WO2021142841A1 - Fallback reference signal configuration - Google Patents

Fallback reference signal configuration Download PDF

Info

Publication number
WO2021142841A1
WO2021142841A1 PCT/CN2020/073036 CN2020073036W WO2021142841A1 WO 2021142841 A1 WO2021142841 A1 WO 2021142841A1 CN 2020073036 W CN2020073036 W CN 2020073036W WO 2021142841 A1 WO2021142841 A1 WO 2021142841A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
configuration
resources
fallback
transmission
Prior art date
Application number
PCT/CN2020/073036
Other languages
French (fr)
Inventor
Tao Tao
Jianguo Liu
Yan Meng
Gang Shen
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN202080093779.XA priority Critical patent/CN115004806A/en
Priority to PCT/CN2020/073036 priority patent/WO2021142841A1/en
Publication of WO2021142841A1 publication Critical patent/WO2021142841A1/en
Priority to US17/865,187 priority patent/US20220353772A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists

Definitions

  • Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for fallback reference signal configuration.
  • reference signals may be used to perform positioning measurements.
  • Network devices may determine resources for transmitting the reference signals. In order to improve positioning accuracy, further study is still needed.
  • embodiments of the present disclosure relate to a method for fallback reference signal configuration and corresponding devices.
  • a method comprising determining a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device.
  • the method also comprises determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal.
  • the method further comprises transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
  • a method comprising receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device.
  • the method also comprises transmitting the first configuration and the second configuration to the third device and/or a fourth device.
  • a method comprising receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning a third device.
  • the method also comprises obtaining a set of resources for a transmission of the reference signal from the first configuration.
  • the method further comprises determining a set of fallback resources for the transmission of the reference signal based on the first configuration and the second configuration.
  • a method comprising receiving, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device.
  • the method further comprises detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
  • a first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to determine a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device.
  • the first device is also caused to determine a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal.
  • the first device is further caused to transmit the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
  • a second device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to receive, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device.
  • the second device is also caused to transmit the first configuration and the second configuration to a third device and/or a fourth device.
  • a third device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to receive, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning a third device.
  • the third device is also caused to obtain a set of resources for a transmission of the reference signal from the first configuration.
  • the third device is further caused to determine a set of fallback resources for the transmission of the reference signal based on the second configuration.
  • a fourth device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device to receive, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device.
  • the fourth device is also caused to detect the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
  • an apparatus comprising means for determining a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device; means for determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal; and means for transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
  • an apparatus comprising means for receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for transmitting the first configuration and the second configuration to the third device and/or a fourth device.
  • an apparatus comprising means for receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning the third device; means for obtaining a set of resources for a transmission of the reference signal from the first configuration; and means for determining a set of fallback resources for the transmission of the reference signal based on the first configuration and the second configuration.
  • an apparatus comprising means for receiving, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
  • a computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the above fifth, sixth, seventh, or eighth aspect.
  • Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure
  • Fig. 2 illustrates a signaling chart of interactions between devices according to embodiments of the present disclosure
  • Fig. 3 illustrates a signaling chart of interactions between devices according to embodiments of the present disclosure
  • Figs. 4A-4C illustrate schematic diagrams of mapping between resources according to embodiments of the present disclosure
  • Fig. 5 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 6 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 7 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 8 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 9 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 10 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • NR New Radio
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.65G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.65G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the a
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • NR Rel-16 Downlink Time Difference of Arrival
  • DL-TDOA Uplink Time Difference of Arrival
  • UL-TDOA Uplink Time Difference of Arrival
  • DL-AoD Downlink Angle of Departure
  • UL-AoA Uplink Angle of Arrival
  • Multi-RTT Multi-cell Round Trip Time
  • a follow up work item has been proposed to specify positioning support.
  • the objective is to specify solutions to enable RAT dependent (for both FR1 and FR2) and RAT independent NR positioning techniques, shown in Table 1.
  • the Rel-17 positioning should provide more stringent performance: For V2X use cases, we support 0.1 m for relative lateral accuracy and 0.5 m for longitudinal accuracy that defined in TS 22.186 as the requirements; For IIoT use cases, especially for factory/campus scenarios, we support 0.2 m accuracy that defined in TR 22.804 as the requirements. In addition, many companies mentioned that ⁇ 100 ms latency is desired.
  • positioning has lower priority with respect to data (although some exceptions could be considered in very stringent positioning requirement) .
  • the PRS transmission may be dropped.
  • UL positioning RS i.e., SRS
  • prioritization rules between PUCCH, PUSCH and SRS are specified Table 2 below.
  • SRS has lower transmission priority than PUCCH and PUSCH in most of cases.
  • LBT listen before talk
  • the device should check the channel availability before transmitting data. If the PRS transmitter checks channel as busy (i.e., LBT failure) , the PRS should not be transmitted.
  • the event of PRS dropping may be agnostic at the receiver side.
  • SRS is not transmitted due to overlapped with PUCCH.
  • a neighbor cell (expect PRS reception) has no idea of the event of SRS dropping.
  • ToA measurement the neighbor cell cannot get correct time of arrival based on PUCCH. Then, a wrong positioning measurement will be reported to location measurement function (LMF) .
  • LMF location measurement function
  • the first device determines original resources and fallback resources for transmitting reference signals. If the reference signals cannot be transmitted using the original resources, the reference signals can be retransmitted using the fallback resources. In this way, the positioning accuracy is improved and the positioning service latency is reduced. Further, flexible transmission opportunities for the reference signal are provided.
  • Fig. 1 illustrates a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented.
  • the communication system 100 which is a part of a communication network, comprises a first device 110.
  • the communication system 100 further comprises a second device 120.
  • the communication 100 also comprises third devices 130-1, 130-2, ..., 130-N, where N is an integer number (collectively referred to as “third device (s) 130” ) .
  • the communication 100 yet comprises a fourth device 140. It is to be understood that the numbers of different devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
  • the first device 110 and the fourth device 140 may be network devices. Only as an example, the first device 110 is a serving network device and the fourth device 140 is a neighbor network device.
  • the second device 120 may be a location server for managing locations of devices.
  • the second device 120 may be a location management function (LMF) .
  • LMF location management function
  • the second device 120 may be a core network device.
  • the second device 120 may also be at a network device.
  • the third device 130 may be terminal devices. It should be noted that the first device 110 and the fourth device 140 can be interchangeable. The first device 110 and the third device 130 can also be interchangeable.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • Fig. 2 illustrates a signaling chart of interactions 200 among devices according to embodiments of the present disclosure.
  • the interactions 200 can be implemented among any suitable devices. Only for the purpose of illustrations, the interactions 200 are described with the reference to the first device 110, the second device 120 and the third device 130-1. It should be noted that the third device 130-1 is only an example not a limitation.
  • the first device 110 determines 2010 a first configuration of a reference signal.
  • the reference signal may be an uplink reference signal.
  • the reference signal may be a downlink reference signal.
  • the reference signal may be a positioning reference signal (PRS) .
  • the reference signal may be a sounding reference signal (SRS) .
  • PRS positioning reference signal
  • SRS sounding reference signal
  • the first configuration indicates a set of resources for the transmission of the PRS.
  • the first device 110 may determine one or more occasions for the PRS.
  • the first configuration may indicate a set of resources allocated for PRS occasions.
  • the first device 110 determines 2015 a second configuration of the PRS.
  • the second configuration associates with a set of fallback resources for transmitting the PRS.
  • the first device 110 may determine one or more occasions for the PRS.
  • the second configuration may indicate a set of fallback resources allocated for floated PRS occasions.
  • One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
  • the first device 110 may determine at least one offset in time and/or frequency domain to the set of resources.
  • the first device 110 may generate the second configuration indicating the offset.
  • the first device 110 may determine the set of fallback resources directly and the second configuration may explicitly indicate the set of fallback resources.
  • the set of resources may associate with at least one set of fallback resources.
  • Figs. 4A-4C show associations between the set of resources and the set of fallback resources. It should be noted that the number of occasions shown in Figs. 4A-4C is only an example.
  • the PRS occasion 410-1 corresponds to the floated PRS occasion 420-1 and the PRS occasion 410-2 corresponds to the floated PRS occasion 420-2.
  • one set of resources for the PRS corresponds to one set of fallback resources for the PRS.
  • the RPS dropping happens at the PRS occasion 410-1 the RPS can be retransmitted at the floated RPS occasion 420-1.
  • the RPS dropping happens at the PRS occasion 410-2 the RPS can be retransmitted at the floated RPS occasion 420-2.
  • the first device 110 may determine one offset in the time and/or frequency domain.
  • the PRS occasion 430-1 corresponds to the floated PRS occasions 440-1 and 440-2
  • the PRS occasion 430-2 corresponds to the floated PRS occasions 440-3 and 440-4.
  • one set of resources for the PRS corresponds to more than one set of fallback resources for the PRS.
  • the RPS dropping happens at the PRS occasion 430-1
  • the RPS can be retransmitted at the floated RPS occasion 440-1 or 440-2.
  • the RPS dropping happens at the PRS occasion 430-2 the RPS can be retransmitted at the floated RPS occasion 440-3 or 440-4.
  • the first device 110 may determine more than one offset in the time and/or frequency domain. The number of offsets may correspond to the number of floated PRS occasions corresponding to one PRS occasion.
  • the PRS occasions 450-1 and 450-2 correspond to the floated PRS occasions 460-1
  • the PRS occasions 450-3 and 450-4 correspond to the floated PRS occasions 460-2.
  • more than one set of resources for the PRS correspond to one set of fallback resources for the PRS.
  • the RPS dropping happens at the PRS occasion 450-1 or 450-2
  • the RPS can be retransmitted at the floated RPS occasion 460-1.
  • the RPS dropping happens at the PRS occasion 450-3 or 450-4 the RPS can be retransmitted at the floated RPS occasion 460-2.
  • the first device 110 may determine more than one offset in the time and/or frequency domain. The number of offsets may correspond to the number of PRS occasions corresponding to one floated PRS occasion.
  • the first device 110 transmits 2020 the first configuration and the second configuration to the second device 120.
  • the first configuration and the second configuration may be transmitted to the second device 120 via New Radio Positioning Protocol A (NRPPa) protocol.
  • NRPPa New Radio Positioning Protocol A
  • the second device 120 transmits 2025 the first configuration and the second configuration to the third device 130-1.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via Long-term Evolution Positioning Protocol (LPP) protocol.
  • LPP Long-term Evolution Positioning Protocol
  • the first device 110 may determine 2030 whether the set of resources are available. For example, the first device 110 may determine whether the PRS collide with other higher priority channel. Generally, the PRS has lower priority with respect to data. If the PRS collides with other higher priority channels, the set of resources are not available, which means that the PRS transmission may be dropped. Alternatively or in addition, the first device 110 may check the channel availability. If the channel is busy, the set of resources are not available, which means that the PRS transmission may be dropped. In some embodiments, if the set of resources for uplink transmission is reallocated for downlink transmission, the set of resources are not available, which means that the PRS transmission may be dropped. In other embodiments, if the set of resources for downlink transmission is reallocated for uplink transmission, the set of resources are not available, which means that the PRS transmission may be dropped.
  • the first device 110 may transmit 2035 the PRS to the third device 130-1.
  • the third device 130-1 detects 2040 the PRS based on the first configuration. For example, the third device 130-1 may obtain the set of resources for the PRS and detect whether the PRS is transmitted using the set of resources. If the third device 130-1 has detected the PRS based on the first configuration, the third device 130-1 may perform positioning measurements on the detected PRS. If the PRS cannot be detected based on the first configuration, the third device 130-1 may detect PRS based on the second configuration.
