WO2021117111A1 - Base station, terminal device, and wireless communication system - Google Patents

Base station, terminal device, and wireless communication system Download PDF

Info

Publication number
WO2021117111A1
WO2021117111A1 PCT/JP2019/048155 JP2019048155W WO2021117111A1 WO 2021117111 A1 WO2021117111 A1 WO 2021117111A1 JP 2019048155 W JP2019048155 W JP 2019048155W WO 2021117111 A1 WO2021117111 A1 WO 2021117111A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
setting
change
wireless
processor
Prior art date
Application number
PCT/JP2019/048155
Other languages
French (fr)
Japanese (ja)
Inventor
昴 平田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/048155 priority Critical patent/WO2021117111A1/en
Publication of WO2021117111A1 publication Critical patent/WO2021117111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a base station, a terminal device, and a wireless communication system.
  • the traffic of mobile terminals occupies most of the network resources.
  • the traffic used by mobile terminals tends to increase in the future.
  • Non-Patent Documents 1 to 11 In the communication standard of the 5th generation mobile communication (5G or NR (New Radio)), in addition to the standard technology of 4G (4th generation mobile communication) (for example, Non-Patent Documents 1 to 11), further There is a demand for technology that realizes high data rates, large capacities, and low delays.
  • 5G or NR New Radio
  • 3GPP working group for example, TSG-RAN WG1, TSG-RAN WG2, etc.
  • the first edition of the standard document was issued at the end of 2017.
  • centralization and distribution of processing are being considered in order to cope with the increase in traffic.
  • CU Central Unit
  • DU Distributed Unit
  • CU / DU When CU / DU is separated, a combination of one CU and one DU, or a combination of one CU and a plurality of DUs becomes one logical base station.
  • This base station is also called "gNB (g Node B)".
  • FIG. 1 is a diagram showing a specific configuration example of gNB10.
  • the gNB 10 shown in FIG. 1 has one CU 10a and one DU 10b.
  • the CU10a executes the processing of the RRC (Radio Resource Control) layer and the PDCP (Packet Data Convergence Protocol) layer.
  • the DU 10b executes the processing of the RLC (Radio Link Control) layer, the MAC (Medium Access Control) layer, and the PHY (Physical) layer.
  • the CU 10a and the DU 10b are connected by, for example, an F1 interface, and may be arranged at remote locations from each other.
  • the CU 10a is connected to the CU of another gNB by, for example, the Xn interface, and is connected to the device constituting the core network by, for example, the NG interface.
  • the terminal device executes wireless communication with the DU 10b.
  • the terminal device receives SIB (System Information Block) transmitted from DU10b and acquires RA (Random Access) settings (RA Config) including parameters required for random access.
  • the RA setting includes information that identifies the PRACH (Physical Random Access CHannel) used for transmitting the preamble in random access in the cell formed by the DU 10b.
  • the terminal device transmits the preamble to the DU 10b based on the RA setting.
  • the DU 10b that has received the preamble transmits an RA response to the preamble to the terminal device.
  • the terminal device Upon receiving the RA response to the preamble transmitted by the terminal device, the terminal device starts processing of the subsequent RRC connection.
  • 3GPP TS 36.133 V16.0.0 (2018-12) 3GPP TS 36.211 V15.5.0 (2019-03) 3GPP TS 36.212 V15.5.0 (2019-03) 3GPP TS 36.213 V15.5.0 (2019-03) 3GPP TS 36.214 V15.3.0 (2018-09) 3GPP TS 36.300 V15.5.0 (2019-03) 3GPP TS 36.321 V15.5.0 (2019-03) 3GPP TS 36.322 V15.1.0 (2018-07) 3GPP TS 36.323 V15.3.0 (2019-03) 3GPP TS 36.331 V15.5.1 (2019-04) 3GPP TS 36.413 V15.5.0 (2019-03) 3GPP TS 36.423 V15.5.0 (2019-03) 3GPP TS 36.425 V15.0.0 (2018-06) 3GPP TS 37.324 V15.1.0 (2018-09) 3GPP TS 37.340 V15.5.0 (2019-03
  • the random access by the terminal device may not be completed normally. That is, for example, when base station A and base station B notify the same RA setting by SIB, the preamble transmitted by the terminal device to base station A is also received by base station B, and base station B transmits the RA response. I have something to do. In such a case, the processing of the subsequent RRC connection fails between the terminal device and the base station B, and it is difficult for the terminal device to start communication.
  • peripheral base stations may share information on RA settings to avoid duplication of RA settings between base stations.
  • RACH Random Access CHannel
  • CU / DU may be separated.
  • a DU may be implemented as a virtual machine and can be easily enabled and disabled, so that it is considered that cells appear and disappear frequently.
  • beamforming by DU is executed according to, for example, the density of the terminal device, and the shape and position of the cell are dynamically changed.
  • the cell state changes frequently, so if information on RA settings is shared between base stations each time, traffic will increase and the network load will increase. It ends up. Therefore, it is not practical to perform RACH optimization every time the cell state changes.
  • the disclosed technology has been made in view of this point, and an object of the present invention is to provide a base station, a terminal device, and a wireless communication system capable of executing RACH optimization at an appropriate timing.
  • the base station disclosed in the present application is, in one embodiment, a base station including a wireless control device and a wireless device, and the wireless control device is said to be described when the random access process by the terminal device is not normally completed. It has a first processor that determines to change the random access setting in the wireless device, and a transmission line interface that requests the wireless device to change the random access setting according to the decision by the first processor.
  • the wireless device includes a second processor that changes the random access setting and a wireless interface that wirelessly notifies the random access setting changed by the second processor in response to a request from the wireless control device. Have.
  • FIG. 1 is a diagram showing a configuration example of a base station.
  • FIG. 2 is a diagram showing a configuration example of a wireless communication network.
  • FIG. 3 is a block diagram showing a configuration of a base station according to the first embodiment.
  • FIG. 4 is a block diagram showing the configuration of the terminal device according to the first embodiment.
  • FIG. 5 is a sequence diagram showing a RACH optimization method according to the first embodiment.
  • FIG. 6 is a flow chart showing the operation of the terminal device.
  • FIG. 7 is a flow chart showing the operation of the base station.
  • FIG. 8 is a flow chart showing the operation of other base stations.
  • FIG. 9 is a sequence diagram showing another RACH optimization method according to the first embodiment.
  • FIG. 10 is a sequence diagram showing still another RACH optimization method according to the first embodiment.
  • FIG. 11 is a sequence diagram showing the RACH optimization method according to the second embodiment.
  • FIG. 12 is a flow chart showing the operation of the base station.
  • FIG. 13
  • FIG. 2 is a diagram showing a configuration example of the wireless communication system according to the first embodiment.
  • the wireless communication system has a plurality of gNBs 100a and 100b connected to the core network, and a UE (User Equipment) 200 that wirelessly communicates with the gNBs 100a and 100b.
  • a UE User Equipment
  • FIG. 2 two gNBs 100a and 100b and one UE 200 are illustrated, but the number of gNBs and UEs possessed by the wireless communication system is not limited to this.
  • the core network includes UPF (User Plane Function) 11, AMF (Access and Mobility Management Function) 12, SMF (Session Management Function) 13, PCF (Policy Control Function) 14, AF (Application Function) 15, and AUSF (Authentication Server). Function) 16 and UDM (Unified Data Management) 17 are arranged.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • AF Application Function
  • AUSF Authentication Server
  • UPF11 is a device that controls the user plane and executes routing and transfer of user data.
  • the AMF 12 is a device that controls the control plane, and terminates the control plane in a radio access network (RAN: Radio Access Network).
  • the SMF 13 manages the session.
  • the PCF 14 provides policy rules and the like regarding the control plane.
  • AF15 is an application server that provides an application.
  • the AUSF16 performs the authentication process of the UE 200.
  • the UDM 17 stores subscriber information and the like.
  • the gNBs 100a and 100b are base stations, which are connected and communicate with UPF11 and AMF12 of the core network by wire, and also wirelessly communicate with the UE 200.
  • gNB100a and 100b have CU (Central Unit) 110a and 110b and DU (Distributed Unit) 120a and 120b, respectively.
  • FIG. 2 shows a one-to-one connection in which one DU 120a and 120b are connected to one CU 110a and 110b, the connection relationship between the CU and the DU may be a one-to-many connection. Many-to-many connections are also acceptable.
  • One combination of CU and DU connected to each other constitutes one gNB.
  • the CU 110a and 110b are wireless control devices that are connected to the UPF 11 and AMF 12 of the core network and control the wireless communication between the DU 120a and 120b under their respective control and the UE 200.
  • the CU 110a and 110b execute the processing of the RRC layer and the PDCP layer.
  • the CUs 110a and 110b exchange data with the UE 200 when the RRC connection is established by the random access processing between the subordinate DUs 120a and 120b and the UE 200.
  • the CU 110a and 110b determine that the RA settings related to the random access process are duplicated, and control the change of the RA settings in the gNB 100a and 100b. To do.
  • the DU 120a and 120b are wireless devices that wirelessly communicate with the UE 200 under the control of the CU 110a and 110b, which are higher in the DU 120a and 120b, respectively.
  • the DU 120a and 120b execute the processing of the RLC layer, the MAC layer and the PHY layer. For example, when the DUs 120a and 120b form at least one or more cells and receive a preamble for random access from the UE 200 in the cells, the DU 120a and 120b transmit an RA response to the preamble to the UE 200. Then, the DU 120a and 120b establish an RRC connection between the UE 200 and the gNB 100a and 100b. Further, the DU 120a and 120b change the RA setting related to the random access process according to the control by the higher-level CU 110a and 110b, and transmit the SIB including the information of the changed RA setting.
  • the UE 200 is a terminal device that wirelessly communicates with the DUs 120a and 120b forming the cells when they are in the cell formed by the DUs 120a and 120b.
  • the UE 200 receives the SIB transmitted from the DU 120a and 120b and acquires the RA setting in the cell. Then, the UE 200 transmits a preamble for random access based on the RA setting.
  • the UE 200 Upon receiving the RA response to the preamble, the UE 200 establishes an RRC connection with the gNB 100a, 100b having the DU 120a, 120b of the RA response source.
  • the UE 200 counts the number of times the establishment of the RRC connection fails, and when the RRC connection is established with any of the gNBs, notifies that the number of times the RRC connection fails is equal to or greater than a predetermined threshold value. To do.
  • FIG. 3 is a block diagram showing the configuration of the gNB 100 according to the first embodiment.
  • the gNB 100 shown in FIG. 3 has the same configuration as the gNB 100a and 100b shown in FIG. 2, and has a CU 110 and a DU 120.
  • the CU 110 is a wireless control device like the CU 110a and 110b.
  • the CU 110 includes a wired interface unit (hereinafter abbreviated as "wired IF unit”) 111, a processor 112, a transmission line interface unit (hereinafter abbreviated as “transmission line IF unit”) 113, and a memory 114.
  • the wired IF unit 111 has an interface for wired connection with a core network device and other gNBs. Specifically, the wired IF unit 111 is connected to UPF11 and AMF12 constituting the core network by, for example, an NG interface, and is connected to another gNB's CU, for example, by an Xn interface. Then, the wired IF unit 111 transmits / receives user data to / from UPF 11 and transmits / receives control data to / from AMF 12.
  • the wired IF unit 111 sends and receives an RA setting change request requesting a change of the RA setting to and from another gNB CU, and sends and receives a change completion notification to the effect that the change of the RA setting is completed. ..
  • the processor 112 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc., and controls the entire CU 110 in an integrated manner. Specifically, the processor 112 has an RRC processing unit 115 and a RACH optimization control unit 116.
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • the RRC processing unit 115 executes the processing of the RRC layer. Specifically, the RRC processing unit 115 exchanges data with the UE 200 when the RRC connection is established by the random access processing by the DU 120 and the UE 200.
  • the data exchanged with the UE 200 includes, for example, a notification that RRC connection failures occur frequently and cell identification information (for example, PCI (Physical Cell ID)) in which RRC connection failures occur frequently.
  • PCI Physical Cell ID
  • the RACH optimization control unit 116 starts the RACH optimization process when the RRC processing unit 115 receives a notification that RRC connection failures have occurred frequently. Specifically, the RACH optimization control unit 116 requests the CU of gNB, which has jurisdiction over the cell in which RRC connection failures occur frequently, to change the RA setting. The RA setting change request is transmitted to the CU of another gNB via the wired IF unit 111.
  • the RACH optimization control unit 116 decides to change the RA setting of the DU 120 when the RA setting change request from the CU of another gNB is received by the wired IF unit 111, and sets the RA for the DU 120. Request a change. That is, the RACH optimization control unit 116 requests the DU 120 via the transmission line IF unit 113 to change the RA setting regarding random access in the cell formed by the DU 120.
  • the transmission line IF unit 113 has an interface for connecting to the DU 120. Specifically, the transmission line IF unit 113 is connected to the DU 120 by, for example, the F1 interface. Then, the transmission line IF unit 113 requests the DU 120 to change the RA setting, or notifies the DU 120 that the change of the RA setting is completed.
  • the memory 114 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used by the processor 112 to execute processing.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • the DU 120 is a wireless device like the DU 120a and 120b.
  • the DU 120 includes a transmission line IF unit 121, a processor 122, a wireless interface unit (hereinafter abbreviated as “wireless IF unit”) 123, and a memory 124.
  • wireless IF unit wireless interface unit
  • the transmission line IF unit 121 has an interface for connecting to the CU 110. Specifically, the transmission line IF unit 121 is connected to the CU 110 by, for example, the F1 interface. Then, the transmission line IF unit 121 is requested by the CU 110 to change the RA setting, or notifies the CU 110 that the change of the RA setting is completed.
  • the processor 122 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire DU 120 in an integrated manner. Specifically, the processor 122 has an RA processing unit 125 and an RA setting control unit 126.
  • the RA processing unit 125 executes random access processing with the UE 200. Specifically, the RA processing unit 125 acquires a preamble transmitted from the UE 200 and received by the radio IF unit 123. Then, the RA processing unit 125 generates an RA response to the preamble and transmits the RA response to the UE 200 via the radio IF unit 123. Further, the RA processing unit 125 acquires the RRC request (RRC request) transmitted from the UE 200 and generates an RRC setting (RRC Setup) for the RRC request. Then, the RA processing unit 125 transmits the RRC setting to the UE 200 via the wireless IF unit 123.
  • RRC request RRC request
  • RRC Setup RRC setting
  • the RRC request is scrambled by the identification information (for example, PCI) that identifies the cell selected by the UE 200 as the transmission destination of the preamble. Therefore, if the UE 200 selects the DU 120 as the transmission destination of the preamble and the random access process is executed, the RA processing unit 125 descrambles the RRC request received by the wireless IF unit 123 and RRC for the RRC request. Generate settings.
  • the identification information for example, PCI
  • the UE 200 selects another DU different from the DU 120 as the preamble transmission destination, but the RA settings of the DU 120 and the other DU overlap, the preamble transmitted by the UE 200 is received by the DU 120.
  • DU120 and UE200 may perform random access processing.
  • the UE 200 receives the RA response from the DU 120, it transmits an RRC request scrambled by the identification information of the cells formed by the other DU. Then, the RRC request is received by the radio IF unit 123, but the RA processing unit 125 does not detect the RRC request scrambled by the identification information of the cell formed by the other DU, and sets the RRC for the RRC request. Does not generate.
  • the RA processing unit 125 may not generate the RRC setting for the RRC request transmitted by the UE 200. is there. As a result, the RRC setting is not transmitted to the UE 200, and the establishment of the RRC connection fails. That is, if the UE 200 does not receive the RRC setting after receiving the RA response, the random access process does not end normally, and the RRC connection fails.
  • the RA setting control unit 126 controls the RA setting in the cell formed by the DU 120. That is, the RA setting control unit 126 determines the RA setting including the parameter related to the random access processing for each cell, and includes the information of the RA setting in the SIB to notify the SIB.
  • the UE 200 that receives the SIB selects a cell to which the preamble is to be transmitted, and transmits the preamble according to the RA setting of the selected cell.
  • the RA processing unit 125 acquires a preamble according to the RA setting determined by the RA setting control unit 126. Therefore, when the RA setting control unit 126 determines the same RA setting as the RA setting of the other gNB, the RA processing unit 125 acquires the preamble transmitted by the UE that has selected the other gNB as the transmission destination. Sometimes.
  • the RA setting control unit 126 when the RA setting control unit 126 is requested to change the RA setting by the CU 110, the RA setting is changed, and the transmission line IF unit 121 notifies the CU 110 that the change is completed.
  • the wireless IF unit 123 has an interface for wirelessly connecting to the UE 200. Then, the wireless IF unit 123 transmits the SIB including the RA setting, and transmits / receives various data in the random access process. Further, when the RRC connection between the gNB 100 and the UE 200 is established, the wireless IF unit 123 receives a notification that the RRC connection between the other gNB and the UE 200 has frequently failed.
  • the memory 124 includes, for example, a RAM or a ROM, and stores information used by the processor 122 to execute processing.
  • FIG. 4 is a block diagram showing a configuration of the UE 200 according to the first embodiment.
  • the UE 200 shown in FIG. 4 has a wireless IF unit 210, a processor 220, and a memory 230.
  • the wireless IF unit 210 has an interface for wirelessly connecting to the gNB 100. Then, the wireless IF unit 210 receives the SIB including the RA setting, and transmits / receives various data in the random access process. Further, when the RRC connection between the gNB 100 and the UE 200 is established, the wireless IF unit 210 transmits a notification that the RRC connection between the other gNB and the UE 200 has frequently failed.
  • the processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire UE 200 in an integrated manner. Specifically, the processor 220 has an RA processing unit 221 and an RRC processing unit 222.
  • RA processing unit 221 executes random access processing with DU120. Specifically, the RA processing unit 221 generates a preamble according to the RA setting notified by the SIB, and transmits the preamble to the DU 120 via the radio IF unit 210. Then, the RA processing unit 221 acquires the RA response transmitted from the DU 120 and received by the wireless IF unit 210. Further, the RA processing unit 221 transmits an RRC request to the DU 120 via the wireless IF unit 210, and acquires the RRC setting transmitted from the DU 120.
