and an optical system are required, and a laser as an excitation light source is also required to have high performance such as wavelength stability and monochromaticity. For this reason, Raman spectroscopy has not been widely applied to industry as compared to infrared absorption spectroscopy, despite its high usefulness.
 ラマン分光法では、ラマン散乱光と励起光との波数の差(いわゆる、ラマンシフト)は、被測定物質を構成する分子の化学結合の振動準位間のエネルギー差に相当するため、代表的な振動分光法である赤外吸収分光と概略では同じ化学結合に関する情報が得られる。ここで注目すべきは、ラマン散乱光においては励起光そのものではなく、励起光からの波長のずれ(光量子論的にはエネルギーの逆数の差)が化学結合との対応を示すことである。すなわち、励起光の波長は任意であり、励起光として、紫外光、可視光、及び、近赤外光などから任意の波長の光を使用可能である。これにより、赤外吸収分光法のように特殊な検出器及び光学素子を使用することなく、汎用の可視光領域の光学要素を使用することが可能である。 In Raman spectroscopy, the difference in the number of waves between Raman scattered light and excitation light (so-called Raman shift) corresponds to the energy difference between the vibrational levels of the chemical bonds of the molecules that make up the substance to be measured, which is typical. Infrared absorption spectroscopy, which is a vibrational spectroscopy method, and roughly the same information on chemical bonds can be obtained. It should be noted here that in Raman scattered light, not the excitation light itself, but the wavelength deviation from the excitation light (difference in the reciprocal of energy in photon theory) indicates the correspondence with the chemical bond. That is, the wavelength of the excitation light is arbitrary, and as the excitation light, light having an arbitrary wavelength from ultraviolet light, visible light, near-infrared light, or the like can be used. This makes it possible to use general-purpose optical elements in the visible light region without using special detectors and optical elements as in infrared absorption spectroscopy.
 しかしながら、上述のようにラマン分光法はいまだに産業分野への応用が進んでいないため、機械装置の油類(つまり、オイル)の分析に対する十分な知見があるとは言い難い。 However, as mentioned above, Raman spectroscopy has not yet been applied to the industrial field, so it cannot be said that there is sufficient knowledge for the analysis of oils (that is, oils) in machinery.
 従来の機械装置の油類の分析に関する知見としては、例えば、潤滑油の状態のモニタリングに関する規格(ASTM E2412-10;2018)が挙げられる。当該規格では、フーリエ変換赤外吸収分光(FT-IR)による潤滑油の状態のモニタリングにおいて監視すべき、赤外吸収スペクトル上の特徴的なシグナルについて、その波数領域と帰属物質とが規定されている。一方、ラマン分光法では、このような規格は存在しない。 As a knowledge about the analysis of oils of conventional mechanical devices, for example, there is a standard (ASTM E2412-10; 2018) for monitoring the state of lubricating oil. The standard defines the frequency domain and belonging substances of characteristic signals on the infrared absorption spectrum that should be monitored in the monitoring of the state of lubricating oil by Fourier transform infrared absorption spectroscopy (FT-IR). There is. On the other hand, in Raman spectroscopy, such a standard does not exist.
 また、物理的な原理からは、赤外吸収分光法もラマン分光法も分子振動分光法であり、そのスペクトル上の特徴的なシグナルは、オイル中に含まれる各分子の結合エネルギーに相当するエネルギーの位置に現れる。しかしながら、赤外吸収分光法において特徴的なシグナルを示すエネルギーの赤外光を吸収する物理素過程と、ラマン分光法において特徴的なシグナルを示すエネルギーのラマン散乱光を生じる物理素過程とは異なっており、一般に同じ分子振動に帰属するシグナルであってもシグナルの強度が異なる。これを選択律と呼び、時として同じ物質を赤外吸収分光法とラマン分光法とで測定しても、全く異なるスペクトルが得られることがある。 From the physical principle, both infrared absorption spectroscopy and Raman spectroscopy are molecular vibration spectroscopy, and the characteristic signal on the spectrum is the energy corresponding to the binding energy of each molecule contained in the oil. Appears at the position of. However, the physical element process that absorbs infrared light of energy showing a characteristic signal in infrared absorption spectroscopy and the physical element process that produces Raman scattered light of energy showing a characteristic signal in Raman spectroscopy are different. In general, even signals belonging to the same molecular vibration have different signal intensities. This is called the selection rule, and sometimes even if the same substance is measured by infrared absorption spectroscopy and Raman spectroscopy, completely different spectra can be obtained.
 また、ラマン分光法は、その原理上、測定対象物(ここでは油類)に対して、特定の波長の励起光、一般的には可視光レーザを照射する。レーザは非常に高いエネルギー密度を有するため、測定対象物の自家蛍光を誘起する場合がある。つまり、測定対象物中に含まれる成分によっては、ラマン散乱光のシグナルに比べてはるかに高いシグナルの自家蛍光が生じる場合があり、この自家蛍光が微弱なラマン散乱光の分析にあたって障害となる。例えば、微弱なラマン散乱光を検出するためには、スペクトル取得のための露光時間を長くすることが一般的に求められる。しかしながら、ラマン散乱光のシグナルよりもはるかに高いシグナルの自家蛍光が生じると、自家蛍光によってスペクトル測定用の光検出器の出力が飽和する可能性がある。 In addition, Raman spectroscopy irradiates an object to be measured (here, oils) with excitation light of a specific wavelength, generally a visible light laser, in principle. Since the laser has a very high energy density, it may induce autofluorescence of the object to be measured. That is, depending on the components contained in the object to be measured, autofluorescence with a signal much higher than that of Raman scattered light may occur, and this autofluorescence interferes with the analysis of weak Raman scattered light. For example, in order to detect weak Raman scattered light, it is generally required to lengthen the exposure time for obtaining a spectrum. However, if autofluorescence occurs with a signal much higher than the Raman scattered light signal, the autofluorescence can saturate the output of the photodetector for spectral measurement.
 以下、ラマン分光分析のフローについて説明する。図1は、ラマン分光分析のフローの一例を示す図である。 The flow of Raman spectroscopic analysis will be described below. FIG. 1 is a diagram showing an example of a flow of Raman spectroscopic analysis.
 図1に示されるように、まず、測定対象物(ここでは、オイル)にレーザで励起光を照射し、ラマンスペクトルを測定する(ステップS001)。このとき、測定対象物に励起光を照射することにより自家蛍光(いわゆる、蛍光ノイズ)が生じるため、測定したラマンスペクトルは蛍光ノイズを含んでいる。続いて、適切な関数でフィッティングすることにより、蛍光ノイズを除去し、ベースライン補正を行う(ステップS002)。これにより、ラマン散乱光のスペクトルが得られる。続いて、ステップS002で得られたラマンスペクトルを、例えばガウス関数などのピーク形状関数を用いてフィッティングし、個々のピークを分離する(ステップS003)。これにより、ピークの形状、位置、高さ及び面積が求められる。 As shown in FIG. 1, first, the object to be measured (oil in this case) is irradiated with excitation light with a laser, and the Raman spectrum is measured (step S001). At this time, since autofluorescence (so-called fluorescence noise) is generated by irradiating the object to be measured with excitation light, the measured Raman spectrum contains fluorescence noise. Subsequently, the fluorescence noise is removed by fitting with an appropriate function, and the baseline correction is performed (step S002). This gives a spectrum of Raman scattered light. Subsequently, the Raman spectrum obtained in step S002 is fitted using a peak shape function such as a Gaussian function, and individual peaks are separated (step S003). As a result, the shape, position, height and area of the peak can be obtained.
 図2は、ステップS001で測定した、使用時間の異なるオイルのラマンスペクトルを示す図である。図3は、ステップS002にて、図2のラマンスペクトルから蛍光ノイズを除去したラマン散乱光のスペクトルを示す図である。 FIG. 2 is a diagram showing Raman spectra of oils having different usage times measured in step S001. FIG. 3 is a diagram showing a spectrum of Raman scattered light obtained by removing fluorescence noise from the Raman spectrum of FIG. 2 in step S002.
 図2に示されるように、ステップS001で測定されたラマンスペクトルは、オイルの使用時間が増えるにつれてオイルの自家蛍光の蛍光強度が大きくなるが、使用時間が所定の時間(ここでは、514時間)を超えると、使用時間が増えるにつれて、オイルの自家蛍光の蛍光強度が低下している。 As shown in FIG. 2, in the Raman spectrum measured in step S001, the fluorescence intensity of the autofluorescence of the oil increases as the oil usage time increases, but the usage time is a predetermined time (here, 514 hours). If it exceeds, the fluorescence intensity of the autofluorescence of the oil decreases as the usage time increases.
 また、図3に示されるように、ステップS002で得られたオイルのラマン散乱光のスペクトルにおいても、オイルの使用時間が増えるにつれてラマン散乱光のスペクトルの信号強度が大きくなるが、所定の使用時間(例えば、514時間)を超えると低下している。 Further, as shown in FIG. 3, also in the spectrum of the Raman scattered light of the oil obtained in step S002, the signal intensity of the spectrum of the Raman scattered light increases as the usage time of the oil increases, but the predetermined usage time It decreases when it exceeds (for example, 514 hours).
 このように、蛍光ノイズだけでなく、ラマン散乱光のスペクトル全体の信号強度も増減する現象が起こるため、ステップS002で得られたラマン散乱光のスペクトルをステップS003でピークフィッティングしてピークの高さなどを求めても、オイルの状態を正確に評価ができない可能性がある。 In this way, not only the fluorescence noise but also the signal intensity of the entire spectrum of the Raman scattered light increases or decreases. Therefore, the spectrum of the Raman scattered light obtained in step S002 is peak-fitted in step S003 to obtain the peak height. Even if you ask for such things, it may not be possible to accurately evaluate the state of the oil.
 例えば、機械装置(例えば、エンジンなど)で使用されるオイルは、使用時間が長くなるにつれて、オイル中に煤などの着色物質が生じる場合がある。煤などの着色物質は、光を吸収しやすいため、オイルに照射された励起光(以下、照射光ともいう)の一部が当該着色物質に遮られ、オイルに照射される励起光の光強度が低下すると考えられる。以下、図4を参照しながらより具体的に説明する。 For example, in oil used in mechanical devices (for example, engines), coloring substances such as soot may be generated in the oil as the usage time becomes longer. Since colored substances such as soot easily absorb light, a part of the excitation light irradiated to the oil (hereinafter, also referred to as irradiation light) is blocked by the colored substance, and the light intensity of the excitation light irradiated to the oil. Is thought to decrease. Hereinafter, a more specific description will be given with reference to FIG.
 図4は、オイルの状態により生じ得る測定上の問題点を説明するための図である。図4の(a)は、着色がほとんど見られないオイルの測定を模式的に示しており、図4の(b)は、煤などの着色物質を含んで着色したオイルの測定を模式的に示している。図4の(c)は、図4の(a)及び図4の(b)の測定により得られると考えられるラマン散乱光のスペクトルの例を模式的に示している。 FIG. 4 is a diagram for explaining measurement problems that may occur depending on the state of oil. FIG. 4A schematically shows the measurement of oil in which almost no coloring is observed, and FIG. 4B schematically shows the measurement of oil colored containing a coloring substance such as soot. Shown. FIG. 4 (c) schematically shows an example of a spectrum of Raman scattered light that is considered to be obtained by the measurements of FIG. 4 (a) and FIG. 4 (b).
 図4の(a)に示されるように、着色がほとんど見られないオイルでは、レーザから照射光Lが照射されると、蛍光ノイズを含むラマンスペクトルL2aが得られると考えられる。一方、図4の(b)に示されるように、煤などの着色物質を含んで着色したオイルは、レーザから照射光Lが照射されても、照射光Lの一部がオイル中の着色物質に吸収されて遮られ、オイルに照射される照射光Lの光強度が減衰すると考えられる。そのため、蛍光ノイズを含むラマンスペクトルL2bの信号強度も低下すると考えられる。 As shown in FIG. 4A, it is considered that in the oil in which almost no coloring is observed, a Raman spectrum L 2a including fluorescence noise can be obtained when the irradiation light L 1 is irradiated from the laser. On the other hand, as shown in FIG. 4 (b), colored oil contain coloring material such as soot, even the irradiation light L 1 from the laser is irradiated, a part of the irradiation light L 1 is in the oil blocked is absorbed by the coloring material, the light intensity of the irradiation light L 1 irradiated to the oil is thought to be attenuated. Therefore, it is considered that the signal intensity of the Raman spectrum L 2b including the fluorescence noise also decreases.