  • the first device 110 transmits the PRS using the set of fallback resources. For example, the first device 110 may determine 2045 whether the set of fall back resources are available. The first device 110 transmits 2050 the PRS using the set of fallback resources to the third device 130-1. The third device 130-1 detects 2055 the PRS based on the first configuration and the second configuration. The third device 130-1 determines the set of fallback resources based on the first configuration and the second configuration. In some embodiments, the third device 130-1 may obtain the set of fallback resources from the second configuration. In other embodiments, the third device 130-1 may obtain at least one offset from the second configuration and determine the set of fallback resources based on the set of resources and the at least one offset value. The third device 130-1 may perform the measurements on the received the PRS. In this way, the positioning accuracy has been improved and the positioning service latency has also been reduced. Further, flexible transmission opportunity can be provided.
  • Fig. 3 illustrates a signaling chart of interactions 300 among devices according to embodiments of the present disclosure.
  • the interactions 300 can be implemented among any suitable devices.
  • the interactions 300 are described with the reference to the first device 110, the second device 120, the third device 130-1 and the fourth device 140.
  • the third device 130-1 is only an example not a limitation.
  • the first device 110 determines 3010 the first configuration of a reference signal.
  • the reference signal may be an uplink reference signal.
  • the reference signal may be a downlink reference signal.
  • the reference signal may be a PRS.
  • the reference signal may be a SRS.
  • the first configuration indicates a set of resources for the transmission of the reference signal. Only for the purpose of illustrations, details of the interactions 300 are described with the reference to SRS.
  • the first configuration indicates a set of resources for transmitting the SRS.
  • the first device 110 may determine one or more occasions for the SRS.
  • the first configuration may indicate a set of resources allocated for SRS occasions.
  • the first device 110 determines 3015 a second configuration of the SRS.
  • the second configuration associates with a set of fallback resources for the transmission of the SRS.
  • the first device 110 may determine one or more occasions for the SRS.
  • the second configuration may indicate a set of fallback resources allocated for floated SRS occasions.
  • One SRS may occupy frequency and/or time resources. In this way, the SRS can be transmitted in a new place if the original occasion is not available.
  • the first device 110 may determine at least one offset in time and/or frequency domain to the set of resources.
  • the first device 110 may generate the second configuration indicating the offset.
  • the first device 110 may determine the set of fallback resources directly and the second configuration may explicitly indicate the set of fallback resources.
  • the set of resources may associate with at least one set of fallback resources. Details of the associations between the set of resources and the set of fallback resources have been described with reference to Figs. 4A-4C above.
  • one set of resources for the SRS corresponds to one set of fallback resources for the SRS.
  • one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS.
  • more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
  • the first device 110 transmits 3020 the first configuration and the second configuration to the second device 120.
  • the first configuration and the second configuration may be transmitted to the second device 120 via NRPPa protocol.
  • the second device 120 may transmit 3025 the first configuration and the second configuration to the third device 130-1.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via LPP protocol.
  • the first device 110 may transmit 3030 the first configuration and the second configuration to the third device 130-1.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via Radio Resource Controlling (RRC) signaling.
  • RRC Radio Resource Controlling
  • PHY physical layer
  • the second device 120 may transmit 3035 the first configuration and the second configuration to the fourth device 140.
  • the first configuration and the second configuration may be transmitted to the fourth device 140 via NRPPa protocol.
  • the first device 110 may transmit 3040 the first configuration and the second configuration to the fourth device 140.
  • the first configuration and the second configuration may be transmitted to the fourth device via X2 interface.
  • the third device 130-1 obtains 3045 the set of resources for the transmission of the SPS from the first configuration.
  • the third device 130-1 may obtain SPS occasions from the first configuration.
  • the third device 130-1 determines 3050 the set of fallback resources for transmitting the SPS from the second configuration. For example, the third device 130-1 may obtain the offset to the set of resources from the second configuration and determine the set of fallback resources based on the set of resources and the offset values. Alternatively, the third device 130-1 may obtain the set of fallback resources from the second configuration directly..
  • the first device 110 may transmit 3055 the first schedule request to the third device 130-1.
  • the first device 110 may configure periodic SRS.
  • the first device 110 may configure semi-periodic SRS.
  • the third device 130-1 transmits 3060 the SRS to the fourth device 140 and/or the first device 110.
  • the third device 130-1 may transmit the SRS after receiving the first schedule request.
  • the third device 130-1 may transmit the SRS without the first schedule request.
  • the fourth device 140 detects 3070 the SRS based on the first configuration. If the SRS is detected, the fourth device 140 may perform the measurement on the detected SRS.
  • the third device 130-1 may transmit 3080 the SRS using the set of fallback resources without receiving the second schedule request. In some embodiments, the third device 130-1 may also determine whether the set of fallback resources is available or not.
  • the first device 110 determines 3060 the whether the SRS is transmitted. For example, the first device 110 may determine whether the SRS dropping happens based on predetermined rules, for example, channel prioritization rules. If the first device 110 determines that the SRS dropping happens, the first device 110 transmit 3075 the second schedule request to the third device 130-1. For example, the first device 110 may schedule an aperiodic SRS transmission. The third device 130-1 may transmit 3080 the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request.
  • predetermined rules for example, channel prioritization rules. If the first device 110 determines that the SRS dropping happens, the first device 110 transmit 3075 the second schedule request to the third device 130-1. For example, the first device 110 may schedule an aperiodic SRS transmission.
  • the third device 130-1 may transmit 3080 the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request.
  • the fourth device 140 detects 3085 the SRS based on the second configuration.
  • the fourth device 140 may perform the positioning measurement on the detected SRS. In this way, the positioning accuracy has been improved and the positioning service latency has also been reduced. Further, flexible transmission opportunity can be provided.
  • Fig. 5 illustrates a flow chart of method 500 according to embodiments of the present disclosure.
  • the method 500 can be implemented at any suitable devices.
  • the method may be implemented at the first device 110.
  • the method may be implemented at the fourth device 140.
  • the first device 110 determines a first configuration of a reference signal.
  • the reference signal may be an uplink reference signal.
  • the reference signal may be a downlink reference signal.
  • the reference signal may be a PRS.
  • the reference signal may be a SRS. Only for the purpose of illustrations, details of the interactions 200 are described with the reference to PRS.
  • the first configuration indicates a set of resources for the transmission of the PRS.
  • the first device 110 may determine one or more occasions for the PRS.
  • the first configuration may indicate a set of resources allocated for PRS occasions.
  • the first device 110 determines a second configuration of the PRS.
  • the second configuration associates with a set of fallback resources for the transmission of the PRS.
  • the first device 110 may determine one or more occasions for the PRS.
  • the second configuration may indicate a set of fallback resources allocated for floated PRS occasions.
  • One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
  • the first device 110 may determine at least one offset in time and/or frequency domain to the set of resources.
  • the first device 110 may generate the second configuration indicating the offset.
  • the first device 110 may determine the set of fallback resources directly and the second configuration may explicitly indicate the set of fallback resources.
  • the first device 110 transmits the first configuration and the second configuration.
  • the first device 110 may transmit the first configuration and the second configuration to the second device 120.
  • the first configuration and the second configuration may be transmitted to the second device 120 via NRPPa protocol.
  • the first device 110 may transmit the first configuration and the second configuration to the third device 130-1.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via RRC signaling.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via PHY signaling.
  • the first device 110 may transmit the first configuration and the second configuration to the fourth device 140.
  • the first configuration and the second configuration may be transmitted to the fourth device via X2 interface.
  • the first device 110 may determine whether the set of resources are available. For example, the first device 110 may determine whether the PRS collide with other higher priority channel. Generally, the PRS has lower priority with respect to data. If the PRS collides with other higher priority channels, the PRS transmission may be dropped. Alternatively or in addition, the first device 110 may check the channel availability. If the channel is busy, the PRS transmission may be dropped.
  • the first device 110 may transmit the PRS to the third device 130-1. If the PRS dropping happens, the first device 110 transmits the PRS using the set of fallback resources. For example, the first device 110 may determine whether the set of fall back resources are available. The first device 110 transmits the PRS using the set of fallback resources to the third device 130-1.
  • the first device 110 may transmit 3055 the first schedule request to the third device 130-1.
  • the first device 110 may configure periodic SRS.
  • the first device 110 may configure semi-periodic SRS.
  • the first device 110 determines 3060 the whether the SRS is transmitted. For example, the first device 110 may determine whether the SRS dropping happens based on predetermined rules, for example, channel prioritization rules. If the first device 110 determines that the SRS dropping happens, the first device 110 transmit 3075 the second schedule request to the third device 130-1. For example, the first device 110 may schedule an aperiodic SRS transmission.
  • Fig. 6 illustrates a flow chart of method 600 according to embodiments of the present disclosure.
  • the method 600 can be implemented at any suitable devices.
  • the method may be implemented at the second device 120.
  • the second device 120 receives the first configuration and the second configuration from the first device 110.
  • the first configuration and the second configuration may be transmitted to the second device 120 via NRPPa protocol.
  • the reference signal may be an uplink reference signal.
  • the reference signal may be a downlink reference signal.
  • the reference signal may be a PRS.
  • the reference signal may be a SRS.
  • the first configuration indicates a set of resources for the transmission of the PRS.
  • the first configuration may indicate a set of resources allocated for PRS occasions.
  • the second configuration indicates a set of fallback resources for the transmission of the PRS.
  • the second configuration may indicate a set of fallback resources allocated for floated PRS occasions.
  • One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
  • one set of resources for the SRS corresponds to one set of fallback resources for the SRS.
  • one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS.
  • more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
  • the second device 120 transmits the first configuration and the second configuration to the third device 130-1 and/or the fourth device.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via LPP protocol.
  • the first configuration and the second configuration may be transmitted to the fourth device 140 via NRPPa protocol.
  • Fig. 7 illustrates a flow chart of method 700 according to embodiments of the present disclosure.
  • the method 700 can be implemented at any suitable devices.
  • the method may be implemented at the third device 130-1.
  • the third device 130-1 receives the first configuration and the second configuration from the first device 110 and/or the second device 120.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via LPP protocol.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via RRC signaling and/or PHY signaling.
  • the reference signal may be an uplink reference signal.
  • the reference signal may be a downlink reference signal.
  • the reference signal may be a PRS.
  • the reference signal may be a SRS.
  • the first configuration indicates a set of resources for the transmission of the PRS.
  • the first configuration may indicate a set of resources allocated for PRS occasions.
  • the second configuration indicates a set of fallback resources for the transmission of the PRS.
  • the second configuration may indicate a set of fallback resources allocated for floated PRS occasions.
  • One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
  • one set of resources for the SRS corresponds to one set of fallback resources for the SRS.
  • one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS.
  • more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
  • the third device 130-1 obtains the set of resources for the transmission of the SPS based on the first configuration and the second configuration. For example, the third device 130-1 may obtain SPS occasions from the first configuration.
  • the third device 130-1 determines the set of fallback resources for transmitting the SPS based on the second configuration. For example, the third device 130-1 may obtain the offset value to the set of resources from the second configuration and determine the set of fallback resources based on the set of resources and the offset values. Alternatively, the third device 130-1 may obtain the set of fallback resources directly. The third device 130-1 determines the set of fallback resources based on the second configuration. In some embodiments, the third device 130-1 may obtain the set of fallback resources from the second configuration. In other embodiments, the third device 130-1 may obtain at least one offset from the second configuration and determine the set of fallback resources based on the set of resources and the at least one offset value.