  • the RA processing unit 221 generates an RRC request scrambled by the identification information (for example, PCI) of the cell selected as the transmission destination of the preamble. Therefore, if the RA processing unit 221 transmits the preamble according to the RA setting notified by the SIB from the DU 120, the RA processing unit 221 scrambles the RRC request according to the cell identification information formed by the DU 120.
  • the identification information for example, PCI
  • the preamble transmitted by the RA processing unit 221 according to the RA setting of the DU 120 may be received by the other DU, and the RA processing unit 221 may receive the preamble. , Get RA response from another DU. Then, the RA processing unit 221 scrambles the RRC request according to the cell identification information formed by the DU 120 and transmits the scrambled request. However, since it is another DU that is waiting for the reception of the RRC request, the RRC request is sent. It is not descrambled and the RRC settings in response to the RRC request are not sent. As a result, the RA processing unit 221 does not acquire the RRC setting after transmitting the RRC request.
  • the RA processing unit 221 since the RA processing unit 221 scrambles the RRC request by the identification information of the cell selected as the transmission destination of the preamble, the RA processing unit 221 does not acquire the RRC setting for the RRC request to be transmitted. is there. As a result, the random access process does not end normally, and the RRC connection fails.
  • the RA processing unit 221 When an RRC connection failure occurs, the RA processing unit 221 counts the number of failures and stores it in the memory 230. At this time, if the identification information (for example, PCI) of the cell in which the RRC connection failure has occurred is known, the RA processing unit 221 stores the cell identification information and the number of RRC connection failures in the memory 230.
  • the identification information for example, PCI
  • the RRC processing unit 222 executes the processing of the RRC layer. Specifically, the RRC processing unit 222 exchanges data with the CU 110 when the RRC connection is established by the random access processing between the UE 200 and the DU 120. Further, the RRC processing unit 222 refers to the number of failures of the RRC connection stored in the memory 230 when the RRC connection is established, and determines whether or not the number of failures is equal to or greater than a predetermined threshold value. Then, when the number of failures is equal to or greater than a predetermined threshold value, the RRC processing unit 222 transmits a notification to the CU 110 that RRC connection failures have occurred frequently. At this time, the RRC processing unit 222 may transmit the identification information (for example, PCI) of the cell in which the RRC connection failure occurs frequently to the CU 110.
  • the identification information for example, PCI
  • the memory 230 includes, for example, a RAM or a ROM, and stores information used by the processor 220 to execute processing. Specifically, the memory 230 stores, for example, the number of times the RRC connection has failed in the random access process for each cell.
  • the CU110a of the gNB100a generates an SIB including the RA setting information of the DU120a and transmits it from the DU120a to notify the RA setting (step S101).
  • the CU 110b of the gNB 100b generates an SIB including the information of the RA setting of the DU 120b and transmits it from the DU 120b to notify the RA setting (step S102).
  • the SIB transmitted from the DUs 120a and 120b includes information regarding the same RA settings.
  • the SIB transmitted from the DU 120a is not received by the UE 200 here due to, for example, the condition of the radio wave environment. That is, it is assumed that the UE 200 does not receive the SIB transmitted from the DU 120a, but receives the SIB transmitted from the DU 120b.
  • the UE 200 that has received the SIB transmits a preamble for random access according to the RA setting included in the SIB (step S103).
  • the preamble may be received by the DU 120a. That is, since the RA settings of the DU 120a and 120b are the same, the preamble transmitted according to the RA settings may be received by the DU 120a.
  • the DU 120a that received the preamble generates an RA response to the preamble and transmits it to the UE 200 (step S104). Then, the UE 200 that has received the RA response scrambles the RRC request and transmits it (step S105). Specifically, the UE 200 scrambles the RRC request using the cell identification information included in the SIB received in step S102 and transmits the RRC request. Therefore, the UE 200 scrambles the RRC request not by the DU 120a during the random access process but by the cell identification information formed by the DU 120b that is the source of the SIB. As a result, the DU 120a does not detect the RRC request after transmitting the RA response, and the random access process does not end normally.
  • the UE 200 determines that the random access process does not end normally and the RRC connection fails because the RRC setting for the RRC request is not received even though the RRC request is transmitted. Therefore, the UE 200 counts the number of failures of the RRC connection and stores the number of failures together with the identification information of the cell in which the RRC connection fails. That is, here, the UE 200 stores the identification information of the cell formed by the DU 120a and the number of failures of the RRC connection in this cell. Further, the UE 200 receives the SIB again and repeats the random access process according to the RA setting.
  • the preamble transmitted by the UE 200 may be received by the DU 120b, and the RRC connection between the UE 200 and the gNB 100b may be established by the random access process by the UE 200 and the DU 120b (step S106). That is, since the radio wave environment between the UE 200 and the DU 120a and between the UE 200 and the DU 120b changes, the DU that is the source of the SIB received by the UE 200 and the DU that receives the preamble transmitted by the UE 200 also change. Therefore, the DU that is the source of the SIB and the DU that receives the preamble may match, and the RRC connection between the UE 200 and the DU 120b may be successful.
  • the UE 200 compares the number of failures for each cell stored in the memory 230 with a predetermined threshold value, and if the number of failures is equal to or greater than the predetermined threshold value, the RRC connection fails. Is transmitted to gNB100b (step S107). At this time, if the identification information of the cell in which the RRC connection failure occurs frequently is known, the UE 200 also transmits the identification information of this cell to the gNB 100b.
  • the CU110b of gNB100b notified that RRC connection failures occur frequently activates RACH optimization processing. Specifically, the CU 110b transmits an RA setting change request requesting a change of the RA setting to the CU 110a of the gNB 100a that controls the cell in which the RRC connection failure frequently occurs (step S108). When the identification information of the cell in which the RRC connection failure occurs frequently is unknown, the CU 110b may multicast the RA setting change request to the peripheral CUs including the CU 110a.
  • the RA setting change request transmitted by the CU 110b includes, for example, information regarding the RA setting of the DU 120b.
  • the CU 110a Upon receiving the RA setting change request, the CU 110a decides to change the RA setting of the DU 120a and requests the DU 120a to change the RA setting (step S109). Then, when the DU 120a changes the RA setting, the CU 110a receives a notification that the change is completed (step S109). In this way, in the gNB 100a that has received the RA setting change request, a signal is transmitted and received between the CU 110a and the DU 120a, and the RA setting of the DU 120a is changed.
  • the CU 110a sends a change completion notification to the CU 110b (step S110).
  • the CU 110b is notified that the RA settings of the DU 120a have been changed, and the duplication of the RA settings of the DU 120a and 120b is eliminated.
  • the CU 110b decides to change the RA setting of the DU 120b if the change completion notification is not received even after a predetermined time has elapsed after transmitting the RA setting change request, and changes the RA setting for the DU 120b. You may request it (step S111). Then, when the DU 120b changes the RA setting, a notification that the change is completed may be received (step S111). Thereby, even if the RA setting of the DU 120a is not changed, the RA setting of the DU 120b can be changed and the duplication of the RA setting of the DU 120a and 120b can be eliminated.
  • the CU 110b activates the RACH optimization process to change the RA setting of the DU 120a via the CU 110a, or the RA setting of the DU 120b. To change. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic. Further, when the RRC connection failure occurs frequently, the RACH optimization process is started as soon as the RRC connection between the UE 200 and the gNB 100b is established, so that the duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
  • the wireless IF unit 210 receives the SIB notified in the cell in which the UE 200 is located (step S201). Since the SIB contains information regarding the RA setting, the RA processing unit 221 transmits the preamble according to the RA setting (step S202). Since the preamble is transmitted according to the RA setting, if there are a plurality of DUs having the same RA setting, the preamble may be received by another DU that is not the source of the SIB. Even in this case, the other DUs generate and transmit an RA response to the preamble.
  • the RA processing unit 221 waits for the reception of the RA response (step S203), and if the RA response is not received (step S203No), the process is repeated from the reception of the SIB again.
  • the RA processing unit 221 generates and transmits an RRC request (step S204).
  • the RRC request is scrambled using the cell identification information included in the SIB. Therefore, an RRC request that can be detected only by the DU that is the source of the SIB is transmitted.
  • the RA processing unit 221 waits for the reception of the RRC setting (step S205), and if the RRC setting is not received (step S205No), the number of RRC connection failures for each cell is incremented to the memory 230. Be remembered. That is, the number of RRC connection failures is counted for each cell (step S206). Then, when the RRC connection fails, the process is repeated from the reception of the SIB again. Since each SIB is transmitted from the gNB 100 around the UE 200 and the radio wave environment changes, the random access process is not always executed with the same gNB 100 every time the process is repeated from the reception of the SIB. Absent. Therefore, while the process is repeated, the random access process with any gNB 100 may succeed and the RRC setting may be received.
  • the RRC processing unit 222 refers to the number of RRC connection failures stored in the memory 230, and determines whether or not the number of failures is equal to or greater than a predetermined threshold value (step S205Yes). Step S207). As a result of this determination, when the number of failures is less than a predetermined number (step S207No), since the RA settings are not duplicated and the RACH optimization is unnecessary, the UE 200 is connected to the RRC-connected gNB 100. Continue normal communication.
  • step S207Yes when the number of failures is equal to or greater than a predetermined number (step S207Yes), the gNB100 connected to the RRC is notified that many failures of the RRC connection have occurred (step S208). That is, when the number of RRC connection failures is large, the RA settings are duplicated and the RACH needs to be optimized. Therefore, the UE 200 frequently fails the RRC connection with respect to the gNB 100 connected by the RRC. Notify that. This notification may include identification information of the cell in which the RRC connection failed. The gNB 100, which is notified of the frequent occurrence of RRC connection failures, activates the RACH optimization process to eliminate the duplication of RA settings.
  • FIG. 7 is a flow chart showing the operation of the gNB 100 in which it is notified that RRC connection failures occur frequently.
  • This gNB 100 corresponds to, for example, the gNB 100b shown in FIG.
  • the wireless IF unit 123 of the DU 120 receives a notification of frequent RRC connection failures from the UE 200 (step S211)
  • this notification is transferred from the transmission line IF unit 121 to the CU 110 and acquired by the RRC processing unit 115 of the CU 110. Will be done.
  • the RACH optimization control unit 116 transmits the RA setting change request requesting the change of the RA setting from the wired IF unit 111 to the CU of the gNB that controls the cell in which the RRC connection failure frequently occurs (step S212). ..
  • the RA setting change request may be multicast to the CU of the surrounding gNB.
  • step S213 when the RACH optimization control unit 116 waits for the change completion notification to the effect that the RA setting change is completed (step S213) and receives the change completion notification from the CU to which the RA setting change request is sent, the change completion notification is received. (Step S213Yes), the RACH optimization process is completed. On the other hand, when the change completion notification is not received (step S213No), the RACH optimization control unit 116 determines that the RA setting of the DU 120 is changed, and the RA setting is changed from the transmission line IF unit 113 to the DU 120. Is requested (step S214).
  • the RA setting is changed by the RA setting control unit 126 (step S215).
  • the RA setting may be changed to any RA setting different from the current RA setting, or information on the RA setting of the surrounding DU may be collected from the SIB receivable by the wireless IF unit 123.
  • the RA settings may be changed to different from these RA settings.
  • the CU 110 may instruct the DU 120 to collect information on RA settings from the CUs of the surrounding gNBs and change the RA settings to different from these RA settings.
  • the CU 110 is notified via the transmission line IF unit 121 that the change has been completed (step S216).
  • the gNB 100 that controls the cell in which the failures occur frequently is requested to change the RA setting, and if there is no response to the request, , RA setting is changed in DU120 of gNB100. Therefore, when the RRC connection fails due to the duplication of RA settings, the duplication of RA settings can be eliminated, and RACH optimization can be executed at an appropriate timing.
  • FIG. 8 is a flow chart showing the operation of the gNB 100 in which the RA setting is required to be changed.
  • This gNB 100 corresponds to, for example, the gNB 100a shown in FIG.
  • the RACH optimization control unit 116 determines that the RA setting of the DU 120 is changed, and the transmission line IF unit 113 to the DU 120. , You are asked to change the RA settings (step S222).
  • the RA setting is changed by the RA setting control unit 126 (step S223).
  • the RA setting may be changed to any RA setting different from the current RA setting, or information on the RA setting of the surrounding DU may be collected from the SIB receivable by the wireless IF unit 123.
  • the RA settings may be changed to different from these RA settings.
  • the CU 110 may instruct the DU 120 to collect information on RA settings from the CUs of the surrounding gNBs and change the RA settings to different from these RA settings.
  • the CU 110 is notified via the transmission line IF unit 121 that the change has been completed (step S224).
  • the RACH optimization control unit 116 generates a change completion notification notifying that the change of the RA setting is completed, and transmits the change completion notification to the CU of the transmission source of the RA setting change request via the wired IF unit 111 (step). S225).
  • the CU 110 requests the DU 120 to change the RA setting, and the RA setting in the DU 120 is changed. Therefore, when the RRC connection fails due to the duplication of RA settings, the duplication of RA settings can be eliminated, and RACH optimization can be executed at an appropriate timing.
  • the UE counts the number of RRC connection failures, and when the RRC connection with the gNB is established, it notifies that the RRC connection failures have occurred frequently. Then, the gNB requests the CU of the gNB that controls the cell in which the RRC connection failure occurs frequently to change the RA setting. The gNB CU requested to change the RA setting requests the DU to change the RA setting, and the DU changes the RA setting. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic related to RACH optimization.
  • the RACH optimization process is started as soon as the RRC connection between the UE and gNB is established, so that the duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
  • the gNB 100 (gNB 100b) notified by the UE 200 that RRC connection failures occur frequently transmits a RA setting change request to another gNB 100 (gNB 100a).
  • the gNB 100 (gNB 100b) notified of frequent failures may change the RA setting without transmitting the RA setting change request.
  • FIG. 9 A sequence diagram showing the RACH optimization method in this case is shown in FIG. In FIG. 9, the same parts as those in FIG. 5 are designated by the same reference numerals.
  • the CU 110b of the gNB 100b activates the RACH optimization process.
  • the CU 110b decides to change the RA setting of the DU 120b instead of transmitting the RA setting change request to the CU 110a, and requests the DU 120b to change the RA setting (step S121).
  • the CU 110b receives a notification that the change is completed.
  • the gNB100b changes the RA setting by itself. Thereby, the duplication of RA settings can be eliminated.
  • the gNB100b having the same RA setting as the RA setting in the gNB100a in which the RRC connection failure occurs frequently is notified that the RRC connection failure occurs frequently. This is because the random access process is repeated every time the UE 200 fails the RRC connection with the gNB 100a to establish the RRC connection with the gNB 100b.
  • an RRC connection may be established with the gNB having an RA setting different from the RA setting in the gNB 100a.
  • FIG. 10 is a sequence diagram showing a RACH optimization method when the UE 200 establishes an RRC connection with a gNB100c having a RA setting different from that of the gNB100a and 100b.
  • the same parts as those in FIG. 5 are designated by the same reference numerals.
  • the UE 200 acquires the RA setting of each gNB by the SIB, and repeats the random access process according to the RA setting while the RRC connection fails (steps S101 to S105). Then, when the SIB is received from the gNB 100c whose RA setting is different from that of the gNB 100a and 100b and the RA setting of the gNB 100c is acquired by the UE 200, the UE 200 executes the random access process according to the RA setting of the gNB 100c. As a result, an RRC connection between the UE 200 and the gNB 100c may be established (step S131).
  • the UE 200 compares the number of failures for each cell stored in the memory 230 with a predetermined threshold value, and if the number of failures is equal to or greater than the predetermined threshold value, the RRC connection fails. Is transmitted to the gNB 100c (step S132). At this time, if the identification information of the cell in which the RRC connection failure occurs frequently is known, the UE 200 also transmits the identification information of this cell to the gNB 100c.
  • the gNB100c notified that the RRC connection failure occurs frequently sends an RA setting change request requesting the RA setting change to the CU110a of the gNB100a that controls the cell in which the RRC connection failure occurs frequently (step S133). ).
  • the gNB 100c may multicast the RA setting change request to the surrounding gNB including the CU110a.
  • the CU 110a that has received the RA setting change request requests the DU 120a to change the RA setting, and when the DU 120a changes the RA setting, it receives a notification that the change is completed (step S109). Then, the CU 110a transmits a change completion notification to the gNB 100c (step S134). As a result, the gNB 100c is notified that the RA setting of the DU 120a has been changed, and the duplication of the RA setting of the DU 120a and 120b is eliminated.
  • the feature of the second embodiment is that the DU detects that the random access process does not end normally and starts RACH optimization led by gNB.
  • the configuration of the wireless communication system according to the second embodiment is the same as that of the wireless communication system (FIG. 2) according to the first embodiment, the description thereof will be omitted. Further, since the configurations of the gNB 100 and the UE 200 according to the second embodiment are the same as those of the gNB 100 (FIG. 3) and the UE 200 (FIG. 4) according to the first embodiment, the description thereof will be omitted. However, in the second embodiment, the operation of the gNB 100 and the UE 200 when the RRC connection between the gNB 100 and the UE 200 fails is different from that of the first embodiment.
  • FIG. 11 is a sequence diagram showing the RACH optimization method according to the second embodiment.
  • the same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the DU 120a and 120b of the gNB 100a and 100b have the same RA setting.
  • DU120a and 120b of gNB100a and 100b transmit SIBs including RA setting information (steps S101 and S102).
  • the SIB transmitted from the DUs 120a and 120b includes information regarding the same RA settings. Further, it is assumed that the SIB transmitted from the DU 120a is not received by the UE 200 here due to, for example, the condition of the radio wave environment.
  • the UE 200 that has received the SIB transmits a preamble for random access according to the RA setting included in the SIB (step S103). At this time, if the radio wave environment between the UE 200 and the DU 120a is improved, the preamble may be received by the DU 120a.