 これらの条件で得られるラマンスペクトルをベースライン補正したスペクトルの模式図を図4の(c)に示す。図4の(c)中のスペクトルaは、図4の(a)の測定で得られると考えられるラマンスペクトルをベースライン補正した場合の模式図である。また、スペクトルbは、図4の(b)で得られると考えられるラマンスペクトルをベースライン補正した場合の模式図である。 A schematic diagram of a spectrum obtained by baseline-correcting the Raman spectrum obtained under these conditions is shown in FIG. 4 (c). The spectrum a in (c) of FIG. 4 is a schematic diagram when the Raman spectrum considered to be obtained by the measurement of (a) of FIG. 4 is baseline-corrected. Further, the spectrum b is a schematic diagram when the Raman spectrum considered to be obtained in FIG. 4B is corrected by baseline.
 図4の(c)に示されるように、着色オイルのラマン散乱光のスペクトルbは、未着色オイルのラマン散乱光のスペクトルaよりもスペクトル全体の信号強度が低下すると考えられる。このように、煤などの着色物質による光吸収がラマンスペクトルの信号全体の強度差に影響すると考えられる。 As shown in FIG. 4 (c), it is considered that the spectrum b of the Raman scattered light of the colored oil has a lower signal intensity of the entire spectrum than the spectrum a of the Raman scattered light of the uncolored oil. Thus, it is considered that the light absorption by the coloring substance such as soot affects the intensity difference of the entire signal of the Raman spectrum.
 本願発明者らは、上記課題を鑑みて鋭意検討した結果、ラマン分光法において、機械装置内のオイル由来の自家蛍光及びオイル中の煤などの外乱の影響を低減できる方法を見出した。 As a result of diligent studies in view of the above problems, the inventors of the present application have found a method capable of reducing the influence of disturbances such as autofluorescence derived from oil in a mechanical device and soot in oil in Raman spectroscopy.
 そこで、本開示は、簡便に、かつ、精度良くオイルの状態を診断することができるオイル状態診断方法及びオイル状態診断装置を提供する。 Therefore, the present disclosure provides an oil state diagnosis method and an oil state diagnosis device that can easily and accurately diagnose the oil state.
 本開示の一態様の概要は、以下の通りである。 The outline of one aspect of the present disclosure is as follows.
 本開示の一態様に係るオイル状態診断方法は、オイルのラマンスペクトルを取得し、取得した前記ラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出し、予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係に基づいて、算出した前記少なくとも1つの規格化した値から前記オイルの状態を診断する。 In the oil state diagnosis method according to one aspect of the present disclosure, a Raman spectrum of oil is acquired, and the intensity of a peak derived from saturated alcan in the Raman spectrum is standardized with respect to the intensity of a predetermined peak in the acquired Raman spectrum. At least one of the normalized values is calculated, and the value and the state of the oil normalized by the intensity of the peak derived from the saturated Alcan in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil. The state of the oil is diagnosed from the calculated at least one standardized value based on the correlation with.
 このように、本開示の一態様に係るオイル状態診断方法では、予め算出された、オイルのラマンスペクトルにおける所定のピーク強度の規格化値とオイルの状態との相関関係に、取得したオイルのラマンスペクトルにおける所定のピーク強度の規格化値を代入することにより、オイルの状態を簡便に診断することができる。 As described above, in the oil state diagnosis method according to one aspect of the present disclosure, the obtained Raman of the oil is found in the correlation between the normalized value of the predetermined peak intensity in the Raman spectrum of the oil and the state of the oil calculated in advance. By substituting a normalized value of a predetermined peak intensity in the spectrum, the state of the oil can be easily diagnosed.
 また、当該方法によれば、オイルのラマンスペクトルにおける所定のピークの強度を飽和アルカン由来のピークの強度で規格化するため、オイルのラマンスペクトルに対するオイルの自家蛍光、オイル中の煤、及びオイルの着色などの外乱の影響を簡便に取り除くことができる。これは、以下の理由による。 Further, according to the method, in order to standardize the intensity of a predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, the autofluorescence of the oil with respect to the Raman spectrum of the oil, the soot in the oil, and the oil The influence of disturbance such as coloring can be easily removed. This is due to the following reasons.
 例えば、オイルの主成分である飽和アルカンは、酸化によりオイルの一部の成分が変化したとしても、その総量は殆ど変化しない。つまり、オイルの状態が変化しても、オイルの飽和アルカンに由来するピークの絶対的な強度は殆ど変化しない。例えば、酸化によりオイルの一部の成分が変化しても、オイルの主成分である飽和アルカンの総量には殆ど影響がないため、飽和アルカンに由来するピークの絶対的な強度は変わらない。また、オイル中の煤及びオイルの着色により励起光が吸収されて励起光の光強度が減衰すると、当該減衰の影響は、オイルのラマンスペクトルの信号全体の強度に影響する。そのため、飽和アルカンに由来するピークの強度で、オイルのラマンスペクトルにおける所定のピークの強度を規格化することにより、言い換えると、オイルの主成分に対する所定の成分の相対比を算出することにより、オイルの状態を正確に評価することができる。 For example, saturated alkane, which is the main component of oil, hardly changes in total amount even if some components of oil change due to oxidation. That is, even if the state of the oil changes, the absolute intensity of the peak derived from the saturated alkane of the oil hardly changes. For example, even if a part of the components of the oil are changed by oxidation, the total amount of saturated alkanes, which are the main components of the oil, is hardly affected, so that the absolute intensity of the peak derived from the saturated alkanes does not change. Further, when the excitation light is absorbed by the soot and the coloring of the oil in the oil and the light intensity of the excitation light is attenuated, the influence of the attenuation affects the intensity of the entire signal of the Raman spectrum of the oil. Therefore, by normalizing the intensity of the predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, in other words, by calculating the relative ratio of the predetermined component to the main component of the oil, the oil The state of can be evaluated accurately.
 したがって、オイルのラマンスペクトルにおける所定のピークの強度を、飽和アルカンに由来するピークの強度で規格化することにより、当該所定のピーク強度は、オイルの状態の変化に対応した適正な値に補正される。つまり、オイルのラマンスペクトルに対する上記の外乱の影響を簡便に取り除くことができる。 Therefore, by normalizing the intensity of the predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, the predetermined peak intensity is corrected to an appropriate value corresponding to the change in the state of the oil. NS. That is, the influence of the above-mentioned disturbance on the Raman spectrum of oil can be easily removed.
 また、当該方法によれば、上記の規格化した値は、オイルの状態の変化に対応した適正な値であるため、予め算出された上記の相関関係に基づいて、オイルの状態を正確に評価することができる。 Further, according to the method, since the above standardized value is an appropriate value corresponding to a change in the oil state, the oil state is accurately evaluated based on the above-mentioned correlation calculated in advance. can do.
 以上により、本開示の一態様に係るオイル状態診断方法によれば、簡便に、かつ、精度良くオイルの状態を診断することができる。 From the above, according to the oil condition diagnosis method according to one aspect of the present disclosure, the oil condition can be diagnosed easily and accurately.
 例えば、本開示の一態様に係るオイル状態診断方法では、前記ラマンスペクトルの前記飽和アルカンに由来するピークは、1400cm-1~1600cm-1の波数範囲、又は、2840cm-1~3000cm-1の波数範囲に位置してもよい。 For example, in the oil state diagnosis method according to an embodiment of the present disclosure, a peak derived from the saturated alkane of the Raman spectra, wave number range of 1400 cm -1 ~ 1600 cm -1, or, wavenumber of 2840cm -1 ~ 3000cm -1 It may be located in the range.
 これにより、オイルの主成分である飽和アルカン(-CH-)に由来するラマンスペクトルの波数範囲におけるピークのうち、比較的強い信号強度を示すピークを正規化の基準とすることができるため、信頼性の高いデータ(つまり、正規化した値)を得ることができる。 As a result, among the peaks in the wavenumber range of the Raman spectrum derived from the saturated alkane (-CH 2- ), which is the main component of the oil, the peak showing a relatively strong signal intensity can be used as the standard for normalization. Reliable data (that is, normalized values) can be obtained.
 例えば、本開示の一態様に係るオイル状態診断方法では、前記ラマンスペクトルの前記飽和アルカンに由来するピークは、波数1450cm-1に位置してもよい。 For example, in the oil state diagnostic method according to one aspect of the present disclosure, the peak derived from the saturated alkane in the Raman spectrum may be located at a wave number of 1450 cm -1.
 これにより、飽和アルカンに由来する強い信号強度を示すピークに基づいて正規化した値を算出するため、精度良くオイルの状態を診断することができる。 As a result, the normalized value is calculated based on the peak showing the strong signal strength derived from the saturated alkane, so that the oil state can be diagnosed with high accuracy.
 例えば、本開示の一態様に係るオイル状態診断方法では、前記所定のピークは、波数1300cm-1、1600cm-1及び1750cm-1の少なくとも1つに位置してもよい。 For example, in the oil state diagnosis method according to an embodiment of the present disclosure, the predetermined peak wavenumber 1300 cm -1, may be located in at least one of 1600 cm -1 and 1750 cm -1.
 これにより、オイルの状態変化(例えば、オイルの酸化による成分の変化)に伴って生じるピークのうち比較的信号強度の強いピークに基づいて、精度良くオイルの状態を診断することができる。 This makes it possible to accurately diagnose the oil condition based on the peak with a relatively strong signal strength among the peaks generated due to the change of the oil condition (for example, the change of the component due to the oxidation of the oil).
 例えば、本開示の一態様に係るオイル状態診断方法では、前記所定のピークは、波数1300cm-1に位置してもよい。 For example, in the oil condition diagnosis method according to one aspect of the present disclosure, the predetermined peak may be located at a wave number of 1300 cm -1.
 これにより、赤外吸収分光法に比べて、オイルの状態変化による信号強度の変化が非常に大きいピークの強度に基づいてオイルの状態を診断するため、診断精度が向上する。 As a result, the diagnosis accuracy is improved because the oil state is diagnosed based on the intensity of the peak in which the change in signal intensity due to the change in oil state is very large as compared with infrared absorption spectroscopy.
 例えば、本開示の一態様に係るオイル状態診断方法では、前記診断では、規格化した前記値に基づいて、前記オイルの全酸価及び酸化値の少なくとも1つを評価してもよい。 For example, in the oil state diagnosis method according to one aspect of the present disclosure, at least one of the total acid value and the oxidation value of the oil may be evaluated based on the standardized values in the diagnosis.
 これにより、簡便に、かつ、精度良く、酸化によるオイルの変化の状態を診断することができる。 This makes it possible to easily and accurately diagnose the state of oil change due to oxidation.
 例えば、本開示の一態様に係るオイル状態診断方法は、さらに、取得した前記ラマンスペクトルのベースラインを補正し、前記算出では、補正後の前記ラマンスペクトルに対して、前記規格化した値を算出してもよい。 For example, the oil state diagnosis method according to one aspect of the present disclosure further corrects the acquired baseline of the Raman spectrum, and in the calculation, the normalized value is calculated with respect to the corrected Raman spectrum. You may.
 これにより、補正後のラマンスペクトルに対して規格化した値を算出することができるため、より精度良くオイルの状態を診断することができる。 As a result, a standardized value can be calculated for the corrected Raman spectrum, so that the oil state can be diagnosed more accurately.
 また、本開示の一態様に係るオイル状態診断装置は、オイルのラマンスペクトルを取得する取得部と、取得した前記ラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出する算出部と、予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係を記憶する記憶部と、前記相関関係に基づいて、算出した前記少なくとも1つの規格化した値から前記オイルの状態を診断する診断部と、を備える。 Further, the oil state diagnostic apparatus according to one aspect of the present disclosure is derived from an acquisition unit that acquires a Raman spectrum of oil and a saturated alkane in the Raman spectrum with respect to the intensity of a predetermined peak in the acquired Raman spectrum. A calculation unit that calculates at least one value normalized by the peak intensity, and the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the pre-calculated intensity of the predetermined peak in the Raman spectrum of the oil. It includes a storage unit that stores the correlation between the standardized value and the oil state, and a diagnostic unit that diagnoses the oil state from at least one standardized value calculated based on the correlation. ..
