WO2021147116A1 - Uplink adaptation in carrier aggregation - Google Patents

Uplink adaptation in carrier aggregation Download PDF

Info

Publication number
WO2021147116A1
WO2021147116A1 PCT/CN2020/074045 CN2020074045W WO2021147116A1 WO 2021147116 A1 WO2021147116 A1 WO 2021147116A1 CN 2020074045 W CN2020074045 W CN 2020074045W WO 2021147116 A1 WO2021147116 A1 WO 2021147116A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
uplink transmission
state
transmission state
grant
Prior art date
Application number
PCT/CN2020/074045
Other languages
French (fr)
Inventor
Yi Huang
Yiqing Cao
Bo Chen
Chao Wei
Peter Gaal
Chenxi HAO
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074045 priority Critical patent/WO2021147116A1/en
Publication of WO2021147116A1 publication Critical patent/WO2021147116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the following relates generally to wireless communications and more specifically to uplink adaptation in carrier aggregation.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may communicate with a base station on multiple component carriers (CCs) in a carrier aggregation (CA) configuration.
  • the base station may indicate that the UE is to transmit an uplink transmission in the CA configuration.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support uplink adaptation in carrier aggregation.
  • the described techniques provide for enabling a base station to transmit an uplink (UL) grant to a user equipment (UE) indicating a UL transmission state for a set of component carriers (CCs) in a carrier aggregation (CA) configuration.
  • the indicated UL transmission state may correspond to a UL transmission scheduled by the UL grant, and may include which CCs the UE is to use for the UL transmission, which layers on the CCs the UE is to use, etc.
  • the UE may be configured with one or more radio hardware states mapped to one or more UL transmission states.
  • one or more of the radio hardware states may include an associated configuration for one or more hardware components (e.g., antennas) of the UE.
  • the UE may determine one or more transmission parameters to adjust to transition to one or more of the radio hardware states corresponding to the indicated one or more UL transmission states. For example, the UE may reconfigure one or more antennas to transmit on a different CC or layer based on the one or more indicated UL transmission states.
  • a method of wireless communications at a user equipment may include operating in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receiving an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmitting an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receive an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the apparatus may include means for operating in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receiving an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmitting an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • a non-transitory computer-readable medium storing code for wireless communications at a user equipment is described.
  • the code may include instructions executable by a processor to operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receive an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink transmission state to the second uplink transmission state includes transitioning from the first radio hardware state to the second radio hardware state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a mapping between one or more uplink transmission states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state may be based on the mapping.
  • determining the mapping may include operations, features, means, or instructions for retrieving the mapping from memory associated with the user equipment.
  • determining the mapping may include operations, features, means, or instructions for determining that a set of uplink transmission states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink transmission state of the one or more uplink transmission states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the mapping based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for storing the first radio hardware state in memory associated with the user equipment, and updating the mapping based on storing the first radio hardware state in memory, where updating the mapping includes associating the second uplink transmission state with the first radio hardware state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting one or more uplink transmission parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where adjusting the one or more uplink transmission parameters includes activating one or more component carriers of the set of component carriers, deactivating one or more component carriers of the set of component carriers, increasing a rank of a component carrier of the set of component carriers, reducing a rank of a component carrier of the set of component carriers, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state, and determining an event queue based on receiving the second uplink grant, where the event queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, where transmitting the uplink transmission includes transmitting the uplink transmission using the second uplink transmission state and the second uplink transmission using the third uplink transmission state based on the event queue.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a previous uplink grant before the uplink grant, and refraining from transmitting a previous uplink transmission associated with the previous uplink grant based on receiving the uplink grant.
  • the previous uplink grant may have a first priority
  • the uplink grant may have a second priority higher than the first priority
  • the transitioning may include operations, features, means, or instructions for transitioning from the first uplink transmission state to the second uplink transmission state in a beginning time resource duration of an uplink transmission occasion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration, where receiving the uplink grant includes receiving the uplink grant before the first duration preceding the uplink transmission occasion.
  • the uplink transmission occasion includes two or more consecutive time resources.
  • the beginning time resource duration includes a symbol or a slot.
  • the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
  • the uplink grant may be received in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  • the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  • a method of wireless communications at a base station may include operating in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identifying a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmitting, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitoring for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the apparatus may include means for operating in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identifying a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmitting, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitoring for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state, and transitioning from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink reception state to the second uplink reception state includes transitioning from the first radio hardware state to the second radio hardware state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a mapping between one or more uplink reception states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state may be based on the mapping.
  • determining the mapping may include operations, features, means, or instructions for retrieving the mapping from memory associated with the base station.
  • determining the mapping may include operations, features, means, or instructions for determining that a set of uplink reception states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink reception state of the one or more uplink reception states.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the mapping based on transitioning from the first uplink reception state to the second uplink reception state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting one or more uplink reception parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where monitoring for the uplink transmission from the user equipment may be based on adjusting the one or more uplink reception parameters.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state, and determining an event queue based on transmitting the second uplink grant, where the even queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, where monitoring for the uplink transmission includes monitoring for the uplink transmission using the second uplink reception state and the second uplink transmission using a third uplink reception state based on the event queue, where the third uplink transmission state may be associated with the third uplink reception state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a previous uplink grant before the uplink grant, and refraining from monitoring for a previous uplink transmission associated with the previous uplink grant based on transmitting the uplink grant.
  • the previous uplink grant may have a first priority
  • the uplink grant may have a second priority higher than the first priority
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the uplink transmission from the user equipment based on the monitoring, and determining an uplink transmission state associated with the uplink transmission.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the uplink transmission state associated with the uplink transmission includes the second uplink transmission state, and receiving the uplink transmission using the second uplink reception state based on determining that the uplink transmission state includes the second uplink transmission state and monitoring for the uplink transmission.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the uplink transmission state associated with the uplink transmission includes the first uplink transmission state based on monitoring for the uplink transmission, transitioning from the second uplink reception state to the first uplink reception state based on determining that the uplink transmission state includes the first uplink transmission state, and receiving the uplink transmission using the first uplink reception state based on transitioning from the second uplink reception state to the first uplink reception state.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the user equipment failed to detect a downlink control information message associated with the uplink grant based on determining that the uplink transmission state includes the first uplink transmission state.
  • monitoring for the uplink transmission may include operations, features, means, or instructions for monitoring for the uplink transmission in an uplink transmission occasion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration, and transmitting the uplink grant before the first duration preceding the uplink transmission occasion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from transmitting a second uplink grant indicating a third uplink transmission state for a second uplink transmission in the uplink transmission occasion based on transmitting the uplink grant.
  • the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
  • the uplink grant may be transmitted in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  • the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  • FIGs. 1 and 2 illustrate examples of wireless communications systems that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a transmission scheme that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a transmission scheme that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show block diagrams of devices that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 12 shows a block diagram of a communications manager that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIG. 13 shows a diagram of a system including a device that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • FIGs. 14 through 19 show flowcharts illustrating methods that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • a user equipment (UE) in a wireless communications system may communicate with one or more network nodes such as base stations.
  • a UE may communicate signaling with a base station on multiple component carriers (CCs) in a carrier aggregation (CA) configuration, for example, to increase available bandwidth and data rates for the UE, among other advantages.
  • the CA configuration may include intra-band CA, where the UE may communicate on one or more CCs in the same frequency band, along with other examples.
  • the CCs may be contiguous in frequency or non-contiguous in frequency in some examples.
  • Communications on the CCs by the UE may include monitoring for physical downlink control channel (PDCCH) transmissions, receiving physical downlink shared channel (PDSCH) transmissions, transmitting physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) transmissions, etc.
  • the CA configuration may include frequency division duplexing (FDD) CCs, time division duplexing (TDD) CCs, or both.
  • a UE and a base station may each include multiple antennas, which may enable the UE to employ multiple-input multiple-output (MIMO) communications for uplink (UL) transmissions to a base station in a CA configuration.
  • the UE may use MIMO communications to transmit one or more UL transmissions via different spatial layers.
  • Each CC in the CA configuration may include an associated quantity of layers for UL transmissions.
  • a first FDD CC may include one layer for UL transmissions
  • a second TDD CC may include two layers for UL transmissions. That is, the first CC and the second CC may include a total of three layers for UL transmissions.
  • a base station may monitor for one or more UL transmissions from the UE via one or more layers.
  • Hardware components of the UE e.g., antennas
  • a base station may be unaware of which layers the UE uses for UL transmissions. This may result in the base station missing UL transmissions from the UE, which may lead to reduced UL transmission reliability and efficiency at the UE.
  • a base station may transmit a UL grant to a UE indicating a UL transmission state.
  • the base station may transmit the UL grant in a physical downlink control channel (PDCCH) transmission, a Radio Resource Control (RRC) message, or a downlink control information (DCI) message, another communication, or any combination thereof.
  • the indicated UL transmission state may correspond to a UL transmission scheduled by the UL grant, and may include which CCs the UE is to use for the UL transmission, which layers on the CCs the UE is to use, etc.
  • the UL transmission may include a physical uplink control channel (PUCCH) transmission, a physical uplink shared channel (PUSCH) transmission, a physical random access channel (PRACH) transmission, or a sounding reference signal (SRS) , or any combination thereof.
  • the UE may be configured with one or more radio hardware states (which may be referred to as radio frequency (RF) states) . Each radio hardware state may include an associated configuration for RF components (e.g., antennas) of the UE.
  • the UE may determine transmission parameters to adjust to transition to a radio hardware state corresponding to the indicated UL transmission state. For example, the UE may reconfigure antennas to transmit on a different CC or layer based on the indicated UL transmission state.
  • the UE may determine a mapping between UL transmission states and radio hardware states.
  • one or more radio hardware states may correspond to one or more UL transmission states that may be indicated in a UL grant.
  • each UL transmission state may correspond to one or more radio hardware states.
  • the UE may store the mapping in memory, and the UE may retrieve the mapping from memory, for example, when the UE receives a UL grant indicating a UL transmission state. Based on the mapping, the UE may determine to transition from one radio hardware state to a new radio hardware state as part of transitioning to the indicated UL transmission state.
  • the UE may transmit one or more UL transmissions as scheduled by the UL grant, where the UE may transmit the UL transmissions using the indicated UL transmission state (e.g., on the indicated CCs and MIMO layers) .
  • the base station that transmitted the UL grant may determine a UL reception state corresponding to the UL transmission state indicated in the UL grant.
  • the base station may transition to the determined UL reception state and monitor for UL transmissions using the UL reception state.
  • the base station may also be configured with one or more radio hardware states, and may determine a mapping between UL reception states and radio hardware states. Based on the mapping, the base station may determine to transition to a new radio hardware state as part of transitioning to the UL reception state corresponding to the indicated UL transmission state.
  • the UE may transmit UL transmissions in a UL transmission occasion, which may include a quantity of consecutive UL slots or symbols.
  • the base station may identify the UL transmission occasion in the UL grant.
  • the base station may transmit the UL grant at least a duration (e.g., a minimum duration) before the UL transmission occasion to allow the UE to process the UL grant and to transition to the indicated UL transmission state.
  • the base station may transmit multiple UL grants scheduling one or more UL transmissions in multiple UL transmission occasions.
  • One or more of the UL grants may indicate one or more different UL transmission states for the respective UL transmissions.
  • the UE may construct an event queue to schedule transitions between different UL transmission states indicated by the UL grants.
  • the base station may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
  • the base station may transmit a UL grant with a higher priority than a priority of a previous UL grant.
  • the UE may determine to drop (e.g., refrain from transmitting) a UL transmission scheduled by the lower priority UL grant in favor of a UL transmission scheduled by the higher priority UL grant.
  • the UE and the base station may update their corresponding event queues based on the dropped UL transmission.
  • the UE may construct the event queue based on a first in first out (FIFO) scheduling process, where the UE may transition to a first UL transmission state based on a first UL grant, then transition to a second UL transmission state based on a second UL grant received after the first UL grant.
  • FIFO scheduling process the UE may operate based on the order in which the UL grants are received being the same as the order in which the corresponding UL transmissions are scheduled.
  • the UE may construct the event queue based on the order of the scheduled UL transmissions, where the order of the scheduled UL transmissions may be different from the order in which the corresponding UL grants are received.
  • the UE may miss (e.g., fail to detect) a DCI message indicating a UL transmission state transition.
  • the UE may fail to transition to a UL transmission state indicated by the DCI and remain in a previous UL transmission state.
  • the base station may detect the state of a UL transmission and determine the UE missed the DCI message.
  • the base station may transition to a UL reception state corresponding to the previous UL transmission state based on determining the state of the UL transmission.
  • the base station may be configured to indicate no more than one UL transmission state transition for each UL transmission occasion.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Example transmission schemes and an example process flow are then described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to uplink adaptation in carrier aggregation.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, MIMO communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • a base station 105 may transmit a UL grant to a UE 115 indicating a UL transmission state for a set of CCs in a CA configuration.
  • the base station may transmit the UL grant in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof.
  • the indicated UL transmission state may correspond to a UL transmission scheduled by the UL grant, and may include which CCs the UE 115 is to use for the UL transmission, which layers on the CCs the UE 115 is to use, etc.
  • the UL transmission may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof.
  • the UE 115 may be configured with one or more radio hardware states (e.g., RF states) .
  • Each radio hardware state may include an associated configuration for RF components (e.g., antennas) of the UE 115.
  • the UE 115 may determine transmission parameters to adjust to transition to a radio hardware state corresponding to the indicated UL transmission state. For example, the UE 115 may reconfigure one or more antennas to transmit on a different CC or layer based on the indicated UL transmission state.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a base station 205 and a UE 215, which may be examples of the corresponding devices described with reference to FIG. 1.
  • the wireless communications system 200 may include features for improved UE uplink transmission adaptation, among other benefits.
  • the base station 205 may provide a geographic coverage area 210.
  • the base station 205 may transmit UL grants 220 to the UE 215, and the UE 215 may transmit UL transmissions 225 to the base station 205.
  • the UE 215 may transmit each UL transmission 225 in a UL transmission occasion.
  • the UE 215 and the base station 205 may exchange UL grants 220 and UL transmissions 225 on multiple CCs 230 (e.g., a CC 230-a and a CC 230-b) in a CA configuration.
  • the CC 230-a may be a TDD CC 230
  • the CC 230-b may be an FDD CC 230.
  • the CC 230-a may include two layers for transmitting UL data, and the CC 230-b may include one layer for transmitting UL data in some examples. That is, the CC 230-a may have a rank of up to two, and the CC 230-b may have a rank of up to one, and the CCs 230 illustrated in FIG. 2 may include a total of three layers for transmitting UL data. In some examples, the CC 230-a may have a rank different than two, and the CC 230-b may have a rank different than one, and the CCs 230 may include a total of layers different than three layers for transmitting UL data.
  • the CC 230-a and the CC 230-b may have different associated numerologies. For example, a duration of a slot 235-b on the CC 230-b may be twice a duration of a slot 235-a on the CC 230-a
  • hardware components (e.g., antennas) of the UE 215 may support concurrent transmission on one or more layers (e.g., up to two layers) in a given UL transmission occasion. Accordingly, the UE 215 may support one or more (e.g., five) UL transmission states. In a first UL transmission state (which may be referred to as an idle state, an initial state or a state 0) , the UE 215 may transmit UL data on neither the CC 230-a nor the CC 230-b. In a second UL transmission state (which may be referred to as a state 1) , the UE 215 may transmit UL data on one layer of the CC 230-a and one layer of the CC 230-b.
  • a first UL transmission state which may be referred to as an idle state, an initial state or a state 0
  • a second UL transmission state which may be referred to as a state 1
  • the UE 215 may transmit UL data on one layer of the
  • a third UL transmission state (which may be referred to as a state 1a) , the UE 215 may transmit UL data on no layer of the CC 230-a and on one layer of the CC 230-b.