  • the DU 120a that received the preamble generates an RA response to the preamble and transmits it to the UE 200 (step S104). Then, the UE 200 that has received the RA response scrambles the RRC request using the cell identification information included in the SIB received in step S102 and transmits it (step S105). As a result, the DU 120a does not detect the RRC request after transmitting the RA response, and the random access process does not end normally. Further, although the UE 200 has transmitted the RRC request, the RRC setting for the RRC request is not received, so the UE 200 receives the SIB again and repeats the random access process according to the RA setting.
  • the DU 120a While the random access process is repeated, the DU 120a detects that the random access process does not end normally, and counts and stores the number of RRC connection failures. That is, the DU 120a counts the number of times that the subsequent RRC request is not detected even though the RA response is transmitted, as the number of times the RRC connection has failed. Then, the DU 120a compares the number of failures stored in the memory 124 with a predetermined threshold value, and requests the CU 110a to optimize the RACH when the number of failures is equal to or greater than the predetermined threshold value (step S301). At this time, the DU 120a notifies the CU 110a of the current RA setting.
  • the CU 110a notifies the CU of the surrounding gNB including the CU 110b of the RA setting of the DU 120a (step S302).
  • the CU110b notified of the RA setting compares the RA setting of the notified DU120a with the RA setting of the DU120b, and if the RA setting overlaps, it is determined to change the RA setting of the DU120b, and the RA is set to the DU120b.
  • Request a change in settings (step S303).
  • the DU 120b changes the RA setting in response to the request from the CU 110b
  • the DU 120b notifies the CU 110b that the change is completed (step S303).
  • the CU110b sends a change completion notification to the CU110a (step S304).
  • the CU 110a is notified that the RA settings of the DU 120b have been changed, and the duplication of the RA settings of the DU 120a and 120b is eliminated.
  • the CU 110a determines that the RA setting of the DU 120a is changed if the change completion notification is not received even after a predetermined time has elapsed after notifying the surrounding CUs of the RA setting of the DU 120a, and RAs the DU 120a. You may request a change in the settings (step S305).
  • a notification that the change is completed may be received (step S305).
  • the CU110a causes the RA setting of the DU120b to be changed via the CU110b, or the RA setting of the DU120a to be changed. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic. Further, when RRC connection failures occur frequently, the DU120a detects the frequent failures and activates the RACH optimization process, so that the duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
  • FIG. 12 is a flow diagram showing the operation of the gNB 100 in which RRC connection failures frequently occur with the UE 200.
  • This gNB 100 corresponds to, for example, the gNB 100a shown in FIG.
  • the RA processing unit 125 When the preamble according to the RA setting of the gNB 100 is received by the radio IF unit 123 (step S401), the RA processing unit 125 generates an RA response to the preamble and transmits it from the radio IF unit 123 (step S402). After the RA response is transmitted, the RA processing unit 125 waits for the reception of the RRC request (step S403), and if the descrambleable RRC request is received by the cell identification information of the gNB 100 (step S403Yes), the RRC request is transmitted. The RRC settings are sent back and the RRC connection is established.
  • step S403No if a descrambleable RRC request is not received by the identification information of the cell of gNB100 after the RA response is transmitted (step S403No), the number of RRC connection failures is incremented and stored in the memory 124. That is, the number of RRC connection failures is counted (step S404). Then, the RA processing unit 125 refers to the number of failures of the RRC connection stored in the memory 124, and determines whether or not the number of failures is equal to or greater than a predetermined threshold value (step S405). As a result of this determination, if the number of failures is less than a predetermined number (step S405No), the random access process is repeated from the reception of the preamble according to the RA setting of gNB100.
  • step S405 Yes when the number of failures is equal to or greater than a predetermined number (step S405 Yes), the CU 110 is notified via the transmission line IF unit 121 that RRC connection failures occur frequently (step S406). At this time, the current RA setting of the DU 120 is also notified to the CU 110. Then, the RACH optimization control unit 116 of the CU 110 generates an RA setting change request including the RA setting of the DU 120, which is transmitted from the wired IF unit 111 to the CU of the surrounding gNB (step S407).
  • the RACH optimization control unit 116 waits for the change completion notification that the RA setting change is completed (step S408), and the change completion notification is received from any CU of the destination of the RA setting change request. In the case (step S408Yes), the RACH optimization process ends. On the other hand, when the change completion notification is not received (step S408No), the RACH optimization control unit 116 requests the DU 120 to change the RA setting via the transmission line IF unit 113 (step S409).
  • the RA setting is changed by the RA setting control unit 126 (step S410).
  • the RA setting may be changed to any RA setting different from the current RA setting, or information on the RA setting of the surrounding DU may be collected from the SIB receivable by the wireless IF unit 123.
  • the RA settings may be changed to different from these RA settings.
  • the CU 110 may instruct the DU 120 to collect information on RA settings from the CUs of the surrounding gNBs and change the RA settings to different from these RA settings.
  • the CU 110 is notified via the transmission line IF unit 121 that the change has been completed (step S411).
  • the CU110 of gNB100 notifies the surrounding gNBs of the RA setting of gNB100, and if they have the same RA setting, the RA setting is set. Request to change. If there is no response to the request, the RA setting is changed in the DU 120 of the gNB 100. Therefore, when the RRC connection fails due to the duplication of RA settings, the duplication of RA settings can be eliminated, and RACH optimization can be executed at an appropriate timing.
  • the DU counts the number of failures of the RRC connection, and when the number of failures exceeds a predetermined threshold value, the CU is notified that the number of failures of the RRC connection has occurred frequently. Then, the CU requests the peripheral gNB having the same RA setting as the RA setting of the DU to change the RA setting. The gNB CU requested to change the RA setting requests the DU to change the RA setting, and the DU changes the RA setting. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic related to RACH optimization. In addition, the DU monitors the number of RRC connection failures, and RACH optimization is executed as soon as failures occur frequently, so that duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
  • the CU 110 (CU 110a) notified by the DU 120 that RRC connection failures occur frequently sends a RA setting change request to another CU 110 (CU 110b).
  • the CU 110 (CU 110a) notified of the frequent occurrence of failures may request the DU 120 (DU 120a) in the gNB 100 to change the RA setting without transmitting the RA setting change request.
  • FIG. 13 A sequence diagram showing the RACH optimization method in this case is shown in FIG. In FIG. 13, the same parts as those in FIGS. 5 and 11 are designated by the same reference numerals.
  • the CU 110a activates the RACH optimization process.
  • the CU 110a determines that the RA setting of the DU 120a is changed instead of transmitting the RA setting change request to the peripheral CUs including the CU 110b, and requests the DU 120a to change the RA setting (step S321). ).
  • the CU 110a receives a notification that the change is completed.
  • the gNB100a changes the RA setting by itself to eliminate the duplication of the RA setting. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station (100) is provided with a wireless control device (110) and a wireless device (120). The wireless control device (110) has: a first processor (112) which, when a random access process by a terminal device (200) does not finish normally, determines that a random access setting in the wireless device (120) is to be changed; and a transmission path interface (113) which requests the wireless device (120) to change the random access setting in accordance with the determination by the first processor (112). The wireless device (120) has: a second processor (122) which changes the random access setting in response to the request from the wireless control device (110); and a wireless interface (123) which wirelessly provides notification of the random access setting change by the second processor.

Description

基地局、端末装置及び無線通信システムBase stations, terminal equipment and wireless communication systems
 本発明は、基地局、端末装置及び無線通信システムに関する。 The present invention relates to a base station, a terminal device, and a wireless communication system.
 現在のネットワークにおいては、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使用するトラフィックは、今後も拡大していく傾向にある。 In the current network, the traffic of mobile terminals (smartphones and feature phones) occupies most of the network resources. In addition, the traffic used by mobile terminals tends to increase in the future.
 一方で、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5G又は、NR(New Radio))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年の末に標準規格書の初版が出されている(非特許文献12~40)。 On the other hand, in line with the development of IoT (Internet of things) services (for example, monitoring systems for transportation systems, smart meters, devices, etc.), it is required to support services with various requirements. Therefore, in the communication standard of the 5th generation mobile communication (5G or NR (New Radio)), in addition to the standard technology of 4G (4th generation mobile communication) (for example, Non-Patent Documents 1 to 11), further There is a demand for technology that realizes high data rates, large capacities, and low delays. Regarding the 5th generation communication standard, technical studies are underway by the 3GPP working group (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard document was issued at the end of 2017. (Non-Patent Documents 12-40).
 5Gのモバイルネットワークにおいては、トラフィックの増大に対応するために処理の集中と分散が検討されている。集中と分散の手法として、例えば、メッセージの処理をプロトコルの階層によって複数のノードに配分し、上位プロトコルの処理を実行するCU(Central Unit)と、下位プロトコルの処理を実行するDU(Distributed Unit)とを分離するCU/DU分離がある。CU/DU分離される場合には、1つのCUと1つのDUとの組み合わせ、又は1つのCUと複数のDUとの組み合わせが1つの論理的な基地局となる。この基地局は「gNB(g Node B)」とも呼ばれる。 In 5G mobile networks, centralization and distribution of processing are being considered in order to cope with the increase in traffic. As a method of centralization and distribution, for example, CU (Central Unit) that distributes message processing to multiple nodes according to the protocol hierarchy and executes processing of the upper layer protocol, and DU (Distributed Unit) that executes processing of the lower layer protocol. There is a CU / DU separation that separates and. When CU / DU is separated, a combination of one CU and one DU, or a combination of one CU and a plurality of DUs becomes one logical base station. This base station is also called "gNB (g Node B)".
 図1は、gNB10の具体的な構成例を示す図である。図1に示すgNB10は、1つのCU10aと1つのDU10bとを有する。CU10aは、RRC(Radio Resource Control)レイヤ及びPDCP(Packet Data Convergence Protocol)レイヤの処理を実行する。一方、DU10bは、RLC(Radio Link Control)レイヤ、MAC(Medium Access Control)レイヤ及びPHY(Physical)レイヤの処理を実行する。CU10aとDU10bとは、例えばF1インタフェースによって接続されており、互いに遠隔地に配置されても良い。なお、図1では省略したが、CU10aは、例えばXnインタフェースによって他のgNBのCUに接続されるとともに、例えばNGインタフェースによってコアネットワークを構成する装置に接続される。 FIG. 1 is a diagram showing a specific configuration example of gNB10. The gNB 10 shown in FIG. 1 has one CU 10a and one DU 10b. The CU10a executes the processing of the RRC (Radio Resource Control) layer and the PDCP (Packet Data Convergence Protocol) layer. On the other hand, the DU 10b executes the processing of the RLC (Radio Link Control) layer, the MAC (Medium Access Control) layer, and the PHY (Physical) layer. The CU 10a and the DU 10b are connected by, for example, an F1 interface, and may be arranged at remote locations from each other. Although omitted in FIG. 1, the CU 10a is connected to the CU of another gNB by, for example, the Xn interface, and is connected to the device constituting the core network by, for example, the NG interface.
 端末装置がgNB10と通信する際には、端末装置は、DU10bとの間で無線通信を実行する。端末装置は、gNB10と初期接続を確立する際、DU10bから送信されるSIB(System Information Block)を受信し、ランダムアクセスに必要なパラメータを含むRA(Random Access)設定(RA Config)を取得する。RA設定には、DU10bが形成するセルでのランダムアクセスにおいて、プリアンブルの送信に用いられるPRACH(Physical Random Access CHannel)を特定する情報などが含まれる。端末装置は、RA設定に基づいてプリアンブルをDU10bへ送信する。そして、プリアンブルを受信したDU10bは、プリアンブルに対するRA応答(RA response)を端末装置へ送信する。端末装置は、自身が送信したプリアンブルに対するRA応答を受信すると、後続するRRC接続の処理を開始する。 When the terminal device communicates with the gNB 10, the terminal device executes wireless communication with the DU 10b. When establishing an initial connection with gNB10, the terminal device receives SIB (System Information Block) transmitted from DU10b and acquires RA (Random Access) settings (RA Config) including parameters required for random access. The RA setting includes information that identifies the PRACH (Physical Random Access CHannel) used for transmitting the preamble in random access in the cell formed by the DU 10b. The terminal device transmits the preamble to the DU 10b based on the RA setting. Then, the DU 10b that has received the preamble transmits an RA response to the preamble to the terminal device. Upon receiving the RA response to the preamble transmitted by the terminal device, the terminal device starts processing of the subsequent RRC connection.
特開2015-195621号公報Japanese Unexamined Patent Publication No. 2015-195621
 ところで、RA設定は、セルごとのランダムアクセスに必要なパラメータを含むため、例えば近接する基地局同士のRA設定が重複する場合には、端末装置によるランダムアクセスが正常に終了しないことがある。すなわち、例えば基地局Aと基地局Bが同一のRA設定をSIBによって報知する場合、端末装置が基地局A宛てに送信するプリアンブルが基地局Bによっても受信され、基地局BがRA応答を送信することがある。このような場合、端末装置と基地局Bの間では後続するRRC接続の処理が失敗し、端末装置は通信を開始することが困難である。 By the way, since the RA setting includes parameters required for random access for each cell, for example, when the RA settings of neighboring base stations overlap, the random access by the terminal device may not be completed normally. That is, for example, when base station A and base station B notify the same RA setting by SIB, the preamble transmitted by the terminal device to base station A is also received by base station B, and base station B transmits the RA response. I have something to do. In such a case, the processing of the subsequent RRC connection fails between the terminal device and the base station B, and it is difficult for the terminal device to start communication.
 そこで、例えばLTE(Long Term Evolution)を採用する無線通信システムでは、周辺の基地局同士がRA設定に関する情報を共有することで、基地局同士のRA設定の重複が回避されることがある。このような基地局間でのRA設定に関する情報の共有は、RACH(Random Access CHannel)最適化(RACH Optimization)と呼ばれる。 Therefore, for example, in a wireless communication system that employs LTE (Long Term Evolution), peripheral base stations may share information on RA settings to avoid duplication of RA settings between base stations. Such sharing of information on RA settings between base stations is called RACH (Random Access CHannel) optimization (RACH Optimization).
 しかしながら、5Gを採用する無線通信システムでは、CU/DU分離されることがあるため、RACH最適化が容易ではないという問題がある。具体的には、例えばDUは、仮想マシンとして実装されることがあり、容易に有効化及び無効化することが可能であるため、セルの出現及び消失が頻繁に発生すると考えられる。また、例えば端末装置の密度などに応じてDUによるビームフォーミングが実行され、動的にセルの形状や位置が変更されると考えられる。このように、CU/DU分離される場合には、セルの状態が頻繁に変化するため、その都度基地局間でRA設定に関する情報を共有すると、トラフィックが増大してネットワークの負荷が増大してしまう。したがって、セルの状態が変化するたびにRACH最適化を実行するのは現実的ではない。 However, in a wireless communication system that adopts 5G, there is a problem that RACH optimization is not easy because CU / DU may be separated. Specifically, for example, a DU may be implemented as a virtual machine and can be easily enabled and disabled, so that it is considered that cells appear and disappear frequently. Further, it is considered that beamforming by DU is executed according to, for example, the density of the terminal device, and the shape and position of the cell are dynamically changed. In this way, when CU / DU is separated, the cell state changes frequently, so if information on RA settings is shared between base stations each time, traffic will increase and the network load will increase. It ends up. Therefore, it is not practical to perform RACH optimization every time the cell state changes.
 開示の技術は、かかる点に鑑みてなされたものであって、適切なタイミングでRACH最適化を実行することができる基地局、端末装置及び無線通信システムを提供することを目的とする。 The disclosed technology has been made in view of this point, and an object of the present invention is to provide a base station, a terminal device, and a wireless communication system capable of executing RACH optimization at an appropriate timing.
 本願が開示する基地局は、1つの態様において、無線制御装置と、無線装置とを備える基地局であって、前記無線制御装置は、端末装置によるランダムアクセス処理が正常に終了しない場合に、前記無線装置におけるランダムアクセス設定を変更することを決定する第1のプロセッサと、前記第1のプロセッサによる決定に従って、前記ランダムアクセス設定の変更を前記無線装置に依頼する伝送路インタフェースとを有し、前記無線装置は、前記無線制御装置からの依頼に応じて、前記ランダムアクセス設定を変更する第2のプロセッサと、前記第2のプロセッサによって変更された前記ランダムアクセス設定を無線で報知する無線インタフェースとを有する。 The base station disclosed in the present application is, in one embodiment, a base station including a wireless control device and a wireless device, and the wireless control device is said to be described when the random access process by the terminal device is not normally completed. It has a first processor that determines to change the random access setting in the wireless device, and a transmission line interface that requests the wireless device to change the random access setting according to the decision by the first processor. The wireless device includes a second processor that changes the random access setting and a wireless interface that wirelessly notifies the random access setting changed by the second processor in response to a request from the wireless control device. Have.
 本願が開示する基地局、端末装置及び無線通信システムの1つの態様によれば、適切なタイミングでRACH最適化を実行することができるという効果を奏する。 According to one aspect of the base station, the terminal device, and the wireless communication system disclosed in the present application, there is an effect that RACH optimization can be executed at an appropriate timing.
図1は、基地局の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a base station. 図2は、無線通信ネットワークの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a wireless communication network. 図3は、実施の形態1に係る基地局の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a base station according to the first embodiment. 図4は、実施の形態1に係る端末装置の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the terminal device according to the first embodiment. 図5は、実施の形態1に係るRACH最適化方法を示すシーケンス図である。FIG. 5 is a sequence diagram showing a RACH optimization method according to the first embodiment. 図6は、端末装置の動作を示すフロー図である。FIG. 6 is a flow chart showing the operation of the terminal device. 図7は、基地局の動作を示すフロー図である。FIG. 7 is a flow chart showing the operation of the base station. 図8は、他の基地局の動作を示すフロー図である。FIG. 8 is a flow chart showing the operation of other base stations. 図9は、実施の形態1に係る他のRACH最適化方法を示すシーケンス図である。FIG. 9 is a sequence diagram showing another RACH optimization method according to the first embodiment. 図10は、実施の形態1に係るさらに他のRACH最適化方法を示すシーケンス図である。FIG. 10 is a sequence diagram showing still another RACH optimization method according to the first embodiment. 図11は、実施の形態2に係るRACH最適化方法を示すシーケンス図である。FIG. 11 is a sequence diagram showing the RACH optimization method according to the second embodiment. 図12は、基地局の動作を示すフロー図である。FIG. 12 is a flow chart showing the operation of the base station. 図13は、実施の形態2に係る他のRACH最適化方法を示すシーケンス図である。FIG. 13 is a sequence diagram showing another RACH optimization method according to the second embodiment.