 このように、本開示の一態様に係るオイル状態診断装置では、予め算出された、オイルのラマンスペクトルにおける所定のピーク強度の規格化値とオイルの状態との相関関係に、取得したオイルのラマンスペクトルにおける所定のピーク強度の規格化値を代入することにより、オイルの状態を簡便に診断することができる。 As described above, in the oil state diagnostic apparatus according to one aspect of the present disclosure, the obtained Raman of the oil is found in the correlation between the normalized value of the predetermined peak intensity in the Raman spectrum of the oil calculated in advance and the state of the oil. By substituting a normalized value of a predetermined peak intensity in the spectrum, the state of the oil can be easily diagnosed.
 また、当該装置によれば、オイルのラマンスペクトルにおける所定のピークの強度を飽和アルカン由来のピークの強度で規格化するため、オイルのラマンスペクトルに対するオイルの自家蛍光、オイル中の煤、及びオイルの着色などの外乱の影響を簡便に取り除くことができる。これは、以下の理由による。例えば、オイルの主成分である飽和アルカンは、酸化によりオイルの一部の成分が変化したとしても、その総量は殆ど変化しない。つまり、オイルの状態が変化しても、オイルの飽和アルカンに由来するピークの絶対的な強度は殆ど変化しない。 Further, according to the apparatus, in order to standardize the intensity of a predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, the autofluorescence of the oil with respect to the Raman spectrum of the oil, the soot in the oil, and the oil The influence of disturbance such as coloring can be easily removed. This is due to the following reasons. For example, the total amount of saturated alkane, which is the main component of oil, hardly changes even if some components of the oil change due to oxidation. That is, even if the state of the oil changes, the absolute intensity of the peak derived from the saturated alkane of the oil hardly changes.
 例えば、酸化によりオイルの一部の成分が変化しても、オイルの主成分である飽和アルカンの総量には殆ど影響がないため、飽和アルカンに由来するピークの絶対的な強度は変わらない。また、オイル中の煤及びオイルの着色により励起光が吸収されて励起光の光強度が減衰すると、当該減衰の影響は、オイルのラマンスペクトルの信号全体の強度に影響する。そのため、飽和アルカンに由来するピークの強度で、オイルのラマンスペクトルにおける所定のピークの強度を規格化することにより、言い換えると、オイルの主成分に対する所定の成分の相対比を算出することにより、オイルの状態を正確に評価することができる。 For example, even if some components of the oil change due to oxidation, there is almost no effect on the total amount of saturated alkanes, which are the main components of the oil, so the absolute intensity of the peak derived from saturated alkanes does not change. Further, when the excitation light is absorbed by the soot and the coloring of the oil in the oil and the light intensity of the excitation light is attenuated, the influence of the attenuation affects the intensity of the entire signal of the Raman spectrum of the oil. Therefore, by normalizing the intensity of the predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, in other words, by calculating the relative ratio of the predetermined component to the main component of the oil, the oil The state of can be evaluated accurately.
 したがって、オイルのラマンスペクトルにおける所定のピークの強度を、飽和アルカンに由来するピークの強度で規格化することにより、当該所定のピーク強度は、オイルの状態の変化に対応した適正な値に補正される。つまり、オイルのラマンスペクトルに対する上記の外乱の影響を簡便に取り除くことができる。 Therefore, by normalizing the intensity of the predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, the predetermined peak intensity is corrected to an appropriate value corresponding to the change in the state of the oil. NS. That is, the influence of the above-mentioned disturbance on the Raman spectrum of oil can be easily removed.
 また、当該装置によれば、上記の規格化した値は、オイルの状態の変化に対応した適正な値であるため、予め算出された上記の相関関係に基づいて、オイルの状態を正確に評価することができる。 Further, according to the apparatus, since the above standardized value is an appropriate value corresponding to a change in the oil state, the oil state is accurately evaluated based on the above-mentioned correlation calculated in advance. can do.
 以上により、本開示の一態様に係るオイル状態診断装置によれば、簡便に、かつ、精度良くオイルの状態を診断することができる。 From the above, according to the oil condition diagnostic apparatus according to one aspect of the present disclosure, the oil condition can be easily and accurately diagnosed.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム、又は、コンピュータで読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM, and the system, the method, the integrated circuit. , A computer program, and any combination of recording media.
 以下、本開示の実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, step order, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.
 また、各図は、必ずしも厳密に図示したものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。 Also, each figure is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 また、本明細書において、平行又は直交などの要素間の関係性を示す用語、及び、正方形又は長方形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Further, in the present specification, terms indicating relationships between elements such as parallel or orthogonal, terms indicating the shape of elements such as squares or rectangles, and numerical ranges are not expressions expressing only strict meanings. , Is an expression meaning that a substantially equivalent range, for example, a difference of about several percent is included.
 (実施の形態)
 [オイル状態診断装置]
 まず、実施の形態に係るオイル状態診断装置について説明する。図5は、実施の形態に係るオイル状態診断装置100の機能構成の一例を示すブロック図である。図5では、光の動きを破線で示し、信号の伝達方向を実線で示している。
(Embodiment)
[Oil condition diagnostic device]
First, the oil state diagnostic apparatus according to the embodiment will be described. FIG. 5 is a block diagram showing an example of the functional configuration of the oil condition diagnostic apparatus 100 according to the embodiment. In FIG. 5, the movement of light is shown by a broken line, and the signal transmission direction is shown by a solid line.
 図5に示されるように、実施の形態に係るオイル状態診断装置100は、例えば、光源10と、分光器20と、処理部70とを備える。 As shown in FIG. 5, the oil state diagnostic apparatus 100 according to the embodiment includes, for example, a light source 10, a spectroscope 20, and a processing unit 70.
 光源10は、オイルに励起光を照射する。励起光は、紫外光、可視光、及び、赤外光のいずれでもよい。中でも、励起光は、可視光であるとよい。これにより、光源10として安価な可視光レーザを使用することができる。また、光学系も安価な可視光用の光学系を使用することができる。したがって、オイル状態診断装置100を安価に製造することができるため、オイル状態診断装置100の汎用性が向上される。 The light source 10 irradiates the oil with excitation light. The excitation light may be ultraviolet light, visible light, or infrared light. Above all, the excitation light is preferably visible light. As a result, an inexpensive visible light laser can be used as the light source 10. Further, as the optical system, an inexpensive optical system for visible light can be used. Therefore, since the oil state diagnosis device 100 can be manufactured at low cost, the versatility of the oil state diagnosis device 100 is improved.
 例えば、オイル状態診断装置100が機械装置内のオイルのインライン分析を行う場合、光源10は、機械装置内のオイルの流路上に設けられた光学窓(不図示)を介してオイルに励起光を照射してもよい。このとき、光源10は、光ファイバ(不図示)を介してオイルに励起光を照射してもよい。なお、本開示に係るオイル状態診断装置をオイルのインライン分析に適用する例については、[適用例]にて後述する。 For example, when the oil condition diagnostic apparatus 100 performs in-line analysis of oil in a mechanical device, the light source 10 emits excitation light to the oil through an optical window (not shown) provided on the flow path of the oil in the mechanical device. You may irradiate. At this time, the light source 10 may irradiate the oil with excitation light via an optical fiber (not shown). An example of applying the oil condition diagnostic apparatus according to the present disclosure to in-line analysis of oil will be described later in [Application Example].
 分光器20は、励起光の照射により測定対象物(ここでは、オイル)から散乱されるラマン散乱光を分光することによりラマン散乱光のスペクトル(以下、ラマンスペクトルともいう)を導出する。例えば、分光器20は、励起光の照射によりオイルから散乱されたラマン散乱光のスペクトルを測定する測定部(不図示)と、測定したラマンスペクトルを処理部70に出力する出力部(不図示)と、を備える。分光器20は、さらに、フィルタ(不図示)と、分光部(不図示)とを備えてもよい。励起光の照射によりオイルで反射及び散乱された光は、分光器20に入射する。散乱光のほとんどは、励起光と同じ波長の光であり、いわゆる、レイリー散乱光と呼ばれる。分光器20に入射した光は、フィルタに入射する。フィルタは、例えば、バンドストップフィルタであり、ラマン散乱光を通過させ、レイリー散乱光を除去する。フィルタを通過した散乱光は、分光部で波長帯域毎の光に分光される。分光部で分光された各波長帯域の光の強度は、測定部で測定される。測定部は、例えば、撮像素子(不図示)を備えており、撮像素子は、分光部で分光された各波長帯域の光を受光して、電気信号に変換する。撮像素子は、変換した電気信号をデジタル値で出力部に出力する。出力部は、各波長帯域の光の強度を示すデジタル値を、オイルのラマン散乱光のスペクトルとして処理部70に出力する。なお、上述の分光器20の構成は一例であり、分光器20は、オイルからのラマン散乱光を分光することによりラマンスペクトルを測定することができればよく、その構成及び測定方法については、特に限定されない。 The spectroscope 20 derives a spectrum of Raman scattered light (hereinafter, also referred to as Raman spectrum) by dispersing Raman scattered light scattered from a measurement object (here, oil) by irradiation with excitation light. For example, the spectroscope 20 has a measuring unit (not shown) that measures the spectrum of Raman scattered light scattered from the oil by irradiation with excitation light, and an output unit (not shown) that outputs the measured Raman spectrum to the processing unit 70. And. The spectroscope 20 may further include a filter (not shown) and a spectroscope unit (not shown). The light reflected and scattered by the oil due to the irradiation of the excitation light is incident on the spectroscope 20. Most of the scattered light is light having the same wavelength as the excitation light, and is so-called Rayleigh scattered light. The light incident on the spectroscope 20 is incident on the filter. The filter is, for example, a band stop filter that allows Raman scattered light to pass through and removes Rayleigh scattered light. The scattered light that has passed through the filter is separated into light for each wavelength band by the spectroscopic unit. The intensity of light in each wavelength band dispersed by the spectroscopic unit is measured by the measuring unit. The measuring unit includes, for example, an image sensor (not shown), and the image sensor receives light in each wavelength band dispersed by the spectroscopic unit and converts it into an electric signal. The image sensor outputs the converted electric signal as a digital value to the output unit. The output unit outputs a digital value indicating the intensity of light in each wavelength band to the processing unit 70 as a spectrum of Raman scattered light of oil. The configuration of the spectroscope 20 described above is an example, and the spectroscope 20 only needs to be able to measure the Raman spectrum by dispersing the Raman scattered light from the oil, and the configuration and the measuring method thereof are particularly limited. Not done.
 処理部70は、分光器20から出力されたオイルのラマンスペクトルを取得して、オイルの状態を診断する処理を実行する。 The processing unit 70 acquires the Raman spectrum of the oil output from the spectroscope 20 and executes a process of diagnosing the state of the oil.
 処理部70は、取得部30と、算出部40と、記憶部50と、診断部60と、を備える。処理部70は、分光器20と接続されている。処理部70は、Bluetooth(登録商標)などの無線通信、又は、Ethernet(登録商標)などの有線通信により、分光器20と接続されてもよい。処理部70は、例えば、コンピュータに搭載されていてもよく、図5に示されるように、光源10及び分光器20と共に1つの装置に搭載されていてもよい。 The processing unit 70 includes an acquisition unit 30, a calculation unit 40, a storage unit 50, and a diagnosis unit 60. The processing unit 70 is connected to the spectroscope 20. The processing unit 70 may be connected to the spectroscope 20 by wireless communication such as Bluetooth (registered trademark) or wired communication such as Ethernet (registered trademark). The processing unit 70 may be mounted on a computer, for example, or may be mounted on one device together with the light source 10 and the spectroscope 20 as shown in FIG.
 取得部30は、分光器20から出力されたオイルのラマンスペクトルを取得する。 The acquisition unit 30 acquires the Raman spectrum of the oil output from the spectroscope 20.