  • a fourth UL transmission state (which may be referred to as a state 2) , the UE 215 may transmit UL data on two layers of the CC 230-a and on no layer of the CC 230-b.
  • a fifth UL transmission state (which may be referred to as a state 3) , the UE 215 may transmit UL data on one layer of the CC 230-a and on no layer of the CC 230-b.
  • the UE 215 may support two radio hardware states.
  • the UE 215 may be configured to transmit UL data on both the CC 230-a and on the CC 230-b.
  • a second radio hardware state (which may be referred to as a case 2) , the UE 215 may be configured to transmit UL data on the CC 230-a and not on the CC 230-b.
  • the base station 205 may support UL reception states and radio hardware states corresponding to the UL transmission states and radio hardware states of the UE 215.
  • the base station may transmit a UL grant 220-a scheduling a UL transmission 225-a.
  • the UL transmission 225-a may be scheduled in a UL transmission occasion which includes slots 235-a-1 through 235-a-10 on the CC 230-a and slots 235-b-1 through 235-b-5 on the CC 230-b.
  • the UL grant 220-a may indicate a UL transmission state (e.g., state 1, which includes UL data transmission on one layer of the CC 230-a and one layer of the CC 230-b) for the UL transmission 225-a.
  • the UE 215 may transition to the indicated UL transmission state based on the UL grant 220-a.
  • the UE 215 may also transition to a radio hardware state (e.g., case 1) corresponding to the indicated UL transmission state. For example, if the UE 215 is operating in the state 2 UL transmission state, the UE may transition from the case 2 radio hardware state to the case 1 radio hardware state, for example by reconfiguring antennas to enable UL data transmission on the CC 230-b.
  • a radio hardware state e.g., case 1
  • the UL grant 220-a may identify which slots 235 of the UL transmission occasion containing the UL transmission 225-a the UE 215 is to use to transmit UL data. Based on the UL grant 220-a, and as illustrated in FIG. 2, the UE 215 may transmit on one layer of the CC 230-a in the slots 235-a-5, 235-a-9, and 235-a-10. The UE 215 may transmit on the one layer of the CC 230-b in the slots 235-b-1 through 235-b-5.
  • the base station may transmit a UL grant 220-b after transmitting the UL grant 220-a.
  • the UL grant 220-b may schedule a UL transmission 225-b in a UL transmission occasion which includes slots 235-a-11 through 235-a-20 on the CC 230-a and slots 235-b-6 through 235-b-10 on the CC 230-b.
  • the UL grant 220-b may indicate a UL transmission state (e.g., state 2, which includes UL data transmission on two layers of the CC 230-a and on no layer of the CC 230-b) for the UL transmission 225-b.
  • the UE 215 may transition to the indicated UL transmission state based on the UL grant 220-b.
  • the UE 215 may also transition to a radio hardware state (e.g., case 2) corresponding to the indicated UL transmission state. For example, the UE 215 may reconfiguring antennas to disable UL data transmission on the CC 230-b.
  • a radio hardware state e.g., case 2
  • the UL grant 220-b may identify which slots 235 of the UL transmission occasion containing the UL transmission 225-b the UE 215 is to use to transmit UL data. Based on the UL grant 220-b, the UE 215 may transmit on two layers of the CC 230-a in the slots 235-a-12, 235-a-13, 235-a-15, 235-a-19, and 235-a-20, as illustrated in FIG. 2.
  • the UE 215 may construct an event queue to schedule transitions between the different UL transmission states indicated by the UL grants 220-a and 220-b.
  • the base station 205 may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
  • the UE 215 may determine a mapping between one or more of the five UL transmission states (as one example) and one or more of the two radio hardware states (as one example) . For example, the UE 215 may map the state 1 and the state 1a UL transmission states to the case 1 radio hardware state. Additionally, the UE 215 may map the state 2 UL transmission state to the case 2 radio hardware state. In some examples, the mapping of the state 1, the state 1a, and the state 2 may be static, which may be referred to as a hard mapping. That is, the mapping of the state 1, the state 1a, and the state 2 to corresponding radio hardware states may not be changed or updated by the UE 215.
  • the mapping of the state 0 and the state 3 UL transmission states to corresponding radio hardware states may be dynamic, which may be referred to as a soft mapping. That is, the UE 215 may update the mapping of the state 0 and the state 3 UL transmission states based on a previous UL transmission state. For example, the UE 215 may operate in the state 1 UL transmission state (and the corresponding case 1 radio hardware state) before receiving a UL grant 220 that indicates the UE 215 is to transition to the state 3 UL transmission state. Based on the previous UL transmission state (state 1) , the UE 215 may map the state 3 UL transmission state to the case 1 radio hardware state. Based on this mapping, the UE 215 may determine not to transition to a different radio hardware state (e.g., from case 1 to case 2) when transitioning to the state 3 UL transmission state, which may improve power efficiency at the UE 215.
  • a different radio hardware state e.g., from case 1 to case 2
  • the UE 215 may operate in the state 2 UL transmission state (and the corresponding case 2 radio hardware state) before receiving a UL grant 220 that indicates the UE 215 is to transition to the state 3 UL transmission state. Based on the previous UL transmission state (state 2) , the UE 215 may map the state 3 UL transmission state to the case 2 radio hardware state. Based on this mapping, the UE 215 may determine not to transition to a different radio hardware state (e.g., from case 2 to case 1) when transitioning to the state 3 UL transmission state, which may improve power efficiency at the UE 215.
  • a different radio hardware state e.g., from case 2 to case 1
  • the UE 215 may store the mapping between UL transmission states and radio hardware states in memory.
  • the UE 215 may also store the radio hardware state in memory.
  • the UE may determine the dynamic mapping for UL transmission states based on the radio hardware state stored in memory. That is, when the UE 215 receives a UL grant 220 that indicates the UE 215 is to transition to a new UL transmission state that may be dynamically mapped (e.g., the state 3 UL transmission state, the state 0 UL transmission state, etc. ) , the UE 215 may map the new UL transmission state to the radio hardware state stored in memory, which may improve power efficiency at the UE 215.
  • UL transmissions 225 may be configured as a rank 1 or a rank 2 transmission, where a rank 1 transmission may be transmitted on one layer of a CC 230.
  • a rank 2 transmission may be configured to be transmitted on two layers of a CC 230 (e.g., the CC 230-a.
  • a rank 1 transmission may include a PUCCH transmission, a PRACH transmission, a PUSCH transmission scheduled by a DCI message of a first type (e.g., a fallback DCI, a format 0_0 DCI, etc. ) , or a PUSCH transmission scheduled by a DCI message of a second type (e.g., a non-fallback DCI, a format 0_1 DCI, etc.
  • the PUSCH transmission scheduled by the DCI message of the second type may in some examples be treated as a rank 2 transmission.
  • a rank 2 transmission may enable the UE 215 to support antenna port selection for a format 0_1 DCI message.
  • UL transmissions 2215 which may be configured as rank 1 transmissions may be treated as rank 2 transmissions based on a previous radio hardware state in which the UE 215 is operating before transitioning to the UL transmission state corresponding to the rank 1 transmission. For example, if the UE 215 is operating in the case 1 radio hardware state, the UE 215 may determine to treat a subsequent UL transmission 225 as a rank 1 transmission. Alternatively, if the UE 215 is operating in the case 2 radio hardware state, the UE 215 may determine to treat the subsequent UL transmission 225 as a rank 2 transmission. Based on this determination, the UE 215 may determine not to transition to a different radio hardware state (e.g., from case 2 to case 1) before transmitting the subsequent UL transmission 225, which may improve power efficiency and communications efficiency at the UE 215.
  • a different radio hardware state e.g., from case 2 to case 1
  • FIG. 3 illustrates an example of a transmission scheme 300 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the transmission scheme 300 may implement aspects of wireless communications systems 100 and 200.
  • the transmission scheme 300 may be associated with communications between a UE and a base station, which may be examples of corresponding devices described with reference to FIGs. 1 and 2.
  • the transmission scheme 300 may illustrate features for improved uplink transmission adaptation, among other benefits.
  • a base station may transmit UL grants 320 to a UE.
  • the base station may transmit a UL grant 320 in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof.
  • the UE may transmit UL transmissions 325 to the base station.
  • a UL transmission 325 may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof.
  • the UE and the base station may exchange UL grants 320 and UL transmissions 325 on multiple CCs in a CA configuration.
  • the CA configuration may include a TDD CC and an FDD CC.
  • a UL grant 320-a may schedule a UL transmission 325-a
  • a UL grant 320-b may schedule a UL transmission 325-b
  • a UL grant 320-c may schedule a UL transmission 325-c.
  • One or more of the UL grants 320-a through 320-c may indicate different UL transmission states for the respective UL transmissions 325-a through 325-c.
  • the UE may construct an event queue to schedule transitions between the different UL transmission states indicated by the UL grants 320.
  • the base station may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
  • the UE may construct the event queue based on a FIFO scheduling process, where the UE may transition to a first UL transmission state based on the UL grant 320-a, then transition to a second UL transmission state based on the UL grant 320- b, and then transition to a third UL transmission state based on the UL grant 320-c.
  • the UE may assume the order in which the UL grants 320 are received is the same as the order in which the corresponding UL transmissions 325 are scheduled, as illustrated in FIG. 3.
  • the UE may transmit each UL transmission 325 in a UL transmission occasion, which may include a quantity of consecutive UL slots or symbols.
  • the base station may identify the UL transmission occasion for a UL transmission 325 in the corresponding UL grant 320.
  • the UL grant 320-a may identify the UL transmission occasion in which the UE is to transmit the UL transmission 325-a.
  • the base station may transmit each UL grant 320 at least a duration 305 before the UL transmission occasion containing the corresponding UL transmission 325.
  • the duration 305 may allow time for the UE to process a UL grant 320 and transition to the indicated UL transmission state before the UL transmission occasion.
  • the event queue may include start events 310 which occur a duration 305 before a beginning of a UL transmission 325, as well as end events 315 which occur the duration 305 before an end of a UL transmission 325.
  • a start event 310 may represent a deadline, where the base station may transmit a UL grant 320 so that the UE receives the UL grant 320 with sufficient time to process the UL grant 320 and perform a UL transmission state transition before transmitting a corresponding UL transmission 325.
  • the base station may transmit an update (not shown) before an end event 310 to indicate to the UE that a UL grant 320 has been executed.
  • the update may indicate a UL transmission 325 corresponding to the UL grant 320 was successfully received at the base station.
  • the base station may include the update in a PDCCH.
  • the event queue for the transmission scheme 300 may include start events 310-a, 310-b, and 310-c, which may occur the duration 305 before the beginning of UL transmissions 325-a, 325-b, and 325-c, respectively.
  • the event queue may also include end events 315-a, 315-b, and 315-c, which may occur the duration 305 before the end of UL transmissions 325-a, 325-b, and 325-c, respectively.
  • the base station may transmit the UL grant 320-a so that the UE receives the UL grant 320-a before the start event 310-a to allow the UE time to process the UL grant 320-a and transition to the indicated UL transmission state before transmitting the UL transmission 325-a.
  • the UE may additionally receive the UL grants 320-b and 320-c before the start events 310-b and 310-c, respectively, and build the event queue for performing the UL transmission state transitions indicated in the UL grants 320-a, 320-b, and 320-c.
  • the transmission scheme 300 may support improved implementation of UL transmission adaptation at the UE, among other benefits.
  • FIG. 4 illustrates an example of a transmission scheme 400 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the transmission scheme 400 may implement aspects of wireless communications systems 100 and 200.
  • the transmission scheme 400 may be associated with communications between a UE and a base station, which may be examples of corresponding devices described with reference to FIGs. 1 and 2.
  • the transmission scheme 400 may illustrate features for improved uplink transmission adaptation, among other benefits.
  • a base station may transmit UL grants 420 to a UE.
  • the base station may transmit a UL grant 420 in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof.
  • the UE may transmit UL transmissions 425 to the base station.
  • a UL transmission 425 may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof.
  • the UE and the base station may exchange UL grants 420 and UL transmissions 425 on multiple CCs in a CA configuration.
  • the CA configuration may include a TDD CC and an FDD CC.
  • a UL grant 420-a may schedule a UL transmission 425-a
  • a UL grant 420-b may schedule a UL transmission 425-b
  • a UL grant 420-c may schedule a UL transmission 425-c.
  • One or more of the UL grants 420-a through 420-c may indicate different UL transmission states for the respective UL transmissions 425-a through 425-c.
  • the UE may construct an event queue to schedule transitions between the different UL transmission states indicated by the UL grants 420.
  • the base station may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
  • An order of the scheduled UL transmissions 425 may be different from an order in which the UE receives corresponding UL grants 420. For example, as illustrated in FIG. 4, the UE may receive the UL grant 420-b before receiving the UL grant 420-c, but the UL transmission 425-c may be scheduled to occur before the UL transmission 425-b.
  • an event queue based on a FIFO scheduling process may include additional UL transmission state transitions, which may reduce an efficiency and a reliability of UL communications from the UE to the base station.
  • the event queue would include a transition to a first UL transmission state indicated in the UL grant 420-a for transmitting the UL transmission 425-a, followed by a transition to a second UL transmission state indicated in the UL grant 420-b, followed by a transition to a third UL transmission state indicated in the UL grant 420-c for transmitting the UL transmission 425-c.
  • the UE would then transition back to the second UL transmission state indicated in the UL grant 420-b for transmitting the UL transmission 425-b. That is, in the example illustrated in FIG. 4, the event queue based on the FIFO scheduling process may include four transitions to transmit the three UL transmissions 425-a, 425-b, and 425-c.
  • the UE may improve power efficiency by constructing an event queue based on the order of the scheduled UL transmission 425.
  • the base station may transmit the UL grants 420-a, 420-b, and 420-c before a start event 410, where the start event 410 may occur a duration 405 before a beginning of the first UL transmission 425-a.
  • the duration 405 may allow time for the UE to process the UL grants 420 and construct the event queue for transitions to the indicated UL transmission states before the UL transmissions 425.
  • the transmission scheme 400 may support improved implementation of UL transmission adaptation at the UE, among other benefits.
  • FIG. 5 illustrates an example of a process flow 500 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • process flow 500 may implement aspects of wireless communications 200 systems 100 and 200.
  • the process flow 500 may include example operations associated with one or more of a base station 505 or a UE 515, which may be examples of the corresponding devices described with reference to FIGs. 1 and 2.
  • the operations between the base station 505 and the UE 515 may be performed in a different order than the example order shown, or the operations performed by the base station 505 and the UE 515 may be performed in different orders or at different times.
  • Some operations may also be omitted from the process flow 500, and other operations may be added to the process flow 500.
  • the operations performed by the base station 505 and the UE 515 may support improvement to the UE 515 uplink transmission operations and, in some examples, may promote improvements to uplink transmission adaptation for the base station 505 and the UE 515, among other benefits.
  • the UE 515 may operate in a first UL transmission state.
  • the first UL transmission state may be an initial state (e.g., an idle state, a state 0, etc. ) . Additionally or alternatively, the first UL transmission state may be based on a UL grant received from the base station 505 before the UE 515 began operating in the first UL transmission state.
  • the base station 505 may operate in a first UL reception state corresponding to the first UL transmission state.
  • the UE 515 may determine a mapping between UL transmission states and radio hardware states. For example, each radio hardware state may correspond to one or more UL transmission states that may be indicated in a UL grant. Additionally or alternatively, each UL transmission state may correspond to one or more radio hardware states.
  • the UE 515 may store the mapping in memory, and the UE 515 may retrieve the mapping from memory when the UE 515 receives a UL grant indicating a UL transmission state.
  • the base station 505 may transmit a first UL grant.
  • the base station may transmit the first UL grant in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof.
  • the first UL grant may indicate a second UL transmission state for a first UL transmission.
  • the first UL transmission may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof.
  • the first UL grant may schedule the first UL transmission in a first UL transmission occasion.
  • the base station may additionally transmit a second UL grant indicating a third UL transmission state for a second UL transmission in a second UL transmission occasion.
  • the first UL grant may have a lower priority
  • the second UL grant may have a higher priority.
  • the UE 515 may receive one or both of the UL grants.
  • the UE 515 may miss (e.g., fail to detect) one of the UL grants indicating a UL transmission state transition.
  • the UE 515 may determine an event queue to schedule transitions between different UL transmissions sates indicated by the UL grants. In some examples, the UE 515 may construct the event queue based on a FIFO scheduling process, where the UE may transition to the second UL transmission state based on the first UL grant, then transition to the third UL transmission state based on the second UL grant received after the first UL grant. When using the FIFO scheduling process, the UE 515 may assume the order in which the UL grants are received is the same as the order in which the corresponding UL transmissions are scheduled.
  • the UE 515 may construct the event queue based on the order of the scheduled UL transmissions, where the order of the scheduled UL transmissions may be different from the order in which the corresponding UL grants are received.
  • the base station 505 may also construct an event queue at 530 to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
  • the UE 515 may determine to drop (e.g., refrain from transmitting) the first UL transmission scheduled by the lower priority first UL grant in favor of the second UL transmission scheduled by the higher priority second UL grant. In such examples, the UE 515 and the base station 505 may update their corresponding event queues based on the dropped first UL transmission.
  • the UE 515 may transition from the first UL transmission state to the second UL transmission state based on the first UL grant. In some examples, based on the mapping, the UE 515 may determine to transition to a new radio hardware state as part of transitioning to the second UL transmission state. In some examples, based on missing one of the UL grants, the UE 515 may fail to transition to a UL transmission state indicated by the missed UL grant.
  • the base station 505 may transition from the first UL reception state to a second UL reception state corresponding to the second UL transmission state.
  • the UE 515 may determine transmission parameters to adjust to transition to the radio hardware state corresponding to the second UL transmission state. For example, the UE 515 may reconfigure antennas to transmit on a different CC or layer based on the indicated UL transmission state. The base station 505 may also adjust parameters at 545 to transition to a radio hardware state corresponding to the second UL reception state.
  • the base station 505 may monitor for UL transmissions from the UE 515 in the UL transmission occasions based on the UL grants.
  • the base station 505 may use UL reception states corresponding to the UL transmission states indicated by the UL grants.
  • the UE 515 may transmit UL transmissions in UL transmission occasions based on the received UL grants. Between the UL transmissions, the UE 515 may transition between UL transmission states and adjust transmission parameters, for example based on the event queue. The base station 505 may receive the UL transmissions based on monitoring for the UL transmissions.
  • the base station 505 may determine the state of a UL transmission and determine the UE 515 missed a UL grant. For example, the base station 505 may monitor for the second UL transmission using a third UL reception state corresponding to the third UL transmission state indicated by the second UL grant. Based on the monitoring, the base station 505 may detect the second UL transmission and determine the second UL transmission state is transmitted using the second UL transmission state, rather than the expected third UL transmission state. Based on this determination, the base station 505 may determine the UE 515 missed the second UL grant, and transition to the second UL reception state to receive the second UL transmission. To enable the base station 505 to transition between UL reception states in the event of a missed UL grant, the base station 505 may be restricted to indicating no more than one UL transmission state transition for each UL transmission occasion.
  • the operations performed by the UE 515 and the base station 505 may therefore support improvements to implementing UL transmission adaptation at the UE 515 and, in some examples, may promote improvements to the reliability of communications between the UE 515 and the base station 505, among other benefits.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the communications manager 615 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the communications manager 615 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