 以下、本願が開示する基地局、端末装置及び無線通信システムの実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of the base station, terminal device, and wireless communication system disclosed in the present application will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
(実施の形態1)
 図2は、実施の形態1に係る無線通信システムの構成例を示す図である。無線通信システムは、コアネットワークに接続された複数のgNB100a、100bと、gNB100a、100bと無線通信するUE(User Equipment)200とを有する。図2においては、2つのgNB100a、100bと1つのUE200とを図示しているが、無線通信システムが有するgNB及びUEの数はこれに限定されない。
(Embodiment 1)
FIG. 2 is a diagram showing a configuration example of the wireless communication system according to the first embodiment. The wireless communication system has a plurality of gNBs 100a and 100b connected to the core network, and a UE (User Equipment) 200 that wirelessly communicates with the gNBs 100a and 100b. In FIG. 2, two gNBs 100a and 100b and one UE 200 are illustrated, but the number of gNBs and UEs possessed by the wireless communication system is not limited to this.
 コアネットワークには、UPF(User Plane Function)11、AMF(Access and Mobility Management Function)12、SMF(Session Management Function)13、PCF(Policy Control Function)14、AF(Application Function)15、AUSF(Authentication Server Function)16及びUDM(Unified Data Management)17が配置される。 The core network includes UPF (User Plane Function) 11, AMF (Access and Mobility Management Function) 12, SMF (Session Management Function) 13, PCF (Policy Control Function) 14, AF (Application Function) 15, and AUSF (Authentication Server). Function) 16 and UDM (Unified Data Management) 17 are arranged.
 UPF11は、ユーザプレーンを制御する装置であり、ユーザデータのルーティングや転送を実行する。AMF12は、コントロールプレーンを制御する装置であり、無線アクセスネットワーク(RAN:Radio Access Network)におけるコントロールプレーンを終端する。SMF13は、セッション管理をする。PCF14は、コントロールプレーンに関するポリシールールなどを提供する。AF15は、アプリケーションを提供するアプリケーションサーバである。AUSF16は、UE200の認証処理をする。UDM17は、加入者情報などを記憶する。 UPF11 is a device that controls the user plane and executes routing and transfer of user data. The AMF 12 is a device that controls the control plane, and terminates the control plane in a radio access network (RAN: Radio Access Network). The SMF 13 manages the session. The PCF 14 provides policy rules and the like regarding the control plane. AF15 is an application server that provides an application. The AUSF16 performs the authentication process of the UE 200. The UDM 17 stores subscriber information and the like.
 gNB100a、100bは、基地局であり、コアネットワークのUPF11及びAMF12と有線で接続されて通信するとともに、UE200と無線通信する。具体的には、gNB100a、100bは、それぞれCU(Central Unit)110a、110bとDU(Distributed Unit)120a、120bとを有する。なお、図2においては、1つのCU110a、110bに1つのDU120a、120bが接続される1対1の接続を示しているが、CUとDUの接続関係は、1対多の接続でも良いし、多対多の接続でも良い。互いに接続される1つずつのCU及びDUの組み合わせが1つのgNBを構成する。 The gNBs 100a and 100b are base stations, which are connected and communicate with UPF11 and AMF12 of the core network by wire, and also wirelessly communicate with the UE 200. Specifically, gNB100a and 100b have CU (Central Unit) 110a and 110b and DU (Distributed Unit) 120a and 120b, respectively. Although FIG. 2 shows a one-to-one connection in which one DU 120a and 120b are connected to one CU 110a and 110b, the connection relationship between the CU and the DU may be a one-to-many connection. Many-to-many connections are also acceptable. One combination of CU and DU connected to each other constitutes one gNB.
 CU110a、110bは、コアネットワークのUPF11及びAMF12に接続され、それぞれの配下にあるDU120a、120bとUE200との間の無線通信を制御する無線制御装置である。CU110a、110bは、RRCレイヤ及びPDCPレイヤの処理を実行する。例えば、CU110a、110bは、配下のDU120a、120bとUE200とによるランダムアクセス処理によってRRC接続が確立されると、UE200との間でデータをやり取りする。また、CU110a、110bは、RRC接続の失敗が多発することがUE200から通知されると、ランダムアクセス処理に関するRA設定の重複が発生していると判断し、gNB100a,100bにおけるRA設定の変更を制御する。 The CU 110a and 110b are wireless control devices that are connected to the UPF 11 and AMF 12 of the core network and control the wireless communication between the DU 120a and 120b under their respective control and the UE 200. The CU 110a and 110b execute the processing of the RRC layer and the PDCP layer. For example, the CUs 110a and 110b exchange data with the UE 200 when the RRC connection is established by the random access processing between the subordinate DUs 120a and 120b and the UE 200. Further, when the UE 200 notifies that the RRC connection failures occur frequently, the CU 110a and 110b determine that the RA settings related to the random access process are duplicated, and control the change of the RA settings in the gNB 100a and 100b. To do.
 DU120a、120bは、それぞれ上位にあるCU110a、110bによる制御に従って、UE200との間で無線通信する無線装置である。DU120a、120bは、RLCレイヤ、MACレイヤ及びPHYレイヤの処理を実行する。例えば、DU120a、120bは、少なくとも1つ以上のセルを形成し、セル内のUE200からランダムアクセス用のプリアンブルを受信した場合、プリアンブルに対するRA応答をUE200へ送信する。そして、DU120a、120bは、UE200とgNB100a、100bとの間のRRC接続を確立する。また、DU120a、120bは、上位のCU110a、110bによる制御に従って、ランダムアクセス処理に関するRA設定を変更し、変更したRA設定の情報を含むSIBを送信する。 The DU 120a and 120b are wireless devices that wirelessly communicate with the UE 200 under the control of the CU 110a and 110b, which are higher in the DU 120a and 120b, respectively. The DU 120a and 120b execute the processing of the RLC layer, the MAC layer and the PHY layer. For example, when the DUs 120a and 120b form at least one or more cells and receive a preamble for random access from the UE 200 in the cells, the DU 120a and 120b transmit an RA response to the preamble to the UE 200. Then, the DU 120a and 120b establish an RRC connection between the UE 200 and the gNB 100a and 100b. Further, the DU 120a and 120b change the RA setting related to the random access process according to the control by the higher- level CU 110a and 110b, and transmit the SIB including the information of the changed RA setting.
 UE200は、DU120a、120bが形成するセル内に在圏する場合に、セルを形成するDU120a、120bとの間で無線通信する端末装置である。UE200は、DU120a、120bとの無線通信を開始する際、DU120a、120bから送信されるSIBを受信して、セルにおけるRA設定を取得する。そして、UE200は、RA設定に基づいてランダムアクセス用のプリアンブルを送信する。UE200は、プリアンブルに対するRA応答を受信すると、RA応答の送信元のDU120a、120bを有するgNB100a、100bとの間でRRC接続を確立する。このとき、UE200は、RRC接続の確立が失敗する回数をカウントし、いずれかのgNBとの間でRRC接続が確立された際に、RRC接続の失敗回数が所定の閾値以上であることを通知する。 The UE 200 is a terminal device that wirelessly communicates with the DUs 120a and 120b forming the cells when they are in the cell formed by the DUs 120a and 120b. When starting wireless communication with the DU 120a and 120b, the UE 200 receives the SIB transmitted from the DU 120a and 120b and acquires the RA setting in the cell. Then, the UE 200 transmits a preamble for random access based on the RA setting. Upon receiving the RA response to the preamble, the UE 200 establishes an RRC connection with the gNB 100a, 100b having the DU 120a, 120b of the RA response source. At this time, the UE 200 counts the number of times the establishment of the RRC connection fails, and when the RRC connection is established with any of the gNBs, notifies that the number of times the RRC connection fails is equal to or greater than a predetermined threshold value. To do.
 図3は、実施の形態1に係るgNB100の構成を示すブロック図である。図3に示すgNB100は、図2に示すgNB100a、100bと同じ構成を有し、CU110及びDU120を有する。 FIG. 3 is a block diagram showing the configuration of the gNB 100 according to the first embodiment. The gNB 100 shown in FIG. 3 has the same configuration as the gNB 100a and 100b shown in FIG. 2, and has a CU 110 and a DU 120.
 CU110は、CU110a、110bと同様に無線制御装置である。CU110は、有線インタフェース部(以下「有線IF部」と略記する)111、プロセッサ112、伝送路インタフェース部(以下「伝送路IF部」と略記する)113及びメモリ114を有する。 The CU 110 is a wireless control device like the CU 110a and 110b. The CU 110 includes a wired interface unit (hereinafter abbreviated as "wired IF unit") 111, a processor 112, a transmission line interface unit (hereinafter abbreviated as "transmission line IF unit") 113, and a memory 114.
 有線IF部111は、コアネットワークの装置及び他のgNBと有線接続するインタフェースを有する。具体的には、有線IF部111は、コアネットワークを構成するUPF11及びAMF12と例えばNGインタフェースによって接続され、他のgNBのCUと例えばXnインタフェースによって接続される。そして、有線IF部111は、UPF11との間でユーザデータを送受信し、AMF12との間で制御データを送受信する。また、有線IF部111は、他のgNBのCUとの間でRA設定の変更を要求するRA設定変更要求を送受信したり、RA設定の変更が完了した旨の変更完了通知を送受信したりする。 The wired IF unit 111 has an interface for wired connection with a core network device and other gNBs. Specifically, the wired IF unit 111 is connected to UPF11 and AMF12 constituting the core network by, for example, an NG interface, and is connected to another gNB's CU, for example, by an Xn interface. Then, the wired IF unit 111 transmits / receives user data to / from UPF 11 and transmits / receives control data to / from AMF 12. Further, the wired IF unit 111 sends and receives an RA setting change request requesting a change of the RA setting to and from another gNB CU, and sends and receives a change completion notification to the effect that the change of the RA setting is completed. ..
 プロセッサ112は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、CU110の全体を統括制御する。具体的には、プロセッサ112は、RRC処理部115及びRACH最適化制御部116を有する。 The processor 112 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc., and controls the entire CU 110 in an integrated manner. Specifically, the processor 112 has an RRC processing unit 115 and a RACH optimization control unit 116.
 RRC処理部115は、RRCレイヤの処理を実行する。具体的には、RRC処理部115は、DU120とUE200によるランダムアクセス処理によってRRC接続が確立されると、UE200との間でデータをやり取りする。UE200との間でやり取りされるデータには、例えばRRC接続の失敗が多発した旨の通知やRRC接続の失敗が多発したセルの識別情報(例えばPCI(Physical Cell ID))などが含まれる。 The RRC processing unit 115 executes the processing of the RRC layer. Specifically, the RRC processing unit 115 exchanges data with the UE 200 when the RRC connection is established by the random access processing by the DU 120 and the UE 200. The data exchanged with the UE 200 includes, for example, a notification that RRC connection failures occur frequently and cell identification information (for example, PCI (Physical Cell ID)) in which RRC connection failures occur frequently.
 RACH最適化制御部116は、RRC接続の失敗が多発した旨の通知がRRC処理部115によって取得されると、RACH最適化の処理を起動する。具体的には、RACH最適化制御部116は、RRC接続の失敗が多発したセルを管轄するgNBのCUへRA設定の変更を要求する。RA設定変更要求は、有線IF部111を介して他のgNBのCUへ送信される。 The RACH optimization control unit 116 starts the RACH optimization process when the RRC processing unit 115 receives a notification that RRC connection failures have occurred frequently. Specifically, the RACH optimization control unit 116 requests the CU of gNB, which has jurisdiction over the cell in which RRC connection failures occur frequently, to change the RA setting. The RA setting change request is transmitted to the CU of another gNB via the wired IF unit 111.
 また、RACH最適化制御部116は、他のgNBのCUからのRA設定変更要求が有線IF部111によって受信されると、DU120のRA設定を変更することを決定し、DU120に対してRA設定の変更を依頼する。すなわち、RACH最適化制御部116は、DU120が形成するセルにおけるランダムアクセスに関するRA設定を変更するように、伝送路IF部113を介してDU120へ依頼する。 Further, the RACH optimization control unit 116 decides to change the RA setting of the DU 120 when the RA setting change request from the CU of another gNB is received by the wired IF unit 111, and sets the RA for the DU 120. Request a change. That is, the RACH optimization control unit 116 requests the DU 120 via the transmission line IF unit 113 to change the RA setting regarding random access in the cell formed by the DU 120.
 伝送路IF部113は、DU120と接続するインタフェースを有する。具体的には、伝送路IF部113は、例えばF1インタフェースによってDU120と接続される。そして、伝送路IF部113は、RA設定の変更をDU120に依頼したり、RA設定の変更が完了した旨がDU120から通知されたりする。 The transmission line IF unit 113 has an interface for connecting to the DU 120. Specifically, the transmission line IF unit 113 is connected to the DU 120 by, for example, the F1 interface. Then, the transmission line IF unit 113 requests the DU 120 to change the RA setting, or notifies the DU 120 that the change of the RA setting is completed.
 メモリ114は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ112が処理を実行するために使用する情報を記憶する。 The memory 114 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used by the processor 112 to execute processing.
 DU120は、DU120a、120bと同様に無線装置である。DU120は、伝送路IF部121、プロセッサ122、無線インタフェース部(以下「無線IF部」と略記する)123及びメモリ124を有する。 The DU 120 is a wireless device like the DU 120a and 120b. The DU 120 includes a transmission line IF unit 121, a processor 122, a wireless interface unit (hereinafter abbreviated as “wireless IF unit”) 123, and a memory 124.
 伝送路IF部121は、CU110と接続するインタフェースを有する。具体的には、伝送路IF部121は、例えばF1インタフェースによってCU110と接続される。そして、伝送路IF部121は、RA設定の変更をCU110から依頼されたり、RA設定の変更が完了した旨をCU110へ通知したりする。 The transmission line IF unit 121 has an interface for connecting to the CU 110. Specifically, the transmission line IF unit 121 is connected to the CU 110 by, for example, the F1 interface. Then, the transmission line IF unit 121 is requested by the CU 110 to change the RA setting, or notifies the CU 110 that the change of the RA setting is completed.
 プロセッサ122は、例えばCPU、FPGA又はDSPなどを備え、DU120の全体を統括制御する。具体的には、プロセッサ122は、RA処理部125及びRA設定制御部126を有する。 The processor 122 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire DU 120 in an integrated manner. Specifically, the processor 122 has an RA processing unit 125 and an RA setting control unit 126.
 RA処理部125は、UE200との間でランダムアクセス処理を実行する。具体的には、RA処理部125は、UE200から送信され無線IF部123によって受信されるプリアンブルを取得する。そして、RA処理部125は、プリアンブルに対するRA応答を生成し、無線IF部123を介してRA応答をUE200へ送信する。さらに、RA処理部125は、UE200から送信されたRRC要求(RRC request)を取得し、RRC要求に対してRRC設定(RRC Setup)を生成する。そして、RA処理部125は、無線IF部123を介してRRC設定をUE200へ送信する。 The RA processing unit 125 executes random access processing with the UE 200. Specifically, the RA processing unit 125 acquires a preamble transmitted from the UE 200 and received by the radio IF unit 123. Then, the RA processing unit 125 generates an RA response to the preamble and transmits the RA response to the UE 200 via the radio IF unit 123. Further, the RA processing unit 125 acquires the RRC request (RRC request) transmitted from the UE 200 and generates an RRC setting (RRC Setup) for the RRC request. Then, the RA processing unit 125 transmits the RRC setting to the UE 200 via the wireless IF unit 123.
 ここで、RRC要求は、UE200がプリアンブルの送信先として選択したセルを識別する識別情報(例えばPCI)によってスクランブル処理されている。このため、UE200がプリアンブルの送信先としてDU120を選択してランダムアクセス処理が実行されていれば、RA処理部125は、無線IF部123によって受信されたRRC要求をデスクランブルし、RRC要求に対するRRC設定を生成する。 Here, the RRC request is scrambled by the identification information (for example, PCI) that identifies the cell selected by the UE 200 as the transmission destination of the preamble. Therefore, if the UE 200 selects the DU 120 as the transmission destination of the preamble and the random access process is executed, the RA processing unit 125 descrambles the RRC request received by the wireless IF unit 123 and RRC for the RRC request. Generate settings.
 一方、UE200がプリアンブルの送信先としてDU120とは異なる他のDUを選択したにも関わらず、DU120と他のDUとのRA設定が重複する場合には、UE200が送信するプリアンブルがDU120によって受信され、DU120とUE200によってランダムアクセス処理が実行されることがある。この場合、UE200は、DU120からRA応答を受信すると、他のDUが形成するセルの識別情報によってスクランブル処理されたRRC要求を送信する。そして、RRC要求は、無線IF部123によって受信されるが、RA処理部125は、他のDUが形成するセルの識別情報によってスクランブル処理されているRRC要求を検出せず、RRC要求に対するRRC設定を生成しない。 On the other hand, if the UE 200 selects another DU different from the DU 120 as the preamble transmission destination, but the RA settings of the DU 120 and the other DU overlap, the preamble transmitted by the UE 200 is received by the DU 120. , DU120 and UE200 may perform random access processing. In this case, when the UE 200 receives the RA response from the DU 120, it transmits an RRC request scrambled by the identification information of the cells formed by the other DU. Then, the RRC request is received by the radio IF unit 123, but the RA processing unit 125 does not detect the RRC request scrambled by the identification information of the cell formed by the other DU, and sets the RRC for the RRC request. Does not generate.
 このように、UE200がプリアンブルの送信先として選択したセルの識別情報によってRRC要求がスクランブル処理されるため、RA処理部125は、UE200が送信するRRC要求に対して、RRC設定を生成しないことがある。この結果、RRC設定がUE200へ送信されることはなく、RRC接続の確立が失敗する。すなわち、UE200がRA応答を受信した後、RRC設定を受信しない場合には、ランダムアクセス処理が正常に終了せず、RRC接続の失敗が発生したことになる。 In this way, since the RRC request is scrambled by the identification information of the cell selected by the UE 200 as the transmission destination of the preamble, the RA processing unit 125 may not generate the RRC setting for the RRC request transmitted by the UE 200. is there. As a result, the RRC setting is not transmitted to the UE 200, and the establishment of the RRC connection fails. That is, if the UE 200 does not receive the RRC setting after receiving the RA response, the random access process does not end normally, and the RRC connection fails.