 算出部40は、取得部30が取得したラマンスペクトルにおける所定のピークの強度に対して、ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出する。 The calculation unit 40 calculates at least one value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the intensity of the predetermined peak in the Raman spectrum acquired by the acquisition unit 30.
 記憶部50は、予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係を記憶する。例えば、当該相関関係は、オイルの種類ごとに予め算出され、記憶部50に格納されてもよい。当該相関関係は、例えば、Lookupテーブルのように、入力と出力とが対応付けられたテーブルであってもよい。ここで、入力は、規格化した値であり、出力は、オイルの状態(例えば、オイルの酸化度合いを示す全酸価又は酸化値など)である。なお、以下では、オイルのラマンスペクトルにおける所定のピークの強度に対して、ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を、単に、規格化した値ともいう。 The storage unit 50 stores the correlation between the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum and the state of the oil with respect to the intensity of the predetermined peak in the Raman spectrum of the oil calculated in advance. do. For example, the correlation may be calculated in advance for each type of oil and stored in the storage unit 50. The correlation may be a table in which inputs and outputs are associated, such as a Lookup table. Here, the input is a standardized value, and the output is the state of the oil (for example, the total acid value or the oxidation value indicating the degree of oxidation of the oil). In the following, the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the intensity of the predetermined peak in the Raman spectrum of the oil is also simply referred to as a normalized value.
 診断部60は、記憶部50から当該相関関係を読み出し、当該相関関係に基づいて、算出部40が算出した少なくとも1つの規格化した値からオイルの状態を診断する。 The diagnosis unit 60 reads the correlation from the storage unit 50, and diagnoses the oil state from at least one standardized value calculated by the calculation unit 40 based on the correlation.
 なお、図5では、オイル状態診断装置100は、光源10と分光器20とを備える例が示されているが、これに限られない。例えば、オイル状態診断装置は、光源10と分光器20とを備えなくてもよい。例えば、オイル状態診断装置は、処理部70であってもよい。 Note that FIG. 5 shows an example in which the oil state diagnostic apparatus 100 includes a light source 10 and a spectroscope 20, but the present invention is not limited to this. For example, the oil condition diagnostic apparatus does not have to include the light source 10 and the spectroscope 20. For example, the oil state diagnostic device may be the processing unit 70.
 [オイル状態診断方法]
 続いて、オイル状態診断方法の一例について図6を参照しながら説明する。図6は、実施の形態に係るオイル状態診断方法の一例を示すフローチャートである。
[Oil condition diagnosis method]
Subsequently, an example of the oil state diagnosis method will be described with reference to FIG. FIG. 6 is a flowchart showing an example of the oil state diagnosis method according to the embodiment.
 実施の形態に係るオイル状態診断方法は、例えば、測定対象物であるオイルに励起光を照射する照射ステップS100と、励起光の照射によりオイルから散乱された散乱光のスペクトル(すなわち、オイルのラマンスペクトル)を測定する測定ステップS101と、オイルのラマンスペクトルを取得する取得ステップS102と、取得したラマンスペクトルにおける所定のピークの強度を飽和アルカンに由来するピークの強度で規格化した値を算出する算出ステップS103と、規格化した値からオイルの状態を診断する診断ステップS104と、を含む。 The oil state diagnosis method according to the embodiment includes, for example, irradiation step S100 of irradiating the oil to be measured with excitation light, and a spectrum of scattered light scattered from the oil by irradiation of the excitation light (that is, Raman of oil). Measurement step S101 for measuring (spectrum), acquisition step S102 for acquiring the Raman spectrum of oil, and calculation for calculating a value obtained by standardizing the intensity of a predetermined peak in the acquired Raman spectrum with the intensity of a peak derived from saturated alkylan. Includes step S103 and diagnostic step S104 for diagnosing the state of the oil from standardized values.
 以下、図5及び図6を参照しながら、各ステップについてより具体的に説明する。 Hereinafter, each step will be described in more detail with reference to FIGS. 5 and 6.
 図6に示されるように、照射ステップS100では、光源10は、オイルに励起光を照射する。上述したように、励起光は、紫外光、可視光、及び、赤外光のいずれでもよい。励起光は、例えば、レーザ光である。 As shown in FIG. 6, in the irradiation step S100, the light source 10 irradiates the oil with excitation light. As described above, the excitation light may be any of ultraviolet light, visible light, and infrared light. The excitation light is, for example, a laser beam.
 次いで、測定ステップS101では、分光器20は、オイルのラマンスペクトルを測定する。上述したように、分光器20は、フィルタ(不図示)と、分光部(不図示)と、測定部(不図示)と、出力部(不図示)と、を備える。より具体的には、測定ステップS101では、フィルタは、分光器20に入射した光のうち、ラマン散乱光を通過させ、レイリー散乱光を除去する。分光部は、フィルタを通過したラマン散乱光を波長帯域毎の光に分光する。測定部は、分光部で分光された各波長帯域の光の強度を測定する。測定部は、撮像素子(不図示)を備え、撮像素子は、分光部で分光された各波長帯域の光を受光して、電気信号に変換する。そして、撮像素子は、変換した電気信号をデジタル値で出力部に出力する。出力部は、各波長帯域の光の強度を示すデジタル値を、オイルのラマン散乱光のスペクトル(すなわち、オイルのラマンスペクトル)として処理部70に出力する。 Next, in the measurement step S101, the spectroscope 20 measures the Raman spectrum of the oil. As described above, the spectroscope 20 includes a filter (not shown), a spectroscopic unit (not shown), a measuring unit (not shown), and an output unit (not shown). More specifically, in the measurement step S101, the filter passes the Raman scattered light among the light incident on the spectroscope 20 and removes the Rayleigh scattered light. The spectroscopic unit disperses the Raman scattered light that has passed through the filter into light for each wavelength band. The measuring unit measures the intensity of light in each wavelength band dispersed by the spectroscopic unit. The measuring unit includes an image sensor (not shown), and the image sensor receives light in each wavelength band dispersed by the spectroscopic unit and converts it into an electric signal. Then, the image sensor outputs the converted electric signal as a digital value to the output unit. The output unit outputs a digital value indicating the intensity of light in each wavelength band to the processing unit 70 as a spectrum of Raman scattered light of oil (that is, Raman spectrum of oil).
 次いで、取得ステップS102では、処理部70の取得部30は、分光器20から出力されたオイルのラマンスペクトルを取得する。上述したように、処理部70は、Bluetooth(登録商標)などの無線通信、又は、Ethernet(登録商標)などの有線通信により、分光器20と接続されてもよい。取得部30は、分光器20が出力したオイルのラマンスペクトルを取得し、取得したオイルのラマンスペクトルを算出部40に出力する。 Next, in the acquisition step S102, the acquisition unit 30 of the processing unit 70 acquires the Raman spectrum of the oil output from the spectroscope 20. As described above, the processing unit 70 may be connected to the spectroscope 20 by wireless communication such as Bluetooth (registered trademark) or wired communication such as Ethernet (registered trademark). The acquisition unit 30 acquires the Raman spectrum of the oil output by the spectroscope 20 and outputs the acquired Raman spectrum of the oil to the calculation unit 40.
 次いで、算出ステップS103では、算出部40は、取得したラマンスペクトルにおける所定のピークの強度を飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出する。例えば、ラマンスペクトルにおける各ピークの強度は、各ピークトップにおける信号強度であってもよい。算出ステップS103では、算出部40は、さらに、取得したラマンスペクトルのベースライン補正を行い、補正後のラマンスペクトルに対して、上記の規格化した値を算出してもよい。例えば、算出部40は、予め算出された、蛍光ノイズ強度とラマン信号平均強度との相関関係に基づいて、取得したオイルのラマンスペクトルのベースラインを補正してもよい。これにより、補正後のラマンスペクトルに対して規格化した値を算出することができるため、より精度良くオイルの状態を診断することができる。 Next, in the calculation step S103, the calculation unit 40 calculates at least one value obtained by normalizing the intensity of a predetermined peak in the acquired Raman spectrum with the intensity of the peak derived from the saturated alkane. For example, the intensity of each peak in the Raman spectrum may be the signal intensity at the top of each peak. In the calculation step S103, the calculation unit 40 may further perform baseline correction of the acquired Raman spectrum and calculate the above standardized value with respect to the corrected Raman spectrum. For example, the calculation unit 40 may correct the baseline of the acquired Raman spectrum of the oil based on the correlation between the fluorescence noise intensity and the Raman signal average intensity calculated in advance. As a result, a standardized value can be calculated for the corrected Raman spectrum, so that the oil state can be diagnosed more accurately.
 例えば、オイルのラマンスペクトルの飽和アルカンに由来するピークは、1400cm-1~1600cm-1の波数範囲、又は、2840cm-1~3000cm-1の波数範囲に位置する。これにより、オイルの主成分である飽和アルカン(-CH-)に由来するラマンスペクトルの波数範囲におけるピークのうち、比較的強い信号強度を示すピークを正規化の基準とすることができるため、信頼性の高いデータ(つまり、正規化した値)を得ることができる。中でも、当該飽和アルカンに由来するピークは、波数1450cm-1に位置してもよい。これにより、飽和アルカンに由来する強い信号強度を示すピークに基づいて正規化した値を算出するため、精度良くオイルの状態を診断することができる。 For example, a peak derived from a saturated alkane Raman spectra of oil wavenumber range of 1400 cm -1 ~ 1600 cm -1, or located wavenumber range of 2840cm -1 ~ 3000cm -1. As a result, among the peaks in the wavenumber range of the Raman spectrum derived from the saturated alkane (-CH 2- ), which is the main component of the oil, the peak showing a relatively strong signal intensity can be used as the standard for normalization. Reliable data (that is, normalized values) can be obtained. Above all, the peak derived from the saturated alkane may be located at a wave number of 1450 cm -1. As a result, the normalized value is calculated based on the peak showing the strong signal strength derived from the saturated alkane, so that the oil state can be diagnosed with high accuracy.
 また、例えば、取得したオイルのラマンスペクトルにおける所定のピークは、波数1300cm-1、1600cm-1及び1750cm-1の少なくとも1つに位置する。これにより、オイルの状態変化(例えば、オイルの酸化による成分の変化)に伴って生じるピークのうち比較的信号強度の強いピークに基づいて、精度良くオイルの状態を診断することができる。中でも、当該所定のピークは、波数1300cm-1に位置してもよい。これにより、赤外吸収分光法に比べて、オイルの状態変化による信号強度の変化が非常に大きいピークの強度に基づいてオイルの状態を診断するため、診断精度が向上する。 Further, for example, a predetermined peak in the Raman spectrum of the obtained oil, the wave number 1300 cm -1, is located at least one 1600 cm -1 and 1750 cm -1. Thereby, the state of the oil can be accurately diagnosed based on the peak having a relatively strong signal strength among the peaks generated due to the change of the state of the oil (for example, the change of the component due to the oxidation of the oil). Above all, the predetermined peak may be located at a wave number of 1300 cm -1. As a result, the state of the oil is diagnosed based on the intensity of the peak in which the change in the signal intensity due to the change in the state of the oil is very large as compared with the infrared absorption spectroscopy, so that the diagnostic accuracy is improved.
 なお、ラマンスペクトルにおけるピークの強度は、例えば、ピークトップにおける信号強度であってもよく、ピークの積分強度であってもよい。また、取得したオイルのラマンスペクトルにおけるピークトップの信号強度をそのまま用いてもよく、当該ラマンスペクトルから蛍光ベースラインを除去した補正後のラマンスペクトルにおけるピークトップの信号強度を用いてもよい。例えば、ピークの積分強度を用いる場合、取得したオイルのラマンスペクトルにおけるピークの積分強度であってもよく、補正後のラマンスペクトルにおけるピークの積分強度であってもよい。また、例えば、ラマンスペクトルを、複数のピーク関数、例えばガウス関数の和として表す場合、ラマンスペクトルにおけるピークの強度は、複数のガウス関数のそれぞれのピークの高さ又は面積であってもよい。 The peak intensity in the Raman spectrum may be, for example, the signal intensity at the peak top or the integrated intensity of the peak. Further, the signal intensity of the peak top in the Raman spectrum of the acquired oil may be used as it is, or the signal intensity of the peak top in the corrected Raman spectrum obtained by removing the fluorescence baseline from the Raman spectrum may be used. For example, when the integrated intensity of the peak is used, it may be the integrated intensity of the peak in the Raman spectrum of the acquired oil, or it may be the integrated intensity of the peak in the corrected Raman spectrum. Further, for example, when the Raman spectrum is expressed as the sum of a plurality of peak functions, for example, a Gaussian function, the intensity of the peak in the Raman spectrum may be the height or area of each peak of the plurality of Gaussian functions.