  • the communications manager 615 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the communications manager 615 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 605 to save power and increase battery life by communicating with a base station 105 (as shown in FIG. 1) more efficiently.
  • the device 605 may efficiently communicate with a base station 105 in a CA configuration, as the device 605 may be able to apply uplink transmissions states across CCs as indicated by the base station 105 and resolve ambiguities related to the uplink transmission states.
  • the communications manager 615 may be an example of aspects of the communications manager 910 described herein.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 740.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include a carrier aggregation manager 720, an uplink grant reception manager 725, a transmission state manager 730, and an uplink transmission component 735.
  • the communications manager 715 may be an example of aspects of the communications manager 910 described herein.
  • the carrier aggregation manager 720 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the uplink grant reception manager 725 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the transmission state manager 730 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
  • the uplink transmission component 735 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the transmitter 740 may transmit signals generated by other components of the device 705.
  • the transmitter 740 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 740 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 740 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include a carrier aggregation manager 810, an uplink grant reception manager 815, a transmission state manager 820, an uplink transmission component 825, a radio state manager 830, a state mapping component 835, and a transmission occasion component 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the carrier aggregation manager 810 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
  • the uplink grant reception manager 815 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. In some examples, the uplink grant reception manager 815 may receive a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state. In some examples, the uplink grant reception manager 815 may receive a previous uplink grant before the uplink grant. In some cases, the previous uplink grant has a first priority. In some cases, the uplink grant has a second priority higher than the first priority. In some cases, the uplink grant is received in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  • the transmission state manager 820 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. In some examples, the transmission state manager 820 may adjust one or more uplink transmission parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where adjusting the one or more uplink transmission parameters includes activating one or more component carriers of the set of component carriers, deactivating one or more component carriers of the set of component carriers, increasing a rank of a component carrier of the set of component carriers, reducing a rank of a component carrier of the set of component carriers, or any combination thereof.
  • the uplink transmission component 825 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the uplink transmission component 825 may determine an event queue based on receiving the second uplink grant, where the event queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, where transmitting the uplink transmission includes transmitting the uplink transmission using the second uplink transmission state and the second uplink transmission using the third uplink transmission state based on the event queue.
  • the uplink transmission component 825 may refrain from transmitting a previous uplink transmission associated with the previous uplink grant based on receiving the uplink grant.
  • the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  • the radio state manager 830 may identify a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state. In some examples, the radio state manager 830 may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink transmission state to the second uplink transmission state includes transitioning from the first radio hardware state to the second radio hardware state. In some examples, the radio state manager 830 may store the first radio hardware state in memory associated with the user equipment.
  • the state mapping component 835 may determine a mapping between one or more uplink transmission states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state is based on the mapping. In some examples, the state mapping component 835 may retrieve the mapping from memory associated with the user equipment. In some examples, the state mapping component 835 may determine that a set of uplink transmission states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink transmission state of the one or more uplink transmission states. In some examples, the state mapping component 835 may update the mapping based on transitioning from the first uplink transmission state to the second uplink transmission state. In some examples, the state mapping component 835 may update the mapping based on storing the first radio hardware state in memory, where updating the mapping includes associating the second uplink transmission state with the first radio hardware state.
  • the transmission occasion component 840 may transition from the first uplink transmission state to the second uplink transmission state in a beginning time resource duration of an uplink transmission occasion.
  • the transmission occasion component 840 may identify a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration, where receiving the uplink grant includes receiving the uplink grant before the first duration preceding the uplink transmission occasion.
  • the uplink transmission occasion includes two or more consecutive time resources.
  • the beginning time resource duration includes a symbol or a slot.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
  • buses e.g., bus 945
  • the communications manager 910 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the communications manager 910 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the communications manager 910 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
  • the communications manager 910 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the I/O controller 915 may manage input and output signals for the device 905.
  • the I/O controller 915 may also manage peripherals not integrated into the device 905.
  • the I/O controller 915 may represent a physical connection or port to an external peripheral.
  • the I/O controller 915 may utilize an operating system such as or another known operating system.
  • the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 915 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
  • the transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 930 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 940 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting uplink adaptation in carrier aggregation) .
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
  • the communications manager 1015 may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state.
  • the communications manager 1015 may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the communications manager 1015 may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state.
  • the communications manager 1015 may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the communications manager 1015 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 1005 to save power by communicating with a UE 115 (as shown in FIG. 1) more efficiently.
  • the device 1005 may improve reliability in communications with a UE 115, as the device 1005 may be able to indicate an uplink transmission state to the UE 115 and monitor for uplink transmissions accordingly.
  • the device 1005 may be able to identify when an uplink transmission state is implemented at the UE 115 and adjust communications in a CA configuration accordingly.
  • the communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
  • the communications manager 1015 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 1015 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1015, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1015, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1020 may transmit signals generated by other components of the device 1005.
  • the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1020 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1145.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein.
  • the communications manager 1115 may include a carrier aggregation component 1120, a transmission state identification component 1125, an uplink grant manager 1130, a reception state manager 1135, and an uplink transmission monitoring component 1140.
  • the communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
  • the carrier aggregation component 1120 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
  • the transmission state identification component 1125 may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state.
  • the uplink grant manager 1130 may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the reception state manager 1135 may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state.
  • the uplink transmission monitoring component 1140 may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the transmitter 1145 may transmit signals generated by other components of the device 1105.
  • the transmitter 1145 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1145 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1145 may utilize a single antenna or a set of antennas.
  • FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein.
  • the communications manager 1205 may include a carrier aggregation component 1210, a transmission state identification component 1215, an uplink grant manager 1220, a reception state manager 1225, an uplink transmission monitoring component 1230, a radio state component 1235, and a state mapping manager 1240. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the carrier aggregation component 1210 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
  • the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
  • the transmission state identification component 1215 may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state. In some examples, the transmission state identification component 1215 may determine an uplink transmission state associated with the uplink transmission. In some examples, the transmission state identification component 1215 may determine that the uplink transmission state associated with the uplink transmission includes the second uplink transmission state. In some examples, the transmission state identification component 1215 may determine that the uplink transmission state associated with the uplink transmission includes the first uplink transmission state based on monitoring for the uplink transmission.
  • the uplink grant manager 1220 may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers. In some examples, the uplink grant manager 1220 may transmit a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state. In some examples, the uplink grant manager 1220 may transmit a previous uplink grant before the uplink grant. In some examples, the uplink grant manager 1220 may determine that the user equipment failed to detect a downlink control information message associated with the uplink grant based on determining that the uplink transmission state includes the first uplink transmission state.
  • the uplink grant manager 1220 may identify a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration. In some examples, the uplink grant manager 1220 may transmit the uplink grant before the first duration preceding the uplink transmission occasion. In some examples, the uplink grant manager 1220 may refrain from transmitting a second uplink grant indicating a third uplink transmission state for a second uplink transmission in the uplink transmission occasion based on transmitting the uplink grant. In some cases, the previous uplink grant has a first priority. In some cases, the uplink grant has a second priority higher than the first priority. In some cases, the uplink grant is transmitted in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  • the reception state manager 1225 may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state. In some examples, the reception state manager 1225 may adjust one or more uplink reception parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where monitoring for the uplink transmission from the user equipment is based on adjusting the one or more uplink reception parameters. In some examples, the reception state manager 1225 may transition from the second uplink reception state to the first uplink reception state based on determining that the uplink transmission state includes the first uplink transmission state.
  • the uplink transmission monitoring component 1230 may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the uplink transmission monitoring component 1230 may determine an event queue based on transmitting the second uplink grant, where the even queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, where monitoring for the uplink transmission includes monitoring for the uplink transmission using the second uplink reception state and the second uplink transmission using a third uplink reception state based on the event queue, where the third uplink transmission state is associated with the third uplink reception state.
  • the uplink transmission monitoring component 1230 may refrain from monitoring for a previous uplink transmission associated with the previous uplink grant based on transmitting the uplink grant.
  • the uplink transmission monitoring component 1230 may detect the uplink transmission from the user equipment based on the monitoring. In some examples, the uplink transmission monitoring component 1230 may receive the uplink transmission using the second uplink reception state based on determining that the uplink transmission state includes the second uplink transmission state and monitoring for the uplink transmission. In some examples, the uplink transmission monitoring component 1230 may receive the uplink transmission using the first uplink reception state based on transitioning from the second uplink reception state to the first uplink reception state.
  • the uplink transmission monitoring component 1230 may monitor for the uplink transmission in an uplink transmission occasion.
  • the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  • the radio state component 1235 may identify a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state. In some examples, the radio state component 1235 may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink reception state to the second uplink reception state includes transitioning from the first radio hardware state to the second radio hardware state.
  • the state mapping manager 1240 may determine a mapping between one or more uplink reception states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state is based on the mapping. In some examples, the state mapping manager 1240 may retrieve the mapping from memory associated with the base station. In some examples, the state mapping manager 1240 may determine that a set of uplink reception states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink reception state of the one or more uplink reception states. In some examples, the state mapping manager 1240 may update the mapping based on transitioning from the first uplink reception state to the second uplink reception state.
  • FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein.
  • the device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
  • buses e.g., bus 1350
  • the communications manager 1310 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1330 may include RAM, ROM, or a combination thereof.
  • the memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1340
  • the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1340 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1340 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1340.
  • the processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting uplink adaptation in carrier aggregation) .
  • the inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a carrier aggregation manager as described with reference to FIGs. 6 through 9.
  • the UE may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
  • the UE may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a transmission state manager as described with reference to FIGs. 6 through 9.
  • the UE may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may determine a mapping between one or more uplink transmission states and one or more radio hardware states.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a state mapping component as described with reference to FIGs. 6 through 9.
  • the UE may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a carrier aggregation manager as described with reference to FIGs. 6 through 9.
  • the UE may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
  • the UE may identify a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state based on the mapping.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a radio state manager as described with reference to FIGs. 6 through 9.
  • the UE may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a transmission state manager as described with reference to FIGs. 6 through 9.
  • the UE may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink transmission state to the second uplink transmission state includes transitioning from the first radio hardware state to the second radio hardware state.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a radio state manager as described with reference to FIGs. 6 through 9.
  • the UE may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
  • the operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a carrier aggregation manager as described with reference to FIGs. 6 through 9.
  • the UE may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
  • the UE may receive a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
  • the UE may determine an event queue based on receiving the second uplink grant, where the event queue includes an uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
  • the UE may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a transmission state manager as described with reference to FIGs. 6 through 9.
  • the UE may transmit the uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state and the second uplink transmission using the third uplink transmission state based on the event queue.
  • the operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a carrier aggregation component as described with reference to FIGs. 10 through 13.
  • the base station may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a transmission state identification component as described with reference to FIGs. 10 through 13.
  • the base station may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
  • the base station may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a reception state manager as described with reference to FIGs. 10 through 13.
  • the base station may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may determine a mapping between one or more uplink reception states and one or more radio hardware states.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a state mapping manager as described with reference to FIGs. 10 through 13.
  • the base station may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a carrier aggregation component as described with reference to FIGs. 10 through 13.
  • the base station may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a transmission state identification component as described with reference to FIGs. 10 through 13.
  • the base station may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
  • the base station may identify a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state based on the mapping.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a radio state component as described with reference to FIGs. 10 through 13.
  • the base station may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a reception state manager as described with reference to FIGs. 10 through 13.
  • the base station may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink reception state to the second uplink reception state includes transitioning from the first radio hardware state to the second radio hardware state.
  • the operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a radio state component as described with reference to FIGs. 10 through 13.
  • the base station may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
  • the operations of 1840 may be performed according to the methods described herein. In some examples, aspects of the operations of 1840 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a carrier aggregation component as described with reference to FIGs. 10 through 13.
  • the base station may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a transmission state identification component as described with reference to FIGs. 10 through 13.
  • the base station may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
  • the base station may transmit a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
  • the base station may determine an event queue based on transmitting the second uplink grant, where the even queue includes an uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state.
  • the operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
  • the base station may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state.
  • the operations of 1930 may be performed according to the methods described herein. In some examples, aspects of the operations of 1930 may be performed by a reception state manager as described with reference to FIGs. 10 through 13.
  • the base station may monitor for the uplink transmission from the user equipment using the second uplink reception state based on the uplink grant and the second uplink transmission using a third uplink reception state based on the event queue, where the third uplink transmission state is associated with the third uplink reception state.
  • the operations of 1935 may be performed according to the methods described herein. In some examples, aspects of the operations of 1935 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A base station may transmit an uplink (UL) grant to a user equipment (UE) indicating a UL transmission state for a set of component carriers (CCs) in a carrier aggregation (CA) configuration. The indicated UL transmission state may include which CCs the UE is to use for a UL transmission, which layers on the CCs the UE is to use, etc. In some examples, the UE may be configured with one or more radio hardware states mapped to one or more UL transmission states. One or more of the radio hardware states may include an associated configuration for one or more hardware components (e.g., antennas) of the UE. The UE may determine transmission parameters to adjust to transition to one or more radio hardware states corresponding to the indicated one or more UL transmission states.