 RA設定制御部126は、DU120が形成するセルにおけるRA設定を制御する。すなわち、RA設定制御部126は、セルごとのランダムアクセス処理に関するパラメータを含むRA設定を決定し、RA設定の情報をSIBに含めて報知する。SIBを受信するUE200は、プリアンブルの送信先のセルを選択し、選択したセルのRA設定に従ってプリアンブルを送信する。RA処理部125は、RA設定制御部126が決定したRA設定に従ったプリアンブルを取得する。このため、RA設定制御部126が他のgNBのRA設定と同一のRA設定を決定した場合には、RA処理部125は、他のgNBを送信先に選択したUEが送信するプリアンブルを取得することがある。 The RA setting control unit 126 controls the RA setting in the cell formed by the DU 120. That is, the RA setting control unit 126 determines the RA setting including the parameter related to the random access processing for each cell, and includes the information of the RA setting in the SIB to notify the SIB. The UE 200 that receives the SIB selects a cell to which the preamble is to be transmitted, and transmits the preamble according to the RA setting of the selected cell. The RA processing unit 125 acquires a preamble according to the RA setting determined by the RA setting control unit 126. Therefore, when the RA setting control unit 126 determines the same RA setting as the RA setting of the other gNB, the RA processing unit 125 acquires the preamble transmitted by the UE that has selected the other gNB as the transmission destination. Sometimes.
 また、RA設定制御部126は、CU110からRA設定の変更が依頼された場合、RA設定を変更し、変更が完了した旨を伝送路IF部121からCU110へ通知させる。 Further, when the RA setting control unit 126 is requested to change the RA setting by the CU 110, the RA setting is changed, and the transmission line IF unit 121 notifies the CU 110 that the change is completed.
 無線IF部123は、UE200と無線接続するインタフェースを有する。そして、無線IF部123は、RA設定を含むSIBを送信したり、ランダムアクセス処理において種々のデータを送受信したりする。また、無線IF部123は、gNB100とUE200の間のRRC接続が確立された際に、他のgNBとUE200の間のRRC接続の失敗が多発した旨の通知を受信する。 The wireless IF unit 123 has an interface for wirelessly connecting to the UE 200. Then, the wireless IF unit 123 transmits the SIB including the RA setting, and transmits / receives various data in the random access process. Further, when the RRC connection between the gNB 100 and the UE 200 is established, the wireless IF unit 123 receives a notification that the RRC connection between the other gNB and the UE 200 has frequently failed.
 メモリ124は、例えばRAM又はROMなどを備え、プロセッサ122が処理を実行するために使用する情報を記憶する。 The memory 124 includes, for example, a RAM or a ROM, and stores information used by the processor 122 to execute processing.
 図4は、実施の形態1に係るUE200の構成を示すブロック図である。図4に示すUE200は、無線IF部210、プロセッサ220及びメモリ230を有する。 FIG. 4 is a block diagram showing a configuration of the UE 200 according to the first embodiment. The UE 200 shown in FIG. 4 has a wireless IF unit 210, a processor 220, and a memory 230.
 無線IF部210は、gNB100と無線接続するインタフェースを有する。そして、無線IF部210は、RA設定を含むSIBを受信したり、ランダムアクセス処理において種々のデータを送受信したりする。また、無線IF部210は、gNB100とUE200の間のRRC接続が確立された際に、他のgNBとUE200の間のRRC接続の失敗が多発した旨の通知を送信する。 The wireless IF unit 210 has an interface for wirelessly connecting to the gNB 100. Then, the wireless IF unit 210 receives the SIB including the RA setting, and transmits / receives various data in the random access process. Further, when the RRC connection between the gNB 100 and the UE 200 is established, the wireless IF unit 210 transmits a notification that the RRC connection between the other gNB and the UE 200 has frequently failed.
 プロセッサ220は、例えばCPU、FPGA又はDSPなどを備え、UE200の全体を統括制御する。具体的には、プロセッサ220は、RA処理部221及びRRC処理部222を有する。 The processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire UE 200 in an integrated manner. Specifically, the processor 220 has an RA processing unit 221 and an RRC processing unit 222.
 RA処理部221は、DU120との間でランダムアクセス処理を実行する。具体的には、RA処理部221は、SIBによって報知されるRA設定に従ってプリアンブルを生成し、無線IF部210を介してプリアンブルをDU120へ送信する。そして、RA処理部221は、DU120から送信され無線IF部210によって受信されるRA応答を取得する。さらに、RA処理部221は、無線IF部210を介してRRC要求をDU120へ送信し、DU120から送信されたRRC設定を取得する。 RA processing unit 221 executes random access processing with DU120. Specifically, the RA processing unit 221 generates a preamble according to the RA setting notified by the SIB, and transmits the preamble to the DU 120 via the radio IF unit 210. Then, the RA processing unit 221 acquires the RA response transmitted from the DU 120 and received by the wireless IF unit 210. Further, the RA processing unit 221 transmits an RRC request to the DU 120 via the wireless IF unit 210, and acquires the RRC setting transmitted from the DU 120.
 ここで、RA処理部221は、プリアンブルの送信先として選択したセルの識別情報(例えばPCI)によってスクランブル処理されたRRC要求を生成する。このため、RA処理部221は、DU120からSIBによって報知されるRA設定に従ってプリアンブルを送信していれば、DU120が形成するセルの識別情報によってRRC要求にスクランブル処理を施す。 Here, the RA processing unit 221 generates an RRC request scrambled by the identification information (for example, PCI) of the cell selected as the transmission destination of the preamble. Therefore, if the RA processing unit 221 transmits the preamble according to the RA setting notified by the SIB from the DU 120, the RA processing unit 221 scrambles the RRC request according to the cell identification information formed by the DU 120.
 ただし、DU120と他のDUとのRA設定が重複する場合には、RA処理部221が例えばDU120のRA設定に従って送信したプリアンブルが、他のDUによって受信されることがあり、RA処理部221は、他のDUからRA応答を取得する。そして、RA処理部221は、DU120が形成するセルの識別情報によってRRC要求にスクランブル処理を施して送信するが、RRC要求の受信を待機しているのは他のDUであるため、RRC要求がデスクランブルされず、RRC要求に応じたRRC設定が送信されない。結果として、RA処理部221は、RRC要求を送信した後にRRC設定を取得することがない。 However, when the RA settings of the DU 120 and another DU overlap, the preamble transmitted by the RA processing unit 221 according to the RA setting of the DU 120, for example, may be received by the other DU, and the RA processing unit 221 may receive the preamble. , Get RA response from another DU. Then, the RA processing unit 221 scrambles the RRC request according to the cell identification information formed by the DU 120 and transmits the scrambled request. However, since it is another DU that is waiting for the reception of the RRC request, the RRC request is sent. It is not descrambled and the RRC settings in response to the RRC request are not sent. As a result, the RA processing unit 221 does not acquire the RRC setting after transmitting the RRC request.
 このように、RA処理部221がプリアンブルの送信先として選択したセルの識別情報によってRRC要求をスクランブル処理するため、RA処理部221は、送信するRRC要求に対して、RRC設定を取得しないことがある。この結果、ランダムアクセス処理が正常に終了せず、RRC接続の失敗が発生したことになる。 In this way, since the RA processing unit 221 scrambles the RRC request by the identification information of the cell selected as the transmission destination of the preamble, the RA processing unit 221 does not acquire the RRC setting for the RRC request to be transmitted. is there. As a result, the random access process does not end normally, and the RRC connection fails.
 RA処理部221は、RRC接続の失敗が発生した場合、失敗回数をカウントしメモリ230に記憶させる。このとき、RA処理部221は、RRC接続の失敗が発生したセルの識別情報(例えばPCI)が判明していれば、セルの識別情報とともにRRC接続の失敗回数をメモリ230に記憶させる。 When an RRC connection failure occurs, the RA processing unit 221 counts the number of failures and stores it in the memory 230. At this time, if the identification information (for example, PCI) of the cell in which the RRC connection failure has occurred is known, the RA processing unit 221 stores the cell identification information and the number of RRC connection failures in the memory 230.
 RRC処理部222は、RRCレイヤの処理を実行する。具体的には、RRC処理部222は、UE200とDU120の間のランダムアクセス処理によってRRC接続が確立されると、CU110との間でデータをやり取りする。また、RRC処理部222は、RRC接続が確立された際に、メモリ230に記憶されたRRC接続の失敗回数を参照し、失敗回数が所定の閾値以上であるか否かを判定する。そして、RRC処理部222は、失敗回数が所定の閾値以上である場合に、RRC接続の失敗が多発した旨の通知をCU110へ送信する。このとき、RRC処理部222は、RRC接続の失敗が多発したセルの識別情報(例えばPCI)などをCU110へ送信しても良い。 The RRC processing unit 222 executes the processing of the RRC layer. Specifically, the RRC processing unit 222 exchanges data with the CU 110 when the RRC connection is established by the random access processing between the UE 200 and the DU 120. Further, the RRC processing unit 222 refers to the number of failures of the RRC connection stored in the memory 230 when the RRC connection is established, and determines whether or not the number of failures is equal to or greater than a predetermined threshold value. Then, when the number of failures is equal to or greater than a predetermined threshold value, the RRC processing unit 222 transmits a notification to the CU 110 that RRC connection failures have occurred frequently. At this time, the RRC processing unit 222 may transmit the identification information (for example, PCI) of the cell in which the RRC connection failure occurs frequently to the CU 110.
 メモリ230は、例えばRAM又はROMなどを備え、プロセッサ220が処理を実行するために使用する情報を記憶する。具体的には、メモリ230は、例えばランダムアクセス処理においてRRC接続が失敗した回数をセルごとに記憶する。 The memory 230 includes, for example, a RAM or a ROM, and stores information used by the processor 220 to execute processing. Specifically, the memory 230 stores, for example, the number of times the RRC connection has failed in the random access process for each cell.
 次いで、上記のように構成された無線通信システムにおけるRACH最適化方法について、図5に示すシーケンス図を参照しながら説明する。以下においては、gNB100a、100bのDU120a、120bが同一のRA設定を有するものとして説明する。 Next, the RACH optimization method in the wireless communication system configured as described above will be described with reference to the sequence diagram shown in FIG. In the following, it is assumed that the DU 120a and 120b of the gNB 100a and 100b have the same RA setting.
 gNB100aのCU110aは、DU120aのRA設定の情報を含むSIBを生成し、DU120aから送信してRA設定を報知している(ステップS101)。同様に、gNB100bのCU110bは、DU120bのRA設定の情報を含むSIBを生成し、DU120bから送信してRA設定を報知している(ステップS102)。ここでは、DU120a、120bのRA設定が同一であるため、DU120a、120bから送信されるSIBには、同一のRA設定に関する情報が含まれる。また、例えば電波環境の状況などにより、ここではDU120aから送信されるSIBがUE200によって受信されないものとする。すなわち、UE200は、DU120aから送信されるSIBを受信せずに、DU120bから送信されるSIBを受信するものとする。 The CU110a of the gNB100a generates an SIB including the RA setting information of the DU120a and transmits it from the DU120a to notify the RA setting (step S101). Similarly, the CU 110b of the gNB 100b generates an SIB including the information of the RA setting of the DU 120b and transmits it from the DU 120b to notify the RA setting (step S102). Here, since the RA settings of the DUs 120a and 120b are the same, the SIB transmitted from the DUs 120a and 120b includes information regarding the same RA settings. Further, it is assumed that the SIB transmitted from the DU 120a is not received by the UE 200 here due to, for example, the condition of the radio wave environment. That is, it is assumed that the UE 200 does not receive the SIB transmitted from the DU 120a, but receives the SIB transmitted from the DU 120b.
 SIBを受信したUE200は、SIBに含まれるRA設定に従って、ランダムアクセス用のプリアンブルを送信する(ステップS103)。このとき、UE200とDU120aの間の電波環境が改善されていれば、プリアンブルは、DU120aによって受信されることがある。すなわち、DU120a、120bのRA設定が同一であるため、このRA設定に従って送信されたプリアンブルは、DU120aによって受信されることがある。 The UE 200 that has received the SIB transmits a preamble for random access according to the RA setting included in the SIB (step S103). At this time, if the radio wave environment between the UE 200 and the DU 120a is improved, the preamble may be received by the DU 120a. That is, since the RA settings of the DU 120a and 120b are the same, the preamble transmitted according to the RA settings may be received by the DU 120a.
 プリアンブルを受信したDU120aは、プリアンブルに対するRA応答を生成し、UE200へ送信する(ステップS104)。そして、RA応答を受信したUE200は、RRC要求にスクランブル処理を施して送信する(ステップS105)。具体的には、UE200は、ステップS102において受信したSIBに含まれるセルの識別情報を用いてRRC要求にスクランブル処理を施して送信する。したがって、UE200は、ランダムアクセス処理中のDU120aではなく、SIBの送信元であるDU120bが形成するセルの識別情報によってRRC要求にスクランブル処理を施す。結果として、DU120aは、RA応答を送信した後にRRC要求を検出することがなく、ランダムアクセス処理が正常に終了しない。 The DU 120a that received the preamble generates an RA response to the preamble and transmits it to the UE 200 (step S104). Then, the UE 200 that has received the RA response scrambles the RRC request and transmits it (step S105). Specifically, the UE 200 scrambles the RRC request using the cell identification information included in the SIB received in step S102 and transmits the RRC request. Therefore, the UE 200 scrambles the RRC request not by the DU 120a during the random access process but by the cell identification information formed by the DU 120b that is the source of the SIB. As a result, the DU 120a does not detect the RRC request after transmitting the RA response, and the random access process does not end normally.
 一方、UE200は、RRC要求を送信したにも関わらず、RRC要求に対するRRC設定が受信されないため、ランダムアクセス処理が正常に終了せず、RRC接続が失敗したと判断する。そこで、UE200は、RRC接続の失敗回数をカウントし、RRC接続が失敗するセルの識別情報とともに失敗回数を記憶する。すなわち、ここでは、UE200は、DU120aが形成するセルの識別情報とともに、このセルにおけるRRC接続の失敗回数を記憶する。また、UE200は、改めてSIBを受信して、RA設定に従ったランダムアクセス処理を繰り返す。 On the other hand, the UE 200 determines that the random access process does not end normally and the RRC connection fails because the RRC setting for the RRC request is not received even though the RRC request is transmitted. Therefore, the UE 200 counts the number of failures of the RRC connection and stores the number of failures together with the identification information of the cell in which the RRC connection fails. That is, here, the UE 200 stores the identification information of the cell formed by the DU 120a and the number of failures of the RRC connection in this cell. Further, the UE 200 receives the SIB again and repeats the random access process according to the RA setting.
 ランダムアクセス処理を繰り返すことにより、UE200が送信するプリアンブルがDU120bによって受信され、UE200とDU120bによるランダムアクセス処理によってUE200とgNB100bのRRC接続が確立されることがある(ステップS106)。すなわち、UE200とDU120aの間及びUE200とDU120bの間の電波環境は変化するため、UE200が受信するSIBの送信元のDUや、UE200が送信するプリアンブルを受信するDUも変化する。このため、SIBの送信元のDUとプリアンブルを受信するDUとが一致して、UE200とDU120bの間のRRC接続が成功することがある。 By repeating the random access process, the preamble transmitted by the UE 200 may be received by the DU 120b, and the RRC connection between the UE 200 and the gNB 100b may be established by the random access process by the UE 200 and the DU 120b (step S106). That is, since the radio wave environment between the UE 200 and the DU 120a and between the UE 200 and the DU 120b changes, the DU that is the source of the SIB received by the UE 200 and the DU that receives the preamble transmitted by the UE 200 also change. Therefore, the DU that is the source of the SIB and the DU that receives the preamble may match, and the RRC connection between the UE 200 and the DU 120b may be successful.
 gNB100bとのRRC接続が確立されると、UE200は、メモリ230に記憶されたセルごとの失敗回数を所定の閾値と比較し、失敗回数が所定の閾値以上である場合には、RRC接続の失敗が多発する旨の通知をgNB100bへ送信する(ステップS107)。このとき、RRC接続の失敗が多発するセルの識別情報が判明している場合は、UE200は、このセルの識別情報もgNB100bへ送信する。 When the RRC connection with the gNB 100b is established, the UE 200 compares the number of failures for each cell stored in the memory 230 with a predetermined threshold value, and if the number of failures is equal to or greater than the predetermined threshold value, the RRC connection fails. Is transmitted to gNB100b (step S107). At this time, if the identification information of the cell in which the RRC connection failure occurs frequently is known, the UE 200 also transmits the identification information of this cell to the gNB 100b.
 RRC接続の失敗が多発する旨が通知されたgNB100bのCU110bは、RACH最適化の処理を起動する。具体的には、CU110bは、RRC接続の失敗が多発したセルを管轄するgNB100aのCU110aに対して、RA設定の変更を要求するRA設定変更要求を送信する(ステップS108)。なお、RRC接続の失敗が多発したセルの識別情報が不明である場合には、CU110bは、CU110aを含む周辺のCUに対してRA設定変更要求をマルチキャストしても良い。CU110bが送信するRA設定変更要求には、例えばDU120bのRA設定に関する情報が含まれる。 CU110b of gNB100b notified that RRC connection failures occur frequently activates RACH optimization processing. Specifically, the CU 110b transmits an RA setting change request requesting a change of the RA setting to the CU 110a of the gNB 100a that controls the cell in which the RRC connection failure frequently occurs (step S108). When the identification information of the cell in which the RRC connection failure occurs frequently is unknown, the CU 110b may multicast the RA setting change request to the peripheral CUs including the CU 110a. The RA setting change request transmitted by the CU 110b includes, for example, information regarding the RA setting of the DU 120b.