  • the third device 130-1 may detect the PRS based on the first configuration. If the third device 130-1 has detected the PRS based on the first configuration, the third device 130-1 may perform positioning measurements on the detected PRS. If the PRS cannot be detected based on the first configuration, the third device 130-1 may detect PRS based on the second configuration.
  • the third device 130-1 may transmit the SRS to the fourth device 140 and/or the first device 110. If the set of resources is unavailable, the third device 130-1 may transmit the SRS using the set of fallback resources. In some embodiments, the third device 130-1 may also determine whether the set of fallback resources is available or not. In some embodiments, the third device 130-1 may receive the first schedule request from the first device 110. For example, the first device 110 may configure periodic SRS. Alternatively, the first device 110 may configure semi-periodic SRS. In other embodiments, the third device 130-1 may transmit the SRS to the fourth device 140 and/or the first device 110 without receiving the first schedule request.
  • the third device 130-1 may receive the second schedule request from the first device 110.
  • the first device 110 may schedule an aperiodic SRS transmission.
  • the third device 130-1 may transmit the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request.
  • the third device 130-1 may transmit the SRS to the fourth device 140 using the set of fallback resources without receiving the second schedule request.
  • Fig. 8 illustrates a flow chart of method 800 according to embodiments of the present disclosure.
  • the method 800 can be implemented at any suitable devices.
  • the method may be implemented at the fourth device 140.
  • the method may be implemented at the first device 110.
  • the fourth device 140 receives the first configuration and the second configuration from the first device 110 and/or the second device 120.
  • the first configuration and the second configuration may be transmitted to the fourth device 130-1 via NRPPa protocol.
  • the first configuration and the second configuration may be transmitted to the third device 130-1 via X2 interface.
  • the reference signal may be an uplink reference signal.
  • the reference signal may be a downlink reference signal.
  • the reference signal may be a PRS.
  • the reference signal may be a SRS.
  • the first configuration indicates a set of resources for the transmission the PRS.
  • the first configuration may indicate a set of resources allocated for PRS occasions.
  • the second configuration indicates a set of fallback resources for transmitting the PRS.
  • the second configuration may associate with a set of fallback resources allocated for floated PRS occasions.
  • One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
  • one set of resources for the SRS corresponds to one set of fallback resources for the SRS.
  • one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS.
  • more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
  • the fourth device 140 detects the reference signal based on the first configuration and the second configuration.
  • the reference signal may be transmitted by the third device 130. Alternatively or in addition, the reference signal may be transmitted by the first device 110. If the SRS is detected, the fourth device 140 may perform the measurement on the detected SRS.
  • the third device 130-1 may transmit the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request.
  • the fourth device 140 may detect the SRS based on the second configuration.
  • the fourth device 140 may determine the set of fallback resources based on the second configuration.
  • the fourth device 140 may obtain the set of fallback resources from the second configuration.
  • the fourth device 140 may obtain at least one offset from the second configuration and determine the set of fallback resources based on the set of resources and the at least one offset value. In this way, the positioning accuracy has been improved and the positioning service latency has also been reduced. Further, flexible transmission opportunity can be provided.
  • an apparatus for performing the method 500 may comprise respective means for performing the corresponding steps in the method 500.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises means for determining a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission the reference signal, the reference signal being used for positioning a third device; means for determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal; and means for transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
  • the means for determining the second configuration of the reference comprises: means for determining the set of fallback resources for the transmission of the reference signal; and means for generating the second configuration explicitly indicating the set of fallback resources.
  • the means for determining the second configuration of the reference signal comprises: means for determining at least one offset in time and/or frequency domain to the set of resources for the transmission of the reference signal; and means for generating the second configuration indicating the offset so that the set of fallback resources is determined based on the at least one offset and the set of resources.
  • the reference signal is a downlink reference signal and the apparatus further comprises: means for in accordance with a determination that the set of resources are unavailable, transmitting the downlink reference signal to the third device using the set of fallback resources.
  • the reference signal is an uplink reference signal and the apparatus further comprises: means for monitoring a transmission of the uplink reference signal; and means for in accordance with a determination that the third device fails to transmit the uplink reference signal using the set of resources, transmitting a second schedule request to the third device for transmitting the uplink reference signal based on the second configuration.
  • the apparatus further comprises means for transmitting, to the third device, a first schedule request for transmitting the uplink reference signal based on the first configuration.
  • one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  • the first device comprises a network device
  • the second device comprises a location server
  • the third device comprises a terminal device
  • the fourth device comprises a further network device.
  • an apparatus for performing the method 600 may comprise respective means for performing the corresponding steps in the method 600.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises means for receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for the transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for transmitting the first configuration and the second configuration to the third device and/or a fourth device.
  • the second configuration explicitly indicates the set of fallback resources.
  • the second configuration indicates at least one offset in time and/or frequency domain to the set of resources so that the set of fallback resources is determined based on the at least one offset and the set of resources.
  • one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  • the first device comprises a network device
  • the second device comprises a location server
  • the third device comprises a terminal device
  • the fourth device comprises a neighbor network device.
  • an apparatus for performing the method 700 may comprise respective means for performing the corresponding steps in the method 700.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises means for receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning the third device; means for obtaining a set of resources for the transmission of the reference signal from the first configuration; and means for determining a set of fallback resources for the transmission of the reference signal based on the first configuration and the second configuration.
  • the means for determining the set of fallback resources comprises: means for obtaining at least one offset in time and/or frequency domain to the set of resources from the second configuration; and means for determining the set of fallback resources based on the set of resources and the at least one offset.
  • the means for determining the set of fallback resources comprises: means for obtaining the set of fallback resources from the second configuration.
  • the reference signal is a downlink reference signal and the apparatus further comprises: means for detecting the downlink reference signal based on the first configuration; means for in accordance with a determination of a failure in detecting the downlink reference signal, detecting the downlink reference signal based on the second configuration.
  • the apparatus further comprises means for in accordance with a determination of a success in detecting the downlink reference signal based on the second configuration, performing a positioning measurement based on the downlink reference signal.
  • the reference signal is an uplink reference signal and the apparatus further comprises: means for determining whether the set of resources are available; means for in accordance with a determination that the set of resources are unavailable, receiving, from the first device, a second schedule request for transmitting the uplink reference signal based on the second configuration; and means for transmitting the uplink reference signal using the set of fallback resources to a fourth device and/or the first device.
  • the reference signal is an uplink reference signal and the apparatus further comprises means for receiving, from the first device, a first schedule request for transmitting the uplink reference signal based on the first configuration.
  • the reference signal is an uplink reference signal and the apparatus further comprises: means for in accordance with a determination that the set of resources are unavailable, transmitting the uplink reference signal using the set of fallback resources to a fourth device and/or the first device.
  • one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  • the first device comprises a network device
  • the second device comprises a location server
  • the third device comprises a terminal device
  • an apparatus for performing the method 800 may comprise respective means for performing the corresponding steps in the method 800.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises means for receiving, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for the transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
  • the second configuration explicitly indicates the set of fallback resources.
  • the apparatus further comprises means for obtaining at least one offset in time and/or frequency domain to the set of resources from the second configuration; and means for determining the set of fallback resources based on the at least one offset and the set of resources.
  • the means for detecting the reference signal comprises: means for detecting the reference signal on the set of resources; and means for in accordance with a determination of a failure in detecting the reference signal, detecting the reference signal on the set of fallback resources.
  • the apparatus further comprises means for in accordance with a determination of a success in detecting the reference signal based on the second configuration, performing a positioning measurement based on the reference signal.
  • one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  • the first device comprises a network device
  • the second device comprises a location server
  • the third device comprises a terminal device
  • the fourth device comprises a further network device.
  • Fig. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure.
  • the device 900 may be provided to implement the communication device, for example the first device 110, the second device 120, the third device 130 and the fourth device 140 shown in Fig. 1.
  • the device 900 includes one or more processors 910, one or more memories 920 coupled to the processor 910, and one or more communication modules 940 coupled to the processor 910.
  • the communication module 940 is for bidirectional communications.
  • the communication module 940 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 920 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 922 and other volatile memories that will not last in the power-down duration.
  • a computer program 930 includes computer executable instructions that are executed by the associated processor 910.
  • the program 930 may be stored in the ROM 924.
  • the processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 922.
  • Embodiments of the present disclosure may be implemented by means of the program 920 so that the device 900 may perform any process of the disclosure as discussed with reference to Figs. 2 to 8.
  • Embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 930 may be tangibly contained in a computer readable medium which may be included in the device 900 (such as in the memory 920) or other storage devices that are accessible by the device 900.
  • the device 900 may load the program 930 from the computer readable medium to the RAM 922 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 10 shows an example of the computer readable medium 1000 in form of CD or DVD.
  • the computer readable medium has the program 930 stored thereon.
  • NFV network functions virtualization
  • a virtualized network function may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized.
  • radio communications this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labor between core network operations and base station operations may vary depending on implementation.
  • the server may generate a virtual network through which the server communicates with the distributed unit.
  • virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Such virtual network may provide flexible distribution of operations between the server and the radio head/node.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • a CU-DU architecture is implemented.
  • the device 1000 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) .
  • the central unit e.g. an edge cloud server
  • the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc.
  • the edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks.
  • at least some of the described processes may be performed by the central unit.
  • the device 900 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
  • the execution of at least some of the functionalities of the device 900 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • CU-DU architecture may provide flexible distribution of operations between the CU and the DU.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • the device 1000 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 500-800 as described above with reference to Figs. 5-8.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relates to fallback reference signal configuration. According to embodiments of the present disclosure, the first device determines original resources and fallback resources for transmitting reference signals. If the reference signals cannot be transmitted using the original resources, the reference signals can be retransmitted using the fallback resources. In this way, the positioning accuracy is improved and the positioning service latency is reduced. Further, flexible transmission opportunities for the reference signal are provided.