Description

UPLINK ADAPTATION IN CARRIER AGGREGATION
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to uplink adaptation in carrier aggregation.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE may communicate with a base station on multiple component carriers (CCs) in a carrier aggregation (CA) configuration. In some examples, the base station may indicate that the UE is to transmit an uplink transmission in the CA configuration.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support uplink adaptation in carrier aggregation. Generally, the described techniques provide for enabling a base station to transmit an uplink (UL) grant to a user equipment (UE) indicating a UL transmission state for a set of component carriers (CCs) in a carrier aggregation (CA) configuration. The indicated UL transmission state may correspond to a UL transmission scheduled by the UL grant, and may include which CCs the UE is to use  for the UL transmission, which layers on the CCs the UE is to use, etc. In some examples, the UE may be configured with one or more radio hardware states mapped to one or more UL transmission states. In some examples, one or more of the radio hardware states may include an associated configuration for one or more hardware components (e.g., antennas) of the UE. The UE may determine one or more transmission parameters to adjust to transition to one or more of the radio hardware states corresponding to the indicated one or more UL transmission states. For example, the UE may reconfigure one or more antennas to transmit on a different CC or layer based on the one or more indicated UL transmission states.
A method of wireless communications at a user equipment is described. The method may include operating in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receiving an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmitting an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
An apparatus for wireless communications at a user equipment is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receive an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
Another apparatus for wireless communications at a user equipment is described. The apparatus may include means for operating in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receiving an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmitting an uplink transmission using the second uplink  transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
A non-transitory computer-readable medium storing code for wireless communications at a user equipment is described. The code may include instructions executable by a processor to operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration, receive an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant, and transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transitioning from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink transmission state to the second uplink transmission state includes transitioning from the first radio hardware state to the second radio hardware state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a mapping between one or more uplink transmission states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state may be based on the mapping.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the mapping may include operations, features, means, or instructions for retrieving the mapping from memory associated with the user equipment.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the mapping may include operations, features, means, or instructions for determining that a set of uplink transmission states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink transmission state of the one or more uplink transmission states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the mapping based on transitioning from the first uplink transmission state to the second uplink transmission state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for storing the first radio hardware state in memory associated with the user equipment, and updating the mapping based on storing the first radio hardware state in memory, where updating the mapping includes associating the second uplink transmission state with the first radio hardware state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting one or more uplink transmission parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where adjusting the one or more uplink transmission parameters includes activating one or more component carriers of the set of component carriers, deactivating one or more component carriers of the set of component carriers, increasing a rank of a component carrier of the set of component carriers, reducing a rank of a component carrier of the set of component carriers, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state, and determining an event queue based on receiving the second uplink grant, where the event queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission  state, where transmitting the uplink transmission includes transmitting the uplink transmission using the second uplink transmission state and the second uplink transmission using the third uplink transmission state based on the event queue.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a previous uplink grant before the uplink grant, and refraining from transmitting a previous uplink transmission associated with the previous uplink grant based on receiving the uplink grant.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the previous uplink grant may have a first priority, and the uplink grant may have a second priority higher than the first priority.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the transitioning may include operations, features, means, or instructions for transitioning from the first uplink transmission state to the second uplink transmission state in a beginning time resource duration of an uplink transmission occasion.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration, where receiving the uplink grant includes receiving the uplink grant before the first duration preceding the uplink transmission occasion.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink transmission occasion includes two or more consecutive time resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the beginning time resource duration includes a symbol or a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink grant may be received in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
A method of wireless communications at a base station is described. The method may include operating in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identifying a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmitting, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitoring for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for operating in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identifying a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmitting, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transitioning from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitoring for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state, and transitioning from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink reception state to the second uplink reception state includes transitioning from the first radio hardware state to the second radio hardware state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a mapping between one or more uplink reception states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state may be based on the mapping.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the mapping may include operations, features, means, or instructions for retrieving the mapping from memory associated with the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the mapping may include operations, features, means, or instructions for determining that a set of uplink reception states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink reception state of the one or more uplink reception states.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for updating the mapping based on transitioning from the first uplink reception state to the second uplink reception state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting one or more uplink reception parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where monitoring for the uplink transmission from the user equipment may be based on adjusting the one or more uplink reception parameters.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state, and determining an event queue based on transmitting the second uplink grant, where the even queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third  uplink transmission state, where monitoring for the uplink transmission includes monitoring for the uplink transmission using the second uplink reception state and the second uplink transmission using a third uplink reception state based on the event queue, where the third uplink transmission state may be associated with the third uplink reception state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a previous uplink grant before the uplink grant, and refraining from monitoring for a previous uplink transmission associated with the previous uplink grant based on transmitting the uplink grant.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the previous uplink grant may have a first priority, and the uplink grant may have a second priority higher than the first priority.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the uplink transmission from the user equipment based on the monitoring, and determining an uplink transmission state associated with the uplink transmission.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the uplink transmission state associated with the uplink transmission includes the second uplink transmission state, and receiving the uplink transmission using the second uplink reception state based on determining that the uplink transmission state includes the second uplink transmission state and monitoring for the uplink transmission.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the uplink transmission state associated with the uplink transmission includes the first uplink transmission state based on monitoring for the uplink transmission, transitioning from the second uplink reception state to the first uplink reception state based on determining that the uplink transmission state includes the first uplink transmission state, and receiving the uplink transmission using the first uplink reception state based on transitioning from the second uplink reception state to the first uplink reception state.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the user equipment failed to detect a downlink control information message associated with the uplink grant based on determining that the uplink transmission state includes the first uplink transmission state.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, monitoring for the uplink transmission may include operations, features, means, or instructions for monitoring for the uplink transmission in an uplink transmission occasion.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration, and transmitting the uplink grant before the first duration preceding the uplink transmission occasion.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for refraining from transmitting a second uplink grant indicating a third uplink transmission state for a second uplink transmission in the uplink transmission occasion based on transmitting the uplink grant.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink grant may be transmitted in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 and 2 illustrate examples of wireless communications systems that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a transmission scheme that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a transmission scheme that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show block diagrams of devices that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 12 shows a block diagram of a communications manager that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIG. 13 shows a diagram of a system including a device that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
FIGs. 14 through 19 show flowcharts illustrating methods that support uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) in a wireless communications system may communicate with one or more network nodes such as base stations. In some examples, a UE may communicate signaling with a base station on multiple component carriers (CCs) in a carrier  aggregation (CA) configuration, for example, to increase available bandwidth and data rates for the UE, among other advantages. The CA configuration may include intra-band CA, where the UE may communicate on one or more CCs in the same frequency band, along with other examples. The CCs may be contiguous in frequency or non-contiguous in frequency in some examples. Communications on the CCs by the UE may include monitoring for physical downlink control channel (PDCCH) transmissions, receiving physical downlink shared channel (PDSCH) transmissions, transmitting physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) transmissions, etc. The CA configuration may include frequency division duplexing (FDD) CCs, time division duplexing (TDD) CCs, or both.
In some examples, a UE and a base station may each include multiple antennas, which may enable the UE to employ multiple-input multiple-output (MIMO) communications for uplink (UL) transmissions to a base station in a CA configuration. The UE may use MIMO communications to transmit one or more UL transmissions via different spatial layers. Each CC in the CA configuration may include an associated quantity of layers for UL transmissions. In one example, a first FDD CC may include one layer for UL transmissions, and a second TDD CC may include two layers for UL transmissions. That is, the first CC and the second CC may include a total of three layers for UL transmissions.
In some examples, a base station may monitor for one or more UL transmissions from the UE via one or more layers. Hardware components of the UE (e.g., antennas) may support concurrent UL transmissions on a first quantity of layers (e.g., two layers) , which may be less than the set of layers available for UL transmissions (e.g., three layers) . In some examples, a base station may be unaware of which layers the UE uses for UL transmissions. This may result in the base station missing UL transmissions from the UE, which may lead to reduced UL transmission reliability and efficiency at the UE.
According to the techniques described herein, a base station may transmit a UL grant to a UE indicating a UL transmission state. In some examples, the base station may transmit the UL grant in a physical downlink control channel (PDCCH) transmission, a Radio Resource Control (RRC) message, or a downlink control information (DCI) message, another communication, or any combination thereof. The indicated UL transmission state may correspond to a UL transmission scheduled by the UL grant, and may include which CCs the  UE is to use for the UL transmission, which layers on the CCs the UE is to use, etc. In some examples, the UL transmission may include a physical uplink control channel (PUCCH) transmission, a physical uplink shared channel (PUSCH) transmission, a physical random access channel (PRACH) transmission, or a sounding reference signal (SRS) , or any combination thereof. In some examples, the UE may be configured with one or more radio hardware states (which may be referred to as radio frequency (RF) states) . Each radio hardware state may include an associated configuration for RF components (e.g., antennas) of the UE. The UE may determine transmission parameters to adjust to transition to a radio hardware state corresponding to the indicated UL transmission state. For example, the UE may reconfigure antennas to transmit on a different CC or layer based on the indicated UL transmission state.
The UE may determine a mapping between UL transmission states and radio hardware states. For example, one or more radio hardware states (or in some examples each hardware state) may correspond to one or more UL transmission states that may be indicated in a UL grant. Additionally or alternatively, each UL transmission state may correspond to one or more radio hardware states. The UE may store the mapping in memory, and the UE may retrieve the mapping from memory, for example, when the UE receives a UL grant indicating a UL transmission state. Based on the mapping, the UE may determine to transition from one radio hardware state to a new radio hardware state as part of transitioning to the indicated UL transmission state. After transitioning to the indicated UL transmission state (and the determined corresponding radio hardware state) , the UE may transmit one or more UL transmissions as scheduled by the UL grant, where the UE may transmit the UL transmissions using the indicated UL transmission state (e.g., on the indicated CCs and MIMO layers) .
The base station that transmitted the UL grant may determine a UL reception state corresponding to the UL transmission state indicated in the UL grant. The base station may transition to the determined UL reception state and monitor for UL transmissions using the UL reception state. The base station may also be configured with one or more radio hardware states, and may determine a mapping between UL reception states and radio hardware states. Based on the mapping, the base station may determine to transition to a new radio hardware state as part of transitioning to the UL reception state corresponding to the indicated UL transmission state.
The UE may transmit UL transmissions in a UL transmission occasion, which may include a quantity of consecutive UL slots or symbols. In some examples, the base station may identify the UL transmission occasion in the UL grant. The base station may transmit the UL grant at least a duration (e.g., a minimum duration) before the UL transmission occasion to allow the UE to process the UL grant and to transition to the indicated UL transmission state.
In some examples, the base station may transmit multiple UL grants scheduling one or more UL transmissions in multiple UL transmission occasions. One or more of the UL grants may indicate one or more different UL transmission states for the respective UL transmissions. The UE may construct an event queue to schedule transitions between different UL transmission states indicated by the UL grants. The base station may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states. In some examples, the base station may transmit a UL grant with a higher priority than a priority of a previous UL grant. Based on the priorities of the UL grants, the UE may determine to drop (e.g., refrain from transmitting) a UL transmission scheduled by the lower priority UL grant in favor of a UL transmission scheduled by the higher priority UL grant. In such examples, the UE and the base station may update their corresponding event queues based on the dropped UL transmission.
In some examples, the UE may construct the event queue based on a first in first out (FIFO) scheduling process, where the UE may transition to a first UL transmission state based on a first UL grant, then transition to a second UL transmission state based on a second UL grant received after the first UL grant. When using the FIFO scheduling process, the UE may operate based on the order in which the UL grants are received being the same as the order in which the corresponding UL transmissions are scheduled. In some other examples, the UE may construct the event queue based on the order of the scheduled UL transmissions, where the order of the scheduled UL transmissions may be different from the order in which the corresponding UL grants are received.
In some examples, the UE may miss (e.g., fail to detect) a DCI message indicating a UL transmission state transition. As a result, the UE may fail to transition to a UL transmission state indicated by the DCI and remain in a previous UL transmission state.  Based on monitoring for UL transmissions, the base station may detect the state of a UL transmission and determine the UE missed the DCI message. The base station may transition to a UL reception state corresponding to the previous UL transmission state based on determining the state of the UL transmission. To enable the base station to transition between UL reception states in the event of a missed DCI message, the base station may be configured to indicate no more than one UL transmission state transition for each UL transmission occasion.
Aspects of the disclosure are initially described in the context of wireless communications systems. Example transmission schemes and an example process flow are then described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to uplink adaptation in carrier aggregation.
FIG. 1 illustrates an example of a wireless communications system 100 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations  105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of  the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base  stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be  based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, MIMO communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
base station 105 may transmit a UL grant to a UE 115 indicating a UL transmission state for a set of CCs in a CA configuration. In some examples, the base station may transmit the UL grant in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof. The indicated UL transmission state may correspond to a UL transmission scheduled by the UL grant, and may include which CCs the UE 115 is to use for the UL transmission, which layers on the CCs the UE 115 is to use, etc. In some examples, the UL transmission may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof. In some examples, the UE 115 may be configured with one or more radio hardware states (e.g., RF states) . Each radio hardware state may include an associated configuration for RF components (e.g., antennas) of the UE 115. The UE 115 may determine transmission parameters to adjust to transition to a radio hardware state corresponding to the indicated UL transmission state. For example, the UE 115 may reconfigure one or more antennas to transmit on a different CC or layer based on the indicated UL transmission state.
FIG. 2 illustrates an example of a wireless communications system 200 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. In some examples, the wireless communications system 200 may implement aspects of wireless communications system 100. For example, the wireless communications system 200 may include a base station 205 and a UE 215, which may be examples of the corresponding devices described with reference to FIG. 1. The wireless communications  system 200 may include features for improved UE uplink transmission adaptation, among other benefits.
In the wireless communications system 200, the base station 205 may provide a geographic coverage area 210. The base station 205 may transmit UL grants 220 to the UE 215, and the UE 215 may transmit UL transmissions 225 to the base station 205. The UE 215 may transmit each UL transmission 225 in a UL transmission occasion. In some examples, the UE 215 and the base station 205 may exchange UL grants 220 and UL transmissions 225 on multiple CCs 230 (e.g., a CC 230-a and a CC 230-b) in a CA configuration. In some examples, the CC 230-a may be a TDD CC 230, and the CC 230-b may be an FDD CC 230. The CC 230-a may include two layers for transmitting UL data, and the CC 230-b may include one layer for transmitting UL data in some examples. That is, the CC 230-a may have a rank of up to two, and the CC 230-b may have a rank of up to one, and the CCs 230 illustrated in FIG. 2 may include a total of three layers for transmitting UL data. In some examples, the CC 230-a may have a rank different than two, and the CC 230-b may have a rank different than one, and the CCs 230 may include a total of layers different than three layers for transmitting UL data. The CC 230-a and the CC 230-b may have different associated numerologies. For example, a duration of a slot 235-b on the CC 230-b may be twice a duration of a slot 235-a on the CC 230-a
In some examples, hardware components (e.g., antennas) of the UE 215 may support concurrent transmission on one or more layers (e.g., up to two layers) in a given UL transmission occasion. Accordingly, the UE 215 may support one or more (e.g., five) UL transmission states. In a first UL transmission state (which may be referred to as an idle state, an initial state or a state 0) , the UE 215 may transmit UL data on neither the CC 230-a nor the CC 230-b. In a second UL transmission state (which may be referred to as a state 1) , the UE 215 may transmit UL data on one layer of the CC 230-a and one layer of the CC 230-b. In a third UL transmission state (which may be referred to as a state 1a) , the UE 215 may transmit UL data on no layer of the CC 230-a and on one layer of the CC 230-b. In a fourth UL transmission state (which may be referred to as a state 2) , the UE 215 may transmit UL data on two layers of the CC 230-a and on no layer of the CC 230-b. In a fifth UL transmission state (which may be referred to as a state 3) , the UE 215 may transmit UL data on one layer of the CC 230-a and on no layer of the CC 230-b. Additionally, the UE 215 may support two radio hardware states. In a first radio hardware state (which may be referred to as a case 1) ,  the UE 215 may be configured to transmit UL data on both the CC 230-a and on the CC 230-b. In a second radio hardware state (which may be referred to as a case 2) , the UE 215 may be configured to transmit UL data on the CC 230-a and not on the CC 230-b. The base station 205 may support UL reception states and radio hardware states corresponding to the UL transmission states and radio hardware states of the UE 215.