 次いで、診断ステップS104では、診断部60は、記憶部50に記憶された、オイルのラマンスペクトルにおける所定のピークの強度に対して、当該ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係を読み出す。当該相関関係は、予め算出され、記憶部50に記憶されている。当該相関関係は、オイルの種類ごとに算出されてもよい。診断部60は、測定したオイルの種類に応じて、記憶部50から当該オイルの種類に対応する相関関係を読み出す。記憶部50から読み出した当該相関関係に基づいて、算出部40が算出した少なくとも1つの規格化した値からオイルの状態を診断する。例えば、診断ステップS104では、診断部60は、規格化した値に基づいて、オイルの全酸価及び酸化値の少なくとも1つを評価してもよい。これにより、診断部60は、簡便に、かつ、精度良く、酸化によるオイルの変化の状態を診断することができる。 Next, in the diagnostic step S104, the diagnostic unit 60 normalizes the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the intensity of the predetermined peak stored in the storage unit 50 in the Raman spectrum of the oil. Read the correlation between the value and the oil state. The correlation is calculated in advance and stored in the storage unit 50. The correlation may be calculated for each type of oil. The diagnosis unit 60 reads out the correlation corresponding to the type of oil from the storage unit 50 according to the type of oil measured. Based on the correlation read from the storage unit 50, the oil state is diagnosed from at least one standardized value calculated by the calculation unit 40. For example, in the diagnostic step S104, the diagnostic unit 60 may evaluate at least one of the total acid value and the oxidation value of the oil based on the standardized value. As a result, the diagnostic unit 60 can easily and accurately diagnose the state of change in oil due to oxidation.
 以上により、本実施の形態に係るオイル状態診断方法は、測定したオイルのラマンスペクトルにおける所定のピークの強度に対して、当該ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出し、予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、当該ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係に基づいて、算出した少なくとも1つの規格化した値からオイルの状態を診断する。これにより、本実施の形態に係るオイル状態診断方法は、オイルの自家蛍光、オイル中の煤及びオイルの着色などの外乱の影響を簡便に取り除くことができるため、簡便に、かつ、精度良くオイルの状態を診断することができる。 Based on the above, in the oil state diagnosis method according to the present embodiment, at least a value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum is set with respect to the intensity of the predetermined peak in the Raman spectrum of the measured oil. One is calculated, and the correlation between the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum and the state of the oil with respect to the intensity of the predetermined peak in the Raman spectrum of the oil calculated in advance. Based on this, the oil condition is diagnosed from at least one calculated value. As a result, the oil state diagnosis method according to the present embodiment can easily remove the influence of disturbance such as autofluorescence of the oil, soot in the oil, and coloring of the oil, so that the oil can be easily and accurately used. Can be diagnosed.
 なお、本実施の形態では、オイル状態診断方法が照射ステップS100及び測定ステップS101を含む例を説明したが、オイル状態診断方法は、照射ステップS100及び測定ステップS101を含まなくてもよい。 Although the example in which the oil state diagnosis method includes the irradiation step S100 and the measurement step S101 has been described in the present embodiment, the oil state diagnosis method may not include the irradiation step S100 and the measurement step S101.
 以下、実験例及び実施例にて本開示のオイル状態診断方法を具体的に説明するが、本開示は以下の実験例及び実施例のみに何ら限定されるものではない。 Hereinafter, the oil state diagnosis method of the present disclosure will be specifically described with reference to Experimental Examples and Examples, but the present disclosure is not limited to the following Experimental Examples and Examples.
 以下の実験例において、測定対象物は、機械装置の潤滑油(以下、単に、オイルという)であり、測定装置は、レーザラマン分光測定装置である。図7は、レーザラマン分光測定装置の構成の一例を示す概略図である。 In the following experimental example, the object to be measured is a lubricating oil for a mechanical device (hereinafter, simply referred to as oil), and the measuring device is a laser Raman spectroscopic measuring device. FIG. 7 is a schematic view showing an example of the configuration of the laser Raman spectroscopic measuring device.
 まず、レーザラマン分光測定装置及びオイルサンプルについて説明する。図7に示されるように、レーザラマン分光測定装置では、光源10は、波長785nmのレーザ光(つまり、励起光)Lを出射する。出射された励起光Lは、ビームスプリッタ12を通過して、顕微鏡16の対物レンズを通して絞られ、サンプルプレート1内のサンプル(オイル)に照射される。励起光Lの照射によりオイル6(図8参照)から発生したラマン散乱光Lを顕微鏡16の対物レンズ(不図示)で集光する。集光されたラマン散乱光Lは、ビームスプリッタ12を通過した後、レイリー散乱光をカットするフィルタ14を通過する。フィルタ14を通過したラマン散乱光Lは、分光器20の分光部22に入射し、各波長帯域の光に分光される。測定部24は、分光部22で分光された各波長帯域の光の強度を測定する。以上の動作により、レーザラマン分光測定装置は、オイル6のラマンスペクトルを測定する。 First, a laser Raman spectroscopic measuring device and an oil sample will be described. As shown in FIG. 7, in the laser Raman spectrophotometer, the light source 10 emits a laser beam (that is, excitation light) L 1 having a wavelength of 785 nm. The emitted excitation light L 1 passes through the beam splitter 12 and is focused through the objective lens of the microscope 16 to irradiate the sample (oil) in the sample plate 1. The Raman scattered light L 2 generated from the oil 6 (see FIG. 8) by the irradiation of the excitation light L 1 is focused by the objective lens (not shown) of the microscope 16. The focused Raman scattered light L 2 passes through the beam splitter 12 and then passes through the filter 14 that cuts the Rayleigh scattered light. The Raman scattered light L 3 that has passed through the filter 14 is incident on the spectroscopic unit 22 of the spectroscope 20 and is dispersed into light in each wavelength band. The measuring unit 24 measures the intensity of light in each wavelength band dispersed by the spectroscopic unit 22. By the above operation, the laser Raman spectroscopic measuring device measures the Raman spectrum of the oil 6.
 図8は、図7のサンプルプレート1のA-A線における概略断面図である。図8に示されるように、サンプルプレート1は、石英基板2と、石英基板2上に配置されたスペーサ4と、スペーサ4に囲まれたサンプル保持部5と、スペーサ4上に配置された石英カバーグラス3と、を備える。サンプル保持部5には、オイル6が充填されている。 FIG. 8 is a schematic cross-sectional view taken along the line AA of the sample plate 1 of FIG. As shown in FIG. 8, the sample plate 1 includes a quartz substrate 2, a spacer 4 arranged on the quartz substrate 2, a sample holding portion 5 surrounded by the spacer 4, and quartz arranged on the spacer 4. A cover glass 3 and the like are provided. The sample holding portion 5 is filled with oil 6.
 (実験例1)
 実験例1では、機械装置内で使用された時間が異なる10種類のオイルそれぞれのラマンスペクトルにおける波数1450cm-1に位置するピークの面積を導出した。波数1450cm-1に位置するピークは、オイルの主成分である飽和アルカンに由来するピークである。
(Experimental Example 1)
In Experimental Example 1, the area of the peak located at the wave number of 1450 cm-1 in the Raman spectrum of each of the 10 types of oils used in the mechanical device for different times was derived. The peak located at wave number 1450 cm -1 is a peak derived from saturated alkane, which is the main component of oil.
 また、実験例1では、オイルの状態を評価する指標として、全酸価を用いた。全酸価は、上記の10種類のオイルのそれぞれについて、滴定法により測定された。そして、上記の10種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1450cm-1に位置するピークの面積と全酸価との相関関係を調べた。結果を表1に示す。 Further, in Experimental Example 1, the total acid value was used as an index for evaluating the state of the oil. The total acid value was measured by titration for each of the above 10 oils. Then, for each of the above 10 types of oils, the correlation between the area of the peak located at the wave number 1450 cm -1 in the Raman spectrum and the total acid value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の10種類のオイルについて、波数1450cm-1に位置する飽和アルカン由来のピークの面積と、全酸価との線形近似に対するR値(いわゆる、相関係数)は、0.15であった。 As shown in Table 1, for the above 10 kinds of the oil, and the area of the peak derived from a saturated alkane located wavenumber 1450 cm -1, R 2 value for the linear approximation of the total acid number (so-called correlation coefficient) Was 0.15.
 (比較例1)
 比較例1では、上記の10種類のオイルそれぞれのラマンスペクトルにおける波数1300cm-1に位置するピークの面積を導出した。波数1300cm-1に位置するピークは、オイルの酸化により生じるC=Cに由来するピークである。
(Comparative Example 1)
In Comparative Example 1, the area of the peak located at the wave number of 1300 cm -1 in the Raman spectrum of each of the above 10 kinds of oils was derived. The peak located at wave number 1300 cm -1 is a peak derived from C = C generated by the oxidation of oil.
 また、比較例1では、実験例1と同様に、オイルの状態を評価する指標として、全酸価を用いた。そして、上記の10種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1300cm-1に位置するピークの面積と全酸価との相関関係を調べた。結果を表1に示す。 Further, in Comparative Example 1, as in Experimental Example 1, the total acid value was used as an index for evaluating the state of the oil. Then, for each of the above 10 types of oils, the correlation between the area of the peak located at the wave number 1300 cm -1 in the Raman spectrum and the total acid value was investigated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、上記の10種類のオイルについて、波数1300cm-1に位置するC=C由来のピークの面積と、全酸価との線形近似に対するR値(いわゆる、相関係数)は、0.13であった。 As shown in Table 1, for the above 10 kinds of oil, R 2 value for the linear approximation of the area of the peak derived from C = C located wavenumber 1300 cm -1, and total acid number (so-called, the correlation coefficient ) Was 0.13.
 (比較例2)
 比較例2では、波数1600cm-1に位置するピークの面積を導出した点以外は、比較例1と同様に行った。波数1600cm-1に位置するピークは、オイルの酸化により生じるC=Cに由来するピークである。
(Comparative Example 2)
In Comparative Example 2, the same procedure as in Comparative Example 1 was performed except that the area of the peak located at the wave number of 1600 cm -1 was derived. The peak located at wave number 1600 cm -1 is a peak derived from C = C generated by the oxidation of oil.
 比較例2では、上記の10種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1600cm-1に位置するピークの面積と全酸価との相関関係を調べた。結果を表1に示す。 In Comparative Example 2, the correlation between the area of the peak located at the wave number of 1600 cm -1 in the Raman spectrum and the total acid value was investigated for each of the above 10 types of oils. The results are shown in Table 1.
 表1に示されるように、上記の10種類のオイルについて、波数1600cm-1に位置するC=C由来のピークの面積と、全酸価との線形近似に対するR値(いわゆる、相関係数)は、0.02であった。 As shown in Table 1, for the above 10 kinds of oil, R 2 value for the linear approximation of the area of the peak derived from C = C located wavenumber 1600 cm -1, and total acid number (so-called, the correlation coefficient ) Was 0.02.
 (比較例3)
 比較例3では、波数1750cm-1に位置するピークの面積を導出した点以外は、比較例1と同様に行った。波数1750cm-1に位置するピークは、オイルの酸化により生じるC=Oに由来するピークである。
(Comparative Example 3)
In Comparative Example 3, the same procedure as in Comparative Example 1 was performed except that the area of the peak located at the wave number of 1750 cm -1 was derived. The peak located at the wave number 1750 cm -1 is a peak derived from C = O generated by the oxidation of oil.
 比較例3では、上記の10種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1750cm-1に位置するピークの面積と全酸価との相関関係を調べた。結果を表1に示す。 In Comparative Example 3, the correlation between the area of the peak located at the wave number 1750 cm -1 in the Raman spectrum and the total acid value was investigated for each of the above 10 types of oils. The results are shown in Table 1.