Description

FALLBACK REFERENCE SIGNAL CONFIGURATION FIELD
Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for fallback reference signal configuration.
BACKGROUND
With development of communication technologies, positioning technology has been proposed. Generally, reference signals may be used to perform positioning measurements. Network devices may determine resources for transmitting the reference signals. In order to improve positioning accuracy, further study is still needed.
SUMMARY
Generally, embodiments of the present disclosure relate to a method for fallback reference signal configuration and corresponding devices.
In a first aspect, there is provided a method. The method comprises determining a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device. The method also comprises determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal. The method further comprises transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
In a second aspect, there is provided a method. The method comprises receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device. The method also comprises transmitting the first configuration and the second configuration to the third device and/or a fourth  device.
In a third aspect, there is provided a method. The method comprises receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning a third device. The method also comprises obtaining a set of resources for a transmission of the reference signal from the first configuration. The method further comprises determining a set of fallback resources for the transmission of the reference signal based on the first configuration and the second configuration.
In a fourth aspect, there is provided a method. The method comprises receiving, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device. The method further comprises detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
In a fifth aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to determine a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device. The first device is also caused to determine a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal. The first device is further caused to transmit the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
In a sixth aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to receive, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal,  the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device. The second device is also caused to transmit the first configuration and the second configuration to a third device and/or a fourth device.
In a seventh aspect, there is provided a third device. The third device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to receive, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning a third device. The third device is also caused to obtain a set of resources for a transmission of the reference signal from the first configuration. The third device is further caused to determine a set of fallback resources for the transmission of the reference signal based on the second configuration.
In an eighth aspect, there is provided a fourth device. The fourth device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device to receive, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device. The fourth device is also caused to detect the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
In a ninth aspect, there is provided an apparatus. The apparatus comprises means for determining a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device; means for determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal; and means for transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth  device.
In a tenth aspect, there is provided an apparatus. The apparatus comprises means for receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for transmitting the first configuration and the second configuration to the third device and/or a fourth device.
In an eleventh aspect, there is provided an apparatus. The apparatus comprises means for receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning the third device; means for obtaining a set of resources for a transmission of the reference signal from the first configuration; and means for determining a set of fallback resources for the transmission of the reference signal based on the first configuration and the second configuration.
In a twelfth aspect, there is provided an apparatus. The apparatus comprises means for receiving, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
In a thirteenth aspect, there is provided a computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the above fifth, sixth, seventh, or eighth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates a schematic diagram of a communication system according to embodiments of the present disclosure;
Fig. 2 illustrates a signaling chart of interactions between devices according to embodiments of the present disclosure;
Fig. 3 illustrates a signaling chart of interactions between devices according to embodiments of the present disclosure;
Figs. 4A-4C illustrate schematic diagrams of mapping between resources according to embodiments of the present disclosure;
Fig. 5 illustrates a flow chart of a method according to embodiments of the present disclosure;
Fig. 6 illustrates a flow chart of a method according to embodiments of the present disclosure;
Fig. 7 illustrates a flow chart of a method according to embodiments of the present disclosure;
Fig. 8 illustrates a flow chart of a method according to embodiments of the present disclosure;
Fig. 9 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 10 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure.  The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or  digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.65G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As mentioned above, in order to improve positioning accuracy, further study is still needed. A study item has been conducted in third generation partner project (3GPP) for positioning support in New Radio (NR) . As the output of the study item phase, it was recommended that the following positioning solutions be specified for NR Rel-16: Downlink Time Difference of Arrival (DL-TDOA) ; Uplink Time Difference of Arrival (UL-TDOA) ; Downlink Angle of Departure (DL-AoD) ; Uplink Angle of Arrival (UL-AoA) ; Multi-cell Round Trip Time (Multi-RTT) .
A follow up work item has been proposed to specify positioning support. The  objective is to specify solutions to enable RAT dependent (for both FR1 and FR2) and RAT independent NR positioning techniques, shown in Table 1.
Table 1
Figure PCTCN2020073036-appb-000001
Figure PCTCN2020073036-appb-000002
Currently, general enhancements to the Rel-16 NR positioning features are discussed in RAN for determining the scope of Rel-17 NR positioning, including (but not limited to) : High accuracy positioning (cm-level) and Low latency positioning.
Targeting the new use cases (e.g., V2X, IIoT, etc. ) , the Rel-17 positioning should provide more stringent performance: For V2X use cases, we support 0.1 m for relative lateral accuracy and 0.5 m for longitudinal accuracy that defined in TS 22.186 as the requirements; For IIoT use cases, especially for factory/campus scenarios, we support 0.2 m accuracy that defined in TR 22.804 as the requirements. In addition, many companies mentioned that < 100 ms latency is desired.
However, there are some potential positioning RS dropping issues.
Case 1: Collision with other higher priority channel
In general, positioning has lower priority with respect to data (although some exceptions could be considered in very stringent positioning requirement) . When semi-periodic or periodic PRS colliding with other higher priority channels, the PRS transmission may be dropped.
Taking UL positioning RS (i.e., SRS) as an example, prioritization rules between PUCCH, PUSCH and SRS are specified Table 2 below.
Table 2
Figure PCTCN2020073036-appb-000003
Figure PCTCN2020073036-appb-000004
It is observed that SRS has lower transmission priority than PUCCH and PUSCH in most of cases.
Case 2: When LBT failure in unlicensed band
In unlicensed band, listen before talk (LBT) operation may be mandatory, in which the device should check the channel availability before transmitting data. If the PRS transmitter checks channel as busy (i.e., LBT failure) , the PRS should not be transmitted.
The event of PRS dropping may be agnostic at the receiver side. In UL-TDoA positioning, SRS is not transmitted due to overlapped with PUCCH. A neighbor cell (expect PRS reception) has no idea of the event of SRS dropping. When performing ToA measurement, the neighbor cell cannot get correct time of arrival based on PUCCH. Then, a wrong positioning measurement will be reported to location measurement function (LMF) .
Even if the receiver knows the event of PRS dropping, a positioning measurement report will be missing. This will also impact the positioning estimation in LMF. Therefore, to achieve high accurate and low latency positioning requirement and to provide seamless positioning service, it is desirable a new mechanism to overcome PRS dropping issue.
According to embodiments of the present disclosure, the first device determines original resources and fallback resources for transmitting reference signals. If the reference signals cannot be transmitted using the original resources, the reference signals can be retransmitted using the fallback resources. In this way, the positioning accuracy is improved and the positioning service latency is reduced. Further, flexible transmission opportunities for the reference signal are provided.
Fig. 1 illustrates a schematic diagram of a communication system 100 in which embodiments of the present disclosure can be implemented. The communication system  100, which is a part of a communication network, comprises a first device 110. The communication system 100 further comprises a second device 120. The communication 100 also comprises third devices 130-1, 130-2, ..., 130-N, where N is an integer number (collectively referred to as “third device (s) 130” ) . The communication 100 yet comprises a fourth device 140. It is to be understood that the numbers of different devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
The first device 110 and the fourth device 140 may be network devices. Only as an example, the first device 110 is a serving network device and the fourth device 140 is a neighbor network device. The second device 120 may be a location server for managing locations of devices. For example, the second device 120 may be a location management function (LMF) . In some embodiments, the second device 120 may be a core network device. Alternatively, the second device 120 may also be at a network device. The third device 130 may be terminal devices. It should be noted that the first device 110 and the fourth device 140 can be interchangeable. The first device 110 and the third device 130 can also be interchangeable.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
Fig. 2 illustrates a signaling chart of interactions 200 among devices according to embodiments of the present disclosure. The interactions 200 can be implemented among any suitable devices. Only for the purpose of illustrations, the interactions 200 are described with the reference to the first device 110, the second device 120 and the third device 130-1. It should be noted that the third device 130-1 is only an example not a  limitation.
The first device 110 determines 2010 a first configuration of a reference signal. In some embodiments, the reference signal may be an uplink reference signal. Alternatively or in addition, the reference signal may be a downlink reference signal. For example, the reference signal may be a positioning reference signal (PRS) . Alternatively, the reference signal may be a sounding reference signal (SRS) . It should be understood that embodiments of the present disclosure cover the case of using all possible reference signals (such as CSI-RS in DL; PRACH in UL) for positioning. Only for the purpose of illustrations, details of the interactions 200 are described with the reference to PRS.
The first configuration indicates a set of resources for the transmission of the PRS. In some embodiments, the first device 110 may determine one or more occasions for the PRS. For example, the first configuration may indicate a set of resources allocated for PRS occasions.
The first device 110 determines 2015 a second configuration of the PRS. The second configuration associates with a set of fallback resources for transmitting the PRS. In some embodiments, the first device 110 may determine one or more occasions for the PRS. For example, the second configuration may indicate a set of fallback resources allocated for floated PRS occasions. One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
In some embodiments, the first device 110 may determine at least one offset in time and/or frequency domain to the set of resources. The first device 110 may generate the second configuration indicating the offset. Alternatively or in addition, the first device 110 may determine the set of fallback resources directly and the second configuration may explicitly indicate the set of fallback resources.
The set of resources may associate with at least one set of fallback resources. Figs. 4A-4C show associations between the set of resources and the set of fallback resources. It should be noted that the number of occasions shown in Figs. 4A-4C is only an example.
As shown in Fig. 4A, the PRS occasion 410-1 corresponds to the floated PRS occasion 420-1 and the PRS occasion 410-2 corresponds to the floated PRS occasion 420-2. In other words, one set of resources for the PRS corresponds to one set of fallback  resources for the PRS. In this situation, if the RPS dropping happens at the PRS occasion 410-1, the RPS can be retransmitted at the floated RPS occasion 420-1. If the RPS dropping happens at the PRS occasion 410-2, the RPS can be retransmitted at the floated RPS occasion 420-2. In this situation, the first device 110 may determine one offset in the time and/or frequency domain.
As shown in Fig. 4B, the PRS occasion 430-1 corresponds to the floated PRS occasions 440-1 and 440-2, and the PRS occasion 430-2 corresponds to the floated PRS occasions 440-3 and 440-4. In other words, one set of resources for the PRS corresponds to more than one set of fallback resources for the PRS. In this situation, if the RPS dropping happens at the PRS occasion 430-1, the RPS can be retransmitted at the floated RPS occasion 440-1 or 440-2. If the RPS dropping happens at the PRS occasion 430-2, the RPS can be retransmitted at the floated RPS occasion 440-3 or 440-4. In this situation, the first device 110 may determine more than one offset in the time and/or frequency domain. The number of offsets may correspond to the number of floated PRS occasions corresponding to one PRS occasion.
As shown in Fig. 4C, the PRS occasions 450-1 and 450-2 correspond to the floated PRS occasions 460-1, and the PRS occasions 450-3 and 450-4 correspond to the floated PRS occasions 460-2. In other words, more than one set of resources for the PRS correspond to one set of fallback resources for the PRS. In this situation, if the RPS dropping happens at the PRS occasion 450-1 or 450-2, the RPS can be retransmitted at the floated RPS occasion 460-1. If the RPS dropping happens at the PRS occasion 450-3 or 450-4, the RPS can be retransmitted at the floated RPS occasion 460-2. In this situation, the first device 110 may determine more than one offset in the time and/or frequency domain. The number of offsets may correspond to the number of PRS occasions corresponding to one floated PRS occasion.
Referring back to Fig. 2, the first device 110 transmits 2020 the first configuration and the second configuration to the second device 120. For example, the first configuration and the second configuration may be transmitted to the second device 120 via New Radio Positioning Protocol A (NRPPa) protocol.
The second device 120 transmits 2025 the first configuration and the second configuration to the third device 130-1. For example, the first configuration and the second configuration may be transmitted to the third device 130-1 via Long-term Evolution  Positioning Protocol (LPP) protocol.
The first device 110 may determine 2030 whether the set of resources are available. For example, the first device 110 may determine whether the PRS collide with other higher priority channel. Generally, the PRS has lower priority with respect to data. If the PRS collides with other higher priority channels, the set of resources are not available, which means that the PRS transmission may be dropped. Alternatively or in addition, the first device 110 may check the channel availability. If the channel is busy, the set of resources are not available, which means that the PRS transmission may be dropped. In some embodiments, if the set of resources for uplink transmission is reallocated for downlink transmission, the set of resources are not available, which means that the PRS transmission may be dropped. In other embodiments, if the set of resources for downlink transmission is reallocated for uplink transmission, the set of resources are not available, which means that the PRS transmission may be dropped.