The base station may transmit a UL grant 220-a scheduling a UL transmission 225-a. The UL transmission 225-a may be scheduled in a UL transmission occasion which includes slots 235-a-1 through 235-a-10 on the CC 230-a and slots 235-b-1 through 235-b-5 on the CC 230-b. The UL grant 220-a may indicate a UL transmission state (e.g., state 1, which includes UL data transmission on one layer of the CC 230-a and one layer of the CC 230-b) for the UL transmission 225-a. The UE 215 may transition to the indicated UL transmission state based on the UL grant 220-a. In some examples, based on a previous UL transmission state, the UE 215 may also transition to a radio hardware state (e.g., case 1) corresponding to the indicated UL transmission state. For example, if the UE 215 is operating in the state 2 UL transmission state, the UE may transition from the case 2 radio hardware state to the case 1 radio hardware state, for example by reconfiguring antennas to enable UL data transmission on the CC 230-b.
The UL grant 220-a may identify which slots 235 of the UL transmission occasion containing the UL transmission 225-a the UE 215 is to use to transmit UL data. Based on the UL grant 220-a, and as illustrated in FIG. 2, the UE 215 may transmit on one layer of the CC 230-a in the slots 235-a-5, 235-a-9, and 235-a-10. The UE 215 may transmit on the one layer of the CC 230-b in the slots 235-b-1 through 235-b-5.
The base station may transmit a UL grant 220-b after transmitting the UL grant 220-a. The UL grant 220-b may schedule a UL transmission 225-b in a UL transmission occasion which includes slots 235-a-11 through 235-a-20 on the CC 230-a and slots 235-b-6 through 235-b-10 on the CC 230-b. The UL grant 220-b may indicate a UL transmission state (e.g., state 2, which includes UL data transmission on two layers of the CC 230-a and on no layer of the CC 230-b) for the UL transmission 225-b. The UE 215 may transition to the indicated UL transmission state based on the UL grant 220-b. Based on a previous UL transmission state (e.g., state 1 for the UL transmission 225-a) , the UE 215 may also transition to a radio hardware state (e.g., case 2) corresponding to the indicated UL  transmission state. For example, the UE 215 may reconfiguring antennas to disable UL data transmission on the CC 230-b.
The UL grant 220-b may identify which slots 235 of the UL transmission occasion containing the UL transmission 225-b the UE 215 is to use to transmit UL data. Based on the UL grant 220-b, the UE 215 may transmit on two layers of the CC 230-a in the slots 235-a-12, 235-a-13, 235-a-15, 235-a-19, and 235-a-20, as illustrated in FIG. 2.
In some examples, the UE 215 may construct an event queue to schedule transitions between the different UL transmission states indicated by the UL grants 220-a and 220-b. The base station 205 may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
The UE 215 may determine a mapping between one or more of the five UL transmission states (as one example) and one or more of the two radio hardware states (as one example) . For example, the UE 215 may map the state 1 and the state 1a UL transmission states to the case 1 radio hardware state. Additionally, the UE 215 may map the state 2 UL transmission state to the case 2 radio hardware state. In some examples, the mapping of the state 1, the state 1a, and the state 2 may be static, which may be referred to as a hard mapping. That is, the mapping of the state 1, the state 1a, and the state 2 to corresponding radio hardware states may not be changed or updated by the UE 215.
By contrast, the mapping of the state 0 and the state 3 UL transmission states to corresponding radio hardware states may be dynamic, which may be referred to as a soft mapping. That is, the UE 215 may update the mapping of the state 0 and the state 3 UL transmission states based on a previous UL transmission state. For example, the UE 215 may operate in the state 1 UL transmission state (and the corresponding case 1 radio hardware state) before receiving a UL grant 220 that indicates the UE 215 is to transition to the state 3 UL transmission state. Based on the previous UL transmission state (state 1) , the UE 215 may map the state 3 UL transmission state to the case 1 radio hardware state. Based on this mapping, the UE 215 may determine not to transition to a different radio hardware state (e.g., from case 1 to case 2) when transitioning to the state 3 UL transmission state, which may improve power efficiency at the UE 215.
In another example of the dynamic mapping, the UE 215 may operate in the state 2 UL transmission state (and the corresponding case 2 radio hardware state) before receiving  a UL grant 220 that indicates the UE 215 is to transition to the state 3 UL transmission state. Based on the previous UL transmission state (state 2) , the UE 215 may map the state 3 UL transmission state to the case 2 radio hardware state. Based on this mapping, the UE 215 may determine not to transition to a different radio hardware state (e.g., from case 2 to case 1) when transitioning to the state 3 UL transmission state, which may improve power efficiency at the UE 215.
The UE 215 may store the mapping between UL transmission states and radio hardware states in memory. The UE 215 may also store the radio hardware state in memory. The UE may determine the dynamic mapping for UL transmission states based on the radio hardware state stored in memory. That is, when the UE 215 receives a UL grant 220 that indicates the UE 215 is to transition to a new UL transmission state that may be dynamically mapped (e.g., the state 3 UL transmission state, the state 0 UL transmission state, etc. ) , the UE 215 may map the new UL transmission state to the radio hardware state stored in memory, which may improve power efficiency at the UE 215.
In some examples, UL transmissions 225 may be configured as a rank 1 or a rank 2 transmission, where a rank 1 transmission may be transmitted on one layer of a CC 230. A rank 2 transmission may be configured to be transmitted on two layers of a CC 230 (e.g., the CC 230-a. A rank 1 transmission may include a PUCCH transmission, a PRACH transmission, a PUSCH transmission scheduled by a DCI message of a first type (e.g., a fallback DCI, a format 0_0 DCI, etc. ) , or a PUSCH transmission scheduled by a DCI message of a second type (e.g., a non-fallback DCI, a format 0_1 DCI, etc. ) , or any combination thereof. In the CA configuration illustrated in FIG. 2, the PUSCH transmission scheduled by the DCI message of the second type may in some examples be treated as a rank 2 transmission. For example, a rank 2 transmission may enable the UE 215 to support antenna port selection for a format 0_1 DCI message.
In some examples, UL transmissions 2215 which may be configured as rank 1 transmissions may be treated as rank 2 transmissions based on a previous radio hardware state in which the UE 215 is operating before transitioning to the UL transmission state corresponding to the rank 1 transmission. For example, if the UE 215 is operating in the case 1 radio hardware state, the UE 215 may determine to treat a subsequent UL transmission 225 as a rank 1 transmission. Alternatively, if the UE 215 is operating in the case 2 radio  hardware state, the UE 215 may determine to treat the subsequent UL transmission 225 as a rank 2 transmission. Based on this determination, the UE 215 may determine not to transition to a different radio hardware state (e.g., from case 2 to case 1) before transmitting the subsequent UL transmission 225, which may improve power efficiency and communications efficiency at the UE 215.
FIG. 3 illustrates an example of a transmission scheme 300 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. In some examples, the transmission scheme 300 may implement aspects of  wireless communications systems  100 and 200. The transmission scheme 300 may be associated with communications between a UE and a base station, which may be examples of corresponding devices described with reference to FIGs. 1 and 2. The transmission scheme 300 may illustrate features for improved uplink transmission adaptation, among other benefits.
A base station may transmit UL grants 320 to a UE. In some examples, the base station may transmit a UL grant 320 in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof. Based on the UL grants 320, the UE may transmit UL transmissions 325 to the base station. In some examples, a UL transmission 325 may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof. The UE and the base station may exchange UL grants 320 and UL transmissions 325 on multiple CCs in a CA configuration. In some examples, the CA configuration may include a TDD CC and an FDD CC.
As illustrated in FIG. 3, a UL grant 320-a may schedule a UL transmission 325-a, a UL grant 320-b may schedule a UL transmission 325-b, and a UL grant 320-c may schedule a UL transmission 325-c. One or more of the UL grants 320-a through 320-c may indicate different UL transmission states for the respective UL transmissions 325-a through 325-c. The UE may construct an event queue to schedule transitions between the different UL transmission states indicated by the UL grants 320. The base station may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
In some examples, the UE may construct the event queue based on a FIFO scheduling process, where the UE may transition to a first UL transmission state based on the UL grant 320-a, then transition to a second UL transmission state based on the UL grant 320- b, and then transition to a third UL transmission state based on the UL grant 320-c. When using the FIFO scheduling process, the UE may assume the order in which the UL grants 320 are received is the same as the order in which the corresponding UL transmissions 325 are scheduled, as illustrated in FIG. 3.
The UE may transmit each UL transmission 325 in a UL transmission occasion, which may include a quantity of consecutive UL slots or symbols. In some examples, the base station may identify the UL transmission occasion for a UL transmission 325 in the corresponding UL grant 320. For example, the UL grant 320-a may identify the UL transmission occasion in which the UE is to transmit the UL transmission 325-a. The base station may transmit each UL grant 320 at least a duration 305 before the UL transmission occasion containing the corresponding UL transmission 325. The duration 305 may allow time for the UE to process a UL grant 320 and transition to the indicated UL transmission state before the UL transmission occasion. Accordingly, the event queue may include start events 310 which occur a duration 305 before a beginning of a UL transmission 325, as well as end events 315 which occur the duration 305 before an end of a UL transmission 325. In some examples, a start event 310 may represent a deadline, where the base station may transmit a UL grant 320 so that the UE receives the UL grant 320 with sufficient time to process the UL grant 320 and perform a UL transmission state transition before transmitting a corresponding UL transmission 325. In some examples, the base station may transmit an update (not shown) before an end event 310 to indicate to the UE that a UL grant 320 has been executed. For example, the update may indicate a UL transmission 325 corresponding to the UL grant 320 was successfully received at the base station. In some examples, the base station may include the update in a PDCCH.
The event queue for the transmission scheme 300 may include start events 310-a, 310-b, and 310-c, which may occur the duration 305 before the beginning of UL transmissions 325-a, 325-b, and 325-c, respectively. The event queue may also include end events 315-a, 315-b, and 315-c, which may occur the duration 305 before the end of UL transmissions 325-a, 325-b, and 325-c, respectively. The base station may transmit the UL grant 320-a so that the UE receives the UL grant 320-a before the start event 310-a to allow the UE time to process the UL grant 320-a and transition to the indicated UL transmission state before transmitting the UL transmission 325-a. The UE may additionally receive the UL grants 320-b and 320-c before the start events 310-b and 310-c, respectively, and build the  event queue for performing the UL transmission state transitions indicated in the UL grants 320-a, 320-b, and 320-c. According to the techniques described herein, the transmission scheme 300 may support improved implementation of UL transmission adaptation at the UE, among other benefits.
FIG. 4 illustrates an example of a transmission scheme 400 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. In some examples, the transmission scheme 400 may implement aspects of  wireless communications systems  100 and 200. The transmission scheme 400 may be associated with communications between a UE and a base station, which may be examples of corresponding devices described with reference to FIGs. 1 and 2. The transmission scheme 400 may illustrate features for improved uplink transmission adaptation, among other benefits.
A base station may transmit UL grants 420 to a UE. In some examples, the base station may transmit a UL grant 420 in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof. Based on the UL grants 420, the UE may transmit UL transmissions 425 to the base station. In some examples, a UL transmission 425 may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof. The UE and the base station may exchange UL grants 420 and UL transmissions 425 on multiple CCs in a CA configuration. In some examples, the CA configuration may include a TDD CC and an FDD CC.
As illustrated in FIG. 4, a UL grant 420-a may schedule a UL transmission 425-a, a UL grant 420-b may schedule a UL transmission 425-b, and a UL grant 420-c may schedule a UL transmission 425-c. One or more of the UL grants 420-a through 420-c may indicate different UL transmission states for the respective UL transmissions 425-a through 425-c. The UE may construct an event queue to schedule transitions between the different UL transmission states indicated by the UL grants 420. The base station may also construct an event queue to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
An order of the scheduled UL transmissions 425 may be different from an order in which the UE receives corresponding UL grants 420. For example, as illustrated in FIG. 4, the UE may receive the UL grant 420-b before receiving the UL grant 420-c, but the UL transmission 425-c may be scheduled to occur before the UL transmission 425-b. In examples  where the order of the scheduled UL transmissions 425 may be different from the order in which the UE receives corresponding UL grants 420, an event queue based on a FIFO scheduling process may include additional UL transmission state transitions, which may reduce an efficiency and a reliability of UL communications from the UE to the base station. For example, if the UE constructed an event queue for the transmission scheme 400 based on a FIFO scheduling process, the event queue would include a transition to a first UL transmission state indicated in the UL grant 420-a for transmitting the UL transmission 425-a, followed by a transition to a second UL transmission state indicated in the UL grant 420-b, followed by a transition to a third UL transmission state indicated in the UL grant 420-c for transmitting the UL transmission 425-c. However, based on the order of the scheduled UL transmissions 425, the UE would then transition back to the second UL transmission state indicated in the UL grant 420-b for transmitting the UL transmission 425-b. That is, in the example illustrated in FIG. 4, the event queue based on the FIFO scheduling process may include four transitions to transmit the three UL transmissions 425-a, 425-b, and 425-c.
According to the techniques described herein, the UE may improve power efficiency by constructing an event queue based on the order of the scheduled UL transmission 425. To construct the event queue efficiently, the base station may transmit the UL grants 420-a, 420-b, and 420-c before a start event 410, where the start event 410 may occur a duration 405 before a beginning of the first UL transmission 425-a. The duration 405 may allow time for the UE to process the UL grants 420 and construct the event queue for transitions to the indicated UL transmission states before the UL transmissions 425. The transmission scheme 400 may support improved implementation of UL transmission adaptation at the UE, among other benefits.
FIG. 5 illustrates an example of a process flow 500 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. In some examples, process flow 500 may implement aspects of wireless communications 200  systems  100 and 200. For example, the process flow 500 may include example operations associated with one or more of a base station 505 or a UE 515, which may be examples of the corresponding devices described with reference to FIGs. 1 and 2. In the following description of the process flow 500, the operations between the base station 505 and the UE 515 may be performed in a different order than the example order shown, or the operations performed by the base station 505 and the UE 515 may be performed in different orders or at different  times. Some operations may also be omitted from the process flow 500, and other operations may be added to the process flow 500. The operations performed by the base station 505 and the UE 515 may support improvement to the UE 515 uplink transmission operations and, in some examples, may promote improvements to uplink transmission adaptation for the base station 505 and the UE 515, among other benefits.
At 520, the UE 515 may operate in a first UL transmission state. In some examples, the first UL transmission state may be an initial state (e.g., an idle state, a state 0, etc. ) . Additionally or alternatively, the first UL transmission state may be based on a UL grant received from the base station 505 before the UE 515 began operating in the first UL transmission state. At 521, the base station 505 may operate in a first UL reception state corresponding to the first UL transmission state.
In some examples, the UE 515 may determine a mapping between UL transmission states and radio hardware states. For example, each radio hardware state may correspond to one or more UL transmission states that may be indicated in a UL grant. Additionally or alternatively, each UL transmission state may correspond to one or more radio hardware states. The UE 515 may store the mapping in memory, and the UE 515 may retrieve the mapping from memory when the UE 515 receives a UL grant indicating a UL transmission state.
At 525, the base station 505 may transmit a first UL grant. In some examples, the base station may transmit the first UL grant in a PDCCH transmission, an RRC message, or a DCI message, or any combination thereof. The first UL grant may indicate a second UL transmission state for a first UL transmission. In some examples, the first UL transmission may include a PUCCH transmission, a PUSCH transmission, a PRACH transmission, or an SRS, or any combination thereof. In some examples, the first UL grant may schedule the first UL transmission in a first UL transmission occasion. In some examples, at 525 the base station may additionally transmit a second UL grant indicating a third UL transmission state for a second UL transmission in a second UL transmission occasion. In some examples, the first UL grant may have a lower priority, and the second UL grant may have a higher priority. The UE 515 may receive one or both of the UL grants. In some examples, the UE 515 may miss (e.g., fail to detect) one of the UL grants indicating a UL transmission state transition.
In some examples, at 530 the UE 515 may determine an event queue to schedule transitions between different UL transmissions sates indicated by the UL grants. In some examples, the UE 515 may construct the event queue based on a FIFO scheduling process, where the UE may transition to the second UL transmission state based on the first UL grant, then transition to the third UL transmission state based on the second UL grant received after the first UL grant. When using the FIFO scheduling process, the UE 515 may assume the order in which the UL grants are received is the same as the order in which the corresponding UL transmissions are scheduled. In some other examples, the UE 515 may construct the event queue based on the order of the scheduled UL transmissions, where the order of the scheduled UL transmissions may be different from the order in which the corresponding UL grants are received. The base station 505 may also construct an event queue at 530 to schedule transitions between different UL reception states corresponding to the indicated UL transmissions states.
In some examples, at 535 the UE 515 may determine to drop (e.g., refrain from transmitting) the first UL transmission scheduled by the lower priority first UL grant in favor of the second UL transmission scheduled by the higher priority second UL grant. In such examples, the UE 515 and the base station 505 may update their corresponding event queues based on the dropped first UL transmission.
At 540, the UE 515 may transition from the first UL transmission state to the second UL transmission state based on the first UL grant. In some examples, based on the mapping, the UE 515 may determine to transition to a new radio hardware state as part of transitioning to the second UL transmission state. In some examples, based on missing one of the UL grants, the UE 515 may fail to transition to a UL transmission state indicated by the missed UL grant. At 541, the base station 505 may transition from the first UL reception state to a second UL reception state corresponding to the second UL transmission state.
In some examples, at 545 the UE 515 may determine transmission parameters to adjust to transition to the radio hardware state corresponding to the second UL transmission state. For example, the UE 515 may reconfigure antennas to transmit on a different CC or layer based on the indicated UL transmission state. The base station 505 may also adjust parameters at 545 to transition to a radio hardware state corresponding to the second UL reception state.
At 550, the base station 505 may monitor for UL transmissions from the UE 515 in the UL transmission occasions based on the UL grants. The base station 505 may use UL reception states corresponding to the UL transmission states indicated by the UL grants.
At 555, the UE 515 may transmit UL transmissions in UL transmission occasions based on the received UL grants. Between the UL transmissions, the UE 515 may transition between UL transmission states and adjust transmission parameters, for example based on the event queue. The base station 505 may receive the UL transmissions based on monitoring for the UL transmissions.
In some examples, at 560 the base station 505 may determine the state of a UL transmission and determine the UE 515 missed a UL grant. For example, the base station 505 may monitor for the second UL transmission using a third UL reception state corresponding to the third UL transmission state indicated by the second UL grant. Based on the monitoring, the base station 505 may detect the second UL transmission and determine the second UL transmission state is transmitted using the second UL transmission state, rather than the expected third UL transmission state. Based on this determination, the base station 505 may determine the UE 515 missed the second UL grant, and transition to the second UL reception state to receive the second UL transmission. To enable the base station 505 to transition between UL reception states in the event of a missed UL grant, the base station 505 may be restricted to indicating no more than one UL transmission state transition for each UL transmission occasion.
The operations performed by the UE 515 and the base station 505 may therefore support improvements to implementing UL transmission adaptation at the UE 515 and, in some examples, may promote improvements to the reliability of communications between the UE 515 and the base station 505, among other benefits.
FIG. 6 shows a block diagram 600 of a device 605 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration. The communications manager 615 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. The communications manager 615 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. The communications manager 615 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
The communications manager 615 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 605 to save power and increase battery life by communicating with a base station 105 (as shown in FIG. 1) more efficiently. For example, the device 605 may efficiently communicate with a base station 105 in a CA configuration, as the device 605 may be able to apply uplink transmissions states across CCs as indicated by the base station 105 and resolve ambiguities related to the uplink transmission states. The communications manager 615 may be an example of aspects of the communications manager 910 described herein.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a device 705 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 740. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include a carrier aggregation manager 720, an uplink grant reception manager 725, a transmission state manager 730, and an uplink transmission component 735. The  communications manager 715 may be an example of aspects of the communications manager 910 described herein.
The carrier aggregation manager 720 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration.
The uplink grant reception manager 725 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers.
The transmission state manager 730 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant.
The uplink transmission component 735 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