 RA設定変更要求を受信したCU110aは、DU120aのRA設定を変更すると決定し、DU120aに対してRA設定の変更を依頼する(ステップS109)。そして、CU110aは、DU120aがRA設定を変更すると、変更が完了した旨の通知を受信する(ステップS109)。このように、RA設定変更要求を受信したgNB100aにおいては、CU110aとDU120aの間で信号が送受信され、DU120aのRA設定が変更される。 Upon receiving the RA setting change request, the CU 110a decides to change the RA setting of the DU 120a and requests the DU 120a to change the RA setting (step S109). Then, when the DU 120a changes the RA setting, the CU 110a receives a notification that the change is completed (step S109). In this way, in the gNB 100a that has received the RA setting change request, a signal is transmitted and received between the CU 110a and the DU 120a, and the RA setting of the DU 120a is changed.
 RA設定が変更されると、CU110aは、変更完了通知をCU110bへ送信する(ステップS110)。これにより、DU120aのRA設定が変更されたことがCU110bへ通知されるとともに、DU120a、120bのRA設定の重複が解消される。なお、CU110bは、RA設定変更要求を送信した後、所定時間が経過しても変更完了通知が受信されない場合には、DU120bのRA設定を変更すると決定し、DU120bに対してRA設定の変更を依頼しても良い(ステップS111)。そして、DU120bがRA設定を変更すると、変更が完了した旨の通知を受信するようにしても良い(ステップS111)。これにより、DU120aのRA設定が変更されない場合でも、DU120bのRA設定を変更し、DU120a、120bのRA設定の重複を解消することができる。 When the RA setting is changed, the CU 110a sends a change completion notification to the CU 110b (step S110). As a result, the CU 110b is notified that the RA settings of the DU 120a have been changed, and the duplication of the RA settings of the DU 120a and 120b is eliminated. The CU 110b decides to change the RA setting of the DU 120b if the change completion notification is not received even after a predetermined time has elapsed after transmitting the RA setting change request, and changes the RA setting for the DU 120b. You may request it (step S111). Then, when the DU 120b changes the RA setting, a notification that the change is completed may be received (step S111). Thereby, even if the RA setting of the DU 120a is not changed, the RA setting of the DU 120b can be changed and the duplication of the RA setting of the DU 120a and 120b can be eliminated.
 このように、UE200からRRC接続の失敗が多発することが通知されると、CU110bは、RACH最適化の処理を起動して、CU110a経由でDU120aのRA設定を変更させるか、又はDU120bのRA設定を変更させる。このため、実際にRRC接続の失敗が多発する場合にのみRA設定の変更のための信号送受信が発生するので、トラフィックの増大を抑制することができる。また、RRC接続の失敗が多発する場合には、UE200とgNB100bとのRRC接続が確立されるとすぐにRACH最適化処理が起動されるため、迅速にRA設定の重複を解消することができる。換言すれば、適切なタイミングでRACH最適化を実行することができる。 In this way, when the UE 200 notifies that RRC connection failures occur frequently, the CU 110b activates the RACH optimization process to change the RA setting of the DU 120a via the CU 110a, or the RA setting of the DU 120b. To change. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic. Further, when the RRC connection failure occurs frequently, the RACH optimization process is started as soon as the RRC connection between the UE 200 and the gNB 100b is established, so that the duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
 次に、RACH最適化におけるUE200の動作について、図6に示すフロー図を参照しながら説明する。 Next, the operation of the UE 200 in RACH optimization will be described with reference to the flow chart shown in FIG.
 無線IF部210によって、UE200が在圏するセルにおいて報知されるSIBが受信される(ステップS201)。SIBにはRA設定に関する情報が含まれるため、RA処理部221によって、RA設定に従ってプリアンブルが送信される(ステップS202)。プリアンブルは、RA設定に従って送信されるため、RA設定が同一のDUが複数ある場合には、SIBの送信元ではない他のDUによってプリアンブルが受信されることがある。この場合でも、他のDUは、プリアンブルに対するRA応答を生成して送信する。 The wireless IF unit 210 receives the SIB notified in the cell in which the UE 200 is located (step S201). Since the SIB contains information regarding the RA setting, the RA processing unit 221 transmits the preamble according to the RA setting (step S202). Since the preamble is transmitted according to the RA setting, if there are a plurality of DUs having the same RA setting, the preamble may be received by another DU that is not the source of the SIB. Even in this case, the other DUs generate and transmit an RA response to the preamble.
 プリアンブルの送信後、RA処理部221によってRA応答の受信が待機され(ステップS203)、RA応答が受信されなければ(ステップS203No)、再度SIBの受信から処理が繰り返される。一方、RA応答が受信されると(ステップS203Yes)、RA処理部221によって、RRC要求が生成されて送信される(ステップS204)。このとき、RRC要求は、SIBに含まれるセルの識別情報を用いてスクランブル処理される。したがって、SIBの送信元のDUのみが検出可能なRRC要求が送信される。 After the preamble is transmitted, the RA processing unit 221 waits for the reception of the RA response (step S203), and if the RA response is not received (step S203No), the process is repeated from the reception of the SIB again. On the other hand, when the RA response is received (step S203Yes), the RA processing unit 221 generates and transmits an RRC request (step S204). At this time, the RRC request is scrambled using the cell identification information included in the SIB. Therefore, an RRC request that can be detected only by the DU that is the source of the SIB is transmitted.
 RRC要求の送信後、RA処理部221によってRRC設定の受信が待機され(ステップS205)、RRC設定が受信されなければ(ステップS205No)、セルごとのRRC接続の失敗回数がインクリメントされてメモリ230に記憶される。すなわち、RRC接続の失敗回数がセルごとにカウントされる(ステップS206)。そして、RRC接続が失敗した場合は、再度SIBの受信から処理が繰り返される。SIBはUE200の周辺のgNB100からそれぞれ送信されており、電波環境も変化するため、SIBの受信から処理が繰り返される場合に、毎回同一のgNB100との間でランダムアクセス処理が実行されるとは限らない。このため、処理が繰り返されるうちに、いずれかのgNB100との間でランダムアクセス処理が成功し、RRC設定が受信されることがある。 After the RRC request is transmitted, the RA processing unit 221 waits for the reception of the RRC setting (step S205), and if the RRC setting is not received (step S205No), the number of RRC connection failures for each cell is incremented to the memory 230. Be remembered. That is, the number of RRC connection failures is counted for each cell (step S206). Then, when the RRC connection fails, the process is repeated from the reception of the SIB again. Since each SIB is transmitted from the gNB 100 around the UE 200 and the radio wave environment changes, the random access process is not always executed with the same gNB 100 every time the process is repeated from the reception of the SIB. Absent. Therefore, while the process is repeated, the random access process with any gNB 100 may succeed and the RRC setting may be received.
 RRC設定が受信されると(ステップS205Yes)、RRC処理部222によって、メモリ230に記憶されたRRC接続の失敗回数が参照され、失敗回数が所定の閾値以上であるか否かが判定される(ステップS207)。この判定の結果、失敗回数が所定の回数未満である場合には(ステップS207No)、RA設定の重複は発生しておらずRACHの最適化が不要であるため、UE200は、RRC接続したgNB100と通常の通信を継続する。 When the RRC setting is received (step S205Yes), the RRC processing unit 222 refers to the number of RRC connection failures stored in the memory 230, and determines whether or not the number of failures is equal to or greater than a predetermined threshold value (step S205Yes). Step S207). As a result of this determination, when the number of failures is less than a predetermined number (step S207No), since the RA settings are not duplicated and the RACH optimization is unnecessary, the UE 200 is connected to the RRC-connected gNB 100. Continue normal communication.
 これに対して、失敗回数が所定の回数以上である場合には(ステップS207Yes)、RRC接続したgNB100に対して、RRC接続の失敗が多発したことが通知される(ステップS208)。すなわち、RRC接続の失敗回数が多い場合には、RA設定の重複が発生しておりRACHの最適化が必要であるため、UE200は、RRC接続したgNB100に対して、RRC接続の失敗が多発したことを通知する。この通知には、RRC接続の失敗が発生したセルの識別情報が含まれていても良い。RRC接続の失敗が多発したことが通知されるgNB100は、RACH最適化の処理を起動してRA設定の重複を解消する。 On the other hand, when the number of failures is equal to or greater than a predetermined number (step S207Yes), the gNB100 connected to the RRC is notified that many failures of the RRC connection have occurred (step S208). That is, when the number of RRC connection failures is large, the RA settings are duplicated and the RACH needs to be optimized. Therefore, the UE 200 frequently fails the RRC connection with respect to the gNB 100 connected by the RRC. Notify that. This notification may include identification information of the cell in which the RRC connection failed. The gNB 100, which is notified of the frequent occurrence of RRC connection failures, activates the RACH optimization process to eliminate the duplication of RA settings.
 図7は、RRC接続の失敗が多発したことが通知されるgNB100の動作を示すフロー図である。このgNB100は、例えば図5に示したgNB100bに相当する。 FIG. 7 is a flow chart showing the operation of the gNB 100 in which it is notified that RRC connection failures occur frequently. This gNB 100 corresponds to, for example, the gNB 100b shown in FIG.
 DU120の無線IF部123によって、RRC接続の失敗多発の通知がUE200から受信されると(ステップS211)、この通知は、伝送路IF部121からCU110へ転送され、CU110のRRC処理部115によって取得される。そして、RACH最適化制御部116によって、RA設定の変更を要求するRA設定変更要求が、有線IF部111からRRC接続の失敗が多発したセルを管轄するgNBのCUへ送信される(ステップS212)。このとき、RRC接続の失敗が多発したセルが特定されなければ、RA設定変更要求が周辺のgNBのCUへマルチキャストされても良い。 When the wireless IF unit 123 of the DU 120 receives a notification of frequent RRC connection failures from the UE 200 (step S211), this notification is transferred from the transmission line IF unit 121 to the CU 110 and acquired by the RRC processing unit 115 of the CU 110. Will be done. Then, the RACH optimization control unit 116 transmits the RA setting change request requesting the change of the RA setting from the wired IF unit 111 to the CU of the gNB that controls the cell in which the RRC connection failure frequently occurs (step S212). .. At this time, if the cell in which the RRC connection failure frequently occurs is not specified, the RA setting change request may be multicast to the CU of the surrounding gNB.
 その後、RACH最適化制御部116によって、RA設定の変更が完了した旨の変更完了通知が待機され(ステップS213)、RA設定変更要求の送信先のCUから変更完了通知が受信された場合には(ステップS213Yes)、RACH最適化処理が終了する。一方、変更完了通知が受信されない場合には(ステップS213No)、RACH最適化制御部116によって、DU120のRA設定を変更することが決定され、伝送路IF部113からDU120へ、RA設定を変更するように依頼される(ステップS214)。 After that, when the RACH optimization control unit 116 waits for the change completion notification to the effect that the RA setting change is completed (step S213) and receives the change completion notification from the CU to which the RA setting change request is sent, the change completion notification is received. (Step S213Yes), the RACH optimization process is completed. On the other hand, when the change completion notification is not received (step S213No), the RACH optimization control unit 116 determines that the RA setting of the DU 120 is changed, and the RA setting is changed from the transmission line IF unit 113 to the DU 120. Is requested (step S214).
 この依頼を受けたDU120においては、RA設定制御部126によって、RA設定が変更される(ステップS215)。ここでのRA設定の変更は、現在のRA設定とは異なる任意のRA設定に変更しても良いし、無線IF部123によって受信可能なSIBから周辺のDUのRA設定に関する情報を収集し、これらのRA設定とは異なるRA設定に変更しても良い。また、CU110が周辺のgNBのCUからRA設定に関する情報を収集し、これらのRA設定とは異なるRA設定に変更するようにDU120へ指示しても良い。RA設定制御部126によってRA設定が変更されると、伝送路IF部121を介して、変更が完了したことがCU110へ通知される(ステップS216)。 In the DU 120 that received this request, the RA setting is changed by the RA setting control unit 126 (step S215). The RA setting may be changed to any RA setting different from the current RA setting, or information on the RA setting of the surrounding DU may be collected from the SIB receivable by the wireless IF unit 123. The RA settings may be changed to different from these RA settings. Further, the CU 110 may instruct the DU 120 to collect information on RA settings from the CUs of the surrounding gNBs and change the RA settings to different from these RA settings. When the RA setting is changed by the RA setting control unit 126, the CU 110 is notified via the transmission line IF unit 121 that the change has been completed (step S216).
 このように、RRC接続の失敗が多発したことがUE200からgNB100へ通知されると、失敗が多発したセルを管轄するgNBに対してRA設定の変更が要求され、要求に対する応答がない場合には、gNB100のDU120においてRA設定が変更される。このため、RA設定の重複によりRRC接続の失敗が発生する場合に、RA設定の重複を解消することができ、適切なタイミングでRACH最適化を実行することができる。 In this way, when the UE 200 notifies the gNB 100 that RRC connection failures occur frequently, the gNB that controls the cell in which the failures occur frequently is requested to change the RA setting, and if there is no response to the request, , RA setting is changed in DU120 of gNB100. Therefore, when the RRC connection fails due to the duplication of RA settings, the duplication of RA settings can be eliminated, and RACH optimization can be executed at an appropriate timing.
 図8は、RA設定の変更が要求されるgNB100の動作を示すフロー図である。このgNB100は、例えば図5に示したgNB100aに相当する。 FIG. 8 is a flow chart showing the operation of the gNB 100 in which the RA setting is required to be changed. This gNB 100 corresponds to, for example, the gNB 100a shown in FIG.
 CU110の有線IF部111によって、RA設定変更要求が受信されると(ステップS221)、RACH最適化制御部116によって、DU120のRA設定を変更することが決定され、伝送路IF部113からDU120へ、RA設定を変更するように依頼される(ステップS222)。 When the RA setting change request is received by the wired IF unit 111 of the CU 110 (step S221), the RACH optimization control unit 116 determines that the RA setting of the DU 120 is changed, and the transmission line IF unit 113 to the DU 120. , You are asked to change the RA settings (step S222).
 この依頼を受けたDU120においては、RA設定制御部126によって、RA設定が変更される(ステップS223)。ここでのRA設定の変更は、現在のRA設定とは異なる任意のRA設定に変更しても良いし、無線IF部123によって受信可能なSIBから周辺のDUのRA設定に関する情報を収集し、これらのRA設定とは異なるRA設定に変更しても良い。また、CU110が周辺のgNBのCUからRA設定に関する情報を収集し、これらのRA設定とは異なるRA設定に変更するようにDU120へ指示しても良い。RA設定制御部126によってRA設定が変更されると、伝送路IF部121を介して、変更が完了したことがCU110へ通知される(ステップS224)。そして、RACH最適化制御部116によって、RA設定の変更が完了したことを通知する変更完了通知が生成され、有線IF部111を介してRA設定変更要求の送信元のCUへ送信される(ステップS225)。 In the DU 120 that received this request, the RA setting is changed by the RA setting control unit 126 (step S223). The RA setting may be changed to any RA setting different from the current RA setting, or information on the RA setting of the surrounding DU may be collected from the SIB receivable by the wireless IF unit 123. The RA settings may be changed to different from these RA settings. Further, the CU 110 may instruct the DU 120 to collect information on RA settings from the CUs of the surrounding gNBs and change the RA settings to different from these RA settings. When the RA setting is changed by the RA setting control unit 126, the CU 110 is notified via the transmission line IF unit 121 that the change has been completed (step S224). Then, the RACH optimization control unit 116 generates a change completion notification notifying that the change of the RA setting is completed, and transmits the change completion notification to the CU of the transmission source of the RA setting change request via the wired IF unit 111 (step). S225).
 このように、CU110によってRA設定変更要求が受信されると、CU110からDU120へRA設定の変更が依頼され、DU120におけるRA設定が変更される。このため、RA設定の重複によりRRC接続の失敗が発生する場合に、RA設定の重複を解消することができ、適切なタイミングでRACH最適化を実行することができる。 In this way, when the RA setting change request is received by the CU 110, the CU 110 requests the DU 120 to change the RA setting, and the RA setting in the DU 120 is changed. Therefore, when the RRC connection fails due to the duplication of RA settings, the duplication of RA settings can be eliminated, and RACH optimization can be executed at an appropriate timing.
 以上のように、本実施の形態によれば、UEがRRC接続の失敗回数をカウントし、gNBとのRRC接続が確立されると、RRC接続の失敗が多発したことを通知する。そして、gNBは、RRC接続の失敗が多発したセルを管轄するgNBのCUに対して、RA設定の変更を要求する。RA設定の変更が要求されたgNBのCUは、DUに対してRA設定の変更を依頼し、DUがRA設定を変更する。このため、実際にRRC接続の失敗が多発する場合にのみRA設定変更のための信号送受信が発生するので、RACH最適化に係るトラフィックの増大を抑制することができる。また、RRC接続の失敗が多発する場合には、UEとgNBのRRC接続が確立されるとすぐにRACH最適化処理が起動されるため、迅速にRA設定の重複を解消することができる。換言すれば、適切なタイミングでRACH最適化を実行することができる。 As described above, according to the present embodiment, the UE counts the number of RRC connection failures, and when the RRC connection with the gNB is established, it notifies that the RRC connection failures have occurred frequently. Then, the gNB requests the CU of the gNB that controls the cell in which the RRC connection failure occurs frequently to change the RA setting. The gNB CU requested to change the RA setting requests the DU to change the RA setting, and the DU changes the RA setting. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic related to RACH optimization. Further, when RRC connection failures occur frequently, the RACH optimization process is started as soon as the RRC connection between the UE and gNB is established, so that the duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
 なお、上記実施の形態1においては、UE200からRRC接続の失敗が多発することを通知されるgNB100(gNB100b)がRA設定変更要求を他のgNB100(gNB100a)へ送信するものとした。しかしながら、失敗多発が通知されたgNB100(gNB100b)が、RA設定変更要求を送信することなくRA設定を変更しても良い。この場合のRACH最適化方法を示すシーケンス図を図9に示す。図9において、図5と同じ部分には同じ符号を付す。 In the first embodiment, the gNB 100 (gNB 100b) notified by the UE 200 that RRC connection failures occur frequently transmits a RA setting change request to another gNB 100 (gNB 100a). However, the gNB 100 (gNB 100b) notified of frequent failures may change the RA setting without transmitting the RA setting change request. A sequence diagram showing the RACH optimization method in this case is shown in FIG. In FIG. 9, the same parts as those in FIG. 5 are designated by the same reference numerals.