If the set of resources are available, the first device 110 may transmit 2035 the PRS to the third device 130-1. The third device 130-1 detects 2040 the PRS based on the first configuration. For example, the third device 130-1 may obtain the set of resources for the PRS and detect whether the PRS is transmitted using the set of resources. If the third device 130-1 has detected the PRS based on the first configuration, the third device 130-1 may perform positioning measurements on the detected PRS. If the PRS cannot be detected based on the first configuration, the third device 130-1 may detect PRS based on the second configuration.
If the PRS dropping happens, the first device 110 transmits the PRS using the set of fallback resources. For example, the first device 110 may determine 2045 whether the set of fall back resources are available. The first device 110 transmits 2050 the PRS using the set of fallback resources to the third device 130-1. The third device 130-1 detects 2055 the PRS based on the first configuration and the second configuration. The third device 130-1 determines the set of fallback resources based on the first configuration and the second configuration. In some embodiments, the third device 130-1 may obtain the set of fallback resources from the second configuration. In other embodiments, the third device 130-1 may obtain at least one offset from the second configuration and determine the set of fallback resources based on the set of resources and the at least one offset value. The third device 130-1 may perform the measurements on the received the PRS. In this way, the positioning accuracy has been improved and the positioning service latency has  also been reduced. Further, flexible transmission opportunity can be provided.
Fig. 3 illustrates a signaling chart of interactions 300 among devices according to embodiments of the present disclosure. The interactions 300 can be implemented among any suitable devices. For the purpose of illustrations, the interactions 300 are described with the reference to the first device 110, the second device 120, the third device 130-1 and the fourth device 140. It should be noted that the third device 130-1 is only an example not a limitation.
The first device 110 determines 3010 the first configuration of a reference signal. In some embodiments, the reference signal may be an uplink reference signal. Alternatively or in addition, the reference signal may be a downlink reference signal. For example, the reference signal may be a PRS. Alternatively, the reference signal may be a SRS. The first configuration indicates a set of resources for the transmission of the reference signal. Only for the purpose of illustrations, details of the interactions 300 are described with the reference to SRS.
The first configuration indicates a set of resources for transmitting the SRS. In some embodiments, the first device 110 may determine one or more occasions for the SRS. For example, the first configuration may indicate a set of resources allocated for SRS occasions.
The first device 110 determines 3015 a second configuration of the SRS. The second configuration associates with a set of fallback resources for the transmission of the SRS. In some embodiments, the first device 110 may determine one or more occasions for the SRS. For example, the second configuration may indicate a set of fallback resources allocated for floated SRS occasions. One SRS may occupy frequency and/or time resources. In this way, the SRS can be transmitted in a new place if the original occasion is not available.
In some embodiments, the first device 110 may determine at least one offset in time and/or frequency domain to the set of resources. The first device 110 may generate the second configuration indicating the offset. Alternatively or in addition, the first device 110 may determine the set of fallback resources directly and the second configuration may explicitly indicate the set of fallback resources.
As described above, the set of resources may associate with at least one set of fallback resources. Details of the associations between the set of resources and the set of  fallback resources have been described with reference to Figs. 4A-4C above. Similarly, in some embodiments, one set of resources for the SRS corresponds to one set of fallback resources for the SRS. Alternatively, one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS. In other embodiments, more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
In an example embodiment, the first device 110 transmits 3020 the first configuration and the second configuration to the second device 120. For example, the first configuration and the second configuration may be transmitted to the second device 120 via NRPPa protocol.
In some embodiments, the second device 120 may transmit 3025 the first configuration and the second configuration to the third device 130-1. For example, the first configuration and the second configuration may be transmitted to the third device 130-1 via LPP protocol.
In some embodiments, the first device 110 may transmit 3030 the first configuration and the second configuration to the third device 130-1. For example, the first configuration and the second configuration may be transmitted to the third device 130-1 via Radio Resource Controlling (RRC) signaling. Alternatively or in addition, the first configuration and the second configuration may be transmitted to the third device 130-1 via physical layer (PHY) signaling.
In other embodiments, the second device 120 may transmit 3035 the first configuration and the second configuration to the fourth device 140. For example, the first configuration and the second configuration may be transmitted to the fourth device 140 via NRPPa protocol.
In some embodiments, the first device 110 may transmit 3040 the first configuration and the second configuration to the fourth device 140. For example, the first configuration and the second configuration may be transmitted to the fourth device via X2 interface.
The third device 130-1 obtains 3045 the set of resources for the transmission of the SPS from the first configuration. For example, the third device 130-1 may obtain SPS occasions from the first configuration.
The third device 130-1 determines 3050 the set of fallback resources for transmitting the SPS from the second configuration. For example, the third device 130-1  may obtain the offset to the set of resources from the second configuration and determine the set of fallback resources based on the set of resources and the offset values. Alternatively, the third device 130-1 may obtain the set of fallback resources from the second configuration directly..
In some embodiments, the first device 110 may transmit 3055 the first schedule request to the third device 130-1. For example, the first device 110 may configure periodic SRS. Alternatively, the first device 110 may configure semi-periodic SRS.
If the set of resources is available, the third device 130-1 transmits 3060 the SRS to the fourth device 140 and/or the first device 110. The third device 130-1 may transmit the SRS after receiving the first schedule request. Alternatively, the third device 130-1 may transmit the SRS without the first schedule request. The fourth device 140 detects 3070 the SRS based on the first configuration. If the SRS is detected, the fourth device 140 may perform the measurement on the detected SRS.
If the set of resources is unavailable, the third device 130-1 may transmit 3080 the SRS using the set of fallback resources without receiving the second schedule request. In some embodiments, the third device 130-1 may also determine whether the set of fallback resources is available or not.
In some embodiments, the first device 110 determines 3060 the whether the SRS is transmitted. For example, the first device 110 may determine whether the SRS dropping happens based on predetermined rules, for example, channel prioritization rules. If the first device 110 determines that the SRS dropping happens, the first device 110 transmit 3075 the second schedule request to the third device 130-1. For example, the first device 110 may schedule an aperiodic SRS transmission. The third device 130-1 may transmit 3080 the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request.
The fourth device 140 detects 3085 the SRS based on the second configuration. The fourth device 140 may perform the positioning measurement on the detected SRS. In this way, the positioning accuracy has been improved and the positioning service latency has also been reduced. Further, flexible transmission opportunity can be provided.
Fig. 5 illustrates a flow chart of method 500 according to embodiments of the present disclosure. The method 500 can be implemented at any suitable devices. For example, the method may be implemented at the first device 110. In other embodiments,  the method may be implemented at the fourth device 140.
At block 510, the first device 110 determines a first configuration of a reference signal. In some embodiments, the reference signal may be an uplink reference signal. Alternatively or in addition, the reference signal may be a downlink reference signal. For example, the reference signal may be a PRS. Alternatively, the reference signal may be a SRS. Only for the purpose of illustrations, details of the interactions 200 are described with the reference to PRS.
The first configuration indicates a set of resources for the transmission of the PRS. In some embodiments, the first device 110 may determine one or more occasions for the PRS. For example, the first configuration may indicate a set of resources allocated for PRS occasions.
At block 520, the first device 110 determines a second configuration of the PRS. The second configuration associates with a set of fallback resources for the transmission of the PRS. In some embodiments, the first device 110 may determine one or more occasions for the PRS. For example, the second configuration may indicate a set of fallback resources allocated for floated PRS occasions. One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
In some embodiments, the first device 110 may determine at least one offset in time and/or frequency domain to the set of resources. The first device 110 may generate the second configuration indicating the offset. Alternatively or in addition, the first device 110 may determine the set of fallback resources directly and the second configuration may explicitly indicate the set of fallback resources.
At block 530, the first device 110 transmits the first configuration and the second configuration. In an example embodiment, the first device 110 may transmit the first configuration and the second configuration to the second device 120. For example, the first configuration and the second configuration may be transmitted to the second device 120 via NRPPa protocol.
In some embodiments, the first device 110 may transmit the first configuration and the second configuration to the third device 130-1. For example, the first configuration and the second configuration may be transmitted to the third device 130-1 via RRC signaling. Alternatively or in addition, the first configuration and the second  configuration may be transmitted to the third device 130-1 via PHY signaling.
In some embodiments, the first device 110 may transmit the first configuration and the second configuration to the fourth device 140. For example, the first configuration and the second configuration may be transmitted to the fourth device via X2 interface.
In some embodiments, the first device 110 may determine whether the set of resources are available. For example, the first device 110 may determine whether the PRS collide with other higher priority channel. Generally, the PRS has lower priority with respect to data. If the PRS collides with other higher priority channels, the PRS transmission may be dropped. Alternatively or in addition, the first device 110 may check the channel availability. If the channel is busy, the PRS transmission may be dropped.
If the set of resources are available, the first device 110 may transmit the PRS to the third device 130-1. If the PRS dropping happens, the first device 110 transmits the PRS using the set of fallback resources. For example, the first device 110 may determine whether the set of fall back resources are available. The first device 110 transmits the PRS using the set of fallback resources to the third device 130-1.
In some embodiments, the first device 110 may transmit 3055 the first schedule request to the third device 130-1. For example, the first device 110 may configure periodic SRS. Alternatively, the first device 110 may configure semi-periodic SRS.
In some embodiments, the first device 110 determines 3060 the whether the SRS is transmitted. For example, the first device 110 may determine whether the SRS dropping happens based on predetermined rules, for example, channel prioritization rules. If the first device 110 determines that the SRS dropping happens, the first device 110 transmit 3075 the second schedule request to the third device 130-1. For example, the first device 110 may schedule an aperiodic SRS transmission.
Fig. 6 illustrates a flow chart of method 600 according to embodiments of the present disclosure. The method 600 can be implemented at any suitable devices. For example, the method may be implemented at the second device 120.
At block 610, the second device 120 receives the first configuration and the second configuration from the first device 110. For example, the first configuration and the second configuration may be transmitted to the second device 120 via NRPPa protocol.
In some embodiments, the reference signal may be an uplink reference signal.  Alternatively or in addition, the reference signal may be a downlink reference signal. For example, the reference signal may be a PRS. Alternatively, the reference signal may be a SRS.
The first configuration indicates a set of resources for the transmission of the PRS. For example, the first configuration may indicate a set of resources allocated for PRS occasions. The second configuration indicates a set of fallback resources for the transmission of the PRS. In some embodiments, the second configuration may indicate a set of fallback resources allocated for floated PRS occasions. One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
In some embodiments, one set of resources for the SRS corresponds to one set of fallback resources for the SRS. Alternatively, one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS. In other embodiments, more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
At block 620, the second device 120 transmits the first configuration and the second configuration to the third device 130-1 and/or the fourth device. For example, the first configuration and the second configuration may be transmitted to the third device 130-1 via LPP protocol. Alternatively, the first configuration and the second configuration may be transmitted to the fourth device 140 via NRPPa protocol.
Fig. 7 illustrates a flow chart of method 700 according to embodiments of the present disclosure. The method 700 can be implemented at any suitable devices. For example, the method may be implemented at the third device 130-1.
At block 710, the third device 130-1 receives the first configuration and the second configuration from the first device 110 and/or the second device 120. For example, the first configuration and the second configuration may be transmitted to the third device 130-1 via LPP protocol. Alternatively, the first configuration and the second configuration may be transmitted to the third device 130-1 via RRC signaling and/or PHY signaling.
In some embodiments, the reference signal may be an uplink reference signal. Alternatively or in addition, the reference signal may be a downlink reference signal. For example, the reference signal may be a PRS. Alternatively, the reference signal may be a SRS.
The first configuration indicates a set of resources for the transmission of the PRS. For example, the first configuration may indicate a set of resources allocated for PRS occasions. The second configuration indicates a set of fallback resources for the transmission of the PRS. In some embodiments, the second configuration may indicate a set of fallback resources allocated for floated PRS occasions. One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the original occasion is not available.
In some embodiments, one set of resources for the SRS corresponds to one set of fallback resources for the SRS. Alternatively, one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS. In other embodiments, more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
At block 720, the third device 130-1 obtains the set of resources for the transmission of the SPS based on the first configuration and the second configuration. For example, the third device 130-1 may obtain SPS occasions from the first configuration.