The transmitter 740 may transmit signals generated by other components of the device 705. In some examples, the transmitter 740 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 740 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 740 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include a carrier aggregation manager 810, an uplink grant reception manager 815, a transmission state manager 820, an uplink transmission component 825, a radio state manager 830, a state mapping component 835, and a transmission occasion component 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The carrier aggregation manager 810 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration. In some cases, the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
The uplink grant reception manager 815 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. In some examples, the uplink grant reception manager 815 may receive a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state. In some examples, the uplink grant reception manager 815 may receive a previous uplink grant before the uplink grant. In some cases, the previous uplink grant has a first priority. In some cases, the uplink grant has a second priority higher than the first priority. In some cases, the uplink grant is received in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
The transmission state manager 820 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. In some examples, the transmission state manager 820 may adjust one or more uplink transmission parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where adjusting the one or more uplink transmission parameters includes activating one or more component carriers of the set of component carriers, deactivating one or more component carriers of the set of component carriers, increasing a rank of a component carrier of the set of component carriers, reducing a rank of a component carrier of the set of component carriers, or any combination thereof.
The uplink transmission component 825 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state. In some examples, the uplink transmission component 825 may determine an event queue based on receiving the second uplink grant, where the event queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, where transmitting the uplink transmission includes transmitting the uplink transmission using the second uplink transmission state and the second uplink transmission using the third uplink transmission state based on the event queue. In some examples, the uplink transmission component 825 may refrain from transmitting a previous uplink transmission associated with the previous uplink grant based on receiving the uplink grant. In some cases, the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
The radio state manager 830 may identify a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state. In some examples, the radio state manager 830 may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink transmission state to the second uplink transmission state includes transitioning from the first radio hardware state to the second radio hardware state. In some examples, the radio state manager 830 may store the first radio hardware state in memory associated with the user equipment.
The state mapping component 835 may determine a mapping between one or more uplink transmission states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state is based on the mapping. In some examples, the state mapping component 835 may retrieve the mapping from memory associated with the user equipment. In some examples, the state mapping component 835 may determine that a set of uplink transmission states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink transmission state of the one or more uplink transmission states. In some examples, the state mapping component 835 may update the mapping based on transitioning from the first uplink transmission state to the second uplink transmission state. In some examples, the state mapping component 835 may update the mapping based on storing the first radio hardware state in memory, where updating the mapping includes associating the second uplink transmission state with the first radio hardware state.
The transmission occasion component 840 may transition from the first uplink transmission state to the second uplink transmission state in a beginning time resource duration of an uplink transmission occasion. In some examples, the transmission occasion component 840 may identify a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration, where receiving the uplink grant includes receiving the uplink grant before the first duration preceding the uplink transmission occasion. In some cases, the uplink transmission occasion includes two or more consecutive time resources. In some cases, the beginning time resource duration includes a symbol or a slot.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The communications manager 910 may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration. The communications manager 910 may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. The communications manager 910 may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. The communications manager 910 may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as
Figure PCTCN2020074045-appb-000001
or another known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the  modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include random-access memory (RAM) and read-only memory (ROM) . The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting uplink adaptation in carrier aggregation) .
The processor 940 of the device 905 (e.g., controlling the receiver 610, the transmitter 620, or the transceiver 920) may reduce power consumption and increase communications efficiency based on applying the uplink transmission state adaptation concurrently across the CCs in the CA configuration. In some examples, the processor 940 of the device 905 may reconfigure parameters for implementing the new uplink transmission state. For example, the processor 940 of the device 905 may turn on one or more processing units for adjusting uplink transmission parameters, increase a processing clock, or a similar mechanism within the device 905. As such, when subsequent uplink transmission state indications are received, the processor 940 may be ready to respond more efficiently through the reduction of a ramp up in processing power. The improvements in power saving and  uplink transmission state implementation efficiency may further increase battery life at the device 905.
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration. The communications manager 1015 may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state. The communications manager 1015 may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers. The communications manager 1015 may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state. The communications manager 1015 may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
The communications manager 1015 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 1005 to save power by communicating with a UE 115 (as shown in FIG. 1) more efficiently. For example, the device 1005 may improve reliability in communications with a UE 115, as the device 1005 may be able to indicate an uplink transmission state to the UE 115 and monitor for uplink transmissions accordingly. Additionally, the device 1005 may be able to identify when an uplink transmission state is implemented at the UE 115 and adjust communications in a CA configuration accordingly. The communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
The communications manager 1015, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1015, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1015, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1015, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1020 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1020 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1145. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to uplink adaptation in carrier aggregation, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein. The communications manager 1115 may include a carrier aggregation component 1120, a transmission state identification component 1125, an uplink grant manager 1130, a reception state manager 1135, and an uplink transmission monitoring component 1140. The communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
The carrier aggregation component 1120 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration.
The transmission state identification component 1125 may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state.
The uplink grant manager 1130 may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers.
The reception state manager 1135 may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state.
The uplink transmission monitoring component 1140 may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant.
The transmitter 1145 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1145 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1145 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1145 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein. The communications manager 1205 may include a carrier aggregation component 1210, a transmission state identification component 1215, an uplink grant manager 1220, a reception state manager 1225, an uplink transmission monitoring component 1230, a radio state component 1235, and a state mapping manager 1240. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The carrier aggregation component 1210 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration. In some cases, the set of component carriers include a frequency division duplex component carrier and a time division duplex component carrier.
The transmission state identification component 1215 may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state. In some examples, the transmission state identification component 1215 may determine an uplink transmission state associated with the uplink transmission. In some examples, the transmission state identification component 1215 may determine that the uplink transmission state associated with the uplink transmission includes the second uplink transmission state. In some examples, the transmission state identification component 1215 may determine that the  uplink transmission state associated with the uplink transmission includes the first uplink transmission state based on monitoring for the uplink transmission.
The uplink grant manager 1220 may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers. In some examples, the uplink grant manager 1220 may transmit a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state. In some examples, the uplink grant manager 1220 may transmit a previous uplink grant before the uplink grant. In some examples, the uplink grant manager 1220 may determine that the user equipment failed to detect a downlink control information message associated with the uplink grant based on determining that the uplink transmission state includes the first uplink transmission state.
In some examples, the uplink grant manager 1220 may identify a first duration preceding the uplink transmission occasion, where the first duration includes a processing duration and a switch duration. In some examples, the uplink grant manager 1220 may transmit the uplink grant before the first duration preceding the uplink transmission occasion. In some examples, the uplink grant manager 1220 may refrain from transmitting a second uplink grant indicating a third uplink transmission state for a second uplink transmission in the uplink transmission occasion based on transmitting the uplink grant. In some cases, the previous uplink grant has a first priority. In some cases, the uplink grant has a second priority higher than the first priority. In some cases, the uplink grant is transmitted in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
The reception state manager 1225 may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state. In some examples, the reception state manager 1225 may adjust one or more uplink reception parameters based on transitioning from the first uplink transmission state to the second uplink transmission state, where monitoring for the uplink transmission from the user equipment is based on adjusting the one or more uplink reception parameters. In some examples, the reception state manager 1225 may transition from the second uplink reception state to the  first uplink reception state based on determining that the uplink transmission state includes the first uplink transmission state.
The uplink transmission monitoring component 1230 may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant. In some examples, the uplink transmission monitoring component 1230 may determine an event queue based on transmitting the second uplink grant, where the even queue includes the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, where monitoring for the uplink transmission includes monitoring for the uplink transmission using the second uplink reception state and the second uplink transmission using a third uplink reception state based on the event queue, where the third uplink transmission state is associated with the third uplink reception state. In some examples, the uplink transmission monitoring component 1230 may refrain from monitoring for a previous uplink transmission associated with the previous uplink grant based on transmitting the uplink grant.
In some examples, the uplink transmission monitoring component 1230 may detect the uplink transmission from the user equipment based on the monitoring. In some examples, the uplink transmission monitoring component 1230 may receive the uplink transmission using the second uplink reception state based on determining that the uplink transmission state includes the second uplink transmission state and monitoring for the uplink transmission. In some examples, the uplink transmission monitoring component 1230 may receive the uplink transmission using the first uplink reception state based on transitioning from the second uplink reception state to the first uplink reception state.
In some examples, the uplink transmission monitoring component 1230 may monitor for the uplink transmission in an uplink transmission occasion. In some cases, the uplink transmission includes a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
The radio state component 1235 may identify a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state. In some examples, the radio state component 1235 may transition from the first radio hardware state to the second radio  hardware state based on the identifying, where transitioning from the first uplink reception state to the second uplink reception state includes transitioning from the first radio hardware state to the second radio hardware state.
The state mapping manager 1240 may determine a mapping between one or more uplink reception states and one or more radio hardware states, where identifying the first radio hardware state and the second radio hardware state is based on the mapping. In some examples, the state mapping manager 1240 may retrieve the mapping from memory associated with the base station. In some examples, the state mapping manager 1240 may determine that a set of uplink reception states correspond to a radio hardware state of the one or more radio hardware states, or a set of radio hardware states correspond to an uplink reception state of the one or more uplink reception states. In some examples, the state mapping manager 1240 may update the mapping based on transitioning from the first uplink reception state to the second uplink reception state.
FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein. The device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
The communications manager 1310 may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration, identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state, transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers, transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state, and monitor for an uplink  transmission from the user equipment using the second uplink reception state based on the uplink grant.
The network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1330 may include RAM, ROM, or a combination thereof. The memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein. In some cases, the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1340 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1340 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1340. The processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting uplink adaptation in carrier aggregation) .
The inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 14 shows a flowchart illustrating a method 1400 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a carrier aggregation manager as described with reference to FIGs. 6 through 9.
At 1410, the UE may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1410 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
At 1415, the UE may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a transmission state manager as described with reference to FIGs. 6 through 9.
At 1420, the UE may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
FIG. 15 shows a flowchart illustrating a method 1500 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may determine a mapping between one or more uplink transmission states and one or more radio hardware states. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a state mapping component as described with reference to FIGs. 6 through 9.
At 1510, the UE may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a carrier aggregation manager as described with reference to FIGs. 6 through 9.
At 1515, the UE may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
At 1520, the UE may identify a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state based on the mapping. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a radio state manager as described with reference to FIGs. 6 through 9.
At 1525, the UE may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a transmission state manager as described with reference to FIGs. 6 through 9.
At 1530, the UE may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink transmission state to the second uplink transmission state includes transitioning from the first radio hardware state to the second radio hardware state. The operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a radio state manager as described with reference to FIGs. 6 through 9.
At 1535, the UE may transmit an uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state. The operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
FIG. 16 shows a flowchart illustrating a method 1600 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The  operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may operate in a first uplink transmission state for a set of component carriers in a carrier aggregation configuration. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a carrier aggregation manager as described with reference to FIGs. 6 through 9.
At 1610, the UE may receive an uplink grant indicating a second uplink transmission state for the set of component carriers. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
At 1615, the UE may receive a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an uplink grant reception manager as described with reference to FIGs. 6 through 9.
At 1620, the UE may determine an event queue based on receiving the second uplink grant, where the event queue includes an uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
At 1625, the UE may transition from the first uplink transmission state to the second uplink transmission state based on receiving the uplink grant. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of  the operations of 1625 may be performed by a transmission state manager as described with reference to FIGs. 6 through 9.
At 1630, the UE may transmit the uplink transmission using the second uplink transmission state based on transitioning from the first uplink transmission state to the second uplink transmission state and the second uplink transmission using the third uplink transmission state based on the event queue. The operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by an uplink transmission component as described with reference to FIGs. 6 through 9.
FIG. 17 shows a flowchart illustrating a method 1700 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a carrier aggregation component as described with reference to FIGs. 10 through 13.
At 1710, the base station may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a transmission state identification component as described with reference to FIGs. 10 through 13.
At 1715, the base station may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers. The  operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
At 1720, the base station may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a reception state manager as described with reference to FIGs. 10 through 13.
At 1725, the base station may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
FIG. 18 shows a flowchart illustrating a method 1800 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1805, the base station may determine a mapping between one or more uplink reception states and one or more radio hardware states. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a state mapping manager as described with reference to FIGs. 10 through 13.
At 1810, the base station may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1810 may be performed by a carrier aggregation component as described with reference to FIGs. 10 through 13.
At 1815, the base station may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a transmission state identification component as described with reference to FIGs. 10 through 13.
At 1820, the base station may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
At 1825, the base station may identify a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state based on the mapping. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a radio state component as described with reference to FIGs. 10 through 13.
At 1830, the base station may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state. The operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a reception state manager as described with reference to FIGs. 10 through 13.
At 1835, the base station may transition from the first radio hardware state to the second radio hardware state based on the identifying, where transitioning from the first uplink reception state to the second uplink reception state includes transitioning from the first radio hardware state to the second radio hardware state. The operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of  1835 may be performed by a radio state component as described with reference to FIGs. 10 through 13.
At 1840, the base station may monitor for an uplink transmission from the user equipment using the second uplink reception state based on the uplink grant. The operations of 1840 may be performed according to the methods described herein. In some examples, aspects of the operations of 1840 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
FIG. 19 shows a flowchart illustrating a method 1900 that supports uplink adaptation in carrier aggregation in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1905, the base station may operate in a first uplink reception state for a set of component carriers in a carrier aggregation configuration. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a carrier aggregation component as described with reference to FIGs. 10 through 13.
At 1910, the base station may identify a user equipment operating in a first uplink transmission state for a set of component carriers, where the first uplink transmission state is associated with the first uplink reception state. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a transmission state identification component as described with reference to FIGs. 10 through 13.
At 1915, the base station may transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the set of component carriers. The operations of 1915 may be performed according to the methods described herein. In some  examples, aspects of the operations of 1915 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
At 1920, the base station may transmit a second uplink grant after the uplink grant, where the second uplink grant indicates a third uplink transmission state. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by an uplink grant manager as described with reference to FIGs. 10 through 13.
At 1925, the base station may determine an event queue based on transmitting the second uplink grant, where the even queue includes an uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state. The operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
At 1930, the base station may transition from the first uplink reception state to a second uplink reception state based on transmitting the uplink grant, where the second uplink transmission state is associated with the second uplink reception state. The operations of 1930 may be performed according to the methods described herein. In some examples, aspects of the operations of 1930 may be performed by a reception state manager as described with reference to FIGs. 10 through 13.
At 1935, the base station may monitor for the uplink transmission from the user equipment using the second uplink reception state based on the uplink grant and the second uplink transmission using a third uplink reception state based on the event queue, where the third uplink transmission state is associated with the third uplink reception state. The operations of 1935 may be performed according to the methods described herein. In some examples, aspects of the operations of 1935 may be performed by an uplink transmission monitoring component as described with reference to FIGs. 10 through 13.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features  implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (82)