 表1に示されるように、上記の10種類のオイルについて、波数1750cm-1に位置するC=O由来のピークの面積と、全酸価との線形近似に対するR値(いわゆる、相関係数)は、0.01であった。 As shown in Table 1, for the above 10 kinds of oil, R 2 value for the linear approximation of the area of the peak derived from C = O located wavenumber 1750 cm -1, and total acid number (so-called, the correlation coefficient ) Was 0.01.
 (実施例1)
 実施例1では、実験例1及び比較例1の結果を用いて、機械装置内での使用時間が異なる10種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1300cm-1に位置するピークの面積の比(以下、ピーク比ともいう)と全酸価との相関関係を調べた。結果を図9及び表1に示す。
(Example 1)
In Example 1, using the results of Experimental Example 1 and Comparative Example 1, the ten oil use time are different in the machine, located at a wavenumber of 1300 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation between the ratio of the area of the peaks (hereinafter, also referred to as the peak ratio) and the total acid value was investigated. The results are shown in FIG. 9 and Table 1.
 図9は、実施例1のデータを示す図である。図9に示されるように、上記の10種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1300cm-1に位置するピークの面積の比と、全酸価とは、直線的な関係を示していた。また、表1に示されるように、これらの線形近似に対するR値(いわゆる、相関係数)は、0.70であった。そのため、よって、波数1450cm-1に位置するピークの面積に対する波数1300cm-1に位置するピークの面積の比と、全酸価とは、比較例1よりも相関関係が高くなることが分かった。 FIG. 9 is a diagram showing the data of the first embodiment. As shown in FIG. 9, for the above 10 kinds of the oil, and the ratio of the area of the peak located at wavenumber 1300 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the total acid value, a linear It showed a relationship. Further, as shown in Table 1, R 2 values for these linear approximation (so called, the correlation coefficient) was 0.70. Therefore, thus, the ratio of the area of the peak located at wavenumber 1300 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the total acid value was found to be higher correlation than Comparative Example 1.
 (実施例2)
 実施例2では、実験例1及び比較例2の結果を用いて、上記の10種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1600cm-1に位置するピークの面積の比と全酸価との相関関係を調べた。結果を表1に示す。
(Example 2)
In Example 2, using the results of Experimental Example 1 and Comparative Example 2, for the above 10 kinds of the oil, and the ratio of the peak area of which is positioned at a wave number of 1600 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with the total acid value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の10種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1600cm-1に位置するピークの面積の比と、全酸価との線形近似に対するR値(いわゆる、相関係数)は、0.31であった。よって、波数1450cm-1に位置するピークの面積に対する波数1600cm-1に位置するピークの面積の比と、全酸価とは、比較例2よりも相関関係が高くなることが分かった。 As shown in Table 1, for the above 10 kinds of the oil, and the ratio of the area of the peak located at wavenumber 1600 cm -1 to the area of the peak located at a wave number of 1450 cm -1, R for a linear approximation of the total acid value The binary value (so-called correlation coefficient) was 0.31. Therefore, the ratio of the area of the peak located at wavenumber 1600 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the total acid value was found to be higher correlation than Comparative Example 2.
 (実施例3)
 実施例3では、実験例1及び比較例3の結果を用いて、上記の10種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1750cm-1に位置するピークの面積の比と全酸価との相関関係を調べた。結果を表1に示す。
(Example 3)
In Example 3, using the results of Experimental Example 1 and Comparative Example 3, for the above 10 kinds of the oil, and the ratio of the peak area of which is positioned at a wave number of 1750 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with the total acid value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の10種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1750cm-1に位置するピークの面積の比と、全酸価との線形近似に対するR値(いわゆる、相関係数)は、0.28であった。よって、波数1450cm-1に位置するピークの面積に対する波数1750cm-1に位置するピークの面積の比と、全酸価とは、比較例3よりも相関関係が高くなることが分かった。 As shown in Table 1, for the above 10 kinds of the oil, and the ratio of the area of the peak located at wavenumber 1750 cm -1 to the area of the peak located at a wave number of 1450 cm -1, R for a linear approximation of the total acid value The binary value (so-called correlation coefficient) was 0.28. Therefore, the ratio of the area of the peak located at wavenumber 1750 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the total acid value was found to be correlated higher than Comparative Example 3.
 (まとめ)
 表1に示されるように、オイルの変化により生じる所定のピークの強度とオイルの状態の評価(ここでは、全酸価)との関係において、比較例1よりも実施例1の相関係数が高く、比較例2よりも実施例2の相関係数が高く、比較例3よりも実施例3の相関係数が高かった。よって、比較例1~3及び実施例1~3の結果から、オイルのラマンスペクトルにおいてオイルの酸化により生じる所定のピークの強度をオイルの主成分である飽和アルカン由来のピークの強度で規格化することにより、オイルのラマンスペクトルに対するオイルの自家蛍光、オイル中の煤、及びオイルの着色などの外乱の影響を簡便に取り除くことができることが確認できた。また、上記の規格化の効果により、当該所定のピーク強度は、オイルの状態の変化に対応した適正な値に補正されることも確認できた。
(summary)
As shown in Table 1, the correlation coefficient of Example 1 is higher than that of Comparative Example 1 in the relationship between the intensity of a predetermined peak caused by the change in oil and the evaluation of the state of the oil (here, the total acid value). It was high, the correlation coefficient of Example 2 was higher than that of Comparative Example 2, and the correlation coefficient of Example 3 was higher than that of Comparative Example 3. Therefore, from the results of Comparative Examples 1 to 3 and Examples 1 to 3, the intensity of a predetermined peak generated by the oxidation of the oil in the Raman spectrum of the oil is standardized by the intensity of the peak derived from saturated alkane, which is the main component of the oil. As a result, it was confirmed that the effects of disturbances such as the autofluorescence of the oil, soot in the oil, and coloring of the oil on the Raman spectrum of the oil can be easily removed. It was also confirmed that due to the effect of the above standardization, the predetermined peak intensity is corrected to an appropriate value corresponding to the change in the state of the oil.
 (比較例4)
 比較例4では、オイルの状態を評価する指標として、酸化値を用いる点以外は、比較例1と同様に行った。酸化値は、機械装置内で使用される9種類のオイルのそれぞれについて、FT-IR(フーリエ変換赤外分光法)により測定された。そして、上記の9種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1300cm-1に位置するピークの面積と酸化値との相関関係を調べた。結果を表1に示す。
(Comparative Example 4)
In Comparative Example 4, the same procedure as in Comparative Example 1 was carried out except that the oxidation value was used as an index for evaluating the state of the oil. Oxidation values were measured by FT-IR (Fourier Transform Infrared Spectroscopy) for each of the nine oils used in the machinery. Then, for each of the above nine types of oils, the correlation between the area of the peak located at the wave number of 1300 cm -1 in the Raman spectrum and the oxidation value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の9種類のオイルについて、波数1300cm-1に位置するC=C由来のピークの面積と、酸化値との線形近似に対するR値(いわゆる、相関係数)は、0.33であった。 As shown in Table 1, for the above nine kinds of oils, and the area of the peak derived from C = C located wavenumber 1300 cm -1, R 2 value for the linear approximation of the oxidation value (so-called correlation coefficient) Was 0.33.
 (比較例5)
 比較例5では、波数1600cm-1に位置するピークの面積導出し、上記の9種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1600cm-1に位置するピークの面積と酸化値との相関関係を調べた点以外は、比較例4と同様に行った。結果を表1に示す。
(Comparative Example 5)
In Comparative Example 5, the area of the peak located at the wave number 1600 cm -1 was derived, and the correlation between the area of the peak located at the wave number 1600 cm -1 in the Raman spectrum and the oxidation value was investigated for each of the above nine types of oils. Except for the above points, the same procedure as in Comparative Example 4 was performed. The results are shown in Table 1.
 表1に示されるように、上記の9種類のオイルについて、波数1600cm-1に位置するC=C由来のピークの面積と、酸化値との線形近似に対するR値(いわゆる、相関係数)は、0.02であった。 As shown in Table 1, for the above nine types of oil, the area of the peak derived from C = C located at a wave number of 1600 cm -1 and the R-squared value (so-called correlation coefficient) with respect to the linear approximation of the oxidation value. Was 0.02.
 (比較例6)
 比較例6では、波数1750cm-1に位置するピークの面積導出し、上記の9種類のオイルのそれぞれについて、ラマンスペクトルにおける波数1750cm-1に位置するピークの面積と酸化値との相関関係を調べた点以外は、比較例4と同様に行った。
(Comparative Example 6)
In Comparative Example 6, the area of the peak located at the wave number 1750 cm -1 was derived, and the correlation between the area of the peak located at the wave number 1750 cm -1 in the Raman spectrum and the oxidation value was investigated for each of the above nine types of oils. Except for the above points, the same procedure as in Comparative Example 4 was performed.
 表1に示されるように、上記の9種類のオイルについて、波数1750cm-1に位置するC=O由来のピークの面積と、酸化値との線形近似に対するR値(いわゆる、相関係数)は、0.17であった。 As shown in Table 1, for the above nine types of oil, the area of the peak derived from C = O located at wave number 1750 cm -1 and the R-squared value (so-called correlation coefficient) with respect to the linear approximation of the oxidation value. Was 0.17.
 (実施例4)
 実施例4では、実験例1及び比較例4の結果を用いて、機械装置内での使用時間が異なる9種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1300cm-1に位置するピークの面積の比(以下、ピーク比ともいう)と酸化値との相関関係を調べた。結果を表1に示す。
(Example 4)
In Example 4, using the results of Experimental Example 1 and Comparative Example 4, the nine types of oils used time are different in the machine, located at a wavenumber of 1300 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation between the ratio of the area of the peaks (hereinafter, also referred to as the peak ratio) and the oxidation value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の9種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1300cm-1に位置するピークの面積の比と、酸化値との線形近似に対するR値(いわゆる、相関係数)は、0.45であった。よって、波数1450cm-1に位置するピークの面積に対する波数1300cm-1に位置するピークの面積の比と、酸化値とは、比較例4よりも相関関係が高くなることが分かった。 As shown in Table 1, for the above nine kinds of oil, the ratio of the area of the peak located at wavenumber 1300 cm -1 to the area of the peak located at a wave number of 1450 cm -1, R 2 for a linear approximation with the oxidation value The value (so-called correlation coefficient) was 0.45. Therefore, the ratio of the area of the peak located at wavenumber 1300 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the oxidation value, it was found that a correlation is higher than Comparative Example 4.
 (実施例5)
 実施例5では、実験例1及び比較例5の結果を用いて、上記の9種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1600cm-1に位置するピークの面積の比と酸化値との相関関係を調べた。結果を表1に示す。
(Example 5)
In Example 5, using the results of Experimental Example 1 and Comparative Example 5, for the above nine kinds of oil, the ratio of the peak area of which is positioned at a wave number of 1600 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with the oxidation value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の9種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1600cm-1に位置するピークの面積の比と、酸化値との線形近似に対するR値(いわゆる、相関係数)は、0.08であった。よって、波数1450cm-1に位置するピークの面積に対する波数1600cm-1に位置するピークの面積の比と、酸化値とは、比較例5よりも相関関係が高くなることが分かった。 As shown in Table 1, for the above nine kinds of oil, the ratio of the area of the peak located at wavenumber 1600 cm -1 to the area of the peak located at a wave number of 1450 cm -1, R 2 for a linear approximation with the oxidation value The value (so-called correlation coefficient) was 0.08. Therefore, the ratio of the area of the peak located at wavenumber 1600 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the oxidation value, it was found that a correlation is higher than Comparative Example 5.
 (実施例6)
 実施例6では、実験例1及び比較例6の結果を用いて、上記の9種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1750cm-1に位置するピークの面積の比と酸価値との相関関係を調べた。結果を表1に示す。
(Example 6)
In Example 6, using the results of Experimental Example 1 and Comparative Example 6, the nine types of oil above, and the ratio of the area of the peak located at wavenumber 1750 cm -1 to the area of peak located at wavenumber 1450 cm -1 The correlation with acid value was investigated. The results are shown in Table 1.