At block 730, the third device 130-1 determines the set of fallback resources for transmitting the SPS based on the second configuration. For example, the third device 130-1 may obtain the offset value to the set of resources from the second configuration and determine the set of fallback resources based on the set of resources and the offset values. Alternatively, the third device 130-1 may obtain the set of fallback resources directly. The third device 130-1 determines the set of fallback resources based on the second configuration. In some embodiments, the third device 130-1 may obtain the set of fallback resources from the second configuration. In other embodiments, the third device 130-1 may obtain at least one offset from the second configuration and determine the set of fallback resources based on the set of resources and the at least one offset value.
In some embodiments, the third device 130-1 may detect the PRS based on the first configuration. If the third device 130-1 has detected the PRS based on the first configuration, the third device 130-1 may perform positioning measurements on the detected PRS. If the PRS cannot be detected based on the first configuration, the third device 130-1 may detect PRS based on the second configuration.
If the set of resources is available, the third device 130-1 may transmit the SRS to the fourth device 140 and/or the first device 110. If the set of resources is unavailable, the  third device 130-1 may transmit the SRS using the set of fallback resources. In some embodiments, the third device 130-1 may also determine whether the set of fallback resources is available or not. In some embodiments, the third device 130-1 may receive the first schedule request from the first device 110. For example, the first device 110 may configure periodic SRS. Alternatively, the first device 110 may configure semi-periodic SRS. In other embodiments, the third device 130-1 may transmit the SRS to the fourth device 140 and/or the first device 110 without receiving the first schedule request.
The third device 130-1 may receive the second schedule request from the first device 110. For example, the first device 110 may schedule an aperiodic SRS transmission. The third device 130-1 may transmit the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request. In other embodiments, the third device 130-1 may transmit the SRS to the fourth device 140 using the set of fallback resources without receiving the second schedule request.
Fig. 8 illustrates a flow chart of method 800 according to embodiments of the present disclosure. The method 800 can be implemented at any suitable devices. For example, the method may be implemented at the fourth device 140. In other embodiments, the method may be implemented at the first device 110.
At block 810, the fourth device 140 receives the first configuration and the second configuration from the first device 110 and/or the second device 120. For example, the first configuration and the second configuration may be transmitted to the fourth device 130-1 via NRPPa protocol. Alternatively, the first configuration and the second configuration may be transmitted to the third device 130-1 via X2 interface.
In some embodiments, the reference signal may be an uplink reference signal. Alternatively or in addition, the reference signal may be a downlink reference signal. For example, the reference signal may be a PRS. Alternatively, the reference signal may be a SRS.
The first configuration indicates a set of resources for the transmission the PRS. For example, the first configuration may indicate a set of resources allocated for PRS occasions. The second configuration indicates a set of fallback resources for transmitting the PRS. In some embodiments, the second configuration may associate with a set of fallback resources allocated for floated PRS occasions. One PRS may occupy frequency and/or time resources. In this way, the PRS can be transmitted in a new place if the  original occasion is not available.
In some embodiments, one set of resources for the SRS corresponds to one set of fallback resources for the SRS. Alternatively, one set of resources for the SRS corresponds to more than one set of fallback resources for the SRS. In other embodiments, more than one set of resources for the SRS correspond to one set of fallback resources for the SRS.
At block 820, the fourth device 140 detects the reference signal based on the first configuration and the second configuration. The reference signal may be transmitted by the third device 130. Alternatively or in addition, the reference signal may be transmitted by the first device 110. If the SRS is detected, the fourth device 140 may perform the measurement on the detected SRS.
The third device 130-1 may transmit the SRS to the fourth device 140 using the set of fallback resources after receiving the second schedule request. The fourth device 140 may detect the SRS based on the second configuration. The fourth device 140 may determine the set of fallback resources based on the second configuration. In some embodiments, the fourth device 140 may obtain the set of fallback resources from the second configuration. In other embodiments, the fourth device 140 may obtain at least one offset from the second configuration and determine the set of fallback resources based on the set of resources and the at least one offset value. In this way, the positioning accuracy has been improved and the positioning service latency has also been reduced. Further, flexible transmission opportunity can be provided.
In some embodiments, an apparatus for performing the method 500 (for example, the first device 110) may comprise respective means for performing the corresponding steps in the method 500. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises means for determining a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission the reference signal, the reference signal being used for positioning a third device; means for determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal; and means for transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
In some embodiments, the means for determining the second configuration of the reference comprises: means for determining the set of fallback resources for the transmission of the reference signal; and means for generating the second configuration explicitly indicating the set of fallback resources.
In some embodiments, the means for determining the second configuration of the reference signal comprises: means for determining at least one offset in time and/or frequency domain to the set of resources for the transmission of the reference signal; and means for generating the second configuration indicating the offset so that the set of fallback resources is determined based on the at least one offset and the set of resources.
In some embodiments, the reference signal is a downlink reference signal and the apparatus further comprises: means for in accordance with a determination that the set of resources are unavailable, transmitting the downlink reference signal to the third device using the set of fallback resources.
In some embodiments, the reference signal is an uplink reference signal and the apparatus further comprises: means for monitoring a transmission of the uplink reference signal; and means for in accordance with a determination that the third device fails to transmit the uplink reference signal using the set of resources, transmitting a second schedule request to the third device for transmitting the uplink reference signal based on the second configuration.
In some embodiments, the apparatus further comprises means for transmitting, to the third device, a first schedule request for transmitting the uplink reference signal based on the first configuration.
In some embodiments, one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
In some embodiments, the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device and the fourth device comprises a further network device.
In some embodiments, an apparatus for performing the method 600 (for example, the second device 120) may comprise respective means for performing the corresponding steps in the method 600. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises means for receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for the transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for transmitting the first configuration and the second configuration to the third device and/or a fourth device.
In some embodiments, the second configuration explicitly indicates the set of fallback resources.
In some embodiments, the second configuration indicates at least one offset in time and/or frequency domain to the set of resources so that the set of fallback resources is determined based on the at least one offset and the set of resources.
In some embodiments, one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
In some embodiments, the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device and the fourth device comprises a neighbor network device.
In some embodiments, an apparatus for performing the method 700 (for example, the third device 130) may comprise respective means for performing the corresponding steps in the method 700. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises means for receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning the third device; means for obtaining a set of resources for the transmission of the reference signal from the first configuration; and means for determining a set of fallback resources for the transmission of the reference signal based on the first configuration and the second configuration.
In some embodiments, the means for determining the set of fallback resources comprises: means for obtaining at least one offset in time and/or frequency domain to the set of resources from the second configuration; and means for determining the set of  fallback resources based on the set of resources and the at least one offset.
In some embodiments, the means for determining the set of fallback resources comprises: means for obtaining the set of fallback resources from the second configuration.
In some embodiments, the reference signal is a downlink reference signal and the apparatus further comprises: means for detecting the downlink reference signal based on the first configuration; means for in accordance with a determination of a failure in detecting the downlink reference signal, detecting the downlink reference signal based on the second configuration.
In some embodiments, the apparatus further comprises means for in accordance with a determination of a success in detecting the downlink reference signal based on the second configuration, performing a positioning measurement based on the downlink reference signal.
In some embodiments, the reference signal is an uplink reference signal and the apparatus further comprises: means for determining whether the set of resources are available; means for in accordance with a determination that the set of resources are unavailable, receiving, from the first device, a second schedule request for transmitting the uplink reference signal based on the second configuration; and means for transmitting the uplink reference signal using the set of fallback resources to a fourth device and/or the first device.
In some embodiments, the reference signal is an uplink reference signal and the apparatus further comprises means for receiving, from the first device, a first schedule request for transmitting the uplink reference signal based on the first configuration.
In some embodiments, the reference signal is an uplink reference signal and the apparatus further comprises: means for in accordance with a determination that the set of resources are unavailable, transmitting the uplink reference signal using the set of fallback resources to a fourth device and/or the first device.
In some embodiments, one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
In some embodiments, wherein the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device.
In some embodiments, an apparatus for performing the method 800 (for example, the fourth device 140) may comprise respective means for performing the corresponding steps in the method 800. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises means for receiving, at a fourth device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for the transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and means for detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
In some embodiments, the second configuration explicitly indicates the set of fallback resources.
In some embodiments, the apparatus further comprises means for obtaining at least one offset in time and/or frequency domain to the set of resources from the second configuration; and means for determining the set of fallback resources based on the at least one offset and the set of resources.
In some embodiments, the means for detecting the reference signal comprises: means for detecting the reference signal on the set of resources; and means for in accordance with a determination of a failure in detecting the reference signal, detecting the reference signal on the set of fallback resources.
In some embodiments, the apparatus further comprises means for in accordance with a determination of a success in detecting the reference signal based on the second configuration, performing a positioning measurement based on the reference signal.
In some embodiments, one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
In some embodiments, the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device and the fourth device comprises a further network device.
Fig. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure. The device 900 may be provided to implement the communication device, for example the first device 110, the second device 120, the third device 130 and the fourth device 140 shown in Fig. 1. As shown, the device 900 includes one or more processors 910, one or more memories 920 coupled to the processor 910, and one or more communication modules 940 coupled to the processor 910.
The communication module 940 is for bidirectional communications. The communication module 940 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 920 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 922 and other volatile memories that will not last in the power-down duration.
computer program 930 includes computer executable instructions that are executed by the associated processor 910. The program 930 may be stored in the ROM 924. The processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 922.
Embodiments of the present disclosure may be implemented by means of the program 920 so that the device 900 may perform any process of the disclosure as discussed with reference to Figs. 2 to 8. Embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 930 may be tangibly contained in a  computer readable medium which may be included in the device 900 (such as in the memory 920) or other storage devices that are accessible by the device 900. The device 900 may load the program 930 from the computer readable medium to the RAM 922 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 10 shows an example of the computer readable medium 1000 in form of CD or DVD. The computer readable medium has the program 930 stored thereon.
It should be appreciated that future networks may utilize network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications, this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labor between core network operations and base station operations may vary depending on implementation.
In an embodiment, the server may generate a virtual network through which the server communicates with the distributed unit. In general, virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Such virtual network may provide flexible distribution of operations between the server and the radio head/node. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
Therefore, in an embodiment, a CU-DU architecture is implemented. In such case the device 1000 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) . That is, the central unit (e.g. an edge cloud server) and the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity  communicating via a wired connection, etc. The edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks. In an embodiment, at least some of the described processes may be performed by the central unit. In another embodiment, the device 900 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
In an embodiment, the execution of at least some of the functionalities of the device 900 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes. In an embodiment, such CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation. In an embodiment, the device 1000 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 500-800 as described above with reference to Figs. 5-8. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data  types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the  present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (42)