  1. A method for wireless communications at a user equipment, comprising:
    operating in a first uplink transmission state for a plurality of component carriers in a carrier aggregation configuration;
    receiving an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    transitioning from the first uplink transmission state to the second uplink transmission state based at least in part on receiving the uplink grant; and
    transmitting an uplink transmission using the second uplink transmission state based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state.
  2. The method of claim 1, further comprising:
    identifying a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state.
  3. The method of claim 2, further comprising:
    transitioning from the first radio hardware state to the second radio hardware state based at least in part on the identifying, wherein transitioning from the first uplink transmission state to the second uplink transmission state comprises transitioning from the first radio hardware state to the second radio hardware state.
  4. The method of claim 2, further comprising:
    determining a mapping between one or more uplink transmission states and one or more radio hardware states, wherein identifying the first radio hardware state and the second radio hardware state is based at least in part on the mapping.
  5. The method of claim 4, wherein determining the mapping comprises:
    retrieving the mapping from memory associated with the user equipment.
  6. The method of claim 4, wherein determining the mapping comprises:
    determining that a plurality of uplink transmission states correspond to a radio hardware state of the one or more radio hardware states, or a plurality of radio hardware states correspond to an uplink transmission state of the one or more uplink transmission states.
  7. The method of claim 4, further comprising:
    updating the mapping based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state.
  8. The method of claim 4, further comprising:
    storing the first radio hardware state in memory associated with the user equipment;
    updating the mapping based at least in part on storing the first radio hardware state in memory, wherein updating the mapping comprises associating the second uplink transmission state with the first radio hardware state.
  9. The method of claim 1, further comprising:
    adjusting one or more uplink transmission parameters based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state, wherein adjusting the one or more uplink transmission parameters comprises activating one or more component carriers of the plurality of component carriers, deactivating one or more component carriers of the plurality of component carriers, increasing a rank of a component carrier of the plurality of component carriers, reducing a rank of a component carrier of the plurality of component carriers, or any combination thereof.
  10. The method of claim 1, further comprising:
    receiving a second uplink grant after the uplink grant, wherein the second uplink grant indicates a third uplink transmission state; and
    determining an event queue based at least in part on receiving the second uplink grant, wherein the event queue comprises the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, wherein transmitting the uplink transmission comprises transmitting the uplink  transmission using the second uplink transmission state and the second uplink transmission using the third uplink transmission state based at least in part on the event queue.
  11. The method of claim 1, further comprising:
    receiving a previous uplink grant before the uplink grant; and
    refraining from transmitting a previous uplink transmission associated with the previous uplink grant based at least in part on receiving the uplink grant.
  12. The method of claim 11, wherein:
    the previous uplink grant has a first priority; and
    the uplink grant has a second priority higher than the first priority.
  13. The method of claim 1, wherein the transitioning comprises:
    transitioning from the first uplink transmission state to the second uplink transmission state in a beginning time resource duration of an uplink transmission occasion.
  14. The method of claim 13, further comprising:
    identifying a first duration preceding the uplink transmission occasion, wherein the first duration comprises a processing duration and a switch duration, wherein receiving the uplink grant comprises receiving the uplink grant before the first duration preceding the uplink transmission occasion.
  15. The method of claim 13, wherein the uplink transmission occasion comprises two or more consecutive time resources.
  16. The method of claim 13, wherein the beginning time resource duration comprises a symbol or a slot.
  17. The method of claim 1, wherein the plurality of component carriers comprise a frequency division duplex component carrier and a time division duplex component carrier.
  18. The method of claim 1, wherein the uplink grant is received in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  19. The method of claim 1, wherein the uplink transmission comprises a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  20. A method for wireless communications at a base station, comprising:
    operating in a first uplink reception state for a plurality of component carriers in a carrier aggregation configuration;
    identifying a user equipment operating in a first uplink transmission state for a plurality of component carriers, wherein the first uplink transmission state is associated with the first uplink reception state;
    transmitting, to the user equipment, an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    transitioning from the first uplink reception state to a second uplink reception state based at least in part on transmitting the uplink grant, wherein the second uplink transmission state is associated with the second uplink reception state; and
    monitoring for an uplink transmission from the user equipment using the second uplink reception state based at least in part on the uplink grant.
  21. The method of claim 20, further comprising:
    identifying a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state; and
    transitioning from the first radio hardware state to the second radio hardware state based at least in part on the identifying, wherein transitioning from the first uplink reception state to the second uplink reception state comprises transitioning from the first radio hardware state to the second radio hardware state.
  22. The method of claim 21, further comprising:
    determining a mapping between one or more uplink reception states and one or more radio hardware states, wherein identifying the first radio hardware state and the second radio hardware state is based at least in part on the mapping.
  23. The method of claim 22, wherein determining the mapping comprises:
    retrieving the mapping from memory associated with the base station.
  24. The method of claim 22, wherein determining the mapping comprises:
    determining that a plurality of uplink reception states correspond to a radio hardware state of the one or more radio hardware states, or a plurality of radio hardware states correspond to an uplink reception state of the one or more uplink reception states.
  25. The method of claim 22, further comprising:
    updating the mapping based at least in part on transitioning from the first uplink reception state to the second uplink reception state.
  26. The method of claim 20, further comprising:
    adjusting one or more uplink reception parameters based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state, wherein monitoring for the uplink transmission from the user equipment is based at least in part on adjusting the one or more uplink reception parameters.
  27. The method of claim 20, further comprising:
    transmitting a second uplink grant after the uplink grant, wherein the second uplink grant indicates a third uplink transmission state; and
    determining an event queue based at least in part on transmitting the second uplink grant, wherein the even queue comprises the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, wherein monitoring for the uplink transmission comprises monitoring for the uplink transmission using the second uplink reception state and the second uplink transmission using a third uplink reception state based at least in part on the event queue, wherein the third uplink transmission state is associated with the third uplink reception state.
  28. The method of claim 20, further comprising:
    transmitting a previous uplink grant before the uplink grant; and
    refraining from monitoring for a previous uplink transmission associated with the previous uplink grant based at least in part on transmitting the uplink grant.
  29. The method of claim 28, wherein:
    the previous uplink grant has a first priority; and
    the uplink grant has a second priority higher than the first priority.
  30. The method of claim 20, further comprising:
    detecting the uplink transmission from the user equipment based at least in part on the monitoring; and
    determining an uplink transmission state associated with the uplink transmission.
  31. The method of claim 30, further comprising:
    determining that the uplink transmission state associated with the uplink transmission comprises the second uplink transmission state; and
    receiving the uplink transmission using the second uplink reception state based at least in part on determining that the uplink transmission state comprises the second uplink transmission state and monitoring for the uplink transmission.
  32. The method of claim 30, further comprising:
    determining that the uplink transmission state associated with the uplink transmission comprises the first uplink transmission state based at least in part on monitoring for the uplink transmission;
    transitioning from the second uplink reception state to the first uplink reception state based at least in part on determining that the uplink transmission state comprises the first uplink transmission state; and
    receiving the uplink transmission using the first uplink reception state based at least in part on transitioning from the second uplink reception state to the first uplink reception state.
  33. The method of claim 32, further comprising:
    determining that the user equipment failed to detect a downlink control information message associated with the uplink grant based at least in part on determining that the uplink transmission state comprises the first uplink transmission state.
  34. The method of claim 20, wherein monitoring for the uplink transmission comprises:
    monitoring for the uplink transmission in an uplink transmission occasion.
  35. The method of claim 34, further comprising:
    identifying a first duration preceding the uplink transmission occasion, wherein the first duration comprises a processing duration and a switch duration; and
    transmitting the uplink grant before the first duration preceding the uplink transmission occasion.
  36. The method of claim 34, further comprising:
    refraining from transmitting a second uplink grant indicating a third uplink transmission state for a second uplink transmission in the uplink transmission occasion based at least in part on transmitting the uplink grant.
  37. The method of claim 20, wherein the plurality of component carriers comprise a frequency division duplex component carrier and a time division duplex component carrier.
  38. The method of claim 20, wherein the uplink grant is transmitted in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  39. The method of claim 20, wherein the uplink transmission comprises a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  40. An apparatus for wireless communications at a user equipment, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    operate in a first uplink transmission state for a plurality of component carriers in a carrier aggregation configuration;
    receive an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    transition from the first uplink transmission state to the second uplink transmission state based at least in part on receiving the uplink grant; and
    transmit an uplink transmission using the second uplink transmission state based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state.
  41. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a first radio hardware state corresponding to the first uplink transmission state and a second radio hardware state corresponding to the second uplink transmission state.
  42. The apparatus of claim 41, wherein the instructions are further executable by the processor to cause the apparatus to:
    transition from the first radio hardware state to the second radio hardware state based at least in part on the identifying, wherein transitioning from the first uplink transmission state to the second uplink transmission state comprises transitioning from the first radio hardware state to the second radio hardware state.
  43. The apparatus of claim 41, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a mapping between one or more uplink transmission states and one or more radio hardware states, wherein identifying the first radio hardware state and the second radio hardware state is based at least in part on the mapping.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    retrieve the mapping from memory associated with the user equipment.
  45. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a plurality of uplink transmission states correspond to a radio hardware state of the one or more radio hardware states, or a plurality of radio hardware states correspond to an uplink transmission state of the one or more uplink transmission states.
  46. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    update the mapping based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state.
  47. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    store the first radio hardware state in memory associated with the user equipment;
    update the mapping based at least in part on storing the first radio hardware state in memory, wherein updating the mapping comprises associating the second uplink transmission state with the first radio hardware state
  48. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    adjust one or more uplink transmission parameters based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state, wherein adjusting the one or more uplink transmission parameters comprises activating one or more component carriers of the plurality of component carriers, deactivating one or more component carriers of the plurality of component carriers, increasing a rank of a component carrier of the plurality of component carriers, reducing a rank of a component carrier of the plurality of component carriers, or any combination thereof.
  49. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a second uplink grant after the uplink grant, wherein the second uplink grant indicates a third uplink transmission state; and
    determine an event queue based at least in part on receiving the second uplink grant, wherein the event queue comprises the uplink transmission using the second uplink transmission state and a second uplink transmission using the third uplink transmission state, wherein transmitting the uplink transmission comprises transmitting the uplink transmission using the second uplink transmission state and the second uplink transmission using the third uplink transmission state based at least in part on the event queue.
  50. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a previous uplink grant before the uplink grant; and
    refrain from transmitting a previous uplink transmission associated with the previous uplink grant based at least in part on receiving the uplink grant.
  51. The apparatus of claim 50, wherein:
    the previous uplink grant has a first priority; and
    the uplink grant has a second priority higher than the first priority.
  52. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    transition from the first uplink transmission state to the second uplink transmission state in a beginning time resource duration of an uplink transmission occasion.
  53. The apparatus of claim 52, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a first duration preceding the uplink transmission occasion, wherein the first duration comprises a processing duration and a switch duration, wherein receiving the uplink grant comprises receiving the uplink grant before the first duration preceding the uplink transmission occasion.
  54. The apparatus of claim 52, wherein the uplink transmission occasion comprises two or more consecutive time resources.
  55. The apparatus of claim 52, wherein the beginning time resource duration comprises a symbol or a slot.
  56. The apparatus of claim 40, wherein the plurality of component carriers comprise a frequency division duplex component carrier and a time division duplex component carrier.
  57. The apparatus of claim 40, wherein the uplink grant is received in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  58. The apparatus of claim 40, wherein the uplink transmission comprises a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  59. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    operate in a first uplink reception state for a plurality of component carriers in a carrier aggregation configuration;
    identify a user equipment operating in a first uplink transmission state for a plurality of component carriers, wherein the first uplink transmission state is associated with the first uplink reception state;
    transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    transition from the first uplink reception state to a second uplink reception state based at least in part on transmitting the uplink grant, wherein the second uplink transmission state is associated with the second uplink reception state; and
    monitor for an uplink transmission from the user equipment using the second uplink reception state based at least in part on the uplink grant.
  60. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a first radio hardware state corresponding to the first uplink reception state and a second radio hardware state corresponding to the second uplink reception state; and
    transition from the first radio hardware state to the second radio hardware state based at least in part on the identifying, wherein transitioning from the first uplink reception state to the second uplink reception state comprises transitioning from the first radio hardware state to the second radio hardware state.
  61. The apparatus of claim 60, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a mapping between one or more uplink reception states and one or more radio hardware states, wherein identifying the first radio hardware state and the second radio hardware state is based at least in part on the mapping.
  62. The apparatus of claim 61, wherein the instructions are further executable by the processor to cause the apparatus to:
    retrieve the mapping from memory associated with the base station.
  63. The apparatus of claim 61, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a plurality of uplink reception states correspond to a radio hardware state of the one or more radio hardware states, or a plurality of radio hardware states correspond to an uplink reception state of the one or more uplink reception states.
  64. The apparatus of claim 61, wherein the instructions are further executable by the processor to cause the apparatus to:
    update the mapping based at least in part on transitioning from the first uplink reception state to the second uplink reception state.
  65. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    adjust one or more uplink reception parameters based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state, wherein monitoring for the uplink transmission from the user equipment is based at least in part on adjusting the one or more uplink reception parameters.
  66. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a second uplink grant after the uplink grant, wherein the second uplink grant indicates a third uplink transmission state; and
    determine an event queue based at least in part on transmitting the second uplink grant, wherein the even queue comprises the uplink transmission using the second  uplink transmission state and a second uplink transmission using the third uplink transmission state, wherein monitoring for the uplink transmission comprises monitoring for the uplink transmission using the second uplink reception state and the second uplink transmission using a third uplink reception state based at least in part on the event queue, wherein the third uplink transmission state is associated with the third uplink reception state.
  67. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a previous uplink grant before the uplink grant; and
    refrain from monitoring for a previous uplink transmission associated with the previous uplink grant based at least in part on transmitting the uplink grant.
  68. The apparatus of claim 67, wherein:
    the previous uplink grant has a first priority; and
    the uplink grant has a second priority higher than the first priority.
  69. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    detect the uplink transmission from the user equipment based at least in part on the monitoring; and
    determine an uplink transmission state associated with the uplink transmission.
  70. The apparatus of claim 69, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the uplink transmission state associated with the uplink transmission comprises the second uplink transmission state; and
    receive the uplink transmission using the second uplink reception state based at least in part on determining that the uplink transmission state comprises the second uplink transmission state and monitoring for the uplink transmission.
  71. The apparatus of claim 69, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the uplink transmission state associated with the uplink transmission comprises the first uplink transmission state based at least in part on monitoring for the uplink transmission;
    transition from the second uplink reception state to the first uplink reception state based at least in part on determining that the uplink transmission state comprises the first uplink transmission state; and
    receive the uplink transmission using the first uplink reception state based at least in part on transitioning from the second uplink reception state to the first uplink reception state.
  72. The apparatus of claim 71, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the user equipment failed to detect a downlink control information message associated with the uplink grant based at least in part on determining that the uplink transmission state comprises the first uplink transmission state.
  73. The apparatus of claim 59, wherein the instructions to monitor for the uplink transmission are executable by the processor to cause the apparatus to:
    monitor for the uplink transmission in an uplink transmission occasion.
  74. The apparatus of claim 73, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a first duration preceding the uplink transmission occasion, wherein the first duration comprises a processing duration and a switch duration; and
    transmit the uplink grant before the first duration preceding the uplink transmission occasion.
  75. The apparatus of claim 73, wherein the instructions are further executable by the processor to cause the apparatus to:
    refrain from transmitting a second uplink grant indicating a third uplink transmission state for a second uplink transmission in the uplink transmission occasion based at least in part on transmitting the uplink grant.
  76. The apparatus of claim 59, wherein the plurality of component carriers comprise a frequency division duplex component carrier and a time division duplex component carrier.
  77. The apparatus of claim 59, wherein the uplink grant is transmitted in a downlink control information message, a physical downlink control channel, a radio resource control configuration message, or any combination thereof.
  78. The apparatus of claim 59, wherein the uplink transmission comprises a physical uplink control channel, a physical random access channel, a physical uplink shared channel, a sounding reference signal, or any combination thereof.
  79. An apparatus for wireless communications at a user equipment, comprising:
    means for operating in a first uplink transmission state for a plurality of component carriers in a carrier aggregation configuration;
    means for receiving an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    means for transitioning from the first uplink transmission state to the second uplink transmission state based at least in part on receiving the uplink grant; and
    means for transmitting an uplink transmission using the second uplink transmission state based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state.
  80. An apparatus for wireless communications at a base station, comprising:
    means for operating in a first uplink reception state for a plurality of component carriers in a carrier aggregation configuration;
    means for identifying a user equipment operating in a first uplink transmission state for a plurality of component carriers, wherein the first uplink transmission state is associated with the first uplink reception state;
    means for transmitting, to the user equipment, an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    means for transitioning from the first uplink reception state to a second uplink reception state based at least in part on transmitting the uplink grant, wherein the second uplink transmission state is associated with the second uplink reception state; and
    means for monitoring for an uplink transmission from the user equipment using the second uplink reception state based at least in part on the uplink grant.
  81. A non-transitory computer-readable medium storing code for wireless communications at a user equipment, the code comprising instructions executable by a processor to:
    operate in a first uplink transmission state for a plurality of component carriers in a carrier aggregation configuration;
    receive an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    transition from the first uplink transmission state to the second uplink transmission state based at least in part on receiving the uplink grant; and
    transmit an uplink transmission using the second uplink transmission state based at least in part on transitioning from the first uplink transmission state to the second uplink transmission state.
  82. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    operate in a first uplink reception state for a plurality of component carriers in a carrier aggregation configuration;
    identify a user equipment operating in a first uplink transmission state for a plurality of component carriers, wherein the first uplink transmission state is associated with the first uplink reception state;
    transmit, to the user equipment, an uplink grant indicating a second uplink transmission state for the plurality of component carriers;
    transition from the first uplink reception state to a second uplink reception state based at least in part on transmitting the uplink grant, wherein the second uplink transmission state is associated with the second uplink reception state; and
    monitor for an uplink transmission from the user equipment using the second uplink reception state based at least in part on the uplink grant.
PCT/CN2020/074045 2020-01-24 2020-01-24 Uplink adaptation in carrier aggregation WO2021147116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074045 WO2021147116A1 (en) 2020-01-24 2020-01-24 Uplink adaptation in carrier aggregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074045 WO2021147116A1 (en) 2020-01-24 2020-01-24 Uplink adaptation in carrier aggregation