 図9に示すように、UE200が、RRC接続の失敗が多発する旨の通知をgNB100bへ送信すると(ステップS107)、gNB100bのCU110bは、RACH最適化の処理を起動する。ここでは、CU110bは、CU110aに対してRA設定変更要求を送信するのではなく、DU120bのRA設定を変更すると決定し、DU120bに対してRA設定の変更を依頼する(ステップS121)。そして、DU120bがRA設定を変更すると、CU110bは、変更が完了した旨の通知を受信する。 As shown in FIG. 9, when the UE 200 transmits a notification to the gNB 100b that RRC connection failures occur frequently (step S107), the CU 110b of the gNB 100b activates the RACH optimization process. Here, the CU 110b decides to change the RA setting of the DU 120b instead of transmitting the RA setting change request to the CU 110a, and requests the DU 120b to change the RA setting (step S121). Then, when the DU 120b changes the RA setting, the CU 110b receives a notification that the change is completed.
 このように、RRC接続の失敗が多発したgNB100aにおけるRA設定と、RRC接続の失敗が多発する旨の通知を受信したgNB100bにおけるRA設定とが重複する場合には、gNB100bが自らRA設定を変更することにより、RA設定の重複を解消することができる。 In this way, when the RA setting in the gNB100a where RRC connection failures occur frequently and the RA setting in the gNB100b which receives the notification that the RRC connection failure occurs frequently overlap, the gNB100b changes the RA setting by itself. Thereby, the duplication of RA settings can be eliminated.
 また、上記実施の形態1においては、RRC接続の失敗が多発したgNB100aにおけるRA設定と同一のRA設定を有するgNB100bに、RRC接続の失敗が多発する旨が通知されるものとした。これは、UE200がgNB100aとのRRC接続を失敗するたびにランダムアクセス処理を繰り返し、gNB100bとのRRC接続を確立するためである。しかしながら、UE200がランダムアクセス処理を繰り返した結果、gNB100aにおけるRA設定とは異なるRA設定を有するgNBとRRC接続が確立されることもある。 Further, in the first embodiment, it is assumed that the gNB100b having the same RA setting as the RA setting in the gNB100a in which the RRC connection failure occurs frequently is notified that the RRC connection failure occurs frequently. This is because the random access process is repeated every time the UE 200 fails the RRC connection with the gNB 100a to establish the RRC connection with the gNB 100b. However, as a result of the UE 200 repeating the random access process, an RRC connection may be established with the gNB having an RA setting different from the RA setting in the gNB 100a.
 図10は、UE200がgNB100a、100bとは異なるRA設定を有するgNB100cとRRC接続を確立する場合のRACH最適化方法を示すシーケンス図である。図10において、図5と同じ部分には同じ符号を付す。 FIG. 10 is a sequence diagram showing a RACH optimization method when the UE 200 establishes an RRC connection with a gNB100c having a RA setting different from that of the gNB100a and 100b. In FIG. 10, the same parts as those in FIG. 5 are designated by the same reference numerals.
 図10に示すように、UE200は、SIBによって各gNBのRA設定を取得し、RRC接続が失敗する間は、RA設定に従ったランダムアクセス処理を繰り返す(ステップS101~S105)。そして、gNB100a、100bとはRA設定が異なるgNB100cからSIBが受信され、UE200によってgNB100cのRA設定が取得されると、UE200は、gNB100cのRA設定に従ってランダムアクセス処理を実行する。この結果、UE200とgNB100cとの間のRRC接続が確立されることがある(ステップS131)。 As shown in FIG. 10, the UE 200 acquires the RA setting of each gNB by the SIB, and repeats the random access process according to the RA setting while the RRC connection fails (steps S101 to S105). Then, when the SIB is received from the gNB 100c whose RA setting is different from that of the gNB 100a and 100b and the RA setting of the gNB 100c is acquired by the UE 200, the UE 200 executes the random access process according to the RA setting of the gNB 100c. As a result, an RRC connection between the UE 200 and the gNB 100c may be established (step S131).
 gNB100cとのRRC接続が確立されると、UE200は、メモリ230に記憶されたセルごとの失敗回数を所定の閾値と比較し、失敗回数が所定の閾値以上である場合には、RRC接続の失敗が多発する旨の通知をgNB100cへ送信する(ステップS132)。このとき、RRC接続の失敗が多発するセルの識別情報が判明している場合は、UE200は、このセルの識別情報もgNB100cへ送信する。 When the RRC connection with the gNB 100c is established, the UE 200 compares the number of failures for each cell stored in the memory 230 with a predetermined threshold value, and if the number of failures is equal to or greater than the predetermined threshold value, the RRC connection fails. Is transmitted to the gNB 100c (step S132). At this time, if the identification information of the cell in which the RRC connection failure occurs frequently is known, the UE 200 also transmits the identification information of this cell to the gNB 100c.
 RRC接続の失敗が多発する旨が通知されたgNB100cは、RRC接続の失敗が多発したセルを管轄するgNB100aのCU110aに対して、RA設定の変更を要求するRA設定変更要求を送信する(ステップS133)。なお、RRC接続の失敗が多発したセルの識別情報が不明である場合には、gNB100cは、CU110aを含む周辺のgNBに対してRA設定変更要求をマルチキャストしても良い。 The gNB100c notified that the RRC connection failure occurs frequently sends an RA setting change request requesting the RA setting change to the CU110a of the gNB100a that controls the cell in which the RRC connection failure occurs frequently (step S133). ). When the identification information of the cell in which the RRC connection failure occurs frequently is unknown, the gNB 100c may multicast the RA setting change request to the surrounding gNB including the CU110a.
 RA設定変更要求を受信したCU110aは、DU120aに対してRA設定の変更を依頼し、DU120aがRA設定を変更すると、変更が完了した旨の通知を受信する(ステップS109)。そして、CU110aは、変更完了通知をgNB100cへ送信する(ステップS134)。これにより、DU120aのRA設定が変更されたことがgNB100cへ通知されるとともに、DU120a、120bのRA設定の重複が解消される。 The CU 110a that has received the RA setting change request requests the DU 120a to change the RA setting, and when the DU 120a changes the RA setting, it receives a notification that the change is completed (step S109). Then, the CU 110a transmits a change completion notification to the gNB 100c (step S134). As a result, the gNB 100c is notified that the RA setting of the DU 120a has been changed, and the duplication of the RA setting of the DU 120a and 120b is eliminated.
(実施の形態2)
 実施の形態2の特徴は、ランダムアクセス処理が正常に終了しないことをDUが検知し、gNB主導でRACH最適化を開始する点である。
(Embodiment 2)
The feature of the second embodiment is that the DU detects that the random access process does not end normally and starts RACH optimization led by gNB.
 実施の形態2に係る無線通信システムの構成は、実施の形態1に係る無線通信システム(図2)と同様であるため、その説明を省略する。また、実施の形態2に係るgNB100及びUE200の構成も、実施の形態1に係るgNB100(図3)及びUE200(図4)と同様であるため、その説明を省略する。ただし、実施の形態2においては、gNB100とUE200の間のRRC接続が失敗する場合のgNB100及びUE200の動作が実施の形態1とは異なる。 Since the configuration of the wireless communication system according to the second embodiment is the same as that of the wireless communication system (FIG. 2) according to the first embodiment, the description thereof will be omitted. Further, since the configurations of the gNB 100 and the UE 200 according to the second embodiment are the same as those of the gNB 100 (FIG. 3) and the UE 200 (FIG. 4) according to the first embodiment, the description thereof will be omitted. However, in the second embodiment, the operation of the gNB 100 and the UE 200 when the RRC connection between the gNB 100 and the UE 200 fails is different from that of the first embodiment.
 図11は、実施の形態2に係るRACH最適化方法を示すシーケンス図である。図11において、図5と同じ部分には同じ符号を付し、その詳しい説明を省略する。以下においては、gNB100a、100bのDU120a、120bが同一のRA設定を有するものとして説明する。 FIG. 11 is a sequence diagram showing the RACH optimization method according to the second embodiment. In FIG. 11, the same parts as those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted. In the following, it is assumed that the DU 120a and 120b of the gNB 100a and 100b have the same RA setting.
 gNB100a、100bのDU120a、120bからは、RA設定の情報を含むSIBが送信される(ステップS101、S102)。ここでは、DU120a、120bのRA設定が同一であるため、DU120a、120bから送信されるSIBには、同一のRA設定に関する情報が含まれる。また、例えば電波環境の状況などにより、ここではDU120aから送信されるSIBがUE200によって受信されないものとする。 DU120a and 120b of gNB100a and 100b transmit SIBs including RA setting information (steps S101 and S102). Here, since the RA settings of the DUs 120a and 120b are the same, the SIB transmitted from the DUs 120a and 120b includes information regarding the same RA settings. Further, it is assumed that the SIB transmitted from the DU 120a is not received by the UE 200 here due to, for example, the condition of the radio wave environment.
 SIBを受信したUE200は、SIBに含まれるRA設定に従って、ランダムアクセス用のプリアンブルを送信する(ステップS103)。このとき、UE200とDU120aの間の電波環境が改善されていれば、プリアンブルは、DU120aによって受信されることがある。 The UE 200 that has received the SIB transmits a preamble for random access according to the RA setting included in the SIB (step S103). At this time, if the radio wave environment between the UE 200 and the DU 120a is improved, the preamble may be received by the DU 120a.
 プリアンブルを受信したDU120aは、プリアンブルに対するRA応答を生成し、UE200へ送信する(ステップS104)。そして、RA応答を受信したUE200は、ステップS102において受信したSIBに含まれるセルの識別情報を用いてRRC要求にスクランブル処理を施して送信する(ステップS105)。結果として、DU120aは、RA応答を送信した後にRRC要求を検出することがなく、ランダムアクセス処理が正常に終了しない。また、UE200は、RRC要求を送信したにも関わらず、RRC要求に対するRRC設定が受信されないため、改めてSIBを受信して、RA設定に従ったランダムアクセス処理を繰り返す。 The DU 120a that received the preamble generates an RA response to the preamble and transmits it to the UE 200 (step S104). Then, the UE 200 that has received the RA response scrambles the RRC request using the cell identification information included in the SIB received in step S102 and transmits it (step S105). As a result, the DU 120a does not detect the RRC request after transmitting the RA response, and the random access process does not end normally. Further, although the UE 200 has transmitted the RRC request, the RRC setting for the RRC request is not received, so the UE 200 receives the SIB again and repeats the random access process according to the RA setting.
 ランダムアクセス処理が繰り返される間、DU120aは、ランダムアクセス処理が正常に終了しないことを検出し、RRC接続の失敗回数をカウントし記憶する。すなわち、DU120aは、RA応答を送信したにも関わらず、後続するRRC要求が検出されない回数をRRC接続の失敗回数としてカウントする。そして、DU120aは、メモリ124に記憶された失敗回数を所定の閾値と比較し、失敗回数が所定の閾値以上である場合には、RACHの最適化をCU110aに要求する(ステップS301)。このとき、DU120aは、現在のRA設定をCU110aに通知する。 While the random access process is repeated, the DU 120a detects that the random access process does not end normally, and counts and stores the number of RRC connection failures. That is, the DU 120a counts the number of times that the subsequent RRC request is not detected even though the RA response is transmitted, as the number of times the RRC connection has failed. Then, the DU 120a compares the number of failures stored in the memory 124 with a predetermined threshold value, and requests the CU 110a to optimize the RACH when the number of failures is equal to or greater than the predetermined threshold value (step S301). At this time, the DU 120a notifies the CU 110a of the current RA setting.
 そして、CU110aは、CU110bを含む周辺のgNBのCUに対して、DU120aのRA設定を通知する(ステップS302)。RA設定が通知されたCU110bは、通知されたDU120aのRA設定とDU120bのRA設定とを比較し、RA設定が重複する場合には、DU120bのRA設定を変更すると決定し、DU120bに対してRA設定の変更を依頼する(ステップS303)。DU120bは、CU110bからの依頼を受けてRA設定を変更すると、変更が完了したことをCU110bへ通知する(ステップS303)。このように、RA設定が通知されたgNB100bにおいては、通知されたRA設定とgNB100bのRA設定とが重複する場合に、CU110bとDU120bの間で信号が送受信され、DU120bのRA設定が変更される。 Then, the CU 110a notifies the CU of the surrounding gNB including the CU 110b of the RA setting of the DU 120a (step S302). The CU110b notified of the RA setting compares the RA setting of the notified DU120a with the RA setting of the DU120b, and if the RA setting overlaps, it is determined to change the RA setting of the DU120b, and the RA is set to the DU120b. Request a change in settings (step S303). When the DU 120b changes the RA setting in response to the request from the CU 110b, the DU 120b notifies the CU 110b that the change is completed (step S303). In this way, in the gNB100b notified of the RA setting, when the notified RA setting and the RA setting of the gNB100b overlap, a signal is transmitted and received between the CU 110b and the DU 120b, and the RA setting of the DU 120b is changed. ..
 RA設定が変更されると、CU110bは、変更完了通知をCU110aへ送信する(ステップS304)。これにより、DU120bのRA設定が変更されたことがCU110aへ通知されるとともに、DU120a、120bのRA設定の重複が解消される。なお、CU110aは、DU120aのRA設定を周辺のCUに通知した後、所定時間が経過しても変更完了通知が受信されない場合には、DU120aのRA設定を変更すると決定し、DU120aに対してRA設定の変更を依頼しても良い(ステップS305)。そして、DU120aがRA設定を変更すると、変更が完了した旨の通知を受信するようにしても良い(ステップS305)。これにより、DU120bのRA設定が変更されない場合でも、DU120aのRA設定を変更し、DU120a、120bのRA設定の重複を解消することができる。 When the RA setting is changed, the CU110b sends a change completion notification to the CU110a (step S304). As a result, the CU 110a is notified that the RA settings of the DU 120b have been changed, and the duplication of the RA settings of the DU 120a and 120b is eliminated. The CU 110a determines that the RA setting of the DU 120a is changed if the change completion notification is not received even after a predetermined time has elapsed after notifying the surrounding CUs of the RA setting of the DU 120a, and RAs the DU 120a. You may request a change in the settings (step S305). Then, when the DU 120a changes the RA setting, a notification that the change is completed may be received (step S305). Thereby, even if the RA setting of the DU 120b is not changed, the RA setting of the DU 120a can be changed and the duplication of the RA setting of the DU 120a and 120b can be eliminated.
 このように、UE200とのRRC接続の失敗が多発することがDU120aから通知されると、CU110aは、CU110b経由でDU120bのRA設定を変更させるか、又はDU120aのRA設定を変更させる。このため、実際にRRC接続の失敗が多発する場合にのみRA設定の変更のための信号送受信が発生するので、トラフィックの増大を抑制することができる。また、RRC接続の失敗が多発する場合には、失敗多発がDU120aによって検知されてRACH最適化処理が起動されるため、迅速にRA設定の重複を解消することができる。換言すれば、適切なタイミングでRACH最適化を実行することができる。 In this way, when the DU120a notifies that the RRC connection with the UE 200 frequently fails, the CU110a causes the RA setting of the DU120b to be changed via the CU110b, or the RA setting of the DU120a to be changed. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic. Further, when RRC connection failures occur frequently, the DU120a detects the frequent failures and activates the RACH optimization process, so that the duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
 図12は、UE200との間でRRC接続の失敗が多発するgNB100の動作を示すフロー図である。このgNB100は、例えば図11に示したgNB100aに相当する。 FIG. 12 is a flow diagram showing the operation of the gNB 100 in which RRC connection failures frequently occur with the UE 200. This gNB 100 corresponds to, for example, the gNB 100a shown in FIG.
 gNB100のRA設定に従ったプリアンブルが無線IF部123によって受信されると(ステップS401)、RA処理部125によって、プリアンブルに対するRA応答が生成され、無線IF部123から送信される(ステップS402)。RA応答の送信後、RA処理部125によってRRC要求の受信が待機され(ステップS403)、gNB100のセルの識別情報によってデスクランブル可能なRRC要求が受信されれば(ステップS403Yes)、RRC要求の送信元へRRC設定が送信されてRRC接続が確立される。 When the preamble according to the RA setting of the gNB 100 is received by the radio IF unit 123 (step S401), the RA processing unit 125 generates an RA response to the preamble and transmits it from the radio IF unit 123 (step S402). After the RA response is transmitted, the RA processing unit 125 waits for the reception of the RRC request (step S403), and if the descrambleable RRC request is received by the cell identification information of the gNB 100 (step S403Yes), the RRC request is transmitted. The RRC settings are sent back and the RRC connection is established.
 一方、RA応答の送信後、gNB100のセルの識別情報によってデスクランブル可能なRRC要求が受信されなければ(ステップS403No)、RRC接続の失敗回数がインクリメントされてメモリ124に記憶される。すなわち、RRC接続の失敗回数がカウントされる(ステップS404)。そして、RA処理部125によって、メモリ124に記憶されたRRC接続の失敗回数が参照され、失敗回数が所定の閾値以上であるか否かが判定される(ステップS405)。この判定の結果、失敗回数が所定の回数未満である場合には(ステップS405No)、引き続きgNB100のRA設定に従ったプリアンブルの受信からランダムアクセス処理が繰り返される。 On the other hand, if a descrambleable RRC request is not received by the identification information of the cell of gNB100 after the RA response is transmitted (step S403No), the number of RRC connection failures is incremented and stored in the memory 124. That is, the number of RRC connection failures is counted (step S404). Then, the RA processing unit 125 refers to the number of failures of the RRC connection stored in the memory 124, and determines whether or not the number of failures is equal to or greater than a predetermined threshold value (step S405). As a result of this determination, if the number of failures is less than a predetermined number (step S405No), the random access process is repeated from the reception of the preamble according to the RA setting of gNB100.