  1. A method comprising:
    determining, at a first device, a first configuration of a reference signal, the first configuration indicating a set of resources for a transmission of the reference signal, the reference signal being used for positioning a third device;
    determining a second configuration of the reference signal, the second configuration associated with a set of fallback resources for the transmission of the reference signal; and
    transmitting the first configuration and the second configuration to at least one of a second device, the third device or a fourth device.
  2. The method of claim 1, wherein determining the second configuration of the reference signal comprises:
    determining the set of fallback resources for the transmission of the reference signal; and
    generating the second configuration explicitly indicating the set of fallback resources.
  3. The method of claim 1, wherein determining the second configuration of the reference signal comprises:
    determining at least one offset in time and/or frequency domain to the set of resources for the transmission of the reference signal; and
    generating the second configuration indicating the offset so that the set of fallback resources is determined based on the at least one offset and the set of resources.
  4. The method of claim 1, wherein the reference signal is a downlink reference signal and the method further comprises:
    in accordance with a determination that the set of resources are unavailable, transmitting the downlink reference signal to the third device using the set of fallback resources.
  5. The method of claim 1, wherein the reference signal is an uplink reference signal and the method further comprises:
    monitoring a transmission of the uplink reference signal; and
    in accordance with a determination that the third device fails to transmit the uplink reference signal using the set of resources, transmitting, to the third device, a second schedule request for transmitting the uplink reference signal based on the second configuration.
  6. The method of claim 5, further comprising:
    transmitting, to the third device, a first schedule request for transmitting the uplink reference signal based on the first configuration.
  7. The method of claim 1, wherein one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  8. The method of claim 1, wherein the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device and the fourth device comprises a further network device.
  9. A method comprising:
    receiving, at a second device and from a first device, a first configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and
    transmitting the first configuration and the second configuration to the third device and/or a fourth device.
  10. The method of claim 9, wherein the second configuration explicitly indicates the set of fallback resources.
  11. The method of claim 9, wherein the second configuration indicates at least one offset in time and/or frequency domain to the set of resources so that the set of fallback resources is determined based on the at least one offset and the set of resources.
  12. The method of claim 9, wherein one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  13. The method of claim 9, wherein the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device and the fourth device comprises a neighbor network device.
  14. A method comprising:
    receiving, at a third device and from a first and/or a second device, a first configuration of a reference signal and a second configuration of the reference signal, the reference signal being used for positioning the third device;
    obtaining a set of resources for a transmission of the reference signal from the first configuration; and
    determining a set of fallback resources for the transmission of the reference signal based on the second configuration and the first configuration.
  15. The method of claim 14, wherein determining the set of fallback resources comprises:
    obtaining at least one offset in time and/or frequency domain to the set of resources from the second configuration; and
    determining the set of fallback resources based on the set of resources and the at least one offset.
  16. The method of claim 14, wherein determining the set of fallback resources comprises:
    obtaining the set of fallback resources from the second configuration.
  17. The method of claim 14, wherein the reference signal is a downlink reference signal and the method further comprises:
    detecting the downlink reference signal based on the first configuration;
    in accordance with a determination of a failure in detecting the downlink reference signal, detecting the downlink reference signal based on the second configuration.
  18. The method of claim 17, further comprising:
    in accordance with a determination of a success in detecting the downlink reference signal based on the second configuration, performing a positioning measurement based on the downlink reference signal.
  19. The method of claim 14, wherein the reference signal is an uplink reference signal and the method further comprises:
    determining whether the set of resources are available;
    in accordance with a determination that the set of resources are unavailable, receiving, from the first device, a second schedule request for transmitting the uplink reference signal based on the second configuration; and
    transmitting the uplink reference signal using the set of fallback resources to a fourth device and/or the first device.
  20. The method of claim 19, wherein the reference signal is an uplink reference signal and the method further comprises:
    receiving, from the first device, a first schedule request for transmitting the uplink reference signal based on the first configuration.
  21. The method of claim 14, wherein the reference signal is an uplink reference signal and the method further comprises:
    in accordance with a determination that the set of resources are unavailable, transmitting the uplink reference signal using the set of fallback resources to a fourth device and/or the first device.
  22. The method of claim 14, wherein one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  23. The method of claim 14, wherein the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device.
  24. A method comprising:
    receiving, at a fourth device and from a first and/or a second device, a first  configuration of a reference signal and a second configuration of the reference signal, the first configuration indicating a set of resources for a transmission of the reference signal and the second configuration associated with a set of fallback resources for the transmission of the reference signal, the reference signal being used for positioning a third device; and
    detecting the reference signal transmitted by the third device and/or the first device based on the first configuration and the second configuration.
  25. The method of claim 24 wherein the second configuration explicitly indicates the set of fallback resources.
  26. The method of claim 24, further comprising:
    obtaining at least one offset in time and/or frequency domain to the set of resources from the second configuration; and
    determining the set of fallback resources based on the at least one offset and the set of resources.
  27. The method of claim 24, wherein detecting the reference signal comprises:
    detecting the reference signal on the set of resources; and
    in accordance with a determination of a failure in detecting the reference signal, detecting the reference signal on the set of fallback resources.
  28. The method of claim 27, further comprising:
    in accordance with a determination of a success in detecting the reference signal based on the second configuration, performing a positioning measurement based on the reference signal.
  29. The method of claim 24, wherein one set of resources corresponds to one or more sets of fallback resources, or more than one set of resources correspond to one set of fallback resources.
  30. The method of claim 24, wherein the first device comprises a network device, the second device comprises a location server, the third device comprises a terminal device and the fourth device comprises a further network device.
  31. A first device comprising:
    at least one processor; and
    at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to perform any of the method of claims 1-8.
  32. A second device comprising:
    at least one processor; and
    at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to perform any of the method of claims 9-13.
  33. A third device comprising:
    at least one processor; and
    at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to perform any of the method of claims 14-23.
  34. A fourth device comprising:
    at least one processor; and
    at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device to perform any of the method of claims 24-30.
  35. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any one of claims 1-8.
  36. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any one of claims 9-13.
  37. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform  the method of any one of claims 14-23.
  38. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any one of claims 24-30.
  39. An apparatus comprising means for performing a method according to any of claims 1-8.
  40. An apparatus comprising means for performing a method according to any of claims 9-13.
  41. An apparatus comprising means for performing a method according to any of claims 14-23.
  42. An apparatus comprising means for performing a method according to any of claims 24-30.
PCT/CN2020/073036 2020-01-19 2020-01-19 Fallback reference signal configuration WO2021142841A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080093779.XA CN115004806A (en) 2020-01-19 2020-01-19 Backward reference signal configuration
PCT/CN2020/073036 WO2021142841A1 (en) 2020-01-19 2020-01-19 Fallback reference signal configuration
US17/865,187 US20220353772A1 (en) 2020-01-19 2022-07-14 Cell reselection method, electronic device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073036 WO2021142841A1 (en) 2020-01-19 2020-01-19 Fallback reference signal configuration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/865,187 Continuation US20220353772A1 (en) 2020-01-19 2022-07-14 Cell reselection method, electronic device and storage medium