Publications (1)

Publication Number Publication Date
WO2021147116A1 true WO2021147116A1 (en) 2021-07-29

Family

ID=76992029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074045 WO2021147116A1 (en) 2020-01-24 2020-01-24 Uplink adaptation in carrier aggregation

Country Status (1)

Country Link
WO (1) WO2021147116A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026086A1 (en) * 2015-08-07 2017-02-16 Panasonic Intellectual Property Corporation Of America Self- and cross- carrier scheduling
CN109314966A (en) * 2017-05-26 2019-02-05 联发科技股份有限公司 For the user device type and ability instruction of the device of long term evolution and new radio to coexist
US20190097696A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated Tuning a subset of receive chains of a component carrier away from mimo communication to perform an inter-frequency positioning reference signal measurement
CN109792333A (en) * 2016-09-22 2019-05-21 高通股份有限公司 Integrated LTE and new radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026086A1 (en) * 2015-08-07 2017-02-16 Panasonic Intellectual Property Corporation Of America Self- and cross- carrier scheduling
CN109792333A (en) * 2016-09-22 2019-05-21 高通股份有限公司 Integrated LTE and new radio
CN109314966A (en) * 2017-05-26 2019-02-05 联发科技股份有限公司 For the user device type and ability instruction of the device of long term evolution and new radio to coexist
US20190097696A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated Tuning a subset of receive chains of a component carrier away from mimo communication to perform an inter-frequency positioning reference signal measurement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UE dynamic adaptation to the maximum number of MIMO layer", 3GPP DRAFT; R1-1912916, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 22 November 2019 (2019-11-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 3, XP051823679 *
MEDIATEK INC.: "MIMO layer configuration", 3GPP DRAFT; R2-1813713 DISC MIMO LAYER CONFIGURATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051523208 *

Similar Documents

Publication Publication Date Title
US11463869B2 (en) Dual-mode half duplex time division duplex and full duplex frequency division duplex capable user equipment
US11647499B2 (en) Frame structure for subband full duplex slot formats
WO2021168645A1 (en) Beam switching techniques for uplink transmission
US20210377914A1 (en) Transmit beam selection schemes for multiple transmission reception points
US20230224125A1 (en) Default pathloss reference signals for multi-panel uplink transmissions
US20230164792A1 (en) Signaling for activation of a bandwidth part
US11564248B2 (en) Techniques for activation and deactivation of resources configured across multiple component carriers
US20210235441A1 (en) Control resource configurations
WO2022047777A1 (en) Channel state information reference signal triggering when secondary cell dormancy is configured
US20230403594A1 (en) Channel state information reporting over discontinuous reception operations
WO2021227046A1 (en) Secondary cell dormancy indication for scheduling multiple component carriers
US20210400709A1 (en) Uplink traffic prioritization across multiple links
WO2023070239A1 (en) Sidelink synchronization signal transmission prioritization
US11659549B2 (en) Timing for cross scheduling and reference signal triggering
US11444720B2 (en) Wireless device transmit and receive capability in sidelink control information
WO2021207963A1 (en) User equipment receiver based downlink channel repetition
WO2021062603A1 (en) Reference signal overhead reduction
WO2021147116A1 (en) Uplink adaptation in carrier aggregation
US11882080B2 (en) Physical uplink channel repetition for full-duplex communications
US11595957B2 (en) Techniques for parallel search and measurement in wireless communications
US20230421288A1 (en) Blind decoding limit techniques for wireless communications
WO2023082998A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
US20220150884A1 (en) Carrier switching restriction rules for uplink control information
WO2023082167A1 (en) Carrier aggregation switching for switching multiple radio frequency bands
WO2021155509A1 (en) Joint repetition of control channels and data channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915112

Country of ref document: EP

Kind code of ref document: A1