 表1に示されるように、上記の9種類のオイルについて、波数1450cm-1に位置するピークの面積に対する波数1750cm-1に位置するピークの面積の比と、酸化値との線形近似に対するR値(いわゆる、相関係数)は、0.58であった。よって、波数1450cm-1に位置するピークの面積に対する波数1750cm-1に位置するピークの面積の比と、酸化値とは、比較例6よりも相関関係が高くなることが分かった。 As shown in Table 1, for the above nine kinds of oil, the ratio of the area of the peak located at wavenumber 1750 cm -1 to the area of the peak located at a wave number of 1450 cm -1, R 2 for a linear approximation with the oxidation value The value (so-called correlation coefficient) was 0.58. Therefore, the ratio of the area of the peak located at wavenumber 1750 cm -1 to the area of the peak located at a wave number of 1450 cm -1, and the oxidation value, it was found that a correlation is higher than comparative Example 6.
 (まとめ)
 表1に示されるように、オイルの変化により生じる所定のピークの強度とオイルの状態の評価(ここでは、酸化値)との関係において、比較例4よりも実施例4の相関係数が高く、比較例5よりも実施例5の相関係数が高く、比較例6よりも実施例6の相関係数が高かった。よって、比較例4~6及び実施例4~6の結果から、オイルのラマンスペクトルにおいてオイルの酸化により生じる所定のピークの強度をオイルの主成分である飽和アルカン由来のピークの強度で規格化することにより、オイルのラマンスペクトルに対するオイルの自家蛍光、オイル中の煤、及びオイルの着色などの外乱の影響を簡便に取り除くことができることが確認できた。また、上記の規格化の効果により、当該所定のピーク強度は、オイルの状態の変化に対応した適切な値に補正されることも確認できた。
(summary)
As shown in Table 1, the correlation coefficient of Example 4 is higher than that of Comparative Example 4 in the relationship between the intensity of a predetermined peak caused by the change in oil and the evaluation of the state of the oil (here, the oxidation value). The correlation coefficient of Example 5 was higher than that of Comparative Example 5, and the correlation coefficient of Example 6 was higher than that of Comparative Example 6. Therefore, from the results of Comparative Examples 4 to 6 and Examples 4 to 6, the intensity of the predetermined peak generated by the oxidation of the oil in the Raman spectrum of the oil is standardized by the intensity of the peak derived from the saturated alkane which is the main component of the oil. As a result, it was confirmed that the effects of disturbances such as the autofluorescence of the oil, soot in the oil, and coloring of the oil on the Raman spectrum of the oil can be easily removed. It was also confirmed that due to the effect of the above standardization, the predetermined peak intensity is corrected to an appropriate value corresponding to the change in the state of the oil.
 以上の比較例及び実施例の結果から、オイルの酸化により生じる酸化物質に由来するピークの強度をオイルの主成分である飽和アルカンに由来するピークの強度で規格化した値と、オイルの状態とが比較的高い相関性を有することを確認できた。また、上述したように、本開示に係るオイル状態診断方法では、(i)オイルの状態の変化に由来する所定のピークの強度を飽和アルカン由来のピークの強度で規格化することにより、オイルの自家蛍光、オイル中の煤及びオイルの着色などの外乱の影響を簡便に取り除くことができること、及び、(ii)上記の規格化値とオイルの状態の評価値との相関関係に基づいて、簡便に、かつ、精度良く、測定対象のオイルの状態を診断できることが確認できた。したがって、本開示に係るオイル状態診断方法によれば、オイルの自家蛍光、オイル中の煤及びオイルの着色などの外乱の影響を簡便に取り除くことができることが確認できた。 From the results of the above comparative examples and examples, the value obtained by normalizing the intensity of the peak derived from the oxidizing substance generated by the oxidation of the oil by the intensity of the peak derived from the saturated alkane which is the main component of the oil, and the state of the oil. Was confirmed to have a relatively high correlation. Further, as described above, in the oil state diagnosis method according to the present disclosure, (i) the intensity of a predetermined peak derived from a change in the state of the oil is standardized by the intensity of the peak derived from saturated alkan, thereby producing an oil. It is easy to remove the influence of disturbance such as self-fluorescence, soot in oil and coloring of oil, and (ii) based on the correlation between the above standardized value and the evaluation value of the oil condition. It was confirmed that the condition of the oil to be measured can be diagnosed with high accuracy. Therefore, according to the oil condition diagnosis method according to the present disclosure, it was confirmed that the influence of disturbance such as autofluorescence of oil, soot in oil, and coloring of oil can be easily removed.
 (他の実施の形態)
 以上、本開示の1つ又は複数の態様に係るオイル状態診断方法及びオイル状態診断装置について、上記の実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構成される形態も、本開示の1つ又は複数の態様の範囲内に含まれてもよい。
(Other embodiments)
The oil state diagnosis method and the oil state diagnosis device according to one or more aspects of the present disclosure have been described above based on the above-described embodiments, but the present disclosure is limited to these embodiments. is not it. As long as the gist of the present disclosure is not deviated, one or more embodiments of the present disclosure may be obtained by subjecting various modifications that can be conceived by those skilled in the art to the embodiment or by combining components in different embodiments. It may be included in the range of.
 例えば、上記実施の形態におけるオイル状態診断装置が備える構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。例えば、オイル状態診断装置は、光源と、分光部と、処理部と、を有するシステムLSIから構成されてもよい。なお、システムLSIは、光源を含んでいなくてもよく、光源及び分光部を含んでいなくてもよい。 For example, a part or all of the components included in the oil condition diagnostic apparatus in the above embodiment may be composed of one system LSI (Large Scale Integration: large-scale integrated circuit). For example, the oil state diagnostic apparatus may be composed of a system LSI having a light source, a spectroscopic unit, and a processing unit. The system LSI may not include a light source, and may not include a light source and a spectroscopic unit.
 システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。 A system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip. Specifically, a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), etc. It is a computer system composed of. A computer program is stored in the ROM. The system LSI achieves its function by operating the microprocessor according to the computer program.
 なお、ここでは、システムLSIとしたが、集積度の違いにより、IC、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法は、LSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、あるいは、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Although it is referred to as a system LSI here, it may be referred to as an IC, an LSI, a super LSI, or an ultra LSI due to the difference in the degree of integration. Further, the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。 Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is naturally possible to integrate functional blocks using that technology. The application of biotechnology, etc. is possible.
 また、本開示の一態様は、このようなオイル状態診断装置だけではなく、当該装置に含まれる特徴的な構成部をステップとするオイル状態診断方法であってもよい。また、本開示の一態様は、オイル状態診断方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムであってもよい。また、本開示の一態様は、そのようなコンピュータプログラムが記録されたコンピュータで読み取り可能な非一時的な記録媒体であってもよい。 Further, one aspect of the present disclosure may be not only such an oil state diagnosis device but also an oil state diagnosis method in which a characteristic component included in the device is a step. Further, one aspect of the present disclosure may be a computer program that causes a computer to execute each characteristic step included in the oil state diagnosis method. Further, one aspect of the present disclosure may be a non-temporary recording medium that can be read by a computer on which such a computer program is recorded.
 [適用例]
 図10は、本開示に係るオイル状態診断装置100aを備えるオイル状態診断システム500の一例を示す図である。オイル状態診断システム500は、例えば、機械装置200が備える消耗品の状態をモニタリングし、機械装置200の使用者に消耗品の劣化の状態などを通知するシステムである。
[Application example]
FIG. 10 is a diagram showing an example of an oil state diagnosis system 500 including the oil state diagnosis device 100a according to the present disclosure. The oil state diagnosis system 500 is, for example, a system that monitors the state of consumables included in the mechanical device 200 and notifies the user of the mechanical device 200 of the state of deterioration of the consumables and the like.
 機械装置200は、例えば、工場、事務所、公共施設及び住宅に内外に設置される大型又は小型の各種機械機器、屋外で稼働する建設機器、トラック、バス、乗用車、二輪車、船舶、航空機、列車、産業用車両、及び、建設用車両などの各種車両、又は、それらが備えるエンジン、変速機、及び、作動装置などの機器を含む。 The mechanical device 200 includes, for example, various large or small mechanical devices installed inside and outside in factories, offices, public facilities and houses, construction equipment operating outdoors, trucks, buses, passenger cars, motorcycles, ships, aircrafts and trains. Includes various vehicles such as industrial vehicles and construction vehicles, or equipment such as engines, transmissions, and actuators provided therein.
 また、機械装置200が備える消耗品は、例えば、機械装置200内で繰り返し使用され、定期的に交換される。消耗品は、例えば、油類であり、機械装置200の潤滑媒体などとして機能する。このような消耗品は、機械装置200の内部に配置されているため、機械装置200の使用者が消耗品の状態を確認することが容易ではない。そのため、オイル状態診断装置100aを機械装置200に組み込むことにより、消耗品の状態をインラインで測定可能となる。 Further, the consumables included in the mechanical device 200 are repeatedly used in the mechanical device 200, for example, and are replaced regularly. The consumables are, for example, oils and function as a lubricating medium for the mechanical device 200. Since such consumables are arranged inside the mechanical device 200, it is not easy for the user of the mechanical device 200 to check the state of the consumables. Therefore, by incorporating the oil condition diagnosis device 100a into the mechanical device 200, the state of consumables can be measured in-line.
 例えば、図10に示すように、オイル状態診断装置100aは、光源10a及び分光器20aが機械装置200内に組み込まれ、処理部70aは、コンピュータに搭載されている。処理部70aは、コンピュータに限られず、スマートフォン、携帯電話、タブレット端末、ウエアラブル端末、又は、機械装置200に搭載されたコンピュータなどの端末に搭載されてもよい。分光器20aと処理部70aとは、相互に通信可能である。例えば、使用者は、タッチパネル、キーボード、マウス、又は、マイクなどの入力部(不図示)を介して操作情報を入力し、光源10a、分光器20a、又は、サーバ300に送信してもよい。また、使用者は、必要な情報を選択し、モニター又はスピーカーなどの提示部に提示させてもよい。これにより、使用者は、消耗品の状態、消耗品の交換の時期、機械装置200に発生し得るトラブルなどの情報を得ることができる。なお、入力部及び表示部は、処理部70aと接続されていればよく、処理部70aが搭載されている装置とは別の装置に備えられていてもよい。また、入力部及び提示部は、それぞれ1つに限られず、複数の入力部及び提示部が処理部70aと接続可能であってもよい。処理部70aが搭載されている装置は、ネットワーク400を介してサーバ300と接続され、消耗品の測定結果をサーバ300に送信し、サーバ300上に配置されたデータベースに格納された情報処理プログラムにより診断された診断結果を取得してもよい。処理部70aは、取得した診断結果を提示部に提示させて使用者に知らせてもよい。 For example, as shown in FIG. 10, in the oil state diagnostic device 100a, the light source 10a and the spectroscope 20a are incorporated in the mechanical device 200, and the processing unit 70a is mounted on the computer. The processing unit 70a is not limited to a computer, and may be mounted on a terminal such as a smartphone, a mobile phone, a tablet terminal, a wearable terminal, or a computer mounted on the mechanical device 200. The spectroscope 20a and the processing unit 70a can communicate with each other. For example, the user may input operation information via an input unit (not shown) such as a touch panel, a keyboard, a mouse, or a microphone, and transmit the operation information to the light source 10a, the spectroscope 20a, or the server 300. In addition, the user may select necessary information and have it presented to a presentation unit such as a monitor or a speaker. As a result, the user can obtain information such as the state of consumables, the timing of replacement of consumables, and troubles that may occur in the mechanical device 200. The input unit and the display unit may be connected to the processing unit 70a, and may be provided in a device other than the device on which the processing unit 70a is mounted. Further, the input unit and the presentation unit are not limited to one, and a plurality of input units and the presentation unit may be connectable to the processing unit 70a. The device on which the processing unit 70a is mounted is connected to the server 300 via the network 400, transmits the measurement result of consumables to the server 300, and is stored in the database arranged on the server 300 by the information processing program. The diagnosed diagnosis result may be acquired. The processing unit 70a may have the presentation unit present the acquired diagnosis result to notify the user.
 本開示では、オイルの主成分である飽和アルカンに由来するピークの強度で、オイルのラマンスペクトルにおける所定のピークの強度を規格化することにより、オイルのラマンスペクトルからオイルの自家蛍光、オイル中の煤、及びオイルの着色などの外乱の影響を簡便に良く取り除くことができる。例えば、酸化によりオイルの一部の成分が変化しても、オイルの主成分である飽和アルカンの総量には殆ど影響がないため、飽和アルカンに由来するピークの絶対的な強度は変わらない。また、オイル中の煤及びオイルの着色により励起光が吸収されて励起光の光強度が減衰すると、当該減衰の影響は、オイルのラマンスペクトルの信号全体の強度に影響する。そのため、飽和アルカンに由来するピークの強度で、オイルのラマンスペクトルにおける所定のピークの強度を規格化することにより、言い換えると、オイルの主成分に対する所定の成分の相対比を算出することにより、オイルの状態を正確に評価することができる。したがって、本開示の一態様に係るオイル状態診断装置によれば、簡便に、かつ、精度良くオイルの状態を診断することができる。 In the present disclosure, the intensity of a peak derived from saturated alkane, which is the main component of an oil, is used to standardize the intensity of a predetermined peak in the Raman spectrum of the oil. The effects of disturbances such as soot and oil coloring can be easily and well removed. For example, even if a part of the components of the oil are changed by oxidation, the total amount of saturated alkanes, which are the main components of the oil, is hardly affected, so that the absolute intensity of the peak derived from the saturated alkanes does not change. Further, when the excitation light is absorbed by the soot and the coloring of the oil in the oil and the light intensity of the excitation light is attenuated, the influence of the attenuation affects the intensity of the entire signal of the Raman spectrum of the oil. Therefore, by normalizing the intensity of the predetermined peak in the Raman spectrum of the oil by the intensity of the peak derived from the saturated alkane, in other words, by calculating the relative ratio of the predetermined component to the main component of the oil, the oil The state of can be evaluated accurately. Therefore, according to the oil condition diagnostic apparatus according to one aspect of the present disclosure, the oil condition can be diagnosed easily and accurately.
 本開示によれば、オイルのラマンスペクトルからオイルの自家蛍光、オイル中の煤、及びオイルの着色などの外乱の影響を簡便に良く取り除くことができる。そのため、簡便に、かつ、精度良くオイルの状態を診断することができる。また、可視光レーザを使用することができるため、特殊な光学系を使用することなく、簡単な構成で、かつ、小型化された分析装置を提供することができる。したがって、分析装置だけでなく、機械装置に組み込んでインライン分析装置としても利用可能である。 According to the present disclosure, the influence of disturbance such as autofluorescence of oil, soot in oil, and coloring of oil can be easily and well removed from the Raman spectrum of oil. Therefore, the state of the oil can be diagnosed easily and accurately. Further, since a visible light laser can be used, it is possible to provide an analyzer having a simple configuration and a miniaturization without using a special optical system. Therefore, it can be used not only as an analyzer but also as an in-line analyzer by incorporating it into a mechanical device.
 10、10a 光源
 20、20a 分光器
 30 取得部
 40 算出部
 50 記憶部
 60 診断部
 70、70a 処理部
 100、100a オイル状態診断装置
 200 機械装置
 300 サーバ
 400 ネットワーク
 500 オイル状態診断システム
10, 10a Light source 20, 20a Spectrometer 30 Acquisition unit 40 Calculation unit 50 Storage unit 60 Diagnosis unit 70, 70a Processing unit 100, 100a Oil condition diagnostic equipment 200 Mechanical equipment 300 Server 400 Network 500 Oil condition diagnostic system

Claims (9)

  1.  オイルのラマンスペクトルを取得し、
     取得した前記ラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出し、
     予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係に基づいて、算出した前記少なくとも1つの規格化した値から前記オイルの状態を診断する、
     オイル状態診断方法。
    Obtain the Raman spectrum of oil and
    For the acquired intensity of the predetermined peak in the Raman spectrum, at least one value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum was calculated.
    It was calculated based on the correlation between the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum and the state of the oil with respect to the intensity of the predetermined peak in the Raman spectrum of the oil calculated in advance. Diagnose the condition of the oil from at least one standardized value.
    Oil condition diagnosis method.
  2.  前記ラマンスペクトルの前記飽和アルカンに由来するピークは、1400cm-1~1600cm-1の波数範囲、又は、2840cm-1~3000cm-1の波数範囲に位置する、
     請求項1に記載のオイル状態診断方法。
    Peak derived from the saturated alkane of the Raman spectra, wave number range of 1400 cm -1 ~ 1600 cm -1, or located wavenumber range of 2840cm -1 ~ 3000cm -1,
    The oil condition diagnosis method according to claim 1.
  3.  前記ラマンスペクトルの前記飽和アルカンに由来するピークは、波数1450cm-1に位置する、
     請求項1又は2に記載のオイル状態診断方法。
    The peak derived from the saturated alkane in the Raman spectrum is located at a wave number of 1450 cm -1.
    The oil condition diagnosis method according to claim 1 or 2.
  4.  前記所定のピークは、波数1300cm-1、1600cm-1及び1750cm-1の少なくとも1つに位置する、
     請求項1~3のいずれか1項に記載のオイル状態診断方法。
    The predetermined peak is located at least one wave number 1300 cm -1, 1600 cm -1 and 1750 cm -1,
    The oil condition diagnosis method according to any one of claims 1 to 3.
  5.  前記所定のピークは、波数1300cm-1に位置する、
     請求項4に記載のオイル状態診断方法。
    The predetermined peak is located at a wave number of 1300 cm -1.
    The oil condition diagnosis method according to claim 4.
  6.  前記診断では、規格化した前記値に基づいて、前記オイルの全酸価及び酸化値の少なくとも1つを評価する、
     請求項1~5のいずれか1項に記載のオイル状態診断方法。
    In the diagnosis, at least one of the total acid value and the oxidation value of the oil is evaluated based on the normalized value.
    The oil condition diagnosis method according to any one of claims 1 to 5.
  7.  さらに、取得した前記ラマンスペクトルのベースラインを補正し、
     前記算出では、補正後の前記ラマンスペクトルに対して、前記規格化した値を算出する、
     請求項1~6のいずれか1項に記載のオイル状態診断方法。
    Further, the acquired baseline of the Raman spectrum is corrected, and the baseline is corrected.
    In the calculation, the normalized value is calculated with respect to the corrected Raman spectrum.
    The oil condition diagnosis method according to any one of claims 1 to 6.
  8.  前記オイルは、潤滑油である、
     請求項1~7のいずれか1項に記載のオイル状態診断方法。
    The oil is a lubricating oil.
    The oil condition diagnosis method according to any one of claims 1 to 7.
  9.  オイルのラマンスペクトルを取得する取得部と、
     取得した前記ラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値を少なくとも1つ算出する算出部と、
     予め算出された、オイルのラマンスペクトルにおける所定のピークの強度に対して、前記ラマンスペクトルにおける飽和アルカンに由来するピークの強度で規格化した値とオイルの状態との相関関係を記憶する記憶部と、
     前記相関関係に基づいて、算出した前記少なくとも1つの規格化した値から前記オイルの状態を診断する診断部と、
     を備える、
     オイル状態診断装置。
    The acquisition unit that acquires the Raman spectrum of oil,
    A calculation unit that calculates at least one value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum with respect to the acquired intensity of the predetermined peak in the Raman spectrum.
    A storage unit that stores the correlation between the value normalized by the intensity of the peak derived from the saturated alkane in the Raman spectrum and the state of the oil with respect to the intensity of the predetermined peak in the Raman spectrum of the oil calculated in advance. ,
    A diagnostic unit that diagnoses the state of the oil from the calculated at least one standardized value based on the correlation.
    To prepare
    Oil condition diagnostic device.
PCT/JP2021/002021 2020-01-24 2021-01-21 Oil state diagnostic method and oil state diagnostic device WO2021149762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-009643 2020-01-24
JP2020009643 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149762A1 true WO2021149762A1 (en) 2021-07-29

Family

ID=76992537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002021 WO2021149762A1 (en) 2020-01-24 2021-01-21 Oil state diagnostic method and oil state diagnostic device

Country Status (1)

Country Link
WO (1) WO2021149762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403696A (en) * 2008-10-21 2009-04-08 浙江大学 Method for measuring gasoline olefin content based on Raman spectrum
CN105319198A (en) * 2014-07-15 2016-02-10 中国石油化工股份有限公司 Gasoline benzene content prediction method based on Raman spectrum analysis technology
CN107389656A (en) * 2017-07-31 2017-11-24 江南大学 The method of beef fat quality comparison during Raman Characterization multigelation
JP2019070635A (en) * 2017-08-22 2019-05-09 ゼネラル・エレクトリック・カンパニイ Method and apparatus for determining lubricant contamination or deterioration in engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403696A (en) * 2008-10-21 2009-04-08 浙江大学 Method for measuring gasoline olefin content based on Raman spectrum
CN105319198A (en) * 2014-07-15 2016-02-10 中国石油化工股份有限公司 Gasoline benzene content prediction method based on Raman spectrum analysis technology
CN107389656A (en) * 2017-07-31 2017-11-24 江南大学 The method of beef fat quality comparison during Raman Characterization multigelation
JP2019070635A (en) * 2017-08-22 2019-05-09 ゼネラル・エレクトリック・カンパニイ Method and apparatus for determining lubricant contamination or deterioration in engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IŁOWSKA JOLANTA, CHROBAK JUSTYNA, GRABOWSKI RAFAŁ, SZMATOŁA MICHAŁ, WOCH JULIA, SZWACH IWONA, DRABIK JOLANTA, TRZOS MAGDALENA, KOZ: "Designing Lubricating Properties of Vegetable Base Oils", MOLECULES, vol. 23, no. 2025, 14 August 2018 (2018-08-14), pages 1 - 11, XP055842346, DOI: 10.3390/ molecules23082025 *

Similar Documents

Publication Publication Date Title
EP3088871B1 (en) Raman spectrum detection method
Barman et al. Effect of photobleaching on calibration model development in biological Raman spectroscopy
Silveira et al. Quantifying glucose and lipid components in human serum by Raman spectroscopy and multivariate statistics
CN101403696A (en) Method for measuring gasoline olefin content based on Raman spectrum
JP2010538280A (en) Measuring apparatus and method for analyzing bearing lubricant
JP2013536939A (en) Method and apparatus for determining the deterioration state of lubricating oil
CN105319198A (en) Gasoline benzene content prediction method based on Raman spectrum analysis technology
CN106932378A (en) The on-line detecting system and method for a kind of sour gas composition based on Raman spectrum
RU2316746C2 (en) Method and device for testing lubricant
Wolak et al. Identifying and modelling changes in chemical properties of engine oils by use of infrared spectroscopy
Liu et al. Measurement of moisture content in lubricating oils of high-speed rail gearbox by Vis-NIR spectroscopy
Mignani et al. Optical fiber spectroscopy for measuring quality indicators of lubricant oils
Toms et al. Oil analysis and condition monitoring
WO2021149762A1 (en) Oil state diagnostic method and oil state diagnostic device
Lukas et al. Laboratory used oil analysis methods
JP2007285922A (en) Clinical blood examination method using near infrared ray
TWI503531B (en) A method for measuring the property of the suspended solids and other substances in the fluid
Vähäoja et al. Trends in industrial oil analysis–a review
Villar et al. Chemometric methods applied to the calibration of a Vis–NIR sensor for gas engine's condition monitoring
Macian et al. Application assessment of UV–vis and NIR spectroscopy for the quantification of fuel dilution problems on used engine oils
WO2021149760A1 (en) Raman spectroscopy method and raman spectroscopy suppport device
Zhi-Na et al. Rapid measurement of diesel engine oil quality by near infrared spectroscopy (NIRS)
Ossia et al. Novel chromatic technique based on optical absorbance in characterizing mineral hydraulic oil degradation
WO2020218345A1 (en) Functional fluid state determination apparatus and functional fluid state determination system
CN114424048A (en) Evidence obtaining detector and system thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21744620

Country of ref document: EP

Kind code of ref document: A1