Publications (1)

Publication Number Publication Date
WO2021142841A1 true WO2021142841A1 (en) 2021-07-22

Family

ID=76863447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073036 WO2021142841A1 (en) 2020-01-19 2020-01-19 Fallback reference signal configuration

Country Status (3)

Country Link
US (1) US20220353772A1 (en)
CN (1) CN115004806A (en)
WO (1) WO2021142841A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053280A1 (en) * 2017-08-09 2019-02-14 Qualcomm Incorporated Techniques and apparatuses for positioning reference signal (prs) management
US20190305911A1 (en) * 2018-04-02 2019-10-03 Qualcomm Incorporated Channel quality indicator (cqi) reporting for ultra-reliable low latency communications (urllc)
WO2019218108A1 (en) * 2018-05-14 2019-11-21 Nec Corporation Sounding reference signal transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053280A1 (en) * 2017-08-09 2019-02-14 Qualcomm Incorporated Techniques and apparatuses for positioning reference signal (prs) management
US20190305911A1 (en) * 2018-04-02 2019-10-03 Qualcomm Incorporated Channel quality indicator (cqi) reporting for ultra-reliable low latency communications (urllc)
WO2019218108A1 (en) * 2018-05-14 2019-11-21 Nec Corporation Sounding reference signal transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Uplink signal and channel design for NR-U", 3GPP DRAFT; R1-1912448, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820038 *

Also Published As

Publication number Publication date
CN115004806A (en) 2022-09-02
US20220353772A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021092813A1 (en) Accurate sidelink positioning reference signal transmission timing
US11695594B2 (en) Sounding reference signal transmission
US11070337B2 (en) Methods and apparatuses for reference signal configuration
WO2022120817A1 (en) Coordinated positioning via sidelink resource
WO2019213914A1 (en) Sounding reference signal transmission
WO2022021426A1 (en) Method, device and computer storage medium for communication
CN114287150B (en) Beam selection during downlink positioning
WO2022052053A1 (en) Positioning measurement reporting in unlicensed spectrum
WO2022027186A1 (en) Positioning reference signal design for low power tracking
WO2021022555A1 (en) Method, device and computer readable medium for transmitting prs
CN113271656B (en) Power control of positioning reference signals
US20240023135A1 (en) HARQ-ACK Codebook Handling
WO2022151636A1 (en) Harq-ack codebook handling
CN115053464B (en) Beam selection at multiple transmission points
WO2021142841A1 (en) Fallback reference signal configuration
US20240147254A1 (en) Positioning beam management
WO2024065577A1 (en) Positioning enhancements
WO2021159416A1 (en) Reporting preconfigured uplink transmission failures
WO2023024114A1 (en) Mitigation of performance degradation
US20240080114A1 (en) Positioning accuracy enhancements
WO2024077603A1 (en) Positioning reference signal transmission indication
WO2024026753A1 (en) Positioning measurement across frequency hops
WO2022087850A1 (en) Method, device and computer readable medium for communication
EP4109799A1 (en) Groupcast communication feedback mechanism
GB2622877A (en) Devices, methods and apparatuses for uplink transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914148

Country of ref document: EP

Kind code of ref document: A1