 これに対して、失敗回数が所定の回数以上である場合には(ステップS405Yes)、伝送路IF部121を介して、RRC接続の失敗が多発することがCU110へ通知される(ステップS406)。このとき、DU120の現在のRA設定もCU110へ通知される。そして、CU110のRACH最適化制御部116によって、DU120のRA設定を含むRA設定変更要求が生成され、有線IF部111から周辺のgNBのCUへ送信される(ステップS407)。 On the other hand, when the number of failures is equal to or greater than a predetermined number (step S405 Yes), the CU 110 is notified via the transmission line IF unit 121 that RRC connection failures occur frequently (step S406). At this time, the current RA setting of the DU 120 is also notified to the CU 110. Then, the RACH optimization control unit 116 of the CU 110 generates an RA setting change request including the RA setting of the DU 120, which is transmitted from the wired IF unit 111 to the CU of the surrounding gNB (step S407).
 その後、RACH最適化制御部116によって、RA設定の変更が完了した旨の変更完了通知が待機され(ステップS408)、RA設定変更要求の送信先のいずれかのCUから変更完了通知が受信された場合には(ステップS408Yes)、RACH最適化処理が終了する。一方、変更完了通知が受信されない場合には(ステップS408No)、RACH最適化制御部116によって、伝送路IF部113を介して、RA設定を変更することがDU120へ依頼される(ステップS409)。 After that, the RACH optimization control unit 116 waits for the change completion notification that the RA setting change is completed (step S408), and the change completion notification is received from any CU of the destination of the RA setting change request. In the case (step S408Yes), the RACH optimization process ends. On the other hand, when the change completion notification is not received (step S408No), the RACH optimization control unit 116 requests the DU 120 to change the RA setting via the transmission line IF unit 113 (step S409).
 この依頼を受けたDU120においては、RA設定制御部126によって、RA設定が変更される(ステップS410)。ここでのRA設定の変更は、現在のRA設定とは異なる任意のRA設定に変更しても良いし、無線IF部123によって受信可能なSIBから周辺のDUのRA設定に関する情報を収集し、これらのRA設定とは異なるRA設定に変更しても良い。また、CU110が周辺のgNBのCUからRA設定に関する情報を収集し、これらのRA設定とは異なるRA設定に変更するようにDU120へ指示しても良い。RA設定制御部126によってRA設定が変更されると、伝送路IF部121を介して、変更が完了したことがCU110へ通知される(ステップS411)。 In the DU 120 that received this request, the RA setting is changed by the RA setting control unit 126 (step S410). The RA setting may be changed to any RA setting different from the current RA setting, or information on the RA setting of the surrounding DU may be collected from the SIB receivable by the wireless IF unit 123. The RA settings may be changed to different from these RA settings. Further, the CU 110 may instruct the DU 120 to collect information on RA settings from the CUs of the surrounding gNBs and change the RA settings to different from these RA settings. When the RA setting is changed by the RA setting control unit 126, the CU 110 is notified via the transmission line IF unit 121 that the change has been completed (step S411).
 このように、RRC接続の失敗が多発したことがgNB100によって検知されると、gNB100のCU110は、gNB100のRA設定を周辺のgNBへ通知して、同一のRA設定を有する場合にはRA設定を変更するように要求する。要求に対する応答がない場合には、gNB100のDU120においてRA設定が変更される。このため、RA設定の重複によりRRC接続の失敗が発生する場合に、RA設定の重複を解消することができ、適切なタイミングでRACH最適化を実行することができる。 In this way, when gNB100 detects that RRC connection failures occur frequently, the CU110 of gNB100 notifies the surrounding gNBs of the RA setting of gNB100, and if they have the same RA setting, the RA setting is set. Request to change. If there is no response to the request, the RA setting is changed in the DU 120 of the gNB 100. Therefore, when the RRC connection fails due to the duplication of RA settings, the duplication of RA settings can be eliminated, and RACH optimization can be executed at an appropriate timing.
 以上のように、本実施の形態によれば、DUがRRC接続の失敗回数をカウントし、失敗回数が所定の閾値以上になると、RRC接続の失敗が多発したことをCUへ通知する。そして、CUは、DUのRA設定と同一のRA設定を有する周辺のgNBに対して、RA設定の変更を要求する。RA設定の変更が要求されたgNBのCUは、DUに対してRA設定の変更を依頼し、DUがRA設定を変更する。このため、実際にRRC接続の失敗が多発する場合にのみRA設定変更のための信号送受信が発生するので、RACH最適化に係るトラフィックの増大を抑制することができる。また、DUによってRRC接続の失敗回数が監視され、失敗が多発するとすぐにRACH最適化が実行されるため、迅速にRA設定の重複を解消することができる。換言すれば、適切なタイミングでRACH最適化を実行することができる。 As described above, according to the present embodiment, the DU counts the number of failures of the RRC connection, and when the number of failures exceeds a predetermined threshold value, the CU is notified that the number of failures of the RRC connection has occurred frequently. Then, the CU requests the peripheral gNB having the same RA setting as the RA setting of the DU to change the RA setting. The gNB CU requested to change the RA setting requests the DU to change the RA setting, and the DU changes the RA setting. Therefore, since signal transmission / reception for changing the RA setting occurs only when RRC connection failures occur frequently, it is possible to suppress an increase in traffic related to RACH optimization. In addition, the DU monitors the number of RRC connection failures, and RACH optimization is executed as soon as failures occur frequently, so that duplication of RA settings can be quickly eliminated. In other words, RACH optimization can be performed at the right time.
 なお、上記実施の形態2においては、DU120からRRC接続の失敗が多発することを通知されるCU110(CU110a)がRA設定変更要求を他のCU110(CU110b)へ送信するものとした。しかしながら、失敗多発が通知されたCU110(CU110a)が、RA設定変更要求を送信することなく、gNB100内のDU120(DU120a)に対してRA設定の変更を依頼しても良い。この場合のRACH最適化方法を示すシーケンス図を図13に示す。図13において、図5、11と同じ部分には同じ符号を付す。 In the second embodiment, the CU 110 (CU 110a) notified by the DU 120 that RRC connection failures occur frequently sends a RA setting change request to another CU 110 (CU 110b). However, the CU 110 (CU 110a) notified of the frequent occurrence of failures may request the DU 120 (DU 120a) in the gNB 100 to change the RA setting without transmitting the RA setting change request. A sequence diagram showing the RACH optimization method in this case is shown in FIG. In FIG. 13, the same parts as those in FIGS. 5 and 11 are designated by the same reference numerals.
 図13に示すように、DU120aが、RACHの最適化をCU110aに要求すると(ステップS301)、CU110aは、RACH最適化の処理を起動する。ここでは、CU110aは、CU110bを含む周辺のCUに対してRA設定変更要求を送信するのではなく、DU120aのRA設定を変更すると決定し、DU120aに対してRA設定の変更を依頼する(ステップS321)。そして、DU120aがRA設定を変更すると、CU110aは、変更が完了した旨の通知を受信する。 As shown in FIG. 13, when the DU 120a requests the CU 110a to optimize the RACH (step S301), the CU 110a activates the RACH optimization process. Here, the CU 110a determines that the RA setting of the DU 120a is changed instead of transmitting the RA setting change request to the peripheral CUs including the CU 110b, and requests the DU 120a to change the RA setting (step S321). ). Then, when the DU 120a changes the RA setting, the CU 110a receives a notification that the change is completed.
 このように、RRC接続の失敗が多発したgNB100aにおけるRA設定と、周辺のgNB100bにおけるRA設定とが重複する場合には、gNB100aが自らRA設定を変更することにより、RA設定の重複を解消することができる。 In this way, when the RA setting in the gNB100a where RRC connection failures occur frequently and the RA setting in the surrounding gNB100b overlap, the gNB100a changes the RA setting by itself to eliminate the duplication of the RA setting. Can be done.
 110、110a、110b CU
 111 有線IF部
 112、122、220 プロセッサ
 113、121 伝送路IF部
 114、124、230 メモリ
 115、222 RRC処理部
 116 RACH最適化制御部
 120、120a、120b DU
 123、210 無線IF部
 125、221 RA処理部
 126 RA設定制御部
110, 110a, 110b CU
111 Wired IF unit 112, 122, 220 Processor 113, 121 Transmission line IF unit 114, 124, 230 Memory 115, 222 RRC processing unit 116 RACH optimization control unit 120, 120a, 120b DU
123, 210 Wireless IF unit 125, 221 RA processing unit 126 RA setting control unit

Claims (8)

  1.  無線制御装置と、無線装置とを備える基地局であって、
     前記無線制御装置は、
     端末装置によるランダムアクセス処理が正常に終了しない場合に、前記無線装置におけるランダムアクセス設定を変更することを決定する第1のプロセッサと、
     前記第1のプロセッサによる決定に従って、前記ランダムアクセス設定の変更を前記無線装置に依頼する伝送路インタフェースとを有し、
     前記無線装置は、
     前記無線制御装置からの依頼に応じて、前記ランダムアクセス設定を変更する第2のプロセッサと、
     前記第2のプロセッサによって変更された前記ランダムアクセス設定を無線で報知する無線インタフェースとを有する
     ことを特徴とする基地局。
    A base station equipped with a wireless control device and a wireless device,
    The wireless control device is
    A first processor that determines to change the random access setting in the wireless device when the random access process by the terminal device is not completed normally.
    It has a transmission line interface that requests the wireless device to change the random access setting according to the determination by the first processor.
    The wireless device is
    A second processor that changes the random access setting in response to a request from the wireless control device, and
    A base station having a wireless interface that wirelessly notifies the random access setting changed by the second processor.
  2.  前記無線制御装置は、
     前記ランダムアクセス設定の変更要求を他の基地局から受信する有線インタフェースをさらに有し、
     前記第1のプロセッサは、
     前記有線インタフェースによって前記変更要求が受信された場合に、前記ランダムアクセス設定を変更することを決定する
     ことを特徴とする請求項1記載の基地局。
    The wireless control device is
    It also has a wired interface that receives the random access setting change request from other base stations.
    The first processor is
    The base station according to claim 1, wherein when the change request is received by the wired interface, it is determined to change the random access setting.
  3.  前記第1のプロセッサは、
     他の基地局との間でランダムアクセス処理が正常に終了しないことが前記端末装置から通知された場合に、前記ランダムアクセス設定を変更することを決定する
     ことを特徴とする請求項1記載の基地局。
    The first processor is
    The base according to claim 1, wherein when the terminal device notifies that the random access process does not end normally with another base station, it is determined to change the random access setting. Station.
  4.  前記無線制御装置は、
     他の基地局との間でランダムアクセス処理が正常に終了しないことが前記端末装置から通知された場合に、前記ランダムアクセス設定の変更要求を前記他の基地局へ送信する有線インタフェースをさらに有し、
     前記第1のプロセッサは、
     前記有線インタフェースによって送信された変更要求に対して、変更完了通知が受信されない場合に、前記ランダムアクセス設定を変更することを決定する
     ことを特徴とする請求項1記載の基地局。
    The wireless control device is
    Further having a wired interface for transmitting a request for changing the random access setting to the other base station when the terminal device notifies that the random access process does not end normally with the other base station. ,
    The first processor is
    The base station according to claim 1, wherein when the change completion notification is not received in response to the change request transmitted by the wired interface, it is determined to change the random access setting.
  5.  前記無線装置は、
     前記端末装置によるランダムアクセス処理が正常に終了しないことが検出された場合に、ランダムアクセス処理に関する最適化を前記無線制御装置に要求する伝送路インタフェースをさらに有し、
     前記第1のプロセッサは、
     ランダムアクセス処理に関する最適化を前記無線装置から要求された場合に、前記ランダムアクセス設定を変更することを決定する
     ことを特徴とする請求項1記載の基地局。
    The wireless device is
    Further having a transmission line interface that requests the wireless control device to optimize the random access processing when it is detected that the random access processing by the terminal device does not end normally.
    The first processor is
    The base station according to claim 1, wherein when the wireless device requests optimization regarding random access processing, it is determined to change the random access setting.
  6.  前記第1のプロセッサは、
     ランダムアクセス処理中に実行されるRRC(Radio Resource Control)接続の失敗回数が所定の閾値以上である場合に、前記無線装置におけるランダムアクセス設定を変更することを決定する
     ことを特徴とする請求項1記載の基地局。
    The first processor is
    Claim 1 is characterized in that it is determined to change the random access setting in the wireless device when the number of failures of the RRC (Radio Resource Control) connection executed during the random access process is equal to or greater than a predetermined threshold value. The listed base station.
  7.  ランダムアクセス処理に関するランダムアクセス設定の情報を受信する無線インタフェースと、
     前記ランダムアクセス設定に従ってランダムアクセス処理を実行し、ランダムアクセス処理が正常に終了しない失敗回数をカウントするプロセッサとを有し、
     前記無線インタフェースは、
     前記プロセッサによってカウントされた失敗回数が所定の閾値以上である場合に、ランダムアクセス処理が成功した基地局に対して、ランダムアクセス処理の失敗が多発したことを通知する
     ことを特徴とする端末装置。
    A wireless interface that receives information on random access settings related to random access processing,
    It has a processor that executes random access processing according to the random access setting and counts the number of failures that random access processing does not end normally.
    The wireless interface is
    A terminal device characterized in that when the number of failures counted by the processor is equal to or greater than a predetermined threshold value, a base station in which random access processing has succeeded is notified that random access processing has frequently failed.
  8.  端末装置と、無線制御装置と、無線装置とを備える無線通信システムであって、
     前記無線制御装置は、
     前記端末装置によるランダムアクセス処理が正常に終了しない場合に、前記無線装置におけるランダムアクセス設定を変更することを決定する第1のプロセッサと、
     前記第1のプロセッサによる決定に従って、前記ランダムアクセス設定の変更を前記無線装置に依頼する伝送路インタフェースとを有し、
     前記無線装置は、
     前記無線制御装置からの依頼に応じて、前記ランダムアクセス設定を変更する第2のプロセッサと、
     前記第2のプロセッサによって変更された前記ランダムアクセス設定を無線で報知する無線インタフェースとを有する
     ことを特徴とする無線通信システム。
    A wireless communication system including a terminal device, a wireless control device, and a wireless device.
    The wireless control device is
    A first processor that determines to change the random access setting in the wireless device when the random access process by the terminal device is not completed normally.
    It has a transmission line interface that requests the wireless device to change the random access setting according to the determination by the first processor.
    The wireless device is
    A second processor that changes the random access setting in response to a request from the wireless control device, and
    A wireless communication system comprising a wireless interface for wirelessly notifying the random access setting changed by the second processor.
PCT/JP2019/048155 2019-12-09 2019-12-09 Base station, terminal device, and wireless communication system WO2021117111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048155 WO2021117111A1 (en) 2019-12-09 2019-12-09 Base station, terminal device, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048155 WO2021117111A1 (en) 2019-12-09 2019-12-09 Base station, terminal device, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2021117111A1 true WO2021117111A1 (en) 2021-06-17

Family

ID=76329899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048155 WO2021117111A1 (en) 2019-12-09 2019-12-09 Base station, terminal device, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2021117111A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513467A (en) * 2011-04-05 2014-05-29 サムスン エレクトロニクス カンパニー リミテッド Random access control method and apparatus for supporting carrier aggregation in a mobile communication system
JP2014220667A (en) * 2013-05-09 2014-11-20 シャープ株式会社 Terminal device, base station device, communication system, communication method, and integrated circuit
JP2016526806A (en) * 2013-07-23 2016-09-05 日本電気株式会社 Communication device, base station, system, method and computer program product for detecting and mitigating imbalance between uplink and downlink for distant cells
JP2019523601A (en) * 2017-04-13 2019-08-22 エルジー エレクトロニクス インコーポレイティド Method and apparatus for providing system information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513467A (en) * 2011-04-05 2014-05-29 サムスン エレクトロニクス カンパニー リミテッド Random access control method and apparatus for supporting carrier aggregation in a mobile communication system
JP2014220667A (en) * 2013-05-09 2014-11-20 シャープ株式会社 Terminal device, base station device, communication system, communication method, and integrated circuit
JP2016526806A (en) * 2013-07-23 2016-09-05 日本電気株式会社 Communication device, base station, system, method and computer program product for detecting and mitigating imbalance between uplink and downlink for distant cells
JP2019523601A (en) * 2017-04-13 2019-08-22 エルジー エレクトロニクス インコーポレイティド Method and apparatus for providing system information

Similar Documents

Publication Publication Date Title
CN109842955B (en) Communication method and device
RU2713442C1 (en) Cell switching system and method
RU2752242C1 (en) Methods providing dual connect capability for redundant user plane paths and corresponding network nodes
TWI419595B (en) Method and system for performing peer-to-peer communication between stations within a basic service set
WO2018024128A1 (en) Cell configuration method and device
US11622406B2 (en) Dual connectivity method and access network device
EP2911443B1 (en) Method and device for controlling data transmission via signaling by user equipment
EP3761681B1 (en) Multi-connection data amount reporting method
WO2014127677A1 (en) Data transmission method, apparatus and system
EP3713297B1 (en) Layer 2 processing method, central unit and distributed unit
RU2743578C1 (en) Security on the access level in wireless communications
WO2014015781A1 (en) Method, base station, and user equipment for handover between wireless networks
US20160192281A1 (en) Distributed method for client optimization
KR20120071227A (en) Mobile communication systems for controlling load in distributed manner and method threrof
EP3226606B1 (en) Method for ran-wlan aggregation
WO2017219355A1 (en) Multi-connection communications method and device
JP7262383B2 (en) COMMON PROCESSING PERFORMANCE METHOD, APPARATUS, AND SYSTEM
KR20220044341A (en) Method and device for determining security protection mode
US9549423B2 (en) Method and device for increasing gateway capacity in LTE mode Femto cell system
EP2955973A1 (en) Mobile communication system, method of controlling operation thereof, and node used for the system
US11076321B2 (en) Selecting 5G non-standalone architecture capable MME during registration and handover
EP3485695B1 (en) Controlling a user equipment
CN104936171B (en) The determination method and device of security algorithm
Hossain et al. Reducing signaling overload: Flexible capillary admission control for dense MTC over LTE networks
WO2021117111A1 (en) Base station, terminal device, and wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP